Nerve cuff with pocket for leadless stimulator

Information

  • Patent Grant
  • 10220203
  • Patent Number
    10,220,203
  • Date Filed
    Monday, July 10, 2017
    6 years ago
  • Date Issued
    Tuesday, March 5, 2019
    5 years ago
Abstract
An extravascular nerve cuff that is configured to hold a leadless, integral, implantable microstimulator. The nerve cuff may include a cuff body having a pocket or pouch for removably receiving the implantable device within. The nerve cuff can be secured around the nerve such that the electrodes of the device are stably positioned relative to the nerve. Furthermore, the nerve cuff drives the majority of the current from the stimulation device into the nerve, while shielding surrounding tissues from unwanted stimulation.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD OF THE INVENTION

The present invention relates generally to implantable neural stimulators, and more specifically to a nerve cuff with a pocket for removably receiving an active leadless stimulation device, and methods of stimulating a nerve using such nerve cuff.


BACKGROUND OF THE INVENTION

Implantable electrical stimulation devices have been developed for therapeutic treatment of a wide variety of diseases and disorders. For example, implantable cardioverter defibrillators (ICDs) have been used in the treatment of various cardiac conditions. Spinal cord stimulators (SCS), or dorsal column stimulators (DCS), have been used in the treatment of chronic pain disorders including failed back syndrome, complex regional pain syndrome, and peripheral neuropathy. Peripheral nerve stimulation (PNS) systems have been used in the treatment of chronic pain syndromes and other diseases and disorders. Functional electrical stimulation (FES) systems have been used to restore some functionality to otherwise paralyzed extremities in spinal cord injury patients.


Typical implantable electrical stimulation systems can include a system with one or more programmable electrodes on a lead that are connected to an implantable pulse generator (IPG) that contains a power source and stimulation circuitry. However, these systems can be difficult and/or time consuming to implant, as the electrodes and the IPG are usually implanted in separate areas and therefore the lead must be tunneled through body tissue to connect the IPG to the electrodes. Also, leads are susceptible to mechanical damage over time as they are typically thin and long.


Recently, small implantable neural stimulator technology, i.e. microstimulators, having integral electrodes attached to the body of a stimulator has been developed to address the disadvantages described above. This technology allows the typical IPG, lead and electrodes described above to be replaced with a single device. Elimination of the lead has several advantages including reduction of surgery time by eliminating, for example, the need for implanting the electrodes and IPG in separate places, the need for a device pocket, tunneling to the electrode site, and strain relief ties on the lead itself. Reliability is therefore increased significantly, especially in soft tissue and across joints because active components, such as lead wires, are now part of the rigid structure and are not subject to the mechanical damage due to repeated bending or flexing over time.


However, the leadless integral devices tend to be larger and more massive than the electrode/lead assemblies, making it difficult to stably position the device in the proper position in respect to a nerve. Without device stability, the nerve and/or surrounding muscle or tissue can be damaged due to movement of the assembly.


There remains a need for a leadless integral device that is stably positioned on the nerve, and can provide for removal and/or replacement of the stimulation device with relative ease.


SUMMARY OF THE INVENTION

Described herein are extravascular nerve cuffs for securing a leadless, integral, implantable device to a nerve. The nerve cuff typically includes a pouch or pocket. The cuff electrode configuration of the stimulation device allows the device to be stably positioned proximate a nerve, such as the vagus nerve. Furthermore, the cuff electrode configuration also has the characteristics of driving most of the current into the nerve, while shielding surrounding tissues from unwanted stimulation. Methods of securing a leadless microstimulator using such nerve cuffs are also described herein, as well as methods of stimulating a nerve using microstimulators secured using such cuffs.


There are numerous advantages to using leadless cuffs with a microstimulator, including a decrease in encapsulation (e.g., to about 100 microns) compared to systems without leadless cuffs, since there is less “tugging” on the leadless cuff. Furthermore, leadless cuffs, which may securely attach to a nerve and hold a microstimulator in position, may allow a microstimulator to be modified or replaced while maintaining the same positioning relative to the nerve.


In one embodiment of the invention, the nerve cuff generally includes a cuff body or carrier, made of a flexible material such as a medical-grade soft polymeric material (e.g., Silastic™ or Tecothane™) forming a cuff or sleeve, having a pocket or pouch defined therein for removably receiving a leadless stimulation device. The leadless stimulation device is positioned within the pocket or sleeve such that the electrodes of the device are positioned proximate the nerve to be stimulated. The pocket can be defined by the space between the stimulation device and an inner surface of the cuff body or can comprise a pouch-like structure attached to the cuff body for containing the stimulation device. The nerve cuff can be coupled to the nerve, a surrounding sheath that contains the nerve, or both depending on the desired level of stability.


The nerve cuff can be implanted by first dissecting the nerve, such as the vagus nerve, from its surrounding sheath, wrapping the nerve cuff around the nerve, coupling or suturing the nerve cuff to one of either the nerve or the sheath and inserting the stimulation device within the pocket or pouch of the cuff body such that the stimulation device is proximate the nerve.


For example, described herein are nerve cuffs for securing a leadless microstimulator in stable communication with a nerve. A nerve cuff may include: a cuff body having a channel extending within the length of the cuff body for passage of a nerve; a pocket within the cuff body, configured to removably hold the leadless microstimulator; and an elongate opening slit extending the length of the cuff body configured to be opened to provide access to the pocket.


The nerve cuff may also include an internal electrical contact within the cuff body. For example, the internal electrical contact may be configured to electrically couple the microstimulator and the nerve. In some variations, the nerve further includes an external electrical contact on the outer surface of the cuff body configured to couple with the microstimulator.


In some variations, the cuff body comprises shielding configured to electrically isolate the microstimulator within the nerve cuff. The cuff body may be of uniform thickness, or it may have a non-uniform thickness. For example, the cuff body may have a thickness between about 5 and about 20 mils.


In some variations, the outer surface of the nerve cuff is substantially smooth and atraumatic. The nerve outer surface of the nerve cuff may be rounded and/or conforming. For example, the body may conform to the region of the body into which the cuff and/or microstimulator are implanted.


In some variations, the channel comprises a support channel configured to support the nerve within therein, to prevent pinching of the nerve.


The elongate opening slit may extend the length of the cuff body in an interlocking pattern. In some variations, the slit extends along the side of the cuff body, adjacent to the channel. In other variations, the slit extends along the top of the cuff body, opposite to the channel.


The nerve cuff may also include one or more attachment sites in the elongate opening slit configured to help secure the slit closed. For example, the attachment sites may be holes or passages for a suture.


In some variations, the cuff body is formed of a flexible and biocompatible polymer (e.g., a polymeric biocompatible material such as a silicone polymer.


Also described herein are nerve cuffs for securing a leadless microstimulator in stable communication with a nerve, comprising: an insulating cuff body having a nerve channel extending within the length of the cuff body for passage of a nerve, wherein the cuff body electrically isolates the microstimulator within the cuff body; a conductive surface within the nerve channel configured to engage one or more electrical contacts on the microstimulator; a pocket within the cuff body, configured to removably hold the leadless microstimulator; and an elongate opening slit extending the length of the cuff body configured to be opened to provide access to the pocket.


As mentioned above, the nerve cuff may include one or more external electrical contact on the outer surface of the cuff body configured to couple with the microstimulator.


In some variations, the nerve cuff body has a uniform thickness; in other variations, the nerve cuff body has a non-uniform thickness. The cuff body may have a thickness between about 5 and about 20 mils.


The outer surface of the nerve cuff may be substantially smooth and atraumatic. For example, the outer surface of the nerve cuff may be contoured.


In some variations, channel through the nerve cuff comprises a support channel configured to support the nerve within therein, to prevent pinching of the nerve.


In some variations, the elongate opening slit extends the length of the cuff body in an interlocking pattern. For example, the interlocking pattern may be a zig-zag pattern, or a sinusoidal pattern.


Also described herein are methods of implanting a leadless microstimulator in communication with a vagus nerve, the method comprising: exposing a vagus nerve; opening a slit of a nerve cuff having a nerve cuff body, wherein the slit opens along the length of the nerve cuff body; placing the nerve cuff around the vagus nerve so that the nerve is within a channel extending the length of nerve cuff; inserting a leadless microstimulator within a pocket in the nerve cuff; and securing the slit of the nerve cuff closed so that the leadless microstimulator is in electrical communication with the nerve and electrically isolated within the nerve cuff body.


In some variations, the step of securing the opening slit of the nerve cuff closed comprises securing the slit so that the leadless microstimulator engages an internal electrical contact within the nerve cuff body. The leadless microstimulator may engage an internal electrical contact configured to provide circumferential stimulation around the nerve within the channel.


The step of securing may comprise suturing the slit closed. In some variations, the slit may be self-closing. For example, there may be enough tension in the cuff to keep it closed by itself. In some variations, dissolvable sutures may be used to keep it closed until the body encapsulates it.


The method may also include the step of testing the microstimulator to confirm electrical communication with the nerve.


In some variations, the step of placing the nerve cuff comprises placing an oversized nerve cuff around the vagus nerve.


Also described herein are methods of implanting a leadless microstimulator in communication with a vagus nerve including the steps of: exposing a vagus nerve; opening a slit of a nerve cuff having a nerve cuff body, wherein the slit opens along the length of the nerve cuff body; placing the nerve cuff around the vagus nerve so that the nerve is within a channel extending the length of nerve cuff; inserting a leadless microstimulator within a pocket in the nerve cuff so that the microstimulator communicates with one or more internal electrical contacts within the nerve cuff; and closing the slit of the nerve cuff so that the nerve is in electrical communication with the one or more internal electrical contact.


In some variations, the leadless microstimulator and the internal electrical contact is configured to provide circumferential stimulation around the nerve within the channel. The step of closing may include the step of securing the slit of the nerve cuff closed. For example, the step of closing may comprise suturing the slit closed. The step of placing the nerve cuff may comprise placing an oversized nerve cuff around the vagus nerve.


The above summary of the invention is not intended to describe each illustrated embodiment or every implementation of the present invention. The figures and the detailed description that follow more particularly exemplify these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view depicting a nerve cuff with stimulation device implanted proximate a nerve, according to an embodiment of the invention.



FIG. 1A is a top view depicting the implanted nerve cuff with stimulation device of FIG. 1;



FIG. 1B is a top view depicting the implanted nerve cuff with stimulation device according to an alternative embodiment of the invention;



FIG. 2 is a front view depicting an implanted nerve cuff with strain relief according to an embodiment of the invention;



FIG. 3 is a front view depicting an implanted nerve cuff with suture holes according to an embodiment of the invention;



FIG. 4 is an open view depicting the nerve cuff with suture holes of FIG. 3;



FIG. 5 is a top view depicting a closing device for the implanted nerve cuff of FIG. 1;



FIG. 6 is a perspective view depicting marsupializaton of the stimulation device within a pocket of the nerve cuff of FIG. 1;



FIG. 7A is a top view depicting a nerve cuff having a conforming shield according to an embodiment of the invention.



FIG. 7B is a front view of the nerve cuff of FIG. 7a.



FIG. 8A is a top view depicting an open nerve cuff according to an embodiment of the invention;



FIG. 8B is a front view of the nerve cuff of FIG. 8a; and



FIG. 8C is a top view depicting the nerve cuff of FIG. 8 in a closed configuration.



FIGS. 9A and 9B show side views through a section of the cuff body wall, indicating uniform and varying thicknesses, respectively.



FIGS. 10A-10D illustrate one variation of a nerve cuff as described herein. FIG. 10A shows an end view, FIG. 10B is a side perspective view, FIG. 10C is a side view, and FIG. 10D is a longitudinal section through the device attached to a nerve, showing internal features including a microstimulator.



FIGS. 11A-11D illustrate another variation of a nerve cuff. FIG. 11A shows an end view, FIG. 11B is a side perspective view, FIG. 11C is a side view, and FIG. 11D is a longitudinal section through the device attached to a nerve, showing internal features including a microstimulator.



FIG. 12 shows one variation of a microstimulator that may be used in the nerve cuffs described herein.



FIG. 13A shows a perspective view of another variation of a microstimulator that may be used as described herein. FIGS. 13B and 13C are end and bottom views, respectively, of the microstimulator shown in FIG. 13A.



FIGS. 14A and 14B illustrate side and end views, respectively of another variation of a nerve cuff.



FIGS. 15A-15C show top, side and sectional views, respectively of a nerve cuff such as the one shown in FIG. 14A, attached to a nerve. FIG. 15D is a section though the middle of a nerve cuff with a microstimulator secured there.



FIG. 16 is an internal end view of a microstimulator similar to the ones shown in FIGS. 14A-15D.



FIG. 17 is a sectional view showing the inside of another variation of a nerve cuff.



FIG. 18 is a side perspective view of the top-opening nerve cuff shown in FIG. 17.



FIG. 19 is a side perspective view of a side-opening nerve cuff.



FIG. 20 is a transparent view of the bottom of a nerve cuff, showing the nerve channel.



FIG. 21 is a side view of another variation of a nerve cuff.



FIGS. 22A-22H illustrate steps for inserting a nerve cuff such as the nerve cuffs described herein.



FIG. 23 shows an equivalent circuit modeling current loss when the nerve cuff is only loosely arranged over the nerve.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the invention are directed to a retaining device, such as a carrier or cuff, which positions active contacts, i.e. electrodes, of a stimulation device against the targeted nerve directing the current from the electrodes into the nerve. The retaining device also inhibits or prevents the current from flowing out to the surrounding tissue.


Referring to FIG. 1, one example of a nerve cuff 100 adapted for holding a stimulation device is coupled to a nerve 102. Nerve 102 can comprise any nerve in the human body targeted for therapeutic treatment, such as, for example, the vagus nerve. Nerve cuff adapter 100 generally comprises an outer carrier or cuff 104 body that can comprise any of a variety of medical grade materials, such as, for example, Silastic™ brand silicone elastomers, or Tecothane™ polymer.


In general, a nerve cuff including a cuff 104 body having (or forming) a pouch or pocket 106 for removably receiving an active, implantable stimulation device 108 having one or more integrated, leadless electrodes 110 on a surface of stimulation device 108 proximate nerve 102. As illustrated in FIGS. 1 and 1A, nerve cuff 100 wraps around nerve 102 such that electrodes 110 are positioned proximate nerve 102.


Contacts or electrodes 110 can be positioned directly against nerve 102, as illustrated in FIG. 1A, or in close proximity to nerve 102, as illustrated in FIG. 1B. Referring specifically to FIG. 1B, close proximity of electrodes 110 and nerve 102 will leave a gap or space 112 that may naturally be filled with fluid or connective tissue. In one embodiment of the invention, electrodes 110 and/or the inner surface of cuff body 104 can include optional steroid coatings to aid in reducing the local inflammatory response and high impedance tissue formation.


In one embodiment, the pocket 106 for containing the stimulation device 108 is defined by the open space between the nerve 102 and the inner surface of the cuff body 104. Stimulation device 108 can be passively retained within pocket 106 by the cuff body 104, or can be actively retained on cuff body with fastening means, such as, for example, sutures. In other embodiments, pocket 106 can comprise a pouch-like structure attached to cuff body 104 into which stimulation device 108 can be inserted. Stimulation device 108 can be passively retained within a pouch-like pocket by simply inserting the device 108 into the pocket or can be actively retained with fastening means. A pouch-like pocket can be positioned either in the interior or on the exterior of cuff body 104. Pouch-like pocket 106 and/or cuff body 104 can include access openings to allow electrodes to be positioned directly proximate or adjacent to nerve 102.


Cuff body 104 can have a constant thickness or a varying thickness as depicted in FIGS. 9A and 9B. The thickness of cuff body 104 can be determined to reduce the palpable profile of the device once the stimulation device is inserted. In one embodiment, the thickness of cuff body can range from about 1 to about 30 mils, or from about 5 to about 20 mils. In one embodiment shown in FIG. 9B, cuff 104 can have a greater thickness at a top and bottom portion of the cuff and a smaller thickness in a middle portion where the stimulation device is contained.


A key obstacle to overcome with implanting stimulation devices proximate nerves or nerve bundles is attaching a rigid structure that makes up the stimulation device along a fragile nerve in soft tissue. In one embodiment of the invention, this issue is resolved by encasing nerve 102 and device 108 in a cuff body 104 that comprises a low durometer material (e.g., Silastic™ or Tecothane™) as described above, that conforms around nerve 102. Further, as illustrated in FIG. 2, cuff body 104 can comprise strain reliefs 114 on its ends that reduce or prevent extreme torsional rotation and keep nerve 102 from kinking. Strain reliefs 114 can coil around nerve 102, and are trimmable to a desired size, such as the size of nerve 102. Further, strain relief 114 can be tapered. In some variations, the lateral ends of the nerve cuff, forming the channel into which the nerve may be place, are tapered and have a tapering thickness, providing some amount of support for the nerve. In some variations, the channel through the nerve cuff in which the nerve may sit, is reinforced to prevent or limit axial loading (e.g., crushing) of the nerve or associated vascular structures when the nerve is within the cuff.


Given the design or architecture of cuff body 104, any vertical movement of cuff body 104 on nerve 102 is not critical to electrical performance, but can result in friction between device 108 and nerve 102 that could potentially damage nerve 102. For that reason, device 108 should readily move up and down nerve 102 without significant friction while being sufficiently fixated to nerve 102 so that eventually connective tissue can form and aid in holding device 108 in place. The challenge is stabilizing device 108 so that it can be further biologically stabilized by connective tissue within several weeks.


Nerve cuff 100 should not be stabilized to surrounding muscle or fascia that will shift relative to the nerve. Therefore, referring to FIGS. 3 and 4, nerve cuff 100 can further comprise connection devices, such as suture holes or suture tabs, for coupling and stabilizing cuff body 104 with device 108 to at least one of the nerve bundle or nerve 102, and the surrounding sheath that contains nerve 102. In one embodiment of the invention, for example, as shown in FIG. 3, cuff body 104 can comprise suture holes 116 that can be used with sutures to couple cuff 104 body with device 108 to the surrounding nerve sheath. In an alternative embodiment of the invention, shown in FIG. 4, suture tabs 118 with suture holes 116 extend from one or both sides of cuff body 104.


Several stabilizing mechanisms can be used, including suture tabs and holes, staples, ties, surgical adhesives, bands, hook and loop fasteners, and any of a variety of coupling mechanisms. FIGS. 3 and 4, for example, illustrates suture tabs and holes that can be fixed to the surrounding sheath with either absorbable sutures for soft tissue or sutures demanding rigid fixation.



FIG. 5 illustrates sutures 120 that clamp or secure cuff body 104 with device 108 to a surgeon-elected tension. Sutures 120 can be tightened or loosened depending on the level of desired stability and anatomical concerns. As shown in FIG. 5, a gap 122 can be present so long as cuff adapter 100 is sufficiently secured to nerve 102, with a limit set to a nerve diameter to prevent compression of the vasculature within nerve 102. Surgical adhesives (not shown) can be used in combination with sutures 120 on surrounding tissues that move in unison with the neural tissue.


Muscle movement against cuff adapter 100 can also transfer undesired stresses on nerve 102. Therefore, in an embodiment of the invention, low friction surfaces and/or hydrophilic coatings can be incorporated on one or more surfaces of cuff body 104 to provide further mechanisms reducing or preventing adjacent tissues from upsetting the stability of nerve cuff 100.



FIG. 6 illustrates a nerve cuff 100 with a stimulator device removably or marsupially secured within pocket or pouch 106 of cuff body 104. By the use of recloseable pouch 106, active stimulator device 108 can be removed or replaced from cuff body 104 without threatening or endangering the surrounding anatomical structures and tissues. Device 108 can be secured within cuff body 104 by any of a variety of securing devices 124, such as, for example, sutures, staples, ties, zippers, hook and loop fasteners, snaps, buttons, and combinations thereof. Sutures 124 are shown in FIG. 6. Releasing sutures 124 allows access to pouch 106 for removal or replacement of device 108. Not unlike typical cuff style leads, a capsule of connective tissue can naturally encapsulate nerve cuff 100 over time. Therefore, it will most likely be necessary to palpate device 108 to locate device 108 and cut through the connective tissue capsule to access sutures 124 and device. The removable/replaceable feature of nerve cuff 100 is advantageous over other cuff style leads because such leads cannot be removed due to entanglement with the target nerve and critical vasculature.


As discussed supra, compression of nerve 102 must be carefully controlled. Excess compression on nerve 102 can lead to devascularization and resulting death of the neural tissue. Compression can be controlled by over-sizing or rightsizing nerve cuff 100, so that when pocket sutures 124 are maximally tightened, the nerve diameter is not reduced less that the measured diameter. Cuffs formed from Silastic™ or Tecothane™ materials are relatively low cost, and therefore several sizes can be provided to the surgeon performing the implantation of nerve cuff 100 to better avoid nerve compression.


Miniature stimulators, such as device, are still large enough to be felt and palpated by patients as are state-of-the-art commercial cuff systems. Referring to FIG. 7, to avoid such palpation, nerve cuff 100 can further comprise a protecting shield 126 conforming to the shape of the anatomical structures, such as in the carotid sheath. In this embodiment, nerve cuff 100 is secured around the vagus nerve, while isolating device 108 from contact with both the internal jugular vein (IJV) 132, and common carotid artery 134. Shield 126 then further isolates device 108 from other surrounding tissues. It is critical to minimize the profile of the entire cuff adapter 100 while maintaining the compliance of such materials as Silastic™ or Tecothane™. In one embodiment of the invention, protective shield 126 is formed from a PET material, such as Dacron®, optionally coated with Silastic™ or Tecothane™ forming a thin and compliant structure that will allow for tissue separation when required.


When a nerve does not provide sufficient structural strength to support nerve cuff adapter 100, collateral structures can be included in or on cuff body 104. Because of a high degree of anatomical variance such a scheme must demand the skill of the surgeon to utilize a highly customizable solution. FIG. 8a illustrates a variable size nerve cuff 100 with a wrappable retainer portion 128 extending from cuff body 104. As shown in FIG. 8c, cuff body 104 is secured around nerve 102, while retainer portion 128 is secured around the sheath or other surrounding anatomical structures, such as the IJV 132 and/or carotid artery 134. As shown in FIG. 8b, wrappable retainer portion 128 can include securing devices 130, such as suture holes, for securing the entire nerve cuff 100 around the desired anatomical structures. This configuration allows for access to device 108 through pocket 106 as in previous embodiments, while adapting to a multitude of anatomical variations to obtain the desired stability of nerve cuff 100 on nerve 102.



FIGS. 10A-10D illustrate a variation of a nerve cuff that includes a cuff body forming a channel (into which a nerve may be fitted) and an slit formed along the length of the nerve cuff body. In this example, the nerve cuff body also includes a pocket region within the cuff body positioned above the nerve channel. The top of the body (opposite from the nerve channel) includes a long slit 1003 along its length forming on opening. The cuff body may be along the slit by pulling apart the edges, which may form one or more flaps. In the example shown in FIG. 10A, the slit may be split open to expose the inside of the nerve cuff and allow the nerve to be positioned within the internal channel, so that the cuff is positioned around the nerve. The same split may be used to insert the microcontroller as well. In some variations a separate opening (slit or flap) may be used to access the pocket or pouch for the microcontroller.



FIG. 10B shows a perspective view of the nerve cuff holding a microcontroller after it has been inserted onto a nerve (e.g., the vagus nerve). FIG. 10C shows a side view of the same. FIG. 10D shows a section though the view of FIG. 10C, illustrating then nerve within the channel formed through the nerve cuff, and a microstimulator held snugly within the nerve cuff so that the microstimulator is in electrical communication with the nerve via a shared surface between the two. In some variations, as discussed below, the microstimulator is held in a separate, possibly isolated, compartment and electrical contact with the nerve is made by one or more internal leads that couple the microstimulator with the nerve through an internal contact.


The exemplary cuff shown in FIGS. 10A-10D has a conformal configuration, in which the wall thickness is relatively constant, as can be seen from the sectional view in FIG. 10D. In contrast, FIGS. 11A-11D illustrate a variation of a nerve cuff in which the wall thickness varies along the perimeter. This non-uniform thickness may effectively cushion the device relative to the surrounding tissue, even as the patient moves or palpitates the region. This may have the added benefit of preventing impingement of the nerve. Similarly, the variable thickness may enable smooth transitions and help conform the cuff to the surrounding anatomy.


For Example, FIG. 11A shows an end view (with exemplary dimensions illustrated). It should be noted that in any of the figures or examples provided herein, the dimensions shown or described are for illustration only. In practice the dimensions may be +/− some percentage of the values shown (e.g., +/−5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, etc.). The section through the device shown in FIG. 11D illustrates the non-uniform thickness of the walls.


Both nerve cuff variations shown in FIGS. 10A-10D and FIGS. 11A-11D are substantially rounded or conforming, and have non-traumatic (or atraumatic) outer surfaces. As mentioned, this relatively smooth outer surface may enhance comfort and limit encapsulation of the nerve cuff within the tissue.


As can be seen from FIGS. 10D and 11D, the microstimulator typically rests above (in the reference plane of the figure) the length of the nerve when inserted into the nerve cuff. In some variations, the microstimulator includes a contoured outer surface onto which one or more contacts (for contacting the nerve or an internal conductor within the nerve cuff) are positioned. For example, FIG. 12 illustrates one variation of a microstimulator 1201. In this example, the microstimulator includes one or more contacts on its outer surface with which to provide stimulation to a nerve. FIG. 13A shows another variation of a microstimulator 1301 in which the outer surface (the bottom in FIG. 13A) is curved to help form a channel surrounding the nerve when the microstimulator is inserted into the nerve cuff. FIG. 13B shows an end view, illustrating the channel concavity 1303 extending along the length of the microstimulator, and FIG. 13C shows a bottom view, looking down onto the channel region. In practice, the microstimulator shown may be placed within the nerve cuff and be held in position at least partially around the nerve. Thus, the microstimulator may help protect the nerve, which may lie within this channel. As mentioned above, and described in greater detail below, it is not necessary that the nerve lie against the contacts, as current may be conducted to the nerve from within the nerve cuff, which may be insulated sufficiently to prevent excessive leak or spillover of the current even when the cuff is oversized and only loosely surrounds the nerve. Furthermore, the nerve cuff may include one or more internal contacts allowing the current from the microstimulator to be distributed to the nerve via one or more internal contacts or leads, including circumferentially around the nerve.



