Nerve ablation devices and related methods of use

Information

  • Patent Grant
  • 10265122
  • Patent Number
    10,265,122
  • Date Filed
    Thursday, February 13, 2014
    10 years ago
  • Date Issued
    Tuesday, April 23, 2019
    5 years ago
Abstract
An ablation device is provided for forming one or more lesions on a wall of an artery, such as a renal artery. The device can include an elongate shaft having a proximal end and a distal end. The device may also include a handle disposed at the proximal end, a distal tip including an electrode disposed at the distal end, and one or a plurality of independently expandable splines proximate the distal end.
Description
FIELD

Embodiments of the disclosure are generally directed to devices and methods for ablating target tissue within a body vessel. In particular, exemplary embodiments are directed to devices and methods for ablating tissue on a wall of the renal artery, such as to perform renal denervation.


BACKGROUND

Certain treatments may call for the temporary or permanent interruption or modification of select nerve function. One exemplary treatment is renal nerve ablation, which is sometimes used to treat conditions related to congestive heart failure or hypertension. The kidneys produce a sympathetic response to congestive heart failure, which, among other effects, increases the undesired retention of water and/or sodium. Ablating some of the nerves running to the kidneys may reduce or eliminate this sympathetic function, which may provide a corresponding reduction in the associated undesired symptoms.


Many nerves (and nervous tissue such as brain tissue), including renal nerves, run along the walls of or in close proximity to blood vessels and thus can be accessed intravascularly through the walls of the blood vessels. In some instances, it may be desirable to ablate perivascular nerves and/or tissue using ultrasonic energy. In other instances, the perivascular nerves may be ablated by other means including application of thermal, radiofrequency, laser, microwave, and other related energy sources to the target region.


Conventionally known devices include an ablation catheter having a single electrode at the distal tip, used to deliver radiofrequency (RF) energy, for example, to the target tissue. Sometimes, it is difficult to position the electrode parallel to the vessel wall to obtain an efficient lesion pattern because the ablation catheter may not be controlled to point at the desired locations accurately. Additionally, correct positioning of the electrode may require deflection and/or torquing of the ablation device to place the electrode adjacent a target location within the blood vessel. It is noted that deflection and/or torquing of such ablation devices may include a variety of challenges, for example, potential damage of vessel walls, coagulation of surrounding blood, fouling of the electrode, and so forth.


SUMMARY

The disclosure is directed to several alternative designs, materials and methods of manufacturing medical device structures and assemblies for performing nerve ablation and methods for performing nerve ablation.


Accordingly, one illustrative embodiment is an ablation device. The device includes an elongate shaft having a proximal end region and a distal end region. The device also include a handle disposed adjacent to the proximal end, a distal tip including an electrode disposed at the distal end, and a plurality of independently expandable splines adjacent to the distal end.


Another illustrative embodiment is a method of performing nerve ablation. The method can include insertion of an ablation device into a vessel. The ablation device can include an elongate shaft having a proximal end region and a distal end region, a handle disposed adjacent to the proximal end region, a distal tip including an electrode disposed at a distal end and a plurality of independently expandable splines adjacent to the distal end region. The plurality of splines may be disposed in a first delivery position. The method can also include deployment of a first spline to contact the electrode to a wall of the vessel at a first location in a second expanded position. The method can further include application of RF energy to create a first lesion, which is followed by retraction of the first spline to the first delivery position. The method further includes withdrawing the elongate shaft to a first distance.


The method may also include deployment of a second spline of the plurality of splines to contact the electrode to the wall of the vessel in the second expanded position at a second location different from the first location. The method can include application of RF energy to create a second lesion, which is followed by retraction of the second spline to the first delivery position. Subsequently, the ablation device can be withdrawn from the vessel.


The above summary of some example embodiments is not intended to describe each disclosed embodiment or every implementation of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a right kidney and renal vasculature including a renal artery branching laterally from the abdominal aorta;



FIGS. 2A and 2B illustrate sympathetic innervation of the renal artery;



FIG. 3 illustrates various tissue layers of the wall of the renal artery;



FIGS. 4A-4C illustrate various configurations of a conventional ablation catheter within a vessel;



FIG. 5 illustrates an exemplary renal ablation device in accordance with principles of the present disclosure;



FIG. 6A illustrates a schematic side-view of the renal ablation device of FIG. 5 located within a renal artery;



FIG. 6B illustrates a front view of the renal ablation device shown in FIG. 6A;



FIG. 7A illustrates another schematic side-view of the renal ablation device of FIG. 5 located within a renal artery;



FIG. 7B illustrates a front view of the renal ablation device shown in FIG. 7A;



FIG. 8A illustrates another schematic side-view of the renal ablation device of FIG. 5 located within a renal artery;



FIG. 8B illustrates a front view of the renal ablation device shown in FIG. 8A;



FIG. 9A illustrates another schematic side-view of the renal ablation device of FIG. 5 located within a renal artery;



FIG. 9B illustrates a front view of the renal ablation device shown in FIG. 9A;



FIG. 10A illustrates another schematic side-view of the renal ablation device of FIG. 5, located within a renal artery; and



FIG. 10B illustrates a front view of the renal ablation device shown in FIG. 10A;





While embodiments of the present disclosure are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure.


DETAILED DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may be indicative as including numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


Although some suitable dimensions ranges and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges and/or values may deviate from those expressly disclosed.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


For purposes of this disclosure, “proximal” refers to the end closer to the device operator during use, and “distal” refers to the end farther from the device operator during use.


The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.


Embodiments of the present disclosure are directed to devices and methods for ablating target tissue within a body vessel. Embodiments of the disclosure are directed to devices and methods for ablating perivascular renal nerves from within the renal artery for the treatment of hypertension, congestive heart failure or other diseases or injuries. Embodiments of the disclosure include expandable structures that support alignment of the electrode (s) along the renal artery wall to deliver renal nerve ablation.


While the devices and methods described herein are discussed relative to renal nerve modulation, it is contemplated that the devices and methods may be used in other locations and/or applications where nerve modulation and/or other tissue modulation including, but not limited to, heating, activation, blocking, disrupting, or ablation are desired, such as, but not limited to: blood vessels, urinary vessels, or in other tissues via trocar and cannula access. For example, the devices and methods described herein can be applied to hyperplastic tissue ablation, tumor ablation, benign prostatic hyperplasia therapy, nerve excitation or blocking or ablation, modulation of muscle activity, hyperthermia or other warming of tissues, etc. In some instances, it may be desirable to ablate perivascular renal nerves with radiofrequency (RF) energy. The term modulation refers to ablation and other techniques that may alter the function of nerves and other tissue such as brain tissue or cardiac tissue.


Obtaining good parallel contact with the artery wall during ablation of perivascular renal nerves may be difficult. If contact is variable, the tissue temperatures may not be well controlled, and an ablative temperature may not be achieved in the target tissue, while temperature in other areas, such as portions of the artery wall, may deviate enough to cause unwanted arterial tissue injury. For ideal anatomy, good parallel electrode to vessel contact can be achieved more easily, but especially with tortuous or diseased vessels, there can be very poor contact to effectively and predictably transfer electrical current from an ablation device to the tissue. There is continued need for devices providing improved vessel wall contact for nerve ablation and other therapies.


Embodiments of the disclosure are directed to devices and methods for multi-site RF ablation of perivascular renal nerves for hypertension and other treatments. According to various embodiments, an ablation device may include an elongate shaft having multiple expandable splines near the distal end. The expandable splines may move between a first delivery position and a second expanded position. An RF electrode is mounted on the distal tip of the elongate shaft. The multiple expandable splines can comprise expandable curved, arcuate, or other structures to place the RF electrodes at a desired target location.


When the elongate shaft is deployed, at least one spline may be expanded to come in contact with the artery wall. Such contact between the artery wall and the splines deflects the electrode to contact the artery wall on an opposite side. In some instances, multiple splines may be expanded to place the RF electrode in good parallel contact with the vessel wall.


The elongate shaft can be advanced and deployed in a renal artery to ablate the renal nerves. Activating an RF electrode or combinations of electrodes by energizing from an external energy source may provide one or more discrete RF ablation regions called lesions. Deployment of the ablation device and/or expandable splines can utilize self-expanding elastic forces, push/pull control structures, external retaining and delivery sheaths, and other linkages and structures. An external delivery sheath can be used to protect and constrain the elongate shaft at the distal end during placement and withdrawal. The elongate shaft can be advanced and deployed in a renal artery to ablate the renal nerves. After positioning the shaft's distal end within the renal artery, the delivery sheath can be retracted. Further, the splines may be expanded in a sequential manner allowing the electrode to contact different sites with the renal artery wall.


A proximal end of each of the splines can be connected to a control handle, which may aid in deployment of the splines to the second expanded position. A distal end of each of the splines can be affixed to the distal end region of the elongate shaft adjacent the distal tip. One or more temperature sensors, such as thermocouples, can be provided at the site of the electrode to measure the temperature at or adjacent to the electrode.



FIG. 1 is an illustration of a right kidney 10 and renal vasculature including a renal artery 12 branching laterally from the abdominal aorta 20. In FIG. 1, only the right kidney 10 is shown for purposes of simplicity of explanation, but reference will be made herein to both right and left kidneys and associated renal vasculature and nervous system structures, all of which are contemplated within the context of the disclosed subject matter. The renal artery 12 is purposefully shown to be disproportionately larger than the right kidney 10 and abdominal aorta 20 in order to facilitate discussion of various features and embodiments of the present disclosure.


The right and left kidneys are supplied with blood from the right and left renal arteries that branch from respective right and left lateral surfaces of the abdominal aorta 20. Each of the right and left renal arteries is directed across the crus of the diaphragm, so as to form nearly a right angle with the abdominal aorta 20. The right and left renal arteries extend generally from the abdominal aorta 20 to respective renal sinuses proximate the hilum 17 of the kidneys, and branch into segmental arteries and then interlobular arteries within the kidney 10. The interlobular arteries radiate outward, penetrating the renal capsule and extending through the renal columns between the renal pyramids. Typically, the kidneys receive about 20% of total cardiac output which, for normal persons, represents about 1200 mL of blood flow through the kidneys per minute.


The primary function of the kidneys is to maintain water and electrolyte balance for the body by controlling the production and concentration of urine. In producing urine, the kidneys excrete wastes such as urea and ammonium. The kidneys also control reabsorption of glucose and amino acids, and are important in the production of hormones including vitamin D, renin and erythropoietin.


An important secondary function of the kidneys is to control metabolic homeostasis of the body. Controlling hemostatic functions include regulating electrolytes, acid-base balance, and blood pressure. For example, the kidneys are responsible for regulating blood volume and pressure by adjusting volume of water lost in the urine and releasing erythropoietin and renin, for example. The kidneys also regulate plasma ion concentrations (e.g., sodium, potassium, chloride ions, and calcium ion levels) by controlling the quantities lost in the urine and the synthesis of calcitrol. Other hemostatic functions controlled by the kidneys include stabilizing blood pH by controlling loss of hydrogen and bicarbonate ions in the urine, conserving valuable nutrients by preventing their excretion, and assisting the liver with detoxification.


