The subject invention relates to ordinance shielding.
Rocket propelled grenades (RPGs) and other ordinance are used by terrorist groups to target military vehicles and structures. See WO 2006/134407 incorporated herein by this reference.
Others skilled in the art have designed intercept vehicles which deploy a net or a structure in the path of an RPG in an attempt to change its trajectory. See U.S. Pat. Nos. 7,190,304; 6,957,602; 5,578,784; and 7,328,644 all incorporated herein by this reference. Related prior art discloses the idea of deploying an airbag (U.S. Pat. No. 6,029,558) or a barrier (U.S. Pat. No. 6,279,499) in the trajectory path of a munition to deflect it. These references are also included herein by this reference.
Many such systems require detection of the RPG and deployment of the intercept vehicle quickly and correctly into the trajectory path of the RPG.
Static armor such as shown in U.S. Pat. Nos. 5,170,690; 5,191,166; 5,333,532; 4,928,575; and WO 2006/134,407 is often heavy and time consuming to install. When a significant amount of weight is added to a HMMWV, for example, it can become difficult to maneuver and top heavy. Such an armor equipped vehicle also burns an excessive amount of fuel.
Moreover, known static systems do not prevent detonation of the RPG. One exception is the steel grille armor of WO 2006/134,407 which is said to destroy and interrupt the electrical energy produced by the piezoelectric crystal in the firing head of the RPG. Bar/slat armor is also designed to dud an RPG. But, bar/slat armor is also very heavy. Often, a vehicle designed to be carried by a specific class of aircraft cannot be carried when outfitted with bar/slat armor. Also, if the bar/slat armor is hit with a strike, the RPG still detonates. Bar/slat armor, if damaged, can block doors, windows, and access hatches of a vehicle.
Chain link fence type shields have also been added to vehicles. The chain link fencing, however, is not sufficiently compliant to prevent detonation of an RPG if it strikes the fencing material. Chain like fencing, although lighter than bar/slat armor, is still fairly heavy. Neither bar/slat armor nor the chain link fence type shield is easy to install and remove.
Despite the technology described in the above prior art, Rocket Propelled Grenades (RPGs) and other threats used by enemy forces and insurgents remain a serious threat to troops on the battlefield, on city streets, and on country roads. RPG weapons are relatively inexpensive and widely available throughout the world. There are varieties of RPG warhead types, but the most prolific are the PG-7 and PG-7M which employ a focus blast or shaped charge warhead capable of penetrating considerable armor even if the warhead is detonated at standoffs up to 10 meters from a vehicle. A perfect hit with a shaped charge can penetrate a 12 inch thick steel plate. RPGs pose a persistent deadly threat to moving ground vehicles and stationary structures such as security check points.
Heavily armored, lightly armored, and unarmored vehicles have been proven vulnerable to the RPG shaped charge. Pick-up trucks, HMMWV's, 2½ ton trucks, 5 ton trucks, light armor vehicles, and M118 armored personnel carriers are frequently defeated by a single RPG shot. Even heavily armored vehicles such as the M1 Abrams Tank have been felled by a single RPG shot. The PG-7 and PG-7M are the most prolific class of warheads, accounting for a reported 90% of the engagements. RPG-18s, RPG-69s, and RPG-7Ls have been reported as well, accounting for a significant remainder of the threat encounters. Close engagements 30 meters away occur in less than 0.25 seconds and an impact speed ranging from 120-180 m/s. Engagements at 100 meters will reach a target in approximately 1.0 second and at impact speeds approaching 300 m/s.
The RPG-7 is in general use in Africa, Asia, and the Middle East and weapon caches are found in random locations making them available to the inexperienced insurgent. Today, the RPG threat in Iraq is present at every turn and caches have been found under bridges, in pickup trucks, buried by the road sides, and even in churches.
Armor plating on a vehicle does not always protect the occupants in the case of an RPG impact and no known countermeasure has proven effective. Systems designed to intercept and destroy an incoming threat are ineffective and/or expensive; complex, and unreliable.
Chain link fencing has been used in an attempt to dud RPGs by destroying the RPG nose cone. See, for example, DE 691,067. See also published U.S. Patent Application No. 2008/0164379. Others have proposed using netting to strangulate the RPG nose cone. See published U.S. Application No. 2009/0217811 and WO 2006/135432.
WO 2006/134407, insofar as it can be understood, discloses a protective grid with tooth shaped members. U.S. Pat. No. 6,311,605 discloses disruptive bodies secured to armor. The disruptive bodies are designed to penetrate into an interior region of a shaped charge to disrupt the formation of the jet. The shaped charge disclosed has a fuse/detonator mechanism in its tail end.
Co-pending patent application Ser. No. 12/807,532 discloses a more effective vehicle and structure shield including a plurality of spaced hard points held in position via the nodes of a net and used to dud an RPG or other threat.
In use in the field, however, it is possible that the net cords or strands between two hard points or between a hard point and the net frame may break. When this happens, one or more hard points may no longer be correctly spaced resulting in less effective and more vulnerable areas of the shield. A breakage of a cord sherd or strand may also cause other cords or strands to break.
The invention, in one example, provides a patching device for a hard point style net shield which is easy and intuitive to use, which quickly patches broken net cords , and which correctly spaces the hard points.
The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
This invention features a patching system for a net with hard points at select nodes of the net. One preferred patching device includes a pair of spaced sockets each configured to receive a hard point therein and a member interconnecting the pair of spaced sockets configured to properly space the hard points.
Each socket preferably includes a retention mechanism for locking a hard point therein. Each socket may include a peripheral side wall with slots therein for cords of the net. Typically there are two pairs of opposing slots and the retention mechanism then typically includes an inwardly extending lip at a proximal end of the side wall between the slots. The member can be a plastic body or a net cord. Each socket is typically round and made of plastic. There can be a third socket connected to one of the pairs of sockets by another member.
Each socket may include one or more alignment features for aligning a hard point in the socket and/or one or more tensile alignment features aligning tensile loads with the interconnecting member. Each socket may include flexible fingers which accept a hard point when flexed outward and then spring back capturing the hard point. Each finger may include an inward retention lip.
In one version, a patching device comprises a first socket including a peripheral side wall with slots therein for cords of the net and an inward lip at a proximal end of the side wall between the slots for retaining a first hard point in the first socket. A second socket includes a peripheral side wall with slots therein for cords of the net. A proximal end of the side wall between the slots includes an inward lip for retaining a second hard point in the second socket. A member interconnects the first and second sockets.
A patching device for a net with hard points at select nodes of the net, the patching device comprising: a first socket including a peripheral side wall with slots therein for cords of the net and an inward lip at a proximal end of the side wall between the slots for retaining a first hard point in the first socket; a second socket including a peripheral side wall with slots therein for cords of the net and an inward lip at a proximal end of the side wall between the slots for retaining a second hard point in the second socket; and a member interconnecting the first and second sockets. The inward lip of each socket may include hard point alignment features.
One preferred patching device comprises a first socket including flexible fingers which accept a first hard point therebetween when flexed outward and then spring back capturing the first hard point in the first socket; a second socket including flexible fingers which accept a second hard point when flexed outward and then spring back capturing the second hard point in the second socket, and a member interconnecting and spacing the sockets and the first and second hard points apart from each other. Each finger of each socket typically includes a retaining lip.
This invention also features a method of patching a net having hard points at select nodes of the net and a broken net cord between first and second hard points. One preferred method includes placing the first hard point in a first socket and placing the second hard point in a second socket spaced from the first socket by a member configured to properly space the hard points.
In another patch device, a first member is securable to a frame member, a second member is configured to lock on to a hard point, and there is a linkage between the first member and the second member patching a broken net cord between a frame member and a hard point. Preferably, the first member is flexible such as a fabric piece including Velcro thereon. In one embodiment, the second member includes a loop of string directed under a first net cord, over a second net cord, under a third net cord, and then the first member is threaded through the loop. In another embodiment, the second member includes a socket configured to receive a hard point therein.
Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
Slots 73a and 73c receive vertically extending cords while slots 73d and 73b receive horizontally extending cords. In one specific design, the hard point and the plug were made of steel, hard point 12 was 0.625 inches from one edge to an opposite edge, and 0.72 inches tall. Cavity 70 was 0.499 inches in diameter and 0.34 inches deep. Five gram cylindrical plug 68,
Side walls 74a-74f extend rearward from front face 76 defining cavity 70 surrounded by the side walls. Opposing sidewalls 74a and 74d have slots (73a, 73c) in the middle of each side wall. Slots 73d, and 73b, in turn, are between adjacent sidewalls 74b and 74c and 74f and 74e, respectively. Sidewall 74b and 74c are between opposing sidewalls 74a and 74b on one side of member 72 while sidewall 74f and 74e are between opposing sidewalls 74a and 74d on the opposite side of member 72′.
In this specific design, the base portion 72 and plug 68 (
Manufacturing of a net with hard points in accordance with the subject invention is thus simplified. A net node is placed in cavity 70 with the net cords exiting through slots 73a-73d and plug 68 is then driven in to cavity 70 to lock the node of the net in the hard point. The hard points are typically made of conductive material and may include a protective rust resistant non-reflective, conductive coating (zinc plating, flat olive in color). In one example, base portion 72 weighed 30 grams and was machined from .625 hex bar stock. Walls 74a-74f were .72″ tall. Slots 73a-73d were .080 inches across and .350″ in length. These dimensions will vary, however, depending on the design of the net.
There are trade offs in the design of the hard points and also the net. The aspect ratio of the hard points, their size, center of gravity, mass, and the like all play an important role. Hard points which are too large, for example, and a net mesh size which is too small, results in too much surface area to be stricken by an RPG, possibly detonating the RPG. Hard points which are too small may not sufficiently damage the RPG ogive and dud the RPG. Steel is a good material choice for the hard points because steel is less expensive. Tungsten, on the other hand, may be used because it is heavier and denser, but tungsten is more expensive. Other materials are possible. The hard points may be 0.5 inch to 0.75 inches across and between 0.5 inches and 1 inch tall.
It is preferred that the net node is placed at the center of gravity at the hard point. The length of the hard point is preferably chosen so that when an RPG strikes the net, the hard point tumbles 90 degrees and digs into the RPG ogive. The moment of inertia of the hard point is designed accordingly. In still other designs, the hard point may have more or less than six sides. The hard points may weigh between 10 to 80 grams although in testing 60 grams was found to be optimal, e.g., a 30 gram base portion and a 30 gram plug. Hard points between 10 and 40 grams are typical.
The net material may be polyester which provides resistance to stretching, ultraviolet radiation resistance, and durability in the field. Kevlar or other engineered materials can be used. A knotted, knotless, braided, or ultracross net may be used. The cord diameter may be 1.7 to 1.9 mm. Larger net cords or multiple cords are possible, however, the cord(s) design should be constrained to beneath threshold force to dynamic break loads typical of RPG impact and engagements. The typical net mesh size may be 176 mm (e.g., a square opening 88 mm by 88 mm) for a PG-7V RPG and 122 mm for a PG-7 VM model RPG. But, depending on the design, the net mesh size may range from between 110 and 190 mm.
The preferred spacing or standoff from the net to the vehicle is between 4 and 24 inches, (e.g., 6-12 inches) but may be between 4 and 60 centimeters. Larger standoffs may extend the footprint of the vehicle and thus be undesirable. Too close a spacing may not insure closing of the electrical circuitry of the RPG ogive by the hard points. The frame and mounting brackets are designed to result in the desired spacing.
It is desirable that the net material and mesh size be chosen and the net designed such that an RPG ogive, upon striking a net cord, does not detonate. RPGs are designed to detonate at a certain impact force. Preferably, the breaking strength of the net cord material is around 240 lbs so that an RPG, upon striking a net cord or cords, does not detonate. The net is thus designed to be compliant enough so that it does not cause detonation of the RPG. Instead, the hard points dig into the RPG ogive and dud the RPG before it strikes the vehicle or structure.
This design is in sharp contrast to a much more rigid chain link fence style shield which causes detonation of the RPG if the RPG strikes a wire of the fence. The overall result of the subject invention is a design with more available surface area where duding occurs as opposed to detonation.
In this particular design, each spaced socket includes, as shown for socket 102a, a peripheral side wall 108 with slots 110a-110d therein for the cords of the net. Opposing slots 110d and 110b are oriented to line up with member 104 which replaces the broken cord chord and opposing slots 110c and 110a line up with the cords at 90° to member 104. The hard points are preferably retained in sockets 102a and 102b via a retention mechanism which, in this particular example, as shown for socket 102b includes inwardly extending lip 120 at the top of side wall 108 between the slots. The slots thus form fingers 122a-122d each with an internal grasping lip. When a hard point as shown at 130 in
The cavities of the sockets are typically round as shown in
The result is a patching device for a hard point net which is easy and intuitive to use and install, which quickly patches broken net cords, and which correctly spaces the hard points. The patches can be molded of suitable plastic material.
