The present disclosure relates generally to wellhead equipment, and specifically to securing of components of a wellhead.
To secure wellhead equipment within an axial bore of a wellhead housing, lock screws may be positioned radially around the circumference of the wellhead housing to engage to the wellhead equipment. Lock screws typically have a conical nose and threaded outer diameter. Torque applied to the lock screw is translated into axial motion, driving the lock screw in and retaining wellhead equipment landed in the wellhead housing bore against pressure from below. Generally, only the conical nose of the lock screw extends into the wellhead bore. Lock screws are sealed individually—either by an interference seal or by a compression seal energized by an externally actuated gland.
Lock screws are the most common means of retaining hangers, packoffs, false bowls, and other equipment against wellbore pressure in wellhead systems. This is due to both the straightforward external access they provide and the lack of specialized tooling required to actuate them. They also have the added advantage of providing anti-rotation of the retained component—allowing landing joints and running tools to be easily broken out when required. Alternative means of retention, such as internal lock rings, require alternative mechanical solutions for anti-rotation.
Given the high-pressure contained and limited space available in wellhead equipment lock screws must be capable of withstanding stresses that approach the limits of their material strength. These stresses includes both axial stresses reacting against the threads in the lock screw gland and/or wellhead housing as well as the bending stresses through the cross section of the lock screw.
A nested hanger lands within a previously installed hanger, packoff, or false bowl rather than landing inside of the wellhead housing itself. This is desirable as it reduces the height of the wellhead system, reducing weight and cost.
Most traditional nested hangers rely on internal lock rings for retention in place of traditional lock screws. Lock rings often require specific OEM tooling and unique installation/retrieval processes that are not available to a typical workover crew to use without OEM support. In many regions it is costly and impractical for an end user to rely on the wellhead vendor who installed the equipment to be present to latch/unlatch the relevant hangers during routine workover operations.
The present disclosure provides for a nested lock screw. The nested lock screw may include an outer sleeve, the outer sleeve having external threads formed on an outer surface thereof. The nested lock screw may include an inner lock screw, the inner lock screw positioned within and threadedly coupled to the outer sleeve.
The present disclosure also provides for a wellhead assembly. The wellhead assembly may include a wellhead housing, the wellhead housing including a lock screw receptacle. The wellhead assembly may include an outer nested wellhead component positioned within the wellhead housing, the outer nested wellhead component including a lock screw aperture. The wellhead assembly may include an inner nested wellhead component, the inner nested wellhead component including an inner receptacle. The wellhead assembly may include a nested lock screw. The nested lock screw may include an outer sleeve, the outer sleeve having external threads formed on an outer surface thereof, the outer sleeve threadedly coupled to the lock screw receptacle of the wellhead housing. The nested lock screw may include an inner lock screw, the inner lock screw positioned within and threadedly coupled to the outer sleeve, the inner lock screw passing through the lock screw aperture and engaging the inner receptacle.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
In some embodiments, one or more components of wellhead assembly 10 may be secured together using one or more nested lock screws 100. For example, in some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, inner lock screw 103 may be threadedly coupled to outer sleeve 101 such that rotation of inner lock screw 103 relative to outer sleeve 101 may extend or retract inner lock screw 103 relative to outer sleeve 101. The position of outer sleeve 101 relative to wellhead housing 12 may therefore be adjustable independently from the position of inner lock screw 103 relative to outer sleeve 101. In some embodiments, the clearance between outer sleeve 101 and inner lock screw 103 may be of generally tight tolerance such that, for example and without limitation, inner lock screw 103 engages outer sleeve 101 at a distal end thereof, thereby supporting inner lock screw 103 against bending stresses incurred while nested lock screw 100 is used to secure components of wellhead assembly 10.
In some embodiments, nested lock screw 100 may include one or more internal seals 107 positioned to form a fluid seal between outer sleeve 101 and inner lock screw 103. In some embodiments, nested lock screw may include one or more external seals 109 positioned to form a fluid seal between outer sleeve 101 and wellhead housing 12. Internal seals 107 and external seals 109 may reduce or prevent fluid egress from within wellhead assembly 10.
In some embodiments, as shown in
In some embodiments, nested lock screw 100′ may include two-part inner lock screw 103′. Two-part inner lock screw 103′ may include rotating inner lock screw 103a′ and non-rotating inner lock screw 103b′. Rotating inner lock screw 103a′ and non-rotating inner lock screw 103b′ may be mechanically coupled together by a coupler or, as shown in
As shown in
Nested lock screw 100′ may then be installed to wellhead housing 12 by inserting nested lock screw 100′ into lock screw receptacle 20 and rotating two-part outer sleeve 101′ of nested lock screw 100′ as shown in
In some embodiments, two-part inner lock screw 103′ may then be rotated until two-part inner lock screw 103′ engages inner receptacle 24 and is fully seated thereto as shown in
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a nonprovisional application which claims priority from U.S. provisional application No. 63/334,112, filed Apr. 23, 2022, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3434743 | Boeker | Mar 1969 | A |
4291768 | Diehl | Sep 1981 | A |
4650226 | Babbitt | Mar 1987 | A |
4770250 | Bridges | Sep 1988 | A |
5257792 | Putch | Nov 1993 | A |
6595278 | Lam | Jul 2003 | B1 |
7121345 | Bartlett | Oct 2006 | B2 |
9303481 | Nguyen | Apr 2016 | B2 |
10138697 | Guidry | Nov 2018 | B2 |
10287839 | Lugtmeier | May 2019 | B2 |
11566485 | Oliphant | Jan 2023 | B1 |
Number | Date | Country | |
---|---|---|---|
20230340852 A1 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
63334112 | Apr 2022 | US |