Also shown in FIG. 1 is the right suprarenal gland 11, commonly referred to as the right adrenal gland. The suprarenal gland 11 is a star-shaped endocrine gland that rests on top of the kidney 10. The primary function of the suprarenal glands (left and right) is to regulate the stress response of the body through the synthesis of corticosteroids and catecholamines, including cortisol and adrenaline (epinephrine), respectively. Encompassing the kidneys 10, suprarenal glands 11, renal vessels 12, and adjacent perirenal fat is the renal fascia, e.g., Gerota's fascia, (not shown), which is a fascial pouch derived from extraperitoneal connective tissue.


The autonomic nervous system of the body controls involuntary actions of the smooth muscles in blood vessels, the digestive system, heart, and glands. The autonomic nervous system is divided into the sympathetic nervous system and the parasympathetic nervous system. In general terms, the parasympathetic nervous system prepares the body for rest by lowering heart rate, lowering blood pressure, and stimulating digestion. The sympathetic nervous system effectuates the body's fight-or-flight response by increasing heart rate, increasing blood pressure, and increasing metabolism.


In the autonomic nervous system, fibers originating from the central nervous system and extending to the various ganglia are referred to as preganglionic fibers, while those extending from the ganglia to the effector organ are referred to as postganglionic fibers. Activation of the sympathetic nervous system is effected through the release of adrenaline (epinephrine) and to a lesser extent norepinephrine from the suprarenal glands 11. This release of adrenaline is triggered by the neurotransmitter acetylcholine released from preganglionic sympathetic nerves.


The kidneys and ureters (not shown) are innervated by the renal nerves 14. FIGS. 1 and 2A-2B illustrate sympathetic innervation of the renal vasculature, primarily innervation of the renal artery 12. The primary functions of sympathetic innervation of the renal vasculature include regulation of renal blood flow and pressure, stimulation of renin release, and direct stimulation of water and sodium ion reabsorption.


Most of the nerves innervating the renal vasculature are sympathetic postganglionic fibers arising from the superior mesenteric ganglion 26. The renal nerves 14 extend generally axially along the renal arteries 12, enter the kidneys 10 at the hilum 17, follow the branches of the renal arteries 12 within the kidney 10, and extend to individual nephrons. Other renal ganglia, such as the renal ganglia 24, superior mesenteric ganglion 26, the left and right aorticorenal ganglia 22, and celiac ganglia 28 also innervate the renal vasculature. The celiac ganglion 28 is joined by the greater thoracic splanchnic nerve (greater TSN). The aorticorenal ganglia 26 is joined by the lesser thoracic splanchnic nerve (lesser TSN) and innervates the greater part of the renal plexus.


Sympathetic signals to the kidney 10 are communicated via innervated renal vasculature that originates primarily at spinal segments T10-T12 and L1. Parasympathetic signals originate primarily at spinal segments S2-S4 and from the medulla oblongata of the lower brain. Sympathetic nerve traffic travels through the sympathetic trunk ganglia, where some may synapse, while others synapse at the aorticorenal ganglion 22 (via the lesser thoracic splanchnic nerve, i.e., lesser TSN) and the renal ganglion 24 (via the least thoracic splanchnic nerve, i.e., least TSN). The postsynaptic sympathetic signals then travel along nerves 14 of the renal artery 12 to the kidney 10. Presynaptic parasympathetic signals travel to sites near the kidney 10 before they synapse on or near the kidney 10.


With particular reference to FIG. 2A, the renal artery 12, as with most arteries and arterioles, is lined with smooth muscle 34 that controls the diameter of the renal artery lumen 13. Smooth muscle, in general, is an involuntary non-striated muscle found within the media layer of large and small arteries and vein, as well as various organs. The glomeruli of the kidneys, for example, contain a smooth muscle-like cell called the mesangial cell. Smooth muscle is fundamentally different from skeletal muscle and cardiac muscle in terms of structure, function, excitation-contraction coupling, and mechanism of contraction.


Smooth muscle cells can be stimulated to contract or relax by the autonomic nervous system, but can also react on stimuli from neighboring cells and in response to hormones and blood borne electrolytes and agents (e.g., vasodilators or vasoconstrictors). Specialized smooth muscle cells within the afferent arteriole of the juxtaglomerular apparatus of kidney 10, for example, produces renin which activates the angiotension II system.


The renal nerves 14 innervate the smooth muscle 34 of the renal artery wall 15 and extend lengthwise in a generally axial or longitudinal manner along the renal artery wall 15. The smooth muscle 34 surrounds the renal artery circumferentially, and extends lengthwise in a direction generally transverse to the longitudinal orientation of the renal nerves 14, as is depicted in FIG. 2B.


The smooth muscle 34 of the renal artery 12 is under involuntary control of the autonomic nervous system. An increase in sympathetic activity, for example, tends to contract the smooth muscle 34, which reduces the diameter of the renal artery lumen 13 and decreases blood perfusion. A decrease in sympathetic activity tends to cause the smooth muscle 34 to relax, resulting in vessel dilation and an increase in the renal artery lumen diameter and blood perfusion. Conversely, increased parasympathetic activity tends to relax the smooth muscle 34, while decreased parasympathetic activity tends to cause smooth muscle contraction.



FIG. 3 shows a segment of a longitudinal cross-section through a renal artery, and illustrates various tissue layers of the wall 15 of the renal artery 12. The innermost layer of the renal artery 12 is the endothelium 30, which is the innermost layer of the intima 32 and is supported by an internal elastic membrane. The endothelium 30 is a single layer of cells that contacts the blood flowing though the vessel lumen 13. Endothelium cells are typically polygonal, oval, or fusiform, and have very distinct round or oval nuclei. Cells of the endothelium 30 are involved in several vascular functions, including control of blood pressure by way of vasoconstriction and vasodilation, blood clotting, and acting as a barrier layer between contents within the lumen 13 and surrounding tissue, such as the membrane of the intima 32 separating the intima 32 from the media 34, and the adventitia 36. The membrane or maceration of the intima 32 is a fine, transparent, colorless structure which is highly elastic, and commonly has a longitudinal corrugated pattern.


Adjacent the intima 32 is the media 33, which is the middle layer of the renal artery 12. The media is made up of smooth muscle 34 and elastic tissue. The media 33 can be readily identified by its color and by the transverse arrangement of its fibers. More particularly, the media 33 consists principally of bundles of smooth muscle fibers 34 arranged in a thin plate-like manner or lamellae and disposed circularly around the arterial wall 15. The outermost layer of the renal artery wall 15 is the adventitia 36, which is made up of connective tissue. The adventitia 36 includes fibroblast cells 38 that play an important role in wound healing.


A perivascular region 37 is shown adjacent and peripheral to the adventitia 36 of the renal artery wall 15. A renal nerve 14 is shown proximate the adventitia 36 and passing through a portion of the perivascular region 37. The renal nerve 14 is shown extending substantially longitudinally along the outer wall 15 of the renal artery 12. The main trunk of the renal nerves 14 generally lies in or on the adventitia 36 of the renal artery 12, often passing through the perivascular region 37, with certain branches coursing into the media 33 to enervate the renal artery smooth muscle 34.


Embodiments of the disclosure may be implemented to provide varying degrees of denervation therapy to innervated renal vasculature. For example, embodiments of the disclosure may provide for control of the extent and relative permanency of renal nerve impulse transmission interruption achieved by denervation therapy delivered using a treatment device of the disclosure. The extent and relative permanency of renal nerve injury may be tailored to achieve a desired reduction in sympathetic nerve activity (including a partial or complete block) and to achieve a desired degree of permanency (including temporary or irreversible injury).


As discussed previously, conventionally known devices may include deflection and/or torqueing of ablation devices to place the electrode adjacent a target location within the blood vessel. It is noted, however, that deflection and/or torqueing of the ablation devices may include a variety of challenges. Examples of such challenges are illustrated in FIGS. 4A-4C, which will be discussed now.



FIG. 4A illustrates an ablation catheter 400 disposed within a vessel having a vessel wall 402 and a vessel lumen 406. The catheter includes a shaft member 408 having an electrode 410 disposed at its distal tip. The shaft member 408 may be introduced within the vessel lumen 406 using an introduction sheath 404, which can be retracted once the member 408 is positioned inside the vessel. Further, the catheter 400 may include a control mechanism (not shown) disposed at a proximal end (not shown) of the shaft member 408. The proximal end may be configured to remain outside the patient's body. The control mechanism may include a handle, for example, that may be employed to deflect the shaft member 408 such as to align the electrode 410 to a target location. In certain instances, the deflection force may bend the distal tip of the shaft member 408 beyond the desired extent. This may cause the electrode 410 to exert a force on the vessel wall 402, which may then dent the vessel wall 402. As a result, the electrode 410 and/or vessel wall 402 may heat beyond a desired threshold temperature and/or blood coagulation may occur, among other undesirable effects. Furthermore, the lesion creation efficacy and patient safety may be difficult to predict and/or control.



FIG. 4B illustrates another incorrect positioning of the ablation catheter 400′. As shown, the shaft member 408 may be deflected along direction D to position the electrode 410 to rest along the vessel wall 402. In some instances, the shaft member 408 may be difficult to torque and control. In some instances, the electrode 410 may contact the vessel wall 402 at an angle instead of extending parallel to the vessel wall. As a result, the lesion creation efficacy and patient safety may be difficult to predict and/or control.



FIG. 4C illustrates yet another incorrect positioning of the ablation catheter 400″ within a vessel. In this instance, the electrode 410 may not be in contact with the vessel wall. This may lead to fouling of the electrode and/or blood coagulation, among other undesirable side effects. As a result, the lesion creation efficacy and patient safety may be difficult to predict and/or control.



FIG. 5 illustrates an illustrative renal ablation device 500 made in accordance with principles of the present disclosure. As shown, the device 500 includes an elongate shaft 502 having a proximal end region 501 and a distal end region 503. The elongate shaft 502 may be configured to enter within a body cavity such as a blood vessel within a patient's body. To this end, the distal end region 503 of the elongate shaft 502 can be introduced within the patient's body, while allowing the proximal end region 501 to remain outside the patient's body. The device 500 may further include a handle 514 operably connected to the proximal end region 501 of the elongate shaft 502, a sensor 508 disposed adjacent to a distal tip 505 of the elongate shaft 502, and multiple expandable splines 504a, 504b, 504c (collectively 504) located adjacent to the distal end region 503 of the elongate shaft 502. The expandable splines 504 may extend generally parallel to a longitudinal axis of the elongate shaft 502 when in an unexpanded configuration, although this is not required. The expandable splines may be attached to the handle 514 at their proximal ends (not explicitly shown) and to the distal tip 505 at their distal ends (not explicitly shown). Each component of the device 500, as discussed above, along with other components will now be described in greater detail.


The elongate shaft 502 may have a long, thin, flexible tubular configuration. A person skilled in the art will appreciate that other suitable configurations such as, but not limited to, rectangular, oval, or irregular shapes may also be contemplated. Further, the elongate shaft 502 may have a cross-sectional configuration adapted to be received in a desired vessel, such as a renal artery. For instance, the elongate shaft 502 may be specially sized and configured to accommodate passage through the intravascular path, which leads from a percutaneous access site in, for example, the femoral, brachial, or radial artery, to a targeted treatment site, for example, within a renal artery.


