Nested boustrophedonic patterns for rasterization

Information

  • Patent Grant
  • 8698811
  • Patent Number
    8,698,811
  • Date Filed
    Thursday, December 15, 2005
    18 years ago
  • Date Issued
    Tuesday, April 15, 2014
    10 years ago
Abstract
A method for traversing pixels of an area is described. The method includes the steps of traversing a plurality of pixels of an image using a first boustrophedonic pattern along a predominant axis, and, during the traversal using the first boustrophedonic pattern, traversing a plurality of pixels of the image using a second boustrophedonic pattern. The second boustrophedonic pattern is nested within the first boustrophedonic pattern.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to, and incorporates by reference, the following commonly assigned U.S. Patent Application, A GPU HAVING RASTER COMPONENTS CONFIGURED FOR USING NESTED BOUSTROPHEDONIC PATTERNS TO TRAVERSE SCREEN AREAS, by Crow, et al., filed on Dec. 15, 2005, Ser. No. 11/304,904.


FIELD OF THE INVENTION

The present invention is generally related to hardware accelerated graphics computer systems.


BACKGROUND OF THE INVENTION

Recent advances in computer performance have enabled graphic systems to provide more realistic graphical images using personal computers, home video game computers, handheld devices, and the like. In such graphic systems, a number of procedures are executed to “render” or draw graphic primitives to the screen of the system. A “graphic primitive” is a basic component of a graphic picture, such as a vertex, polygon, or the like. Rendered images are formed with combinations of these graphic primitives. Many procedures may be utilized to perform 3-D graphics rendering.


Specialized graphics processing units (e.g., GPUs, etc.) have been developed to optimize the computations required in executing the graphics rendering procedures. The GPUs are configured for high-speed operation and typically incorporate one or more rendering pipelines. Each pipeline includes a number of hardware-based functional units that are optimized for high-speed execution of graphics instructions/data, where the instructions/data are fed into the front end of the pipeline and the computed results emerge at the back end of the pipeline. The hardware-based functional units, cache memories, firmware, and the like, of the GPU are optimized to operate on the low-level graphics primitives (e.g., comprising “points”, “lines”, “triangles”, etc.) and produce real-time rendered 3-D images.


The real-time rendered 3-D images are generated using raster display technology. Raster display technology is widely used in computer graphics systems, and generally refers to the mechanism by which the grid of multiple pixels comprising an image are influenced by the graphics primitives. For each primitive, a typical rasterization system generally steps from pixel to pixel and determines whether or not to “render,” or write a given pixel into a frame buffer or pixel map, as per the contribution of the primitive. This, in turn, determines how to write the data to the display buffer representing each pixel.


Various traversal algorithms have been developed for moving from pixel to pixel in a way such that all pixels within the primitive are covered. For example, some solutions involve generating the pixels in a unidirectional manner. Such traditional unidirectional solutions involve generating the pixels row-by-row in a constant direction. This requires that the sequence shift across the primitive to a starting location on a first side of the primitive upon finishing at a location on an opposite side of the primitive. Each time this shift is executed, pixels or texture values are stored which were not positioned adjacent to pixels or texture values processed immediately beforehand. Therefore, such distant pixels or texture values have a greater chance of belonging to different memory access blocks, making such access inefficient.


Thus, a need exists for a rasterization process that can ensure needed graphics rendering data (e.g., texture values, normal maps, etc.) can be maintained in memory for an efficient access by the GPU.


SUMMARY OF THE INVENTION

Embodiments of the present invention provide a method and system for ensuring needed graphics rendering data (e.g., texture values, normal maps, etc.) can be maintained in low latency memory for an efficient access by the GPU. Embodiments of the present invention provide fast and efficient real-time 3-D graphics rendering by increasing the efficiency of cache memory access and by limiting the performance penalties resulting from accessing higher latency memory.


In one embodiment, the present invention is implemented as a method for traversing pixels of an area, including the steps of traversing a plurality of pixels of an image using a first boustrophedonic pattern along a predominant axis, and, during the traversal using the first boustrophedonic pattern, traversing a plurality of pixels of the image using a second boustrophedonic pattern. The second boustrophedonic pattern is nested within the first boustrophedonic pattern. The predominant axis of the first boustrophedonic pattern can be a horizontal axis, the second boustrophedonic pattern can be along a vertical axis. Similarly, the predominant axis of the first boustrophedonic pattern can be a vertical axis, the second boustrophedonic pattern can be along a horizontal axis.


