The present invention relates to a mobile terminal and handovers from an IP network to a cellular network. More particularly, the present invention relates to a network-adaptive function control method for a dual-mode mobile terminal.
Wireless Application Protocol (WAP) is an international standard for wireless applications such as e-mail, messenger, picture exchange, and music file download applications. However, WAP is disadvantageous with regard to issues such as a slow connection speed, inconvenient user interface, and a high per-packet cost, thereby rendering WAP impractical for high traffic applications.
Recently, portable Internet service technologies have emerged that are expected to overcome at least some of the aforementioned problems by employing dual communication technologies, such as cellular/IP dual-mode technologies, in a single handheld casing. However, the current cellular/IP dual-mode mobile terminal has a drawback in performance in that a handover from an IP network to a cellular network causes unwanted cellular network utilization cost, because of the departure from a portable Internet service domain.
The present invention has been made in part in an effort to solve at least some of the above-mentioned problems, and to provide some of the advantages described herein below. A network-adaptive function control method for a dual-mode mobile terminal that is capable of controlling a handover between heterogeneous wireless network domains, i.e. the cellular and IP network domains.
Also, the present invention provides a network-adaptive function control method for a dual-mode terminal that is capable of restricting utilization of a service in the cellular network domain, which is costly in a cellular network domain, by using a cost-free IP network domain, thereby resulting in significant cost savings.
In an exemplary aspect of the present invention, the above and other objects are accomplished by a network-adaptive function control method for a dual-mode mobile terminal supporting communication via first-type and second-type networks. The network-adaptive function control method includes registering at least one function as a network-adaptive function; determining, when a function is requested to be activated, whether the requested function is the network-adaptive function; determining, if the requested function is the network-adaptive function, whether the mobile terminal is in the first-type network; and activating, if the mobile terminal is in the first-type network, the requested function in association with the first-type network.
The above and other exemplary objects, features and advantages of the present invention will be more apparent from the following detailed description in conjunction with the accompanying drawings, in which:
Exemplary embodiments of the present invention are described with reference to the accompanying drawings in detail. The same reference numbers are used throughout the drawings to refer to the same or like parts. Detailed descriptions of well-known functions and structures incorporated herein may be omitted to avoid obscuring the appreciation by a person of ordinary skill in the subject matter of the present invention.
In the following descriptions, the cellular network represents a Global System for Mobile communications (GSM), Code Division Multiple Access (CDMA), Universal Mobile Telecommunications System (UMTS), and/or any other type of cellular network. Also, the mobile terminal located in the cellular network accesses a data server using the WAP.
The term “data communication information” refers to the information used for transferring an ongoing communication session from a network domain to another one when the mobile terminal crosses the boundary between the two network domains.
The data communication information typically includes items such as communication progress status, source address, data name, and storage path in the mobile terminal.
In the following descriptions, it is assumed that the service charges and authentication information for both the cellular and mobile IP network are managed by a single operator. However, a person of ordinary skill in the art will appreciate that the present invention is not limited to the cellular and mobile IP network operator. The IP network represented typically includes networks such as a wireless local area network (WLAN), a wireless broadband (WiBro), etc.
The mobile terminal is enabled by an Unlicensed Mobile Access (UMA) that provides access to mobile services over unlicensed spectrum technologies Since the handover between the IP network and the cellular network is typically similar to that between the WLAN and GSM/GPRS/UMTS under the control of the UMA Network Controller (UNC), the present invention can be adapted for the interoperability between GSM/EDGE Radio Access Network (GE-RAN) and the WLAN specified in the UMA standard. In order to simplify the explanation, the portable Internet service and UMA network ranges is called the first domain and the cellular network is called the second domain in the following embodiments.
Referring to
The mobile terminal 100 estimates the received signal strength from the base station of the portable IP network 200 and determines whether the mobile terminal 100 has departed (i.e. moved away) from the portable IP network 200 on the basis of the received signal strength.
The mobile terminal 100 accesses the data server 400 through one of the portable IP network 200 and the cellular network 300.
In order to enable communication with the portable IP network 200 and the cellular network 300, the mobile terminal is provided with an IP network interface module and a cellular network interface module.
Still referring to
The portable IP network 200 provides the mobile terminal 100 located in its radio coverage with a wireless Internet access and communication services. That is, the portable IP network 200 connects the mobile terminal 100 located in its radio coverage to the data server 400.
The portable IP network 200 is typically defined, for example, by a portable IP network base station 202. The portable IP network base station provides an access service for the mobile terminal 100 to the data server 400.
The cellular network 300, via base station 302, connects the mobile terminal 100 to the data server 400 when the mobile terminal 100 has departed (left) from the portable IP network 200. A person of ordinary skill in the art will appreciate that, in a non-limiting example, as the received signal strength continues to be reduced, a handover may preferably occur before the mobile terminal is completely out of the range of the portable IP network so there is no loss of communication.