It is contemplated that the stiffness of the elongate shaft 502 may be modified to form an ablation device 500 for use in various vessel diameters. To this end, the material used for manufacturing the elongate shaft 502 may include any suitable biocompatible material such as, but not limited to, polymers, metals, alloys, shape memory alloys, either in combination or alone. In addition to the stiffness requirement, the material employed elongate shaft 502 can also exhibit sufficient flexibility to maneuver through tortuous and/or stenotic lumens.


Although not shown, the elongate shaft 502 may include one or more lumens extending between the proximal end 501 and the distal end 503. For example, the elongate shaft 502 may include a guidewire lumen and/or one or more auxiliary lumens. The guidewire lumen may extend the entire length of the elongate shaft 502 such as in an over-the-wire catheter or may extend only along a distal portion of the elongate shaft 502 such as in a single operator exchange (SOE) catheter. The lumens may have a variety of configurations and/or arrangements. The lumens may be configured in any suitable way such as those ways commonly used for medical device. These examples are not intended to be limiting, but rather examples of some optional configurations.


Further, the elongate shaft 502 includes multiple slots 510a, 510b, and 510c (collectively 510), which are formed on the outer surface 512 of the elongate shaft 502. As shown, the slots 510 may be formed parallel to the longitudinal length of the elongate shaft 502, while extending around the circumference of the elongate shaft 502. While FIG. 5 illustrates three slots 510, it is contemplated that the elongate shaft 502 may include as many slots 510 as desired for a particular application. For example the elongate shaft 502 may include one, two, four, five, six, or more slots 510. It is further contemplated that the slots 510 may be sized and shaped such that the expandable splines 504 may pass through the slots 510.


As described above, the device 500 can further include multiple expandable splines 504. While three expandable splines 504 are illustrated, it is contemplated that the device 500 may include any number of expandable splines 504 desired, but not limited to, one, two, four, five six, or more. In some embodiments, the expandable splines 504 may have a circular cross-sectional shape. However, this is not required. It is contemplated that the expandable splines 504 may have any cross-sectional shape desired, such as, but not limited to, square, rectangular, ovoid, polygonal, etc. In the illustrated embodiment, the expandable splines 504 may be configured to transition between a first delivery position and a second expanded position. In some embodiments, when in the first delivery position, the expandable splines 504 may be oriented approximately equidistant from a central longitudinal axis of the elongate shaft 502, however this is not required. In some embodiments, the splines 504 may be spaced equidistant from one another. However, this is not required. It is contemplated that the splines 504 may be arranged in any manner desired. As shown in FIG. 5, the expandable splines 504a and 504b are depicted in the second expanded position, whereas the expandable spline 504c resting within slot 510c correspond the first delivery position. It should be noted that each expandable spline 504 may function independent to each other.


In an embodiment, each expandable spline 504a, 504b, and 504c may rest within their respective slots 510a, 510b, and 510c in the first delivery position. In contrast, in the second expanded state, the splines 504 may extend radially outward from an outer surface of the elongate shaft 502 and out of their respective slots 510 in an arcuate or arch-shaped configuration. The splines 504 may switch to the second expanded position either by a self-expansion mechanism, such as a shape memory material, or by another control mechanism such as push-pull actuation. In the self-expansion mechanism, a portion of each expandable spline 504 may be substantially covered with a sheath, which may allow expansion of the splines 504 when withdrawn. Other control mechanisms may include an actuation mechanism such as handle 514 for manual actuation of the expandable splines 504, which will be discussed below in details. While the splines 504 are described as having an arch-shaped configuration in the expanded position, it is contemplated that the splines 504 may be configured to have different shapes in the expanded configuration, as desired.


The expandable splines 504 may be made from any suitable flexible biocompatible material. Examples may include metals, alloys, polymers, composites, or the like. In an example, the expandable splines 504 are made from a shape memory alloy such as nitinol (NiTi alloy), which may provide super elasticity to the expandable splines 504. Although the material employed should have enough flexibility to form the arch-shaped configuration, it should also have sufficient rigidity to deflect the elongate shaft 502 when in contact with a vessel wall thus allowing the electrode 506 to contact an opposing vessel wall to form one or more lesions. The splines 504 may also be covered with a suitable biocompatible insulation material. Examples may include polymers, composites, or the like. The insulation may prevent or reduce electric conduction between the splines 504 and the vessel wall and/or blood.


The handle 514 may be located at or adjacent to the proximal end region 501, while being operably coupled to the elongate shaft 502. In some embodiments, the handle 514 may be configured to control the distal end region 503 of the elongate shaft 502 and, more specifically, to control the actuation of the expandable splines 504. To accomplish this, the handle 514 may include one or more control elements such as control elements 516a, 516b, and 516c (collectively referred to hereinafter as control elements 516). Each control element 516a, 516b, and 516c may include a button-shaped structure (or other suitably shape structure) that is configured to slide within a slot 518a, 518b, and 518c (collectively 518) in the handle 514. The slots 518 may be sized and shaped to facilitate proximal and distal movement of the control elements 516. In some instances, the control elements 516 may be coupled to the expandable splines 504 such that actuation of the control elements 516 results in a corresponding movement of the expandable splines 504. As shown, an operator may slide the control elements 516a and 516b distally in the directions Da and Db, respectively, to control the arching of the splines 504a and 504b. To this end, control element 516c is in resting position that enables the spline 504c to rest within its slot 510c. In some embodiments, the operator may be able to control how far the splines 504 expand by limiting the distal movement of the control elements 516. For example, control element 516a and control element 516b may be slid to a first and a second position, respectively, which enables expansion of the splines 504a and 504b to a first and a second expanded position, respectively. Therefore, sliding of each control element 516 may control the expansion of one spline 504. While the control elements 516 have been described as expanding the splines 504 upon distal actuation of the control elements 516, it is contemplated the reverse configuration may also be used and proximal actuation of the control elements 516 will result in the expansion of the splines 504. In some instances, the control elements 516 may include features to allow the splines 504 to be adjusted one or more discrete steps or intervals. In other instances, the control elements 516 may allow the expandable splines 504 to be infinitely adjustable.


Although a slider-based handle is employed or shown to actuate the splines 504, a variety of different mechanisms may be used to actuate the expandable splines 504. For example, the handle 514 may be mechanical or electronic, with varying means of actuation—servo motors, springs, rotary/gear-based, and so forth. In some instances, a push-pull mechanism different from the slider mechanism described above may be used to switch the expandable splines 504 to their second expanded state, although the two mechanisms may be provided on the handle 514 located at the proximal end of the elongate shaft 502. According to some other embodiment, a push-pull mechanism may be provided at a proximal end (not shown) of a delivery sheath, such as sheath 606 shown in FIG. 6A. In such instances, once the delivery sheath encompassing the device 500 reaches a target location within the vessel, the delivery sheath may be pulled to deploy the device 500, or selectively pulled to actuate individual expandable splines 504. Those skilled in the art will appreciate that any suitable actuation mechanism may be employed, which may be located at any suitable to accomplish the desired functions. In addition, while not shown explicitly, the handle 514 may also include one or more ports for introducing any suitable diagnostic and/or treatment devices.


The ablation device 500 may further include an electrode 506 disposed adjacent the distal tip 505 of the elongate shaft 502, which may be employed to ablate the renal nerves. In some embodiments, the electrode 506 may employ radiofrequency energy to ablate the tissue and/or renal nerves. The RF electrode 36 may be made from a suitably conductive metal such as platinum gold, stainless steel, cobalt alloys, or other non-oxidizing materials. While the electrode 506 is described as radiofrequency electrode, it is contemplated that other methods and devices for raising the temperature of the nerves may be used such as, but not limited to, ultrasound, microwave, or other acoustic, optical, electrical current, direct contact heating, or other heating. While not explicitly shown, the electrode 506 may be connected to an energy source or a power and control unit configured through one or more electrical conductors. In some instances, the power and control unit may be a source of RF energy. Furthermore, while not explicitly shown, in some embodiments, the ablation device may include more than one electrode 506.


Further, in some embodiments, a sensor 508 may be disposed within the electrode 506. In some instances, the sensor 508 may include a temperature sensor such as a thermocouple. However, other suitable sensors such as an impedance sensor may also be employed. The sensor 508 may provide feedback, such as the temperature or impedance measurements, to the operator and/or a control unit for monitoring the ablation procedure. For example, the feedback may be indicative of good electrode 506 to vessel contact and/or lesion size. This may facilitate the proper alignment of the electrode 506 with the target tissue and also avoids over heating of the tissue during a renal denervation procedure. In one embodiment, the heat generated at the electrode 506 is measured by the sensor 508, which may help identify if there is suitable contact with the tissue being ablated. For example, a tip suspended in the blood (i.e., not in contact with the vessel wall, like in FIG. 4C) may not exhibit a significant rise in temperature. In addition, electrode 506 that dents the vessel wall resulting from the forced contact with wall (like in FIG. 4A) may heat beyond a desired threshold temperature, indicating an incorrect positioning. For example only, a temperature reading, after a predetermined time period, of 40 degrees C. may indicate contact with the tissue, while 60 degrees C. may indicate the desired contact with the tissue.


As alluded to above, the device 500 may also detect the impedance level while delivering RF energy to the tissue. For instance, an electrode 506 suspended in the blood may exhibit a different impedance level than the electrode 506 having contact with tissue. The impedance can be measured using any conventionally known devices.


Other suitable ways of detecting the desired placement of electrode 506 with the vessel wall may include, but not limited to, imaging methods such as X-Ray, fluoroscopy, and so forth. According to an example, a radiopaque marker may be used to identify the location of the electrode 506 within the vessel. These are just examples and are not limiting the scope of present disclosure.


Turning now to FIG. 6A, a schematic side-view of the renal ablation device 500 is illustrated. The device 500 is located inside a renal artery 600 for creating one or more lesions. More specifically, the device 500 can be located within a lumen 604 of the renal artery 600. Here, the device 500 is present in the first delivery position such the multiple expandable splines 504 are resting within the slots 510 made through the outer surface 512 of the elongate shaft 502. As shown in FIG. 6A, the expandable spline 504c is flush with an outer surface of the elongate shaft 502 located within the a lumen of the elongate shaft 502 in slot 510c.


In the illustrated embodiment, the device 500 may be introduced within the artery 600 using a device such as a delivery sheath 606. As shown, the renal ablation device 500 may be slidably disposed within a lumen 608 of the delivery sheath 606. The dimensions of the delivery sheath 606 should be sufficient to carry the device 500 inside the lumen 608 while being navigated through the artery 600. An appropriate actuation mechanism may be provided at the proximal end of the elongate shaft 502. The actuation mechanism may help in deployment the elongate shaft 502 at the target location, while exposing the expandable splines 504 and the electrode 506 to the surrounding vessel.


