The present invention relates generally to implantable intraluminal stents and more particularly, the present invention relates to an improved high strength intraluminal stent having increased wire density.
It is well known to employ endoprostheses for the treatment of diseases of various body vessels. Intraluminal devices of this type are commonly referred to as stents. These devices are typically intraluminally implanted by use of a catheter into various body organs such as the vascular system, the bile tract and the urogenital tract. Many of the stents are radially compressible and expandable so that they may be easily inserted through the lumen in a collapsed or unexpanded state. Some stent designs are generally flexible so they can be easily maneuvered through the various body vessels for deployment. Once in position, the stent may be deployed by allowing the stent to expand to its uncompressed state or by expanding the stent by use of a catheter balloon.
As stents are normally employed to hold open an otherwise blocked, constricted or occluded lumen; a stent must exhibit a relatively high degree of radial or hoop strength in its expanded state. The need for such high strength stents is especially seen in stents used in the urogenital or bile tracts where disease or growth adjacent the lumen may exert an external compressive force thereon which would tend to close the lumen.
One particular form of stent currently being used is a wire stent. Stents of this type are formed by single or multiple strands of wire which may be formed into a shape such as a mesh coil, helix or the like which is flexible and readily expandable. The spaces between the coiled wire permit such flexibility and expansion. However, in certain situations, such as when the stent is employed in the urogenital or bile tract, it is also desirable to inhibit tissue ingrowth through the stent. Such ingrowth through the stent could have a tendency to reclose or occlude the open lumen. The open spaces between the wires forming the stent, while facilitating flexibility and expansion, have a tendency to allow such undesirable tissue ingrowth.
Attempts have been made to provide a stent which has less open space and more solid wire. U.S. Pat. No. 5,133,732 shows a wire stent where the wire forming the stent is overlapped during formation to provide less open space. However such overlapping wire increases the diameter of the stent and has a tendency to reduce flexibility and make implantation more difficult. It is therefore desirable to provide a wire stent which exhibits high compressive strength and full flexibility without allowing extensive ingrowth therethrough.
It is an object of the present invention to provide an intraluminal stent which exhibits high compressive strength and is resistive to tissue ingrowth.
It is a further object of the present invention to provide a flexible wire stent having high compressive strength and maximum wire density to inhibit tissue ingrowth.
In the efficient attainment of these and other objects, the present invention provides an intraluminal stent including a generally elongate tubular body formed of a wound wire. The wire forming the stent is formed into successively shaped waves, the waves being helically wound along the length of the tube. The longitudinal spacing between the helical windings of the tube is formed to be less than twice the amplitude of the waves thereby resulting in a dense wire configuration.
As more particularly shown by way of the preferred embodiment herein, an intraluminal wire stent includes longitudinally adjacent waves being nested along the length of the tubular body. The peaks or apices of the longitudinally nested waves are linearly aligned. Further, the intraluminal stent so constructed would have a percentage of open surface area in relationship to the total surface area of the stent which is less than 30% in the closed state, resulting in less open area upon expansion which would inhibit tissue ingrowth.
A simple helically formed coil spring 10 is shown in
The present invention shown in
For present purposes, the axial spacing between any point on the wire coil spring 10 to the point defining the next successive winding may be thought of as the pitch 16 of the wire coil spring 10. As so defined, the pitch of the coil spring 10 defines the spacing between windings and therefore the degree of compactness or compression of the wire coil spring 10.
