NETWORK-BASED MICROBIAL COMPOSITIONS AND METHODS

Information

  • Patent Application
  • 20210252079
  • Publication Number
    20210252079
  • Date Filed
    January 04, 2021
    4 years ago
  • Date Published
    August 19, 2021
    3 years ago
Abstract
Provided are therapeutic compositions containing combinations of bacteria, for the maintenance or restoration of a healthy microbiota in the gastrointestinal tract of a mammalian subject, and methods for use thereof.
Description
REFERENCE TO A SEQUENCE LISTING SUBMITTED ELECTRONICALLY

The content of the electronically submitted sequence listing (Name: 4268.0300004_Seqlisting_ST25.txt; Size: 4,166,294 bytes; and Date of Creation: Jan. 4, 2021) submitted in this application is incorporated herein by reference in its entirety.


BACKGROUND

Mammals are colonized by microbes in the gastrointestinal (GI) tract, on the skin, and in other epithelial and tissue niches such as the oral cavity, eye surface and vagina. The gastrointestinal tract harbors an abundant and diverse microbial community. It is a complex system, providing an environment or niche for a community of many different species or organisms, including diverse strains of bacteria. Hundreds of different species can form a commensal community in the GI tract in a healthy person, and this complement of organisms evolves from birth to ultimately form a functionally mature microbial population by about 3 years of age. Interactions between microbial strains in these populations and between microbes and the host (e.g. the host immune system) shape the community structure, with availability of and competition for resources affecting the distribution of microbes. Such resources may be food, location and the availability of space to grow or a physical structure to which the microbe may attach. For example, the host's diet is involved in shaping the GI tract flora.


A healthy microbiota provides the host with multiple benefits, including colonization resistance to a broad spectrum of pathogens, essential nutrient biosynthesis and absorption, and immune stimulation that maintains a healthy gut epithelium and an appropriately controlled systemic immunity. In settings of dysbiosis' or disrupted symbiosis, microbiota functions can be lost or deranged, resulting in increased susceptibility to pathogens, altered metabolic profiles, or induction of proinflammatory signals that can result in local or systemic inflammation or autoimmunity. Thus, the intestinal microbiota plays a significant role in the pathogenesis of many diseases and disorders. Many of these diseases and disorders are chronic conditions that significantly decrease a subject's quality of life and can be ultimately fatal.


Manufacturers of probiotics have asserted that their preparations of bacteria promote mammalian health by preserving the natural microflora in the GI tract and reinforcing the normal controls on aberrant immune responses. See, e.g., U.S. Pat. No. 8,034,601. Probiotics, however, have been limited to a very narrow group of genera and a correspondingly limited number of species. As such, they do not adequately replace the missing natural microflora nor correct dysbioses of the GI tract in many situations.


Therefore, in response to the need for durable, efficient, and effective compositions and methods for prevention, diagnosis and/or treatment of prediabetes and diabetes by way of restoring or enhancing microbiota functions, we address these and other shortcomings of the prior art by providing compositions and methods for treating subjects.


SUMMARY OF THE INVENTION

Disclosed herein are methods for treating, preventing, or reducing the severity of a disorder selected from the group consisting of Clostridium difficile Associated Diarrhea (CDAD), Type 2 Diabetes, Obesity, Irritable Bowel Disease (IBD), colonization with a pathogen or pathobiont, and infection with a drug-resistant pathogen or pathobiont, comprising: administering to a mammalian subject in need thereof an effective amount of a therapeutic bacterial composition, said therapeutic bacterial composition comprising a plurality of isolated bacteria or a purified bacterial preparation, the plurality of isolated bacteria or the purified bacterial preparation capable of forming a network ecology selected from the group consisting of N262.S, N290.S, N284.S, N271.S, N282.S, N288.S, N302.S, N279.S, N310.S, N323.S, N331.S, N332.S, N301.S, N312.S, N339.S, N325.S, N340.S, N341.S, N346.S, N338.S, N336.S, N345.S, N355.S, N356.S, N343.S, N329.S, N361.S, N353.S, N381.S, N344.S, N352.S, N357.S, N358.S, N369.S, N372.S, N375.S, N380.S, N374.S, N377.S, N368.S, N370.S, N373.S, N376.S, N389.S, N394.S, N431.S, N434.S, N390.S, N397.S, N387.S, N440.S, N396.S, N399.S, N403.S, N414.S, N430.S, N432.S, N436.S, N437.S, N457.S, N545, N386.S, N402.S, N405.S, N415.S, N421.S, N422.S, N423.S, N458.S, N459.S, N493.S, N416.S, N439.S, N447.S, N490.S, N526, N429.S, N433.S, N448.S, N488.S, N508.S, N509.S, N510.S, N511.S, N408.S, N446.S, N451.S, N474.S, N520.S, N521.S, N535.S, N516.S, N463.S, N518.S, N586, N450.S, N465.S, N519.S, N537.S, N419.S, N468.S, N477.S, N514.S, N382.S, N460.S, N462.S, N512.S, N517.S, N523.S, N547.S, N548.S, N577.S, N581.S, N585.S, N616.S, N466.S, N469.S, N480.S, N482.S, N484.S, N515.S, N533.S, N709, N730, N478.S, N572.S, N400.S, N543.S, N582.S, N621.S, N689, N769, N481.S, N525.S, N528.S, N534.S, N574.S, N580.S, N590.S, N591.S, N597.S, N664, N693, N530.S, N687, N470.S, N529.S, N539.S, N546.S, N570.S, N579.S, N602.S, N614.S, N648.S, N652.S, N655.S, N672.S, N681.S, N690.S, N692.S, N698.S, N737.S, N738.S, N785, N841, N878, N880, N881, N987, N988, N996, N1061, N479.S, N538.S, N542.S, N578.S, N609.S, N611.S, N617.S, N666.S, N675.S, N682.S, N844, N845, N846, N852, N876, N982, N1008, N649.S, N657.S, N678.S, N686.S, N710.S, N522.S, N651.S, N653.S, N654.S, N680.S, N712.S, N792, N802, N804, N807, N849, N858, N859, N875, N885, N942, N961, N972, N1051, N587.S, N589.S, N612.S, N625.S, N656.S, N714.S, N779, N781, N828, N829, N860, N894, N925, N927, N935, N947, N983, N1023, N441.S, N584.S, N794, N788, N524.S, N604.S, N610.S, N623.S, N663.S, N669.S, N676.S, N703.S, N775.S, N777.S, N780.S, N817.S, N827.S, N836.S, N871.S, N874.S, N898.S, N907.S, N998.S, N1088, N1089, N660.S, N665.S, N667.S, N733.S, N734.S, N739.S, N741.S, N782.S, N789.S, N796.S, N798.S, N800.S, N809.S, N816.S, N842.S, N843.S, N869.S, N986.S, N995.S, N1002.S, N1004.S, N1019.S, N1093, N668.S, N685.S, N835.S, N851.S, N464.S, N695.S, N776.S, N793.S, N815.S, N833.S, N891.S, N1070.S, N1092, N795.S, N797.S, N808.S, N811.S, N826.S, N830.S, N832.S, N840.S, N945.S, N960.S, N968.S, N1091, N805.S, N822. S, N928. S, N936. S, N1078. S, and N913. S.


In some embodiments, the therapeutic bacterial composition comprises at least one bacterial entity, wherein said bacterial entity is capable of forming the network ecology in combination with one more bacterial entities present in the gastrointestinal tract of the mammalian subject at the time of the administering or thereafter. In certain embodiments, the network ecology is selected from the group consisting of N1008, N1023, N1051, N1061, N1070.S, N1088, N1089, N1092, N381.S, N382.S, N387.S, N399.S, N400.S, N402.S, N403.S, N414.S, N429.S, N430.S, N432.S, N433.S, N436.S, N437.S, N439.S, N441.S, N447.S, N448.S, N457.S, N460.S, N462.S, N463.S, N464.S, N470.S, N474.S, N488.S, N490.S, N493.S, N508.S, N509.S, N510. S, N511. S, N512. S, N514. S, N515. S, N517. S, N518. S, N519. S, N520.S, N523.S, N524.S, N529.S, N539.S, N543.S, N546.S, N547.S, N548.S, N570.S, N574.S, N577.S, N579.S, N580.S, N582.S, N584.S, N585.S, N589.S, N591.S, N597.S, N602.S, N604.S, N609.S, N610.S, N611.S, N612.S, N614.S, N616.S, N621.S, N623.S, N625.S, N648.S, N651.S, N652.S, N653.S, N654.S, N655.S, N660.S, N663.S, N664, N665.S, N666.S, N669.S, N672.S, N676.S, N681.S, N687, N689, N690.S, N692.S, N693, N695.S, N698.S, N703.S, N709, N712.S, N714.S, N730, N734.S, N737.S, N738.S, N769, N775.S, N777.S, N779, N780.S, N781, N785, N788, N792, N793.S, N794, N797.S, N798.S, N802, N804, N807, N817.S, N827.S, N828, N830.S, N832.S, N833.S, N836.S, N840.S, N841, N844, N845, N849, N852, N858, N859, N860, N869.S, N871.S, N874.S, N875, N878, N880, N881, N885, N894, N898.S, N907.S, N913.S, N925, N927, N942, N947, N961, N968.S, N972, N982, N983, N986.S, N987, N988, N996, and N998.S.


In one embodiment, the network ecology consists essentially of N1008, N1023, N1051, N1061, N1070.S, N1088, N1089, N1092, N381.S, N382.S, N387.S, N399.S, N400.S, N402.S, N403.S, N414.S, N429.S, N430.S, N432.S, N433.S, N436.S, N437.S, N439.S, N441.S, N447.S, N448.S, N457.S, N460.S, N462.S, N463.S, N464.S, N470.S, N474.S, N488.S, N490.S, N493.S, N508.S, N509.S, N510. S, N511. S, N512. S, N514. S, N515. S, N517. S, N518. S, N519. S, N520.S, N523.S, N524.S, N529.S, N539.S, N543.S, N546.S, N547.S, N548.S, N570.S, N574.S, N577.S, N579.S, N580.S, N582.S, N584.S, N585.S, N589.S, N591.S, N597.S, N602.S, N604.S, N609.S, N610.S, N611.S, N612.S, N614.S, N616.S, N621.S, N623.S, N625.S, N648.S, N651.S, N652.S, N653.S, N654.S, N655.S, N660.S, N663.S, N664, N665.S, N666.S, N669.S, N672.S, N676.S, N681.S, N687, N689, N690.S, N692.S, N693, N695.S, N698.S, N703.S, N709, N712.S, N714.S, N730, N734.S, N737.S, N738.S, N769, N775.S, N777.S, N779, N780.S, N781, N785, N788, N792, N793.S, N794, N797.S, N798.S, N802, N804, N807, N817.S, N827.S, N828, N830.S, N832.S, N833.S, N836.S, N840.S, N841, N844, N845, N849, N852, N858, N859, N860, N869.S, N871.S, N874.S, N875, N878, N880, N881, N885, N894, N898.S, N907.S, N913.S, N925, N927, N942, N947, N961, N968.S, N972, N982, N983, N986.S, N987, N988, N996, or N998. S.


In another embodiment, the network ecology is selected from the group consisting of N387.S, N399.S, N512.S, N462.S, N651.S, N982, and N845. In one embodiment, network ecology comprises N387.S and the therapeutic bacterial composition comprises at least one bacterium selected from each of clade_262, clade_396, clade_444, clade_478, clade_500, and clade_553. In another embodiment, the network ecology comprises N387.S and the therapeutic bacterial composition consists essentially of at least one bacterium selected from each of clade_262, clade_396, clade_444, clade_478, clade_500, and clade_553. In certain embodiments, clade_262 comprises one or more bacteria selected from the group consisting Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium 1_1_57FAA, Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA, Ruminococcus lactaris, and Ruminococcus torques, wherein clade_396 comprises one or more bacteria selected from the group consisting Acetivibrio ethanolgignens, Anaerosporobacter mobilis, Bacteroides pectinophilus, Clostridium aminovalericum, Clostridium phytofermentans, Eubacterium hallii, and Eubacterium xylanophilum, wherein clade_444 comprises one or more bacteria selected from the group consisting Butyrivibrio fibrisolvens, Eubacterium rectale, Eubacterium sp. oral clone GI038, Lachnobacterium bovis, Roseburia cecicola, Roseburia faecalis, Roseburia faecis, Roseburia hominis, Roseburia intestinalis, Roseburia inulinivorans, Roseburia sp. 11SE37, Roseburia sp. 11SE38, Shuttleworthia satelles, Shuttleworthia sp. MSX8B, and Shuttleworthia sp. oral taxon G69, wherein clade_478 comprises one or more bacteria selected from the group consisting Faecalibacterium prausnitzii, Gemmiger formicilis, and Subdoligranulum variabile, wherein clade_500 comprises one or more bacteria selected from the group consisting Alistipes finegoldii, Alistipes onderdonkii, Alistipes putredinis, Alistipes shahii, Alistipes sp. HGB5, Alistipes sp. JC50, and Alistipes sp. RMA 9912, and wherein clade_553 comprises one or more bacteria selected from the group consisting Collinsella aerofaciens, Collinsella intestinalis, Collinsella stercoris, and Collinsella tanakaei.


In one embodiment, clade_262 comprises one or more bacteria of Ruminococcus torques, wherein clade_396 comprises one or more bacteria of Eubacterium hallii, wherein clade_444 comprises one or more bacteria selected from the group consisting of Eubacterium rectale and Roseburia inulinivorans, wherein clade_478 comprises one or more bacteria of Faecalibacterium prausnitzii, wherein clade_500 comprises one or more bacteria of Alistipes putredinis, and wherein clade_553 comprises one or more bacteria of Collinsella aerofaciens.


In another embodiment, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_396 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 161, Seq. ID No.: 288, Seq. ID No.: 551, Seq. ID No.: 6, Seq. ID No.: 613, Seq. ID No.: 848, and Seq. ID No.: 875, wherein clade_444 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1045, Seq. ID No.: 1634, Seq. ID No.: 1635, Seq. ID No.: 1636, Seq. ID No.: 1637, Seq. ID No.: 1638, Seq. ID No.: 1639, Seq. ID No.: 1640, Seq. ID No.: 1641, Seq. ID No.: 1728, Seq. ID No.: 1729, Seq. ID No.: 1730, Seq. ID No.: 456, Seq. ID No.: 856, and Seq. ID No.: 865, wherein clade_478 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1896, Seq. ID No.: 880, and Seq. ID No.: 932, wherein clade_500 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 129, Seq. ID No.: 131, Seq. ID No.: 132, Seq. ID No.: 133, Seq. ID No.: 134, Seq. ID No.: 135, and Seq. ID No.: 136, and wherein clade_553 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 659, Seq. ID No.: 660, Seq. ID No.: 661, and Seq. ID No.: 662.


In other embodiments, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_396 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 161, Seq. ID No.: 288, Seq. ID No.: 551, Seq. ID No.: 6, Seq. ID No.: 613, Seq. ID No.: 848, and Seq. ID No.: 875, wherein clade_444 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1045, Seq. ID No.: 1634, Seq. ID No.: 1635, Seq. ID No.: 1636, Seq. ID No.: 1637, Seq. ID No.: 1638, Seq. ID No.: 1639, Seq. ID No.: 1640, Seq. ID No.: 1641, Seq. ID No.: 1728, Seq. ID No.: 1729, Seq. ID No.: 1730, Seq. ID No.: 456, Seq. ID No.: 856, and Seq. ID No.: 865, wherein clade_478 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1896, Seq. ID No.: 880, and Seq. ID No.: 932, wherein clade_500 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 129, Seq. ID No.: 131, Seq. ID No.: 132, Seq. ID No.: 133, Seq. ID No.: 134, Seq. ID No.: 135, and Seq. ID No.: 136, and wherein clade_553 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 659, Seq. ID No.: 660, Seq. ID No.: 661, and Seq. ID No.: 662.


In one embodiment, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1670, wherein clade_396 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 848, wherein clade_444 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1639 and Seq. ID No.: 856, wherein clade_478 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 880, wherein clade_500 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 132, and wherein clade_553 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 659.


In other embodiments, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1670, wherein clade_396 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 848, wherein clade_444 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1639 and Seq. ID No.: 856, wherein clade_478 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 880, wherein clade_500 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 132, and wherein clade_553 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 659.


In another embodiment, network ecology comprises N399.S and the therapeutic bacterial composition comprises at least one bacterium selected from each of clade_262, clade_360, clade_396, clade_444, clade_478, and clade_494. In yet another embodiment, the network ecology comprises N399.S and the therapeutic bacterial composition consists essentially of at least one bacterium selected from each of clade_262, clade_360, clade_396, clade_444, clade_478, and clade_494.


In some embodiments, clade_262 comprises one or more bacteria selected from the group consisting of Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium 1_1_57FAA, Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA, Ruminococcus lactaris, and Ruminococcus torques, wherein clade_360 comprises one or more bacteria selected from the group consisting of Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium 2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus gnavus, and Ruminococcus sp. ID8, wherein clade_396 comprises one or more bacteria selected from the group consisting of Acetivibrio ethanolgignens, Anaerosporobacter mobilis, Bacteroides pectinophilus, Clostridium aminovalericum, Clostridium phytofermentans, Eubacterium hallii, and Eubacterium xylanophilum, wherein clade_444 comprises one or more bacteria selected from the group consisting of Butyrivibrio fibrisolvens, Eubacterium rectale, Eubacterium sp. oral clone GI038, Lachnobacterium bovis, Roseburia cecicola, Roseburia faecalis, Roseburia faecis, Roseburia hominis, Roseburia intestinalis, Roseburia inulinivorans, Roseburia sp. 11SE37, Roseburia sp. 11SE38, Shuttleworthia satelles, Shuttleworthia sp. MSX8B, and Shuttleworthia sp. oral taxon G69, wherein clade_478 comprises one or more bacteria selected from the group consisting of Faecalibacterium prausnitzii, Gemmiger formicilis, and Subdoligranulum variabile, and wherein clade_494 comprises one or more bacteria selected from the group consisting of Clostridium orbiscindens, Clostridium sp. NML 04A032, Flavonifractor plautii, Pseudoflavonifractor capillosus, and Ruminococcaceae bacterium D16.


In another embodiment, clade_262 comprises one or more bacteria of Ruminococcus torques, wherein clade_360 comprises one or more bacteria of Dorea longicatena, wherein clade_396 comprises one or more bacteria of Eubacterium hallii, wherein clade_444 comprises one or more bacteria of Eubacterium rectale, wherein clade_478 comprises one or more bacteria of Faecalibacterium prausnitzii, and wherein clade_494 comprises one or more bacteria of Pseudoflavonifractor capillosus.


In one embodiment, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_360 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1050, Seq. ID No.: 1051, Seq. ID No.: 1053, Seq. ID No.: 1058, Seq. ID No.: 1661, Seq. ID No.: 1668, Seq. ID No.: 773, and Seq. ID No.: 774, wherein clade_396 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 161, Seq. ID No.: 288, Seq. ID No.: 551, Seq. ID No.: 6, Seq. ID No.: 613, Seq. ID No.: 848, and Seq. ID No.: 875, wherein clade_444 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1045, Seq. ID No.: 1634, Seq. ID No.: 1635, Seq. ID No.: 1636, Seq. ID No.: 1637, Seq. ID No.: 1638, Seq. ID No.: 1639, Seq. ID No.: 1640, Seq. ID No.: 1641, Seq. ID No.: 1728, Seq. ID No.: 1729, Seq. ID No.: 1730, Seq. ID No.: 456, Seq. ID No.: 856, and Seq. ID No.: 865, wherein clade_478 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1896, Seq. ID No.: 880, and Seq. ID No.: 932, and wherein clade_494 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1591, Seq. ID No.: 1655, Seq. ID No.: 609, Seq. ID No.: 637, and Seq. ID No.: 886.


In some embodiments, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_360 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1050, Seq. ID No.: 1051, Seq. ID No.: 1053, Seq. ID No.: 1058, Seq. ID No.: 1661, Seq. ID No.: 1668, Seq. ID No.: 773, and Seq. ID No.: 774, wherein clade_396 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 161, Seq. ID No.: 288, Seq. ID No.: 551, Seq. ID No.: 6, Seq. ID No.: 613, Seq. ID No.: 848, and Seq. ID No.: 875, wherein clade_444 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1045, Seq. ID No.: 1634, Seq. ID No.: 1635, Seq. ID No.: 1636, Seq. ID No.: 1637, Seq. ID No.: 1638, Seq. ID No.: 1639, Seq. ID No.: 1640, Seq. ID No.: 1641, Seq. ID No.: 1728, Seq. ID No.: 1729, Seq. ID No.: 1730, Seq. ID No.: 456, Seq. ID No.: 856, and Seq. ID No.: 865, wherein clade_478 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1896, Seq. ID No.: 880, and Seq. ID No.: 932, and wherein clade_494 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1591, Seq. ID No.: 1655, Seq. ID No.: 609, Seq. ID No.: 637, and Seq. ID No.: 886.