In the present embodiment, materials used to manufacture the delivery sheath 606 may include a rigid and/or a flexible material either in combination or alone. Additionally, exemplary materials may include metals, polymers, alloys, or composite, either in combination or alone. In an example, an appropriate material to constitute the delivery sheath 606 may include a flexible polymer. Other suitable material may also be contemplated without departing from the scope and spirit of the disclosure.



FIG. 6B illustrates a cross-sectional view of the device 500 shown in FIG. 6A. The cross-section is taken along the vertical plane 6A-6A′. As shown, the electrode 506 may be located within the lumen 604 of the artery 600 while being concentric (although the electrode 506 may not be in the exact center of the lumen 604) to the renal artery 600. It should be noted that the location of electrode may not be suitable for creating any lesion; however, the view is depicted for clear illustration purposes. As shown, the electrode 506 may float within the lumen 604 and is surrounded by the blood flow.


Referring to FIG. 7A, another schematic side-view of the renal ablation device 500 is illustrated. In contrast to the embodiment discussed in FIG. 6A, here, one of the spline 504a is arranged to be in the second expanded position. The spline 504a, as shown, may take on an arch-shaped configuration such as to contact the artery wall 602 at a point A. Once the contact between spline 504a and the artery wall 602 is made, further expansion of the spline 504a (for example, using the handle 514) may deflect the elongate shaft 502. Such deflection may bias the electrode 506 to contact the artery wall 602 in direction generally opposite to the spline 504a.


As discussed previously, the delivery sheath 606 is employed to introduce the elongate shaft 502 within the renal artery 600. Once the electrode 506 is positioned at the target location adjacent the artery wall 602, RF energy may be supplied to the electrode 506. As the energy is radiated from the electrode 506, the electrode 506 may heat up. While not shown explicitly, the device 500, along with the temperature sensor 508, may also include a cooling mechanism to regulate the temperature of the electrode 506. Such mechanisms may include any suitable cooling method such as infusion of fluid around the electrode, which circulates the blood around the electrode 506 that may result in lowering the temperature around the electrode 506.


Although single spline 504a is expanded in the present embodiment, it should be noted that two or more splines 504 may be expanded simultaneously such as to place the electrode 506 at a desired target location. To this end, two or more splines 504 may be expanded either simultaneously or sequentially. In addition, the amount of energy delivered to the electrode 506 may be determined by the desired treatment as well as the measured temperature provided by the sensor 508.



FIG. 7B illustrates a cross-sectional view of the device 500 shown in FIG. 7A. The cross-section is taken along the plane 7A-7A′. As shown, the electrode 506 is located adjacent the artery wall 602, whereas the spline 504a touches the artery wall at a vertically opposite end. In such an arrangement, the alignment of the electrode 506 may be adjusted by manipulating the expansion of the spline 504a.


Turning now to FIG. 8A, yet another schematic side-view of the renal ablation device 500 is illustrated. In contrast to the embodiment discussed above in FIGS. 6A-7B, here, another spline 504b is configured to be in the second expanded position, as discussed previously. The spline 504b may take on an arch-shaped configuration such as to contact the artery wall 602 at a point B. Once the contact between spline 504b and the artery wall 602 is made, further expansion of the spline 504b (for example, using the handle 514) may deflect the elongate shaft 502 towards an artery wall 602. Such deflection may bias the electrode 506 to contact the artery wall 602 in a direction generally opposite to the spline 504b. It should be noted that the spline 506b may contact the artery wall at a point B, which is generally opposite to the point A. For example, the spline 506b contacts the artery wall 602 at an angle of approximately 180 degrees to the point A.


The delivery sheath 606 is employed to introduce the elongate shaft 502 within the renal artery 600. Once the electrode 506 is positioned at the target location adjacent the artery wall 602, RF energy may be supplied to the electrode 506. As the energy is radiated from the electrode 506, the electrode 506 may heat up. While not shown explicitly, the device 500, along with the temperature sensor 508, may also include a cooling mechanism to regulate the temperature of the electrode 506. Such mechanisms may include any suitable cooling method such as infusion of fluid around the electrode, which circulates the blood around the electrode 506 that may result in lowering the temperature around the electrode 506.



FIG. 8B illustrates a cross-sectional view of the device 500 shown in FIG. 8A. The cross-section is taken along the plane 8A-8A′. As shown, the electrode 506 is located adjacent the artery wall 602, and the spline 504b touches the artery wall 602 at an approximately vertically opposite end. In such an arrangement, the alignment of the electrode 506 may be adjusted by manipulating the expansion of the spline 504b.



FIGS. 9A-9B illustrate positioning of the electrode 506 adjacent the artery wall 602 using spline 504c. Here, as distal end region 503 of the elongate shaft 502 is situated within the artery lumen 604 adjacent the target location, the delivery sheath is retracted. Further, the control element 516c (as shown in FIG. 5) may be slid toward the elongate shaft 502, which expands the spline 506c to its second position. In such position, the spline 506c may contact the artery wall at a point, which deflects the elongate shaft 502 facilitating the electrode 506 to contact the artery wall 602 at an opposite side, as shown in FIG. 9B.


For the purpose of illustration, the spline 506c is depicted to form the arch-shaped configuration, however, it should be noted that the spline 506c is arched in transverse plane of the elongate shaft 502. To this end, the spline 506c may be assumed to contact the artery wall at a point (not shown) at an angle of approximately 90 degrees to the contact A that is made by spline 504a (as discussed in FIGS. 6A-6B).



FIGS. 10A-10B illustrate positioning of the electrode 506 adjacent the artery wall 602 using a fourth spline 504d. Here, as distal end 503 of the elongate shaft 502 is situated within the artery lumen 604 adjacent the target location, the delivery sheath is retracted. Further, a fourth control element (not explicitly shown) may be slid toward the elongate shaft 502, which expands the spline 506d to its second position. In such position, the spline 506d may contact the artery wall at a point, which deflects the elongate shaft 502 facilitating the electrode 506 to contact the artery wall 602 at an opposite side, as shown in FIG. 10B.


For the purpose of illustration, the spline 506d is depicted to form the arch-shaped configuration, however, it should be noted that the spline 506d is arched in transverse plane of the elongate shaft 502. To this end, the spline 506d may be assumed to contact the artery wall at a point (not shown) at an angle of 90 degrees to the contact A that is made by spline 504a (as discussed in FIGS. 6A-6B). In addition, the angle between the splines 506c and 506d, while each contacts with the artery wall 602 in its second expanded state, may be approximately 180 degrees.


According to a method of performing renal ablation, the device 500 may be inserted into the renal artery 600 and advanced to the desired treatment region. Subsequently, a first spline, such as the spline 504a, may be deployed to contact the electrode 506 to the renal artery wall 602 at a first location such as point A, as shown in FIG. 6A. Further, the RF energy may be applied to create a first lesion, which is followed by retraction of the first spline 504a to the first delivery position.


Further, a second spline such as spline 504b may be deployed to contact the wall 602 at a second location such as point B, as shown in 6B. Next, the RF energy may be applied to create a second lesion, which is followed by retraction of the second spline 504b to the first delivery position. Here, the deployment of one or more splines 504 to the second expanded position biases the electrode 506 toward the wall 602 of the renal artery 600 in a direction opposite the deployed spline 504. This way the sequential deployment of splines 504 may form multiple lesions on the wall 602. This may be repeated as many times as necessary to form the desired number and/or size of lesions. In some instances, the elongate shaft 502 may be longitudinally displaced in the artery 600 after the formation of a lesion. This may result in longitudinally spaced lesions. It is contemplated that the lesions may be formed along a single side of the artery 600 or the lesions may be spaced about the circumference of the artery 600. In some instances, the elongate shaft 502 may be longitudinally displaced after each lesion, and each spline 504 may be actuated sequentially to form lesions in a generally helical pattern. It is further contemplated that the temperature response and/or the impedance level may be checked prior to actuating a different spine 504 or relocating the elongate shaft 502.


Various embodiments disclosed herein are generally described in the context of ablation of perivascular renal nerves for control of hypertension. It is understood, however, that embodiments of the disclosure have applicability in other contexts, such as performing ablation from within other vessels of the body, including other arteries, veins, and vasculature (e.g., cardiac and urinary vasculature and vessels), and other tissues of the body, including various organs.


It is to be understood that even though numerous characteristics of various embodiments have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts illustrated by the various embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. An ablation device for performing nerve ablation in a vessel wall, comprising: an elongate shaft having a proximal end region and a distal end region;a handle disposed adjacent to the proximal end region;a distal tip including a single electrode, which is the only electrode in the ablation device, disposed at a distal end of the elongate shaft; anda plurality of expandable splines adjacent to the distal end region and positioned proximal to the single electrode;wherein each of the plurality of expandable splines is independently actuatable between a first contracted position and a second expanded position that extends radially outward to a variable distance from the outer surface of the elongate shaft; andwherein the ablation device is configured such that independent actuation of each of the plurality of expandable splines to the second expanded position against a wall of a vessel biases the single electrode in a direction that is generally radially opposite to the actuated spline.
  • 2. The ablation device of claim 1, wherein in the first contracted position, each of the plurality of expandable splines is flush with or contained within an outer surface of the elongate shaft.
  • 3. The ablation device of claim 1, wherein in the second expanded position, the plurality of expandable splines form an arcuate shape.
  • 4. The ablation device of claim 1, wherein the plurality of expandable splines includes at least four expandable splines.
  • 5. The ablation device of claim 1, wherein each of the plurality of expandable splines is oriented generally equidistant about a central longitudinal axis of the elongate shaft.
  • 6. The ablation device of claim 1, wherein each of the plurality of expandable splines includes an insulative covering.
  • 7. The ablation device of claim 1, wherein the handle includes a plurality of control elements configured to actuate the plurality of expandable splines.
  • 8. The ablation device of claim 1, wherein a distal end of each of the plurality of expandable splines is attached to the distal end of the elongate shaft and a proximal end of each of the plurality of expandable splines is attached to a control element.
  • 9. The ablation device of claim 1, further including a temperature sensor disposed within the distal tip.
  • 10. An ablation device for performing nerve ablation in a vessel wall comprising: an elongate shaft having a proximal end region and a distal end region;a handle disposed adjacent to the proximal end region;a distal tip including a single electrode, which is the only electrode in the ablation device, disposed at a distal end of the elongate shaft; anda plurality of splines adjacent to the distal end region and positioned proximal to the single electrode, wherein each one of the plurality of splines is independently actuatable between a first contracted position, and a second expanded position that extends radially outward to a variable distance from the outer surface of the elongate shaft;wherein the plurality of splines includes at least three independently actuatable splines; andwherein the ablation device is configured such that independent actuation of each of the plurality of splines to the second radially expanded position against a wall of a vessel biases the single electrode in a direction that is generally radially opposite to the actuated spline.
  • 11. The ablation device of claim 10, wherein the handle includes a plurality of control elements each configured to independently actuate one of the plurality of splines.
  • 12. A method of performing nerve ablation, comprising: inserting the ablation device of claim 1 into a vessel;deploying one or more of the plurality of splines to the second expanded position such that the single electrode is brought into contact with a wall of the vessel at a first location;applying RF energy at the first location through the single electrode;retracting the one or more deployed splines to the first contracted position;moving the elongate shaft to a second location;deploying one or more of the plurality of splines to the second expanded position such that the single electrode is brought into contact with a wall of the vessel at the second location;applying RF energy at the second location through the single electrode;retracting the one or more deployed splines to the first contracted position; andwithdrawing the ablation device from the vessel.
  • 13. The method of claim 12, wherein the plurality of splines includes at least four splines.
  • 14. The method of claim 12, wherein before withdrawing the ablation device, the method further includes: moving the elongate shaft to a third location;deploying one or more of the plurality of splines to the second expanded position such that the single electrode is brought into contact with a wall of the vessel at the third location;applying RF energy at the third location through the single electrode;retracting the one or more deployed splines to the first contracted position;moving the elongate shaft to a forth location;deploying one or more of the plurality of splines to the second expanded position such that the single electrode is brought into contact with a wall of the vessel at the fourth location;applying RF energy at the forth location through the single electrode; andretracting the one or more deployed splines to the first contracted position.
  • 15. The method of claim 12, wherein deploying one or more of the plurality of splines to the second expanded position biases the single electrode toward the wall of the vessel in a direction generally opposite the direction that the one or more splines are deployed.
  • 16. An ablation device for performing nerve ablation in a vessel wall, comprising: an elongate shaft having a proximal end region and a distal end region;a handle disposed adjacent to the proximal end region;a distal tip including a single electrode, which is the only electrode in the ablation device, disposed at a distal end of the elongate shaft, the single electrode extending circumferentially around the distal end of the elongate shaft; anda plurality of expandable splines adjacent to the distal end region and positioned proximal to the single electrode;wherein each of the plurality of expandable splines is independently actuatable between a first contracted position, and a second expanded position that extends radially outward to a variable distance from the outer surface of the elongate shaft;wherein the ablation device is configured such that independent actuation of each of the plurality of expandable splines to the second radially expanded position against a wall of a vessel biases the single electrode in a direction that is generally radially opposite to the actuated spline;wherein in the first delivery position, each of the plurality of expandable splines is contained within a slot in an outer surface of the elongate shaft;wherein in the second expanded position, the plurality of expandable splines form an arcuate shape; andwherein the plurality of expandable splines includes at least three expandable splines.
  • 17. The ablation device of claim 16, wherein each of the plurality of expandable splines comprises an insulative covering.
  • 18. The ablation device of claim 16, wherein each of the plurality of expandable splines is formed from a polymer.
  • 19. The ablation device of claim 16, wherein an axial cross-section of each of the plurality of expandable splines is rectangular, circular or ovoid.
  • 20. The ablation device of claim 16, wherein the handle includes a plurality of control elements configured to actuate the plurality of expandable splines.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/794,020, filed Mar. 15, 2013, the entire disclosure of which is herein incorporated by reference.

US Referenced Citations (1493)
Number Name Date Kind
164184 Kidder Jun 1875 A
1167014 O'Brien Jan 1916 A
2505358 Gusberg et al. Apr 1950 A
2701559 Cooper Feb 1955 A
3108593 Glassman Oct 1963 A
3108594 Glassman Oct 1963 A
3540431 Mobin Nov 1970 A
3952747 Kimmell Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4290427 Chin Sep 1981 A
4402686 Medel Sep 1983 A
4483341 Witteles et al. Nov 1984 A
4574804 Kurwa Mar 1986 A
4587975 Salo et al. May 1986 A
4649936 Ungar et al. Mar 1987 A
4682596 Bales et al. Jul 1987 A
4709698 Johnston et al. Dec 1987 A
4765331 Petruzzi et al. Aug 1988 A
4770653 Shturman Sep 1988 A
4784132 Fox et al. Nov 1988 A
4784162 Ricks et al. Nov 1988 A
4785806 Deckelbaum et al. Nov 1988 A
4788975 Shturman et al. Dec 1988 A
4790310 Ginsburg et al. Dec 1988 A
4799479 Spears Jan 1989 A
4823791 D'Amelio et al. Apr 1989 A
4830003 Wolff et al. May 1989 A
4849484 Heard Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4887605 Angelsen et al. Dec 1989 A
4920979 Bullara et al. May 1990 A
4938766 Jarvik Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
5034010 Kittrell et al. Jul 1991 A
5052402 Bencini et al. Oct 1991 A
5053033 Clarke et al. Oct 1991 A
5071424 Reger et al. Dec 1991 A
5074871 Groshong et al. Dec 1991 A
5098429 Sterzer et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5109859 Jenkins May 1992 A
5125928 Parins et al. Jun 1992 A
5129396 Rosen et al. Jul 1992 A
5139496 Hed Aug 1992 A
5143836 Hartman et al. Sep 1992 A
5156610 Reger et al. Oct 1992 A
5158564 Schnepp-Pesch Oct 1992 A
5170802 Mehra Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5178625 Groshong et al. Jan 1993 A
5190540 Lee Mar 1993 A
5211651 Reger et al. May 1993 A
5234407 Teirstein et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5251634 Weinberg et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263493 Avitall Nov 1993 A
5267954 Nita et al. Dec 1993 A
5277201 Stern et al. Jan 1994 A
5282484 Reger et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5295484 Marcus Mar 1994 A
5297564 Love et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5301683 Durkan Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304171 Gregory et al. Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5312328 Nita et al. May 1994 A
5314466 Stern et al. May 1994 A
5322064 Lundquist Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330518 Neilson et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5364392 Warner et al. Nov 1994 A
5365172 Hrovat et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368558 Nita et al. Nov 1994 A
5380274 Nita et al. Jan 1995 A
5380319 Saito et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5397301 Pflueger et al. Mar 1995 A
5397339 Desai Mar 1995 A
5401272 Perkins et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5405318 Nita et al. Apr 1995 A
5405346 Grundy et al. Apr 1995 A
5409000 Imran Apr 1995 A
5417672 Nita et al. May 1995 A
5419767 Eggers et al. May 1995 A
5427118 Nita et al. Jun 1995 A
5432876 Appeldorn et al. Jul 1995 A
5441498 Perkins et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5451207 Yock et al. Sep 1995 A
5453091 Taylor et al. Sep 1995 A
5454788 Walker et al. Oct 1995 A
5454809 Janssen Oct 1995 A
5455029 Hartman et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5457042 Hartman et al. Oct 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek et al. Mar 1996 A
5498261 Strul Mar 1996 A
5505201 Grill et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507744 Tay et al. Apr 1996 A
5522873 Jackman et al. Jun 1996 A
5531520 Grimson et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5545161 Imran Aug 1996 A
5562100 Kittrell et al. Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571151 Gregory Nov 1996 A
5573531 Gregory et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584831 McKay Dec 1996 A
5584872 Lafontaine et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5601526 Chapelon et al. Feb 1997 A
5609606 O'Boyle et al. Mar 1997 A
5626576 Janssen May 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643255 Organ Jul 1997 A
5643297 Nordgren et al. Jul 1997 A
5647847 Lafontaine et al. Jul 1997 A
5649923 Gregory et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665062 Houser Sep 1997 A
5665098 Kelly et al. Sep 1997 A
5666964 Meilus Sep 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5676693 Lafontaine Oct 1997 A
5678296 Fleischhacker et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
RE35656 Feinberg Nov 1997 E
5688266 Edwards et al. Nov 1997 A
5693015 Walker et al. Dec 1997 A
5693029 Leonhardt et al. Dec 1997 A
5693043 Kittrell et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5695504 Gifford et al. Dec 1997 A
5697369 Long, Jr. et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5706809 Littmann et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5715819 Svenson et al. Feb 1998 A
5735846 Panescu et al. Apr 1998 A
5741214 Ouchi et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5748347 Erickson May 1998 A
5749914 Janssen May 1998 A
5755682 Knudson et al. May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5769847 Panescu et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5776174 Van Tassel Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782760 Schaer Jul 1998 A
5785702 Murphy et al. Jul 1998 A
5797849 Vesely et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800484 Gough et al. Sep 1998 A
5800494 Campbell et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817092 Behl Oct 1998 A
5817113 Gifford et al. Oct 1998 A
5817144 Gregory et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827203 Nita et al. Oct 1998 A
5827268 Laufer Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5830222 Makower Nov 1998 A
5832228 Holden et al. Nov 1998 A
5833593 Liprie Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5840076 Swanson et al. Nov 1998 A
5843016 Lugnani et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5846245 McCarthy et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5853411 Whayne et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865801 Houser Feb 1999 A
5868735 Lafontaine et al. Feb 1999 A
5868736 Swanson et al. Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871524 Knowlton et al. Feb 1999 A
5875782 Ferrari et al. Mar 1999 A
5876369 Houser Mar 1999 A
5876374 Alba et al. Mar 1999 A
5876397 Edelman et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5891114 Chien et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5895378 Nita Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5902328 Lafontaine et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904667 Falwell et al. May 1999 A
5904697 Gifford et al. May 1999 A
5904709 Arndt et al. May 1999 A
5906614 Stern et al. May 1999 A
5906623 Peterson May 1999 A
5906636 Casscells et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919219 Knowlton et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5925038 Panescu et al. Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5935063 Nguyen Aug 1999 A
5938670 Keith et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5948011 Knowlton et al. Sep 1999 A
5951494 Wang et al. Sep 1999 A
5951539 Nita et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5961513 Swanson et al. Oct 1999 A
5964757 Ponzi et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5980563 Tu et al. Nov 1999 A
5989208 Nita et al. Nov 1999 A
5989284 Laufer Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
5999678 Murphy et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004316 Laufer et al. Dec 1999 A
6007514 Nita Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013033 Berger et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6022309 Celliers et al. Feb 2000 A
6024740 Lesh Feb 2000 A
6030611 Gorecki et al. Feb 2000 A
6032675 Rubinsky et al. Mar 2000 A
6033397 Laufer Mar 2000 A
6033398 Farley et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6050994 Sherman et al. Apr 2000 A
6056744 Edwards May 2000 A
6056746 Goble et al. May 2000 A
6063085 Tay et al. May 2000 A
6066096 Smith et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068638 Makower May 2000 A
6068653 Lafontaine May 2000 A
6071277 Farley et al. Jun 2000 A
6071278 Panescu et al. Jun 2000 A
6078839 Carson Jun 2000 A
6079414 Roth Jun 2000 A
6080171 Keith et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6086581 Reynolds et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6106477 Miesel et al. Aug 2000 A
6110187 Donlon et al. Aug 2000 A
6114311 Parmacek et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6120476 Fung et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6121775 Pearlman Sep 2000 A
6123679 Lafaut et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6142991 Schatzberger et al. Nov 2000 A
6142993 Whayne et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152912 Jansen et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6158250 Tibbals et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6159225 Makower Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165172 Farley et al. Dec 2000 A
6165187 Reger et al. Dec 2000 A
6168594 Lafontaine et al. Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179835 Panescu et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6183486 Snow et al. Feb 2001 B1
6190379 Heuser et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6197021 Panescu et al. Mar 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6203561 Ramee et al. Mar 2001 B1
6210406 Webster Apr 2001 B1
6211247 Goodman Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6228109 Tu et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6231587 Makower May 2001 B1
6235044 Root et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238389 Paddock et al. May 2001 B1
6238392 Long May 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6245020 Moore et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6248126 Lesser et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6263248 Farley et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6283935 Laufer et al. Sep 2001 B1
6283959 Lalonde et al. Sep 2001 B1
6284743 Parmacek et al. Sep 2001 B1
6287304 Eggers Sep 2001 B1
6287323 Hammerslag Sep 2001 B1
6290696 Lafontaine Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6298256 Meyer Oct 2001 B1
6299379 Lewis Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6317615 KenKnight et al. Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346104 Daly et al. Feb 2002 B2
6350248 Knudson et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6353751 Swanson et al. Mar 2002 B1
6355029 Joye et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6364840 Crowley Apr 2002 B1
6371965 Gifford, III et al. Apr 2002 B2
6375668 Gifford et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6387380 Knowlton May 2002 B1
6389311 Whayne et al. May 2002 B1
6389314 Feiring May 2002 B2
6391024 Sun et al. May 2002 B1
6394096 Constantz May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398780 Farley et al. Jun 2002 B1
6398782 Pecor et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413255 Stern Jul 2002 B1
6421559 Pearlman Jul 2002 B1
6423057 He et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6428536 Panescu et al. Aug 2002 B2
6430446 Knowlton Aug 2002 B1
6432102 Joye et al. Aug 2002 B2
6436056 Wang et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6442413 Silver Aug 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447505 McGovern et al. Sep 2002 B2
6447509 Bonnet et al. Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6451044 Naghavi et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458098 Kanesaka Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6468276 McKay Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6470219 Edwards et al. Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6475213 Whayne et al. Nov 2002 B1