Also with reference to
Having set forth the definitional convention used hereinthroughout, the present invention may be described with reference specifically to
While stent 20 may be formed by helically winding wire 22 much in a manner shown with respect to
Referring now to
The wave-like configuration imparted to wire 22 may be accomplished in a variety of forming techniques. One such technique is to pass wire 22 between the teeth of intermeshed gears (not shown) which would place a generally uniform sinusoidal wave-like crimp along the length of the wire. Other techniques may be used to form the specific shape shown in
Referring now to
As can be seen with respect to
The particular configuration of the stent 20 shown in
The windings of stent 20 in closed condition are tightly nested. The cylindrical surface area formed by the coiled wire has greater wire density, i.e. more of the surface area is composed of solid wire while less of the surface area is composed by open space between the wire windings then in previous non-nested single wire stents. The wire surface area in the closed condition equals the wire surface area in an expanded condition. By maximizing the closed condition wire surface area, even when the stent is expanded such as shown in
Additionally, the above-described benefits of the stent of the present invention are achieved without the necessity of longitudinally overlapping adjacent wire windings. In many prior art stents, the stents include portions of wire windings which are longitudinally overlapped. This increases the wall thickness of the stent thereat and results in a stent which is more difficult to implant in the body lumen by means of a balloon catheter. Also, such stents create an undesirable, more turbulent fluid flow therethrough. The stent of the present invention maximizes wire density, maintains a high degree of flexibility and radial compressive strength without increasing the stent wall thickness beyond the single wire diameter.
Mathematically, the geometric analysis of the preferred embodiment of the stent of the present invention may be described as follows with reference to
Each wave length 27 of the wave pattern 25 forming stent 20 is formed to include a straight leg segment 29 with a bend radius at peak 31. The angle at which the helix coils around the center line χ (
The integer number of waves N per single circumference or single winding follows the equation:
where D is the diameter of the closed stent and λ is the period of a single wave.
The number of helical windings M per stent is defined by the equation:
where L is the overall stent length; θ is the angle of the straight leg segments 29 with respect the line of amplitude of the wave pattern; and d3 is the wire diameter.
The exterior exposed surface area of the stent is equivalent to the amount of wire packed within a fixed stent length. The total length Lw of wire employed to form the stent follows the equation:
where r is the radius defining the peak curvative; and l is the length of the straight line segment 29 of the wire.
It follows that the projected solid wire area is Lwd3 and the percentage of open space coverage (% open) is given by the equation:
In a specific example, a stent having the parameters listed in Table I and formed in accordance with the present invention yields a percentage of open space (% open) equivalent to 28.959%.
Further, it is found that an expanded stent constructed in accordance with the example set forth above, exhibits superior resistance to pressure P acting upon the stent in a radially compressive manner (
It is further contemplated that the stent of the present invention may be modified in various known manners to provide for increased strength and support. For example the end of wire 22 may be looped around an adjacent wave or extended to run along the length of the stent. The wire may be welded to each winding to add structural support such as is shown in U.S. Pat. No. 5,133,732. Also, each windings may be directly welded to the adjacent winding to form a support spine such as shown in U.S. Pat. No. 5,019,090.
Further, as mentioned above, wire 22 is helically wound around a mandrel to form the helical pattern shown in
Other modifications which are within the contemplation of the present invention may be further described.
The winding of wire 222 around mandrel 200 takes place in the following manner. The formed wire 222 is held in position while the mandrel is rotated in the direction of arrow A, thereby coiling the wire 222 around mandrel 200. The spacing or pitch 216 is created by subsequent vertical movement of the of the formed wire 222 along mandrel 200 while rotation thereof is taking place. When the winding is complete, the ends 233 of the wire 222 may be “tied off” by looping the end 233 around the next longitudinally adjacent winding.
While in the embodiment shown above, the amplitude of each wave is relatively uniform, it is contemplated that the wire could be formed to have waves of varied amplitude. For example, the wire could be formed so that at the ends of the wound stent the amplitude of the waves is relatively small while in the central portion of the stent the amplitude is relatively large. This provides a stent with a more flexible central section and more crush-resistant ends.
In certain situations the stent of the present invention may include a membrane covering (not shown) which would cover the entire stent. The wire surface of the stent would serve as a support surface for the membrane covering. The membrane covering would act as a further barrier to tissue ingrowth. Any membrane covering may be employed with the present invention such as a fabric or elastic film. Further, this membrane covering may be completely solid or may be porous. In addition, as above described, employing a formed wire having varied amplitude where the amplitude of the wire is smaller at the ends of the stent would help support the membrane covering as the crush-resistant ends would serve as anchors to support the membrane covering with little support necessary at the more flexible central section of the stent.
Various changes to the foregoing described and shown structures would not be evident to those skilled in the art. Accordingly, the particularly disclosed scope of the invention is set forth in the following claims.
This application is a continuation of and claims priority to U.S. application Ser. No. 09/977,823, filed Oct. 15, 2001, now abandoned which is a continuation of U.S. application Ser. No. 09/271,304, filed Mar. 17, 1999, now U.S. Pat. No. 6,319,277, which is a continuation of U.S. application Ser. No. 08/708,651, filed Sep. 5, 1996, now U.S. Pat. No. 5,906,639, which is a continuation of U.S. application Ser. No. 08/289,791, filed Aug. 12, 1994, now U.S. Pat. No. 5,575,816, which are all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2780274 | Roberts et al. | Feb 1957 | A |
3029819 | Starks | Apr 1962 | A |
3657744 | Ersek | Apr 1972 | A |
3805301 | Liebig | Apr 1974 | A |
4047252 | Liebig et al. | Sep 1977 | A |
4130904 | Whalen | Dec 1978 | A |
4164045 | Bokros et al. | Aug 1979 | A |
4300244 | Bokros | Nov 1981 | A |
4517687 | Liebig et al. | May 1985 | A |
4580568 | Gianturco | Apr 1986 | A |
4649922 | Wiktor | Mar 1987 | A |
4665918 | Garza et al. | May 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4760849 | Kropf | Aug 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4816028 | Kapadia et al. | Mar 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4886500 | Lazarus | Dec 1989 | A |
4893623 | Rosenbluth | Jan 1990 | A |
4907336 | Gianturco | Mar 1990 | A |
4913141 | Hillstead | Apr 1990 | A |
4922905 | Strecker | May 1990 | A |
4950227 | Savin et al. | Aug 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4969458 | Wiktor | Nov 1990 | A |
4994071 | MacGregor | Feb 1991 | A |
5015253 | MacGregor | May 1991 | A |
5019085 | Hillstead | May 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5026377 | Burton et al. | Jun 1991 | A |
5041126 | Gianturco | Aug 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5135536 | Hillstead | Aug 1992 | A |
5139480 | Hickle et al. | Aug 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5160341 | Brenneman et al. | Nov 1992 | A |
5161547 | Tower | Nov 1992 | A |
5163958 | Pinchuk | Nov 1992 | A |
5171262 | MacGregor | Dec 1992 | A |
5176625 | Brisson | Jan 1993 | A |
5183085 | Timmermans | Feb 1993 | A |
5217483 | Tower | Jun 1993 | A |
5290305 | Inoue | Mar 1994 | A |
5314472 | Fontaine | May 1994 | A |
5330500 | Song | Jul 1994 | A |
5489295 | Piplani et al. | Feb 1996 | A |
5545211 | An et al. | Aug 1996 | A |
5549663 | Cottone, Jr. | Aug 1996 | A |
5554181 | Das | Sep 1996 | A |
5571173 | Parodi | Nov 1996 | A |
5575816 | Rudnick et al. | Nov 1996 | A |
5643312 | Fischell et al. | Jul 1997 | A |
5653747 | Dereume | Aug 1997 | A |
5876432 | Lau et al. | Mar 1999 | A |
5879370 | Fischell et al. | Mar 1999 | A |
6165210 | Lau et al. | Dec 2000 | A |
6517570 | Lau et al. | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
0177330 | Jun 1991 | EP |
0282175 | Nov 1991 | EP |
407024072 | Oct 1993 | JP |
07-024072 | Jan 1995 | JP |
6-41745 | Jun 2004 | JP |
9313825 | Jul 1993 | WO |
Number | Date | Country | |
---|---|---|---|
20040193251 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09977823 | Oct 2001 | US |
Child | 10775536 | US | |
Parent | 09271304 | Mar 1999 | US |
Child | 09977823 | US | |
Parent | 08708651 | Sep 1996 | US |
Child | 09271304 | US | |
Parent | 08289791 | Aug 1994 | US |
Child | 08708651 | US |