In other embodiments, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1670, wherein clade_360 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 774, wherein clade_396 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 848, wherein clade_444 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 856, wherein clade_478 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 880, and wherein clade_494 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1591.


In one aspect, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1670, wherein clade_360 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 774, wherein clade_396 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 848, wherein clade_444 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 856, wherein clade_478 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 880, and wherein clade_494 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1591.


In another aspect, the network ecology comprises N462. S and the therapeutic bacterial composition comprises at least one bacterium selected from each of clade_262, clade_360, and clade_478. In yet another aspect, the network ecology comprises N462.S and the therapeutic bacterial composition consists essentially of at least one bacterium selected from each of clade_262, clade_360, and clade_478.


In other aspects, clade_262 comprises one or more bacteria selected from the group consisting of Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium 1_1_57FAA, Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA, Ruminococcus lactaris, and Ruminococcus torques, wherein clade_360 comprises one or more bacteria selected from the group consisting of Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium 2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus gnavus, and Ruminococcus sp. ID8, and wherein clade_478 comprises one or more bacteria selected from the group consisting of Faecalibacterium prausnitzii, Gemmiger formicilis, and Subdoligranulum variabile.


In another aspect, clade_262 comprises one or more bacteria of Coprococcus comes, wherein clade_360 comprises one or more bacteria of Dorea longicatena, and wherein clade_478 comprises one or more bacteria selected from the group consisting Faecalibacterium prausnitzii and Subdoligranulum variabile.


In yet another aspect, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_360 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1050, Seq. ID No.: 1051, Seq. ID No.: 1053, Seq. ID No.: 1058, Seq. ID No.: 1661, Seq. ID No.: 1668, Seq. ID No.: 773, and Seq. ID No.: 774, and wherein clade_478 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1896, Seq. ID No.: 880, and Seq. ID No.: 932.


In certain aspects, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_360 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1050, Seq. ID No.: 1051, Seq. ID No.: 1053, Seq. ID No.: 1058, Seq. ID No.: 1661, Seq. ID No.: 1668, Seq. ID No.: 773, and Seq. ID No.: 774, and wherein clade_478 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1896, Seq. ID No.: 880, and Seq. ID No.: 932.


In another aspect, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 674, wherein clade_360 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 774, and wherein clade_478 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1896 and Seq. ID No.: 880.


In other aspects, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 674, wherein clade_360 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 774, and wherein clade_478 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1896 and Seq. ID No.: 880.


In another embodiment, network ecology comprises N512.S and the therapeutic bacterial composition comprises at least one bacterium selected from each of clade_262, clade_360, and clade_444. In one embodiment, the network ecology comprises N512.S and the therapeutic bacterial composition consists essentially of at least one bacterium selected from each of clade_262, clade_360, and clade_444.


In other embodiments, clade_262 comprises one or more bacteria selected from the group consisting of Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium 1_1_57FAA, Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA, Ruminococcus lactaris, and Ruminococcus torques, wherein clade_360 comprises one or more bacteria selected from the group consisting of Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium 2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus gnavus, and Ruminococcus sp. ID8, and wherein clade_444 comprises one or more bacteria selected from the group consisting of Butyrivibrio fibrisolvens, Eubacterium rectale, Eubacterium sp. oral clone GI038, Lachnobacterium bovis, Roseburia cecicola, Roseburia faecalis, Roseburia faecis, Roseburia hominis, Roseburia intestinalis, Roseburia inulinivorans, Roseburia sp. 11SE37, Roseburia sp. 11SE38, Shuttleworthia satelles, Shuttleworthia sp. MSX8B, and Shuttleworthia sp. oral taxon G69.


In certain embodiments, clade_262 comprises one or more bacteria selected from the group consisting of Coprococcus comes and Ruminococcus torques, wherein clade_360 comprises one or more bacteria of Dorea longicatena, and wherein clade_444 comprises one or more bacteria of Eubacterium rectale.


In one embodiment, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_360 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1050, Seq. ID No.: 1051, Seq. ID No.: 1053, Seq. ID No.: 1058, Seq. ID No.: 1661, Seq. ID No.: 1668, Seq. ID No.: 773, and Seq. ID No.: 774, and wherein clade_444 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1045, Seq. ID No.: 1634, Seq. ID No.: 1635, Seq. ID No.: 1636, Seq. ID No.: 1637, Seq. ID No.: 1638, Seq. ID No.: 1639, Seq. ID No.: 1640, Seq. ID No.: 1641, Seq. ID No.: 1728, Seq. ID No.: 1729, Seq. ID No.: 1730, Seq. ID No.: 456, Seq. ID No.: 856, and Seq. ID No.: 865.


In another embodiment, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_360 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1050, Seq. ID No.: 1051, Seq. ID No.: 1053, Seq. ID No.: 1058, Seq. ID No.: 1661, Seq. ID No.: 1668, Seq. ID No.: 773, and Seq. ID No.: 774, and wherein clade_444 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1045, Seq. ID No.: 1634, Seq. ID No.: 1635, Seq. ID No.: 1636, Seq. ID No.: 1637, Seq. ID No.: 1638, Seq. ID No.: 1639, Seq. ID No.: 1640, Seq. ID No.: 1641, Seq. ID No.: 1728, Seq. ID No.: 1729, Seq. ID No.: 1730, Seq. ID No.: 456, Seq. ID No.: 856, and Seq. ID No.: 865.


In certain embodiments, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1670 and Seq. ID No.: 674, wherein clade_360 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 774, and wherein clade_444 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 856.


In one aspect, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1670 and Seq. ID No.: 674, wherein clade_360 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 774, and wherein clade_444 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 856.


In another aspect, the network ecology comprises N845 and the therapeutic bacterial composition comprises at least one bacterium selected from each of clade_262, clade_360, and clade_378. In certain aspects, the network ecology comprises N845 and the therapeutic bacterial composition consists essentially of at least one bacterium selected from each of clade_262, clade_360, and clade_378.


In other aspects, clade_262 comprises one or more bacteria selected from the group consisting of Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium 1_1_57FAA, Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA, Ruminococcus lactaris, and Ruminococcus torques, wherein clade_360 comprises one or more bacteria selected from the group consisting of Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium 2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus gnavus, and Ruminococcus sp. ID8, and wherein clade_378 comprises one or more bacteria selected from the group consisting of Bacteroides barnesiae, Bacteroides coprocola, Bacteroides coprophilus, Bacteroides dorei, Bacteroides massiliensis, Bacteroides plebeius, Bacteroides sp. 3_1_33FAA, Bacteroides sp. 3_1_40A, Bacteroides sp. 4_3_47FAA, Bacteroides sp. 9_1_42FAA, Bacteroides sp. NB_8, and Bacteroides vulgatus.


In certain aspects, clade_262 comprises one or more bacteria of Coprococcus comes, wherein clade_360 comprises one or more bacteria of Dorea longicatena, and wherein clade_378 comprises one or more bacteria of Bacteroides dorei.


In another aspect, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_360 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1050, Seq. ID No.: 1051, Seq. ID No.: 1053, Seq. ID No.: 1058, Seq. ID No.: 1661, Seq. ID No.: 1668, Seq. ID No.: 773, and Seq. ID No.: 774, and wherein clade_378 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 267, Seq. ID No.: 272, Seq. ID No.: 273, Seq. ID No.: 274, Seq. ID No.: 284, Seq. ID No.: 289, Seq. ID No.: 309, Seq. ID No.: 310, Seq. ID No.: 313, Seq. ID No.: 314, Seq. ID No.: 323, and Seq. ID No.: 331.


In certain aspects, clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, wherein clade_360 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1050, Seq. ID No.: 1051, Seq. ID No.: 1053, Seq. ID No.: 1058, Seq. ID No.: 1661, Seq. ID No.: 1668, Seq. ID No.: 773, and Seq. ID No.: 774, and wherein clade_378 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 267, Seq. ID No.: 272, Seq. ID No.: 273, Seq. ID No.: 274, Seq. ID No.: 284, Seq. ID No.: 289, Seq. ID No.: 309, Seq. ID No.: 310, Seq. ID No.: 313, Seq. ID No.: 314, Seq. ID No.: 323, and Seq. ID No.: 331.


In one embodiment, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 674, wherein clade_360 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 774, and wherein clade_378 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 274.


In another embodiment, clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 674, wherein clade_360 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 774, and wherein clade_378 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 274.


In some embodiments, the network ecology comprises N982 and the therapeutic bacterial composition comprises at least one bacterium selected from each of clade_172, clade_262, and clade_396. In another embodiment, the network ecology comprises N982 and the therapeutic bacterial composition consists essentially of at least one bacterium selected from each of clade_172, clade_262, and clade_396.


In certain aspects, clade_172 comprises one or more bacteria selected from the group consisting of Bifidobacteriaceae genomosp. C1, Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium gallicum, Bifidobacterium infantis, Bifidobacterium kashiwanohense, Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium pseudolongum, Bifidobacterium scardovii, Bifidobacterium sp. HM2, Bifidobacterium sp. HMLN12, Bifidobacterium sp. M45, Bifidobacterium sp. MSX5B, Bifidobacterium sp. TM_7, and Bifidobacterium thermophilum, wherein clade_262 comprises one or more bacteria selected from the group consisting of Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium 1_1_57FAA, Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA, Ruminococcus lactaris, and Ruminococcus torques, and wherein clade_396 comprises one or more bacteria selected from the group consisting of Acetivibrio ethanolgignens, Anaerosporobacter mobilis, Bacteroides pectinophilus, Clostridium aminovalericum, Clostridium phytofermentans, Eubacterium hallii, and Eubacterium xylanophilum.


In another aspect, clade_172 comprises one or more bacteria of Bifidobacterium longum, wherein clade_262 comprises one or more bacteria of Coprococcus comes, and wherein clade_396 comprises one or more bacteria of Eubacterium hallii.


In one aspect, clade_172 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 345, Seq. ID No.: 346, Seq. ID No.: 347, Seq. ID No.: 348, Seq. ID No.: 350, Seq. ID No.: 351, Seq. ID No.: 352, Seq. ID No.: 353, Seq. ID No.: 354, Seq. ID No.: 355, Seq. ID No.: 356, Seq. ID No.: 357, Seq. ID No.: 358, Seq. ID No.: 359, Seq. ID No.: 360, Seq. ID No.: 361, Seq. ID No.: 362, Seq. ID No.: 363, Seq. ID No.: 364, and Seq. ID No.: 365, wherein clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, and wherein clade_396 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 161, Seq. ID No.: 288, Seq. ID No.: 551, Seq. ID No.: 6, Seq. ID No.: 613, Seq. ID No.: 848, and Seq. ID No.: 875.


In another aspect, clade_172 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 345, Seq. ID No.: 346, Seq. ID No.: 347, Seq. ID No.: 348, Seq. ID No.: 350, Seq. ID No.: 351, Seq. ID No.: 352, Seq. ID No.: 353, Seq. ID No.: 354, Seq. ID No.: 355, Seq. ID No.: 356, Seq. ID No.: 357, Seq. ID No.: 358, Seq. ID No.: 359, Seq. ID No.: 360, Seq. ID No.: 361, Seq. ID No.: 362, Seq. ID No.: 363, Seq. ID No.: 364, and Seq. ID No.: 365, wherein clade_262 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1048, Seq. ID No.: 1049, Seq. ID No.: 1057, Seq. ID No.: 1663, Seq. ID No.: 1670, Seq. ID No.: 588, Seq. ID No.: 607, and Seq. ID No.: 674, and wherein clade_396 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 161, Seq. ID No.: 288, Seq. ID No.: 551, Seq. ID No.: 6, Seq. ID No.: 613, Seq. ID No.: 848, and Seq. ID No.: 875.


In another aspect, clade_172 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 356, wherein clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 674, and wherein clade_396 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 848.


In certain aspects, clade_172 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 356, wherein clade_262 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 674, and wherein clade_396 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 848.


In another embodiment, the network ecology comprises N651.S and the therapeutic bacterial composition comprises at least one bacterium selected from each of clade_444, clade_516, and clade_522. In yet another embodiment, the network ecology comprises N651.S and the therapeutic bacterial composition consists essentially of at least one bacterium selected from each of clade_444, clade_516, and clade_522.


In one embodiment, clade_444 comprises one or more bacteria selected from the group consisting of Butyrivibrio fibrisolvens, Eubacterium rectale, Eubacterium sp. oral clone GI038, Lachnobacterium bovis, Roseburia cecicola, Roseburia faecalis, Roseburia faecis, Roseburia hominis, Roseburia intestinalis, Roseburia inulinivorans, Roseburia sp. 11SE37, Roseburia sp. 11SE38, Shuttleworthia satelles, Shuttleworthia sp. MSX8B, and Shuttleworthia sp. oral taxon G69, wherein clade_516 comprises one or more bacteria selected from the group consisting of Anaerotruncus colihominis, Clostridium methylpentosum, Clostridium sp. YIT 12070, Hydrogenoanaerobacterium saccharovorans, Ruminococcus albus, and Ruminococcus flavefaciens, and wherein clade_522 comprises one or more bacteria selected from the group consisting of Bacteroides galacturonicus, Eubacterium eligens, Lachnospira multipara, Lachnospira pectinoschiza, and Lactobacillus rogosae. In another embodiment, clade_444 comprises one or more bacteria of Roseburia inulinivorans, wherein clade_516 comprises one or more bacteria of Anaerotruncus colihominis, and wherein clade_522 comprises one or more bacteria of Eubacterium eligens. In some embodiments, clade_444 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1045, Seq. ID No.: 1634, Seq. ID No.: 1635, Seq. ID No.: 1636, Seq. ID No.: 1637, Seq. ID No.: 1638, Seq. ID No.: 1639, Seq. ID No.: 1640, Seq. ID No.: 1641, Seq. ID No.: 1728, Seq. ID No.: 1729, Seq. ID No.: 1730, Seq. ID No.: 456, Seq. ID No.: 856, and Seq. ID No.: 865, wherein clade_516 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1005, Seq. ID No.: 164, Seq. ID No.: 1656, Seq. ID No.: 1660, Seq. ID No.: 606, and Seq. ID No.: 642, and wherein clade_522 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1046, Seq. ID No.: 1047, Seq. ID No.: 1114, Seq. ID No.: 280, and Seq. ID No.: 845.


In other embodiments, clade_444 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1045, Seq. ID No.: 1634, Seq. ID No.: 1635, Seq. ID No.: 1636, Seq. ID No.: 1637, Seq. ID No.: 1638, Seq. ID No.: 1639, Seq. ID No.: 1640, Seq. ID No.: 1641, Seq. ID No.: 1728, Seq. ID No.: 1729, Seq. ID No.: 1730, Seq. ID No.: 456, Seq. ID No.: 856, and Seq. ID No.: 865, wherein clade_516 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1005, Seq. ID No.: 164, Seq. ID No.: 1656, Seq. ID No.: 1660, Seq. ID No.: 606, and Seq. ID No.: 642, and wherein clade_522 comprises one more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1046, Seq. ID No.: 1047, Seq. ID No.: 1114, Seq. ID No.: 280, and Seq. ID No.: 845.


In one embodiment, clade_444 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 1639, wherein clade_516 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 164, and wherein clade_522 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences having 97% or greater identity to Seq. ID No.: 845.


In one aspect, clade_444 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 1639, wherein clade_516 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 164, and wherein clade_522 comprises one or more bacteria selected from the group consisting of bacteria having 16S sequences Seq. ID No.: 845.


In another aspect, the composition further comprises a pharmaceutically-acceptable excipient. In one aspect, the therapeutic bacterial composition is substantially depleted of a residual habitat product of a fecal material. In certain aspects, the composition is formulated for oral administration. In other embodiments, the composition is capable of inducing the formation of IgA, RegIII-gamma, IL-10, regulatory T cells, TGF-beta, alpha-defensin, beta-defensin, or an antimicrobial peptide in the mammalian subject. In another embodiment, the composition is comestible.


The invention provides a composition, comprising any of the compositions administered according to the methods described above. The invention also includes a dosage unit comprising predetermined ratios of the isolated bacteria present in the network ecology as described above.


The invention provides a method for producing short chain fatty acids (SCFA) within a mammalian subject, comprising: administering to said mammalian subject in need thereof an effective amount of a therapeutic bacterial composition, said therapeutic bacterial composition comprising a plurality of isolated bacteria or a purified bacterial preparation, the plurality of isolated bacteria of the purified bacterial preparation capable of forming one or a plurality of bacterial functional pathways, the one or plurality of bacterial functional pathways capable of forming a functional network ecology selected from the group consisting of N262.S, N290.S, N284.S, N271.S, N282.S, N288.S, N302.S, N279.S, N310.S, N323.S, N331.S, N332.S, N301.S, N312.S, N339.S, N325.S, N340.S, N341.S, N346.S, N338.S, N336.S, N345.S, N355.S, N356.S, N343.S, N329.S, N361.S, N353.S, N381.S, N344.S, N352.S, N357.S, N358.S, N369.S, N372.S, N375.S, N380.S, N374.S, N377.S, N368.S, N370.S, N373.S, N376.S, N389.S, N394.S, N431.S, N434.S, N390.S, N397.S, N387.S, N440.S, N396.S, N399.S, N403.S, N414.S, N430.S, N432.S, N436.S, N437.S, N457.S, N545, N386.S, N402.S, N405.S, N415.S, N421.S, N422.S, N423.S, N458.S, N459.S, N493.S, N416.S, N439.S, N447.S, N490.S, N526, N429.S, N433.S, N448.S, N488.S, N508.S, N509.S, N510.S, N511.S, N408.S, N446.S, N451.S, N474.S, N520.S, N521.S, N535.S, N516.S, N463.S, N518.S, N586, N450.S, N465.S, N519.S, N537.S, N419.S, N468.S, N477.S, N514.S, N382.S, N460.S, N462.S, N512.S, N517.S, N523.S, N547.S, N548.S, N577.S, N581.S, N585.S, N616.S, N466.S, N469.S, N480.S, N482.S, N484.S, N515.S, N533.S, N709, N730, N478.S, N572.S, N400.S, N543.S, N582.S, N621.S, N689, N769, N481.S, N525.S, N528.S, N534.S, N574.S, N580.S, N590.S, N591.S, N597.S, N664, N693, N530.S, N687, N470.S, N529.S, N539.S, N546.S, N570.S, N579.S, N602.S, N614.S, N648.S, N652.S, N655.S, N672.S, N681.S, N690.S, N692.S, N698.S, N737.S, N738.S, N785, N841, N878, N880, N881, N987, N988, N996, N1061, N479.S, N538.S, N542.S, N578.S, N609.S, N611.S, N617.S, N666.S, N675.S, N682.S, N844, N845, N846, N852, N876, N982, N1008, N649.S, N657.S, N678.S, N686.S, N710.S, N522.S, N651.S, N653.S, N654.S, N680.S, N712.S, N792, N802, N804, N807, N849, N858, N859, N875, N885, N942, N961, N972, N1051, N587.S, N589.S, N612.S, N625.S, N656.S, N714.S, N779, N781, N828, N829, N860, N894, N925, N927, N935, N947, N983, N1023, N441.S, N584.S, N794, N788, N524.S, N604.S, N610.S, N623.S, N663.S, N669.S, N676.S, N703.S, N775.S, N777.S, N780.S, N817.S, N827.S, N836.S, N871.S, N874.S, N898.S, N907.S, N998.S, N1088, N1089, N660.S, N665.S, N667.S, N733.S, N734.S, N739.S, N741.S, N782.S, N789.S, N796.S, N798.S, N800.S, N809.S, N816.S, N842.S, N843.S, N869.S, N986.S, N995.S, N1002.S, N1004.S, N1019.S, N1093, N668.S, N685.S, N835.S, N851.S, N464.S, N695.S, N776.S, N793.S, N815.S, N833.S, N891.S, N1070.S, N1092, N795.S, N797.S, N808.S, N811.S, N826.S, N830.S, N832.S, N840.S, N945.S, N960.S, N968.S, N1091, N805.S, N822. S, N928. S, N936. S, N1078. S, and N913. S.