The data server 400 stores various data such as game, still and motion pictures, and MP3 files and allows the mobile terminal 100 to download the data. The data server 400 can be, for example, a contents provider server and an e-mail server.
Referring to the examples shown in
The portable IP interface unit 110 provides communication with the portable IP network 200 such that the mobile terminal 100 downloads data from the data server 400 via the portable IP network 200.
The display unit 120 can be implemented with a display such as, for example, liquid crystal display (LCD) and displays various data and operational status of the mobile terminal on a display screen. A person of ordinary skill in the art should understand and appreciate that any type of display screen suitable for a mobile terminal can also be used.
In this exemplary embodiment, particularly, the display unit 120 displays a menu screen listing function items such that a user can select a function as the IP network-friendly function to be activated only in the portable IP network domain. The control unit 160 configures the mobile terminal such that the IP network-friendly function selected on the menu screen activates in the portable IP network domain.
The input unit 130 can be implemented with at least one of a touchscreen, a touchpad and stylus, and/or a keypad, each providing a plurality of function keys and alphanumeric keys. The input unit 130 also transfers the signals generated by a key input to the control unit 160. It is also possible that at least some of the functions of the input unit could be voice activated.
In this exemplary embodiment, particularly, the input unit 130 is implemented to permit the selection of functions in association with function items listed on the menu screen by key manipulation.
The storage unit 140 stores application programs for operating the mobile terminal and data generated during the operations.
In this exemplary embodiment, particularly, the storage unit 140 stores the data communication information 141. The data communication information 141 includes the progress status, source address, data name, and storage path in the mobile terminal.
Still referring to
In the exemplary embodiment shown in
The control unit 160 controls general operations of the mobile terminal 100.
Still referring to
Referring to
The IP network-friendly functions can be grouped, for example, by the type of communication, such that the group of data communication functions can be enabled or disabled according to the user setting.
Referring to
At step (S421), a decision is made, in that if the function key input is detected, the control unit 160 determines whether the function indicated by the function key is registered as an IP network-friendly function. In order to determine whether the function is registered as an IP network-friendly function, the control unit 160 compares the sequence generated by the function key input with reference sequences of the IP network-friendly functions registered through the IP network-friendly function setting screen of
If the function indicated by the function key input is not an IP network-friendly function (the answer to step 421 being negative), the control unit 160 performs the function (S441).
However, if the function indicated by the function key input is determined as one of the IP network-friendly functions (the answer to step 421 being affirmative), the control unit 160 determines whether the mobile terminal is located within the portable IP network domain (S431).
If the mobile terminal is located within the portable IP network domain, the control unit 160 performs the IP network-friendly function requested by the function key input (S411).
Whether the mobile terminal is located within the portable IP network domain is determined on the basis of the signal strength received from the base station of a portable IP network.
If the mobile terminal 100 is not located within the portable IP network domain, the control unit 160 rejects performing the IP network-friendly function requested by the function key input and repeats step S401.
With reference to the example of the IP network-friendly function setting screen 301 of
Accordingly, to summarize, if a messenger function activation key is input at step S411, the control unit 160 determines whether the messenger function is one of the IP network-friendly functions at step S421. Since the messenger function is the IP network-friendly function as shown in
If it is determined that the mobile terminal 100 is within the portable IP network domain, the control unit 160 activates the messenger function and otherwise repeats step S401.
Referring to
The control unit 160 monitors the communication channel with the portable IP network and determines whether the mobile terminal 100 has departed from the area of the portable IP network domain (S511). If the received signal strength is less than a threshold, the control unit 160 determines that the mobile terminal is departed from the portable IP network domain. The monitoring from the control unit 160 may be either periodic or continuous.
If at (S511) it is determined that the mobile terminal 100 has departed from the range of the portable IP network domain, then at (S521) the control unit 160 stores the data communication information of the data communication function and determines whether the data communication function is registered as an IP network-friendly function (S531).
The data communication information includes, for example, the communication progress status, source address, data name, and storage path in the mobile terminal. In the case of the download function, the data communication information includes the name of the file, address of the server providing the file, download progress, etc.
At (S541), if the data communication function is registered as an IP network-friendly function, the mobile terminal 100 ends the data communication function. The data communication information can then be used to restart the IP network-friendly function in consideration of the progress of the communication in the previous session, when the mobile terminal 100 enters the portable IP network domain again. In one exemplary aspect of the present invention, when the mobile terminal returns to within the portable IP network the mobile terminal 100 may display a prompt asking the user if they want to continue with previous communication, such as continuing to finishing downloading the information. It could be a period of time before the mobile terminal has returned to range to use the portable IP network and the downloaded information may no longer be relevant or desired by the user. The mobile terminal may also display a prompt asking the user whether the partially download information should be erased to free up storage.