In one embodiment, the plurality of pixels of the image are grouped as tiles and the tiles are traversed using the first boustrophedonic pattern and the second boustrophedonic pattern (e.g., nested within the first pattern). Additionally, in one embodiment, the first boustrophedonic pattern and the second boustrophedonic pattern are configured to maintain locality with respect to cache memory accesses.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements.



FIG. 1 shows a computer system in accordance with one embodiment of the present invention.



FIG. 2 shows a diagram depicting a grid of pixels being rasterized in a boustrophedonic pattern in accordance with one embodiment of the present invention.



FIG. 3 shows a diagram depicting a first boustrophedonic pattern and a second boustrophedonic pattern nested inside the first boustrophedonic pattern over a grid of tiles in accordance with one embodiment of the present invention.



FIG. 4 shows a more complex, multiple nested boustrophedonic pattern traversal process in accordance with one embodiment of the present invention.



FIG. 5 shows a diagram of internal components of a GPU in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the embodiments of the present invention.


Notation and Nomenclature:


Some portions of the detailed descriptions, which follow, are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “processing” or “accessing” or “executing” or “storing” or “rendering” or the like, refer to the action and processes of a computer system (e.g., computer system 100 of FIG. 1), or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


Computer System Platform:



FIG. 1 shows a computer system 100 in accordance with one embodiment of the present invention. Computer system 100 depicts the components of a basic computer system in accordance with embodiments of the present invention providing the execution platform for certain hardware-based and software-based functionality. In general, computer system 100 comprises at least one CPU 101, a system memory 115, and at least one graphics processor unit (GPU) 110. The CPU 101 can be coupled to the system memory 115 via a bridge component/memory controller (not shown) or can be directly coupled to the system memory 115 via a memory controller (not shown) internal to the CPU 101. The GPU 110 is coupled to a display 113. One or more additional GPUs can optionally be coupled to system 100 to further increase its computational power. The GPU(s) 110 is coupled to the CPU 101 and the system memory 115. System 100 can be implemented as, for example, a desktop computer system or server computer system, having a powerful general-purpose CPU 101 coupled to a dedicated graphics rendering GPU 110. In such an embodiment, components can be included that add peripheral buses, specialized graphics memory, IO devices, and the like. Similarly, system 100 can be implemented as a handheld device (e.g., cellphone, etc.) or a set-top video game console device such as, for example, the Xbox®, available from Microsoft Corporation of Redmond, Wash., or the PlayStation3®, available from Sony Computer Entertainment Corporation of Tokyo, Japan.


It should be appreciated that the GPU 110 can be implemented as a discrete component, a discrete graphics card designed to couple to the computer system 100 via a connector (e.g., AGP slot, PCI-Express slot, etc.), a discrete integrated circuit die (e.g., mounted directly on a motherboard), or as an integrated GPU included within the integrated circuit die of a computer system chipset component (not shown). Additionally, a local graphics memory 112 can be included for the GPU 110 for high bandwidth graphics data storage.


EMBODIMENTS OF THE INVENTION


FIG. 2 shows a diagram 200 depicting a grid of pixels being rasterized in a boustrophedonic pattern in accordance with one embodiment of the present invention. As depicted in FIG. 2, the boustrophedonic pattern is indicated by the dotted line 221.


In one embodiment, as depicted in diagram 200 of FIG. 2, each pixel of the grid of pixels is traversed in the order indicated by the line 221. The line 221 shows a boustrophedonic pattern of traversal, where the term “boustrophedonic” refers to a traversal pattern which visits all pixels on a 2D area by scanning back and forth along one axis as each pass moves farther along on the orthogonal axis, much as a farmer would plow or mow a field. The term Boustrophedonic generally means “as the oxen plows” as in, for example, a field.


Thus, as depicted in FIG. 2, this boustrophedonic rasterization refers to a serpentine pattern that folds back and forth along a predominant axis. In the FIG. 2 example, the predominant axis is horizontal. A horizontal boustrophedonic sequence, for example, may generate all the pixels within a primitive triangle that are on one row from left to right, and then generate the next row right to left, and so on. Such a folded path ensures that an average distance from a generated pixel to recently previously generated pixels is relatively small.


