Forging is a manufacturing process where metal is pressed, pounded or squeezed (these terms are used interchangeably herein) under great pressure into high strength parts known as forgings. The process is normally (but not always) performed hot by preheating the metal to a desired temperature before it is worked.
The forging process can create parts that are stronger than those manufactured by any other metalworking process. This is why forgings are almost always used where reliability and human safety are critical. Forgings are often used as component parts contained inside assembled items such as ships, oil drilling equipment, engines, and many other kinds of equipment.
Forgings are typically completed by subjecting the forging to a machining or finishing process. The process of machining removes excess material from a forging using a machine tool.
Energy (oil and gas) mining operations utilize high pressure pumps that circulate drilling fluids, both injecting fluids into and discharging fluids out of the drill string equipment. The high pressure pumps include components designated as the “fluid end” that provide the function of a manifold block to facilitate fluid transfer during operation. These manifold blocks contain intersecting bores that provide passages for the drilling fluids.
Conventional manufacturing of these manifold blocks involves the acquisition of an alloy steel ingot from a melting source. Through open-die forging, the ingot is reduced to the form of a rectangular billet, representative in excess of the maximum height, width, and length of the manifold block. The service demands of this energy mining application require the highest quality in steel cleanliness and strength. Sections of the forged billet are removed through precision machining to create the manifold exterior geometry and series of intersecting central bores extending to the exterior block surfaces.
One embodiment provides a method for net shape forging of a manifold block, comprising: starting with a single bar having a first cross-sectional area, placing a work piece area of the single bar in a die; and upsetting, via longitudinal movement of the single bar, the work piece area of the single bar in the die, wherein the single bar is pressed into the die to reduce its length; whereby the work piece area of the single bar is displaced to an increased cross-sectional area as compared to the first cross-sectional area.
In an embodiment, the upsetting of the work piece area results in displacement of the work piece area into a shaped cavity of the die.
In an embodiment, the method may include moving the work piece area of the single bar longitudinally out of the die. The work piece area may be removed from the single bar as a net shape forged manifold block before or after pressing the next work piece. Additionally, a single manifold block may be formed, depending on the length of the bar.
In an embodiment, a new area of the single bar is introduced into the die as a new work piece area. A method may thus include upsetting, via longitudinal movement of the single bar, the new work piece area, wherein the single bar is pressed into the die to reduce its length.
In an embodiment, pre-treating of the single bar prior to forging the bar may be conducted. The pre-treating may include saw cutting the single bar. The saw cuts may be introduced at manifold block separation areas of the single bar.
In an embodiment, the manifold block is a fluid end.
An embodiment provides a product formed by a process, comprising: starting with a single bar having a first cross-sectional area, placing a work piece area of the single bar in a die; and upsetting, via longitudinal movement of the single bar, the work piece area of the single bar in the die, wherein the single bar is pressed into the die to reduce its length; whereby the work piece area of the single bar is displaced to an increased cross-sectional area as compared to the first cross-sectional area.
Another embodiment provides a net shape forge, comprising: at least one longitudinal pressing tool; at least one die having a cavity therein in a net shape of a manifold block; a processor operatively coupled to the at least one pressing tool; a memory storing instructions executable by the processor to: starting with a single bar having a first cross-sectional area, placing a work piece area of the single bar in the at least one die; and upsetting, via longitudinal movement of the single bar, the work piece area of the single bar in the at least one die, wherein the single bar is pressed into the at least one die to reduce its length; whereby the work piece area of the single bar is displaced to an increased cross-sectional area as compared to the first cross-sectional area
The foregoing is a summary and thus may contain simplifications, generalizations, and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting.
For a better understanding of the embodiments, together with other and further features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying drawings. The scope of the invention will be pointed out in the appended claims.
It will be readily understood that the details of the example embodiments, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different ways in addition to the described example embodiments. Thus, the following more detailed description of the example embodiments is not intended to limit the scope of the claims, but is merely representative of certain example embodiments.