If the data communication function is not registered as an IP network-friendly function, the mobile terminal performs a handover to the cellular network (S551) and then maintains the data communication function (S561).
Although the procedure is depicted to end with the IP-network friendly function termination, the handover process and function restart process (S551 and S561) can be performed with a specific option even outside the portable IP network domain.
According to the present invention, the handover from the portable IP network to the cellular network is formed seamlessly such that the communication breakage is not perceived.
Although exemplary embodiments of the present invention are described in detail hereinabove, it should be clearly understood that many variations and/or modifications of the basic inventive concepts herein taught which may appear to those skilled in the present art will still fall within the spirit of the present invention and the scope of the appended claims.
As described above, the network-adaptive function control method for a dual-mode mobile terminal according to the present invention allows registering portable IP network-friendly functions that are served only in a portable IP network domain but not in the cellular network domain, thereby restricting handover to the costly cellular network, resulting in a reduction of communication costs. Also the registering of at least one network-adaptive function may include providing a changeable default regarding one of (i) prompting of resumption of the network-adaptive function is desired, and (ii) automatically resuming the network-adaptive function upon a detected return of the mobile terminal to within a communicative range of the first-type network.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0104280 | Oct 2006 | KR | national |
This application is a continuation application of prior application Ser. No. 16/667,291, filed on Oct. 29, 2019, which application is a continuation application of prior application Ser. No. 14/584,321, filed on Dec. 29, 2014, which has issued as U.S. Pat. No. 10,499,288, on Dec. 3, 2019, which is a continuation of a prior application Ser. No. 14/253,262, filed on Apr. 15, 2014, which has issued as U.S. Pat. No. 10,045,258, on Aug. 7, 2018, which is a continuation of prior application Ser. No. 11/977,316, filed on Oct. 24, 2007, which has issued as U.S. Pat. No. 8,805,436, on Aug. 12, 2014, and was based on and claimed priority under 35 U.S.C. § 119(a) of a Korean patent application number 10-2006-0104280, filed on Oct. 26, 2006, in the Korean Intellectual Property Office, the entire disclosures of each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6735432 | Jarett et al. | May 2004 | B1 |
7069330 | McArdle et al. | Jun 2006 | B1 |
7167710 | Thakkar et al. | Jan 2007 | B2 |
7996505 | Krantz et al. | Aug 2011 | B2 |
20040054650 | Chun | Mar 2004 | A1 |
20040068653 | Fascenda | Apr 2004 | A1 |
20040127251 | Thakkar et al. | Jul 2004 | A1 |
20040190493 | Yao et al. | Sep 2004 | A1 |
20040267812 | Harris et al. | Dec 2004 | A1 |
20050255879 | Shi et al. | Nov 2005 | A1 |
20060030293 | Karaoguz et al. | Feb 2006 | A1 |
20060045069 | Zehavi | Mar 2006 | A1 |
20060121891 | Jagadeesan et al. | Jun 2006 | A1 |
20060205392 | Jagadeesan et al. | Sep 2006 | A1 |
20060209798 | Oikarinen et al. | Sep 2006 | A1 |
20060209821 | Jung | Sep 2006 | A1 |
20060286980 | Hua | Dec 2006 | A1 |
20060291419 | McConnell et al. | Dec 2006 | A1 |
20070091839 | Abdelhamid | Apr 2007 | A1 |
20070133665 | Litwin | Jun 2007 | A1 |
20070173283 | Livet et al. | Jul 2007 | A1 |
20070211674 | Ragnar Karlberg et al. | Sep 2007 | A1 |
20070217349 | Fodor et al. | Sep 2007 | A1 |
20070260691 | Kallqvist et al. | Nov 2007 | A1 |
20080056155 | Lahtiranta et al. | Mar 2008 | A1 |
20080062881 | Martin et al. | Mar 2008 | A1 |
20110026436 | Karaoguz et al. | Feb 2011 | A1 |
20110029605 | Barker | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
10-2006-0131364 | Dec 2006 | KR |
10-2007-0019443 | Feb 2007 | KR |
10-0706981 | Apr 2007 | KR |
03001762 | Jan 2003 | WO |
2007024693 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20220030471 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16667291 | Oct 2019 | US |
Child | 17494306 | US | |
Parent | 14584321 | Dec 2014 | US |
Child | 16667291 | US | |
Parent | 14253262 | Apr 2014 | US |
Child | 14584321 | US | |
Parent | 11977316 | Oct 2007 | US |
Child | 14253262 | US |