This disclosure relates to packaging. More specifically, this disclosure relates to nested insulated packaging.
Packaging perishable items, pharmaceuticals, and other temperature sensitive items poses a challenge to suppliers and consumers alike. For example, suppliers are faced with the challenge of shipping perishable items, pharmaceuticals, and other temperature sensitive items economically while minimizing spoilage, browning, bruising, over-ripening, and other forms of transit breakage. Similar challenges exist for individual consumers shipping perishable items, pharmaceuticals, and other temperature sensitive items.
Disclosed is a nested insulated packaging assembly comprising: an outer box including an outer top side wall, an outer bottom side wall, and a plurality of outer lateral side walls; an inner box received in the outer box, the inner box including an inner top side wall, an inner bottom side wall, and a plurality of inner lateral side walls; a first thermal liner contacting a one of the outer lateral side walls of the outer box and a one of the inner lateral side walls of the inner box; and a second thermal liner contacting a second of the outer lateral side walls of the outer box and a second of the inner lateral side walls of the inner box.
Also disclosed a method of assembling a nested insulated packaging comprising: positioning a first thermal liner in an outer box, the outer box including an outer top side wall, an outer bottom side wall, and a plurality of outer lateral side walls, the first thermal liner contacting a one of the outer lateral side walls of the outer box; positioning a second thermal liner in the outer box, the second thermal liner contacting a second of the outer lateral side walls of the outer box; positioning an inner box in the outer box, the inner box including an inner top side wall, an inner bottom side wall, and at least one inner lateral side wall, the first thermal liner contacting a one of the inner lateral side walls of the inner box and the second thermal liner contacting a second of the inner lateral side walls of the inner box.
Various implementations described in the present disclosure may include additional systems, methods, features, and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.
Disclosed is nested insulated packaging and associated methods, systems, devices, and various apparatus. The nested insulated packaging includes an outer box, an inner box, and a thermal liner. It would be understood by one of skill in the art that the disclosed nested insulated packaging is described in but a few exemplary embodiments among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom. Directional references such as “up,” “down,” “top,” “left,” “right,” “front,” “back,” and “corners,” among others are intended to refer to the orientation as shown and described in the figure (or figures) to which the components and directions are referencing.
One embodiment of nested insulated packaging assembly 100 is disclosed and described in
The outer box 102 includes a top end 112, a bottom end 114, a front lateral side wall 116, a back lateral side wall 118, a left lateral side wall 120, and a right lateral side wall 122. The front lateral side wall 116 includes an inner surface (not shown) and an outer surface 126. The back lateral side wall 118 includes an inner surface 128 and an outer surface (not shown). The left lateral side wall 120 defines an inner surface (not shown) and an outer surface 130. The right lateral side wall 122 defines an inner surface 132 and an outer surface (not shown). The inner surfaces of the lateral side walls 116,118,120,122 define an outer storage cavity 134. The lateral side walls 116,118,120,122 define a top opening 124 at the top end 112 of the outer box 102. A distance from the top end 112 to the bottom end 114 defines an outer box height.
As shown in
In various embodiments, the outer box 102 also includes bottom flaps at each lateral side wall 116,118,120,122 at the bottom end 114. In various embodiments, any of the flaps on the outer box 102 may be integral with the outer box 102 or connected to the outer box 102. In various embodiments, any of the flaps on the outer box 102 may include connecting mechanisms such as slats, snaps, adhesive, hooks and loops, and any other connecting mechanisms for selectively holding the flaps in place when the top opening 124 is closed. In addition, the number of side walls outer box 102 should not be considered limiting on the current disclosure. In various embodiments, the outer box 102 includes the top side wall, the bottom side wall, and at least one lateral side wall. For example, in various embodiments, the outer box 102 may be a cylindrically shaped box with a plurality of side walls curved into a cylindrical shape, where each side wall is a portion of the curved cylindrical perimeter of the box, such as where each side wall is a quarter portion of the perimeter, a half portion of the perimeter, or a third portion of the perimeter, or where one side wall is a third portion of the perimeter and one side wall is a two-thirds portion of the perimeter.