In one embodiment, the functional network ecology is selected from the group consisting of N1008, N1023, N1051, N1061, N1070.S, N1088, N1089, N1092, N381.S, N382.S, N399.S, N400.S, N402.S, N403.S, N414.S, N429.S, N430.S, N432.S, N433.S, N436.S, N437.S, N439.S, N441.S, N447.S, N448.S, N457.S, N460.S, N462.S, N463.S, N464.S, N470.S, N474.S, N488.S, N490.S, N493.S, N508.S, N509.S, N510.S, N511.S, N512.S, N514.S, N515.S, N517.S, N518.S, N519.S, N520.S, N523.S, N524.S, N528.S, N529.S, N539.S, N543.S, N546.S, N547.S, N548.S, N570.S, N574.S, N577.S, N579.S, N580.S, N582.S, N584.S, N585.S, N589.S, N591.S, N597. S, N602. S, N604.S, N609. S, N610.S, N611. S, N612.S, N614. S, N616. S, N621.S, N623.S, N625.S, N648.S, N651.S, N652.S, N653.S, N654.S, N655.S, N660.S, N663.S, N664, N665.S, N666.S, N669.S, N672.S, N676.S, N681.S, N687, N689, N690.S, N692.S, N693, N695.S, N698.S, N703.S, N709, N712.S, N714.S, N730, N734.S, N737.S, N738.S, N769, N775.S, N777.S, N779, N780.S, N781, N785, N788, N792, N793.S, N794, N797.S, N798.S, N802, N804, N807, N817.S, N827.S, N828, N830.S, N832.S, N833.S, N836.S, N840.S, N841, N844, N845, N849, N852, N858, N859, N860, N869.S, N871.S, N874.S, N875, N878, N880, N881, N885, N894, N898.S, N907.S, N913.S, N925, N927, N942, N947, N961, N968.S, N972, N982, N983, N986.S, N987, N988, N996, and N998.S. In another embodiment, the functional network ecology is N528.S, and the plurality of bacterial functional pathways comprises the functional pathways of KO:K00656, KO:K01069, KO:K01734, KO:K03417, KO:K03778, KO:K07246.


The invention includes a method for catalyzing secondary metabolism of bile acids within a mammalian subject, comprising: administering to said mammalian subject in need thereof an effective amount of a therapeutic bacterial composition, said therapeutic bacterial composition comprising a plurality of isolated bacteria or a purified bacterial preparation, the plurality of isolated bacteria of the purified bacterial preparation capable of forming one or a plurality of bacterial functional pathways, the one or plurality of bacterial functional pathways capable of forming a functional network ecology selected from the group consisting of N262.S, N290.S, N284.S, N271.S, N282.S, N288.S, N302.S, N279.S, N310.S, N323.S, N331.S, N332.S, N301.S, N312.S, N339.S, N325.S, N340.S, N341.S, N346.S, N338.S, N336.S, N345.S, N355.S, N356.S, N343.S, N329.S, N361.S, N353.S, N381.S, N344.S, N352.S, N357.S, N358.S, N369.S, N372.S, N375.S, N380.S, N374.S, N377.S, N368.S, N370.S, N373.S, N376.S, N389.S, N394.S, N431.S, N434.S, N390.S, N397.S, N387.S, N440.S, N396.S, N399.S, N403.S, N414.S, N430.S, N432.S, N436.S, N437.S, N457.S, N545, N386.S, N402.S, N405.S, N415.S, N421.S, N422.S, N423.S, N458.S, N459.S, N493.S, N416.S, N439.S, N447.S, N490.S, N526, N429.S, N433.S, N448.S, N488.S, N508.S, N509.S, N510.S, N511.S, N408.S, N446.S, N451.S, N474.S, N520.S, N521.S, N535.S, N516.S, N463.S, N518.S, N586, N450.S, N465.S, N519.S, N537.S, N419.S, N468.S, N477.S, N514.S, N382.S, N460.S, N462.S, N512.S, N517.S, N523.S, N547.S, N548.S, N577.S, N581.S, N585.S, N616.S, N466.S, N469.S, N480.S, N482.S, N484.S, N515.S, N533.S, N709, N730, N478.S, N572.S, N400.S, N543.S, N582.S, N621.S, N689, N769, N481.S, N525.S, N528.S, N534.S, N574.S, N580.S, N590.S, N591.S, N597.S, N664, N693, N530.S, N687, N470.S, N529.S, N539.S, N546.S, N570.S, N579.S, N602.S, N614.S, N648.S, N652.S, N655.S, N672.S, N681.S, N690.S, N692.S, N698.S, N737.S, N738.S, N785, N841, N878, N880, N881, N987, N988, N996, N1061, N479.S, N538.S, N542.S, N578.S, N609.S, N611.S, N617.S, N666.S, N675.S, N682.S, N844, N845, N846, N852, N876, N982, N1008, N649.S, N657.S, N678.S, N686.S, N710.S, N522.S, N651.S, N653.S, N654.S, N680.S, N712.S, N792, N802, N804, N807, N849, N858, N859, N875, N885, N942, N961, N972, N1051, N587.S, N589.S, N612.S, N625.S, N656.S, N714.S, N779, N781, N828, N829, N860, N894, N925, N927, N935, N947, N983, N1023, N441.S, N584.S, N794, N788, N524.S, N604.S, N610.S, N623.S, N663.S, N669.S, N676.S, N703.S, N775.S, N777.S, N780.S, N817.S, N827.S, N836.S, N871.S, N874.S, N898.S, N907.S, N998.S, N1088, N1089, N660.S, N665.S, N667.S, N733.S, N734.S, N739.S, N741.S, N782.S, N789.S, N796.S, N798.S, N800.S, N809.S, N816.S, N842.S, N843.S, N869.S, N986.S, N995.S, N1002.S, N1004.S, N1019.S, N1093, N668.S, N685.S, N835.S, N851.S, N464.S, N695.S, N776.S, N793.S, N815.S, N833.S, N891.S, N1070.S, N1092, N795.S, N797.S, N808.S, N811.S, N826.S, N830.S, N832.S, N840.S, N945.S, N960.S, N968.S, N1091, N805.S, N822. S, N928. S, N936. S, N1078. S, and N913. S.


In one embodiment, the functional network ecology is selected from the group consisting of N1008, N1023, N1051, N1061, N1070.S, N1088, N1089, N1092, N381.S, N382.S, N399.S, N400.S, N402.S, N403.S, N414.S, N429.S, N430.S, N432.S, N433.S, N436.S, N437.S, N439.S, N441.S, N447.S, N448.S, N457.S, N460.S, N462.S, N463.S, N464.S, N470.S, N474.S, N488.S, N490.S, N493.S, N508.S, N509.S, N510.S, N511.S, N512.S, N514.S, N515.S, N517.S, N518.S, N519.S, N520.S, N523.S, N524.S, N529.S, N539.S, N543.S, N546.S, N547.S, N548.S, N570.S, N574.S, N577.S, N579.S, N580.S, N582.S, N584.S, N585.S, N589.S, N591.S, N597.S, N602. S, N604. S, N609.S, N610. S, N611.S, N612. S, N614.S, N616. S, N621.S, N623.S, N625.S, N648.S, N651.S, N652.S, N653.S, N654.S, N655.S, N660.S, N663.S, N664, N665.S, N666.S, N669.S, N672.S, N676.S, N681.S, N687, N689, N690.S, N692.S, N693, N695.S, N698.S, N703.S, N709, N712.S, N714.S, N730, N734.S, N737.S, N738.S, N769, N775.S, N777.S, N779, N780.S, N781, N785, N788, N792, N793.S, N794, N797.S, N798.S, N802, N804, N807, N817.S, N827.S, N828, N830.S, N832.S, N833.S, N836.S, N840.S, N841, N844, N845, N849, N852, N858, N859, N860, N869.S, N871.S, N874.S, N875, N878, N880, N881, N885, N894, N898.S, N907.S, N913.S, N925, N927, N942, N947, N961, N968.S, N972, N982, N983, N986.S, N987, N988, N996, and N998.S. In another embodiment, the functional network ecology is N660.S and the plurality of bacterial functional pathways comprises the functional pathways of KO:K00656, and KO:K01442.


In some embodiment, the invention includes a composition further comprising a pharmaceutically-acceptable excipient. In one embodiment, the composition is formulated for oral administration. In another embodiment, the composition is capable of inducing the formation of butyrate, propionate, acetate, 7-deoxybile acids, deoxycholate acide (DCA) and lithocholic acid (LCA) in the mammalian subject. In other embodiments, the composition is capable of inducing the depletion of glucose, pyruvate, lactate, cellulose, fructans, starch, xylans, pectins, taurocholate, glycocholate, ursocholate, cholate, glycochenodeoxycholate, taurochenodeoxycholate, ursodeoxycholate, or chenodeoxycholate; or the formation and depletion of intermediary metabolites acetyl-CoA, butyryl-CoA, propanoyl-CoA, chenodeoxycholoyl-CoA, or ursodeoxycholoyl-CoA in the mammalian subject. In another embodiment, the composition is formulated with one or more prebiotic compounds. In some embodiments, the composition is comestible.


The invention includes a composition, comprising any of the compositions administered according to the methods described above.


The invention also includes a dosage unit comprising predetermined ratios of the isolated bacteria present in the network ecology described above.


The invention comprises a pharmaceutical formulation comprising a purified bacterial population consisting essentially of a bacterial network capable of forming germinable bacterial spores, wherein the bacterial network is present in an amount effective to populate the gastrointestinal tract in a mammalian subject in need thereof to whom the formulation is administered, under conditions such that at least one type of bacteria not detectably present in the bacterial network or in the gastrointestinal tract prior to administration is augmented.


The invention also includes a pharmaceutical formulation comprising a purified bacterial population comprising a plurality of bacterial entities, wherein the bacterial entities are present in an amount effective to induce the formation of a functional bacterial network in the gastrointestinal tract in a mammalian subject in need thereof to whom the formulation is administered. In some embodiments, the functional bacterial network comprises bacterial entities present in the formulation. In other embodiments, the functional bacterial network comprises bacterial entities present in the gastrointestinal tract at the time of administration. In another embodiment, the functional bacterial network comprises bacterial entities not present in the formulation or the gastrointestinal tract at the time of administration. In one embodiment, the formulation can be provided as an oral finished pharmaceutical dosage form including at least one pharmaceutically acceptable carrier In some embodiments, the mammalian subject suffers from a dysbiosis comprising a gastrointestinal disease, disorder or condition selected from the group consisting of Clostridium difficile Associated Diarrhea (CDAD), Type 2 Diabetes, Type 1 Diabetes, Obesity, Irritable Bowel Syndrome (IBS), Irritable Bowel Disease (IBD), Ulcerative Colitis, Crohn's Disease, colitis, colonization with a pathogen or pathobiont, and infection with a drug-resistant pathogen or pathobiont.


In another embodiment, the bacterial network is purified from a fecal material subjected to a treatment step that comprises depleting or inactivating a pathogenic material. In one embodiment, the bacterial network is substantially depleted of a detectable level of a first pathogenic material. In some embodiments, the bacterial network is substantially depleted of a residual habitat product of the fecal material.


In one embodiment, the invention provides a method of treating or preventing a dysbiosis in a human subject, comprising administering to the human subject the formulation in an amount effective to treat or prevent a dysbiosis or to reduce the severity of at least one symptom of the dysbiosis in the human subject to whom the formulation is administered.


In another embodiment, the formulation is provided as an oral finished pharmaceutical dosage form including at least one pharmaceutically acceptable carrier, the dosage form comprising at least about 1×104 colony forming units of bacterial spores per dose of the composition, wherein the bacterial spores comprise at least two bacterial entities comprising 16S rRNA sequences at least 97% identical to the nucleic acid sequences selected from the group consisting of Seq. ID No.: 674, Seq. ID No.: 1670, Seq. ID No.: 774, Seq. ID No.: 848, Seq. ID No.: 856, Seq. ID No.: 1639, Seq. ID No.: 880, Seq. ID No.: 1896, Seq. ID No.: 1591, Seq. ID No.: 164, Seq. ID No.: 845, and Seq. ID No.: 659.


In yet another embodiment, the administration of the formulation results in a reduction or an elimination of at least one pathogen and/or pathobiont present in the gastrointestinal tract when the therapeutic composition is administered. In one embodiment, the administration of the formulation results in engraftment of at least one type of spore-forming bacteria present in the therapeutic composition.


In one aspect, the administration of the formulation results in augmentation in the gastrointestinal tract of the subject to whom the formulation is administered of at least one type of bacteria not present in the formulation. In another aspect, the at least one type of spore-forming bacteria are not detectably present in the gastrointestinal tract of the subject to whom the formulation is administered when the formulation is administered. In yet another aspect, the administration of the formulation results in at least two of: i) reduction or elimination of at least one pathogen and/or pathobiont present in the gastrointestinal tract when the formulation is administered; ii) engraftment of at least one type of spore-forming bacteria present in the therapeutic composition; and iii) augmentation of at least one type of spore-forming or non-spore forming bacteria not present in the therapeutic composition.


In some aspects, the administration of the therapeutic composition results in at reduction or elimination of at least one pathogen and/or pathobiont present in the gastrointestinal tract when the therapeutic composition is administered and at least one of: i) engraftment of at least one type of spore-forming bacteria present in the therapeutic composition; and ii) augmentation of at least one type of bacteria not present in the therapeutic composition.


In another aspect, the method of inducing engraftment of a bacterial population in the gastrointestinal tract of a human subject, comprising the step of administering to the human subject an orally acceptable pharmaceutical formulation comprising a purified bacterial network, under conditions such that at least i) a subset of the spore-forming bacteria sustainably engraft within the gastrointestinal tract, or ii) at least one type of bacteria not present in the therapeutic composition is augmented within the gastrointestinal tract.


The invention provides a pharmaceutical formulation comprising a purified first bacterial entity and a purified second bacterial entity, wherein the first bacterial entity comprises a first nucleic acid sequence encoding a first polypeptide capable of catalyzing a first chemical reaction, wherein the second bacterial entity comprises a second nucleic acid sequence encoding a second polypeptide capable of catalyzing a second chemical reaction, wherein the pharmaceutical formulation is formulated for oral administration to a mammalian subject in need thereof, wherein the first chemical reaction and the second chemical reaction are capable of occurring in the gastrointestinal tract of the mammalian subject under conditions such that a first product of the first chemical reaction, a substance present within said mammalian subject, or a combination of said first product with the substance is used as a substrate in the second chemical reaction to form a second product, wherein the second product induces a host cell response. In one embodiment, the substance is a mammalian subject protein or a food-derived protein. In another embodiment, the host cell response comprises production by the host cell of a biological material. In certain embodiments, the biological material comprises a cytokine, growth factor or signaling polypeptide.


In one embodiment, the host cell response comprises an immune response. In another embodiment, the host cell response comprises decreased gastric motility. In yet another embodiment, the host cell response comprises change in host gene expression, increased host metabolism, reduced gut permeability, enhanced epithelial cell junction integrity, reduced lipolysis by the action of Lipoprotein Lipase in adipose tissue, decreased hepatic gluconeogenesis, increased insulin sensitivity, increased production of FGF-19, or change in energy harvesting and/or storage.


The invention includes a pharmaceutical formulation comprising a purified first bacterial entity and a purified second bacterial entity, wherein the first bacterial entity and the second bacterial entity form a functional bacterial network in the gastrointestinal tract of a mammalian subject to whom the pharmaceutical formulation is administered, wherein the functional network modulates the level and/or activity of a biological material capable of inducing a host cell response.


The invention also includes a pharmaceutical formulation comprising a purified first bacterial entity and a purified second bacterial entity, wherein the first bacterial entity and the second bacterial entity form a functional bacterial network in the gastrointestinal tract of a mammalian subject to whom the pharmaceutical formulation is administered, wherein the functional network induces the production of a biological material capable of inducing a host cell response.


The invention comprises a therapeutic composition, comprising a network of at least two bacterial entities, wherein the network comprises at least one keystone bacterial entity and at least one non-keystone bacterial entity, wherein the at least two bacterial entities are each provided in amounts effective for the treatment or prevention of a gastrointestinal disease, disorder or condition in a mammalian subject. In one aspect, the network comprises at least three bacterial entities. In another aspect, the network comprises at least three bacterial entities including at least two keystone bacterial entities.


The invention comprises a therapeutic composition, comprising a network of at least two keystone bacterial entities capable of forming germination-competent spores, wherein the at least two keystone bacterial entities are each provided in amounts effective for the treatment or prevention of a gastrointestinal disease, disorder or condition in a mammalian subject. In one aspect, the composition comprises a network of at least two keystone bacterial entities capable of forming germination-competent spores.


In one embodiment, the invention comprises a therapeutic composition, comprising: a first network of at least two bacterial entities, wherein the first network comprises a keystone bacterial entity and a non-keystone bacterial entity; and a second network of at least two bacterial entities, wherein the second network comprises at least one keystone bacterial entity and at least one non-keystone bacterial entity, wherein the networks are each provided in amounts effective for the treatment or prevention of a gastrointestinal disease, disorder or condition in a mammalian subject.


The invention includes a therapeutic composition, comprising a network of at least two bacterial entities, wherein the network comprises a first keystone bacterial entity and a second keystone bacterial entity, wherein the two bacterial entities are each provided in amounts effective for the treatment or prevention of a gastrointestinal disease, disorder or condition in a mammalian subject. In one aspect, the first and second keystone bacterial entities are present in the same network. In another aspect, the first and second keystone bacterial entities are present in different networks.


In some aspects, the invention comprises a diagnostic composition for the detection of a dysbiosis, comprising a first detection moiety capable of detecting a first keystone bacterial entity and a second detection moiety capable of detecting a first non-keystone bacterial entity, wherein the keystone bacterial entity and the non-keystone bacterial entity comprise a network, wherein the absence of at least one of the keystone bacterial entity and the non-keystone bacterial entity in a mammalian subject is indicative of a dysbiosis.


The invention comprises a method of altering a microbiome population present in a mammalian subject, comprising the steps of determining the presence of an incomplete network of bacterial entities in the gastrointestinal tract of the mammalian subject, and introducing to the gastrointestinal tract of the mammalian subject an effective amount of one or more supplemental bacterial entities not detectable in the gastrointestinal tract of the mammalian subject prior to such administration, under conditions such that the incomplete network is completed, thereby altering the microbiome population.


In one embodiment, the one or more supplemental bacterial entities become part of the incomplete network, thereby forming a complete network. In another embodiment, the one or more supplemental bacterial entities alter the microbiota of the mammalian subject such that one or more additional bacterial entities complete the incomplete network. In yet another embodiment, the one or more supplemental bacterial entities comprise a network.


The invention includes a method for detection and correction of a dysbiosis in a mammalian subject in need thereof, comprising the steps of: providing a fecal sample from the mammalian subject comprising a plurality of bacterial entities; contacting the fecal sample with a first detection moiety capable of detecting a first bacterial entity present in an network; detecting the absence of the first bacterial entity in the fecal sample, thereby detecting a dysbiosis in the mammalian subject; and administering to the mammalian subject a composition comprising an effective amount of the first bacterial entity. In one embodiment, the method includes confirming that the dysbiosis in the mammalian subject has been corrected.


The invention comprises a system for predicting a dysbiosis in a subject, the system comprising: a storage memory for storing a dataset associated with a sample obtained from the subject, wherein the dataset comprises content data for at least one network of bacterial entities; and a processor communicatively coupled to the storage memory for determining a score with an interpretation function wherein the score is predictive of dysbiosis in the subject.


The invention also comprises a kit for diagnosis of a state of dysbiosis in a mammalian subject in need thereof, comprising a plurality of detection means suitable for use in detecting (1) a first bacterial entity comprising a keystone bacterial entity and (2) a second bacterial entity, wherein the first and second bacterial entities comprise a functional network ecology.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 provides a schematic of 16S rRNA gene and denotes the coordinates of hypervariable regions 1-9 (V1-V9), according to an embodiment of the invention. Coordinates of V1-V9 are 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294, and 1435-1465 respectively, based on numbering using E. coli system of nomenclature defined by Brosius et al., Complete nucleotide sequence of a 16S ribosomal RNA gene (16S rRNA) from Escherichia coli, PNAS 75(10):4801-4805 (1978).



FIG. 2 highlights in bold the nucleotide sequences for each hypervariable region in the exemplary reference E. coli 16S sequence (SEQ ID NO: 2051) described by Brosius et al.



FIG. 3 provides the OTU and clade composition of networks tested in experiment SP-376, according to an embodiment of the invention.



FIG. 4 illustrates the results of a nutrient utilization assay with Clostridium difficile and potential competitors of the pathogen. A plus sign (+) indicates that it is a nutrient for the isolate tested. A minus sign (−) indicates that it is not a nutrient for the isolate tested.



FIG. 5 demonstrates the microbial diversity measured in the ethanol-treated spore treatment sample and patient pre- and post-treatment samples, according to an embodiment of the invention. Total microbial diversity is defined using the Chaol Alpha-Diversity Index and is measured at the same genomic sampling depths to confirm adequate and comparable sequence coverage of the target samples. The patient pretreatment (purple) harbored a microbiome that was significantly reduced in total diversity as compared to the ethanol-treated spore treatment (red) and patient post treatment at days 5 (blue), 14 (orange), and 25 (green).



FIG. 6 demonstrates how patient microbial ecology is shifted by treatment with an ethanol-treated spore treatment from a dysbiotic state to a state of health. Principal coordinates analysis based on the total diversity and structure of the microbiome (Bray Curtis Beta Diversity) of the patient pre- and post-treatment delineates that the combination of engraftment of the OTUs from the spore treatment and the augmentation of the patient microbial ecology leads to a microbial ecology that is distinct from both the pretreatment microbiome and the ecology of the ethanol-treated spore treatment.



FIG. 7 demonstrates the augmentation of Bacteroides species in patients treated with the spore population, according to an embodiment of the invention.



FIG. 8 shows species engrafting versus species augmenting in patients microbiomes after treatment with a bacterial composition such as but not limited to an ethanol-treated spore population, according to an embodiment of the invention. Relative abundance of species that engrafted or augmented as described were determined based on the number of 16S sequence reads. Each plot is from a different patient treated with the bacterial composition such as but not limited to an ethanol-treated spore population for recurrent C. difficile.



FIG. 9 shows a set of survival curves demonstrating efficacy of the ethanol enriched spore population in a mouse prophylaxis model of C. difficile, according to an embodiment of the invention.



FIG. 10 illustrates an in vivo hamster Clostridium difficile relapse prevention model to validate efficacy of ethanol-treated spores and ethanol treated, gradient purified spores, according to an embodiment of the invention.



FIG. 11 shows an in vivo hamster Clostridium difficile relapse prevention model to validate efficacy of network ecology bacterial composition, according to an embodiment of the invention.



FIG. 12 shows secondary bile acid metabolism KEGG Orthology Pathway and associated enzymatic gene products defined by EC numbers.



FIG. 13 shows Butyrate (a.k.a butanoate) production KEGG Orthology Pathway and associated enzymatic gene products defined by EC numbers.



FIG. 14 shows Propionate (a.k.a. propanoate) production KEGG Orthology Pathway and associated enzymatic gene products defined by EC numbers.



FIG. 15 shows Acetate production KEGG Orthology Pathway and associated enzymatic gene products defined by EC numbers.



FIG. 16 is an overview of a method to computationally derive network ecologies, according to an embodiment of the invention.



FIG. 17 is a schematic representation of how Keystone OTUs (nodes 2 and 4, shaded circles) are central members of many network ecologies that contain non-Keystone OTUs (nodes 1, 3, and 5-9). Distinct network ecologies include [node 2--node 7], [node--3--node 2--node--4], [node 2--node 4--node 5--node 6--node 7], [node 1--node 2--node 8--node 9], and [node--node 3].



FIG. 18 exemplifies a Derivation of Network Ecology Classes, according to an embodiment of the invention. Subsets of networks are selected for use in defining Network Classes based on key biological criteria. Hierarchical Network clusters are defined by the presence (white) and absence (blue) of OTUs and/or Functional Metabolic Pathways and Classes are defined as branches of the hierarchical clustering tree based on the topological overlap measure.



FIG. 19 shows phenotypes assigned to samples for the computational derivation of Network Ecologies that typify microbiome states of health (Hpost, Hdon, & Hgen) and states of disease (DdonF & DpreF). The composition of the microbiome of samples in different phenotypes can overlap with the intersections, defined by H, HD, D designations, having different biological meanings.



FIG. 20 shows an exemplary phylogenetic tree and the relationship of OTUs and Clades. A, B, C, D, and E represent OTUs, also known as leaves in the tree. Clade 1 comprises OTUs A and B, Clade 2 comprises OTUs C, D and E, and Clade 3 is a subset of Clade 2 comprising OTUs D and E. Nodes in a tree that define clades in the tree can be either statistically supported or not statistically supported. OTUs within a clade are more similar to each other than to OTUs in another clade and the robustness the clade assignment is denoted by the degree of statistical support for a node upstream of the OTUs in the clade.



FIG. 21 is a high-level block diagram illustrating an example of a computer for use as a server or a user device, in accordance with one embodiment.





The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.


DETAILED DESCRIPTION
Overview

Disclosed herein are therapeutic compositions containing combinations of bacteria for the prevention, control, and treatment of gastrointestinal diseases, and other disorders and conditions that result in or are caused by a dysbiotic microbiome in a niche of a host. Such indications include, but are not limited to Clostridium difficile associated diarrhea (CDAD), Type 2 Diabetes, Ulcerative colitis, as well as infection by antibiotic resistant bacteria such as Carbapenem resistant Klebsiella pneomoniae (CRKp) and Vancomycin Resistant Enterococcus (VRE). These compositions are advantageous in being suitable for safe administration to humans and other mammalian subjects and are efficacious in numerous gastrointestinal diseases, disorders and conditions and in general nutritional health. While bacterial compositions are known, these are generally single bacterial strains or combinations of bacteria that are combined without understanding the ecology formed by a consortium of bacterial organisms, resulting in poor efficacy, instability, substantial variability and lack of adequate safety.


The human body is an ecosystem in which the microbiota and the microbiome play a significant role in the basic healthy function of human systems (e.g. metabolic, immunological, and neurological). The microbiota and resulting microbiome comprise an ecology of microorganisms that co-exist within single subjects interacting with one another and their host (i.e., the mammalian subject) to form a dynamic unit with inherent biodiversity and functional characteristics. Within these networks of interacting microbes (i.e. ecologies), particular members can contribute more significantly than others; as such these members are also found in many different ecologies, and the loss of these microbes from the ecology can have a significant impact on the functional capabilities of the specific ecology. Robert Paine coined the concept “Keystone Species” in 1969 (see Paine R T. 1969. A note on trophic complexity and community stability. The American Naturalist 103: 91-93.) to describe the existence of such lynchpin species that are integral to a given ecosystem regardless of their abundance in the ecological community. Paine originally describe the role of the starfish Pisaster ochraceus in marine systems and since the concept has been experimentally validated in numerous ecosystems.


The present invention provides methods to define important network ecologies and functional network ecologies that occur in healthy and diseased subjects, and provides the compositional constituents of these network ecologies. The method enables the derivation of ecological modules (i.e. groups or networks of organisms and metabolic functions) within a broader ecology that can catalyze a change from a dysbiotic microbiome to one that represents a state of health. In another embodiment the methods enable the de novo construction of a network ecology based on desired biological characteristics, including functional characteristics, e.g. a functional network ecology. The methods further provide keystone species (i.e. operational taxonomic units, or OTUs) and keystone metabolic functions that are members of these microbial communities based on their ubiquitous appearance in many different networks. Importantly, this method is distinguished from previous computational approaches by being the first method to define actual network ecologies that are found in many healthy subjects. Network ecologies comprise consortia of bacterial OTUs (i.e. genera, species, or strains) that form coherent intact biological communities with defined phylogenetic and/or functional properties. In other words, the structure-function relationships contained within any Network Ecology possess an inherent biodiversity profile and resulting biological functional capabilities. The specific bacterial combinations and functional capabilities of the resulting microbiome are efficacious for the treatment or prevention of diseases, disorders and conditions of the gastrointestinal tract or for the treatment or prevention of systemic diseases, disorders and conditions that are influenced by the microbiota of the gastrointestinal tract. Further the network ecologies have a modularity to their structure and function with specific nodes (as example OTUs, phylogenetic clades, functional pathways) comprising a backbone of the network onto which different r-groups (as example OTUs, phylogenetic clades, functional pathways) can be incorporated to achieve specific biological properties of the network ecology. Network Ecologies defined in terms of functional modalities are referred to as Functional Network Ecologies.


The network ecologies provided herein are useful in settings where a microbial dysbiosis is occurring, given their capacities to achieve one or more of the following actions: i) disrupting the existing microbiota and/or microbiome; ii) establishing a new microbiota and/or microbiome; and (iii) stabilizing a functional microbiota and/or microbiome that supports health. Such network ecologies may be sustainably present upon introduction into a mammalian subject, or may be transiently present until such time as the functional microbiota and/or microbiome are re-established. In therapeutic settings, treatment with a consortium of microbial OTUs will change the microbiome of the treated host from a state of disease to a state of health. This change in the total diversity and composition can be mediated by both: (i) engraftment of OTUs that comprise the therapeutic composition into the host's ecology (Engrafted Ecology), and (ii) the establishment of OTUs that are not derived from the therapeutic composition, but for which the treatment with the therapeutic composition changes the environmental conditions such that these OTUs can establish. This Augmented Ecology is comprised of OTUs that were present at lower levels in the host pre-treatment or that were exogenously introduced from a source other than the therapeutic composition itself.


Provided herein are computational methods based at least in part on network theory (Proulx S R, Promislow D E L, Phillips P C. 2005. Network thinking in ecology and evolution. Trends in Ecology & Evolution 20: 345-353.), that delineate ecological and functional structures of a group of microorganisms based on the presence or absence of the specific OTUs (i.e. microbial orders, families, genera, species or strains) or functions inherent to those OTUs in a population of sampled mammalian subjects. Notably, these network ecologies and functional network ecologies are not simply inferred based on the clustering of OTUs according to binary co-occurrences computed from average relative abundances across a set of subject samples (See e.g. Faust K, Sathirapongsasuti J F, Izard J, Segata N, Gevers D, Raes J, and Huttenhower C. 2012. Microbial co-occurrence relationships in the human microbiome. PLoS Computational Bioliology 8: e1002606. Lozupone C, Faust K, Raes J, Faith J J, Frank D N, Zaneveld J, Gordon J I, and Knight R. 2012. Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research 22: 1974-1984), but instead the ecologies represent actual communities of bacterial OTUs that are computationally derived and explicitly exist as an ecological network within one or more subjects. Further, we provide methods by which to characterize the biological significance of a given ecological network in terms of its phylogenetic diversity, functional properties, and association with health or disease. The present invention delineates ecologies suitable for the treatment or prevention of diseases, disorders, and conditions of the gastrointestinal tract or which are distal to the gastrointestinal tract but caused or perpetuated by a dysbiosis of the gut microbiota.


Definitions

As used herein, the term “purified bacterial preparation” refers to a preparation that includes bacteria that have been separated from at least one associated substance found in a source material or any material associated with the bacteria in any process used to produce the preparation.


A “bacterial entity” includes one or more bacteria. Generally, a first bacterial entity is distinguishable from a second bacterial entity


As used herein, the term “formation” refers to synthesis or production.


As used herein, the term “inducing” means increasing the amount or activity of a given material as dictated by context.


As used herein, the term “depletion” refers to reduction in amount of.


As used herein, a “prebiotic” is a comestible food or beverage or ingredient thereof that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host well-being and health. Prebiotics may include complex carbohydrates, amino acids, peptides, or other essential nutritional components for the survival of the bacterial composition. Prebiotics include, but are not limited to, amino acids, biotin, fructooligosaccharide, galactooligosaccharides, inulin, lactulose, mannan oligosaccharides, oligofructose-enriched inulin, oligofructose, oligodextrose, tagatose, trans-galactooligosaccharide, and xylooligosaccharides.


As used herein, “predetermined ratios” refer to ratios determined or selected in advance.


As used herein, “germinable bacterial spores” are spores capable of forming vegetative cells under certain environmental conditions.


As used herein, “detectably present” refers to present in an amount that can be detected using assays provided herein or otherwise known in the art that exist as of the filing date.


As used herein, “augmented” refers to an increase in amount and/or localization within to a point where it becomes detectably present.


As used herein, a “fecal material” refers to a solid waste product of digested food and includes feces or bowel washes.


As used herein, a “host cell response” is a response produced by a cell comprising a host organism.


As used herein, a “mammalian subject protein” refers to a protein produced by a mammalian subject and encoded by the mammalian subject genome.


As used herein, the term “food-derived” refers to a protein found in a consumed food.


As used herein, the term “biological material” refers to a material produced by a biological organism.


As used herein, the term “detection moiety” refers to an assay component that functions to detect an analyte.


As used herein, the term “incomplete network” refers to a partial network that lacks the entire set of components needed to carry out one or more network functions.


As used herein, the term “supplemental” refers to something that is additional and non-identical.


As used herein, the term “Antioxidant” refers to, without limitation, any one or more of various substances such as beta-carotene (a vitamin A precursor), vitamin C, vitamin E, and selenium that inhibit oxidation or reactions promoted by Reactive Oxygen Species (“ROS”) and other radical and non-radical species. Additionally, antioxidants are molecules capable of slowing or preventing the oxidation of other molecules. Non-limiting examples of antioxidants include astaxanthin, carotenoids, coenzyme Q10 (“CoQ10”), flavonoids, glutathione, Goji (wolfberry), hesperidin, lactowolfberry, lignan, lutein, lycopene, polyphenols, selenium, vitamin A, vitamin C, vitamin E, zeaxanthin, or combinations thereof.


“Backbone Network Ecology” or simply “Backbone Network” or “Backbone” are compositions of microbes that form a foundational composition that can be built upon or subtracted from to optimize a Network Ecology or Functional Network Ecology to have specific biological characteristics or to comprise desired functional properties, respectively. Microbiome therapeutics can be comprised of these “Backbone Networks Ecologies” in their entirety, or the “Backbone Networks” can be modified by the addition or subtraction of “R-Groups” to give the network ecology desired characteristics and properties. “R-Groups” can be defined in multiple terms including, but not limited to: individual OTUs, individual or multiple OTUs derived from a specific phylogenetic clade or a desired phenotype such as the ability to form spores, or functional bacterial compositions that comprise. “Backbone Networks” can comprise a computationally derived Network Ecology in its entirety or can be subsets of the computed network that represent key nodes in the network that contributed to efficacy such as but not limited to a composition of Keystone OTUs. The number of organisms in the human gastrointestinal tract, as well as the diversity between healthy individuals, is indicative of the functional redundancy of a healthy gut microbiome ecology. See The Human Microbiome Consortia. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214. This redundancy makes it highly likely that non-obvious subsets of OTUs or functional pathways (i.e. “Backbone Networks”) are critical to maintaining states of health and or catalyzing a shift from a dysbiotic state to one of health. One way of exploiting this redundancy is through the substitution of OTUs that share a given clade (see below) or of adding members of a clade not found in the Backbone Network.


“Bacterial Composition” refers to a consortium of microbes comprising two or more OTUs. Backbone Network Ecologies, Functional Network Ecologies, Network Classes, and Core Ecologies are all types of bacterial compositions. A “Bacterial Composition” can also refer to a composition of enzymes that are derived from a microbe or multiple microbes. As used herein, Bacterial Composition includes a therapeutic microbial composition, a prophylactic microbial composition, a Spore Population, a Purified Spore Population, or ethanol treated spore population.


“Clade” refers to the OTUs or members of a phylogenetic tree that are downstream of a statistically valid node in a phylogenetic tree (FIG. 20). The clade comprises a set of terminal leaves in the phylogenetic tree (i.e. tips of the tree) that are a distinct monophyletic evolutionary unit and that share some extent of sequence similarity. Clades are hierarchical. In one embodiment, the node in a phylogenetic tree that is selected to define a clade is dependent on the level of resolution suitable for the underlying data used to compute the tree topology.


The “Colonization” of a host organism includes the non-transitory residence of a bacterium or other microscopic organism. As used herein, “reducing colonization” of a host subject's gastrointestinal tract (or any other microbiotal niche) by a pathogenic or non-pathogenic bacterium includes a reduction in the residence time of the bacterium the gastrointestinal tract as well as a reduction in the number (or concentration) of the bacterium in the gastrointestinal tract or adhered to the luminal surface of the gastrointestinal tract. The reduction in colonization can be permanent or occur during a transient period of time. Reductions of adherent pathogens can be demonstrated directly, e.g., by determining pathogenic burden in a biopsy sample, or reductions may be measured indirectly, e.g., by measuring the pathogenic burden in the stool of a mammalian host.


A “Combination” of two or more bacteria includes the physical co-existence of the two bacteria, either in the same material or product or in physically connected products, as well as the temporal co-administration or co-localization of the two bacteria.


“Cytotoxic” activity of bacterium includes the ability to kill a bacterial cell, such as a pathogenic bacterial cell. A “cytostatic” activity or bacterium includes the ability to inhibit, partially or fully, growth, metabolism, and/or proliferation of a bacterial cell, such as a pathogenic bacterial cell. Cytotoxic activity may also apply to other cell types such as but not limited to Eukaryotic cells.


“Dysbiosis” refers to a state of the microbiota or microbiome of the gut or other body area, including mucosal or skin surfaces in which the normal diversity and/or function of the ecological network is disrupted. Any disruption from the preferred (e.g., ideal) state of the microbiota can be considered a dysbiosis, even if such dysbiosis does not result in a detectable decrease in health. This state of dysbiosis may be unhealthy, it may be unhealthy under only certain conditions, or it may prevent a subject from becoming healthier. Dysbiosis may be due to a decrease in diversity, the overgrowth of one or more pathogens or pathobionts, symbiotic organisms able to cause disease only when certain genetic and/or environmental conditions are present in a patient, or the shift to an ecological network that no longer provides a beneficial function to the host and therefore no longer promotes health.


“Ecological Niche” or simply “Niche” refers to the ecological space in which an organism or group of organisms occupies. Niche describes how an organism or population or organisms responds to the distribution of resources, physical parameters (e.g., host tissue space) and competitors (e.g., by growing when resources are abundant, and when predators, parasites and pathogens are scarce) and how it in turn alters those same factors (e.g., limiting access to resources by other organisms, acting as a food source for predators and a consumer of prey).


“Germinant” is a material or composition or physical-chemical process capable of inducing vegetative growth of a bacterium that is in a dormant spore form, or group of bacteria in the spore form, either directly or indirectly in a host organism and/or in vitro.


“Inhibition” of a pathogen or non-pathogen encompasses the inhibition of any desired function or activity y the bacterial compositions of the present invention. Demonstrations of inhibition, such as decrease in the growth of a pathogenic bacterium or reduction in the level of colonization of a pathogenic bacterium are provided herein and otherwise recognized by one of ordinary skill in the art. Inhibition of a pathogenic or non-pathogenic bacterium's “growth” may include inhibiting the increase in size of the pathogenic or non-pathogenic bacterium and/or inhibiting the proliferation (or multiplication) of the pathogenic or non-pathogenic bacterium. Inhibition of colonization of a pathogenic or non-pathogenic bacterium may be demonstrated by measuring the amount or burden of a pathogen before and after a treatment. An “inhibition” or the act of “inhibiting” includes the total cessation and partial reduction of one or more activities of a pathogen, such as growth, proliferation, colonization, and function. Inhibition of function includes, for example, the inhibition of expression of pathogenic gene products such as a toxin or invasive pilus induced by the bacterial composition.


“Isolated” encompasses a bacterium or other entity or substance that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature or in an experimental setting), and/or (2) produced, prepared, purified, and/or manufactured by the hand of man. Isolated bacteria include those bacteria that are cultured, even if such cultures are not monocultures. Isolated bacteria may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or more of the other components with which they were initially associated. In some embodiments, isolated bacteria are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. As used herein, a substance is “pure” if it is substantially free of other components. The terms “purify,” “purifying” and “purified” refer to a bacterium or other material that has been separated from at least some of the components with which it was associated either when initially produced or generated (e.g., whether in nature or in an experimental setting), or during any time after its initial production. A bacterium or a bacterial population may be considered purified if it is isolated at or after production, such as from a material or environment containing the bacterium or bacterial population, or by passage through culture, and a purified bacterium or bacterial population may contain other materials up to about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or above about 90% and still be considered “isolated.” In some embodiments, purified bacteria and bacterial populations are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. In the instance of bacterial compositions provided herein, the one or more bacterial types present in the composition can be independently purified from one or more other bacteria produced and/or present in the material or environment containing the bacterial type. Bacterial compositions and the bacterial components thereof are generally purified from residual habitat products.


“Keystone OTU” or “Keystone Function” refers to one or more OTUs or Functional Pathways (e.g. KEGG or COG pathways) that are common to many network ecologies or functional network ecologies and are members of networks that occur in many subjects (i.e. are pervasive). Due to the ubiquitous nature of Keystone OTUs and their associated Functions Pathways, they are central to the function of network ecologies in healthy subjects and are often missing or at reduced levels in subjects with disease. Keystone OTUs and their associated functions may exist in low, moderate, or high abundance in subjects. “Non-Keystone OTU” or “non-Keystone Function” refers to an OTU or Function that is observed in a Network Ecology or a Functional Network Ecology and is not a keystone OTU or Function.


“Microbiota” refers to the community of microorganisms that occur (sustainably or transiently) in and on an animal subject, typically a mammal such as a human, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses i.e., phage).


“Microbiome” refers to the genetic content of the communities of microbes that live in and on the human body, both sustainably and transiently, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses (i.e., phage)), wherein “genetic content” includes genomic DNA, RNA such as ribosomal RNA, the epigenome, plasmids, and all other types of genetic information.


“Microbial Carriage” or simply “Carriage” refers to the population of microbes inhabiting a niche within or on humans. Carriage is often defined in terms of relative abundance. For example, OTU1 comprises 60% of the total microbial carriage, meaning that OTU1 has a relative abundance of 60% compared to the other OTUs in the sample from which the measurement was made. Carriage is most often based on genomic sequencing data where the relative abundance or carriage of a single OTU or group of OTUs is defined by the number of sequencing reads that are assigned to that OTU/s relative to the total number of sequencing reads for the sample. Alternatively, Carriage may be measured using microbiological assays.