Referring still to FIG. 2, a boustrophedonic pattern for visiting the areas of the screen covered when rasterizing a large primitive (e.g., triangles, etc.) has advantages for maintaining a cache of relevant data and reducing the memory requests required for frame buffer and texture access. For example, generating pixels that are near recently generated pixels is important when recent groups of pixels and/or their corresponding texture values are kept in memories of a limited size.


One such memory is cache memory. Cache memory is optimized for high speed, low latency access. However the amount of cache memory available to the GPU is typically much less than the total frame buffer memory needed. Thus, the boustrophedonic sequence more often finds the pixels or texture values already loaded into cache memory, and therefore avoiding costly high latency accesses to slower frame buffer memory (e.g., local graphics memory 112) or even the much lower system memory (e.g., memory 115).


It should be noted that in one embodiment, instead of implementing a boustrophedonic pattern traversal of a grid of pixels, the boustrophedonic pattern traversal can be implemented on a grid of tiles. In such an embodiment, each tile comprises a block of pixels. The size of the tile (e.g., number of pixels per tile) is generally tailored in accordance with the rendering power of the GPU and/or the size of the cache memory or frame buffer memory. In one embodiment, the size of the tile is programmable and can be dynamically selected to be, for example, 4×4, 8×8, 16×16, 32×32, 64×64, 128×128, or the like, including any rectangular (as well as square) array of pixels or subpixels per tile).



FIG. 3 shows a diagram 300 depicting a first boustrophedonic pattern and a second boustrophedonic pattern nested inside the first boustrophedonic pattern over a grid of tiles in accordance with one embodiment of the present invention.


As described above, a horizontal boustrophedonic pattern (e.g., a horizontal predominant axis), refers to a serpentine pattern that folds back and forth along the horizontal axis. In the present embodiment, a second boustrophedonic pattern is embedded within this first horizontal boustrophedonic pattern. As depicted in FIG. 3, the second boustrophedonic pattern is a vertical boustrophedonic pattern. This is indicated by line 321 which folds back and forth along the vertical axis. The vertical boustrophedonic pattern folds back and forth along the vertical axis as it progresses along the horizontal axis of the overarching horizontal boustrophedonic pattern. Once the vertical boustrophedonic pattern has progressed to the right hand side of the upper row of tiles (e.g., where the row is 8 tiles high), it folds back across itself horizontally, and progresses back towards the left hand side of the lower row of tiles. As it progresses from the right hand side to the left-hand side of the lower row of tiles, the vertical boustrophedonic pattern can be seen folding up and down, all the way along the lower row.


In this manner, embodiments of the present invention can embed a second vertical boustrophedonic pattern into a first horizontal boustrophedonic pattern. The embedding of the second boustrophedonic pattern into the first boustrophedonic pattern serves to further localize data accesses and limit cache misses. For example, the multiple embedded boustrophedonic patterns can be configured to align closely with the size and configuration of the cache memory of the GPU (e.g., cache line sizes, etc.). This feature helps to maintain locality with respect to cache memory accesses. The multiple embedded boustrophedonic patterns can also be configured to maintain locality with respect to memory bank accesses of the frame buffer memory 112, where multiple DRAM banks (not shown) comprise the frame buffer memory 112. Furthermore, the multiple boustrophedonic patterns can be configured to align with a prefetching process for accessing memory, where the prefetching process relies upon a predictable memory access pattern so that it can look ahead to fetch data from memory into the GPU's cache.



FIG. 4 shows a more complex, multiple nested boustrophedonic pattern traversal process in accordance with one embodiment of the present invention. As depicted in FIG. 4, a sub-tile 411 and a sub-tile 412 are shown. The sub-tiles 411-412 are sub-tiles of a larger tile, such as, for example, title 350 shown in FIG. 3. Line 451 shows the manner in which a third horizontal boustrophedonic pattern and a fourth vertical boustrophedonic pattern can be further nested inside the first horizontal boustrophedonic pattern and second vertical boustrophedonic pattern described in FIG. 3 above, with respect to the horizontal axis 421 and the vertical axis 422. In this manner, embodiments of the present invention can embed a plurality of boustrophedonic patterns into the first boustrophedonic pattern, which serves to localize data accesses and limit cache misses to a much finer degree.