The nested insulated packaging assembly 100 also includes the first thermal liner 106 in various embodiments. In various embodiments, the first thermal liner 106 includes a top end 224, a bottom end 226, a left side end 228, and a right side end 230. As shown in
The first thermal liner 106 is used to wrap the contents of the outer box 102 vertically and line the bottom flaps 216,218 at the bottom end 114 forming the bottom side of the outer box 102, the back lateral side wall 118, and the flaps 136,138,140 at the top end 112 forming the top side of the outer box 102. In various embodiments, when the first thermal liner 106 is positioned in the outer box 102, the inner surface 147 faces the contents of the outer box 102 in the outer storage cavity 134 and the outer surface 145 faces the bottom flaps 216,218 at the bottom end 114, the back lateral side wall 118, and the flaps 136,138,140 at the top end 112 of the outer box 102. In various other embodiments, the outer surface 145 may face any of the lateral side walls 116,118,120,122 as desired. A distance from the first bend line 148 to the second bend line 150 defines a height of the back fold 144. In various embodiments, the height of the back fold 144 is less than or equal to the height of the outer box 102. In various embodiments, the dimensions of the top fold 142, back fold 144, and bottom fold 146 may be varied to accommodate various outer boxes 102 having various dimensions.
In various embodiments, the nested insulated packaging assembly 100 also includes the second thermal liner 108. In various embodiments, the second thermal liner 108 includes a top side end 232, a bottom side end 234, a left side end 236 and a right side end 238. As shown in
The second thermal liner 108 is used to wrap the contents of the outer box horizontally and line the left lateral side wall 120, front lateral side wall 116, and right lateral side wall 122 of the outer box 102. In various embodiments when the second thermal liner 108 is positioned in the outer box 102, the inner surface 241 faces the contents in the outer storage cavity 134 of the outer box 102 and the outer surface 239 faces the left lateral side wall 120, front lateral side wall 116, and right lateral side wall 122 of the outer box 102. In various embodiments, the outer surface 239 may face any of the lateral side walls 116,118,120,122 as desired. A distance from the top end 232 to the bottom end 234 defines a height of the second thermal liner 108. In various embodiments, the height of the second thermal liner 108 is less than or equal to the height of the back fold 144 of the first thermal liner 106. In various embodiments, the dimensions of the left fold 152, front fold 154, and right fold 156 may be varied to accommodate various outer boxes 102 having various dimensions.
In various embodiments, the first thermal liner 106 and the second thermal liner 108 are C-shaped when folded. In various embodiments, the first thermal liner 106 is C-shaped by folding the top fold 142 and the bottom fold 146 in the same direction relative to the back fold 144. In various embodiments, the second thermal liner 108 is C-shaped by folding the left fold 152 and the right fold 156 in the same direction relative to the front fold 154. However, the shape of the folded liners 106,108 should not be considered limiting on the current disclosure as in various other embodiments, the folded liners 106, 108 may have any desired shape. In various embodiments, the first thermal liner 106 and the second thermal liner 108 provide both cushioning and climate control to provide cushioned protection for the contents of the outer box 102 and maintain a temperature within the outer box 102. In various embodiments, the thermal liners 106,108 may include materials including, but not limited to, polyester film, such as polyethylene terephthalate (PET) film, foams, pellets, fabrics, nonwovens, polyethylene, polyurethane, polypropylene, and various other materials that may contribute towards a cushioned and climate controlled protective layer in the nested insulated packaging assembly 100. In various embodiments, the thermal liners 106,108 are biodegradable. In various embodiments, the thermal liners 106,108 are compostable. In various embodiments, the thermal liners are R-4 poly-encapsulated thermal 100% recycled cotton liners. In various embodiments, the nested insulated packaging assembly 100 includes the outer box 102, first thermal liner 106, and second thermal liner 108.
The nested insulated packaging assembly 100 also includes the inner box 104 in various embodiments; however, in various other embodiments, the inner box 104 is omitted from the nested insulated packaging assembly 100. The inner box 104 includes a top end 162, a bottom end 164, a front lateral side wall 166, a back lateral side wall 168, a left lateral side wall 170, and a right lateral side wall 172. The front lateral side wall 166 includes an inner surface (not shown) and an outer surface 174. The back lateral side wall 168 includes an inner surface 176 and an outer surface (not shown). The left lateral side wall 170 defines an inner surface (not shown) and an outer surface 178. The right lateral side wall 172 defines an inner surface 180 and an outer surface (not shown). The inner surfaces of the lateral side walls 166,168,170,172 define an inner storage cavity 182. The lateral side walls 166,168,170,172 define an inner box top opening 184 at the top end 162 of the inner box 104.