“Microbial Augmentation” or simply “augmentation” refers to the establishment or significant increase of a population of microbes that are (i) absent or undetectable (as determined by the use of standard genomic and microbiological techniques) from the administered therapeutic microbial composition, (ii) absent, undetectable, or present at low frequencies in the host niche (for example: gastrointestinal tract, skin, anterior-nares, or vagina) before the delivery of the microbial composition, and (iii) are found after the administration of the microbial composition or significantly increased, for instance 2-fold, 5-fold, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, or greater than 1×108, in cases where they were present at low frequencies. The microbes that comprise an augmented ecology can be derived from exogenous sources such as food and the environment, or grow out from micro-niches within the host where they reside at low frequency. The administration of a bacterial microbial composition induces an environmental shift in the target niche that promotes favorable conditions for the growth of these commensal microbes. In the absence of treatment with a bacterial composition, the host can be constantly exposed to these microbes; however, sustained growth and the positive health effects associated with the stable population of increased levels of the microbes comprising the augmented ecology are not observed.


“Microbial Engraftment” or simply “engraftment” refers to the establishment of OTUs present in the bacterial composition in a target niche that are absent in the treated host prior to treatment. The microbes that comprise the engrafted ecology are found in the therapeutic microbial composition and establish as constituents of the host microbial ecology upon treatment. Engrafted OTUs can establish for a transient period of time, or demonstrate long-term stability in the microbial ecology that populates the host post treatment with a bacterial composition. The engrafted ecology can induce an environmental shift in the target niche that promotes favorable conditions for the growth of commensal microbes capable of catalyzing a shift from a dysbiotic ecology to one representative of a health state.


As used herein, the term “Minerals” is understood to include boron, calcium, chromium, copper, iodine, iron, magnesium, manganese, molybdenum, nickel, phosphorus, potassium, selenium, silicon, tin, vanadium, zinc, or combinations thereof.


“Network Ecology” refers to a consortium of clades or OTUs that co-occur in some number of subjects. As used herein, a “network” is defined mathematically by a graph delineating how specific nodes (i.e. clades or OTUs) and edges (connections between specific clades or OTUs) relate to one another to define the structural ecology of a consortium of clades or OTUs. Any given Network Ecology will possess inherent phylogenetic diversity and functional properties. A Network Ecology can also be defined in terms of its functional capabilities where for example the nodes would be comprised of elements such as, but not limited to, enzymes, clusters of orthologous groups (COGS; ncbi.nlm.nih.gov/books/NBK21090/), or KEGG Orthology Pathways (genome.jp/kegg/); these networks are referred to as a “Functional Network Ecology”. Functional Network Ecologies can be reduced to practice by defining the group of OTUs that together comprise the functions defined by the Functional Network Ecology.


“Network Class” and “Network Class Ecology” refer to a group of network ecologies that in general are computationally determined to comprise ecologies with similar phylogenetic and/or functional characteristics. A Network Class therefore contains important biological features, defined either phylogenetically or functionally, of a group (i.e., a cluster) of related network ecologies. One representation of a Network Class Ecology is a designed consortium of microbes, typically non-pathogenic bacteria, that represents core features of a set of phylogenetically or functionally related network ecologies seen in many different subjects. In many occurrences, a Network Class, while designed as described herein, exists as a Network Ecology observed in one or more subjects. Network Class ecologies are useful for reversing or reducing a dysbiosis in subjects where the underlying, related Network Ecology has been disrupted. Exemplary Network Classes are provided in Table 12 and examples of phylogenetic signature by family of Network Classes are given in Table 13.


To be free of “non-comestible products” means that a bacterial composition or other material provided herein does not have a substantial amount of a non-comestible product, e.g., a product or material that is inedible, harmful or otherwise undesired in a product suitable for administration, e.g., oral administration, to a human subject. Non-comestible products are often found in preparations of bacteria from the prior art.


“Operational taxonomic units” and “OTU” (or plural, “OTUs”) refer to a terminal leaf in a phylogenetic tree and is defined by a nucleic acid sequence, e.g., the entire genome, or a specific genetic sequence, and all sequences that share sequence identity to this nucleic acid sequence at the level of species. In some embodiments the specific genetic sequence may be the 16S sequence or a portion of the 16S sequence. In other embodiments, the entire genomes of two entities are sequenced and compared. In another embodiment, select regions such as multilocus sequence tags (MLST), specific genes, or sets of genes may be genetically compared. In 16S embodiments, OTUs that share ≥97% average nucleotide identity across the entire 16S or some variable region of the 16S are considered the same OTU. See e.g. Claesson M J, Wang Q, O'Sullivan O, Greene-Diniz R, Cole J R, Ross R P, and O'Toole P W. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38: e200. Konstantinidis K T, Ramette A, and Tiedje J M. 2006. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361: 1929-1940. In embodiments involving the complete genome, MLSTs, specific genes, other than 16S, or sets of genes OTUs that share ≥95% average nucleotide identity are considered the same OTU. See e.g., Achtman M, and Wagner M. 2008. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6: 431-440. Konstantinidis K T, Ramette A, and Tiedje J M. 2006. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361: 1929-1940. OTUs are frequently defined by comparing sequences between organisms. Generally, sequences with less than 95% sequence identity are not considered to form part of the same OTU. OTUs may also be characterized by any combination of nucleotide markers or genes, in particular highly conserved genes (e.g., “house-keeping” genes), or a combination thereof. Such characterization employs, e.g., WGS data or a whole genome sequence.


Table 1 below shows a List of Operational Taxonomic Units (OTU) with taxonomic assignments made to Genus, Species, and Phylogenetic Clade. Clade membership of bacterial OTUs is based on 16S sequence data. Clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood methods familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another, and (ii) within 5% genetic similarity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data, while OTUs falling within the same clade are closely related. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. Members of the same clade, due to their evolutionary relatedness, play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. All OTUs are denoted as to their putative capacity to form spores and whether they are a Pathogen or Pathobiont (see Definitions for description of “Pathobiont”). NIAID Priority Pathogens are denoted as ‘Category-A’, ‘Category-B’, or ‘Category-C’, and Opportunistic Pathogens are denoted as ‘OP’. OTUs that are not pathogenic or for which their ability to exist as a pathogen is unknown are denoted as ‘N’. The ‘SEQ ID Number’ denotes the identifier of the OTU in the Sequence Listing File and ‘Public DB Accession’ denotes the identifier of the OTU in a public sequence repository.


“Pathobiont” refer to specific bacterial species found in healthy hosts that may trigger immune-mediated pathology and/or disease in response to certain genetic or environmental factors (Chow et al. 2011. Curr Op Immunol. Pathobionts of the intestinal microbiota and inflammatory disease. 23: 473-80). Thus, a pathobiont is an opportunistic microbe that is mechanistically distinct from an acquired infectious organism. Thus, the term “pathogen” includes both acquired infectious organisms and pathobionts.


“Pathogen”, “pathobiont” and “pathogenic” in reference to a bacterium or any other organism or entity that includes any such organism or entity that is capable of causing or affecting a disease, disorder or condition of a host organism containing the organism or entity, including but not limited to pre-diabetes, type 1 diabetes or type 2 diabetes.


“Phenotype” refers to a set of observable characteristics of an individual entity. As example an individual subject may have a phenotype of “health” or “disease”. Phenotypes describe the state of an entity and all entities within a phenotype share the same set of characteristics that describe the phenotype. The phenotype of an individual results in part, or in whole, from the interaction of the entity's genome and/or microbiome with the environment, especially including diet.


“Phylogenetic Diversity” is a biological characteristic that refers to the biodiversity present in a given Network Ecology or Network Class Ecology based on the OTUs that comprise the network. Phylogenetic diversity is a relative term, meaning that a Network Ecology or Network Class that is comparatively more phylogenetically diverse than another network contains a greater number of unique species, genera, and taxonomic families. Uniqueness of a species, genera, or taxonomic family is generally defined using a phylogenetic tree that represents the genetic diversity all species, genera, or taxonomic families relative to one another. In another embodiment phylogenetic diversity may be measured using the total branch length or average branch length of a phylogenetic tree. Phylogenetic Diversity may be optimized in a bacterial composition by including a wide range of biodiversity.


“Phylogenetic tree” refers to a graphical representation of the evolutionary relationships of one genetic sequence to another that is generated using a defined set of phylogenetic reconstruction algorithms (e.g. parsimony, maximum likelihood, or Bayesian). Nodes in the tree represent distinct ancestral sequences and the confidence of any node is provided by a bootstrap or Bayesian posterior probability, which measures branch uncertainty.


“Prediabetes” refers a condition in which blood glucose levels are higher than normal, but not high enough to be classified as diabetes. Individuals with pre-diabetes are at increased risk of developing type 2 diabetes within a decade. According to CDC, prediabetes can be diagnosed by fasting glucose levels between 100-125 mg/dL, 2 hour post-glucose load plasma glucose in oral glucose tolerance test (OGTT) between 140 and 199 mg/dL, or hemoglobin A1c test between 5.7%-6.4%.


“rDNA”, “rRNA”, “16S-rDNA”, “16S-rRNA”, “16S”, “16S sequencing”, “16S-NGS”, “18S”, “18S-rRNA”, “18S-rDNA”, “18S sequencing”, and “18S-NGS” refer to the nucleic acids that encode for the RNA subunits of the ribosome. rDNA refers to the gene that encodes the rRNA that comprises the RNA subunits. There are two RNA subunits in the ribosome termed the small subunit (SSU) and large subunit (LSU); the RNA genetic sequences (rRNA) of these subunits is related to the gene that encodes them (rDNA) by the genetic code. rDNA genes and their complementary RNA sequences are widely used for determination of the evolutionary relationships amount organisms as they are variable, yet sufficiently conserved to allow cross organism molecular comparisons. Typically 16S rDNA sequence (approximately 1542 nucleotides in length) of the 30S SSU is used for molecular-based taxonomic assignments of Prokaryotes and the 18S rDNA sequence (approximately 1869 nucleotides in length) of 40S SSU is used for Eukaryotes. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most bacteria.


“Residual habitat products” refers to material derived from the habitat for microbiota within or on a human or animal. For example, microbiota live in feces in the gastrointestinal tract, on the skin itself, in saliva, mucus of the respiratory tract, or secretions of the genitourinary tract (i.e., biological matter associated with the microbial community). Substantially free of residual habitat products means that the bacterial composition no longer contains the biological matter associated with the microbial environment on or in the human or animal subject and is 100% free, 99% free, 98% free, 97% free, 96% free, or 95% free of any contaminating biological matter associated with the microbial community. Residual habitat products can include abiotic materials (including undigested food) or it can include unwanted microorganisms. Substantially free of residual habitat products may also mean that the bacterial composition contains no detectable cells from a human or animal and that only microbial cells are detectable. In one embodiment, substantially free of residual habitat products may also mean that the bacterial composition contains no detectable viral (including bacterial viruses (i.e., phage)), fungal, mycoplasmal contaminants. In another embodiment, it means that fewer than 1×10-2%, 1×10-3%, 1×10-4%, 1×10-5%, 1×10-6%, 1×10-7%, 1×10-8 of the viable cells in the bacterial composition are human or animal, as compared to microbial cells. There are multiple ways to accomplish this degree of purity, none of which are limiting. Thus, contamination may be reduced by isolating desired constituents through multiple steps of streaking to single colonies on solid media until replicate (such as, but not limited to, two) streaks from serial single colonies have shown only a single colony morphology. Alternatively, reduction of contamination can be accomplished by multiple rounds of serial dilutions to single desired cells (e.g., a dilution of 10-8 or 10-9), such as through multiple 10-fold serial dilutions. This can further be confirmed by showing that multiple isolated colonies have similar cell shapes and Gram staining behavior. Other methods for confirming adequate purity include genetic analysis (e.g. PCR, DNA sequencing), serology and antigen analysis, enzymatic and metabolic analysis, and methods using instrumentation such as flow cytometry with reagents that distinguish desired constituents from contaminants.


“Spore” or a population of “spores” includes bacteria (or other single-celled organisms) that are generally viable, more resistant to environmental influences such as heat and bacteriocidal agents than vegetative forms of the same bacteria, and typically capable of germination and out-growth. Spores are characterized by the absence of active metabolism until they respond to specific environmental signals, causing them to germinate. “Spore-formers” or bacteria “capable of forming spores” are those bacteria containing the genes and other necessary abilities to produce spores under suitable environmental conditions. A Table of preferred spore-forming bacterial compositions is provided in Table 11.


“Spore population” refers to a plurality of spores present in a composition. Synonymous terms used herein include spore composition, spore preparation, ethanol-treated spore fraction and spore ecology. A spore population may be purified from a fecal donation, e.g. via ethanol or heat treatment, or a density gradient separation or any combination of methods described herein to increase the purity, potency and/or concentration of spores in a sample. Alternatively, a spore population may be derived through culture methods starting from isolated spore former species or spore former OTUs or from a mixture of such species, either in vegetative or spore form.


In one embodiment, the spore preparation comprises spore forming species wherein residual non-spore forming species have been inactivated by chemical or physical treatments including ethanol, detergent, heat, sonication, and the like; or wherein the non-spore forming species have been removed from the spore preparation by various separations steps including density gradients, centrifugation, filtration and/or chromatography; or wherein inactivation and separation methods are combined to make the spore preparation. In yet another embodiment, the spore preparation comprises spore forming species that are enriched over viable non-spore formers or vegetative forms of spore formers. In this embodiment, spores are enriched by 2-fold, 5-fold, 10-fold, 50-fold, 100-fold, 1000-fold, 10,000-fold or greater than 10,000-fold compared to all vegetative forms of bacteria. In yet another embodiment, the spores in the spore preparation undergo partial germination during processing and formulation such that the final composition comprises spores and vegetative bacteria derived from spore forming species.


“Sporulation induction agent” is a material or physical-chemical process that is capable of inducing sporulation in a bacterium, either directly or indirectly, in a host organism and/or in vitro.


To “increase production of bacterial spores” includes an activity or a sporulation induction agent. “Production” includes conversion of vegetative bacterial cells into spores and augmentation of the rate of such conversion, as well as decreasing the germination of bacteria in spore form, decreasing the rate of spore decay in vivo, or ex vivo, or to increasing the total output of spores (e.g. via an increase in volumetric output of fecal material).


“Subject” refers to any animal subject including humans, laboratory animals (e.g., primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, and chickens), and household pets (e.g., dogs, cats, and rodents). The subject may be suffering from a dysbiosis, that contributes to or causes a condition classified as diabetes or pre-diabetes, including but not limited to mechanisms such as metabolic endotoxemia, altered metabolism of primary bile acids, immune system activation, or an imbalance or reduced production of short chain fatty acids including butyrate, propionate, acetate, and branched chain fatty acids.


As used herein the term “Vitamin” is understood to include any of various fat-soluble or water-soluble organic substances (non-limiting examples include Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin or niacinamide), Vitamin B5 (pantothenic acid), Vitamin B6 (pyridoxine, pyridoxal, or pyridoxamine, or pyridoxine hydrochloride), Vitamin B7 (biotin), Vitamin B9 (folic acid), and Vitamin B12 (various cobalamins; commonly cyanocobalamin in vitamin supplements), Vitamin C, Vitamin D, Vitamin E, Vitamin K, K1 and K2 (i.e., MK-4, MK-7), folic acid and biotin) essential in minute amounts for normal growth and activity of the body and obtained naturally from plant and animal foods or synthetically made, pro-vitamins, derivatives, analogs.


“V1-V9 regions” or “16S V1-V9 regions” refers to the 16S rRNA refers to the first through ninth hypervariable regions of the 16S rRNA gene that are used for genetic typing of bacterial samples. These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the E. coli system of nomenclature. Brosius et al., Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, PNAS 75(10):4801-4805 (1978). In some embodiments, at least one of the V1, V2, V3, V4, V5, V6, V7, V8, and V9 regions are used to characterize an OTU. In one embodiment, the V1, V2, and V3 regions are used to characterize an OTU. In another embodiment, the V3, V4, and V5 regions are used to characterize an OTU. In another embodiment, the V4 region is used to characterize an OTU. A person of ordinary skill in the art can identify the specific hypervariable regions of a candidate 16S rRNA by comparing the candidate sequence in question to a reference sequence and identifying the hypervariable regions based on similarity to the reference hypervariable regions, or alternatively, one can employ Whole Genome Shotgun (WGS) sequence characterization of microbes or a microbial community.


Interactions Between Microbiome and Host

Interactions between the human microbiome and the host shape host health and disease via multiple mechanisms, including the provision of essential functions by the microbiota. Examples of these mechanisms include but are not limited to the function of the microbiota in ensuring a healthy level of bile acid metabolism, energy harvesting and storage, and regulation of immune responses, and reducing deleterious and unhealthy levels of gut permeability or metabolic endotoxemia.


Importance of Bile Acids to Human Health and Role of Microbiota

Primary bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA) are synthesized from cholesterol in the liver in humans. The synthesized primary bile acids are conjugated to glycine, taurine, or sulfate before secretion into the bile by specific transporters located in the basolateral membrane of the hepatocyte. The ingestion of a meal triggers the release of bile from the gallbladder into the intestinal lumen, where bile acids form micelles with dietary lipids and lipid-soluble vitamins, facilitating their absorption. ˜95% of bile acids are reabsorbed via specific transporters expressed in the distal ileum, and the remaining 5% escapes the enterohepatic cycle and travels towards the large intestine to be excreted in the feces. In the colon, the bile acids may undergo deconjugation and dehydroxylation by the gut microflora. The resulting secondary bile acids are mainly deoxycholic acid (DCA) and lithocholic acid (LCA). The bile acid pool undergoes this enterohepatic cycle around 12×/day in humans. Although the bile acid pool size is constant, the flux of bile acids varies during the day; bile acid flux and plasma bile acid concentrations are highest postprandially (See reviews Prawitt, J et al. 2011 Curr Diab Rep Bile acid metabolism and the pathogenesis of type 2 diabetes 11: 160-166; Nieuwdorp et al. 2014 Gastroenterology. Role of the Microbiome in Energy Regulation and Metabolism. pii: S0016-5085(14)00219-4. doi: 10.1053/j.gastro.2014.02.008).


Commensal bacteria are involved in processing primary bile acids to secondary bile acids in the colon. Known biotransformations of bile acids by commensal GI bacteria include deconjugation of the conjugated bile salts to liberate free bile acids and amino acid moieties, removal of hydroxyl groups principally the C-7 hydroxyl group of the cholic acid moiety, oxidative and reductive reactions of the existing hydroxyl groups, and epimerization of bile acids.


The canonical first step in bile acid metabolism is deconjugation of the taurine or glycine group through enzymes termed bile salt hydrolases, to yield CA and CDCA. These bile acids are then substrates for a series of enzymatic steps that remove the 7-alphahydroxy group to form deoxycholic acid (DCA) and lithocholic acid (LCA). LCA has particularly low solubility due to the loss of hydrophilic side chains compared to any of the other bile acids. It is also feasible for microbes to dehydroxylate the conjugated primary bile acids, giving rise to gluco-DCA; gluco-LCA; tauro-DCA; and tauro-LCA. Further modifications are possible, including the microbial conversion of CDCA to a 7-betahydroxy epimer, ursodeoxycholic acid (UDCA). Many other secondary bile acids are made in smaller amounts by the gut microbiota, for example, alpha-, beta-, gamma-, and omega-muricholic acids and many others (see Swann J R et al., 2011 PNAS Systemic gut microbial modulation of bile acid metabolism in host tissue compartments 108: 4523-30).


Intestinal microbiota play a key role in bile acid metabolism. Germ-free mice have altered metabolism of bile acids, including increased levels of conjugated bile acids throughout the intestine, with no deconjugation, and strongly decreased fecal excretion. Provision of ampicillin to mice increases biliary bile acid output 3-fold and decreases fecal output by 70%.


Dysbiosis of the gut microbiome affecting bile acid metabolism may affect adiposity, glucose regulation, and inflammation, among other effects. Bile acids are essential solubilizers of lipids, fats, and lipid soluble vitamins to enhance absorption of nutrients in the small intestine, and are also signaling molecules that regulate metabolism, including glucose homeostasis and basal metabolic rate. See Houten, S M et al. 2006 EMBO J. Endocrine function of bile acids. 25: 1419-25; Prawitt, J et al. 2011 Curr Diab Rep. Bile acid metabolism and the pathogenesis of type 2 diabetes. 11: 160-166. For example, bile acid sequestrants (non-absorbable polymers that complex bile acids in the intestinal lumen and divert them from the enterohepatic cycle) can improve glycemic control in Type 2 diabetes patients. Prawitt, J et al. 2011 Curr Diab Rep Bile acid metabolism and the pathogenesis of type 2 diabetes 11: 160-166.