FIGS. 14A and 14B show another variation of a nerve cuff. In this example, the slit forming the opening is positioned on the upper surface (opposite to the nerve channel) along the length of the device. The slit is formed in an interlocking pattern. In FIG. 14a, the slit forms a zig-zag pattern, although other interlocking patterns may be used. For example, a sinusoidal or square-wave pattern may be used. The interlocking pattern may distribute the strain of closing the cuff around the nerve and microstimulator, and may make it easier to close the cuff once it has been positioned and the microstimulator has been inserted. FIG. 14B shows an end view of the same cuff shown in FIG. 14A.



FIGS. 15A-15C show a similar cuff to the one shown in FIG. 14A from top and side views, connected to a nerve. In these example, the nerve extends through the internal channel and out the openings (which may be oval shaped, as shown in FIG. 14B) at either end. In FIG. 15C, a section through the length of the device shows that the microstimulator is positioned in the pouch (cavity) above the nerve. The microstimulator may be held in place by the walls of the cuff. A conforming microstimulator (such as the one shown in FIG. 13A-13C) may be used, as illustrated in the cross-sectional view shown in FIG. 15D. The contacts 1503 of the conforming microstimulator are positioned on the bottom of the device.


As mentioned briefly above, in some variations of the nerve cuff the inner surface of the cuff body includes one or more internal contacts configured to couple with the microstimulator held within the pouch, and transmit any applied energy to the nerve (or receive energy from the nerve) positioned within the channel through the nerve cuff. The internal lead may be positioned so that it applies current to the underside (along the bottom region of the channel), or around the sides of the nerve as it sits within the channel. In some variations the internal conductor or lead is configured around the channel so that the nerve may be circumferentially stimulated, optimizing the applied stimulation. FIG. 17 is a long section though a nerve cuff, showing the inside of the cuff, and illustrates a variation of a nerve cuff having an internal lead 1703 that may apply stimulation to the underside of the nerve. This internal lead may be formed of any biocompatible conductive material, including medals, conductive plastics, or the likes. The internal lead may include exposed electrode surfaces 1703 for making contact with the nerve. Electrodes may be active contacts, also formed of any appropriate conductive material (e.g., metals, conductive polymers, braided materials, etc.). In some variations, the internal lead is coated or treated to help enhance the transfer of energy between the microstimulator and the nerve. Circumferential stimulation or conduction around the lead may reduce the impedances and assure uniform cross-sectional stimulation of the nerve bundle.



FIG. 19 shows another variation of a nerve cuff as described herein. In this example, the nerve cuff includes slit 1903 along one side of the device, adjacent to the nerve channel, which can be opened (e.g., by pulling apart the flaps or sides of the cuff) to expose nerve channel and the pocket for the microstimulator.


Many of the nerve cuff variations described herein may be opened and positioned around the nerve, for example, by splitting them open along a slit or hinge region. The device may be configured so that they have sufficient resiliency to close themselves, or remain closed if the edges of the slit region are brought together. Thus, the device may have a shape memory property that encourages them to close. In some variations, as already mentioned, it may be useful to hold them closed, at least temporarily, once they have been positioned over a nerve and the microstimulator has been positioned within the pocket. Thus, the device may include one or more closure elements. For example, the device may include a suture hole or passage for suturing the device closed. In some variations the nerve cuff includes a button or other fastener element. In some variations, as illustrated in FIGS. 6 and 18, the device may be sutured close with a dissolvable suture. A few weeks or months after insertion, the nerve cuff may be encapsulated or engulfed by the surrounding tissue, and will be held closed by this encapsulation. Thus, the dissolvable sutures merely keep the cuff closed for initial anchoring before biointegration and encapsulation occurs.


Any of the nerve cuffs described herein may also include one or more external leads or contacts facing the outside of the nerve cuff body, which may be used to stimulate tissues outside of the nerve cuff, and not just the nerve within the channel through the cuff. FIG. 21 illustrates one variation of a nerve cuff having external leads. In this example, the nerve cuff includes two external contacts 2103 that are connected (through the wall of the nerve cuff body) to the microstimulator held within the nerve cuff pocket. Such external leads may be used for sensing in addition to (or instead of) stimulation. For example, these electrical contacts may be used to sense other physiological events such as muscle stimulation and/or cardiac function. These signals can be applied to aid synchronization of target nerve stimulation to minimize artifacts of target stimulation. Such signals may be too faint for reliable remote sensing, however the position of the microstimulator (insulated within the housing of the nerve cuff) may allow accurate and reliable sensing.


A nerve may sit within a supported channel through the nerve cuff. As illustrated in FIG. 20, the channel 2003 may be formed having generally smooth sides, so as to prevent damage to the nerve and associated tissues. In some variations the nerve channel though the cuff is reinforced to prevent the cuff from pinching the device or from over-tightening the device when closed over the nerve. Supports may be formed of a different material forming the nerve cuff body, or from thickened regions of the same material. Although multiple sizes of nerve cuff may be used (e.g., small, medium, large), in some variations, an oversized nerve cuff may be used, because the insulated cuff body will prevent leak of current from the microstimulator to surrounding tissues.


In general, the nerve cuff body may be electrically insulating, preventing leakage of charge from the microstimulator during operation. In some variations the nerve cuff includes shielding or insulation sufficient to electrically insulate the microstimulator within the nerve cuff body. Shielding material may particularly include electrically insulative materials, including polymeric insulators.


It may be shown mathematically using an equivalent circuit of the microstimulator, as shown in FIG. 23, that the current from a microstimulator is not appreciably passed out of even a loosely applied nerve cuff. This allows for the use of oversized nerve cuffs, rather than requiring rigorous sizing, or risking constricting the nerve.


For example, assuming a nerve with a cross section of Narea is surrounded by a column of fluid Farea enclosed by the nerve cuff, where contacts on the inside the microstimulator are spaced Espacing apart (center to center) and have a width Ewidth and circle around the column of fluid and nerve Ddegrees, it can be shown that the current will leak out the ends through a distance between the center of the electrode and the end of the nerve cuff that is defined by a distance Dguard.


The electrical model (illustrated in FIG. 23) consists of a current source that drives through DC isolation capacitors (Ciso2 optional), through the capacitance of each electrode (Cd11 and Cd12). From the electrodes, the current passes through either path RS or Rlp1+Rb+Rlp2. Whereas a portion of the current passing through Rs provides useful work and the current passing through Rlp1+Rb+Rlp2 passes outside of the device and may cause undesirable effects.


If the nerve has a tight fit, then all the current passing through Rs would contribute towards stimulation, but only a portion of the current can activate the nerve in the case of a loose fit. Based on this model, it can be shown that (assuming that the nerve and fluid columns form an ellipse defined by the major and minor axis a and b, and the pulse width is short and capacitances are large) just the real impedance and efficiency can be estimated.


The electrode surface area is determined to estimate the complex portion of the impedance: Farea=π*aF*bF and Narea=π*aN*bN.


Assuming the impedance of the cuff contained fluid and nerve has a similar conductance p and electrodes are spaced at Espacing then the real resistance of the conduction volume is: Rworking=Espacing*ρ/Farea, where the wasted resistance that should be maximized is calculated by: Rwasted=2*Dguard*ρ/Farea+Rbulk, where Rbulk is defined as the free field resistance between the two ends of the cuff.


So the efficiency (η) of the real current delivered in the POD is Rwasted/(Rworking+Rwasted), and for the case of an undersized nerve assuming the conductivity of tissue and the fluid column is about equivalent then the stimulation efficiency is defined as ηT=η*Narea/Farea.


Methods of Insertion


In operation, any of the devices described herein may be positioned around the nerve, and the microstimulator inserted into the nerve cuff, in any appropriate manner. FIGS. 22A-22H illustrate one variation of a method for applying the nerve cuff around the nerve and inserting a microstimulator. In this example, the patient is prepared for application of the nerve cuff around the vagus nerve to hold a microstimulator device securely relative to the nerve (FIG. 22A). An incision is then made in the skin (≈3 cm) along Lange's crease between the Facial Vein and the Omohyoid muscle (FIG. 22B), and the Sternocleidomastoid is retracted away to gain access to the carotid sheath (FIG. 22C). The IJV is then reflected and ≤2 cm of the vagus is dissected from the carotid wall.


In some variations, a sizing tool may be used to measure the vagus (e.g., diameter) to select an appropriate microstimulator and cuff (e.g., small, medium, large). In some variations of the method, as described above, an oversized cuff may be used. The nerve cuff is then placed under the nerve with the opening into the nerve cuff facing the surgeon (FIG. 22D), allowing access to the nerve and the pocket for holding the microstimulator. The microstimulator can then be inserted inside cuff (FIG. 22E) while assuring that the microstimulator contacts capture the vagus, or communicate with any internal contacts/leads. The nerve cuff may then be sutured shut (FIG. 22F). In some variations, the microstimulator may then be tested (FIG. 22G) to confirm that the device is working and coupled to the nerve. For example, a surgical tester device, covered in a sterile plastic cover, may be used to activate the microstimulator and perform system integrity and impedance checks, and shut the microstimulator off. If necessary the procedure may be repeated to correctly position and connect the microstimulator. Once this is completed and verified, the incision may be closed (FIG. 22H).


The invention may be embodied in other specific forms without departing from the essential attributes thereof; therefore, the illustrated embodiments should be considered in all respects as illustrative and not restrictive. The claims provided herein are to ensure adequacy of the present application for establishing foreign priority and for no other purpose.

Claims
  • 1. A system for stimulating a nerve in a patient's body, the system comprising: a leadless microstimulator; anda nerve cuff for enclosing the leadless microstimulator in stable communication with the nerve, the nerve cuff comprising: a cuff body having a first end, a second end, and a nerve channel extending within the length of the cuff body from the first end to the second end for passage of the nerve;a pocket within the cuff body, the pocket configured to removably hold the leadless microstimulator; andan elongate slit extending along the cuff body configured to be opened to provide access to the pocket and the nerve channel, and configured to be closed around the pocket and nerve channel, enclosing the cuff body around the nerve.
  • 2. The system of claim 1, wherein the nerve cuff comprises a pair of electrical contacts on the outer surface of the cuff body that are configured to be in electrical communication with the microstimulator when the microstimulator is disposed within the pocket of the cuff body.
  • 3. The system of claim 2, wherein the pair of electrical contacts are sensing electrodes.
  • 4. The system of claim 2, wherein the pair of electrical contacts are stimulation electrodes.
  • 5. The system of claim 1, wherein the cuff body is made of an electrically insulating material configured to reduce leakage current from escaping from within the cuff body when the microstimulator delivers electrical stimulation to the nerve.
  • 6. The system of claim 1, wherein the nerve cuff comprises one or more conductive surfaces within the nerve channel configured to engage one or more electrical contacts on the microstimulator.
  • 7. The system of claim 1, wherein the cuff body is formed of a flexible and biocompatible polymer.
  • 8. The system of claim 1, wherein the flexible and biocompatible polymer is a silicone based polymer.
  • 9. The system of claim 1, wherein the nerve is the vagus nerve.
  • 10. A system for stimulating a nerve in a patient's body, the system comprising: a leadless microstimulator; anda nerve cuff for enclosing the leadless microstimulator in stable communication with the nerve, the nerve cuff comprising: a cuff body having a first end, a second end, and a nerve channel extending within the length of the cuff body from the first end to the second end for passage of the nerve;a pocket within the cuff body configured to hold the leadless microstimulator; andan elongate slit extending along the cuff body configured to be opened to provide access to the nerve channel, and configured to be closed around the nerve channel, enclosing the cuff body around the nerve.
  • 11. The system of claim 10, wherein the nerve cuff comprises a pair of electrical contacts on the outer surface of the cuff body that are configured to be in electrical communication with the microstimulator when the microstimulator is disposed within the pocket of the cuff body.
  • 12. The system of claim 11, wherein the pair of electrical contacts are sensing electrodes.
  • 13. The system of claim 11, wherein the pair of electrical contacts are stimulation electrodes.
  • 14. The system of claim 10, wherein the cuff body is made of an electrically insulating material configured to reduce leakage current from escaping from within the cuff body when the microstimulator delivers electrical stimulation to the nerve.
  • 15. The system of claim 10, wherein the nerve cuff comprises one or more conductive surfaces within the nerve channel configured to engage one or more electrical contacts on the microstimulator.
  • 16. The system of claim 10, wherein the cuff body is formed of a flexible and biocompatible polymer.
  • 17. The system of claim 10, wherein the flexible and biocompatible polymer is a silicone based polymer.
  • 18. The system of claim 10, wherein the nerve is the vagus nerve.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/931,711, filed Nov. 3, 2015, titled “NERVE CUFF WITH POCKET FOR LEADLESS STIMULATOR,” now U.S. Pat. No. 9,700,716, which is a continuation of U.S. patent application Ser. No. 14/536,461, filed Nov. 7, 2014, titled “NERVE CUFF WITH POCKET FOR LEADLESS STIMULATOR,” now U.S. Pat. No. 9,174,041, which is a divisional of U.S. patent application Ser. No. 12/797,452, filed Jun. 9, 2010, titled “NERVE CUFF WITH POCKET FOR LEADLESS STIMULATOR, now U.S. Pat. No. 8,886,339, which claims the benefit under 35 U.S.C. § 119 of U.S. Provisional Patent Application No. 61/185,494, filed on Jun. 9, 2009, titled “NERVE CUFF WITH POCKET FOR LEADLESS STIMULATOR,” each of which is herein incorporated by reference in its entirety.