As shown in
The location, shape, or number of flaps or handles with the inner box 104 should not be considered limiting on the current disclosure. For example, in various other embodiments, each lateral side wall 166,168,170,172 includes a flap at the top end 162 of the inner box 104. In various embodiments, the inner box 104 also includes bottom flaps at each lateral side wall 166,168,170,172 at the bottom end 164. In various embodiments, any of the flaps on the inner box 104 may be integral with the inner box 104 or connected to the inner box 104. In various embodiments, any of the flaps on the inner box 104 may include connecting mechanisms such as slats, snaps, adhesive, hooks and loops, and any other connecting mechanisms for selectively holding the flaps in place when the inner box top opening 184 is closed. In various embodiments, the handle panels 190,192 may be integral with the inner box 104 or connected to the inner box 104 through the flaps 186,188. In various embodiments, the handles 194,196 are formed integral with the handle panels 190,192 or connected to the handle panels 190,192 through connecting mechanisms including, but not limited to, slats, snaps, adhesive, hooks and loops, stitching, and any other connecting mechanisms. In addition, the number of side walls of the inner box 104 should not be considered limiting on the current disclosure. In various embodiments, the inner box 104 includes the top side wall, the bottom side wall, and at least one lateral side wall. For example, in various embodiments, the inner box 104 may be a cylindrically shaped box with a plurality of side walls curved into a cylindrical shape, where each side wall is a portion of the curved cylindrical perimeter of the box, such as where each side wall is a quarter portion of the perimeter, a half portion of the perimeter, or a third portion of the perimeter, or where one side wall is a third portion of the perimeter and one side wall is a two-thirds portion of the perimeter.
In various embodiments, the nested insulated packaging assembly 100 includes the divider 110; however, in various other embodiments, the divider 110 may be omitted from the nested insulated packaging assembly 100. In various embodiments, the nested insulated packaging assembly 100 includes the outer box 102, first thermal liner 106, second thermal liner 108, and divider 110. The divider 110 includes a front side 202, a back side 204, a left side 206, a right side 208, a top side 210, and a bottom side (not shown). In various embodiments, the sides 202,204,206,208 define a divider shape such that the divider 110 is insertable into the inner storage cavity 182 of the inner box 104. As shown in
In various embodiments, the divider 110 may include an anchoring mechanism for securing a refrigerant on the divider 110 in the upper chamber 700, the lower chamber 702, or in both chambers 700,702. In various embodiments, the anchoring mechanism may be a strap, panels, slat, hook and loop connectors, adhesives, or various other anchoring mechanisms for securing a refrigerant on the divider 110.
As shown in
In the current embodiment, the first thermal liner 106 contacts the outer box 102 at the bottom side wall of the outer box 102 formed by flaps 216,218, the back lateral side wall 118, and the top side wall of the outer box 102 formed by flaps 136,138,140. In the current embodiment, the first thermal liner 106 also contacts the inner box 104 at the bottom side wall of the inner box 104 formed by flaps 220,222, the back lateral side wall 168, and the top side wall of the inner box formed by flaps 186,188. In the current embodiment, the second thermal liner 108 contacts the outer box 102 at the left lateral side wall 120, front lateral side wall 116, and right lateral side wall 122. In the current embodiment, the second thermal liner 108 also contacts the inner box 104 at the left lateral side wall 170, the front lateral side wall 166, and the right lateral side wall 172. In various other embodiments, the liners 106,108 may have any desired configuration such that together, the liners 106,108 contact the respective side walls of the outer box 102 and inner box 104. The respective contact between the first thermal liner 106, second thermal liner 108, outer box 102, and inner box 104 is partially shown in
In various embodiments, a user may desire to package items 704 at a first temperature in the nested insulated packaging assembly 100 and items 706 at a second temperature in the nested insulated packaging assembly 100. In various embodiments, the items 704 and items 706 may be various perishable items, pharmaceuticals, other temperature sensitive items, or other items to be shipped such as boxes of food, bottles of beverages, bagged fruits, bagged vegetables, and various other items. As shown in
In various embodiments, a combination of the first thermal liner 106, second thermal liner 108, and divider 110 maintain the lower chamber 702 at a first temperature suitable for the items 704 and maintain the upper chamber 700 at a second temperature suitable for the items 706. In various embodiments, the upper chamber 700 is maintained at a temperature above the temperature of the lower chamber 702. As described above, in various embodiments, the divider 110 includes vent openings 214 enabling fluid flow, typically air flow in various embodiments, through the divider 110. In various embodiments, warm air present in the lower chamber 702 may be vented to the upper chamber 700 through the vent openings 214. Venting of the warm air to the upper chamber 700 may keep the lower chamber 702 at a colder temperature for a longer duration because the divider 110 isolates the two temperature chambers. In this manner, co-shipment of items requiring dual temperatures is enabled.