The most prominent targets of action by bile acids and their metabolites include FXR (farnesoid X receptor), an orphan nuclear receptor within the liver and intestine, and TGR5, a G-protein coupled receptor found on gallbladder, ileum, colon, brown and white adipose tissue. FXR is preferentially activated by CDCA, and in turn upregulates the expression of gene products including FGF-19 (fibroblast growth factor 19) in humans. FGF-15 (the murine analogue of FGF-19) increases basal metabolic rate and reverses weight gain in mice given a high fat diet. FXR activation also down-regulates hepatic gluconeogenesis. Although both conjugated and unconjugated bile acids can bind to FXR, the conjugated forms must be actively transported into the cell to initiate signaling whereas the unconjugated bile acids can diffuse through the membrane owing to their lower molecular weight, higher pKa and tendency to exist in the protonated form.


TGR5 is preferentially activated by the secondary bile acid LCA and tauro-LCA with downstream effects, among others, on expression of incretin hormones such as GLP-1 that modulate insulin production and help maintain glucose homeostasis.


Bile acids are therefore important metabolic regulators. Additional insight into the importance of the interplay between the gut microbiome, bile acid metabolism, and glucose homeostasis is provided by the observation that treating obese male patients with a 7-day course of vancomycin decreases total microbiota diversity, specifically depleting species in the diverse Clostridium IV and XIVa clusters. Among the Clostridia are various organisms that metabolize bile acids as well as others that produce short chain fatty acids, including butyrate and propionate. In contrast, treatment with a 7-day course of amoxicillin produces a trend toward increased microbiota diversity. Moreover, fecal bile acid composition is markedly changed following vancomycin treatment; secondary bile acids DCA, LCA and iso-LCA decrease whereas primary bile acids CA and CDCA increase. Amoxicillin treatment does not alter the ratio of bile acids in fecal samples. FGF-19 levels in serum are also decreased following vancomycin treatment, but not amoxicillin treatment. Peripheral insulin sensitivity changes following vancomycin but not amoxicillin treatment. Vrieze, A et al., 2013 J Hepatol Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensistivity dx.doi.org/10.1016/j.jhep.2013.11.034.


While the study by Vrieze et al. points out the potential for microbes to improve insulin homeostasis through enhanced secondary bile acid metabolism, the authors point out several limitations of their work. Most importantly, while the HIT-Chip analysis used to generate fecal microbial profiles provides valuable information regarding classes of organisms, it does not provide mechanistic information or identify specific species or functional enzymatic pathways responsible for the observed effects. Moreover, the HIT-Chip is a hybridization based assay and the similarity of sequences among the organisms in the Clostridial clusters may lead to mis-assignments. As a result, others have failed to define specific compositions that can be used to modulate insulin sensitivity via bile acid metabolism.


In addition to the role for bile acids as metabolic regulators, bile acids are also linked to inflammatory disease. Crohn's Disease patients in the Metagenomics of the Human Intestinal Tract (MetaHIT) cohort show reduced bile salt hydrolase (BSH) gene abundance compared to patients without disease, and increased primary bile acids in inflammatory bowel syndrome patients is correlated with stool frequency and consistency (Duboc et al. 2012 Neurogastroenterol Motil. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. doi: 10.1111/j.1365-2982.2012.01893.x). Furthermore, TGR5 is expressed on immune monocytes and macrophages in addition to GI and liver tissues, and FXR and TGR5 are known to be involved in regulation of inflammation in enterohepatic tissues (Jones et al., 2014 Expert Opin Biol Ther The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention doi:10.1517/14712598.2014.880420)


Multiple methods are available for determination of bile acids in serum, bile and faces of individuals. As reviewed by Sharma (Sharma, K R, Review on bile acid analysis, Int J Pharm Biomed Sci 2012, 3(2), 28-34), a variety of methods can be used, such as chemical (Carey J B, et al, 1958, The bile acids in normal human serum with comparative observations in patients with jaundice. J Lab Clin Med 1958, 46, 860-865), thin layer chromatography (Fausa O, and Shalhegg B A. 1976 Quantitative determination of bile acids and their conjugates using thin-layer chromatography and a purified 3-α hydroxysteroid dehydrogenase. Scand J Gastroenterol 9, 249-254.), high performance liquid chromatography (Islam S, et al Fasting serum bile acid level in cirrhosis “A semi quantitative index of hepatic function”. J Hepatol 1985, 1, 609-617; Paauw J D, at al. Assay for taurine conjugates of bile acids in serum by reversed phase high performance liquid chromatography. J Chromatograph B Biomed Appl 1996, 685, 171-175), radioimmunoassay (Wildgrube J, Stockhausan H, Peter M, Mauritz G, Mandawi R. Radioimmunoassay of bile acids in tissues, bile and urine. Clin Chem 1983, 29, 494-498), enzyme linked colorimetric and radioimmunoassay (Guo W, et al. A study on detection of serum fasting total bile acid and chologlycin in neonates for cholestasis. Chin Med Sci J 1996, 11, 244-247.), mass spectrometry (Sjovell J, et al. Mass spectrometry of bile acids. Method in enzymology. Vol. III, Academic Press, New York 1985.), tandem mass spectrometry (Griffiths W J. Tandem mass spectrometry in study of fatty acids, bile acids and steroids. Mass Spectrum Rev 2003, 22, 81-152.), gas chromatography using high resolution glass capillary columns and mass spectrometry (Setchell K D R, Matsui A. Serum bile acid analysis. Clin Chim Acta 1983, 127, 1-17.), gas chromatography (Fischer S, et al. Hepatic levels of bile acids in end stage chronic cholestatic liver disease. Clin Chim Acta 1996, 251, 173-186.), gas liquid chromatography (Van Berge Hengouwen G P et al., Quantitative analysis of bile acids in serum and bile, using gas liquid chromatography. Clin Chim Acta 1974, 54, 249-261; Batta A K, et al. Characterization of serum and urinary bile acids in patients with primary biliary cirrhosis by gas-liquid chromatography-mass spectrometry: effect of ursodeoxycholic acid treatment. J Lipid Res 1989, 30, 1953-1962), luminometric method (Styrellius I, Thore A, Bjorkhem I. Luminometric method. In: Methods of enzymatic analysis. (Ed. III). Bergmeyer, Hans Ulirch [Hrsg]. 8: 274-281, 1985.), UV method for bile assay (Stayer E, et al. Fluorimetric method for serum. In: Methods of enzymatic analysis. (Ed.III). Bergmeyer, Hans Ulrich; [Hrsg]. 8, 288-290, 1985; Stayer E, et al. UV method for bile, gastric juice and duodenai aspirates. In: Methods of enzymatic analysis, (e.d.III). Bergmeyer, Hans Ulrich [Hrsg]. 8: 285-287, 1985), enzymatic colorimetric method (Collins B J, et al. Measurement of total bile acids in gastric juice. J Clin Pathol 1984, 37, 313-316) and enzymatic fluorimetric method can be used (Murphy G M, et al. A fluorometric and enzymatic method for the estimation of serum total bile acids. J Clin Path 1970, 23, 594-598; Hanson N Q, Freier E F. Enzymic measurement of total bile acid adapted to the Cobas Fara Centrifugal analyzer. Clin Chem. 1985, 35, 1538-1539).


Importance of Short Chain Fatty Acids (SCFA) to Human Health and Role of Microbiota


Short chain fatty acids (SCFAs) are a principal product of bacterial fermentation in the colon. SCFAs, particularly acetate, propionate and butyrate, are thought to have many potential benefits to the mammalian host. SCFAs are organic acids with fewer than 6 carbons and include acetate, propionate, butyrate, valerate, isovalerate, and 2-methyl butyrate. While longer chain fatty acids are derived primarily from dietary sources, SCFAs are derived from the breakdown of non-digestible plant fiber. Butyrate is a primary energy source for colonocytes, whereas propionate is thought to be metabolized mostly by the liver via portal vein circulation from the colon. Acetate is derived from the microbiota is thought to be more generally available to tissues.


In addition to acting as metabolic substrates, SCFAs have multiple benefits, including that SCFAs produced by the microbiota are essential for immune homeostasis and particularly for immune modulation by regulatory T cells. Direct ingestion of acetate, propionate or butyrate, or a mixture of all three by mice, stimulates the proliferation and maturation of regulatory T cells (Tregs) that reside in the colon. Mice given SCFAs in drinking water have significantly higher levels of colonic CD4+ FoxP3+ T cells (Tregs) than germ free and SPFA controls, and these Treg cells are functionally more potent as measured by the expression of IL-10 mRNA and protein, and by their ability to inhibit CD8+ effector T cells in vitro (Smith P M et al. 2013 Science The microbial metabolites, short-chain fatty acid regulate colonic Treg cell homeostasis 341: 569-73). This effect of SCFAs is mediated via signaling through GPR43 (FFAR2), a G protein coupled receptor expressed on a variety of cells but with high frequency on colonic Treg cells. GPR43 signaling is upstream of modification of histone deacetylase activity (particularly HDAC9 and HDCA3), which is known to alter gene expression via reconfiguration of chromatin. Furthermore, the effects of experimental colitis induced by adoptive T cell transfer are reduced by SCFAs including propionate alone and a mixture of acetate, propionate or butyrate in a GPR43 dependent fashion.


Beyond the direct effects of SCFA administered orally to animals, microbes can produce SCFA in situ in the colon and improve outcomes in several disease models. Daily administration of 109 cfu of Butyricicoccus pullicaecorum, a butyrate forming organism first isolated from chickens, for 1 week ameliorates TNBS-induced colitis in a rat model (Eeckhaut V et al., 2013 Gut Progress towards butyrate-producing pharmabiotics: Butyricicoccus pullicaecorum capsule and efficacy in TNBS models in comparison with therapeutics doi:10.1136/gutjnl-2013-305293). In humans, topical administration of butyrate or sodium butyrate via a rectal enema may be beneficial to ulcerative colitis patients (Scheppach W et al. 1992 Gastroenterol Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis 103: 51-56; Vernia P et al. 2003 Eur. J. Clin. Investig Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. 33: 244-48). Butyrate has effects at multiple levels including signaling via GPR109A, which is expressed on the apical surface of intestinal epithelial cells (IECs). GPR109A lowers NFKB-mediated gene expression, including reduced expression of the inflammatory cytokines TNF-alpha, IL-6 and IL-1beta.


Oral administration of SCFAs in mice also has direct effects on metabolism. SCFAs are a significant energy source and thus fermentation by the microbiota can contribute up 5-10% of the basal energy requirements of a human. SCFAs upregulate production of glucagon-like peptide 1 (GLP-1), peptide (P)YY and insulin. GLP-1 and PYY are noted to play a role in enhancing satiety and reducing food intake. Furthermore, fecal transplantation from lean human donors to obese recipients with metabolic syndrome results in a significant increase in insulin sensitivity after 6 weeks. This change is most correlated with the transfer of Eubacterium hallii, a gram-positive, butyrate-fermenting microbe (Vrieze, A., et al., 2012 Gastroenterol Transfer of intestinal microbiota from lean donors increases insulin sensitivity 143: 913-6).


A common factor underlying both diabetes and obesity is the phenomenon of low-level inflammation termed metabolic endotoxemia (see below). Metabolic endotoxemia refers to increased permeability of the gut (“leaky gut syndrome”) coupled with increased translocation of lipopolysaccharide (LPS), mediating an inflammatory response that triggers insulin resistance, changes in lipid metabolism, and liver inflammation responsible for non-alcoholic fatty liver disease (NAFLD). Low level bacteremia may also lead to the translocation of viable gram-negative organisms into distal tissues, such as adipocytes, and further drive inflammation. SCFAs provide a benefit here as well, both by providing an energy source to enhance colonic epithelial cell integrity and by stimulating the expression of tight junction proteins to reduce translocation of gram-negative LPS, bacterial cells and their fragments (Wang H B et al, 2012 Dig Dis Sci Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription 57: 3126-35).


For all of these reasons, it would be useful to have microbial communities with an enhanced ability to produce SCFAs for the treatment of diseases such as diabetes, obesity, inflammation, ulcerative colitis and NAFLD.


Acetate, propionate and butyrate are formed as end-products in anaerobic fermentation. SCFA producing bacteria in the gut gain energy by substrate-level phosphorylation during oxidative breakdown of carbon precursors. However, the resulting reducing equivalents, captured in the form of NADH, must be removed to maintain redox balance, and hence the energetic driving force to produce large amounts of reduced end-products such as butyrate and propionate, in order to regenerates NAD+. Acetate, propionate and butyrate are not the only end products of fermentation: microbes in the gut also produce lactate, formate, hydrogen and carbon dioxide depending on the conditions. As discussed below, lactate and acetate can also drive the formation of butyrate and propionate through cross-feeding by one microorganism to another.


The rate of SCFA production in the colon is highly dependent on many factors including the availability of polysaccharide carbon sources (such as, but not limited to, fructans, starches, cellulose, galactomannans, xylans, arabinoxylans, pectins, inulin, fructooligosaccharides, and the like), the presence of alternative electron sinks such as sulfate and nitrate, the redox potential, hydrogen (H2) partial pressure and pH. As described above, cross-feeding among organisms can also play a role, for instance when a lactate forming organism provides lactate as a substrate for a butyrate or propionate producer, or when a saccharolytic organism breaks down a complex carbohydrate to provide a mono- or disaccharide for fermentation. Acetate, which can be as high as 30 mM in the gut, is also a key building block of butyrate through the action of the enzyme butyryl-CoA:acetate CoA transferase, the final step in the production of butyrate. Importantly, this enzyme can also function as a propionyl-CoA: acetate CoA transferase, resulting in the production of propionate.


Since diet is a principal determinant of the variety of carbon sources and other nutrients available in the colon, it is clear that a functional ecology for SCFA production will comprise multiple organisms capable of adapting to diet-driven changes in in the gut environment. Thus, there exists a need for a bacterial composition that can ferment sufficient quantities of SCFA products in spite of the varying environmental conditions imposed by a changing diet. Such bacterial compositions will comprise organisms capable of fermenting a variety of carbon sources into SCFA.


Role of Microbiota in Metabolic Endotoxemia/Bacteremia


Chronic, low-grade inflammation is characteristic of obesity and is recognized to play an underlying pathogenic role in the metabolic complications and negative health outcomes of the disease. Notably, obesity is associated with elevated plasma levels of bacterial lipopolysaccharide (LPS). Energy intake, in particular a high fat diet (HFD), increases gut permeability and increases plasma LPS levels 2- to 3-fold. LPS in the circulatory system reflects passage of bacterial fragments across the gut into systemic circulation (termed “metabolic endotoxemia”), either through increases in diffusion due to intestinal paracellular permeability or through absorption by enterocytes during chylomicron secretion. Subcutaneous infusion of LPS into wild type mice maintained on a normal chow diet for 4 weeks leads to increased whole body, liver and adipose tissue weights, adipose and liver inflammation as well as fasted hyperglycemia and insulinemia, effects that are comparable to those induced by HFD (Cani et al., 2007 Diabetes. Metabolic endotoxemia initiates obesity and insulin resistance doi:10.2337/db06-1491). In addition to bacterial fragments, the translocation of live bacteria to host tissues may also be a feature of obesity (termed “metabolic bacteremia”) (Shen et al., 2013 Mol Aspects Med. The gut microbiota, obesity and insulin resistance doi: 10.1016/j.mam.2012.11.001).


Host-microbiota interactions at the gut mucosal interface are involved in intestinal barrier functionality and bacterial surveillance/detection. Dysbiosis can promote bacterial translocation and obesity-associated inflammation. In one instance, metabolic endotoxemia of HFD-induced obesity in mice is associated with reductions in Bifidobacterium, and both may be ameliorated through treatment with inulin (oligofructose) (Cani et al. Diabetologia Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia doi: 10.1007/s00125-007-0791-0). The beneficial effects of inulin and Bifidobacterium are associated with enhanced production of intestinotrophic proglucagon-derived peptide 2 (GLP-2), a peptide produced by L cells of the intestine that promotes intestinal growth (Cani et al. Gut. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. doi: 10.1136/gut.2008.165886). Alternative pathways involving host-microbiota interactions and intestinal barrier integrity and metabolic endotoxemia/bacteremia include but are not limited to those involving intestinotrophic proglucagon-derived peptide (GLP)-2, endocannabinoid (eCB) signaling, and pattern recognition receptors including nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) such as NOD1/NLRC1 and NOD2/NLRC2 as well as Toll like receptors (TLR) such as TLR-2, TLR-4, TLR-5 and TLR adapter protein myeloid differentiation primary-response protein 88 (MyD88) (see review Shen et al., 2013 Mol Aspects Med. The gut microbiota, obesity and insulin resistance doi: 10.1016/j.mam.2012.11.001).


Role of Microbiota in Energy Harvesting and Storage


The gut microbiota is involved in host energy harvesting. Germ free (GF) mice consume more energy but are significantly leaner than wild type counterparts.


Conventionalization of GF mice given a low-fat, polysaccharide-rich diet with the microbiota of conventionally-raised mice leads to 60% more adiposity and insulin resistance despite reduced food intake (Backhed et al., 2004 PNAS The gut microbiota as an environmental factor that regulates fat storage doi: 10.1073/pnas.0407076101). GF mice conventionalized with microbiota from obese mice show significantly greater increase in total body fat than GF mice conventionalized with microbiota from lean mice. Obese (ob/ob) mice have significantly less energy remaining in their feces relative to their lean littermates as measured by bomb calorimetry (Turnbaugh et al. 2006 Nature. An obesity-associated gut microbiome with increased capacity for energy harvest doi: 10.1038/nature05414). In humans, “overnutrition” (defined as energy consumption as a percentage of weight-maintaining energy needs) is associated with proportionally more Firmicutes and fewer Bacteroidetes and energy loss (stool calories as a percentage of ingested calories) in lean subjects is negatively associated with the proportional change in Firmicutes and positively associated with the proportional change in Bacteroidetes, suggesting impact of the gut microbiota on host energy harvest (Jumpertz et al., 2011 Am J Clin Nutr. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. doi: 10.3945/ajcn.110.010132).


In addition to affecting host energy harvesting, gut microbiota is also implicated in energy storage. The increase in body fat observed upon conventionalization of GF mice is associated with a decrease in Fasting-induced adipose factor (Fiaf) expression in the ileum and a 122% increase in Lipoprotein Lipase (LPL) activity in epididymal adipose tissue (Backhed et al., 2004 PNAS The gut microbiota as an environmental factor that regulates fat storage doi/10.1073/pnas.0407076101). Fiaf (also known as angiopoietin-like 4) is a protein secreted by adipose tissues, liver and intestine that inhibits the activity of LPL, a key enzyme in the hydrolysis of lipoprotein-associated triglycerides and the release of fatty acids for transport into cells. In adipocytes, fatty acids released by LPL are re-esterified into triglyceride and stored as fat (Shen et al., 2013 Mol Aspects Med. The gut microbiota, obesity and insulin resistance doi: 10.1016/j.mam.2012.11.001).


Other Functional Pathways


The pathways and mechanisms discussed above on the functional pathways and mechanisms by which the microbiota shape host health and disease is not meant to be exhaustive. Alternative functional pathways and mechanisms exist, including but not limited to pathways involving AMP-activated protein kinase (AMPK), TLR-5, and SREBP-1c and ChREBP.


Emergence of Antibiotic Resistance in Bacteria


Antibiotic resistance is an emerging public health issue (Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens I C, Harbarth S, Jarlier V, Levy S B, N'Doye B, Pittet D, et al. 2011. Society's failure to protect a precious resource: antibiotics. Lancet 378: 369-371.). Numerous genera of bacteria harbor species that are developing resistance to antibiotics. These include but are not limited to Vancomycin Resistant Enterococcus (VRE) and Carbapenem resistant Klebsiella (CRKp). Klebsiella pneumoniae and Escherichia coli strains are becoming resistant to carbapenems and require the use of old antibiotics characterized by high toxicity, such as colistin (Canton R, Akóva M, Carmeli Y, Giske C G, Glupczynski Y, Gniadkowski M, Livermore D M, Miriagou V, Naas T, Rossolini G M, et al. 2012. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18: 413-431.). Further multiply drug resistant strains of multiple species, including Pseudomonas aeruginosa, Enterobacter spp, and Acinetobacter spp are observed clinically including isolates that are highly resistant to ceftazidime, carbapenems, and quinolones (European Centre for Disease Prevention and Control: EARSS net database. ecdc.europa.eu). The Centers for Disease Control and Prevention in 2013 released a Threat Report (cdc.gov/drugresistance/threat_report_2013) citing numerous bacterial infection threats that included Clostridium difficile, Carbapenem-resistant Enterobacteriaceae (CRE), Multidrug-resistant Acinetobacter, Drug-resistant Campylobacter, Extended spectrum β-lactamase producing Enterobacteriaceae (ESBLs), Vancomycin-resistant Enterococcus (VRE), Multidrug-resistant Pseudomonas aeruginosa, Drug-resistant Non-typhoidal Salmonella, Drug-resistant Salmonella Typhi, Drug-resistant Shigella, Methicillin-resistant Staphylococcus aureus (MRSA), Drug-resistant Streptococcus pneumoniae, Vancomycin-resistant Staphylococcus aureus (VRSA), Erythromycin-resistant Group A Streptococcus, and Clindamycin-resistant Group B Streptococcus. The increasing failure of antibiotics due the rise of resistant microbes demands new therapeutics to treat bacterial infections. Administration of a microbiome therapeutic bacterial composition offers potential for such therapies. Applicants have discovered that patients suffering from recurrent C. difficile associated diarrhea (CDAD) often harbor antibiotic resistant Gram-negative bacteria, in particular Enterobacteriaceae and that treatment with a bacterial composition effectively treats CDAD and reduces the antibiotic resistant Gram-negative bacteria. The gastrointestinal tract is implicated as a reservoir for many of these organisms including VRE, MRSA, Pseudomonas aeruginosa, Acinetobacter and the yeast Candida (Donskey, Clinical Infectious Diseases 2004 39:214, The Role of the Intestinal Tract as a Reservoir and Source for Transmission of Nosocomial Pathogens), and thus as a source of nosocomial infections. Antibiotic treatment and other decontamination procedures are among the tools in use to reduce colonization of these organisms in susceptible patients including those who are immunosuppressed. Bacterial-based therapeutics would provide a new tool for decolonization, with a key benefit of not promoting antibiotic resistance as antibiotic therapies do.