Reference throughout this specification to “embodiment(s)” (or the like) means that a particular feature, component, step or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “according to embodiments” or “an embodiment” (or the like) in various places throughout this specification are not necessarily all referring to the same example embodiment.
Furthermore, the described features, components, steps, or characteristics may be combined in any suitable manner in different embodiments. In the following description, numerous specific details are provided to give a thorough understanding of certain example embodiments. One skilled in the relevant art will recognize, however, that aspects can be practiced without certain specific details, or with other methods, components, materials, et cetera. In other instances, well-known structures, materials, components, steps or operations are not shown or described in detail to avoid obfuscation.
Conventional manufacturing of a manifold block from an ingot/open-die forging includes a significant inefficiency in its production. The machining to create the exterior geometry, and its intersecting internal passages, generates significant material removal from the original as-forged shape. Typical material removal may exceed over one-half the mass from the initial forging to reduce its shape and produce the finished block. The machining-removal mass is rendered into the form of scrap, and is unusable to the finished product. The conventional manufacturing method may only yield one finished Fluid End per one as-melted steel ingot.
An embodiment provides an improved manufacturing method for manifold blocks through net shape forging for gas/fluid distribution blocks. Various embodiments described throughout represent methods that employ advancements in forging systems (advanced forge press installations) and forge production (advanced forge die designs), permitting the production of alloyed-steel forgings in the net shape outline of the finished manifold block product.
An input product into the net-shape forging process may be in the form of a forged or rolled alloy steel bar. The bar may be of circular or non-circular cross section. However, the cross-sectional area of the bar is less than the cross-sectional area of the final manifold block forged-shape. Through a series of program controlled upsetting and offsetting operations, the bar is gathered (upset), displaced outward from its central axis (offset), and formed into the final manifold block forged-shape.
The offset displacements of the net-shaped forging may not be of symmetrical geometry. As such, the final manifold block forged-shapes may be of more similar geometry to the finished product, yielding material savings and additional efficiencies during the final machining operations.
Concurrent with the net shape forging operation is the linear shortening of the input bar length, consumed as the material volume to provide the upset/offset formed geometries. As such, the number of consecutive final manifold block forged-shapes is limited only by the facility and commercial limitations for length of the input bar material. Multiple manifold block products may be produced from a singular input bar, significantly improving material yield from input through final product.
Improvements to conventional manufacturing of the manifold gas/fluid distribution blocks from an ingot/open-die forging provided by embodiments employing net shape forging include, but are not limited to: 1) efficiencies of material utilization when in the form of net shape forging for gas/fluid distribution blocks; 2) forging design permits minimal excess material to be removed during process machining to yield the finished manifold block; and 3) each melted steel ingot may now yield multiple rolled or forged bars, which in turn may yield multiple finished manifold block products.
Additional products that receive the benefits of improved material utilization efficiency from such net shape forging also include, but are not limited to: energy exploration components, power transfer shafting, machinery housing components, eccentric power delivery shafting, and gear interface shafting.
The illustrated example embodiments will be best understood by reference to the figures. The following description is intended only by way of example, and simply illustrates certain example embodiments.
In
An input work piece 103 for the net-shape forging process may be in the form of a forged or rolled alloy steel bar. The bar may be of circular or non-circular cross section. The cross-sectional area of the bar is less than the cross-sectional area of the final manifold block forged-shape, i.e., it is gathered up or upset to reduce its length and increase its cross-sectional area into a final net forged shape.
A cross-sectional view of the press 201 is provided in
For example, as illustrated in
Referring back to
It should be noted that the two dies 204a, 204b may be replaced with other dies or other dies may be used in combination with dies 204a, 204b. By way of non-limiting example, a triplex manifold block may be formed using two dies 204a, 204b whereas a center container die may be added between dies 204a, 204b (not explicitly illustrated) in order to elongate the overall die and form a quintuplex manifold block.
