The present disclosure generally relates to neonatal care systems, and more specifically to neonatal care systems incorporating a sleep device having a sling and frame structure for supporting a neonate.
Some neonates and especially some significantly prematurely born infants are not physiologically well enough developed to be able to survive without special medical attention. A frequently used medical aid for such infants is the incubator. The primary objective of the incubator is to provide an environment which will maintain the neonate at a minimum metabolic state thereby permitting as rapid physiological development as possible. Neonatal incubators create a microenvironment that is thermally neutral where a neonate can develop. These incubators typically include a humidifier and a heater and associated control system that controls the humidity and temperature in the neonatal microenvironment. The humidifier comprises a device that evaporates an evaporant, such as distilled water, to increase relative humidity of air within the neonatal microenvironment. The humidifier is typically controllable such that the amount of water, or water vapor, added to the microenvironment is adjustable in order to control the humidity to a desired value. The heater may be, for example, an air heater controllable to maintain the microenvironment area to a certain temperature. Radiant warmers may be used instead of incubators for some neonates where less environmental control is required. In still other embodiments, hybrid incubator/radiant warming systems may be utilized, various embodiments of which are well known in the art.
This Summary is provided to introduce a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one embodiment, a neonatal care system includes a base, a bassinet platform supported on the base, and a neonatal sleep device. The neonatal sleep device includes a frame structure connected to and extending upward from the bassinet platform, wherein the sling is suspended above the bassinet platform and configured to support a neonate. The neonatal care system further includes a heater configured to heat an environment surrounding the neonate supported in the sling.
One embodiment of a neonatal sleep device for a neonatal care system includes a frame structure configured to connect to a bassinet platform of a neonatal care system and a sling configured to support a neonate. The sling is removably attached to the frame structure such that it is suspended above the bassinet platform. The frame structure is collapsible so as to lower the sling and the neonate onto the bassinet to enable performance of medical care on the neonate.
Various other features, objects, and advantages of the invention will be made apparent from the following description taken together with the drawings.
The drawings illustrate the best mode presently contemplated of carrying out the disclosure. In the drawings:
The inventor has recognized that an improved neonatal sleep device is needed for neonatal care systems—such as incubators, radiant warmers, and other types of neonatal care stations and devices—including an improved pressure diffusing sleep surface that is breathable and allows administration of phototherapy to the neonate's entire body without touching the neonate. The inventor has recognized that existing bassinet mattress surfaces are often either too hard or do not provide sufficient breathability, such as existing foam mattress products and water mattress products available for neonatal care systems. Additionally, the inventor has recognized problems with existing bassinet platforms in neonatal care systems where misuse occurs too easily, such as placing babies on unclean or not adequately prepared mattress surfaces, and that systems should be developed to prevent such misuse cases. For example, a mattress may be installed incorrectly or an incorrect mattress used in an incubator. Another misuse occurs where neonates are placed directly on a mattress without any sheet, or where an unclean or wrong sheet is placed on the mattress.
Through significant research and experimentation, the inventor developed the disclosed neonatal sleep device for a neonatal care system which provides improved pressure diffusion for supporting the neonate, while also providing a breathable sleep surface that permits air to circulate around the neonate. The disclosed neonatal sleep device includes a frame structure that connects to a bassinet of a neonatal care system, such as within a microenvironment of an incubator or under a radiant heater of a radiant warmer. A sling sleep surface is attached to the frame structure and configured to support a neonate such that the neonate is suspended above the bassinet platform. In certain embodiments, the sling sleep surface is formed of one or more materials that permit delivery of phototherapy. Namely, the sling is configured to permit blue light rays emitted by a phototherapy device, such as a blue LED phototherapy unit, to penetrate the sleep surface and reach the neonate's skin. The sling may be comprised of a netting material, for example, that is sufficiently stretchy to provide a comfortable and pressure diffusing sleeping surface, and also to absorb shock due to motion of the neonatal care system, thereby providing a smoother and more comfortable ride for the neonate during transport. The sling sleep surface provides the neonate a natural and relaxed sleep position, providing even pressure disbursement and minimizing the pressure points. The neonatal sleep device may also be adjustable so as to adjust the tilt angle of the sleep surface for the neonate.