Compositions of the Invention

Network Ecologies


As described above, the Network Ecology and Functional Network Ecology refer to a consortium of OTUs or Functional modalities respectively that co-occur in a group of subjects. The network is defined mathematically by a graph delineating how specific nodes (i.e., OTUs or functional modalities) and edges (connections between specific OTUs or functional modalities) relate to one another to define the structural ecology of a consortium of OTUs or functions. Any given Network Ecology or Functional Network Ecology will possess inherent phylogenetic diversity and functional properties.


A Network Class or Core Network refers to a group of Network Ecologies or Functional Network ecologies that are computationally determined to comprise ecologies with similar phylogenetic and/or functional characteristics. A Network Class or Core Network therefore contains important biological features, defined either phylogenetically or functionally, of a group (i.e., a cluster) of related network ecologies.


Keystone OTUs or Functions are one or more OTUs or Functions that are common to many network Ecologies or Functional Network Ecologies and are members of Networks Ecologies or Functional Network Ecologies that occur in many subjects (i.e., are pervasive). Due to the ubiquitous nature of Keystone OTUs and Functions, they are central to the function of network ecologies in healthy subjects and are often missing or at reduced levels in subjects with disease. Keystone OTUs and Functions may exist in low, moderate, or high abundance in subjects.


Bacteria that are members of the keystone OTUs, core network or network ecology are provided herein.


Bacterial Compositions


Provided are bacteria and combinations of bacteria that comprise network ecologies and functional network ecologies of the human gut microbiota. The bacteria and combinations of bacteria that comprise network ecologies have a capacity to meaningfully provide functions of a healthy microbiota when administered to mammalian hosts. Without being limited to a specific mechanism, it is believed that the members of network ecologies can inhibit the growth, proliferation, germination and/or colonization of one or a plurality of pathogenic bacteria in the dysbiotic microbiotal niche, and may also augment the growth, proliferation, germination and/or colonization of desired bacteria so that a healthy, diverse and protective microbiota colonizes and populates the intestinal lumen to establish or reestablish ecological control over pathogens or potential pathogens (e.g., some bacteria are pathogenic bacteria only when present in a dysbiotic environment). The term pathogens refers to a bacterium or a group of bacteria or any other organism or entity that is capable of causing or affecting a disease, disorder or condition of a host containing the bacterium, organism or entity, including but not limited to metabolic diseases such as prediabetes, type 1 diabetes, and type 2 diabetes.


As used herein, a “type” or more than one “types” of bacteria may be differentiated at the genus level, the species, level, the sub-species level, the strain level or by any other taxonomic method, as described herein and otherwise known in the art.


Bacterial compositions can comprise two types of bacteria (termed “binary combinations” or “binary pairs”), and typically a large number of bacteria types. For instance, a bacterial composition can comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21, 22, 23, 24, 25, 26, 27, 28, 29 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or at least 40, at least 50 or greater than 50 types of bacteria, as defined by species or operational taxonomic unit (OTU), or otherwise as provided herein. In some embodiments, the bacterial composition includes at least 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, or greater numbers of bacteria types.


In another embodiment, the number of types of bacteria present in a bacterial composition is at or below a known value. For example, in such embodiments the network ecology comprises 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50 or fewer types of bacteria, such as 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, or 10 or fewer, or 9 or fewer types of bacteria, 8 or fewer types of bacteria, 7 or fewer types of bacteria, 6 or fewer types of bacteria, 5 or fewer types of bacteria, 4 or fewer types of bacteria, or 3 or fewer types of bacteria.


Bacterial Compositions Described by Species


Bacterial compositions that comprise network ecologies may be prepared comprising at least two types of isolated bacteria, chosen from the species in Table 1.


In one embodiment, the bacterial composition that comprises at least one and preferably more than one of the following: Enterococcus faecalis (previously known as Streptococcus faecalis), Clostridium innocuum, Clostridium ramosum, Bacteroides ovatus, Bacteroides vulgatus, Bacteroides thetaoiotaomicron, Escherichia coli (1109 and 1108-1), Clostridium bifermentans, and Blautia producta (previously known as Peptostreptococcus productus). In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In one embodiment, the bacterial composition comprises at least one and preferably more than one of the following: Enterococcus faecalis (previously known as Streptococcus faecalis), Clostridium innocuum, Clostridium ramosum, Bacteroides ovatus, Bacteroides vulgatus, Bacteroides thetaoiotaomicron, Escherichia coli (1109 and 1108-1), Clostridium bifermentans, and Blautia producta (previously known as Peptostreptococcus productus). In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In another embodiment, the bacterial composition comprises at least one and preferably more than one of the following: Acidaminococcus intestinalis, Bacteroides ovatus, two strains of Bifidobacterium adolescentis, two strains of Bifidobacterium longum, Blautia producta, Clostridium cocleatum, Collinsella aerofaciens, two strains of Dorea longicatena, Escherichia coli, Eubacterium desmolans, Eubacterium eligens, Eubacterium limosum, four strains of Eubacterium rectale, Eubacterium ventriosumi, Faecalibacterium prausnitzii, Lachnospira pectinoshiza, Lactobacillus casei, Lactobacillus casei/paracasei, Paracateroides distasonis, Raoultella sp., one strain of Roseburia (chosen from Roseburia faecalis or Roseburia faecis), Roseburia intestinalis, two strains of Ruminococcus torques, two strains of Ruminococcus obeum, and Streptococcus mitis. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In yet another embodiment, the bacterial composition comprises at least one and preferably more than one of the following: Barnesiella intestinihominis; Lactobacillus reuteri; a species characterized as one of Enterococcus hirae, Enterococcus faecium, or Enterococcus durans; a species characterized as one of Anaerostipes caccae or Clostridium indolis; a species characterized as one of Staphylococcus warneri or Staphylococcus pasteuri; and Adlercreutzia equolifaciens. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In other embodiments, the bacterial composition comprises at least one and preferably more than one of the following: Clostridium absonum, Clostridium argentinense, Clostridium baratii, Clostridium bartlettii, Clostridium bifermentans, Clostridium botulinum, Clostridium butyricum, Clostridium cadaveris, Clostridium camis, Clostridium celatum, Clostridium chauvoei, Clostridium clostridioforme, Clostridium cochlearium, Clostridium difficile, Clostridium fallax, Clostridium felsineum, Clostridium ghonii, Clostridium glycolicum, Clostridium haemolyticum, Clostridium hastiforme, Clostridium histolyticum, Clostridium indolis, Clostridium innocuum, Clostridium irregulare, Clostridium limosum, Clostridium malenominatum, Clostridium novyi, Clostridium oroticum, Clostridium paraputrificum, Clostridium perfringens, Clostridium piliforme, Clostridium putrefaciens, Clostridium putrificum, Clostridium ramosum, Clostridium sardiniense, Clostridium sartagoforme, Clostridium scindens, Clostridium septicum, Clostridium sordellii, Clostridium sphenoides, Clostridium spiroforme, Clostridium sporogenes, Clostridium subterminale, Clostridium symbiosum, Clostridium tertium, Clostridium tetani, Clostridium welchii, and Clostridium villosum. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In one embodiment, the bacterial composition that comprises a network ecology comprises at least one and preferably more than one of the following: Clostridium innocuum, Clostridium bifermentans, Clostridium butyricum, Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, three strains of Escherichia coli, and Lactobacillus sp. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In one embodiment, the bacterial composition that comprises a network ecology comprises at least one and preferably more than one of the following: Clostridium bifermentans, Clostridium innocuum, Clostridium butyricum, three strains of Escherichia coli, three strains of Bacteroides, and Blautia producta. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In one embodiment, the bacterial composition that comprises a network ecology comprises at least one and preferably more than one of the following: Bacteroides sp., Escherichia coli, and non pathogenic Clostridia, including Clostridium innocuum, Clostridium bifermentans and Clostridium ramosum. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In one embodiment, the bacterial composition that comprises a network ecology comprises at least one and preferably more than one of the following: Bacteroides species, Escherichia coli and non-pathogenic Clostridia, such as Clostridium butyricum, Clostridium bifermentans and Clostridium innocuum. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In one embodiment, the bacterial composition that comprises a network ecology comprises at least one and preferably more than one of the following: Bacteroides caccae, Bacteroides capillosus, Bacteroides coagulans, Bacteroides distasonis, Bacteroides eggerthii, Bacteroides forsythus, Bacteroides fragilis, Bacteroides fragilis-ryhm, Bacteroides gracilis, Bacteroides levii, Bacteroides macacae, Bacteroides merdae, Bacteroides ovatus, Bacteroides pneumosintes, Bacteroides putredinis, Bacteroides pyogenes, Bacteroides splanchnicus, Bacteroides stercoris, Bacteroides tectum, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides ureolyticus, and Bacteroides vulgatus. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In one embodiment, the bacterial composition that comprises a network ecology comprises at least one and preferably more than one of the following: Bacteroides, Eubacteria, Fusobacteria, Propionibacteria, Lactobacilli, anaerobic cocci, Ruminococcus, Escherichia coli, Gemmiger, Desulfomonas, and Peptostreptococcus. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


In one embodiment, the bacterial composition that comprises a network ecology comprises at least one and preferably more than one of the following: Bacteroides fragilis ss. vulgatus, Eubacterium aerofaciens, Bacteroides fragilis ss. thetaiotaomicron, Blautia producta (previously known as Peptostreptococcus productus II), Bacteroides fragilis ss. Distasonis, Fusobacterium prausnitzii, Coprococcus eutactus, Eubacterium aerofaciens III, Blautia producta (previously known as Peptostreptococcus productus I), Ruminococcus bronii, Bifidobacterium adolescentis, Gemmiger formicilis, Bifidobacterium longum, Eubacterium siraeum, Ruminococcus torques, Eubacterium rectale Eubacterium rectale IV, Eubacterium eligens, Bacteroides eggerthii, Clostridium leptum, Bacteroides fragilis ss. A, Eubacterium biforme, Bifidobacterium infantis, Eubacterium rectale Coprococcus comes, Bacteroides capillosus, Ruminococcus albus, Eubacterium formicigenerans, Eubacterium hallii, Eubacterium ventriosum I, Fusobacterium russii, Ruminococcus obeum, Eubacterium rectale II, Clostridium ramosum I, Lactobacillus leichmanii, Ruminococcus cailidus, Butyrivibrio crossotus, Acidaminococcus fermentans, Eubacterium ventriosum, Bacteroides fragilis ss. fragilis, Bacteroides AR, Coprococcus catus, Eubacterium hadrum, Eubacterium cylindroides, Eubacterium ruminantium, Eubacterium CH-1, Staphylococcus epidermidis, Peptostreptococcus BL, Eubacterium limosum, Bacteroides praeacutus, Bacteroides L, Fusobacterium mortiferum Fusobacterium naviforme, Clostridium innocuum, Clostridium ramosum, Propionibacterium acnes, Ruminococcus flavefaciens, Ruminococcus AT, Peptococcus AU-1, Eubacterium AG, -AK, -AL, -AL-1, -AN; Bacteroides fragilis ss. ovatus, -ss. d, -ss. f; Bacteroides L-1, L-5; Fusobacterium nucleatum, Fusobacterium mortiferum, Escherichia coli, Streptococcus morbiliorum, Peptococcus magnus, Peptococcus G, AU-2; Streptococcus intermedius, Ruminococcus lactaris, Ruminococcus CO Gemmiger X, Coprococcus BH, —CC; Eubacterium tenue, Eubacterium ramulus, Eubacterium AE, -AG-H, -AG-M, AJ, -BN-1; Bacteroides clostridiiformis ss. clostridiiformis, Bacteroides coagulans, Bacteroides orails, Bacteroides ruminicola ss. brevis, -ss. ruminicola, Bacteroides splanchnicus, Desuifomonas pigra, Bacteroides L-4, -N-i; Fusobacterium H, Lactobacillus G, and Succinivibrio A. In an alternative embodiment, at least one of the preceding species is not substantially present in the bacterial composition.


Bacterial Compositions Described by Operational Taxonomic Unit (OTUs)


Bacterial compositions may be prepared comprising at least two types of isolated bacteria, chosen from the SEQ ID Numbers (OTUs) in Table 1.


OTUs can be defined either by full 16S sequencing of the rRNA gene (Table 1), by sequencing of a specific hypervariable region of this gene (i.e. V1, V2, V3, V4, V5, V6, V7, V8, or V9), or by sequencing of any combination of hypervariable regions from this gene (e.g. V1-3 or V3-5). The bacterial 16S rDNA is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most microbes.


Using well known techniques, in order to determine the full 16S sequence or the sequence of any hypervariable region of the 16S sequence, genomic DNA is extracted from a bacterial sample, the 16S rDNA (full region or specific hypervariable regions) amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition of 16S gene or subdomain of the gene. If full 16S sequencing is performed, the sequencing method used may be, but is not limited to, Sanger sequencing. If one or more hypervariable regions are used, such as the V4 region, the sequencing can be, but is not limited to being, performed using the Sanger method or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions.


OTUs can be defined by a combination of nucleotide markers or genes, in particular highly conserved genes (e.g., “house-keeping” genes), or a combination thereof, full-genome sequence, or partial genome sequence generated using amplified genetic products, or whole genome sequence (WGS). Using well defined methods familiar to one with ordinary skill in the art, DNA extracted from a bacterial sample will have specific genomic regions amplified using PCR and sequenced to determine the nucleotide sequence of the amplified products. In the whole genome shotgun (WGS) method, extracted DNA will be directly sequenced without amplification. Sequence data can be generated using any sequencing technology including, but not limited to Sanger, Illumina, 454 Life Sciences, Ion Torrent, ABI, Pacific Biosciences, and/or Oxford Nanopore.


In one embodiment, the OTUs can be characterized by one or more of the variable regions of the 16S sequence (V1-V9). These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the E. coli system of nomenclature. (See, e.g., Brosius et al., Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, PNAS 75(10):4801-4805 (1978)). In some embodiments, at least one of the V1, V2, V3, V4, V5, V6, V7, V8, and V9 regions are used to characterize an OTU. In one embodiment, the V1, V2, and V3 regions are used to characterize an OTU. In another embodiment, the V3, V4, and V5 regions are used to characterize an OTU. In another embodiment, the V4 region is used to characterize an OTU.


Bacterial Compositions Exclusive of Certain Bacterial Species Or Strains


In one embodiment, the bacterial composition does not comprise at least one of Enterococcus faecalis (previously known as Streptococcus faecalis), Clostridium innocuum, Clostridium ramosum, Bacteroides ovatus, Bacteroides vulgatus, Bacteroides thetaoiotaomicron, Escherichia coli (1109 and 1108-1), Clostridium bifermentans, and Blautia producta (previously known as Peptostreptococcus productus).


In another embodiment, the bacterial composition does not comprise at least one of Acidaminococcus intestinalis, Bacteroides ovatus, two species of Bifidobacterium adolescentis, two species of Bifidobacterium longum, Collinsella aerofaciens, two species of Dorea longicatena, Escherichia coli, Eubacterium eligens, Eubacterium limosum, four species of Eubacterium rectale, Eubacterium ventriosumi, Faecalibacterium prausnitzii, Lactobacillus casei, Lactobacillus paracasei, Paracateroides distasonis, Raoultella sp., one species of Roseburia (chosen from Roseburia faecalis or Roseburia faecis), Roseburia intestinalis, two species of Ruminococcus torques, and Streptococcus mitis.


In yet another embodiment, the bacterial composition does not comprise at least one of Barnesiella intestinihominis; Lactobacillus reuteri; a species characterized as one of Enterococcus hirae, Enterococus faecium, or Enterococcus durans; a species characterized as one of Anaerostipes caccae or Clostridium indolis; a species characterized as one of Staphylococcus warneri or Staphylococcus pasteuri; and Adlercreutzia equolifaciens.


In other embodiments, the bacterial composition does not comprise at least one of Clostridium absonum, Clostridium argentinense, Clostridium baratii, Clostridium bifermentans, Clostridium botulinum, Clostridium butyricum, Clostridium cadaveris, Clostridium camis, Clostridium celatum, Clostridium chauvoei, Clostridium clostridioforme, Clostridium cochlearium, Clostridium difficile, Clostridium fallax, Clostridium felsineum, Clostridium ghonii, Clostridium glycolicum, Clostridium haemolyticum, Clostridium hastiforme, Clostridium histolyticum, Clostridium indolis, Clostridium innocuum, Clostridium irregulare, Clostridium limosum, Clostridium malenominatum, Clostridium novyi, Clostridium oroticum, Clostridium paraputrificum, Clostridium perfringens, Clostridium piliforme, Clostridium putrefaciens, Clostridium putrificum, Clostridium ramosum, Clostridium sardiniense, Clostridium sartagoforme, Clostridium scindens, Clostridium septicum, Clostridium sordellii, Clostridium sphenoides, Clostridium spiroforme, Clostridium sporogenes, Clostridium subterminale, Clostridium symbiosum, Clostridium tertium, Clostridium tetani, Clostridium welchii, and Clostridium villosum.


In another embodiment, the bacterial composition does not comprise at least one of Clostridium innocuum, Clostridium bifermentans, Clostridium butyricum, Bacteroides Bacteroides thetaiotaomicron, Bacteroides uniformis, three strains of Escherichia coli, and Lactobacillus sp.


In another embodiment, the bacterial composition does not comprise at least one of Clostridium bifermentans, Clostridium innocuum, Clostridium butyricum, three strains of Escherichia coli, three strains of Bacteroides, and Blautia producta (previously known as Peptostreptococcus productus).


In another embodiment, the bacterial composition does not comprise at least one of Bacteroides sp., Escherichia coli, and non pathogenic Clostridia, including Clostridium innocuum, Clostridium bifermentans and Clostridium ramosum.


In another embodiment, the bacterial composition does not comprise at least one of more than one Bacteroides species, Escherichia coli and non-pathogenic Clostridia, such as Clostridium butyricum, Clostridium bifermentans and Clostridium innocuum.


In another embodiment, the bacterial composition does not comprise at least one of Bacteroides caccae, Bacteroides capillosus, Bacteroides coagulans, Bacteroides distasonis, Bacteroides eggerthii, Bacteroides forsythus, Bacteroides fragilis, Bacteroides fragilis-ryhm, Bacteroides gracilis, Bacteroides levii, Bacteroides macacae, Bacteroides merdae, Bacteroides ovatus, Bacteroides pneumosintes, Bacteroides putredinis, Bacteroides pyogenes, Bacteroides splanchnicus, Bacteroides stercoris, Bacteroides tectum, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides ureolyticus, and Bacteroides vulgatus.


In another embodiment, the bacterial composition does not comprise at least one of Bacteroides, Eubacteria, Fusobacteria, Propionibacteria, Lactobacilli, anaerobic cocci, Ruminococcus, Escherichia coli, Gemmiger, Desulfomonas, and Peptostreptococcus.


