The embodiments discussed herein are directed to a network apparatus, a communication apparatus, a communication control method, and a communication control system.
On the basis of the Institute of Electrical and Electronics Engineers (IEEE) 802.16e Standard (hereinafter, “WiMAX”: Worldwide Interoperability for Microwave Access), which is in the process of being standardized as a specification for a high-speed wireless network to realize a next-generation mobile communication system, communication device manufacturers and operators in various countries have been performing mutual connection tests and field trials to achieve commercialization, which is now realized.
For example, there are techniques for wirelessly transferring sound data by using wireless communication techniques intended for relatively short distance communications, such as Bluetooth (registered trademark). Examples of utilization modes of WiMAX described above include a mode using such a technique. For example, as depicted in
Further, according to the wireless communication technique described above, if a plurality of communication terminals using mutually-different wireless communication methods perform communication while using mutually the same frequency band, there may be a situation where a radio wave interference occurs between the terminals and the communication performance may be degraded. To cope with this situation, for example, Japanese Laid-open Patent Publication No. 2002-300172 proposes a technique for inhibiting degradation of communication performance caused by a radio wave interference that occurs when a plurality of communication terminals using mutually-different wireless communication methods use mutually the same frequency band.
A wireless communication terminal that uses a plurality of wireless communication methods such as Bluetooth and WiMAX described above has a possibility of having a communication failure because of a radio wave interference occurring inside the terminal.
For example, the width of the available frequency range between the frequency bands “2.3 GHz and 2.5 GHz” used by WiMAX and the frequency band “2.4 gigahertz” used by Bluetooth is small. Accordingly, a wireless communication terminal configured so as to implement both WiMAX and Bluetooth has a possibility of having a radio wave interference on the inside of the terminal, WiMAX being a wireless communication method intended for external communications such as a communication with a wireless network and Bluetooth being a wireless communication method intended for an inter-device connection such as a communication with a device at a relatively short distance. As a result, a communication terminal that uses a plurality of wireless communication methods has a possibility of having a communication failure caused by a radio wave interference occurring inside the terminal.
To address the problem described above, techniques that can be used for avoiding such radio wave interferences occurring on the inside of wireless communication terminals have also been discussed. More specifically, as depicted in
According to the proposed technique described above, however, another problem as described below arises: It is reported that the maximum communication distance of WiMAX is tens of kilometers, whereas the maximum communication distance of Bluetooth is 100 meters. When communication is performed at the same time within a small area of a number of meters by a plurality of wireless communication terminals each of which is configured with a function of avoiding, on the inside thereof, internal interferences between the WiMAX communication and the Bluetooth communication, as depicted in
According to an aspect of an embodiment of the invention, a network apparatus includes a scheduling information storage unit that stores therein a plurality of pieces of scheduling information for scheduling in advance transmission and reception timing of wireless frames that are transmitted and received by a plurality of communication apparatuses, the wireless frames including a wireless frame transmitted and received using a wireless communication method for a network side and a wireless frame transmitted and received using a wireless communication method for a local side; a scheduling information assigning unit that assigns one of the pieces of scheduling information stored in the scheduling information storage unit to a communication apparatus managed by the network apparatus; a scheduling information notifying unit that notifies the communication apparatus of the piece of scheduling information assigned by the scheduling information assigning unit; and a radio wave interference notification receiving unit that receives a notification indicating that a radio wave interference is detected from the communication apparatus. When the radio wave interference notification receiving unit receives the notification indicating that the radio wave interference is detected, the scheduling information assigning unit selects another one of the pieces of scheduling information that is different from the piece of scheduling information currently assigned to the communication apparatus that has transmitted the notification, and newly assigns the selected piece of scheduling information to the communication apparatus that has transmitted the notification. The scheduling information notifying unit notifies the communication apparatus that has transmitted the notification of the piece of scheduling information newly assigned by the scheduling information assigning unit.
According to another aspect of an embodiment of the invention, a communication apparatus includes a radio wave interference transmitting unit that, when wireless communication quality on a local side satisfies a predetermined condition, transmits a notification indicating that a radio wave interference is detected, to a network apparatus; and a communication control unit that, based on scheduling information provided by the network apparatus, transmits and receives wireless frames using wireless communication methods for a network side and for the local side.
The object and advantages of the embodiment will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the embodiment, as claimed.
Preferred embodiments of the present invention will be explained with reference to accompanying drawings. One of the preferred embodiments will be explained as a first embodiment of the present invention while using examples of a network station that functions as the network apparatus and a wireless communication terminal that functions as the communication apparatus.
The network station stores therein a frame scheduling table including a plurality of pieces of scheduling information obtained by scheduling, in advance, transmission/reception timing of wireless frames that are transmitted/received by the wireless communication terminal configured so as to implement a plurality of wireless communication methods, while using a wireless communication method corresponding to the network side and while using a wireless communication method corresponding to the local side.
Further, when the wireless communication terminal detects a radio wave interference occurring because, for example, another wireless communication terminal is positioned nearby (see (1) of
When the network station receives a notification indicating that a radio wave interference is detected, from any of the wireless communication terminals that are managed by the network station, the network station changes frame scheduling information currently assigned to the wireless communication terminal being the transmission source of the notification indicating that a radio wave interference is detected (see (3) of
The management unit 110 includes a wireless measurement managing unit 111, a wireless resource managing unit 112, and a frame scheduling information managing unit 113.
The wireless measurement managing unit 111 receives, from a wireless device controller 121 (explained later), and manages measurement results regarding quality of wireless radio waves and a status of frame transmissions/receptions. Further, the wireless measurement managing unit 111 stores therein, in advance, detection conditions used for detecting a radio wave interference based on the status of frame transmissions/receptions, in correspondence with different types of local-side devices (e.g., a headset) to and from which the wireless communication terminal 100 transmits/receives frames by using Bluetooth. Further, by comparing the measurement results received from the wireless device controller 121 with the detection conditions, the wireless measurement managing unit 111 detects, if any, radio wave interferences experienced by the wireless communication terminal 100.
More specifically, based on the measurement results provided by the wireless device controller 121, the wireless measurement managing unit 111 checks how many times a frame transmission failure occurred in the communication with the local-side device (e.g., the headset) per unit time period (e.g., 200 milliseconds) used as a predetermined detection section. Further, by comparing the learned number of times of the frame transmission failure with the detection conditions, the wireless measurement managing unit 111 tries to detect, if any, radio wave interferences. When detecting a radio wave interference, the wireless measurement managing unit 111 transmits a notification indicating that a radio wave interference is detected to a network station 200.
Examples of the detection conditions that are stored, in advance, in the wireless measurement managing unit 111 and are used for detecting the radio wave interferences include, as illustrated in
The wireless resource managing unit 112 manages all the wireless communication methods (i.e., wireless types), such as WiMAX and Bluetooth, used by the wireless communication terminal 100.
When the power source of the wireless communication terminal 100 is turned on, the frame scheduling information managing unit 113 searches for a network station. When having detected the network station 200, the frame scheduling information managing unit 113 checks all the wireless resources managed by the wireless resource managing unit 112 and, if there is a possibility of having a radio wave interference, the frame scheduling information managing unit 113 transmits a notification indicating that there is a possibility of having a radio wave interference, to the network station 200.
Further, the frame scheduling information managing unit 113 receives, from the network station 200, and manages the frame scheduling information obtained by scheduling, in advance, the transmission/reception timing of the wireless frames that are transmitted/received while using WiMAX, which is a wireless communication method corresponding to the network side, and the wireless frames that are transmitted/received while using Bluetooth, which is a wireless communication method corresponding to the local side.
As depicted in
The wireless controller 122 exercises state control according to the wireless communication method (i.e., the wireless type) being used. The communication controller 123 controls the frame transmissions/receptions. The frame schedule controller 124 refers to the frame scheduling information managed by the frame scheduling information managing unit 113 and controls the transmission/reception timing of the frames that are transmitted/received by using mutually-different wireless communication methods. The protocol controller 125 exercises protocol control over the communication with the network station 200.
Further, as depicted in
The wireless measurement managing unit 211 receives, from a wireless device controller 221 (explained later), and manages measurement results regarding the quality of wireless radio waves and a status of frame transmissions/receptions. The wireless resource managing unit 212 manages all the wireless communication methods (i.e., wireless types) used by the network station 200.
The terminal control information managing unit 213 manages a terminal management table recording therein information used for managing the wireless communication terminals 100 that are managed by the network station 200. For example, as depicted in
Further, the terminal control information managing unit 213 manages a frame scheduling table including a plurality of pieces of frame scheduling information obtained by scheduling, in advance, transmission/reception timing of wireless frames that are transmitted/received by each of the wireless communication terminals 100 while using WiMAX, which is a wireless communication method corresponding to the network side, and wireless frames that are transmitted/received by each of the wireless communication terminals 100 while using Bluetooth, which is a wireless communication method corresponding to the local side.
For example, as depicted in
Upon receipt of the notification indicating that there is a possibility of having a radio wave interference from any of the wireless communication terminals 100 belonging to the network station 200, the terminal control information managing unit 213 registers into the terminal management table and manages: the terminal identifier (e.g., “0x005a”; see
Further, out of the frame scheduling table, the terminal control information managing unit 213 obtains the frame scheduling information (e.g., the ratio between the network side and the local side=“1:1”; the frame with which the network station transmission is started is an “even-numbered frame”; and the number of times the frame transmission is continued is “1000”; see
Further, upon receipt of the notification from the wireless communication terminal 100 indicating that a radio wave interference is detected, the terminal control information managing unit 213 refers to the terminal management table and changes the group number (e.g., “0”) currently assigned to the wireless communication terminal 100 being the transmission source of the notification, to another group number (e.g., “2”; see
Further, out of the frame scheduling table, the terminal control information managing unit 213 obtains the frame scheduling information (e.g., the ratio between the network side and the local side=“2:1”; the frame with which the network station transmission is started is an “even-numbered frame”; and the number of times the frame transmission is continued is “1000”; see
The terminal control information managing unit 213 notifies a wireless controller 222 of the frame scheduling information transmitted to the wireless communication terminal 100.
As depicted in
The wireless device controller 221 controls different types of wireless devices. The wireless controller 222 exercises state control according to the wireless communication method (i.e., the wireless type) being used, based on the frame scheduling information provided by the terminal control information managing unit 213. The communication controller 223 controls the frame transmissions/receptions. The protocol controller 224 exercises protocol control over the communication with the wireless communication terminals 100.
Processes Performed when the Wireless Communication Terminal 100 Belongs to the Network Station 200
As depicted in
Upon receipt of the notification indicating that there is a possibility of having a radio wave interference from the wireless communication terminal 100 belonging to the network station 200 (step S3), the terminal control information managing unit 213 included in the network station 200 registers into the terminal management table and manages: the terminal identifier (e.g., “0x005a”; see
Further, out of the frame scheduling table, the terminal control information managing unit 213 included in the network station 200 obtains the frame scheduling information (e.g., the ratio between the network side and the local side=“1:1”; the frame with which the network station transmission is started is an “even-numbered frame”; and the number of times the frame transmission is continued is “1000”; see
After transmitting the frame scheduling information to the wireless communication terminal 100, the terminal control information managing unit 213 included in the network station 200 notifies the wireless controller 222 of the frame scheduling information transmitted to the wireless communication terminal 100 (step S6).
Upon receipt of the frame scheduling information from the network station 200 (step S7), the frame scheduling information managing unit 113 included in the wireless communication terminal 100 manages the received frame scheduling information (step S8).
Although not depicted in the drawings, the frame schedule controller 124 included in the wireless communication terminal 100 refers to the frame scheduling information managed by the frame scheduling information managing unit 113 and controls the transmission/reception timing of the frames that are transmitted/received by using the mutually-different wireless communication methods.
Processes Performed when a Radio Wave Interference is Detected by the Wireless Communication Terminal 100
As depicted in
Based on the measurement results provided by the wireless device controller 121, the wireless measurement managing unit 111 included in the wireless communication terminal 100 checks how many times a frame transmission failure occurred in the communication with the local-side device (e.g., a headset) per unit time period (e.g., 200 milliseconds) used as a predetermined detection section (step S2).
Further, the wireless measurement managing unit 111 included in the wireless communication terminal 100 compares the learned number of times the frame transmission failure occurred with the detection conditions and tries to detect a radio wave interference, if any (step S3). When a radio wave interference is detected (step S3: Yes), the wireless measurement managing unit 111 included in the wireless communication terminal 100 transmits a notification indicating that a radio wave interference is detected, to the network station 200 (step S4). On the contrary, when no radio wave interference is detected (step S3: No), the wireless measurement managing unit 111 included in the wireless communication terminal 100 ends the process without transmitting any notification indicating that a radio wave interference is detected, with respect to the measurement results at this time.
Upon receipt of the notification from the wireless communication terminal 100 indicating that a radio wave interference is detected (step S5), the terminal control information managing unit 213 included in the network station 200 refers to the terminal management table and changes the group number (e.g., “0”) currently assigned to the wireless communication terminal 100 being the transmission source of the notification, to another group number (e.g., “2”; see
Further, out of the frame scheduling table, the terminal control information managing unit 213 included in the network station 200 obtains the frame scheduling information (e.g., the ratio between the network side and the local side=“2:1”; the frame with which the network station transmission is started is an “even-numbered frame”; and the number of times the frame transmission is continued is “1000”; see
After transmitting the new frame scheduling information to the wireless communication terminal 100, the terminal control information managing unit 213 included in the network station 200 notifies the wireless controller 222 of the frame scheduling information transmitted to the wireless communication terminal 100 (step S8).
Upon receipt of the new frame scheduling information from the network station 200 (step S9), the frame scheduling information managing unit 113 included in the wireless communication terminal 100 manages the new frame scheduling information received (step S10).
Although not depicted in the drawings, the frame schedule controller 124 included in the wireless communication terminal 100 refers to the new frame scheduling information managed by the frame scheduling information managing unit 113 and controls the transmission/reception timing of the frames that are transmitted/received by using the mutually-different wireless communication methods.
Advantageous Effects of First Embodiment
As explained above, according to the first embodiment, when the network station 200 receives, from any of the wireless communication terminals 100 managed by the network station 200, a notification indicating that a radio wave interference is detected, the network station 200 changes the pieces of frame scheduling information currently assigned to the wireless communication terminal being the transmission source of the notification indicating that a radio wave interference is detected, to another piece of frame scheduling information. With this arrangement, it is possible to prevent radio wave interferences that may occur between wireless communication terminals when the wireless communication terminals each of which is configured so as to implement a plurality of wireless communication methods are positioned adjacent to each other.
In the first embodiment above, the example is explained in which the piece of frame scheduling information currently assigned to the wireless communication terminal being the transmission source of the notification indicating that a radio wave interference is detected is changed to another piece of frame scheduling information; however the present invention is not limited to this example.
For example, as depicted in
After identifying the other wireless communication terminal positioned near the wireless communication terminal 100 being the transmission source of the notification indicating that a radio wave interference is detected, the terminal control information managing unit 213 refers to the terminal management table and to the frame scheduling table and searches for the frame scheduling information assigned to the identified wireless communication terminal. Further, the terminal control information managing unit 213 transmits the same frame scheduling information as the frame scheduling information assigned to the identified wireless communication terminal, to the wireless communication terminal 100 being the transmission source of the notification indicating that a radio wave interference is detected.
Further, together with the frame scheduling information, the network station 200 transmits, in advance, the group numbers registered in the terminal management table to each of the wireless communication terminals 100 managed by the network station 200. Further, as depicted in
Further, when the wireless measurement managing unit 111 detects a radio wave interference based on the measurement results provided by the wireless device controller 121, the wireless measurement managing unit 111 obtains, out of the other-terminal information managing unit 114, one or more group numbers provided by one or more wireless communication terminals positioned nearby, puts the obtained group numbers into the notification indicating that a radio wave interference is detected, and transmits the notification to the network station 200.
Upon receipt of the notification indicating that a radio wave interference is detected from the wireless communication terminal 100, the terminal control information managing unit 213 included in the network station 200 obtains the frame scheduling information corresponding to one of the group numbers included in the notification out of the frame scheduling table and transmits the obtained frame scheduling information to the wireless communication terminal 100 being the transmission source of the notification indicating that a radio wave interference is detected.
When the notification includes two or more group numbers, the terminal control information managing unit 213 included in the network station 200 adopts the group number assigned to the wireless communication terminal positioned nearest, by using, for example, the technique explained above with reference to
With these arrangements, as depicted in
In the following sections, another one of the preferred embodiments of the network apparatus, the communication apparatus, the communication controlling method, and the communication controlling system will be explained.
(1) Apparatus Configurations and the Like
The constituent elements (the controller 220, the management unit 210, and the respective elements included in the controller 220, the management unit 210) of the network station 200 are depicted in
Furthermore, the constituent elements (the controller 120, the management unit 110, and the respective elements included in the controller 120, the management unit 110) of the wireless communication terminal 100 are depicted in
(2) Communication Controlling Method
It is possible to implement a communication controlling method as described below by using the network station 200 explained in the first embodiment above.
The communication controlling method is configured in such a manner that the network station 200 managing the wireless communication terminals 100 performs: a scheduling information assigning step (see, for example, step S4 in
An embodiment of the present invention is able to prevent radio wave interferences that may occur between wireless communication terminals when the wireless communication terminals each of which is configured so as to implement a plurality of wireless communication methods are positioned adjacent to each other.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
This application is a continuation of International Application No. PCT/JP2008/073485, filed on Dec. 24, 2008, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20060221926 | Maekawa et al. | Oct 2006 | A1 |
20070183451 | Lohr et al. | Aug 2007 | A1 |
20080205365 | Russell et al. | Aug 2008 | A1 |
20100215004 | Yoo | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2002-300172 | Oct 2002 | JP |
2005-523616 | Aug 2005 | JP |
2006-229778 | Aug 2006 | JP |
2006-295869 | Oct 2006 | JP |
03090037 | Oct 2003 | WO |
2008124434 | Oct 2008 | WO |
Entry |
---|
International Search Report dated Jan. 27, 2009, from corresponding International Application No. PCT/JP2008/073485. |
Notice of Rejection dated Feb. 19, 2013, from corresponding Japanese Application No. 2010-543665. |
Chi-Chen Lee, et al. “Sub-frame based Multi-Radio Coexistence Control Mechanism for IEEE 802.16m” IEEE, Sep. 9, 2008, retrieved from http://grouper.ieee.org/groups/802/16/tgm/contrib/C80216m-08—1028rl.pdf. |
Jing Zhu, et al. “Co-Located Multi-Radio Coexistence Design Considerations” IEEE, Sep. 11, 2008, retrieved from http://grouper.ieee.org/groups/802/16/tgm/contrib/S80216m-08—897r2.pdf. |
Shashikant Maheshwari, et al. “Collocated Multi-Radio Coexistence for 802.16m—Considerations and Proposals” IEEE, Sep. 9, 2008, retrieved from http://www.ieee802.org/16/tgm/contrib/C80216m-08—1083r2.ppt. |
Number | Date | Country | |
---|---|---|---|
20110235612 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2008/073485 | Dec 2008 | US |
Child | 13154720 | US |