In certain embodiments, the neonatal sleep device is collapsible so as to lower the sling and the neonate onto the bassinet platform to enable performance of medical care on the neonate. Namely, the pressure absorbing and/or bouncy sling may not be ideal for supporting a neonate during many medical procedures or examinations. And thus the neonatal sleep device may be configured to allow the neonate to be lowered onto the firmer bassinette platform for performance of such medical care.
The neonatal sleep device 2 includes a frame structure 41 and a sling sleep surface 60 supported on the frame structure 41. The frame structure 41 connects to the bassinette platform 20 and extends upward therefrom. The frame structure 41 may be configured to removably connect to the bassinet platform 20. The sling 60 may be configured to removably attach and detach from the frame structure 41 such that, when attached, the sling 60 is suspended above the bassinette platform 20. The sling 60 may be a reusable element, such as comprised of washable material. In other embodiments, the sling 60 may be a single-use device that is disposable and configured for use with only a single neonate. In either embodiment, the sling 60 is configured to be removed from the frame structure 41 after each use with a neonate. Thus, the above-described misuse cases are prevented because the neonatal sleep device 2 requires placement of a clean and/or new sling sleep surface 60 prior to use. Moreover, the sling 60 may be shaped and configured such that it cannot be improperly attached to the frame 41, thereby preventing the misuse case of placing a neonate on an unclean or improperly configured sleep surface.
A hood 30 may enclose a chamber above the platform 20 to form a microenvironment 32 wherein temperature and humidity are controlled according to the needs of the neonate. The hood 30, when positioned and attached above the bassinet platform 20 includes a plurality of walls 26, normally of a transparent plastic material, which surround and enclose the neonate in the microenvironment 32. The walls 26 may have hand holes 28 to enable a caregiver to reach the neonate. Alternatively or additionally, at least one of the sidewalls 26 may be removable or hinged to open to provide better access to the neonate. Alternatively, a top portion of the hood 30 may be removable to provide complete access to the neonate. In still other embodiments, the hood 30 may be entirely removable from the platform 20. The hood 30 may be configured to abut the vertical frame members 36 such that the hood encloses three sides and the top of the microenvironment 32 and the vertical frame member 36 encloses the fourth side to maintain the microenvironment 32. In other embodiments, the hood 30 may define the entire enclosure above the bassinet platform 20.
The neonatal care system 10 may be configured such that the bassinet platform 20 can be raised and lowered, such as by having an extendible vertical base member 16 that is movable to adjust the height of the bassinet platform 20. The bassinet platform 20 may be mounted in a cantilevered manner such that various systems and devices can be mounted underneath. For example, a heater 22 may be mounted beneath or incorporated below the platform 20 and vents may be provided to circulate heated air into the microenvironment 32 defined by the hood 30. Similarly, a humidifier 23 may be incorporated below the platform 20 and controllable to evaporate water stored in a reservoir in order to control the humidity of the microenvironment 32. The heater 22 and humidifier 23 are controllable, such as by a control unit integrated into the system 10, in order to control the humidity and temperature of the microenvironment 32.
In the exemplary embodiment depicted in
The top support member 44 is configured to attach to and detach from the sling 60, which is preferably removable from the frame structure 41. Various attachment means for attaching the frame and sling 60 are described herein. In one embodiment, the top support member 44 may be a straight bar on either side of the sling 60 connecting between the vertical support members 42 on the respective side. In other embodiments, the top support member 44 may be a continuous u-shaped rod, wherein the sling 60 is shaped to form over or otherwise connect to the top support member 44.
The vertical support members 42 may be extendible and retractable to raise and lower the height of the sling 60 above the platform 20. In certain embodiments, all four vertical support members 42 are vertically extendible, such as each having a telescoping portion 42a that can be extended or collapsed to raise and lower the sling. In other embodiments, only two out of the four vertical support members 42 may be vertically extendible so as to adjust the tilt angle A of the sleeping surface provided by the sling 60 with respect to horizontal. For example, the vertical support members 42 near the head-side of the neonate may be extendible upward so as to raise the head portion of the sling 60 to increase the angle A from horizontal. In other embodiments, the vertical support members 42 on the bottom side of the neonate may be collapsible in order to lower the foot portion 39 of the sling 60. In either embodiment, the angle A of the sleep surface provided by the sling 60 may be adjustable to positive or negative angles (e.g. a Trendelenburg position).