It should be noted that, as described above, embodiments of the present invention can operate on individual pixels, or even arrays of samples within pixels, in addition to tiles of pixels, and the size of the tiles can be customized in accordance with the needs of a particular application (e.g., programmable by a graphics driver, etc.). Additionally, it should be noted that the configuration of the boustrophedonic patterns can be customized in accordance with the needs of a particular application (e.g., programmable by a graphics driver, etc.). For example, the first and second boustrophedonic patterns can be vertical and horizontal, horizontal and vertical, or the like.



FIG. 5 shows a diagram 500 of internal components of the GPU 110 in accordance with one embodiment of the present invention. As shown in FIG. 5, the GPU 110 includes a setup engine 501 and a rasterizer unit 502. In the present embodiment, the functionality of the present invention is implemented within the hardware and software of the rasterizer unit 502. Generally, the rasterizer unit 502 functions by converting descriptions based on vertices, received from the setup engine 501, to descriptions based on edge descriptions. The rasterizer unit 502 subsequently converts these edge descriptions into filled areas comprising actual pixel descriptions (e.g., pixel areas, pixel sub-samples, etc.). The pixel descriptions are subsequently passed along to other units within the GPU 110 for further processing and rendering.


In one embodiment, the rasterizer unit 502 includes a fine raster component 503 and a coarse raster component 504. The coarse raster component 504 implements the tile based boustrophedonic pattern rasterizing as described above, as it rapidly searches a grid of tiles to identify tiles of interest (e.g., tiles that are covered by a primitive). Once the tiles of interest are identified, the fine raster component 503 individually identifies the pixels that are covered by the primitive. Hence, in such an embodiment, the coarse raster component 504 rapidly searches a grid of pixels by using tiles, and the fine raster component 503 uses the information generated by the coarse raster component 504 and implements fine granularity rasterization by individually identifying pixels covered by the primitive. In both cases, both the coarse raster component 504 and the fine raster component 503 can utilize one or more boustrophedonic patterns (e.g., nested or non-nested) during their rasterization.


Referring still to FIG. 5, the GPU 110 further includes a cache memory 521 that functions by implementing high-speed low latency storage for the most frequently used graphics rendering data. Such data typically comprises texture information, vertex information, colors, and the like. The cache memory 521 is shown coupled to the local graphics memory 112. The cache memory 521 utilizes one or more cache maintenance mechanisms to maintain coherency with the local graphics memory 112. The arrow 540 shows the communications pathway between the GPU 110 and the system memory (e.g., memory 115 shown in FIG. 1). Communication with system memory 115 is typically much slower than even communication with the local graphics memory 112. Accordingly, the memory access localization attributes of embodiments of the present invention greatly reduced the penalties incurred by accessing the local graphics memory 112 and the system memory 115 by minimizing the number of cache misses that occur.


In one embodiment, the present invention is implemented as a GPU having a raster unit configured to implement boustrophedonic pattern rasterization, whereby a number of performance attributes of the boustrophedonic pattern rasterization process are programmable. In such an embodiment, for example, the number of pixels per tile is programmable in accordance with a size of a cache memory of the GPU. Similarly, the configuration of the first boustrophedonic pattern, the second boustrophedonic pattern, and the like, are programmable (e.g., the predominant axis, tile size, initiating order, finishing order, and the like).