In
A complete net patch system would preferably include several patch members as shown, for example, in
Although specific features of the invention are shown in some drawings and not in others, however, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
Other embodiments will occur to those skilled in the art and are within the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/807,532 filed on Sep 8, 2010 and claims the benefit of and priority thereto under 35 U.S.C. §§119, 120, 363, 365, and 37 C.F.R. §1.55 and §1.78, which application is a continuation-in-part of U.S. patent application Ser. No. 12/386,114 filed Apr 14, 2009 now U.S. Pat. No. 8,011,285, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/124,428 filed Apr 16, 2008.
Number | Name | Date | Kind |
---|---|---|---|
1198035 | Huntington | Sep 1916 | A |
1229421 | Downs | Jun 1917 | A |
1235076 | Stanton | Jul 1917 | A |
1385897 | Tresidder | Jul 1921 | A |
2238779 | Mosebach | Apr 1941 | A |
2296980 | Carmichael | Sep 1942 | A |
2308683 | Forbes | Jan 1943 | A |
2322624 | Forbes | Jun 1943 | A |
3633936 | Huber | Jan 1972 | A |
3656790 | Truesdell | Apr 1972 | A |
3875623 | Johnston | Apr 1975 | A |
3893368 | Wales, Jr. | Jul 1975 | A |
3992628 | Karney | Nov 1976 | A |
4051763 | Thomanek | Oct 1977 | A |
4253132 | Cover | Feb 1981 | A |
4262595 | Longerich | Apr 1981 | A |
4358984 | Winblad | Nov 1982 | A |
4411462 | Buehrig et al. | Oct 1983 | A |
4738006 | Juarez | Apr 1988 | A |
4768417 | Wright | Sep 1988 | A |
4912869 | Govett | Apr 1990 | A |
4928575 | Smirlock et al. | May 1990 | A |
5007326 | Gooch et al. | Apr 1991 | A |
5025707 | Gonzalez | Jun 1991 | A |
5069109 | Lavan, Jr. | Dec 1991 | A |
5078117 | Cover | Jan 1992 | A |
5094170 | Raynaud et al. | Mar 1992 | A |
5170690 | Smirlock et al. | Dec 1992 | A |
5191166 | Smirlock et al. | Mar 1993 | A |
5279199 | August | Jan 1994 | A |
5291715 | Basile | Mar 1994 | A |
5333532 | Smirlock et al. | Aug 1994 | A |
5370035 | Madden, Jr. | Dec 1994 | A |
5394786 | Gettle et al. | Mar 1995 | A |
5400688 | Eninger et al. | Mar 1995 | A |
5435226 | McQuilkin | Jul 1995 | A |
5524524 | Richards et al. | Jun 1996 | A |
5578784 | Karr et al. | Nov 1996 | A |
5583311 | Rieger | Dec 1996 | A |
5622455 | Anderson et al. | Apr 1997 | A |
5646613 | Cho | Jul 1997 | A |
5725265 | Baber | Mar 1998 | A |
5739458 | Girard | Apr 1998 | A |
5750918 | Mangolds et al. | May 1998 | A |
5792976 | Genovese | Aug 1998 | A |
5842939 | Pui et al. | Dec 1998 | A |
5898125 | Mangolds et al. | Apr 1999 | A |
5924723 | Brantman et al. | Jul 1999 | A |
5988036 | Mangolds et al. | Nov 1999 | A |
6029558 | Stevens et al. | Feb 2000 | A |
6119574 | Burky et al. | Sep 2000 | A |
6128999 | Sepp et al. | Oct 2000 | A |
6279499 | Griffith, Sr. et al. | Aug 2001 | B1 |
6282860 | Ramirez | Sep 2001 | B1 |
6311605 | Kellner et al. | Nov 2001 | B1 |
6325015 | Garcia et al. | Dec 2001 | B1 |
6353982 | Looker et al. | Mar 2002 | B1 |
6374565 | Warren | Apr 2002 | B1 |
6375251 | Taghaddos | Apr 2002 | B1 |
6394016 | Swartout et al. | May 2002 | B2 |
6499796 | Eenhoorn | Dec 2002 | B1 |
6595102 | Stevens et al. | Jul 2003 | B2 |
6626077 | Gilbert | Sep 2003 | B1 |
6672220 | Brooks et al. | Jan 2004 | B2 |