Punches 202a and 202b may also include cup features 207a, 207b (indicated at the area bounded by the dashed boxes in
The dies, e.g., 202a, may be formed in different ways, e.g., depending on the application. For example,
The end extensions on the forging illustrated in
An example method of net shape forging of fluid end(s) is illustrated in
If there are no further manifold blocks to be formed from the single bar (multiple manifold blocks may be formed), as determined at 603, a net shaped forging of the manifold block has been produced, which may be removed from the die and sent on form post processing (including machining) at 604.
If there are further manifold blocks to be formed, as determined at 603, a new area of the single bar is introduced into the die as a new work piece area at 605. Thereafter, the longitudinal movement or pressing of the single bar, with the new work piece area in the die, is performed, similar to step 602. This process may repeat until it is determined that the end of the single bar has been processed, i.e., there are no new work pieces to be processed from the single bar.
Once a manifold block is formed, either as a single manifold block or in a series of manifold blocks, it may be removed from the single bar as a net shape forged manifold block. This may be done for each new manifold block formed from the single bar, such that the work piece area of the single bar is always a terminal end of the single bar.
As will be appreciated by those having ordinary skill in the art, a press such as that illustrated herein may be automated or semi-automated. That is, a press may include a process and a memory that cooperate to execute code or instructions to move parts of the press (e.g., move a work piece area into a die, operate a punch or pressing part, position or reposition die(s), etc.) such that the single bar may be processed in an automated or semi-automated manner.
Furthermore it should be noted that while the term “bar” has been used herein, this term should be construed broadly to include any starting material shape. The bar may be circular, semi-circular, rectangular, etc. The bar starting material is of a first, smaller or reduced diameter, and has its cross sectional area or diameter increased upon upsetting and displacement, as described herein. Furthermore, the bar is pressed or upset such that its overall length or longitudinal dimension is reduced by the forging processes.
This disclosure has been presented for purposes of illustration and description but is not intended to be exhaustive or limiting. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiments were chosen and described in order to explain principles and practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
In the specification there has been set forth example embodiments and, although specific terms are used, the description thus given uses terminology in a generic and descriptive sense only and not for purposes of limitation.
Finally, any numerical parameters set forth in the specification and claim(s) are approximations (for example, by using the term “about” or the phrase “at least” and the like) that may vary depending upon the desired properties sought to be obtained by the embodiment(s). At the very least, each numerical parameter should at least be construed in light of the number of significant digits and by applying ordinary rounding.
This application claims priority to U.S. Provisional Application No. 62/096,187 filed on Dec. 23, 2014 entitled “NET SHAPED FORGING FOR FLUID ENDS AND OTHER WORK PIECES” which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2159329 | Jackson | May 1939 | A |
3867832 | Rut | Feb 1975 | A |
4838062 | Prenn | Jun 1989 | A |
5842267 | Biederman | Dec 1998 | A |
6571596 | Lindell | Jun 2003 | B1 |
20060254338 | Otaki | Nov 2006 | A1 |
20060260380 | Otaki | Nov 2006 | A1 |
20070107484 | Otaki | May 2007 | A1 |
20120138199 | Greubel | Jun 2012 | A1 |
20130195701 | Skurdalsvold et al. | Aug 2013 | A1 |
20140083541 | Chandrasekaran et al. | Mar 2014 | A1 |
20140238099 | Kalyani | Aug 2014 | A1 |
20150128416 | Fukuyasu | May 2015 | A1 |
20150352627 | Hood | Dec 2015 | A1 |
20160346828 | Kuwahara | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2242378 | Oct 1997 | GB |
2013050935 | Apr 2013 | WO |
Entry |
---|
Extended European Search Report for European Application No. EP15200598.9, (dated May 2016) (3 pages). |
Number | Date | Country | |
---|---|---|---|
20160175918 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
62096187 | Dec 2014 | US |