Each of the upper chamber 700 and the lower chamber 702 may have customized temperature profiles. In various embodiments, the size, shape, and number of vent openings 214 may regulate the air flow through the divider 110 at desired levels to achieve specific temperature profiles in each of the upper chamber 700 and the lower chamber 702. In various embodiments, the insulation properties of the first thermal liner 106, second thermal liner 108, outer box 102, inner box 104, and divider 110 are also utilized to achieve specific temperature profiles in each of the upper chamber 700 and the lower chamber 702. As shown in
The temperature profiles in each of the upper chamber 700 and lower chamber 702 may be controlled through location of a refrigerant in the outer box 102, location of a refrigerant in the inner box 104, the vent openings 214, the composition of the divider 110, the shape of the divider 110, and the insulation properties of the first thermal liner 106, second thermal liner 108, outer box 102, inner box 104, and divider 110. In various embodiments, the refrigerant may be selected from the group including, but not limited to, ice packs, dry ice, gel packs, chilling units, water, and various other mechanisms for keeping items chilled. In various embodiments, these aspects of the nested insulated packaging assembly 100 may be varied to obtain desired temperature profiles in each of the upper chamber 700 and lower chamber 702.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
A method of assembling the nested insulated packaging assembly 100 is also disclosed. It should be noted that any of the steps of any of the methods described herein may be performed in any order or could be performed in sub-steps that are done in any order or that are separated in time from each other by other steps or sub-steps, and the disclosure of a particular order of steps should not be considered limiting on the current disclosure. The outer box 102 having the outer storage cavity 134 is provided.
The first thermal liner 106 is positioned in outer storage cavity 134 of the outer box 102 such that the bottom fold 146 contacts a bottom side of the box, the back fold 144 contacts one of the lateral side walls, such as the back lateral side wall 118, of the outer box 102, and the top fold 142 contacts a top side of the outer box 102 when closed such that the top fold 142 covers the top opening 124 of the outer storage cavity 134. The second thermal liner 108 is positioned in the outer storage cavity 134 of the outer box 102 such that the second thermal liner 108 contacts three of the lateral side walls of the outer box 102, such as the left lateral side wall 120, right lateral side wall 122, and front lateral side wall 116. The second thermal liner 108 is positioned in various embodiments such that the bottom end 234 contacts and rests on the inner surface 147 of the first thermal liner 106 on the bottom fold 146 of the first thermal liner 106, the left side end 236 and right side end 238 contacts the inner surface 147 of the first thermal liner 106 on the back fold 144 of the first thermal liner 106, and the top end 234 contacts the inner surface 147 of the first thermal liner 106 on the top fold 142 when the top fold 142 is closed.
The first thermal liner 106 and second thermal liner 108 positioned in the outer storage cavity 134 define the insulated cavity 240. In various embodiments, the inner surface 147 of the first thermal liner 106 and the inner surface 241 of the second thermal liner 108 define the insulated cavity 240. In various embodiments, the inner box 104 is positioned in the insulated cavity 240. In various embodiments, the inner surfaces 147,241 contact the outer surfaces of all the side walls of the inner box 104 when the nested insulated packaging assembly 100 is closed.
In various embodiments, a user positions the items 704 in the inner storage cavity 182 of the inner box 104. The divider 110 is positioned in the inner storage cavity 182 over the items 704. The user positions items 706 in the inner storage cavity 182 of the inner box 104 on the divider 110. Insertion of the divider 110 in the inner storage cavity 182 separates the inner storage cavity 182 into the upper chamber 700, the portion of the inner storage cavity 182 and the top end 162 of the inner box 104, and the lower chamber 702, the portion of the inner storage cavity 182 and the bottom end 164 of the inner box 104. In various embodiments, vent openings 214 in the divider 110 permit warm air to rise from the lower chamber 702 into the upper chamber 700 and cool air to settle from the upper chamber 700 into the lower chamber 702. In various embodiments, the temperature maintained in the upper chamber 700 may be different from the temperature maintained in the lower chamber 702, permitting packaging of items that need to be stored at different temperatures.
In various embodiments, the nested insulated packaging assembly 100 enables a transporter or deliverer to transport items to be shipped, such as the items 704 and items 706, in the inner box 104 positioned in the outer box 102 and remove the inner box 104 for the end user while retaining the outer box 102 and thermal liners 106,108 for reuse. In various embodiments, the deliverer may reuse the outer box 102 and thermal liners 106,108 with other inner boxes 104 for other customers. The deliverer may also more reliably recycle the outer box 102 and thermal liners 106,108 after delivery of the inner box 104 for the end user.
One should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular embodiments or that one or more particular embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all combinations and sub-combinations of all elements, features, and aspects discussed above. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure.