Aspects of the present invention are directed toward a system for providing information of interest to users of a network. Various aspects of the invention are particularly suitable for monitoring the configuration and usage of devices in a small network, and then providing information relevant to the network.
Computers have become commonplace tools in modern society, and many businesses and residences now have one or more computing devices. In a small business, for example, some employees may each use a desktop computer or laptop computer. Some employees may even use more portable computers such as personal digital assistants or “smart” wireless telephones. Similarly, with a family sharing a residence, each family member may have his or her personal computer, or the family members may share one or more computers. Further, both small businesses and personal residences may include various computing appliances that incorporate or otherwise interact with computers. For example, a home residence may include a refrigerator, a “Voice over Internet Protocol” telephone, a digital music server, a digital camera, or an environmental control system that includes or interacts with a computer.
In order to optimize the use and flexibility of these computing devices, a business or family may link them together to form a small private network. Typically, each of the computing devices is connected to a router through a network adapter. The router then “routes” packets of data to and from each computing device. With this type of small private network, the router can in turn be connected to one or more larger private networks or a public network, such as the Internet. By sending and receiving messages through the router, each networked computing device may then communicate with computing devices outside of the private network. In this arrangement, the router serves as a “gateway” device that provides a gateway to the electronic world outside of the private network.
While this type of small or “home” network can provide enhanced utility for its member computing devices, even a small network can be very difficult for a non-technical person to set up and maintain. Accordingly, various software developers have created tools to assist novice users in setting up or managing a small network. Conventionally, these tools were embedded in a larger software product, such as an operating system or a utility application. More recently, however, Pure Networks of Seattle, Wash. has developed a dedicated software application tool for managing small networks. This software application tool, available from Pure Networks under the name NETWORK MAGIC™, is described in detail in U.S. Provisional Patent Application No. 60/634,432, filed Dec. 7, 2004, entitled “Network Management” and naming Steve Bush et al. as inventors, and U.S. patent application Ser. No. 11/297,809, filed on Dec. 7, 2005, entitled “Network Management” and naming Steve Bush et al. as inventors, which applications, along with U.S. Provisional Patent Application No. 60/789,522, filed Apr. 4, 2006, entitled “Network Management,” U.S. patent application Ser. No. 10/916,642, filed on Aug. 10, 2004, entitled “Service Licensing And Maintenance For Networks,” U.S. patent application Ser. No. 11/457,783, filed on Jul. 14, 2006, entitled “Network Device Management,” and U.S. patent application Ser. No. 11/457,763, filed on Jul. 14, 2006, entitled “Network Device Setup Utility,” are incorporated entirely herein by reference.
Because small network users may often be unsophisticated regarding computing devices, they may not be obtaining the most utility from their network. For example, while a network owner may employ a wireless router to establish the network, he or she may not fully appreciate the need for encryption to maintain the security of the network. Similarly, the network owner may not appreciate the need for virus protection or a firewall for the network.
An embodiment includes a system for diagnosing the configuration and use of devices in an interconnected network. The system may be used to analyze a network and/or discrete network devices, and then suggest steps that a user may take to improve the performance or usability of the network and/or device.
Preferred and alternative embodiments of the present invention are described in detail below with reference to the following figures:
An embodiment of the invention includes the power to gather information from a home network about the software and hardware environments therein and then dynamically apply on a server side filtering and heuristics that are very flexible and can be adjusted at any time, to render personally relevant results to the home-network user.
Network Environment
As previously noted, various aspects of the invention may be employed with a small network.
Each of these networked devices 103 communicates, either directly or indirectly, with a gateway device 105. In turn, the gateway device 105 typically can communicate with an external device or network. An external network may be another private network, or it may be a public network, such as the Internet 107. Thus, a gateway device is a device that can steer electronic data from one network to another network. Typically, a gateway device serves as a node on two incompatible networks (i.e., networks that use different communication protocol formats) and it can convert data from one network's communication protocol format into the other network's communication protocol format. As used herein, the term “small network” refers to a network made up of networked devices that each employ the same network address to communicate with the same gateway device, together with the gateway device itself.
The network devices 103 may be connected to the gateway device 105 using any suitable communication medium. For example, in the illustrated network 101, the desktop computers 103B are connected to the gateway device 105 through a hard-wired connection 109A (such as an Ethernet cable), while the laptop computer 103A is connected to the gateway device 105 through a IEEE 802.11 wireless connection 109B and the personal digital assistant 103C is connected to the gateway device 105 through a Bluetooth wireless connection 109C.
It should be appreciated that, as used throughout this application, the term “connect” and its derivatives (e.g., connection, connected, connects) includes both direct and indirect connections. Thus, with the network illustrated in
Typically, the gateway device 105 can be a router. As will be appreciated by those of ordinary skill in the art, a router routes data packets from the networked devices 103 to an external device or network. With some networks, however, the gateway device 105 alternately may be a computer performing router functions, a hub, a bridge, or “layer-3” switch. As will also be appreciated by those of ordinary skill in the art, the computing devices or “nodes” making up the network 101 can communicate with the gateway device 105 using one or more defined communication protocols, such as the Transmission Control Protocol (TCP) and the Internet Protocol (IP).
With these communication protocols, each computing device 103 and gateway device 105 in the network 101 can be assigned a logical address. For example, if the network 101 is connected to the Internet 107 through an Internet service provider, the Internet service provider can assign the gateway device 105 a logical Internet Protocol (IP) address. The Internet service provider may also provide the gateway device 105 with a block of logical Internet Protocol (IP) addresses for the gateway device 105 to reassign to each network device 103. Alternatively, the gateway device 105 can itself assign a range of logical Internet Protocol (IP) addresses to each network device 103, and then use a translation operation (e.g., a Network Address Translation (NAT) operation) to route data packets that it receives to the appropriate network device 103. This type of logical address typically is unrelated to the particular computing device to which it is assigned. Instead, a logical address identifies the relationship of that computing device to other computing devices in the network.
In addition to a logical address, each network device typically can also have a physical address. For example, most computing devices capable of communicating over a network, including routers, employ a network adapter with a media access control (MAC) address. This type of physical address is assigned to a network adapter according to standards (referred to as Project 802 or just 802 standards, which are incorporated entirely herein by reference) set forth by the Institute of Electrical and Electronic Engineers (IEEE). More particularly, these standards define a 48-bit and 64-bit physical address format for network devices. The first 14 bits of the address are assigned by the IEEE Registration Authority, and uniquely identify the manufacturer of the network adapter. The remaining bits are then assigned by the manufacturer to uniquely identify each network adapter produced by the manufacturer. Consequently, the physical address of a network adapter is unique across all networks unless manually changed by the user. The physical address is unique to the network adapter, and is independent of a computing device's relationship to other computing devices in a network. Thus, the physical address does not change over time or between uses in different networks.
Network Device Environment
A network may include both virtual devices and physical devices. Physical network devices can then include both computer devices and computing appliance devices. A “computer” may generally be characterized as a device that can be programmed to perform a number of different, unrelated functions. Examples of computers can thus include programmable personal computers, such as desktop computers and laptop computers. In addition, programmable media-purposed computers (e.g., “media adapters and servers”), network attached storage devices, programmable entertainment-purposed computers (e.g., video game consoles), some programmable personal digital assistants and some telephones (such as wireless “smart” telephones) may be characterized as computers in a network. A “computing appliance” then may generally be characterized as a device that is limited to primarily performing only specific functions. Examples of a computing appliance may thus include, for example, printers, cameras, telephones that exchange voice information in data packets (sometimes generically referred to as “Voice over Internet Protocol (VoIP) telephones or telephone adapters), digital video recorders, televisions, voice over Internet protocol (VoIP) adapters, print servers, media adapters, media servers, photo frames, data storage servers, routers, bridges and wireless access points.
As will be appreciated by those of ordinary skill in the art, there may be no clear defining line between “computer” network devices and “computing appliance” network devices in a network. For example, a sophisticated print server may be programmable to additionally or alternately function as a data storage server, while a programmable media-purposed computer or programmable personal digital assistant may have restricted functionality due to limited memory, input devices or output devices. Accordingly, as used herein, the term “computer” can refer to any network device that is capable of implementing a network management tool according one or more aspects of the invention, such as a personal programmable computer. The term “computer appliance” then can refer to a network device that typically cannot implement a network management tool according to at least one aspect of the invention without additional augmentation. The term “computing device” is then used herein to include both computers and computing appliances.
With conventional networks located in a home, small office or other local environment, a network management tool according to various aspects of the invention can be implemented on a programmable personal computer, such as a desktop or laptop computer. A general description of this type of computer will therefore now be described.
An illustrative example of such a computer 201 is illustrated in
The processing unit 205 and the system memory 207 are connected, either directly or indirectly, through a bus 213 or alternate communication structure to one or more peripheral devices. For example, the processing unit 205 or the system memory 207 may be directly or indirectly connected to additional memory storage, such as the hard disk drive 215, the removable magnetic disk drive 217, the optical disk drive 219, and the flash memory card 221. The processing unit 205 and the system memory 207 also may be directly or indirectly connected to one or more input devices 223 and one or more output devices 225. The input devices 223 may include, for example, a keyboard, touch screen, a remote control pad, a pointing device (such as a mouse, touchpad, stylus, trackball, or joystick), a scanner, a camera or a microphone. The output devices 225 may include, for example, a monitor display, television, printer, stereo, or speakers.
Still further, the computing unit 203 can be directly or indirectly connected to one or more network interfaces 227 for communicating with a network. This type of network interface 227, also sometimes referred to as a network adapter or network interface card (NIC), translates data and control signals from the computing unit 203 into network messages according to a communication protocol, such as the Transmission Control Protocol (TCP), the Internet Protocol (IP), and the User Datagram Protocol (UDP). These protocols are well known in the art, and thus will not be described here in more detail. An interface 227 may employ any suitable connection agent for connecting to a network, including, for example, a wireless transceiver, a power line adapter, a modem, or an Ethernet connection.
It should be appreciated that one or more of these peripheral devices may be housed with the computing unit 203 and bus 213. Alternately or additionally, one or more of these peripheral devices may be housed separately from the computing unit 203 and bus 213, and then connected (either directly or indirectly) to the bus 213. Also, it should be appreciated that both computers and computing appliances may include any of the components illustrated in
It should be noted that, while a general description of a programmable personal computer was provided above, various aspects of the invention may be implemented on any desired device capable of supporting the invention. For example, with some aspects of the invention, the network management tool may be implemented on special purposed programmable computers, such as a programmable media or entertainment-purposed computers, or personal digital assistants. Accordingly, the above description of a programmable personal computer should be understood as illustrative rather than limiting.
A computing appliance may have any combination of the components of the computer 201 discussed above. More typically, however, a computing appliance can be simpler to optimize the performance of a specific function, and thus may have only a subset of these components. For example, a computing appliance may have only a computing unit 203, an input device 223 or an output device 225, and a network interface 227. As will be apparent from the following description, however, a computing appliance can have sufficient computing resources to implement a desired embodiment of the invention in order to provide information to or receive information from a client operating on a separate computing device.
Network Management Tool
As will be described in further detail below, the network management tool 301 allows a user to monitor the status of devices on an electronic network, such as a network employing the Ethernet protocol located in a home or small business. The network management tool 301 may also allow a user to administer various tasks associated with the network or devices in the network. To perform these functions, the gateway service module 303 detects and identifies the gateway, which typically is a router, through which the network is connected to other networks. The gateway service module 303 also generates a unique name for the gateway.
Once the gateway for the network has been detected, identified and named, the network management services module 305 obtains and stores information relating to the various devices in the network. More particularly, the network management services module 305 detects each device in the network. For example, the network management services module 305 can identify and detect other computers, networked printers and print servers, networked scanners, networked cameras, VoIP telephones and VoIP telephone adapters, networked digital video recorders, networked televisions, data storage servers, bridges, networked game consoles, media adapters, networked photo frames, wireless access points and network adapters for each of these other devices. It then queries those devices, to identify each network device and to collect information relating to each device. For example, the network management services module 305 may determine one or more properties for a network device, such as its Media Access Control (MAC) address, its Internet Protocol (IP) address, and the other network devices to which it is connected. The network management services module 305 also detects and identifies devices locally connected to the computer 201, such as local printers, local cameras, local scanners, and local storage devices.
After collecting this network information, the network management services module 305 constructs a network information data structure to organize and store the information collected by both the gateway service module 303 and the network management services module 305. The network management services module 305 can use the network services in the network information services module 1004 to interact with the services provided by the local operating system for gathering device, network, and operation system status and other statuses. For example, with some aspects of the invention, the network management services module 305 creates a markup language file storing the collected network information. More particularly, the network management services module 305 can create a data object for each network device. The data object may be represented in a markup language, such as the extensible markup language (XML). A data object for a device may include an identifier for the device and the determined properties for that device. The data objects for each device can then be organized in a hierarchical fashion into a single data file.
In addition to determining and storing the properties of network devices, the network management services module 305 also communicates with implementations of the network management tool 301 on other computers in the network. More particularly, the network management services module 305 detects instances of the network management tool 301 running on other computers in the network. The network management services module 305 then establishes a communication channel with those instances of the network management tool 301 that have the proper credentials. In this manner, the instances of the network management tool 301 sharing the proper credentials form an association of trusted network management tools 301. The network management services modules 305 can then exchange determined device properties over the communication channels. By exchanging the device properties, each instance of the network management tool 301 can maintain a current copy of a data structure containing the device properties of all of the devices in the network.
The network management application module 307 then coordinates the information managed by the gateway service module 303 and the network management services module 305. More particularly, the network management application module 307 initiates a call to both the gateway service module 303 and to the network information service module 305 to begin their services. The network management application module 307 also provides one or more user interfaces displaying the information obtained and stored by the network management services module 305. These services may or may not also be made available to other applications through programming interfaces.
A user may employ such an interface to monitor the status of the network and the network devices. For example, with some aspects of the invention, the network management application module 307 employs the connection information stored in the network information data structure to create a graphical map of the network. The map may include a graphical icon representing each device, and another graphic to represent connections between the devices. It may, for example, use one type of icon to indicate a wired connection, and another type of icon to indicate a wireless connection. The map may also show the status of the various devices in the network, such as whether a device is presently connected to the network.
With some aspects of the invention, the network management application module 307 may provide interfaces that allow the user to administer one or more functions related to the operation of the network. For example, the network management application module 307 may provide a user interface that permits a user to modify the contents in the network information data structure maintained by the network management services module 305. As noted above, this change may subsequently be shared with other instances of the network management tool 301 in a trusted association, thereby propagating the change throughout the network. The network management application module 307 may also provide a user interface that allows a user to share one or more resources on the computer 201 with other computers in the network. For example, a user interface provided by the network management application module 307 may allow a user to share a data resource, such as a folder or data file. Alternately or additionally, a user interface provided by the network management application module 307 may allow a user to share a physical resource, such as a printer, scanner, or a storage device.
With some aspects of the invention, the various monitoring and administration functionality available to the user may be provided through a single user interface, such a map of the network. Alternately, the network management application module 307 may provide this functionality through multiple user interfaces that can be selected by a user.
Examples and aspects of network management tools that may be employed according to various implementations of the invention are discussed in more detail in, for example, U.S. patent application Ser. No. 11/467,534 filed on Aug. 25, 2006, entitled “Network Administration Tool Employing A Network Administration Protocol” and naming Brett Marl as inventor, which application in turn claims priority to U.S. patent application Ser. No. 11/297,809 filed on Dec. 7, 2005, entitled “Network Management” and naming Steve Bush et al. as inventors, which application in turn claims priority to U.S. Provisional Patent Application No. 60/634,432, filed Dec. 7, 2004, entitled “Network Management” and naming Steve Bush et al. as inventors, each of which applications are incorporated entirely herein by reference. U.S. patent application Ser. No. 11/457,783, filed Jul. 14, 2006, entitled “Network Device Management” and naming Brett Marl as inventor is incorporated entirely herein by reference as well.
Advisor Module
As shown in
As will be discussed more fully hereinafter, or as otherwise discussed in the patent applications incorporated by reference herein, one or more instantiations of a network management tool 301 implemented on computing devices (not shown in
In response to receiving information from the transmission module 411, the advisor module 403 provides a set of services for recommending new products or services to the proprietor of the home or other small network 101. Specifically, the advisor module 403 employs heuristics to recommend, via email, secure web site, or other appropriate presentation mode, new products or services based on the configuration and usage of resources within the network 101. The heuristics utilized by the advisor module to recommend products or services may be downloaded by the advisory tool 401 from a third party on the Internet 107.
For example, the advisor module 403 may employ a set of heuristics to decide whether or not to provide the network owner with a recommendation to add a network media adapter to the network 101. As known in the art, a network media adapter enables viewing and listening to music, photos, and videos located on a network device on the user's television or stereo. The advisor module 403 may execute one or more heuristics to analyze the network information collected and provided by the network management tools 301 and to determine whether or not the network 101 already includes a media adapter. Further, the advisor module 403 may analyze the collected network information to count the number of files the user has shared on the network 101. If the user has a predetermined threshold number of files shared, and no media adapter exists on the network 101, then the advisor module 403 may provide the network owner (via, e.g., a user interface 501 (
Additionally, the advisor module 403 may analyze the product versions of the network devices (
By way of further example, and as described in Table 1 below, the collection module 409 can determine real-time performance characteristics of the network 101 to enable the advisor module 403 to suggest hardware improvements to the network, determine existing software inventory installed on network devices to enable the advisor module to recommend supplementary/complementary software packages or services, determine an inventory of hardware devices on the network to enable the advisor module to recommend supplementary/complementary hardware devices, and/or determine local disk, resource or file system information associated with the network to enable the advisor module to recommend corresponding solutions.
In an embodiment, the advisory tool 401 stores the heuristics information on the server 407 in an SQL database. This enables the advisor module 403 to build recommendation rules on the fly, which may involve construction of complex SQL queries to extract the data.
In an embodiment of the invention, the user interface 501 providing the recommendation information may include branding of one or more manufacturers offering products that may be part of a solution to any deficiency in the network 101 diagnosed by the advisory tool 401. Additionally, the recommendations may include the brand of the distributor of the network management tool 301. Additionally, the advisor module 403 may track metrics pertaining to the effectiveness of a recommendation displayed to the proprietor of the network 101. The metrics may include, for example, the number of impressions (i.e., views of the recommendation), the amount of time the user spent viewing the recommendation, and the number of times the user clicked on the recommendation.
In addition to specific recommendations for products or services, the advisor module 403 may also provide more general information that may be of interest to the user of the network. For example, if the advisor module 403 determines that the network 101 does not include a wireless router, then the advisor module 403 may provide the user with one or more RSS feeds, online articles, or other information discussing the pros and cons of the use of wireless routers, and/or instructions for setting up a wireless router. Alternately or additionally, the advisor module 403 may provide the user with a link to one or more online catalogs that sell a recommended product or service.
An embodiment of the interface 501 includes featured articles, related purchases, general RSS feeds and specific RSS feeds. When the interface 501 is being viewed, it may have a “keyword context.” This keyword may be the result of a user-supplied query, may have come from user selection of a featured article, or may pertain to one or more components that the advisor module 403 determines are included in or absent from the network 101. For example, in the case where a user switches to the interface 501, the advisor module 403 can select one of the recommendations in random rotating order (i.e., rotating recommendations). The interface 501 may thus display a featured article and/or some associated keywords pertaining to the recommendation. Alternatively or additionally, in the case where the user enters a search term into the search box, such as “printer” or “wireless network”, these keywords can be relevant for the context such that a featured article and/or some associated keywords are displayed. In addition to offering the user rotating recommendations based on their network, the advisory tool 401 has the ability to aggregate content from multiple online locations and show that content in the context in which the user is searching.
This keyword context can then be applied to other content feeds, and these feeds can then be filtered on that context for relevant search results. For example, if the context is “network storage devices,” then the “Related Purchases” section can show a selection of products available for purchase; the General RSS Feeds section can show relevant industry articles or blog posts about network storage devices and such reviews; and finally the Specific RSS feeds can show content authored by a blog and/or support team associated with provision of the advisor module 403 and that may be relevant (e.g., in this case—how does the advisory tool 401 function with network storage devices).
At a block 610, information characterizing a remote network is collected from the remote network. The remote network includes at least one electronic device, such as a computer. In an embodiment, this information collection involves providing to the remote network a network management tool executable on at least one electronic device of the remote network. For example, the administrators of the server 407 may provide the tool 301 to the user of the network 101. As such, the tool 301 may cooperate with devices on the network 101 to collect data and information (e.g., network devices, software inventory, etc.) described herein.
At a block 620, a deficiency associated with the remote network is automatically determined based on the collected information. For example, and as discussed above, upon receiving data from the tool 301, the advisor module 403 can determine hardware and/or software missing from the network 101 that would otherwise optimize the performance and/or utility of the network.
At a block 630, a report suggesting a remedy to the deficiency is automatically generated. For example, upon ascertaining any deficiencies in the network 101, the advisor module 403 can prepare a report recommending hardware and/or software that would optimize the performance and/or utility of the network. In generating the report, the advisor module 403 may apply a set of heuristics to the collected information.
At a block 640, the report is automatically provided to a user. For example, once the report is prepared, the advisory tool 401 may send the report to a user's email address. In an embodiment, this report provision may involve providing the report to the user via a web page accessible by the user. In another embodiment, this report provision may involve providing the report to the user via a window generated by a desktop application, such as, for example, an interface similar to the interface 501 illustrated in
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as described herein.
This application claims priority from U.S. Provisional Patent Application No. 60/949,610, filed Jul. 13, 2007, entitled “NETWORK ADVISOR,” which is hereby incorporated by reference in its entirety as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
5383178 | Unverrich | Jan 1995 | A |
5396485 | Ohno et al. | Mar 1995 | A |
5768483 | Maniwa et al. | Jun 1998 | A |
5774667 | Garvey et al. | Jun 1998 | A |
5974237 | Shurmer et al. | Oct 1999 | A |
5978568 | Abraham et al. | Nov 1999 | A |
6006272 | Aravamudan et al. | Dec 1999 | A |
6023723 | McCormick et al. | Feb 2000 | A |
6456306 | Chin et al. | Sep 2002 | B1 |
6530018 | Fleming | Mar 2003 | B2 |
6584074 | Vasamsetti et al. | Jun 2003 | B1 |
6631118 | Jones | Oct 2003 | B1 |
6678250 | Grabelsky et al. | Jan 2004 | B1 |
6778505 | Bullman et al. | Aug 2004 | B1 |
6801941 | Stephens et al. | Oct 2004 | B1 |
6892245 | Crump et al. | May 2005 | B1 |
6954785 | Martin et al. | Oct 2005 | B1 |
6965614 | Osterhout et al. | Nov 2005 | B1 |
6980556 | Vimpari | Dec 2005 | B2 |
7020701 | Gelvin et al. | Mar 2006 | B1 |
7020720 | Donahue et al. | Mar 2006 | B1 |
7080141 | Baekelmans et al. | Jul 2006 | B1 |
7111054 | Lo | Sep 2006 | B2 |
7155493 | Weber | Dec 2006 | B1 |
7177957 | Vance | Feb 2007 | B2 |
7200551 | Senez | Apr 2007 | B1 |
7240106 | Cochran et al. | Jul 2007 | B2 |
7269653 | Mentze et al. | Sep 2007 | B2 |
7283517 | Yan et al. | Oct 2007 | B2 |
7319873 | Zhang et al. | Jan 2008 | B2 |
7337910 | Cartmell et al. | Mar 2008 | B2 |
7340512 | Cochran et al. | Mar 2008 | B2 |
7388839 | Chafle et al. | Jun 2008 | B2 |
7392310 | Motoyama et al. | Jun 2008 | B2 |
7421466 | Haines | Sep 2008 | B2 |
7460546 | Anderson, IV | Dec 2008 | B2 |
7457737 | Patiejunas | Jan 2009 | B2 |
7475133 | Nuggehalli | Jan 2009 | B2 |
7499999 | Ocepek et al. | Mar 2009 | B2 |
7509415 | Baekelmans et al. | Mar 2009 | B2 |
7545762 | McConnell et al. | Jun 2009 | B1 |
7565418 | Ferrari et al. | Jul 2009 | B2 |
7581039 | Martinez et al. | Aug 2009 | B2 |
7603710 | Harvey et al. | Oct 2009 | B2 |
7657612 | Manchester et al. | Feb 2010 | B2 |
20010039580 | Walker et al. | Nov 2001 | A1 |
20020004935 | Huotari et al. | Jan 2002 | A1 |
20020010866 | McCullough et al. | Jan 2002 | A1 |
20020026503 | Bendinelli et al. | Feb 2002 | A1 |
20020026505 | Terry | Feb 2002 | A1 |
20020112076 | Rueda et al. | Aug 2002 | A1 |
20020116544 | Barnard et al. | Aug 2002 | A1 |
20020147938 | Hamilton et al. | Oct 2002 | A1 |
20020161865 | Nguyen | Oct 2002 | A1 |
20020161867 | Cochran et al. | Oct 2002 | A1 |
20020174207 | Battou | Nov 2002 | A1 |
20020196463 | Schlonski et al. | Dec 2002 | A1 |
20030005112 | Krautkremer | Jan 2003 | A1 |
20030033402 | Battat et al. | Feb 2003 | A1 |
20030041238 | French et al. | Feb 2003 | A1 |
20030061336 | Van Den Bosch et al. | Mar 2003 | A1 |
20030069947 | Lipinski | Apr 2003 | A1 |
20030078999 | Lund et al. | Apr 2003 | A1 |
20030086425 | Bearden et al. | May 2003 | A1 |
20030115298 | Baker | Jun 2003 | A1 |
20030115314 | Kawashima | Jun 2003 | A1 |
20030195937 | Kircher et al. | Oct 2003 | A1 |
20030200303 | Chong | Oct 2003 | A1 |
20030200318 | Chen et al. | Oct 2003 | A1 |
20030229688 | Liang | Dec 2003 | A1 |
20040003292 | Kato | Jan 2004 | A1 |
20040030620 | Benjamin et al. | Feb 2004 | A1 |
20040040023 | Ellis et al. | Feb 2004 | A1 |
20040155899 | Conrad | Aug 2004 | A1 |
20040162986 | Metzger | Aug 2004 | A1 |
20040193709 | Selvaggi et al. | Sep 2004 | A1 |
20040199647 | Ramarao | Oct 2004 | A1 |
20040236759 | Young | Nov 2004 | A1 |
20050018241 | Azami | Jan 2005 | A1 |
20050050189 | Yang | Mar 2005 | A1 |
20050063350 | Choudhury et al. | Mar 2005 | A1 |
20050078681 | Sanuki et al. | Apr 2005 | A1 |
20050086197 | Boubez et al. | Apr 2005 | A1 |
20050091504 | Shirogane | Apr 2005 | A1 |
20050114490 | Redlich et al. | May 2005 | A1 |
20050125527 | Lu et al. | Jun 2005 | A1 |
20050149626 | Manchester et al. | Jul 2005 | A1 |
20050184852 | Lee et al. | Aug 2005 | A1 |
20050198274 | Day | Sep 2005 | A1 |
20050229238 | Ollis et al. | Oct 2005 | A1 |
20050234568 | Chung et al. | Oct 2005 | A1 |
20050234683 | Graves et al. | Oct 2005 | A1 |
20050235227 | Martineau et al. | Oct 2005 | A1 |
20050240758 | Lord et al. | Oct 2005 | A1 |
20060036847 | Bush et al. | Feb 2006 | A1 |
20060037036 | Min et al. | Feb 2006 | A1 |
20060101109 | Nishio | May 2006 | A1 |
20060106918 | Evert et al. | May 2006 | A1 |
20060120293 | Wing | Jun 2006 | A1 |
20060129664 | Reimert et al. | Jun 2006 | A1 |
20060153080 | Palm | Jul 2006 | A1 |
20060168195 | Maturana et al. | Jul 2006 | A1 |
20060168263 | Blackmore | Jul 2006 | A1 |
20060280189 | McRae et al. | Dec 2006 | A1 |
20060291443 | Harrington et al. | Dec 2006 | A1 |
20070022185 | Hamilton et al. | Jan 2007 | A1 |
20070058567 | Harrington et al. | Mar 2007 | A1 |
20070076621 | Malhotra et al. | Apr 2007 | A1 |
20070106768 | Frietsch et al. | May 2007 | A1 |
20070111568 | Ferrari et al. | May 2007 | A1 |
20070130286 | Hopmann et al. | Jun 2007 | A1 |
20070133569 | Lee et al. | Jun 2007 | A1 |
20070204150 | Jokela et al. | Aug 2007 | A1 |
20070268506 | Zeldin | Nov 2007 | A1 |
20070268515 | Freund et al. | Nov 2007 | A1 |
20070268516 | Bugwadia et al. | Nov 2007 | A1 |
20080037552 | Dos Remedios et al. | Feb 2008 | A1 |
20080049779 | Hopmann et al. | Feb 2008 | A1 |
20080052384 | Marl et al. | Feb 2008 | A1 |
20080065760 | Damm et al. | Mar 2008 | A1 |
20080070603 | Mao | Mar 2008 | A1 |
20080134164 | Stich et al. | Jun 2008 | A1 |
20090017832 | Tebbs et al. | Jan 2009 | A1 |
20090019141 | Bush et al. | Jan 2009 | A1 |
20090019147 | Ahlers et al. | Jan 2009 | A1 |
20090052338 | Kelley et al. | Feb 2009 | A1 |
20090055514 | Tebbs et al. | Feb 2009 | A1 |
20100020694 | Jones | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2001-222497 | Aug 2001 | JP |
2001-352328 | Dec 2001 | JP |
2004-0047209 | Jul 2004 | KR |
10-2005-0031175 | Apr 2005 | KR |
2005-0078541 | Aug 2005 | KR |
2005-0094247 | Sep 2005 | KR |
WO 2008156898 | Dec 2008 | WO |
WO 2009011962 | Jan 2009 | WO |
WO 2009011963 | Jan 2009 | WO |
WO 2009011964 | Jan 2009 | WO |
WO 2009011965 | Jan 2009 | WO |
WO 2009011966 | Jan 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090019314 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60949610 | Jul 2007 | US |