US Referenced Citations (577)
Number Name Date Kind
2164121 Pescador Jun 1939 A
3363623 Atwell Jan 1968 A
3631534 Hirota et al. Dec 1971 A
4073296 McCall Feb 1978 A
4098277 Mendell Jul 1978 A
4305402 Katims Dec 1981 A
4503863 Katims Mar 1985 A
4573481 Bullara Mar 1986 A
4590946 Loeb May 1986 A
4632095 Libin Dec 1986 A
4649936 Ungar et al. Mar 1987 A
4702254 Zabara Oct 1987 A
4840793 Todd, III et al. Jun 1989 A
4867164 Zabara Sep 1989 A
4929734 Coughenour et al. May 1990 A
4930516 Alfano et al. Jun 1990 A
4935234 Todd, III et al. Jun 1990 A
4979511 Terry, Jr. Dec 1990 A
4991578 Cohen Feb 1991 A
5019648 Schlossman et al. May 1991 A
5025807 Zabara Jun 1991 A
5038781 Lynch Aug 1991 A
5049659 Cantor et al. Sep 1991 A
5073560 Wu et al. Dec 1991 A
5106853 Showell et al. Apr 1992 A
5111815 Mower May 1992 A
5154172 Terry, Jr. et al. Oct 1992 A
5175166 Dunbar et al. Dec 1992 A
5179950 Stanislaw Jan 1993 A
5186170 Varrichio et al. Feb 1993 A
5188104 Wernicke et al. Feb 1993 A
5203326 Collins Apr 1993 A
5205285 Baker, Jr. Apr 1993 A
5215086 Terry, Jr. et al. Jun 1993 A
5215089 Baker, Jr. Jun 1993 A
5222494 Baker, Jr. Jun 1993 A
5231988 Wernicke et al. Aug 1993 A
5235980 Varrichio et al. Aug 1993 A
5237991 Baker et al. Aug 1993 A
5251634 Weinberg Oct 1993 A
5263480 Wernicke et al. Nov 1993 A
5269303 Wernicke et al. Dec 1993 A
5299569 Wernicke et al. Apr 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5330507 Schwartz Jul 1994 A
5330515 Rutecki et al. Jul 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5344438 Testerman et al. Sep 1994 A
5351394 Weinberg Oct 1994 A
5403845 Dunbar et al. Apr 1995 A
5458625 Kendall Oct 1995 A
5472841 Jayasena et al. Dec 1995 A
5487756 Kallesoe et al. Jan 1996 A
5496938 Gold et al. Mar 1996 A
5503978 Schneider et al. Apr 1996 A
5531778 Maschino et al. Jul 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5540734 Zabara Jul 1996 A
5567588 Gold et al. Oct 1996 A
5567724 Kelleher et al. Oct 1996 A
5571150 Wernicke et al. Nov 1996 A
5580737 Polisky et al. Dec 1996 A
5582981 Toole et al. Dec 1996 A
5604231 Smith et al. Feb 1997 A
5607459 Paul et al. Mar 1997 A
5611350 John Mar 1997 A
5618818 Ojo et al. Apr 1997 A
5629285 Black et al. May 1997 A
5637459 Burke et al. Jun 1997 A
5651378 Matheny et al. Jul 1997 A
5654151 Allen et al. Aug 1997 A
5683867 Biesecker et al. Nov 1997 A
5690681 Geddes et al. Nov 1997 A
5700282 Zabara Dec 1997 A
5705337 Gold et al. Jan 1998 A
5707400 Terry, Jr. et al. Jan 1998 A
5709853 Iino et al. Jan 1998 A
5712375 Jensen et al. Jan 1998 A
5718912 Thompson et al. Feb 1998 A
5726017 Lochrie et al. Mar 1998 A
5726179 Messer, Jr. et al. Mar 1998 A
5727556 Weth et al. Mar 1998 A
5733255 Dinh et al. Mar 1998 A
5741802 Kern et al. Apr 1998 A
5773598 Burke et al. Jun 1998 A
5786462 Schneider et al. Jul 1998 A
5788656 Mino Aug 1998 A
5792210 Wamubu et al. Aug 1998 A
5853005 Scanlon Dec 1998 A
5854289 Bianchi et al. Dec 1998 A
5902814 Gordon et al. May 1999 A
5913876 Taylor et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919216 Houben et al. Jul 1999 A
5928272 Adkins et al. Jul 1999 A
5964794 Bolz et al. Oct 1999 A
5977144 Meyer et al. Nov 1999 A
5994330 El Khoury Nov 1999 A
6002964 Feler et al. Dec 1999 A
6006134 Hill et al. Dec 1999 A
6017891 Eibl et al. Jan 2000 A
6028186 Tasset et al. Feb 2000 A
6051017 Loeb et al. Apr 2000 A
6083696 Biesecker et al. Jul 2000 A
6083905 Voorberg et al. Jul 2000 A
6096728 Collins et al. Aug 2000 A
6104956 Naritoku et al. Aug 2000 A
6110900 Gold et al. Aug 2000 A
6110914 Phillips et al. Aug 2000 A
6117837 Tracey et al. Sep 2000 A
6124449 Gold et al. Sep 2000 A
6127119 Stephens et al. Oct 2000 A
6140490 Biesecker et al. Oct 2000 A
6141590 Renirie et al. Oct 2000 A
6147204 Gold et al. Nov 2000 A
6159145 Satoh Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6166048 Bencherif Dec 2000 A
6168778 Janjic et al. Jan 2001 B1
6171795 Korman et al. Jan 2001 B1
6205359 Boveja Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6208902 Boveja Mar 2001 B1
6210321 Di Mino et al. Apr 2001 B1
6224862 Turecek et al. May 2001 B1
6233488 Hess May 2001 B1
6266564 Hill et al. Jul 2001 B1
6269270 Boveja Jul 2001 B1
6304775 Iasemidis et al. Oct 2001 B1
6308104 Taylor et al. Oct 2001 B1
6337997 Rise Jan 2002 B1
6339725 Naritoku et al. Jan 2002 B1
6341236 Osorio et al. Jan 2002 B1
6356787 Rezai et al. Mar 2002 B1
6356788 Boveja Mar 2002 B2
6381499 Taylor et al. Apr 2002 B1
6405732 Edwards et al. Jun 2002 B1
6407095 Lochead et al. Jun 2002 B1
6428484 Battmer et al. Aug 2002 B1
6429217 Puskas Aug 2002 B1
6447443 Keogh et al. Sep 2002 B1
6449507 Hill et al. Sep 2002 B1
6473644 Terry, Jr. et al. Oct 2002 B1
6479523 Puskas Nov 2002 B1
6487446 Hill et al. Nov 2002 B1
6511500 Rahme Jan 2003 B1
6528529 Brann et al. Mar 2003 B1
6532388 Hill et al. Mar 2003 B1
6542774 Hill et al. Apr 2003 B2
6556868 Naritoku et al. Apr 2003 B2
6564102 Boveja May 2003 B1
6587719 Barrett et al. Jul 2003 B1
6587727 Osorio et al. Jul 2003 B2
6600956 Maschino et al. Jul 2003 B2
6602891 Messer et al. Aug 2003 B2
6609025 Barrett et al. Aug 2003 B2
6610713 Tracey Aug 2003 B2
6611715 Boveja Aug 2003 B1
6615081 Boveja Sep 2003 B1
6615085 Boveja Sep 2003 B1
6622038 Barrett et al. Sep 2003 B2
6622041 Terry, Jr. et al. Sep 2003 B2
6622047 Barrett et al. Sep 2003 B2
6628987 Hill et al. Sep 2003 B1
6633779 Schuler et al. Oct 2003 B1
6656960 Puskas Dec 2003 B2
6668191 Boveja Dec 2003 B1
6671556 Osorio et al. Dec 2003 B2
6684105 Cohen et al. Jan 2004 B2
6690973 Hill et al. Feb 2004 B2
6718208 Hill et al. Apr 2004 B2
6721603 Zabara et al. Apr 2004 B2
6735471 Hill et al. May 2004 B2
6735475 Whitehurst et al. May 2004 B1
6760626 Boveja Jul 2004 B1
6778854 Puskas Aug 2004 B2
6804558 Haller et al. Oct 2004 B2
RE38654 Hill et al. Nov 2004 E
6826428 Chen et al. Nov 2004 B1
6832114 Whitehurst et al. Dec 2004 B1
6838471 Tracey Jan 2005 B2
RE38705 Hill et al. Feb 2005 E
6879859 Boveja Apr 2005 B1
6885888 Rezai Apr 2005 B2
6901294 Whitehurst et al. May 2005 B1
6904318 Hill et al. Jun 2005 B2
6920357 Osorio et al. Jul 2005 B2
6928320 King Aug 2005 B2
6934583 Weinberg et al. Aug 2005 B2
6937903 Schuler et al. Aug 2005 B2
6961618 Osorio et al. Nov 2005 B2
6978787 Broniatowski Dec 2005 B1
7011638 Schuler et al. Mar 2006 B2
7054686 MacDonald May 2006 B2
7054692 Whitehurst et al. May 2006 B1
7058447 Hill et al. Jun 2006 B2
7062320 Ehlinger, Jr. Jun 2006 B2
7069082 Lindenthaler Jun 2006 B2
7072720 Puskas Jul 2006 B2
7076307 Boveja et al. Jul 2006 B2
7142910 Puskas Nov 2006 B2
7142917 Fukui Nov 2006 B2
7149574 Yun et al. Dec 2006 B2
7155279 Whitehurst et al. Dec 2006 B2
7155284 Whitehurst et al. Dec 2006 B1
7167750 Knudson et al. Jan 2007 B2
7167751 Whitehurst et al. Jan 2007 B1
7174218 Kuzma Feb 2007 B1
7184828 Hill et al. Feb 2007 B2
7184829 Hill et al. Feb 2007 B2
7191012 Boveja et al. Mar 2007 B2
7204815 Connor Apr 2007 B2
7209787 DiLorenzo Apr 2007 B2
7225019 Jahns et al. May 2007 B2
7228167 Kara et al. Jun 2007 B2
7238715 Tracey et al. Jul 2007 B2
7242984 DiLorenzo Jul 2007 B2
7269457 Shafer et al. Sep 2007 B2
7345178 Nunes et al. Mar 2008 B2
7389145 Kilgore et al. Jun 2008 B2
7467016 Colborn Dec 2008 B2
7544497 Sinclair et al. Jun 2009 B2
7561918 Armstrong et al. Jul 2009 B2
7711432 Thimineur et al. May 2010 B2
7729760 Patel et al. Jun 2010 B2
7751891 Armstrong et al. Jul 2010 B2
7776326 Milbrandt et al. Aug 2010 B2
7797058 Mrva et al. Sep 2010 B2
7819883 Westlund et al. Oct 2010 B2
7822486 Foster et al. Oct 2010 B2
7829556 Bemis et al. Nov 2010 B2
7869885 Begnaud et al. Jan 2011 B2
7937145 Dobak May 2011 B2
7962220 Kolafa et al. Jun 2011 B2
7974701 Armstrong Jul 2011 B2
7974707 Inman Jul 2011 B2
7996088 Marrosu et al. Aug 2011 B2
7996092 Mrva et al. Aug 2011 B2
8019419 Panescu et al. Sep 2011 B1
8060208 Kilgore et al. Nov 2011 B2
8103349 Donders et al. Jan 2012 B2
8165668 Dacey, Jr. et al. Apr 2012 B2
8180446 Dacey, Jr. et al. May 2012 B2
8195287 Dacey, Jr. et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8233982 Libbus Jul 2012 B2
8391970 Tracey et al. Mar 2013 B2
8412338 Faltys Apr 2013 B2
8612002 Faltys et al. Dec 2013 B2
8729129 Tracey et al. May 2014 B2
8788034 Levine et al. Jul 2014 B2
8843210 Simon et al. Sep 2014 B2
8855767 Faltys et al. Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8914114 Tracey et al. Dec 2014 B2
8918178 Simon et al. Dec 2014 B2
8983628 Simon et al. Mar 2015 B2
8983629 Simon et al. Mar 2015 B2
8996116 Faltys et al. Mar 2015 B2
9162064 Faltys et al. Oct 2015 B2
9174041 Faltys et al. Nov 2015 B2
9211409 Tracey et al. Dec 2015 B2
9211410 Levine et al. Dec 2015 B2
9254383 Simon et al. Feb 2016 B2
9403001 Simon et al. Aug 2016 B2
9572983 Levine et al. Feb 2017 B2
9662490 Tracey et al. May 2017 B2
9700716 Faltys Jul 2017 B2
20010002441 Boveja May 2001 A1
20020026141 Houben et al. Feb 2002 A1
20020040035 Myers et al. Apr 2002 A1
20020077675 Greenstein Jun 2002 A1
20020086871 O'Neill et al. Jul 2002 A1
20020095139 Keogh et al. Jul 2002 A1
20020099417 Naritoku et al. Jul 2002 A1
20020138075 Edwards et al. Sep 2002 A1
20020138109 Keogh et al. Sep 2002 A1
20020193859 Schulman et al. Dec 2002 A1
20020198570 Puskas Dec 2002 A1
20030018367 DiLorenzo Jan 2003 A1
20030045909 Gross et al. Mar 2003 A1
20030088301 King May 2003 A1
20030191404 Klein Oct 2003 A1
20030194752 Anderson et al. Oct 2003 A1
20030195578 Perron et al. Oct 2003 A1
20030212440 Boveja Nov 2003 A1
20030229380 Adams et al. Dec 2003 A1
20030236557 Whitehurst et al. Dec 2003 A1
20030236558 Whitehurst et al. Dec 2003 A1
20040002546 Altschuler Jan 2004 A1
20040015202 Chandler et al. Jan 2004 A1
20040015205 Whitehurst et al. Jan 2004 A1
20040024422 Hill et al. Feb 2004 A1
20040024428 Barrett et al. Feb 2004 A1
20040024439 Riso Feb 2004 A1
20040030362 Hill et al. Feb 2004 A1
20040039427 Barrett et al. Feb 2004 A1
20040048795 Ivanova et al. Mar 2004 A1
20040049121 Yaron Mar 2004 A1
20040049240 Gerber et al. Mar 2004 A1
20040059383 Puskas Mar 2004 A1
20040111139 McCreery et al. Jun 2004 A1
20040138517 Osorio et al. Jul 2004 A1
20040138518 Rise et al. Jul 2004 A1
20040138536 Frei et al. Jul 2004 A1
20040146949 Tan et al. Jul 2004 A1
20040153127 Gordon et al. Aug 2004 A1
20040158119 Osorio et al. Aug 2004 A1
20040162584 Hill et al. Aug 2004 A1
20040172074 Yoshihito Sep 2004 A1
20040172085 Knudson et al. Sep 2004 A1
20040172086 Knudson et al. Sep 2004 A1
20040172088 Knudson et al. Sep 2004 A1
20040172094 Cohen et al. Sep 2004 A1
20040176812 Knudson et al. Sep 2004 A1
20040178706 D'Orso Sep 2004 A1
20040193231 David et al. Sep 2004 A1
20040199209 Hill et al. Oct 2004 A1
20040199210 Shelchuk Oct 2004 A1
20040204355 Tracey et al. Oct 2004 A1