6782792 | Edberg et al. | Aug 2004 | B1 |
6805035 | Edberg et al. | Oct 2004 | B2 |
6854374 | Breazeale | Feb 2005 | B1 |
6901839 | Edberg et al. | Jun 2005 | B2 |
6904838 | Dindl | Jun 2005 | B1 |
6925771 | Lee et al. | Aug 2005 | B2 |
6957602 | Koenig et al. | Oct 2005 | B1 |
7190304 | Carlson | Mar 2007 | B1 |
7308738 | Barvosa-Carter et al. | Dec 2007 | B2 |
7318258 | Chun | Jan 2008 | B2 |
7328644 | Vickroy | Feb 2008 | B2 |
7412916 | Lloyd | Aug 2008 | B2 |
7415917 | Lloyd | Aug 2008 | B2 |
7513186 | Ravid et al. | Apr 2009 | B2 |
7866250 | Farinella et al. | Jan 2011 | B2 |
8132495 | Joynt | Mar 2012 | B2 |
20010032577 | Swartout et al. | Oct 2001 | A1 |
20020134365 | Gray | Sep 2002 | A1 |
20030217502 | Hansen | Nov 2003 | A1 |
20040016846 | Blackwell-Thompson et al. | Jan 2004 | A1 |
20050011396 | Burdette et al. | Jan 2005 | A1 |
20050016372 | Kilvert | Jan 2005 | A1 |
20050161657 | Dennis | Jul 2005 | A1 |
20050278098 | Breed | Dec 2005 | A1 |
20060065111 | Henry | Mar 2006 | A1 |
20060112817 | Lloyd | Jun 2006 | A1 |
20070057495 | Tesch et al. | Mar 2007 | A1 |
20070089597 | Ma | Apr 2007 | A1 |
20070180983 | Farinella et al. | Aug 2007 | A1 |
20080164379 | Wartmann et al. | Jul 2008 | A1 |
20080258063 | Rapanotti | Oct 2008 | A1 |
20090084284 | Martinez et al. | Apr 2009 | A1 |
20090104422 | Sampson | Apr 2009 | A1 |
20090173250 | Marscher et al. | Jul 2009 | A1 |
20090178597 | Sliwa, Jr. | Jul 2009 | A1 |
20090217811 | Leeming | Sep 2009 | A1 |
20090266226 | Beach et al. | Oct 2009 | A1 |
20090266227 | Farinella et al. | Oct 2009 | A1 |
20090308238 | Schwartz | Dec 2009 | A1 |
20100288114 | Soukos | Nov 2010 | A1 |
20100294124 | Wentzel | Nov 2010 | A1 |
20100307328 | Hoadley et al. | Dec 2010 | A1 |
20110079135 | Farinella et al. | Apr 2011 | A1 |
20110192014 | Holmes, Jr. et al. | Aug 2011 | A1 |
20110252955 | Radstake et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
691067 | Apr 1940 | DE |
2206404 | Feb 1972 | DE |
24 09 876 | Sep 1975 | DE |
25 07 351 | Sep 1976 | DE |
3834367 | Oct 1988 | DE |
3722420 | Jan 1989 | DE |
3735426 | May 1989 | DE |
4437412 | Oct 1994 | DE |
0 221 222 | May 1987 | EP |
0655603 | May 1995 | EP |
0872705 | Oct 1998 | EP |
0902250 | Mar 1999 | EP |
2695467 | Mar 1994 | FR |
2449055 | Nov 2008 | GB |
WO 9930966 | Jun 1999 | WO |
WO 2006134407 | Dec 2006 | WO |
WO 2006135432 | Dec 2006 | WO |
WO 2006135432 | Dec 2006 | WO |
WO 2008007001 | Jan 2008 | WO |
WO 2008079001 | Jul 2008 | WO |
Entry |
---|
Written Opinion of the International Searching Authority mailed Jan. 18, 2013 for International Application No. PCT/US2012/000196 (seven (7) pages) unnumbered. |
Written Opinion of the International Searching Authority mailed Jan. 31, 2013 for International Application No. PCT/US2012/063207 (six (6) pages total). |
International Search Report and Written Opinion, dated Jan. 7, 2010, for International Application No. PCT/US2009/002363, 8 pages unnumbered. |
Number | Date | Country | |
---|---|---|---|
20110192014 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
61124428 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12807532 | Sep 2010 | US |
Child | 13066337 | US | |
Parent | 12386114 | Apr 2009 | US |
Child | 12807532 | US |