The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims
  • 1. A method for traversing pixels of an area, comprising: traversing a plurality of pixels of an image using a first boustrophedonic pattern along a predominant axis by using a processor of a computer system; andduring the traversal using the first boustrophedonic pattern, traversing a plurality of pixels of the image using a second boustrophedonic pattern using the processor, wherein the second boustrophedonic pattern is nested within the first boustrophedonic pattern, and wherein the second boustrophedonic pattern is traversed in a pattern orthogonal to the predominant axis of the first boustrophedonic pattern.
  • 2. The method of claim 1, wherein the plurality of pixels of the image are grouped as tiles and the tiles are traversed using the first boustrophedonic pattern and the second boustrophedonic pattern.
  • 3. The method of claim 1, wherein the predominant axis of the first boustrophedonic pattern is a horizontal axis, and wherein the second boustrophedonic pattern is along a vertical axis.
  • 4. The method of claim 1, wherein the predominant axis of the first boustrophedonic pattern is a vertical axis, and wherein the second boustrophedonic pattern is along a horizontal axis.
  • 5. The method of claim 1, wherein the first boustrophedonic pattern and the second boustrophedonic pattern are configured to maintain locality with respect to cache memory accesses.
  • 6. The method of claim 1, wherein the first boustrophedonic pattern and the second boustrophedonic pattern are configured to align with a prefetching process for accessing memory.
  • 7. The method of claim 1, wherein the first boustrophedonic pattern and the second boustrophedonic pattern are configured to maintain locality with respect to memory bank accesses of a frame buffer memory.
  • 8. The method of claim 1, wherein a plurality of boustrophedonic patterns are nested within the first boustrophedonic pattern.
  • 9. A non-transitory computer readable media having computer readable code which when accessed by a processor of a computer system, causes the computer system to implement a method for traversing pixels of an area, the method comprising: traversing a plurality of pixels of an image using a first boustrophedonic pattern along a predominant axis; andduring the traversal using the first boustrophedonic pattern, traversing a plurality of pixels of the image using a second boustrophedonic pattern, wherein the second boustrophedonic pattern is nested within the first boustrophedonic pattern, and wherein the second boustrophedonic pattern is traversed in a pattern orthogonal to the predominant axis of the first boustrophedonic pattern.
  • 10. The non-transitory computer readable media of claim 9, wherein the plurality of pixels of the image are grouped as tiles and the tiles are traversed using the first boustrophedonic pattern and the second boustrophedonic pattern.
  • 11. The non-transitory computer readable media of claim 9, wherein the predominant axis of the first boustrophedonic pattern is a horizontal axis, and wherein the second boustrophedonic pattern is along a vertical axis.
  • 12. The non-transitory computer readable media of claim 9, wherein the predominant axis of the first boustrophedonic pattern is a vertical axis, and wherein the second boustrophedonic pattern is along a horizontal axis.
  • 13. The non-transitory computer readable media of claim 9, wherein the first boustrophedonic pattern and the second boustrophedonic pattern are configured to maintain locality with respect to cache memory accesses.
  • 14. The non-transitory computer readable media of claim 9, Wherein the first boustrophedonic pattern and the second boustrophedonic pattern are configured to align with a prefetching process for accessing memory.
  • 15. The non-transitory computer readable media of claim 9, wherein the first boustrophedonic pattern and the second boustrophedonic pattern are configured to maintain locality with respect to memory bank accesses of a frame buffer memory.