20040215272 Haubrich et al. Oct 2004 A1
20040215287 Swoyer et al. Oct 2004 A1
20040236381 Dinsmoor et al. Nov 2004 A1
20040236382 Dinsmoor et al. Nov 2004 A1
20040240691 Grafenberg Dec 2004 A1
20040243182 Cohen et al. Dec 2004 A1
20040254612 Ezra et al. Dec 2004 A1
20040267152 Pineda Dec 2004 A1
20050021092 Yun et al. Jan 2005 A1
20050021101 Chen et al. Jan 2005 A1
20050027328 Greenstein Feb 2005 A1
20050043774 Devlin et al. Feb 2005 A1
20050049655 Boveja et al. Mar 2005 A1
20050065553 Ben Ezra et al. Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065575 Dobak Mar 2005 A1
20050070970 Knudson et al. Mar 2005 A1
20050070974 Knudson et al. Mar 2005 A1
20050075701 Shafer Apr 2005 A1
20050075702 Shafer Apr 2005 A1
20050095246 Shafer May 2005 A1
20050096707 Hill et al. May 2005 A1
20050103351 Stomberg et al. May 2005 A1
20050131467 Boveja Jun 2005 A1
20050131486 Boveja et al. Jun 2005 A1
20050131487 Boveja Jun 2005 A1
20050131493 Boveja et al. Jun 2005 A1
20050137644 Boveja et al. Jun 2005 A1
20050137645 Voipio et al. Jun 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050143787 Boveja et al. Jun 2005 A1
20050149126 Libbus Jul 2005 A1
20050149129 Libbus et al. Jul 2005 A1
20050149131 Libbus et al. Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050154425 Boveja et al. Jul 2005 A1
20050154426 Boveja et al. Jul 2005 A1
20050165458 Boveja et al. Jul 2005 A1
20050177200 George et al. Aug 2005 A1
20050182288 Zabara Aug 2005 A1
20050182467 Hunter et al. Aug 2005 A1
20050187584 Denker et al. Aug 2005 A1
20050187586 David et al. Aug 2005 A1
20050187590 Boveja et al. Aug 2005 A1
20050191661 Gatanaga et al. Sep 2005 A1
20050192644 Boveja et al. Sep 2005 A1
20050197600 Schuler et al. Sep 2005 A1
20050197675 David et al. Sep 2005 A1
20050197678 Boveja et al. Sep 2005 A1
20050203501 Aldrich et al. Sep 2005 A1
20050209654 Boveja et al. Sep 2005 A1
20050216064 Heruth et al. Sep 2005 A1
20050216070 Boveja et al. Sep 2005 A1
20050216071 Devlin et al. Sep 2005 A1
20050240229 Whitehurst et al. Oct 2005 A1
20050240231 Aldrich et al. Oct 2005 A1
20050240241 Yun et al. Oct 2005 A1
20050240242 DiLorenzo Oct 2005 A1
20050251220 Barrett et al. Nov 2005 A1
20050251222 Barrett et al. Nov 2005 A1
20050267542 David et al. Dec 2005 A1
20050267547 Knudson et al. Dec 2005 A1
20050283198 Haubrich et al. Dec 2005 A1
20060009815 Boveja et al. Jan 2006 A1
20060015151 Aldrich Jan 2006 A1
20060025828 Armstrong et al. Feb 2006 A1
20060036293 Whitehurst et al. Feb 2006 A1
20060052657 Zabara Mar 2006 A9
20060052831 Fukui Mar 2006 A1
20060052836 Kim et al. Mar 2006 A1
20060058851 Cigaina Mar 2006 A1
20060064137 Stone Mar 2006 A1
20060064139 Chung et al. Mar 2006 A1
20060074450 Boveja et al. Apr 2006 A1
20060074473 Gertner Apr 2006 A1
20060079936 Boveja et al. Apr 2006 A1
20060085046 Rezai et al. Apr 2006 A1
20060095081 Zhou et al. May 2006 A1
20060095090 De Ridder May 2006 A1
20060100668 Ben-David et al. May 2006 A1
20060106755 Stuhec May 2006 A1
20060111644 Guttag et al. May 2006 A1
20060111754 Rezai et al. May 2006 A1
20060111755 Stone et al. May 2006 A1
20060116739 Betser et al. Jun 2006 A1
20060122675 Libbus et al. Jun 2006 A1
20060129200 Kurokawa Jun 2006 A1
20060129202 Armstrong Jun 2006 A1
20060135998 Libbus et al. Jun 2006 A1
20060142802 Armstrong Jun 2006 A1
20060142822 Tulgar Jun 2006 A1
20060149337 John Jul 2006 A1
20060155495 Osorio et al. Jul 2006 A1
20060161216 John et al. Jul 2006 A1
20060161217 Jaax et al. Jul 2006 A1
20060167497 Armstrong et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060167501 Ben-David et al. Jul 2006 A1
20060173493 Armstrong et al. Aug 2006 A1
20060173508 Stone et al. Aug 2006 A1
20060178691 Binmoeller Aug 2006 A1
20060178703 Huston et al. Aug 2006 A1
20060178706 Lisogurski et al. Aug 2006 A1
20060190044 Libbus et al. Aug 2006 A1
20060200208 Terry, Jr. et al. Sep 2006 A1
20060200219 Thrope et al. Sep 2006 A1
20060206155 Ben-David et al. Sep 2006 A1
20060206158 Wu et al. Sep 2006 A1
20060229677 Moffitt et al. Oct 2006 A1
20060229681 Fischell Oct 2006 A1
20060241699 Libbus et al. Oct 2006 A1
20060247719 Maschino et al. Nov 2006 A1
20060247721 Maschino et al. Nov 2006 A1
20060247722 Maschino et al. Nov 2006 A1
20060259077 Pardo et al. Nov 2006 A1
20060259084 Zhang et al. Nov 2006 A1
20060259085 Zhang et al. Nov 2006 A1
20060259107 Caparso et al. Nov 2006 A1
20060271115 Ben-Ezra et al. Nov 2006 A1
20060282121 Payne et al. Dec 2006 A1
20060282131 Caparso et al. Dec 2006 A1
20060282145 Caparso et al. Dec 2006 A1
20060287678 Shafer Dec 2006 A1
20060287679 Stone Dec 2006 A1
20060292099 Milburn et al. Dec 2006 A1
20060293720 DiLorenzo Dec 2006 A1
20060293721 Tarver et al. Dec 2006 A1
20060293723 Whitehurst et al. Dec 2006 A1
20070016262 Gross et al. Jan 2007 A1
20070016263 Armstrong et al. Jan 2007 A1
20070021785 Inman et al. Jan 2007 A1
20070021786 Parnis et al. Jan 2007 A1
20070021814 Inman et al. Jan 2007 A1
20070025608 Armstrong Feb 2007 A1
20070027482 Parnis et al. Feb 2007 A1
20070027483 Maschino et al. Feb 2007 A1
20070027484 Guzman et al. Feb 2007 A1
20070027486 Armstrong Feb 2007 A1
20070027492 Maschino et al. Feb 2007 A1
20070027496 Parnis et al. Feb 2007 A1
20070027497 Parnis Feb 2007 A1
20070027498 Maschino et al. Feb 2007 A1
20070027499 Maschino et al. Feb 2007 A1
20070027500 Maschino et al. Feb 2007 A1
20070027504 Barrett et al. Feb 2007 A1
20070055324 Thompson et al. Mar 2007 A1
20070067004 Boveja et al. Mar 2007 A1
20070083242 Mazgalev et al. Apr 2007 A1
20070093434 Rossetti et al. Apr 2007 A1
20070093870 Maschino Apr 2007 A1
20070093875 Chavan et al. Apr 2007 A1
20070100263 Merfeld May 2007 A1
20070100377 Armstrong et al. May 2007 A1
20070100378 Maschino May 2007 A1
20070100380 Fukui May 2007 A1
20070100392 Maschino et al. May 2007 A1
20070106339 Errico et al. May 2007 A1
20070112404 Mann et al. May 2007 A1
20070118177 Libbus et al. May 2007 A1
20070118178 Fukui May 2007 A1
20070129767 Wahlstrand Jun 2007 A1
20070129780 Whitehurst et al. Jun 2007 A1
20070135846 Knudson et al. Jun 2007 A1
20070135856 Knudson et al. Jun 2007 A1
20070135857 Knudson et al. Jun 2007 A1
20070135858 Knudson et al. Jun 2007 A1
20070142870 Knudson et al. Jun 2007 A1
20070142871 Libbus et al. Jun 2007 A1
20070142874 John Jun 2007 A1
20070150006 Libbus et al. Jun 2007 A1
20070150011 Meyer et al. Jun 2007 A1
20070150021 Chen et al. Jun 2007 A1
20070150027 Rogers Jun 2007 A1
20070156180 Jaax et al. Jul 2007 A1
20070198063 Hunter et al. Aug 2007 A1
20070239243 Moffitt et al. Oct 2007 A1
20070244522 Overstreet Oct 2007 A1
20070250145 Kraus et al. Oct 2007 A1
20070255320 Inman et al. Nov 2007 A1
20070255333 Giftakis Nov 2007 A1
20070255339 Torgerson Nov 2007 A1
20080021517 Dietrich Jan 2008 A1
20080021520 Dietrich Jan 2008 A1
20080046055 Durand et al. Feb 2008 A1
20080058871 Libbus et al. Mar 2008 A1
20080103407 Bolea et al. May 2008 A1
20080140138 Ivanova et al. Jun 2008 A1
20080183226 Buras et al. Jul 2008 A1
20080183246 Patel et al. Jul 2008 A1
20080195171 Sharma Aug 2008 A1
20080208266 Lesser et al. Aug 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080281365 Tweden et al. Nov 2008 A1
20080281372 Libbus et al. Nov 2008 A1
20090012590 Inman et al. Jan 2009 A1
20090048194 Aerssens et al. Feb 2009 A1
20090082832 Carbunaru et al. Mar 2009 A1
20090088821 Abrahamson Apr 2009 A1
20090105782 Mickle et al. Apr 2009 A1
20090123521 Weber et al. May 2009 A1
20090125079 Armstrong et al. May 2009 A1
20090143831 Huston et al. Jun 2009 A1
20090171405 Craig Jul 2009 A1
20090177112 Gharib et al. Jul 2009 A1
20090187231 Errico et al. Jul 2009 A1
20090248097 Tracey et al. Oct 2009 A1
20090254143 Tweden et al. Oct 2009 A1
20090275997 Faltys et al. Nov 2009 A1
20090276019 Perez et al. Nov 2009 A1
20090281593 Errico et al. Nov 2009 A9
20090312817 Hogle et al. Dec 2009 A1
20100003656 Kilgard et al. Jan 2010 A1
20100010571 Skelton et al. Jan 2010 A1
20100010581 Goetz et al. Jan 2010 A1
20100010603 Ben-David et al. Jan 2010 A1
20100016746 Hampton et al. Jan 2010 A1
20100042186 Ben-David et al. Feb 2010 A1
20100063563 Craig Mar 2010 A1
20100074934 Hunter Mar 2010 A1
20100191304 Scott Jul 2010 A1
20100215632 Boss et al. Aug 2010 A1
20100241183 DiLorenzo Sep 2010 A1
20100249859 DiLorenzo Sep 2010 A1
20100280562 Pi et al. Nov 2010 A1
20100280569 Bobillier et al. Nov 2010 A1
20110004266 Sharma Jan 2011 A1
20110054569 Zitnik et al. Mar 2011 A1
20110066208 Pasricha et al. Mar 2011 A1
20110082515 Libbus et al. Apr 2011 A1
20110092882 Firlik et al. Apr 2011 A1
20110144717 Burton et al. Jun 2011 A1
20110224749 Ben-David et al. Sep 2011 A1
20110307027 Sharma et al. Dec 2011 A1
20120065706 Vallapureddy et al. Mar 2012 A1
20120185020 Simon et al. Jul 2012 A1
20130066392 Simon et al. Mar 2013 A1
20130066395 Simon et al. Mar 2013 A1
20130079834 Levine Mar 2013 A1
20130317580 Simon et al. Nov 2013 A1
20140046407 Ben-Ezra et al. Feb 2014 A1
20150100100 Tracey et al. Apr 2015 A1
20150241447 Zitnik et al. Aug 2015 A1
20160038745 Faltys et al. Feb 2016 A1
20160067497 Levine et al. Mar 2016 A1
20160096017 Levine et al. Apr 2016 A1
20160114165 Levine et al. Apr 2016 A1
20160250097 Tracey et al. Sep 2016 A9
20160331952 Faltys et al. Nov 2016 A1
20160367808 Simon et al. Dec 2016 A9
20170113044 Levine et al. Apr 2017 A1
20170197076 Faltys et al. Jul 2017 A1
20170202467 Zitnik et al. Jul 2017 A1
20170203103 Levine et al. Jul 2017 A1
20170209705 Faltys et al. Jul 2017 A1
20170266448 Tracey et al. Sep 2017 A1
20180021217 Tracey et al. Jan 2018 A1
20180117320 Levine et al. May 2018 A1
Foreign Referenced Citations (32)
Number Date Country
201230913 May 2009 CN
101528303 Sep 2009 CN
101578067 Nov 2009 CN
101868280 Oct 2010 CN
2628045 Jan 1977 DE
3736664 May 1989 DE
20316509 Apr 2004 DE
0438510 Aug 1996 EP
0726791 Jun 2000 EP
1001827 Jan 2004 EP
2213330 Aug 2010 EP
2073896 Oct 2011 EP
04133 Feb 1910 GB
WO9301862 Feb 1993 WO
WO9730998 Aug 1997 WO
WO9820868 May 1998 WO
WO0027381 May 2000 WO
WO0047104 Aug 2000 WO
WO0100273 Jan 2001 WO
WO0108617 Feb 2001 WO
WO0189526 Nov 2001 WO
WO0244176 Jun 2002 WO
WO02057275 Jul 2002 WO
WO03072135 Sep 2003 WO
WO2004000413 Dec 2003 WO
WO2004064918 Aug 2004 WO
WO2006073484 Jul 2006 WO
WO2006076681 Jul 2006 WO
WO2007133718 Nov 2007 WO
WO2010005482 Jan 2010 WO
WO2010067360 Jun 2010 WO
WO2010118035 Oct 2010 WO
Non-Patent Literature Citations (209)
Entry
US 6,184,239, 02/2001, Puskas (withdrawn)
Abraham, Coagulation abnormalities in acute lung injury and sepsis, Am. J. Respir. Cell Mol. Biol., vol. 22(4), pp. 401-404, Apr. 2000.
Aekerlund et al., Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-Alpha) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats, Clinical & Experimental Immunology, vol. 115, No. 1, pp. 32-41, Jan. 1, 1999.