6475215 Tanrisever Nov 2002 B1
6475238 Fedida et al. Nov 2002 B1
6477426 Fenn et al. Nov 2002 B1
6480745 Nelson et al. Nov 2002 B2
6481704 Koster et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488679 Swanson et al. Dec 2002 B1
6489307 Phillips et al. Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6497711 Plaia et al. Dec 2002 B1
6500172 Panescu et al. Dec 2002 B1
6500174 Maguire et al. Dec 2002 B1
6506178 Schubart et al. Jan 2003 B1
6508765 Suorsa et al. Jan 2003 B2
6508804 Sarge et al. Jan 2003 B2
6508815 Strul et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511500 Rahme Jan 2003 B1
6514236 Stratienko Feb 2003 B1
6514245 Williams et al. Feb 2003 B1
6514248 Eggers et al. Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6524299 Tran et al. Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527769 Langberg et al. Mar 2003 B2
6540761 Houser Apr 2003 B2
6542781 Koblish et al. Apr 2003 B1
6544780 Wang Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6558381 Ingle et al. May 2003 B2
6558382 Jahns et al. May 2003 B2
6564096 Mest May 2003 B2
6565582 Gifford, III et al. May 2003 B2
6569109 Sakurai et al. May 2003 B2
6569177 Dillard et al. May 2003 B1
6570659 Schmitt May 2003 B2
6572551 Smith et al. Jun 2003 B1
6572612 Stewart et al. Jun 2003 B2
6577902 Laufer et al. Jun 2003 B1
6579308 Jansen et al. Jun 2003 B1
6579311 Makower Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6589238 Edwards et al. Jul 2003 B2
6592526 Lenker Jul 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6602242 Fung Aug 2003 B1
6602246 Joye et al. Aug 2003 B1
6605084 Acker et al. Aug 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632196 Houser Oct 2003 B1
6645223 Boyle et al. Nov 2003 B2
6648854 Patterson et al. Nov 2003 B1
6648878 Lafontaine Nov 2003 B2
6648879 Joye et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652515 Maguire et al. Nov 2003 B1
6656136 Weng et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6659981 Stewart et al. Dec 2003 B2
6666858 Lafontaine Dec 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6669692 Nelson et al. Dec 2003 B1
6673040 Samson et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6673066 Werneth Jan 2004 B2
6673090 Root et al. Jan 2004 B2
6673101 Fitzgerald et al. Jan 2004 B1
6673290 Whayne et al. Jan 2004 B1
6676678 Gifford, III et al. Jan 2004 B2
6679268 Stevens et al. Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682541 Gifford, III et al. Jan 2004 B1
6684098 Oshio et al. Jan 2004 B2
6685732 Kramer Feb 2004 B2
6685733 Dae et al. Feb 2004 B1
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690181 Dowdeswell et al. Feb 2004 B1
6692490 Edwards Feb 2004 B1
6695830 Vigil et al. Feb 2004 B2
6695857 Gifford, III et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6702748 Nita et al. Mar 2004 B1
6702811 Stewart et al. Mar 2004 B2
6706010 Miki et al. Mar 2004 B1
6706011 Murphy-Chutorian et al. Mar 2004 B1
6706037 Zvuloni et al. Mar 2004 B2
6709431 Lafontaine Mar 2004 B2
6711429 Gilboa et al. Mar 2004 B1
6712815 Sampson et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6720350 Kunz et al. Apr 2004 B2
6723043 Kleeman et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6726677 Flaherty et al. Apr 2004 B1
6736811 Panescu et al. May 2004 B2
6743184 Sampson et al. Jun 2004 B2
6746401 Panescu Jun 2004 B2
6746464 Makower Jun 2004 B1
6746474 Saadat Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6749607 Edwards et al. Jun 2004 B2
6752805 Maguire et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6763261 Casscells, III et al. Jul 2004 B2
6764501 Ganz Jul 2004 B2
6769433 Zikorus et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6771996 Bowe et al. Aug 2004 B2
6773433 Stewart et al. Aug 2004 B2
6786900 Joye et al. Sep 2004 B2
6786901 Joye et al. Sep 2004 B2
6786904 Döscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6790222 Kugler et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6797933 Mendis et al. Sep 2004 B1
6797960 Spartiotis et al. Sep 2004 B1
6800075 Mische et al. Oct 2004 B2
6802857 Walsh et al. Oct 2004 B1
6807444 Tu et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6823205 Jara Nov 2004 B1
6824516 Batten et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6827926 Robinson et al. Dec 2004 B2
6829497 Mogul Dec 2004 B2
6830568 Kesten et al. Dec 2004 B1
6837886 Collins et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6845267 Harrison Jan 2005 B2
6847848 Sterzer Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6853425 Kim et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6855143 Davison Feb 2005 B2
6869431 Maguire et al. Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6884260 Kugler et al. Apr 2005 B2
6889694 Hooven May 2005 B2
6893436 Woodard et al. May 2005 B2
6895077 Karellas et al. May 2005 B2
6895265 Silver May 2005 B2
6898454 Atalar et al. May 2005 B2
6899711 Stewart et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6905494 Yon et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6908464 Jenkins Jun 2005 B2
6909009 Koridze Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6915806 Pacek et al. Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6923808 Taimisto Aug 2005 B2
6926246 Ginggen Aug 2005 B2
6926713 Rioux et al. Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929009 Makower et al. Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6932776 Carr Aug 2005 B2
6936024 Houser Aug 2005 B1
6936047 Nasab et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6942692 Landau et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949121 Laguna Sep 2005 B1
6952615 Satake Oct 2005 B2
6953425 Brister Oct 2005 B2
6955174 Joye et al. Oct 2005 B2
6955175 Stevens et al. Oct 2005 B2
6959711 Murphy et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6962584 Stone et al. Nov 2005 B1
6964660 Maguire et al. Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6972015 Joye et al. Dec 2005 B2
6972024 Kilpatrick et al. Dec 2005 B1
6974456 Edwards et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6979329 Burnside et al. Dec 2005 B2
6979420 Weber Dec 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6985774 Kieval et al. Jan 2006 B2
6986739 Warren et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7022105 Edwards Apr 2006 B1
7022120 Lafontaine Apr 2006 B2
7025767 Schaefer et al. Apr 2006 B2
7033322 Silver Apr 2006 B2
7033372 Cahalan Apr 2006 B1
7041098 Farley et al. May 2006 B2
7050848 Hoey et al. May 2006 B2
7063670 Sampson et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7063719 Jansen et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066900 Botto et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7072720 Puskas Jul 2006 B2
7074217 Strul et al. Jul 2006 B2
7081112 Joye et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7084276 Vu et al. Aug 2006 B2
7087026 Callister et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7089065 Westlund et al. Aug 2006 B2
7097641 Arless et al. Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101368 Lafontaine Sep 2006 B2
7104983 Grasso, III et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112196 Brosch et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7122019 Kesten et al. Oct 2006 B1
7122033 Wood Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7153315 Miller Dec 2006 B2
7155271 Halperin et al. Dec 2006 B2
7157491 Mewshaw et al. Jan 2007 B2
7157492 Mewshaw et al. Jan 2007 B2
7158832 Kieval et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7172610 Heitzmann et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7184811 Phan et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7189227 Lafontaine Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7192586 Bander Mar 2007 B2
7197354 Sobe Mar 2007 B2
7198632 Lim et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7201749 Govari et al. Apr 2007 B2
7203537 Mower Apr 2007 B2
7214234 Rapacki et al. May 2007 B2
7220233 Nita et al. May 2007 B2
7220239 Wilson et al. May 2007 B2
7220257 Lafontaine May 2007 B1
7220270 Sawhney et al. May 2007 B2
7232458 Saadat Jun 2007 B2
7232459 Greenberg et al. Jun 2007 B2
7238184 Megerman et al. Jul 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7247141 Makin et al. Jul 2007 B2
7250041 Chiu et al. Jul 2007 B2
7250440 Mewshaw et al. Jul 2007 B2
7252664 Nasab et al. Aug 2007 B2
7252679 Fischell et al. Aug 2007 B2
7264619 Venturelli Sep 2007 B2
7279600 Mewshaw et al. Oct 2007 B2
7280863 Shachar Oct 2007 B2
7282213 Schroeder et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7285120 Im et al. Oct 2007 B2
7288089 Yon et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7293562 Malecki et al. Nov 2007 B2
7294125 Phalen et al. Nov 2007 B2
7294126 Sampson et al. Nov 2007 B2
7294127 Leung et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7297475 Koiwai et al. Nov 2007 B2
7300433 Lane et al. Nov 2007 B2
7301108 Egitto et al. Nov 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314483 Landau et al. Jan 2008 B2
7317077 Averback et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326206 Paul et al. Feb 2008 B2
7326226 Root et al. Feb 2008 B2
7326235 Edwards Feb 2008 B2
7326237 DePalma et al. Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335180 Nita et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7338467 Lutter Mar 2008 B2
7341570 Keren et al. Mar 2008 B2
7343195 Strommer et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7348003 Salcedo et al. Mar 2008 B2
7352593 Zeng et al. Apr 2008 B2
7354927 Vu Apr 2008 B2
7359732 Kim et al. Apr 2008 B2
7361341 Salcedo et al. Apr 2008 B2
7364566 Elkins et al. Apr 2008 B2
7367970 Govari et al. May 2008 B2
7367975 Malecki et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7371235 Thompson May 2008 B2
7387126 Cox et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7396355 Goldman et al. Jul 2008 B2
7402151 Rosenman et al. Jul 2008 B2
7402312 Rosen et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7406970 Zikorus et al. Aug 2008 B2
7407502 Strul et al. Aug 2008 B2
7407506 Makower Aug 2008 B2
7407671 McBride et al. Aug 2008 B2
7408021 Averback et al. Aug 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7425212 Danek et al. Sep 2008 B1
7426409 Casscells, III et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7447453 Kim et al. Nov 2008 B2
7449018 Kramer Nov 2008 B2
7452538 Ni et al. Nov 2008 B2
7473890 Grier et al. Jan 2009 B2
7476384 Ni et al. Jan 2009 B2
7479157 Weber et al. Jan 2009 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7486805 Krattiger Feb 2009 B2
7487780 Hooven Feb 2009 B2
7493154 Bonner et al. Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7494486 Mische et al. Feb 2009 B2
7494488 Weber Feb 2009 B2
7494661 Sanders Feb 2009 B2
7495439 Wiggins Feb 2009 B2
7497858 Chapelon et al. Mar 2009 B2
7499745 Littrup et al. Mar 2009 B2
7500985 Saadat Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7505816 Schmeling et al. Mar 2009 B2
7507233 Littrup et al. Mar 2009 B2
7507235 Keogh et al. Mar 2009 B2
7511494 Wedeen Mar 2009 B2
7512445 Truckai et al. Mar 2009 B2
7527643 Case et al. May 2009 B2
7529589 Williams et al. May 2009 B2
7540852 Nita et al. Jun 2009 B2
7540870 Babaev Jun 2009 B2
RE40863 Tay et al. Jul 2009 E
7556624 Laufer et al. Jul 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7566319 McAuley et al. Jul 2009 B2
7569052 Phan et al. Aug 2009 B2
7582111 Krolik et al. Sep 2009 B2
7584004 Caparso et al. Sep 2009 B2
7585835 Hill et al. Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7597704 Frazier et al. Oct 2009 B2
7598228 Hattori et al. Oct 2009 B2
7599730 Hunter et al. Oct 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7604608 Nita et al. Oct 2009 B2
7604633 Truckai et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615072 Rust et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7626015 Feinstein et al. Dec 2009 B2