In certain embodiments, frame structure 41 may be collapsible to allow the sling 60 supporting the neonate to lower all the way to the bassinet platform 20. This may be desirable to enable performance of medical care on the neonate where the stretchable sling 60 may not provide an ideal surface for supporting the neonate. For example, the vertical support members 42 may be configured to be shortened sufficiently to lower the sling 60 such that the entire weight of the neonate is supported on the platform 20. In such an embodiment, the telescoping portions 42a of the vertical support members may be configured to allow the vertical support members 42 to become small enough such that the sling 60 contacts the bassinet platform 20 and the bassinet platform 20 supports the weight of the neonate. In other embodiments, the bassinet platform 20, or a portion thereof, may be configured to be raisable so as to support the neonate to enable performance of certain medical care for which the sling sleep surface 60 is not ideal.
In other embodiments, the frame 41 may be fixed such that the height of the frame is not adjustable.
Various attachment means may fixedly secure the frame structure 41 to the platform 20. In certain embodiments, the frame 41 and/or the bassinet platform 20 may comprise corresponding elements configured to mateably connect, such as clips, pins, and holes, hooks, locks, or other fasteners that secure the frame 41 to the bassinet platform 20. Still other friction-fit attachment means may connect the frame structure 41 and the bassinette platform 20 (see
The frame structure 41 and sling 60 may attach together by various means. In the example, the sling 60 attaches at various attachment points around the frame 41. The frame 41 comprises sling attachment means 52 for attaching to the sling 60. The sling comprises corresponding frame attachment means 62 for attaching to the frame 41. For example, the sling attachment means 52 may be hooks or buttons, and the frame attachment means 62 may be loops or strips with eyelets configured to attach to the sling attachment means 52. To provide just one example, the sling 60 may comprise a mesh layer comprised of a netting material 66 (see
In certain embodiments, the frame 41 may be configured such that the ends may be positioned at different heights so as to control a tilt angle of the sleeping surface for the neonate.
In other embodiments, the lip 58 may extend and be integrated into the bassinet platform 20, rather than have a tray 57.
The curved support member 45 may be reciprocally designed with the bassinet connector 65 such that the curved support member 45 is moveable with respect to the bassinet connector 65 in order to adjust the tilt angle A for supporting the sling 60 and providing an angled sleeping surface for the neonate. In the depicted embodiment, the curved support member 45 is moveable in the fore and aft directions indicated by arrow 69a. The connector 65 may also be moveable with respect to the bassinet platform 20, as exemplified by arrow 69b, so as to compensate for at least a portion of the directional movement of the curved support member 45. Namely, the connector 65 may move in an opposite direction from the curved support member 45, thus a change in the relative position of the sling 60 with respect to the head-side or foot-side of the microenvironment can be minimized.
In the depicted embodiment, the curved support member 45 is moveable with respect to the connector 65 and is lockable at certain predefined positions so as to change the tilt angle A of the neonatal sleep system 2. In the depicted embodiment at
In certain embodiments, a phototherapy device 73 may be placed underneath the sling 60 so as to provide phototherapy to the neonate. In such an embodiment, the sling 60 is comprised of a material that permits delivery of phototherapy therethrough—i.e. that is penetrable by blue wavelength light emitted by the phototherapy device 73.