Antonica, A., et al., Vagal control of lymphocyte release from rat thymus, J. Auton. Nerv. Syst., vol. 48(3), pp. 187-197, Aug. 1994.
Asakura et al., Non-surgical therapy for ulcerative colitis, Nippon Geka Gakkai Zasshi, vol. 98, No. 4, pp. 431-437, Apr. 1997 (abstract only).
Beliavskaia et al., “On the effects of prolonged stimulation of the peripheral segment of the vagus nerve . . . ,” Fiziologicheskii Zhurnal SSSR Imeni I.M. Sechenova., vol. 52(11); p. 1315-1321, Nov. 1966.
Ben-Noun et al.; Neck circumference as a simple screening measure for identifying overweight and obese patients; Obesity Research; vol. 9; No. 8; pp. 470-477; Aug. 8, 2001.
Benoist, et al., “Mast cells in autoimmune disease” Nature., vol. 420(19): pp. 875-878, Dec. 2002.
Benthem et al.; Parasympathetic inhibition of sympathetic neural activity to the pancreas; Am.J.Physiol Endocrinol.Metab; 280(2); pp. E378-E381; Feb. 2001.
Bernik et al., Vagus nerve stimulation attenuates cardiac TNF production in endotoxic shock, (supplemental to SHOCK, vol. 15, 2001, Injury, inflammation and sepsis: laboratory and clinical approaches, SHOCK, Abstracts, 24th Annual Conference on Shock, Marco Island, FL, Jun. 9-12, 2001), Abstract No. 81.
Bernik et al., Vagus nerve stimulation attenuates endotoxic shock and cardiac TNF production, 87th Clinical Congress of the American College of Surgeons, New Orleans, LA, Oct. 9, 2001.
Bernik et al., Vagus nerve stimulation attenuates LPS-induced cardiac TNF production and myocardial depression IN shock, New York Surgical Society, New York, NY, Apr. 11, 2001.
Bernik, et al., Pharmacological stimulation of the cholinergic anti-inflammatory pathway, The Journal of Experimental Medicine, vol. 195, No. 6, pp. 781-788, Mar. 18, 2002.
Besedovsky, H., et al., Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones, Science, vol. 233, No. 4764, pp. 652-654, Aug. 1986.
Bhattacharya, S.K. et al., Central muscarinic receptor subtypes and carrageenin-induced paw oedema in rats, Res. Esp. Med. vol. 191(1), pp. 65-76, Dec. 1991.
Bianchi et al., Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone, Journal of Experimental Medicine, vol. 183, pp. 927-936, Mar. 1996.
Biggio et al.; Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus; Int. J. Neurpsychopharmacol.; vol. 12; No. 9; pp. 1209-1221; Oct. 2009.
Blackwell, T. S. et al., Sepsis and cytokines: current status, Br. J. Anaesth., vol. 77(1), pp. 110-117, Jul. 1996.
Blum, A. et al., Role of cytokines in heart failure, Am. Heart J., vol. 135(2), pp. 181-186, Feb. 1998.
Boldyreff, Gastric and intestinal mucus, its properties and physiological importance, Acta Medica Scandinavica (journal), vol. 89, Issue 1-2, pp. 1-14, Jan./Dec. 1936.
Borovikova et al., Acetylcholine inhibition of immune response to bacterial endotoxin in human macrophages, Abstracts, Society for Neuroscience, 29th Annual Meeting, Miami Beach, FL, (Abs. No. 624.6); Oct. 23-28, 1999.
Borovikova et al., Efferent vagus nerve activity attenuates cytokine-mediated inflammation, Society for Neuroscience Abstracts, vol. 26, No. 102, Nov. 4-9, 2000 (abstract only).
Borovikova et al., Intracerebroventricular CNI-1493 prevents LPS-induced hypotension and peak serum TNF at a four-log lower dose than systemic treatment, 21st Annual Conference on Shock, San Antonio, TX, Jun. 14-17, 1998, Abstract No. 86.
Borovikova et al., Role of the efferent vagus nerve signaling in the regulation of the innate immune response to LPS, (supplemental to SHOCK, vol. 13, 2000, Molecular, cellular, and systemic pathobiological aspects and therapeutic approaches, abstracts, 5th World Congress on Trauma, Shock inflammation and sepsis-pathophysiology, immune consequences and therapy, Feb. 29, 2000-Mar. 4, 2000, Munich, DE), Abstract No. 166.
Borovikova et al., Role of the vagus nerve in the anti-inflammatory effects of CNI-1493, the FASEB journal, vol. 14, No. 4, 2000 (Experimental Biology 2000, San Diego, CA, Apr. 15-18, 2000, Abstract No. 97.9).
Borovikova et al., Vagotomy blocks the protective effects of I.C.V. CNI-1493 against LPS-induced shock, (Supplemental to SHOCK, vol. 11, 1999, Molecular, cellular, and systemic pathobioloigal aspects and therapeutic approaches, abstacts and program, Fourth International Shock Congress and 22nd Annual Conference on Shock, Philadelphia, PA, Jun. 12-16, 1999), Abstract No. 277.
Borovikova, L. V., et al., Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation, Autonomic Neuroscience, vol. 85, No. 1-3, pp. 141-147, Dec. 20, 2000.
Borovikova, L. V., et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, vol. 405, No. 6785: pp. 458-462, May 25, 2000.
Bulloch et al.; Characterization of choline O-acetyltransferase (ChAT) in the BALB/C mouse spleen; Int.J.Neurosci.; 76(1-2); pp. 141-149; May 1994.
Bumgardner, G. L. et al., Transplantation and cytokines, Seminars in Liver Disease, vol. 19, No. 2, Thieme Medical Publishers; pp. 189-204, © 1999.
Burke et al., Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase, J. Mol. Biol., vol. 264(4); pp. 650-666, Dec. 1996.
Bushby et al; Centiles for adult head circumference; Archives of Disease in Childhood; vol. 67(10); pp. 1286-1287; Oct. 1992.
Cano et al.; Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing; J.Comp Neurol.; 439(1); pp. 1-18; Oct. 2001.
Carteron, N. L., Cytokines in rheumatoid arthritis: trials and tribulations, Mol. Med. Today, vol. 6(8), pp. 315-323, Aug. 2000.
Cavaillon et al.; The pro-inflammatory cytokine casade; Immune Response in the Critically Ill; Springer-Verlag Berlin Hiedelberg; pp. 37-66; Jan. 21, 2002.
Cicala et al., “Linkage between inflammation and coagulation: An update on the molecular basis of the crosstalk,” Life Sciences, vol. 62(20); pp. 1817-1824, Apr. 1998.
Clark et al.; Enhanced recognition memory following vagus nerve stimulation in human subjects; Nat. Neurosci.; 2(1); pp. 94-98; Jan. 1999.
Cohen, “The immunopathogenesis of sepsis,” Nature., vol. 420(6917): pp. 885-891, Dec. 2002.
Corcoran, et al., The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: a preliminary report, NeuroImmunoModulation, vol. 12(5), pp. 307-309, Sep. 2005.
Das, Critical advances in spticemia and septic shock, Critical Care, vol. 4, pp. 290-296, Sep. 7, 2000.
Del Signore et al; Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush; J.Neuropathol.Exp.Neurol.; 63(2); pp. 138-150; Feb. 2004.
Dibbs, Z., et al., Cytokines in heart failure: pathogenetic mechanisms and potential treatment, Proc. Assoc. Am. Physicians, vol. 111, No. 5, pp. 423-428, Sep.-Oct. 1999.
Dinarello, C. A., The interleukin-1 family: 10 years of discovery, FASEB J., vol. 8, No. 15, pp. 1314-1325, Dec. 1994.
Dorr et al.; Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission; J. Pharmacol. Exp. Ther.; 318(2); pp. 890-898; Aug. 2006.
Doshi et al., Evolving role of tissue factor and its pathway inhibitor, Crit. Care Med., vol. 30, suppl. 5, pp. S241-S250, May 2002.
Elenkov et al.; Stress, corticotropin-releasing hormone, glucocorticoids, and the immune / inflammatory response: acute and chronic effects; Ann. N.Y. Acad. Sci.; 876; pp. 1-13; Jun. 22, 1999.
Ellington et al., In vitro selection of RNA molecules that bind specific ligands, Nature, vol. 346, pp. 818-822, Aug. 30, 1990.
Esmon, The protein C pathway, Crit. Care Med., vol. 28, suppl. 9, pp. S44-S48, Sep. 2000.
Fields; New culprits in chronic pain; Scientific American; pp. 50-57; Nov. 2009.
Fleshner, M., et al., Thermogenic and corticosterone responses to intravenous cytokines (IL-1? and TNF-?) are attenuated by subdiaphragmatic vagotomy, J. Neuroimmunol., vol. 86(2), pp. 134-141, Jun. 1998.
Fox, D. A., Cytokine blockade as a new strategy to treat rheumatoid arthritis, Arch. Intern. Med., vol. 160, pp. 437-444, Feb. 28, 2000.
Fox, et al., Use of muscarinic agonists in the treatment of Sjorgren' syndrome, Clin. Immunol., vol. 101, No. 3; pp. 249-263, Dec. 2001.
Fujii et al.; Simvastatin regulates non-neuronal cholinergic activity in T lymphocytes via CD11a-mediated pathways; J. Neuroimmunol.; 179(1-2); pp. 101-107; Oct. 2006.
Gao et al.; Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats; Autonomic Neurosc.; 138(1-2); pp. 50-56; Feb. 29, 2008.
Gattorno, M., et al., Tumor necrosis factor induced adhesion molecule serum concentrations in henoch-schoenlein purpura and pediatric systemic lupus erythematosus, J. Rheumatol., vol. 27, No. 9, pp. 2251-2255, Sep. 2000.
Gaykema, R. P., et al., Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion, Endocrinology, vol. 136, No. 10, pp. 4717-4720, Oct. 1995.
Ghelardini et al., S-(−)-ET 126: A potent and selective M1 antagonist in vitro and in vivo, Life Sciences, vol. 58, No. 12, pp. 991-1000, Feb. 1996.
Ghia, et al., The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model, Gastroenterology, vol. 131, No. 4, pp. 1122-1130, Oct. 2006.
Giebelen, et al., Stimulation of ?7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor ?-independent mechanism, SHOCK, vol. 27, No. 4, pp. 443-447, Apr. 2007.
Goyal et al., Nature of the vagal inhibitory innervation to the lower esophageal sphincter, Journal of Clinical Investigation, vol. 55, pp. 1119-1126, May 1975.
Gracie, J. A., et al., A proinflammatory role for IL-18 in rheumatoid arthritis, J. Clin. Invest., vol. 104, No. 10, pp. 1393-1401, Nov. 1999.
Granert et al., Suppression of macrophage activation with CNI-1493 increases survival in infant rats with systemic haemophilus influenzae infection, Infection and Immunity, vol. 68, No. 9, pp. 5329-5334, Sep. 2000.
Green et al., Feedback technique for deep relaxation, Psycophysiology, vol. 6, No. 3, pp. 371-377, Nov. 1969.
Gregory et al., Neutrophil-kupffer-cell interaction in host defenses to systemic infections, Immunology Today, vol. 19, No. 11, pp. 507-510, Nov. 1998.
Groves et al.; Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat; Neuroscience Letters; 379(3); pp. 174-179; May 13, 2005.
Guslandi, M., Nicotine treatment for ulcerative colitis, Br. J. Clin. Pharmacol., vol. 48(4), pp. 481-484, Oct. 1999.
Hansson, E.; Could chronic pain and spread of pain sensation be induced and maintained by glial activation?. Acta Physiologica, vol. 187, Issue 1-2; pp. 321R327, May/Jun. 2006.
Harrison's Principles of Internal Medicine, 13th Ed., pp. 511-515 and 1433-1435, Mar. 1994.
Hatton et al.; Vagal nerve stimulation: overview and implications for anesthesiologists; Int'l Anesthesia Research Society; vol. 103; no. 5; pp. 1241-1249; Nov. 2006.
Hirano, T., Cytokine suppresive agent improves survival rate in rats with acute pancreatitis of closed duodenal loop, J. Surg. Res., vol. 81, No. 2, pp. 224-229, Feb. 1999.