  • 16. The non-transitory computer readable media of claim 9, wherein a plurality of boustrophedonic patterns are nested within the first boustrophedonic pattern.
  • 17. A computer system, comprising: a system memory;a central processor unit coupled to the system memory;a graphics processor unit communicatively coupled to the central processor unit, the graphics processor unit, when executing computer readable code, implements a method comprising; traversing a plurality of pixels of an image using a first boustrophedonic pattern along a predominant axis; andduring the traversal using the first boustrophedonic pattern, traversing a plurality of pixels of the image using a second boustrophedonic pattern, wherein the second boustrophedonic pattern is nested within the first boustrophedonic pattern, and wherein the second boustrophedonic pattern is traversed in a pattern orthogonal to the predominant axis of the first boustrophedonic pattern.
  • 18. The computer system of claim 17, wherein the plurality of pixels of the image are grouped as tiles and the tiles are traversed using the first boustrophedonic pattern and the second boustrophedonic pattern.
  • 19. The computer system of claim 17, wherein a plurality of boustrophedonic patterns are nested within the first boustrophedonic pattern.
  • 20. The computer system of claim 17, wherein the first boustrophedonic pattern and the second boustrophedonic pattern are configured to maintain locality with respect to cache memory accesses.
US Referenced Citations (151)
Number Name Date Kind
4208810 Rohner et al. Jun 1980 A
4918626 Watkins et al. Apr 1990 A
5081594 Horsley Jan 1992 A
5287438 Kelleher Feb 1994 A
5313287 Barton May 1994 A
5432898 Curb et al. Jul 1995 A
5446836 Lentz et al. Aug 1995 A
5452104 Lee Sep 1995 A
5452412 Johnson, Jr. et al. Sep 1995 A
5483258 Cornett et al. Jan 1996 A
5543935 Harrington Aug 1996 A
5570463 Dao Oct 1996 A
5594854 Baldwin et al. Jan 1997 A
5623692 Priem et al. Apr 1997 A
5633297 Valko et al. May 1997 A
5664162 Dye Sep 1997 A
5815162 Levine Sep 1998 A
5854631 Akeley et al. Dec 1998 A
5854637 Sturges Dec 1998 A
5872902 Kuchkuda et al. Feb 1999 A
5977987 Duluk, Jr. Nov 1999 A
6028608 Jenkins Feb 2000 A
6034699 Wong et al. Mar 2000 A
6072500 Foran et al. Jun 2000 A
6104407 Aleksic et al. Aug 2000 A
6104417 Nielsen et al. Aug 2000 A
6115049 Winner et al. Sep 2000 A
6118394 Onaya Sep 2000 A
6128000 Jouppi et al. Oct 2000 A
6137918 Harrington et al. Oct 2000 A
6160557 Narayanaswami Dec 2000 A
6160559 Omtzigt Dec 2000 A
6188394 Morein et al. Feb 2001 B1
6201545 Wong et al. Mar 2001 B1
6204859 Jouppi et al. Mar 2001 B1
6219070 Baker et al. Apr 2001 B1
6249853 Porterfield Jun 2001 B1
6259460 Gossett et al. Jul 2001 B1
6323874 Gossett Nov 2001 B1
6359623 Larson Mar 2002 B1
6362819 Dalal et al. Mar 2002 B1
6366289 Johns Apr 2002 B1
6429877 Stroyan Aug 2002 B1
6437780 Baltaretu et al. Aug 2002 B1
6452595 Montrym et al. Sep 2002 B1
6469707 Voorhies Oct 2002 B1
6480205 Greene et al. Nov 2002 B1
6501564 Schramm et al. Dec 2002 B1
6504542 Voorhies et al. Jan 2003 B1
6522329 Ihara et al. Feb 2003 B1
6525737 Duluk, Jr. et al. Feb 2003 B1
6529207 Landau et al. Mar 2003 B1
6606093 Gossett et al. Aug 2003 B1
6611272 Hussain et al. Aug 2003 B1
6614444 Duluk, Jr. et al. Sep 2003 B1
6614448 Garlick et al. Sep 2003 B1
6624823 Deering Sep 2003 B2
6633197 Sutardja Oct 2003 B1
6633297 McCormack et al. Oct 2003 B2
6646639 Greene et al. Nov 2003 B1
6671000 Cloutier Dec 2003 B1
6693637 Koneru et al. Feb 2004 B2
6693639 Duluk, Jr. et al. Feb 2004 B2
6697063 Zhu Feb 2004 B1
6717576 Duluk, Jr. et al. Apr 2004 B1
6717578 Deering Apr 2004 B1
6734861 Van Dyke et al. May 2004 B1
6741247 Fenney May 2004 B1
6747057 Ruzafa et al. Jun 2004 B2
6765575 Voorhies et al. Jul 2004 B1
6778177 Furtner Aug 2004 B1
6788301 Thrasher Sep 2004 B2
6798410 Redshaw et al. Sep 2004 B1
6803916 Ramani et al. Oct 2004 B2
6819332 Baldwin Nov 2004 B2
6833835 van Vugt Dec 2004 B1
6906716 Moreton et al. Jun 2005 B2
6938176 Alben et al. Aug 2005 B1