The netting material 66 may be covered by a sheet top layer 68, which is any material appropriate for contacting the skin of the neonate. The sheet 68 material may be constructed from materials that are partially translucent for light wavelengths of peak phototherapy device operation, such as for wavelengths in the range of 445 nm-470 nm. The assembled sleep surface comprised of netting material 66 and sheet 68 preferably provides low frequency vibration damping. In one exemplary embodiment, the maximum peak pressure measured by placing 680 g (1.5 lbs.) on the sling sleep surface does not exceed 28 mmHG and is capable of supporting up to 5 kg (11 lbs.) distributed weight on the sleep surface netting area while keeping it elevated at least 5 mm (0.2 inches) above the microenvironment platform 20. The sling 60, including the sheet and netting assembly, preferably meets X-ray image clarity requirements and will produce no artifacts in the X-ray image that make the X-ray difficult to read as evaluated by a radiologist. The netting material 66 and sheet 68 are preferably constructed from non-toxic, DEHP and BPA free, materials and not from materials known as potentially causing allergic reactions, such as materials having any animal tissues. The netting material 66 and sheet 68 preferably have neutral or low odor. The sheet 68 is preferably impermeable and not absorbent of any liquids. Preferably, any seams or other material-connecting areas of the netting material 66 and/or sheet 68 shall not come in contact with a neonate when the sling 60 is in use. As exemplified in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2260584 | Schuck | Oct 1941 | A |
3837019 | Hoff | Sep 1974 | A |
4146885 | Lawson, Jr. | Mar 1979 | A |
4885918 | Vaccaro | Dec 1989 | A |
5216770 | Holt | Jun 1993 | A |
5244452 | Vaccaro | Sep 1993 | A |
5274863 | Fountain | Jan 1994 | A |
5664273 | Obriot | Sep 1997 | A |
5857232 | Mahdavi | Jan 1999 | A |
6071228 | Speraw | Jun 2000 | A |
6464715 | Gysens | Oct 2002 | B1 |
6880188 | Schmidt | Apr 2005 | B1 |
7614098 | Quarry | Nov 2009 | B1 |
7752691 | Bensoussan | Jul 2010 | B2 |
7761942 | Benzo et al. | Jul 2010 | B2 |
7780236 | Bergkvist | Aug 2010 | B2 |
7827631 | Holman | Nov 2010 | B2 |
7886379 | Benzo et al. | Feb 2011 | B2 |
8001630 | Burkholder et al. | Aug 2011 | B2 |
8745793 | Bensoussan | Jun 2014 | B2 |
8769746 | Abadi | Jul 2014 | B2 |
9943175 | Spencer | Apr 2018 | B1 |
20020100116 | Richards | Aug 2002 | A1 |
20040236174 | Boone | Nov 2004 | A1 |
20050034232 | Martin | Feb 2005 | A1 |
20060138826 | Caton | Jun 2006 | A1 |
20060225204 | Bretschger | Oct 2006 | A1 |
20070089236 | Bailey-VanKuren | Apr 2007 | A1 |
20070289060 | Berkey | Dec 2007 | A1 |
20080060128 | Forshpan | Mar 2008 | A1 |
20080271243 | Burkholder | Nov 2008 | A1 |
20090113625 | Hutchinson | May 2009 | A1 |
20090235461 | Straub | Sep 2009 | A1 |
20090256408 | Bergkvisit | Oct 2009 | A1 |
20100010599 | Chen | Jan 2010 | A1 |
20100229300 | Eirich | Sep 2010 | A1 |
20100229301 | Arnold, IV | Sep 2010 | A1 |
20110113555 | Smith | May 2011 | A1 |
20110148155 | Chapman | Jun 2011 | A1 |
20110148159 | Barron | Jun 2011 | A1 |
20120096646 | Barron | Apr 2012 | A1 |
20120137429 | Aaron | Jun 2012 | A1 |
20130096365 | Andersson | Apr 2013 | A1 |
20130204074 | Belval | Aug 2013 | A1 |
20130267765 | Rapoport | Oct 2013 | A1 |
20140031906 | Brezinski | Jan 2014 | A1 |
20150015036 | Soriano | Jan 2015 | A1 |
20150126804 | Rapoport | May 2015 | A1 |
20150209598 | Bhosale | Jul 2015 | A1 |
20150231012 | Rapoport | Aug 2015 | A1 |
20160073889 | Belsinger, Jr. | Mar 2016 | A1 |
20160074260 | Belsinger, Jr. | Mar 2016 | A1 |
20160081863 | Belsinger, Jr. | Mar 2016 | A1 |
20160165961 | Karp | Jun 2016 | A1 |
20160192787 | Perrin | Jul 2016 | A1 |
20160199241 | Rapoport | Jul 2016 | A1 |
20160270993 | Wilden | Sep 2016 | A1 |
20170188879 | Rapoport | Jul 2017 | A1 |
20170196373 | Sclare | Jul 2017 | A1 |
20170360638 | Moletto | Dec 2017 | A1 |
20180289573 | Degrazia | Oct 2018 | A1 |
20190374044 | Acevedo | Dec 2019 | A1 |
20190380901 | Breegi | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
103859873 | Jun 2014 | CN |
1985003209 | Aug 1985 | WO |
Number | Date | Country | |
---|---|---|---|
20200253802 A1 | Aug 2020 | US |