Hirao et al., The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants, Mol. Divers., vol. 4, No. 2, pp. 75-89, 1999 (Accepted Jan. 13, 1999).
Hoffer et al.; Implantable electrical and mechanical interfaces with nerve and muscle; Annals of Biomedical Engineering; vol. 8; pp. 351-360; Jul. 1980.
Holladay et al., Neuronal nicotinic acetylcholine receptors as targets for drug discovery, Journal of Medicinal Chemistry, 40(26), pp. 4169-4194, Dec. 1997.
Hommes, D. W. et al., Anti- and Pro-inflammatory cytokines in the pathogenesis of tissue damage in Crohn's disease, Current Opinion in Clinical Nutrition and Metabolic Care, vol. 3(3), pp. 191-195, May 2000.
Hsu, et al., Analysis of efficiency of magnetic stimulation, IEEE Trans. Biomed. Eng., vol. 50(11), pp. 1276-1285, Nov. 2003.
Hsu, H. Y., et al., Cytokine release of peripheral blood monoculear cells in children with chronic hepatitis B virus infection, J. Pediatr. Gastroenterol., vol. 29, No. 5, pp. 540-545, Nov. 1999.
Hu, et al., The effect of norepinephrine on endotoxin-mediated macrophage activation, J. Neuroimmunol., vol. 31(1), pp. 35-42, Jan. 1991.
Huston et al.; Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis; J. Exp. Med. 2006; vol. 203, No. 7; pp. 1623-1628; Jun. 19, 2006.
Huston et al.; Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis; Crit. Care Med.; 35(12); pp. 2762-2768; Dec. 2007.
Hutchinson et al.; Proinflammatory cytokines oppose opioid induced acute and chronic analgesia; Brain Behav Immun.; vol. 22; No. 8; pp. 1178-1189; Nov. 2008.
Ilton et al., “Differential expression of neutrophil adhesion molecules during coronary artery surgery with cardiopulmonary bypass” Journal of Thoracic and Cardiovascular Surgery, Mosby—Year Book, inc., St. Louis, Mo, US, pp. 930-937, Nov. 1, 1999.
Jaeger et al., The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor, The EMBO Journal, 17(15), pp. 4535-4542, Aug. 1998.
Jander, S. et al., Interleukin-18 is induced in acute inflammatory demyelinating polymeuropathy, J. Neuroimmunol., vol. 114, pp. 253-258, Mar. 2001.
Joshi et al., Potent inhibition of human immunodeficiency virus type 1 replection by template analog reverse transcriptase , J. Virol., 76(13), pp. 6545-6557, Jul. 2002.
Kawahara et al.; SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span.; Cell. ; vol. 136; No. 1; pp. 62-74; Jan. 2009.
Kalishevskaya et al. “The character of vagotomy-and atropin-induced hypercoagulation,” Sechenov Physiological Journal of the USSR, 65(3): pp. 398-404, Mar. 1979.
Kalishevskaya et al.; Nervous regulation of the fluid state of the blood; Usp. Fiziol. Nauk;,vol. 13; No. 2; pp. 93-122; Apr.-Jun. 1982.
Kanai, T. et al., Interleukin-18 and Crohn's disease, Digestion, vol. 63, suppl. 1, pp. 37-42, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2001.
Katagiri, M., et al., Increased cytokine production by gastric mucosa in patients with helicobacter pylori infection, J. Clin, Gastroenterol., vol. 25, Suppl. 1, pp. S211-S214, 1997.
Kawashima, et al., Extraneuronal cholinergic system in lymphocytes, Pharmacology & Therapeutics, vol. 86, pp. 29-48, Apr. 2000.
Kees et al; Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen; J.Neuroimmunol.; 145(1-2); pp. 77-85; Dec. 2003.
Kensch et al., HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity, J. Biol. Chem., 275(24), pp. 18271-18278, Jun. 16, 2000.
Khatun, S., et al., “Induction of hypercoagulability condition by chronic localized cold stress in rabbits,” Thromb. and Haemost., 81(3): pp. 449-455, Mar. 1999.
Kimball, et al., Levamisole causes differential cytokine expression by elicited mouse peritoneal macrophases, Journal of Leukocyte Biology, vo. 52, No. 3, pp. 349-356, Sep. 1992 (abstract only).
Kimmings, A. N., et al., Systemic inflammatory response in acute cholangitis and after subsequent treatment, Eur. J. Surg., vol. 166, pp. 700-705, Sep. 2000.
Kirchner et al.; Left vagus nerve stimulation suppresses experimentally induced pain; Neurology; vol. 55; pp. 1167-1171; Oct. 2000.
Kokkula, R. et al., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity, Arthritis Rheum., 48(7), pp. 2052-2058, Jul. 2003.
Krarup et al; Conduction studies in peripheral cat nerve using implanted electrodes: I. methods and findings in controls; Muscle & Nerve; vol. 11; pp. 922-932; Sep. 1988.
Kudrjashov, et al. “Reflex nature of the physiological anticoagulating system,” Nature, vol. 196(4855): pp. 647-649; Nov. 17, 1962.
Kumins, N. H., et al., Partial hepatectomy reduces the endotoxin-induced peak circulating level of tumor necrosis factor in rats, SHOCK, vol. 5, No. 5, pp. 385-388, May 1996.
Kuznik, “Role of the vascular wall in the process of hemostatis,” Usp Sovrem Biol., vol. 75(1): pp. 61-85, 1973.
Kuznik, et al., “Blood Coagulation in stimulation of the vagus nerve in cats,” Biull. Eskp. Biol. Med., vol. 78(7): pp. 7-9, 1974.
Kuznik, et al., “Heart as an efferent regulator of the process of blood coagulation and fibrinolysis,” Kardiologiia, vol. 13(3): pp. 10-17, 1973.
Kuznik, et al., “Role of the heart and vessels in regulating blood coagulation and fibrinolysis,” Kagdiologiia, vol. 13(4): pp. 145-154, 1973.
Kuznik, et al., “Secretion of blood coagulation factors into saliva under conditions of hypo-and hypercoagulation,” Voprosy Meditsinskoi Khimii, vol. 19(1): pp. 54-57; 1973.
Kuznik, et al., “The dynamics of procoagulatible and fibrinolytic activities during electrical stimulation of peripheral nerves,” Sechenov Physiological Journal of the USSR, vol. 65; No. 3: pp. 414-420, Mar. 1979.
Kuznik, et al., “The role of the vascular wall in the mechanism of control of blood coagulation and fibrinolysis on stimulation of the vagus nerve,” Cor Vasa, vol. 17(2): pp. 151-158, 1975.
Lang, et al., “Neurogienic control of cerebral blood flow,” Experimental Neurology, 43(1): pp. 143-161, Apr. 1974.
Lee, H. G., et al., Peritoneal lavage fluids stimulate NIH3T3 fibroblast proliferation and contain increased tumour necrosis factor and IL6 in experimental silica-induced rat peritonitis, Clin. Exp. Immunol., vol. 100, pp. 139-144, Apr. 1995.
LeNovere, N. et al., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells, J. Mol. Evol., 40, pp. 155-172, Feb. 1995.
Leonard, S. et al., Neuronal nicotinic receptors: from structure to function, Nicotine & Tobacco Res. 3:203-223, Aug. 2001.
Lips et al.; Coexpression and spatial association of nicotinic acetylcholine receptor subunits alpha7 and alpha10 in rat sympathetic neurons; J.Mol.Neurosci.; 30; pp. 15-16; Feb. 2006.
Lipton, J. M. et al.; Anti-inflammatory actions of the neuroimmunomodulator ?-MSH, Immunol. Today, vol. 18, pp. 140-145, Mar. 1997.
Loeb et al.; Cuff electrodes for chronic stimulation and recording of peripheral nerve activity; Journal of Neuroscience Methods; vol. 64; pp. 95-103; Jan. 1996.
Madretsma, G. S., et al., Nicotine inhibits the in vitro production of interleukin 2 and tumour necrosis factor-alpha by human monocuclear cells, Immunopharmacology, vol. 35, No. 1, pp. 47-51, Oct. 1996.
Martindale: The Extra Pharmacopoeia; 28th Ed. London; The Pharmaceutical Press; pp. 446-485; © 1982.
Martiney et al., Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent, Journal of Immunology, vol. 160, No. 11, pp. 5588-5595, Jun. 1, 1998.
McGuinness, P. H., et al., Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particulary interleukin 18) in chronic hepatitis C infection, Gut, vol. 46(2), pp. 260-269, Feb. 2000.
Miguel-Hidalgo, J.J.; The role of glial cells in drug abuse; Current Drug Abuse Reviews; vol. 2; No. 1; pp. 76-82; Jan. 2009.
Milligan et al.; Pathological and protective roles of glia in chronic pain; Nat Rev Neurosci.; vol. 10; No. 1; pp. 23-26; Jan. 2009.
Minnich et al.; Anti-cytokine and anti-inflammatory therapies for the treatment of severe sepsis: progress and pitfalls; Proceedings of the Nutrition Society; vol. 63(3); pp. 437-441; Aug. 2004.
Mishchenko, et al., “Coagulation of the blood and fibrinolysos in dogs during vagal stimulation,” Sechenov Physiological Journal of the USSR, vol. 61(1): pp. 101-107, 1975.
Mishchenko, “The role of specific adreno-and choline-receptors of the vascular wall in the regulation of blood coagulation in the stimulation of the vagus nerve,” Biull. Eskp. Biol. Med., vol. 78(8): pp. 19-22, 1974.
Molina et al., CNI-1493 attenuates hemodynamic and pro-inflammatory responses to LPS, Shock, vol. 10, No. 5, pp. 329-334, Nov. 1998.
Nadol et al., “Surgery of the Ear and Temporal Bone,” Lippinkott Williams & Wilkins, 2nd Ed., 2005, (Publication date: Sep. 21, 2004), p. 580.
Nagashima et al., Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life, J. Clin. Invest., 109, pp. 101-110, Jan. 2002.
Nathan, C. F., Secretory products of macrophages, J. Clin. Invest., vol. 79 (2), pp. 319-326, Feb. 1987.
Navalkar et al.; Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis; Journal of the American College of Cardiology; vol. 37; No. 2; pp. 440-444; Feb. 2001.
Neuhaus et al.; P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder; J. Affect. Disord.; 100(1-3); pp. 123-128; Jun. 2007.
Noguchi et al., Increases in Gastric acidity in response to electroacupuncture stimulation of hindlimb of anesthetized rats, Jpn. J. Physiol., 46(1), pp. 53-58, Feb. 1996.
Norton, Can ultrasound be used to stimulate nerve tissue, BioMedical Engineering OnLine, 2(1), pp. 6, Mar. 4, 2003.
Palmblad et al., Dynamics of early synovial cytokine expression in rodent collagen-induced arthritis: a thereapeutic study unding a macrophage-deactivation compound, American Journal of Pathology, vol. 158, No. 2, pp. 491-500, Feb. 2, 2001.
Pateyuk, et al.,“Treatment of Botkin's disease with heparin,” Klin. Med., vol. 51(3): pp. 113-117, Mar. 1973.
Pavlov et al; Controlling inflammation: the cholinergic anti-inflammatory pathway; Biochem. Soc. Trans.; 34(Pt 6); pp. 1037-1040; Dec. 2006.
Payne, J. B. et al., Nicotine effects on PGE2 and IL-1 beta release by LPS-treated human monocytes, J. Perio. Res., vol. 31, No. 2, pp. 99-104, Feb. 1996.
Peuker; The nerve supply of the human auricle; Clin. Anat.; 15(1); pp. 35-37; Jan. 2002.
Prystowsky, J. B. et at., Interleukin-1 mediates guinea pig gallbladder inflammation in vivo, J. Surg. Res., vol. 71, No. 2, pp. 123-126, Aug. 1997.
Pulkki, K. J., Cytokines and cardiomyocyte death, Ann. Med., vol. 29(4), pp. 339-343, Aug. 1997.
Pullan, R. D., et al., Transdermal nicotine for active ulceratiive colitis, N. Engl. J. Med., vol. 330, No. 12, pp. 811-815, Mar. 24, 1994.
Pulvirenti et al; Drug dependence as a disorder of neural plasticity:focus on dopamine and glutamate; Rev Neurosci.; vol. 12; No. 2; pp. 141-158; Apr./Jun. 2001.