7626235 Kinoshita Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7632845 Vu et al. Dec 2009 B2
7635383 Gumm Dec 2009 B2
7640046 Pastore et al. Dec 2009 B2
7641633 Laufer et al. Jan 2010 B2
7641679 Joye et al. Jan 2010 B2
7646544 Batchko et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7655006 Sauvageau et al. Feb 2010 B2
7662114 Seip et al. Feb 2010 B2
7664548 Amurthur et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7670335 Keidar Mar 2010 B2
7671084 Mewshaw et al. Mar 2010 B2
7678104 Keidar Mar 2010 B2
7678106 Lee Mar 2010 B2
7678108 Chrisitian et al. Mar 2010 B2
7691080 Seward et al. Apr 2010 B2
7699809 Urmey Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7715912 Rezai et al. May 2010 B2
7717853 Nita May 2010 B2
7717909 Strul et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722539 Carter et al. May 2010 B2
7725157 Dumoulin et al. May 2010 B2
7727178 Wilson et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7736360 Mody et al. Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7738952 Yun et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7741299 Feinstein et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7744594 Yamazaki et al. Jun 2010 B2
7753907 DiMatteo et al. Jul 2010 B2
7756583 Demarais et al. Jul 2010 B2
7758510 Nita et al. Jul 2010 B2
7758520 Griffin et al. Jul 2010 B2
7759315 Cuzzocrea et al. Jul 2010 B2
7766833 Lee et al. Aug 2010 B2
7766878 Tremaglio, Jr. et al. Aug 2010 B2
7766892 Keren et al. Aug 2010 B2
7767844 Lee et al. Aug 2010 B2
7769427 Shachar Aug 2010 B2
7771372 Wilson Aug 2010 B2
7771421 Stewart et al. Aug 2010 B2
7776967 Perry et al. Aug 2010 B2
7777486 Hargreaves et al. Aug 2010 B2
7780660 Bourne et al. Aug 2010 B2
7789876 Zikorus et al. Sep 2010 B2
7792568 Zhong et al. Sep 2010 B2
7799021 Leung et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7811265 Hering et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7811313 Mon et al. Oct 2010 B2
7816511 Kawashima et al. Oct 2010 B2
7818053 Kassab Oct 2010 B2
7819866 Bednarek Oct 2010 B2
7822460 Halperin et al. Oct 2010 B2
7828837 Khoury Nov 2010 B2
7832407 Gertner Nov 2010 B2
7833220 Mon et al. Nov 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7837720 Mon Nov 2010 B2
7841978 Gertner Nov 2010 B2
7846157 Kozel Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846172 Makower Dec 2010 B2
7849860 Makower et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7853331 Kaplan et al. Dec 2010 B2
7853333 Demarais Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7857756 Warren et al. Dec 2010 B2
7862565 Eder et al. Jan 2011 B2
7863897 Slocum, Jr. et al. Jan 2011 B2
7869854 Shachar et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7887538 Bleich et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
7896873 Hiller et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901402 Jones et al. Mar 2011 B2
7901420 Dunn Mar 2011 B2
7905862 Sampson Mar 2011 B2
7918850 Govari et al. Apr 2011 B2
7927370 Webler et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938830 Saadat et al. May 2011 B2
7942874 Eder et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7946976 Gertner May 2011 B2
7949400 Keval et al. May 2011 B2
7950397 Thapliyal et al. May 2011 B2
7955293 Nita et al. Jun 2011 B2
7956613 Wald Jun 2011 B2
7959627 Utley et al. Jun 2011 B2
7962854 Vance et al. Jun 2011 B2
7967782 Laufer et al. Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7972327 Eberl et al. Jul 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7983751 Zdeblick et al. Jul 2011 B2
8001976 Gertner Aug 2011 B2
8007440 Magnin et al. Aug 2011 B2
8012147 Lafontaine Sep 2011 B2
8019435 Hastings et al. Sep 2011 B2
8021362 Deem et al. Sep 2011 B2
8021413 Dierking et al. Sep 2011 B2
8025661 Arnold et al. Sep 2011 B2
8027718 Spinner et al. Sep 2011 B2
8031927 Karl et al. Oct 2011 B2
8033284 Porter et al. Oct 2011 B2
8048144 Thistle et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8052700 Dunn Nov 2011 B2
8062289 Babaev Nov 2011 B2
8075580 Makower Dec 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088127 Mayse et al. Jan 2012 B2
8116883 Williams et al. Feb 2012 B2
8119183 O'Donoghue et al. Feb 2012 B2
8120518 Jang et al. Feb 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarals et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8131382 Asada Mar 2012 B2
8137274 Weng et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8143316 Ueno Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8152830 Gumm Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8190238 Moll et al. May 2012 B2
8192053 Owen et al. Jun 2012 B2
8198611 LaFontaine et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8221407 Phan et al. Jul 2012 B2
8226637 Satake Jul 2012 B2
8231617 Satake Jul 2012 B2
8241217 Chiang et al. Aug 2012 B2
8251992 Utley et al. Aug 2012 B2
8257413 Danek et al. Sep 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8260397 Ruff et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8273023 Razavi Sep 2012 B2
8277379 Lau et al. Oct 2012 B2
8287524 Siegel Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292881 Brannan et al. Oct 2012 B2
8293703 Averback et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8295912 Gertner Oct 2012 B2
8308722 Ormsby et al. Nov 2012 B2
8317776 Ferren et al. Nov 2012 B2
8317810 Stangenes et al. Nov 2012 B2
8323261 Kugler et al. Dec 2012 B2
8329179 Ni et al. Dec 2012 B2
8336705 Okahisa Dec 2012 B2
8343031 Gertner Jan 2013 B2
8343145 Brannan Jan 2013 B2
8347891 Demarais et al. Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8366615 Razavi Feb 2013 B2
8382697 Brenneman et al. Feb 2013 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8398629 Thistle Mar 2013 B2
8401667 Gustus et al. Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8406877 Smith et al. Mar 2013 B2
8409172 Moll et al. Apr 2013 B2
8409193 Young et al. Apr 2013 B2
8409195 Young Apr 2013 B2
8418362 Zerfas et al. Apr 2013 B2
8452988 Wang May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8460358 Andreas et al. Jun 2013 B2
8465452 Kassab Jun 2013 B2
8469919 Ingle et al. Jun 2013 B2
8473067 Hastings et al. Jun 2013 B2
8480663 Ingle et al. Jul 2013 B2
8485992 Griffin et al. Jul 2013 B2
8486060 Kotmel et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8488591 Miali et al. Jul 2013 B2
20010007070 Stewart et al. Jul 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020022864 Mahvi et al. Feb 2002 A1
20020042639 Murphy-Chutorian et al. Apr 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020045890 Celliers et al. Apr 2002 A1
20020062146 Makower et al. May 2002 A1
20020065542 Lax et al. May 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020095197 Lardo et al. Jul 2002 A1
20020107536 Hussein Aug 2002 A1
20020147480 Mamayek Oct 2002 A1
20020169444 Mest et al. Nov 2002 A1
20020198520 Coen et al. Dec 2002 A1
20030065317 Rudie et al. Apr 2003 A1
20030092995 Thompson May 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20030195501 Sherman et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20040010118 Zerhusen et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093055 Bartorelli et al. May 2004 A1
20040106871 Hunyor et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040147915 Hasebe Jul 2004 A1
20040162555 Farley et al. Aug 2004 A1
20040167506 Chen Aug 2004 A1
20040186356 O'Malley et al. Sep 2004 A1
20040187875 He et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050015125 Mioduski et al. Jan 2005 A1
20050080374 Esch et al. Apr 2005 A1
20050129616 Salcedo et al. Jun 2005 A1
20050137180 Robinson et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050148842 Wang et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050203410 Jenkins Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050214205 Salcedo et al. Sep 2005 A1
20050214207 Salcedo et al. Sep 2005 A1
20050214208 Salcedo et al. Sep 2005 A1
20050214209 Salcedo et al. Sep 2005 A1
20050214210 Salcedo et al. Sep 2005 A1
20050214268 Cavanagh et al. Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050232921 Rosen et al. Oct 2005 A1
20050234312 Suzuki et al. Oct 2005 A1
20050245862 Seward Nov 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050252553 Ginggen Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050288730 Deem Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060018949 Ammon et al. Jan 2006 A1
20060024564 Manclaw Feb 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060062786 Salcedo et al. Mar 2006 A1
20060083194 Dhrimaj et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060095096 DeBenedictis et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060142790 Gertner Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060167106 Zhang et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060171895 Bucay-Couto Aug 2006 A1
20060184221 Stewart et al. Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060224153 Fischell et al. Oct 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060247266 Yamada et al. Nov 2006 A1
20060247760 Ganesan et al. Nov 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060269555 Salcedo et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20070016184 Cropper et al. Jan 2007 A1
20070016274 Boveja et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070043077 Mewshaw et al. Feb 2007 A1
20070043409 Brian et al. Feb 2007 A1
20070049924 Rahn Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070073151 Lee Mar 2007 A1
20070093710 Maschke Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070106247 Burnett et al. May 2007 A1
20070112327 Yun et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070149963 Matsukuma et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070203480 Mody et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208210 Gelfand et al. Sep 2007 A1
20070208256 Marilla Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20070233170 Gertner Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070249703 Mewshaw et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20070292411 Salcedo et al. Dec 2007 A1
20070293782 Marino Dec 2007 A1
20070293923 Soltis et al. Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004673 Rossing et al. Jan 2008 A1
20080009927 Vilims Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
20080033049 Mewshaw Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039830 Munger et al. Feb 2008 A1
20080051454 Wang Feb 2008 A1
20080064957 Spence Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080071306 Gertner Mar 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091193 Kauphusman et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080097426 Root et al. Apr 2008 A1
20080108867 Zhou May 2008 A1
20080119879 Brenneman et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132450 Lee et al. Jun 2008 A1
20080140002 Ramzipoor et al. Jun 2008 A1
20080147002 Gertner Jun 2008 A1
20080161662 Golijanin et al. Jul 2008 A1
20080161717 Gertner Jul 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080172104 Kieval et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080208162 Joshi Aug 2008 A1
20080208169 Boyle et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080215117 Gross Sep 2008 A1
20080221448 Khuri-Yakub et al. Sep 2008 A1
20080228171 Kugler et al. Sep 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080243091 Humphreys et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080249525 Lee et al. Oct 2008 A1
20080249547 Dunn Oct 2008 A1
20080255550 Bell Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275484 Gertner Nov 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287918 Rosenman et al. Nov 2008 A1
20080294037 Richter Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080312644 Fourkas et al. Dec 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20080314394 Ellis et al. Dec 2008 A9
20080317818 Griffith et al. Dec 2008 A1
20090018486 Goren et al. Jan 2009 A1
20090018609 DiLorenzo Jan 2009 A1