6940514 Wasserman et al. Sep 2005 B1
6947057 Nelson et al. Sep 2005 B2
6956579 Diard et al. Oct 2005 B1
6961057 Van Dyke et al. Nov 2005 B1
6978317 Anantha et al. Dec 2005 B2
7002591 Leather et al. Feb 2006 B1
7009607 Lindholm et al. Mar 2006 B2
7009615 Kilgard et al. Mar 2006 B1
7061495 Leather Jun 2006 B1
7064771 Jouppi et al. Jun 2006 B1
7075542 Leather Jul 2006 B1
7081902 Crow et al. Jul 2006 B1
7119809 McCabe Oct 2006 B1
7126600 Fowler et al. Oct 2006 B1
7154066 Talwar et al. Dec 2006 B2
7158148 Toji et al. Jan 2007 B2
7170515 Zhu Jan 2007 B1
7184040 Tzvetkov Feb 2007 B1
7224364 Yue et al. May 2007 B1
7307628 Goodman et al. Dec 2007 B1
7307638 Leather et al. Dec 2007 B2
7382368 Molnar et al. Jun 2008 B1
7453466 Hux et al. Nov 2008 B2
7483029 Crow et al. Jan 2009 B2
7548996 Baker et al. Jun 2009 B2
7551174 Iourcha et al. Jun 2009 B2
7633506 Leather et al. Dec 2009 B1
7634637 Lindholm et al. Dec 2009 B1
7791617 Crow et al. Sep 2010 B2
7965902 Zelinka et al. Jun 2011 B1
8063903 Vignon et al. Nov 2011 B2
20010005209 Lindholm et al. Jun 2001 A1
20020050979 Oberoi et al. May 2002 A1
20020097241 McCormack et al. Jul 2002 A1
20020130863 Baldwin Sep 2002 A1
20020140655 Liang et al. Oct 2002 A1
20020158885 Brokenshire et al. Oct 2002 A1
20020196251 Duluk, Jr. et al. Dec 2002 A1
20030058244 Ramani et al. Mar 2003 A1
20030067468 Duluk, Jr. et al. Apr 2003 A1
20030076325 Thrasher Apr 2003 A1
20030122815 Deering Jul 2003 A1
20030163589 Bunce et al. Aug 2003 A1
20030194116 Wong et al. Oct 2003 A1
20030201994 Taylor et al. Oct 2003 A1
20040046764 Lefebvre et al. Mar 2004 A1
20040085313 Moreton et al. May 2004 A1
20040130552 Duluk, Jr. et al. Jul 2004 A1
20040183801 Deering Sep 2004 A1
20040196285 Rice et al. Oct 2004 A1
20040207642 Crisu et al. Oct 2004 A1
20040246251 Fenney et al. Dec 2004 A1
20050030314 Dawson Feb 2005 A1
20050041037 Dawson Feb 2005 A1
20050066148 Luick Mar 2005 A1
20050122338 Hong et al. Jun 2005 A1
20050134588 Aila et al. Jun 2005 A1
20050134603 Iourcha et al. Jun 2005 A1
20050179698 Vijayakumar et al. Aug 2005 A1
20050259100 Teruyama Nov 2005 A1
20060044317 Bourd et al. Mar 2006 A1
20060170690 Leather Aug 2006 A1
20060203005 Hunter Sep 2006 A1
20060245001 Lee et al. Nov 2006 A1
20060267981 Naoi Nov 2006 A1
20070139440 Crow et al. Jun 2007 A1
20070268298 Alben et al. Nov 2007 A1
20070273689 Tsao Nov 2007 A1
20070296725 Steiner et al. Dec 2007 A1
20080024497 Crow et al. Jan 2008 A1
20080024522 Crow et al. Jan 2008 A1
20080100618 Woo et al. May 2008 A1
20080273218 Kitora et al. Nov 2008 A1
Foreign Referenced Citations (6)
Number Date Country
101093578 Dec 2007 CN
06180758 Jun 1994 JP
10134198 May 1998 JP
11195132 Jul 1999 JP
2005182547 Jul 2005 JP
0013145 Mar 2000 WO
Non-Patent Literature Citations (10)
Entry
A VLSI architecture for updating raster-scan displays Satish Gupta, Robert F. Sproull, Ivan E. Sutherland Aug. 1981 ACM SIGGRAPH Computer Graphics, Proceedings of the 8th annual conference on Computer graphics and interactive techniques SIGGRAPH '81, vol. 15 Issue 3 Publisher: ACM Press.
A parallel algorithm for polygon rasterization Juan Pineda Jun. 1988 ACM.
A hardware assisted design rule check architecture Larry Seiler Jan. 1982 Proceedings of the 19th conference on design automation DAC '82 Publisher: IEEE Press.
Non-Final OA Dated Nov. 27, 2007; U.S. Appl. No. 11/304,904.
Non-Final OA Dated May 1, 2007; U.S. Appl. No. 11/304,904.
Crow; “The Use of Grayscale for Improves Raster Display of Vectors and Characters;” University of Texas, Austin, Texas; Work supported by the National Science Foundation unser Grants MCS 76-83889; pp. 1-5: ACM Press.
Boyer, et al.; “Discrete Analysis for Antialiased Lines;” Eurographics 2000; 3 Pages.
Blythe, OpenGL Section 3.4.1, “Basic Line Segment Rasterization”, Mar. 29, 1997, pp. 1-3.
Foley, J. “Computer Graphics: Principles and Practice”, 1987, Addison-Wesley Publishing, 2nd Edition, p. 545-546.
Fuchs; “Fast Spheres Shadow, Textures, Transparencies, and Image Enhancements in Pixel-Planes”; ACM; 1985; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514.