Rayner, S. A. et al., Local bioactive tumour necrosis factor (TNF) in corneal allotransplantation, Clin. Exp. Immunol., vol. 122, pp. 109-116, Oct. 2000.
Reale et al.; Treatment with an acetylcholinesterase inhibitor in alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines; J. Neuroimmunology; 148(1-2); pp. 162-171; Mar. 2004.
Rinner et al.; Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation; J.Neuroimmunol.; 81(1-2); pp. 31-37; Jan. 1998.
Robinson et al.; Studies with the Electrocardiograph on the Action of the Vagus Nerve on the Human Heart; J Exp Med; 14(3):217-234; Sep. 1911.
Romanovsky, A. A., et al.,The vagus nerve in the thermoregulatory response to systemic inflammation, Am. J. Physiol., vol. 273, No. 1 (part 2), pp. R407-R413, Jul. 1, 1997.
Saghizadeh et al.; The expression of TNF? by human muscle; J. Clin. Invest.; vol. 97; No. 4; pp. 1111-1116; Feb. 15, 1996.
Saindon et al.; Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta; Auton.Neuroscience Basic and Clinical; 87; pp. 243-248; Mar. 23, 2001.
Saito, Involvement of muscarinic M1 receptor in the central pathway of the serotonin-induced bezold-jarisch reflex in rats, J. Autonomic Nervous System, vol. 49, pp. 61-68, Sep. 1994.
Sandborn, W. J., et al., Transdermal nicotine for mildly to moderately active ulcerative colitis, Ann. Intern. Med, vol. 126, No. 5, pp. 364-371, Mar. 1, 1997.
Sato, E., et al., Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity, Am. J. Physiol., vol. 274, pp. L970-L979, Jun. 1998.
Sato, K.Z., et al., Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukosytes and leukemic cell lines, Neuroscience Letters, vol. 266, pp. 17-20, Apr. 30, 1999.
Scheinman, R. I., et al., Role of transcriptional activation of I?B? in mediation of immunosuppression by glucocorticoids, Science, vol. 270, No. 5234, pp. 283-286, Oct. 13, 1995.
Schneider et al., High-affinity ssDNA inhibitors of the review transcriptase of type 1 human immunodeficiency virus, Biochemistry, 34(29), pp. 9599-9610, Jul. 1995.
Shafer, Genotypic testing for human immunodeficiency virus type 1 drug resistance, Clinical Microbiology Reviews, vol. 15, pp. 247-277, Apr. 2002.
Shapiro et al.; Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery; Thromb Haemost; vol. 80(5); pp. 773-778; Nov. 1998.
Sher, M. E., et al., The influence of cigarette smoking on cytokine levels in patients with inflammatory bowel disease, Inflamm. Bowel Dis., vol. 5, No. 2, pp. 73-78, May 1999.
Shi et al.; Effects of efferent vagus nerve excitation on inflammatory response in heart tissue in rats with endotoxemia; vol. 15, No. 1; pp. 26-28; Jan. 2003 (Eng. Abstract).
Snyder et al., Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors; Nature Medicine, 5(1), pp. 64-70, Jan. 1999.
Sokratov, et al. “The role of choline and adrenegic structures in regulation of renal excretion of hemocoagulating compounds into the urine,” Sechenov Physiological Journal of the USSR, vol. 63(12): pp. 1728-1732, 1977.
Stalcup et al., Endothelial cell functions in the hemodynamic responses to stress, Annals of the New York Academy of Sciences, vol. 401, pp. 117-131, Dec. 1982.
Steinlein, New functions for nicotine acetylcholine receptors?, Behavioural Brain Res., vol. 95(1), pp. 31-35, Sep. 1998.
Sternberg, E. M., Perspectives series: cytokines and the brain ‘neural-immune interactions in health and disease,’ J. Clin. Invest., vol. 100, No. 22, pp. 2641-2647, Dec. 1997.
Stevens et al.; The anti-inflammatory effect of some immunosuppressive agents; J. Path.; 97(2); pp. 367-373; Feb. 1969.
Strojnik et al.; Treatment of drop foot using and implantable peroneal underknee stimulator; Scand. J. Rehab. Med.; vol. 19(1); pp. 37R43; Dec. 1986.
Sugano et al., Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaβ activation, Biochemical and Biophysical Research Communications, vol. 252, No. 1, pp. 25-28, Nov. 9, 1998.
Suter et al.; Do glial cells control pain?; Neuron Glia Biol.; vol. 3; No. 3; pp. 255-268; Aug. 2007.
Swick et al.; Locus coeruleus neuronal activity in awake monkeys: relationship to auditory P300-like potentials and spontaneous EEG. Exp. Brain Res.; 101(1); pp. 86-92; Sep. 1994.
Sykes, et al., An investigation into the effect and mechanisms of action of nicotine in inflammatory bowel disease, Inflamm. Res., vol. 49, pp. 311-319, Jul. 2000.
Takeuchi et al., A comparision between chinese blended medicine “Shoseiryuto” tranilast and ketotifen on the anit-allergic action in the guinea pigs, Allergy, vol. 34, No. 6, pp. 387-393, Jun. 1985 (eng. abstract).
Tekdemir et al.; A clinico-anatomic study of the auricular branch of the vagus nerve and arnold's ear-cough reflex; Surg. Radiol. Anat.; 20(4); pp. 253-257; Mar. 1998.
Toyabe, et al., Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice, Immunology, vol. 92(2), pp. 201-205, Oct. 1997.
Tracey et al., Mind over immunity, Faseb Journal, vol. 15, No. 9, pp. 1575-1576, Jul. 2001.
Tracey, K. J. et al., Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia; Nature, 330: pp. 662-664, Dec. 23, 1987.
Tracey, K. J. et al., Physiology and immunology of the cholinergic antiinflammatory pathway; J Clin Invest.; vol. 117: No. 2; pp. 289-296; Feb. 2007.
Tracey, K. J.; Reflex control of immunity; Nat Rev Immunol; 9(6); pp. 418-428; Jun. 2009.
Tracey, K. J. et al., Shock and tissue injury induced by recombinant human cachectin, Science, vol. 234, pp. 470-474, Oct. 24, 1986.
Tracey, K.J., The inflammatory reflex, Nature, vol. 420, pp. 853-859, Dec. 19-26, 2002.
Tsutsui, H., et al., Pathophysiolocical roles of interleukin-18 in inflammatory liver diseases; Immunol. Rev., 174:192-209, Apr. 2000.
Tuerk et al., RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase; Proc. Natl. Acad. Sci. USA, 89, pp. 6988-6992, Aug. 1992.
Tuerk et al., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase; Science, 249(4968), pp. 505-510, Aug. 3, 1990.
Van Dijk, A. P., et al., Transdermal nictotine inhibits interleukin 2 synthesis by mononuclear cells derived from healthy volunteers, Eur. J. Clin. Invest, vol. 28, pp. 664-671, Aug. 1998.
Van Der Horst et al.; Stressing the role of FoxO proteins in lifespan and disease; Nat Rev Mol Cell Biol.; vol. 8; No. 6; pp. 440-450; Jun. 2007.
Vanhoutte, et al., Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall, Gen Pharmac., vol. 14(1), pp. 35-37, Jan. 1983.
vanWesterloo, et al., The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis, The Journal of Infectious Diseases, vol. 191, pp. 2138-2148, Jun. 15, 2005.
Ventureyra, Transcutaneous vagus nerve stimulation for partial onset seizure therapy, Child's Nerv Syst, vol. 16(2), pp. 101-102, Feb. 2000.
Vijayaraghavan, S.; Glial-neuronal interactions-implications for plasticity anddrug addictionl AAPS J.; vol. 11; No. 1; pp. 123-132; Mar. 2009.
Villa et al., Protection against lethal polymicrobial sepsis by CNI-1493, an inhibitor of pro-inflammatory cytokine synthesis, Journal of Endotoxin Research, vol. 4, No. 3, pp. 197-204, Jun. 1997.
Von Känel, et al., Effects of non-specific ?-adrenergic stimulation and blockade on blood coagulation in hypertension, J. Appl. Physiol., vol. 94, pp. 1455-1459, Apr. 2003.
Von Känel, et al., Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo, Eur. J. Haematol., vol. 65: pp. 357-369, Dec. 2000.
Walland et al., Compensation of muscarinic brochial effects of talsaclidine by concomitant sympathetic activation in guinea pigs; European Journal of Pharmacology, vol. 330(2-3), pp. 213-219, Jul. 9, 1997.
Wang et al; Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation; Nature; 421; 384-388; Jan. 23, 2003.
Wang, H., et al., HMG-1 as a late mediator of endotoxin lethality in mice, Science, vol. 285, pp. 248-251, Jul. 9, 1999.
Waserman, S. et al., TNF-? dysregulation in asthma: relationship to ongoing corticosteroid therapy, Can. Respir. J., vol. 7, No. 3, pp. 229-237, May-Jun. 2000.
Watanabe, H. et al., The significance of tumor necrosis factor (TNF) levels for rejection of joint allograft, J. Reconstr. Microsurg., vol. 13, No. 3, pp. 193-197, Apr. 1997.
Wathey, J.C. et al., Numerical reconstruction of the quantal event at nicotinic synapses; Biophys. J., vol. 27: pp. 145-164, Jul. 1979.
Watkins, L.R. et al., Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication, Neurosci. Lett., vol. 183(1-2), pp. 27-31, Jan. 1995.
Watkins, L.R. et al., Implications of immune-to-brain communication for sickness and pain, Proc. Natl. Acad. Sci. U.S.A., vol. 96(14), pp. 7710-7713, Jul. 6, 1999.
Webster's Dictionary, definition of “intrathecal”, online version accessed Apr. 21, 2009.
Weiner, et al., “Inflammation and therapeutic vaccination in CNS diseases,” Nature., vol. 420(6917): pp. 879-884, Dec. 19-26, 2002.
Westerheide et al.; Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1.; Science; Vo. 323; No. 5717; pp. 1063-1066; Feb. 2009.
Whaley, K. et al., C2 synthesis by human monocytes is modulated by a nicotinic cholinergic receptor, Nature, vol. 293, pp. 580-582, Oct. 15, 1981.
Woiciechowsky, C. et al., Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury, Nature Med., vol. 4, No. 7, pp. 808-813, Jul. 1998.
Yeh, S.S. et al., Geriatric cachexia: the role of cytokines, Am. J. Clin. Nutr., vol. 70(2), pp. 183-197, Aug. 1999.
Zamotrinsky et al.; Vagal neurostimulation in patients with coronary artery disease; Auton. Neurosci.; 88(1-2); pp. 109-116; Apr. 2001.
Zhang et al., Tumor necrosis factor, The Cytokine Handbook, 3rd ed., Ed. Thompson, Academic Press, pp. 517-548, Jul. 1, 1998.
Zhang et al.; Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model; Circulation Heart Fail.; 2; pp. 692-699; Nov. 2009.
Faltys et al.; U.S. Appl. No. 15/543,391 entitled “Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator,” filed Jul. 13, 2017.
Manta et al.; Optimization of vagus nerve stimulation parameters using the firing activity of serotonin neurons in the rat dorsal raphe; European Neuropsychopharmacology; vol. 19; pp. 250-255; Jan. 2009 (doi: 10.1016/j.euroneuro.2008.12.001).
Pongratz et al.; The sympathetic nervous response in inflammation; Arthritis Research and Therapy; 16(504); 12 pages; retrieved from the internet (http://arthritis-research.com/content/16/6/504) ; Jan. 2014.
Related Publications (1)
Number Date Country
20170304613 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
61185494 Jun 2009 US
Divisions (1)
Number Date Country
Parent 12797452 Jun 2010 US
Child 14536461 US
Continuations (2)
Number Date Country
Parent 14931711 Nov 2015 US
Child 15645996 US
Parent 14536461 Nov 2014 US
Child 14931711 US