20090024194 Arcot-Krishnamurthy et al. Jan 2009 A1
20090030312 Hadjicostis Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043372 Northrop et al. Feb 2009 A1
20090054082 Kim et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069671 Anderson Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090088735 Abboud et al. Apr 2009 A1
20090105631 Kieval Apr 2009 A1
20090112202 Young Apr 2009 A1
20090118620 Tgavalekos et al. May 2009 A1
20090118726 Auth et al. May 2009 A1
20090125099 Weber et al. May 2009 A1
20090131798 Minar May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090157161 Desai et al. Jun 2009 A1
20090171333 Hon Jul 2009 A1
20090192558 Whitehurst et al. Jul 2009 A1
20090198223 Thilwind et al. Aug 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090203993 Mangat et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210953 Moyer et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20090226429 Salcedo et al. Sep 2009 A1
20090240249 Chan et al. Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090247966 Gunn et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090253974 Rahme Oct 2009 A1
20090264755 Chen et al. Oct 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090281533 Ingle et al. Nov 2009 A1
20090287137 Crowley Nov 2009 A1
20090318749 Stolen et al. Dec 2009 A1
20100009267 Chase et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100048983 Ball et al. Feb 2010 A1
20100049099 Thapliyal et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100049191 Habib et al. Feb 2010 A1
20100049283 Johnson Feb 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100076299 Gustus et al. Mar 2010 A1
20100076425 Carroux Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100106005 Karczmar et al. Apr 2010 A1
20100114244 Manda et al. May 2010 A1
20100130836 Malchano et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168624 Sliwa Jul 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100268217 Habib Oct 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100284927 Lu et al. Nov 2010 A1
20100286684 Hata et al. Nov 2010 A1
20100298821 Garbagnati Nov 2010 A1
20100305036 Barnes et al. Dec 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110009750 Taylor et al. Jan 2011 A1
20110021976 Li et al. Jan 2011 A1
20110034832 Cioanta et al. Feb 2011 A1
20110040324 McCarthy et al. Feb 2011 A1
20110044942 Puri et al. Feb 2011 A1
20110060324 Wu et al. Mar 2011 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110077498 McDaniel Mar 2011 A1
20110092781 Gertner Apr 2011 A1
20110092880 Gertner Apr 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110118600 Gertner May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110144479 Hastings et al. Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110152877 Bly Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110178570 Demarais Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110207758 Sobotka et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257523 Hastings et al. Oct 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110264116 Kocur et al. Oct 2011 A1
20110270238 Rizq et al. Nov 2011 A1
20110306851 Wang Dec 2011 A1
20110319809 Smith Dec 2011 A1
20120029496 Smith Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029505 Jenson Feb 2012 A1
20120029509 Smith Feb 2012 A1
20120029510 Haverkost Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029513 Smith et al. Feb 2012 A1
20120059241 Hastings et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120065506 Smith Mar 2012 A1
20120065554 Pikus Mar 2012 A1
20120089047 Ryba et al. Apr 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101490 Smith Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120109021 Hastings et al. May 2012 A1
20120116382 Ku et al. May 2012 A1
20120116383 Mauch et al. May 2012 A1
20120116392 Willard May 2012 A1
20120116438 Salahieh et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123243 Hastings May 2012 A1
20120123258 Willard May 2012 A1
20120123261 Jenson et al. May 2012 A1
20120123303 Sogard et al. May 2012 A1
20120123406 Edmunds et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120130359 Turovskiy May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130362 Hastings et al. May 2012 A1
20120130368 Jenson May 2012 A1
20120130458 Ryba et al. May 2012 A1
20120136344 Buckley et al. May 2012 A1
20120136349 Hastings May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120143294 Clark et al. Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120157992 Smith et al. Jun 2012 A1
20120157993 Jenson et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120158104 Huynh et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120172870 Jenson et al. Jul 2012 A1
20120184952 Jenson et al. Jul 2012 A1
20120197198 Demarais et al. Aug 2012 A1
20120197252 Deem et al. Aug 2012 A1
20120221014 Stack et al. Aug 2012 A1
20120232409 Stahmann et al. Sep 2012 A1
20120265066 Crow et al. Oct 2012 A1
20120265198 Crow et al. Oct 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130013024 Levin et al. Jan 2013 A1
20130018247 Glenn et al. Jan 2013 A1
20130018444 Glenn et al. Jan 2013 A1
20130023865 Steinke et al. Jan 2013 A1
20130035681 Subramanaim et al. Feb 2013 A1
20130066316 Steinke et al. Mar 2013 A1
20130085489 Fain et al. Apr 2013 A1
20130090563 Weber Apr 2013 A1
20130090578 Smith et al. Apr 2013 A1
20130090647 Smith Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130090650 Jenson et al. Apr 2013 A1
20130090651 Smith Apr 2013 A1
20130090652 Jenson Apr 2013 A1
20130096550 Hill Apr 2013 A1
20130096553 Hill et al. Apr 2013 A1
20130096554 Groff et al. Apr 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130110106 Richardson May 2013 A1
20130116687 Willard May 2013 A1
20130165764 Scheuermann et al. Jun 2013 A1
20130165844 Shuros et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165917 Mathur et al. Jun 2013 A1
20130165920 Weber et al. Jun 2013 A1
20130165923 Mathur et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130165925 Mathur et al. Jun 2013 A1
20130165926 Mathur et al. Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172877 Subramaniam et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130172879 Sutermeister Jul 2013 A1
20130172880 Willard Jul 2013 A1
20130172881 Hill et al. Jul 2013 A1
Foreign Referenced Citations (40)
Number Date Country
10038737 Feb 2002 DE
1053720 Nov 2000 EP
1180004 Feb 2002 EP
1335677 Aug 2003 EP
1874211 Jan 2008 EP
1906853 Apr 2008 EP
1961394 Aug 2008 EP
1620156 Jul 2009 EP
2076193 Jul 2009 EP
2091455 Aug 2009 EP
2197533 Jun 2010 EP
2208506 Jul 2010 EP
1579889 Aug 2010 EP
2092957 Jan 2011 EP
2349044 Aug 2011 EP
2027882 Oct 2011 EP
2378956 Oct 2011 EP
2037840 Dec 2011 EP
2204134 Apr 2012 EP
2320821 Oct 2012 EP
2456301 Jul 2009 GB
9858588 Dec 1998 WO
9900060 Jan 1999 WO
0047118 Aug 2000 WO
03026525 Apr 2003 WO
2004100813 Nov 2004 WO
2004110258 Dec 2004 WO
2006105121 Oct 2006 WO
2007033052 Mar 2007 WO
2008014465 Jan 2008 WO
2009121017 Oct 2009 WO
2010067360 Jun 2010 WO
2010102310 Sep 2010 WO
2011005901 Jan 2011 WO
2011053757 May 2011 WO
2011053772 May 2011 WO
2011091069 Jul 2011 WO
2011130534 Oct 2011 WO
2012019156 Feb 2012 WO
2013049601 Apr 2013 WO
Non-Patent Literature Citations (68)
Entry
US 8,398,630 B2, 03/2013, Demarais et al. (withdrawn)
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, p. 35-37.
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., 2003, p. 1-9.
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, Jan. 9, 1991, p. 1-4.
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations,” LightLab Imaging Technology, 2002.
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, 2001, vol. 27, No. 35.
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Products—Functional Measurement,” VOLCANO Functional Measurement Products US, Mar. 24, 2003, p. 1-2.
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 1993, p. 1-12, vol. 38.
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging, 2001, p. 1-8.
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, 2013, p. 1-8.
Cimino, “Preventing plaque attack,” Mass High Tech, 2001, p. 1-2.
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 2002, p. 68-70, vol. 90.
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” Oct. 1986, p. 1-2, Fourth Edition.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook: Contents,” Oct. 1986, p. 1-5, Fourth Edition.
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing.
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts via the Coronary Sinus: In Vivo Canine Studies,” PACE, Aug. 1995, p. 1518-1530, vol. 18.
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology.
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002.
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002.
Gabriel, “Appendix A: Experimental Data,” 1999, p. 1-21.
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-6, Nov. 6, 1997.
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12.
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 1993, p. 33-52, vol. 6.
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times, Mar. 21, 2004, p. 1-5.
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4.
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548.
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology.
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, 2002, p. 2929.
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, 2002, p. 2928.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23.
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16.
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4.
Popma et al., “Percutaneous Coronary and Valvular Intervention,” p. 1364-1405, 2005.
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 1998, p. 878-885, vol. 97.
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 2000, p. 2774-2780, vol. 102.
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, 2002, p. 2227.
Scheller et al., “Potential solutions to the current problem: coated balloon,” EuroIntervention, 2008, p. C63-C66, vol. 4 (Supplement C).
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 2002, p. 585-598, vol. 21.
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51.
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, 1985, p. 21-25.
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7.
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 2005, p. 28-34, vol. 100.
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 2005, p. 446-452, vol. 100.
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 2008, p. 689-699, vol. 358.
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008.
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990.
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003.
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, Oct. 2008, 7 pages.
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93, pp. 14-18, 2004.
Zhou et al., “Mechanism Research of Cryoanalgesia,” Forefront Publishing Group, 1995.
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages.
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 2005, 4 pages.
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 1974: 99; 71-4.
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572, Dec. 2004.
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012.
Blue Cross Blue Shield Medicaly Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 2005, 5 pages.
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173.
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only).
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100.
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages.
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages.
Zhoue et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747.
Related Publications (1)
Number Date Country
20140276752 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61794020 Mar 2013 US