In another embodiment, the bacterial composition does not comprise at least one of Bacteroides fragilis ss. vulgatus, Eubacterium aerofaciens, Bacteroides fragilis ss. thetaiotaomicron, Blautia producta (previously known as Peptostreptococcus productus I), Bacteroides fragilis ss. Distasonis, Fusobacterium prausnitzii, Coprococcus eutactus, Eubacterium aerofaciens III, Blautia producta (previously known as Peptostreptococcus productus I), Ruminococcus bromii, Bifidobacterium adolescentis, Gemmiger formicilis, Bifidobacterium longum, Eubacterium siraeum, Ruminococcus torques, Eubacterium rectale III-H, Eubacterium rectale IV Eubacterium eligens, Bacteroides eggerthii, Clostridium leptum, Bacteroides fragilis ss. A, Eubacterium biforme, Bifidobacterium infantis, Eubacterium rectale Coprococcus comes, Bacteroides capillosus, Ruminococcus albus, Eubacterium formicigenerans, Eubacterium hallii, Eubacterium ventriosum I, Fusobacterium russii, Ruminococcus obeum, Eubacterium rectale II, Clostridium ramosum I, Lactobacillus leichmanii, Ruminococcus cailidus, Butyrivibrio crossotus, Acidaminococcus fermentans, Eubacterium ventriosum, Bacteroides fragilis ss. fragilis, Bacteroides AR, Coprococcus catus, Eubacterium hadrum, Eubacterium cylindroides, Eubacterium ruminantium, Eubacterium CH-1, Staphylococcus epidermidis, Peptostreptococcus BL, Eubacterium limosum, Bacteroides praeacutus, Bacteroides L, Fusobacterium mortiferum I, Fusobacterium naviforme, Clostridium innocuum, Clostridium ramosum, Propionibacterium acnes, Ruminococcus flavefaciens, Ruminococcus AT, Peptococcus AU-1, Eubacterium AG, -AK, -AL, -AL-1, AN; Bacteroides fragilis ss. ovatus, -ss. d, -ss. f; Bacteroides L-1, L-5; Fusobacterium nucleatum, Fusobacterium mortiferum, Escherichia coli, Streptococcus morbiliorum, Peptococcus magnus, Peptococcus G, AU-2; Streptococcus intermedius, Ruminococcus lactaris, Ruminococcus CO Gemmiger X, Coprococcus BH, -CC; Eubacterium tenue, Eubacterium ramulus, Eubacterium AE, -AG-H, -AG-M, AJ, -BN-1; Bacteroides clostridiiformis ss. clostridiiformis, Bacteroides coagulans, Bacteroides orails, Bacteroides ruminicola ss. brevis, -ss. ruminicola, Bacteroides splanchnicus, Desuifomonas pigra, Bacteroides L-4, -N-i; Fusobacterium H, Lactobacillus G, and Succinivibrio A.


Inhibition of Bacterial Pathogens


In some embodiments, the bacterial composition provides a protective or therapeutic effect against infection by one or more GI pathogens of interest. Table 1 provides a list of OTUs that are either pathogens, pathobionts, or opportunistic pathogens.


In some embodiments, the pathogenic bacterium is selected from the group consisting of Yersinia, Vibrio, Treponema, Streptococcus, Staphylococcus, Shigella, Salmonella, Rickettsia, Orientia, Pseudomonas, Neisseria, Mycoplasma, Mycobacterium, Listeria, Leptospira, Legionella, Klebsiella, Helicobacter, Haemophilus, Francisella, Escherichia, Ehrlichia, Enterococcus, Coxiella, Corynebacterium, Clostridium, Chlamydia, Chlamydophila, Campylobacter, Burkholderia, Brucella, Borrelia, Bordetella, Bifidobacterium, Bacillus, multidrug resistant bacteria, extended spectrum beta-lactam resistant Enterococci (ESBL), Carbapenem-resistant Enterobacteriaceae (CRE), and vancomycin-resistant Enterococci (VRE).


In some embodiments, these pathogens include, but are not limited to, Aeromonas hydrophila, Campylobacter fetus, Plesiomonas shigelloides, Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, enteroaggregative Escherichia coli, enterohemorrhagic Escherichia coli, enteroinvasive Escherichia coli, enterotoxigenic Escherichia coli (such as, but not limited to, LT and/or ST), Escherichia coli 0157:H7, Helicobacter pylori, Klebsiellia pneumonia, Lysteria monocytogenes, Plesiomonas shigelloides, Salmonella spp., Salmonella typhi, Salmonella paratyphi, Shigella spp., Staphylococcus spp., Staphylococcus aureus, vancomycin-resistant enterococcus spp., Vibrio spp., Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, and Yersinia enterocolitica.


In one embodiment, the pathogen of interest is at least one pathogen chosen from Clostridium difficile, Salmonella spp., pathogenic Escherichia coli, vancomycin-resistant Enterococcus spp., and extended spectrum beta-lactam resistant Enterococci (ESBL).


Purified Spore Populations


In some embodiments, the bacterial compositions comprise purified spore populations or a combination of a purified spore population with a non-spore population. Purified spore populations contain combinations of commensal bacteria of the human gut microbiota with the capacity to meaningfully provide functions of a healthy microbiota when administered to a mammalian subject. Without being limited to a specific mechanism, it is thought that such compositions inhibit the growth of a pathogen such as C. difficile, Salmonella spp., enteropathogenic E. coli, and vancomycin-resistant Enterococcus spp., so that a healthy, diverse and protective microbiota can be maintained or, in the case of pathogenic bacterial infections such as C. difficile infection, repopulate the intestinal lumen to reestablish ecological control over potential pathogens. In some embodiments, yeast spores and other fungal spores are also purified and selected for therapeutic use.


Disclosed herein are therapeutic and prophylactic compositions containing non-pathogenic, germination-competent bacterial spores, spore forming organisms and non-spore forming organisms, for the prevention, control, and treatment of gastrointestinal diseases, disorders and conditions and for general nutritional health. These compositions are advantageous in being suitable for safe administration to humans and other mammalian subjects and are efficacious in numerous gastrointestinal diseases, disorders and conditions and in general nutritional health. While spore-based compositions are known, these are generally prepared according to various techniques such as lyophilization or spray-drying of liquid bacterial cultures, resulting in poor efficacy, instability, substantial variability and lack of adequate safety.


It has now been found that populations of bacterial spores can be obtained from biological materials obtained from mammalian subjects, including humans. These populations are formulated into compositions as provided herein, and administered to mammalian subjects using the methods as provided herein.


Provided herein are therapeutic bacterial compositions containing a purified population of bacterial spores, spore forming organisms and non-spore forming organisms.


As used herein, the terms “purify”, “purified” and “purifying” refer to the state of a population (e.g., a plurality of known or unknown amount and/or concentration) of desired bacterial spores or bacteria, that have undergone one or more processes of purification, e.g., a selection or an enrichment of the desired bacterial spore, or alternatively a removal or reduction of residual habitat products as described herein. In some embodiments, a purified population has no detectable undesired activity or, alternatively, the level or amount of the undesired activity is at or below an acceptable level or amount. In other embodiments, a purified population has an amount and/or concentration of desired bacterial spores or bacteria at or above an acceptable amount and/or concentration. In other embodiments, the purified population of bacterial spores or bacteria is enriched as compared to the starting material (e.g., a fecal material liquid culture) from which the population is obtained. This enrichment may be by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, 99.99%, 99.999%, 99.9999%, or greater than 99.9999% as compared to the starting material.


In certain embodiments, the purified populations of bacterial spores have reduced or undetectable levels of one or more pathogenic activities, such as toxicity, an infection of the mammalian recipient subject, an immunomodulatory activity, an autoimmune response, a metabolic response, or an inflammatory response or a neurological response. Such a reduction in a pathogenic activity may be by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, 99.99%, 99.999%, 99.9999%, or greater than 99.9999% as compared to the starting material. In other embodiments, the purified populations of bacterial spores have reduced sensory components as compared to fecal material, such as reduced odor, taste, appearance, and umami.


Provided are purified populations of bacterial spores or bacteria that are substantially free of residual habitat products. In certain embodiments, this means that the bacterial spore or bacterial composition no longer contains a substantial amount of the biological matter associated with the microbial community while living on or in the human or animal subject, and the purified population of spores may be 100% free, 99% free, 98% free, 97% free, 96% free, or 95% free of any contamination of the biological matter associated with the microbial community. Substantially free of residual habitat products may also mean that the bacterial spore composition contains no detectable cells from a human or animal, and that only microbial cells are detectable, in particular, only desired microbial cells are detectable. In another embodiment, it means that fewer than 1×10−2%, 1×10−3%, 1×10−4%, 1×10−5%, 1×10−6%, 1×10−7%, 1×10−8% of the cells in the bacterial composition are human or animal, as compared to microbial cells. In another embodiment, the residual habitat product present in the purified population is reduced at least a certain level from the fecal material obtained from the mammalian donor subject, e.g., reduced by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, 99.99%, 99.999%, 99.9999%, or greater than 99.9999%.


In one embodiment, substantially free of residual habitat products or substantially free of a detectable level of a pathogenic material means that the bacterial composition contains no detectable viral (including bacterial viruses (i.e., phage)), fungal, or mycoplasmal or toxoplasmal contaminants, or a eukaryotic parasite such as a helminth. Alternatively, the purified spore populations are substantially free of an acellular material, e.g., DNA, viral coat material, or non-viable bacterial material.


As described herein, purified spore populations can be demonstrated by genetic analysis (e.g., PCR, DNA sequencing), serology and antigen analysis, and methods using instrumentation such as flow cytometry with reagents that distinguish desired bacterial spores from non-desired, contaminating materials.


Exemplary biological materials include fecal materials such as feces or materials isolated from the various segments of the small and large intestines. Fecal materials are obtained from a mammalian donor subject, or can be obtained from more than one donor subject, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 200, 300, 400, 500, 750, 1000 or from greater than 1000 donors, where such materials are then pooled prior to purification of the desired bacterial spores.


In alternative embodiments, the desired bacterial spores or bacteria are purified from a single fecal material sample obtained from a single donor, and after such purification are combined with purified spore populations or bacteria from other purifications, either from the same donor at a different time, or from one or more different donors, or both.


Preferred bacterial genera include Acetonema, Alkaliphilus, Alicyclobacillus, Amphibacillus, Ammonifex, Anaerobacter, Anaerofustis, Anaerostipes, Anaerotruncus, Anoxybacillus, Bacillus, Blautia, Brevibacillus, Bryantella, Caldicellulosiruptor, Caloramator, Candidatus, Carboxydibrachium, Carboxydothermus, Clostridium, Cohnella, Coprococcus, Dendrosporobacter Desulfitobacterium, Desulfosporosinus, Desulfotomaculum, Dorea, Eubacterium, Faecalibacterium, Filifactor, Geobacillus, Halobacteroides, Heliobacillus, Heliobacterium, Heliophilum, Heliorestis, Lachnoanaerobaculum, Lysinibacillus, Moorella, Oceanobacillus, Orenia (S.), Oxalophagus, Oxobacter, Paenibacillus, Pelospora, Pelotomaculum, Propionispora, Roseburia, Ruminococcus, Sarcina, Sporobacterium, Sporohalobacter, Sporolactobacillus, Sporomusa, Sporosarcina, Sporotomaculum, Subdoligranulum, Symbiobacterium, Syntrophobotulus, Syntrophospora, Terribacillus, Thermoanaerobacter, and Thermosinus.


In some embodiments, spore-forming bacteria are identified by the presence of nucleic acid sequences that modulate sporulation. In particular, signature sporulation genes are highly conserved across members of distantly related genera including Clostridium and Bacillus. Traditional approaches of forward genetics have identified many, if not all, genes that are essential for sporulation (spo). The developmental program of sporulation is governed in part by the successive action of four compartment-specific sigma factors (appearing in the order σF, σE, σG and σK), whose activities are confined to the forespore (σF and σG) or the mother cell (σE and σK).


Provided are spore populations containing more than one type of bacterium. As used herein, a “type” or more than one “types” of bacteria may be differentiated at the genus level, the species, level, the sub-species level, the strain level or by any other taxonomic method, as described herein and otherwise known in the art.


In some embodiments, all or essentially all of the bacterial spores or bacterial species present in a purified population are originally isolated obtained from a fecal material treated as described herein or otherwise known in the art. In alternative embodiments, one or more than one bacterial spores, bacteria, or types of bacterial spores are generated in culture and combined to form a purified bacterial composition, including a purified spore population. In other alternative embodiments, one or more of these culture-generated populations are combined with a fecal material-derived populations to generate a hybrid population. Bacterial compositions may contain at least two types of these preferred bacteria, including strains of the same species. For instance, a bacterial composition may comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 or more than 20 types of bacteria, as defined by species or operational taxonomic unit (OTU) encompassing such species.


Thus, provided herein are methods for production of a bacterial composition containing a population of bacterial spores suitable and/or non-sporulation bacteria for therapeutic administration to a mammalian subject in need thereof. And the composition is produced by generally following the steps of: (a) providing a fecal material obtained from a mammalian donor subject; and (b) subjecting the fecal material to at least one purification treatment or step under conditions such that a population of bacterial spores is produced from the fecal material. The composition is formulated such that a single oral dose contains at least about 1×104 colony forming units of the bacterial spores, and a single oral dose will typically contain about 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, or greater than 1×1015 CFUs of the bacterial spores. The presence and/or concentration of a given type of bacteria or bacterial spore may be known or unknown in a given purified spore population. If known, for example the concentration of bacteria or spores of a given strain, or the aggregate of all strains, is e.g., 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, or greater than 1×1015 viable bacteria or bacterial spores per gram of composition or per administered dose.


In some formulations, the composition contains at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater than 90% spores on a mass basis. In some formulations, the administered dose does not exceed 200, 300, 400, 500, 600, 700, 800, 900 milligrams or 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, or 1.9 grams in mass.


The bacterial compositions are generally formulated for oral or gastric administration, typically to a mammalian subject. In particular embodiments, the composition is formulated for oral administration as a solid, semi-solid, gel, or liquid form, such as in the form of a pill, tablet, capsule, or lozenge. In some embodiments, such formulations contain or are coated by an enteric coating to protect the bacteria through the stomach and small intestine, although spores are generally resistant to the stomach and small intestines.


The bacterial compositions may be formulated to be effective in a given mammalian subject in a single administration or over multiple administrations. For example, a single administration is substantially effective to reduce Cl. difficile and/or Cl. difficile toxin content in a mammalian subject to whom the composition is administered. Substantially effective means that Cl. difficile and/or Cl. difficile toxin content in the subject is reduced by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99% or greater than 99% following administration of the composition.


Kits for Diagnosis of a State of Dysbiosis in a Subject


In some embodiments, the invention includes kits for carrying out methods of the invention described herein and in the claims. In some embodiments, the invention includes a kit for diagnosis of a state of dysbiosis in a mammalian subject in need thereof. In one embodiment, the kit includes a plurality of detection means suitable for use in detecting (1) a first bacterial entity comprising a keystone bacterial entity and (2) a second bacterial entity, wherein the first and second bacterial entities comprise a Network Ecology, as described herein. The kit can include instructions for use of the kit.


In other embodiments, the kit provides detection means, reagents, and instructions for detecting a first bacterial entity and a second bacterial entity that comprise a Network Ecology by: obtaining a fecal sample from a mammalian subject comprising a plurality of bacterial entities, contacting the fecal sample with a first detection moiety (and in some cases, a second detection moiety) capable of detecting the first bacterial entity and the second bacterial entity present in the network, detecting the absence of the first and/or second bacterial entities in the fecal sample, and thereby detecting a dysbiosis in the mammalian subject. In some embodiments, the kit provides reagents and steps for administering to the mammalian subject a composition comprising an effect amount of the first and/or second bacterial species.


In some embodiments, the kit includes detection means and instructions for obtaining a fecal sample from the mammalian subject comprising a plurality of bacterial entities; contacting the fecal sample with a first detection moiety capable of detecting a first bacterial entity present in an network; detecting the absence of the first bacterial entity in the fecal sample, thereby detecting a dysbiosis in the mammalian subject; and administering to the mammalian subject a composition comprising an effective amount of the first bacterial entity.


In other embodiments, the kit includes reagents and instructions for a method for treating, preventing, or reducing the severity of a disorder selected from the group consisting of Clostridium difficile Associated Diarrhea (CDAD), Type 2 Diabetes, Obesity, Irritable Bowel Disease (IBD), colonization with a pathogen or pathobiont, and infection with a drug-resistant pathogen or pathobiont, comprising: administering to a mammalian subject in need thereof an effective amount of a therapeutic bacterial composition, said therapeutic bacterial composition comprising a plurality of isolated bacteria or a purified bacterial preparation, the plurality of isolated bacteria or the purified bacterial preparation capable of forming a network ecology selected from the group consisting of those described throughout the specification.


In another embodiment, the kit includes reagents and instructions for a method for producing short chain fatty acids (SCFA) within a mammalian subject, comprising: administering to said mammalian subject in need thereof an effective amount of a therapeutic bacterial composition, said therapeutic bacterial composition comprising a plurality of isolated bacteria or a purified bacterial preparation, the plurality of isolated bacteria of the purified bacterial preparation capable of forming one or a plurality of bacterial functional pathways, the one or plurality of bacterial functional pathways capable of forming a functional network ecology selected from the group consisting of those described throughout in the specification.


In another embodiment, the kit includes reagents and instructions for a method for catalyzing secondary metabolism of bile acids within a mammalian subject, comprising: administering to said mammalian subject in need thereof an effective amount of a therapeutic bacterial composition, said therapeutic bacterial composition comprising a plurality of isolated bacteria or a purified bacterial preparation, the plurality of isolated bacteria of the purified bacterial preparation capable of forming one or a plurality of bacterial functional pathways, the one or plurality of bacterial functional pathways capable of forming a functional network ecology selected from the group consisting of those described throughout the specification.


Systems for Predicting a Dysbiosis in a Subject


The invention provides systems for predicting a dysbiosis in a subject, the system comprising: a storage memory for storing a dataset associated with a sample obtained from the subject, wherein the dataset comprises content data for at least one network of bacterial entities described herein, and a processor communicatively coupled to the storage memory for determining a score with an interpretation function wherein the score is predictive of dysbiosis in the subject.


In some embodiments, the invention provides systems for detecting a dysbiosis in a subject comprising: a storage memory for storing a dataset associated with a sample obtained from the subject, wherein the dataset comprises content data for at least one network of bacterial entities described herein, and a processor communicatively coupled to the storage memory for determining a score with an interpretation function, wherein the score is predictive of dysbiosis in the subject.


An example of a computer system and its components that can be used to perform methods of the invention are described below in FIG. 21.


Computer Overview



FIG. 21 is a high-level block diagram illustrating an example of a computer 2100 for use as a server or a user device, in accordance with one embodiment. Illustrated are at least one processor 2102 coupled to a chipset 2104. The chipset 2104 includes a memory controller hub 2120 and an input/output (I/O) controller hub 2122. A memory 2106 and a graphics adapter 2112 are coupled to the memory controller hub 2120, and a display device 2118 is coupled to the graphics adapter 2112. A storage device 2108, keyboard 2110, pointing device 2114, and network adapter 2116 are coupled to the I/O controller hub 2122. Other embodiments of the computer 2100 have different architectures. For example, the memory 2106 is directly coupled to the processor 2102 in some embodiments.


The storage device 2108 is a non-transitory computer-readable storage medium such as a hard drive, compact disk read-only memory (CD-ROM), DVD, or a solid-state memory device. The memory 2106 holds instructions and data used by the processor 2102. The pointing device 2114 is used in combination with the keyboard 2110 to input data into the computer system 200. The graphics adapter 2112 displays images and other information on the display device 2118. In some embodiments, the display device 2118 includes a touch screen capability for receiving user input and selections. The network adapter 2116 couples the computer system 2100 to the network. Some embodiments of the computer 2100 have different and/or other components than those shown in FIG. 21. For example, the server can be formed of multiple blade servers and lack a display device, keyboard, and other components.


The computer 2100 is adapted to execute computer program modules for providing functionality described herein. As used herein, the term “module” refers to computer program instructions and other logic used to provide the specified functionality. Thus, a module can be implemented in hardware, firmware, and/or software. In one embodiment, program modules formed of executable computer program instructions are stored on the storage device 2108, loaded into the memory 2106, and executed by the processor 2102.


Methods of the Invention

Method of Determining Network Ecologies


Methods are provided for a computational approach based in part on network theory to construct the ecology of a group of microorganisms based on the presence or absence of specific OTUs (i.e., microbial genera, species or strains) in a given set of sampled subjects. See FIG. 16. See e.g., Cormen T H, Leiserson C E, Rivest R L, and Stein C. 2009. Introduction to Algorithms. Third edition. The MIT Press. Garey M R, and Johnson D S. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. First Edition. W. H. Freeman. The approach includes the following: (i) identifying the microbial network ecologies that are present in both healthy and diseased subjects, (ii) identifying the keystone OTUs and/or functions (FIG. 17), and phylogenetic clades that characterize a given ecology, and (iii) providing specific metrics with which to prioritize the various network ecologies with respect to their capacity to be useful in restoring the microbiome from a state of dysbiosis to a state of health. In general the method first defines all low and high order networks within given sets of subjects, and then utilizes a comparative approach to define biologically significant networks.


This method comprises computing a co-occurrence matrix of OTUs (i.e., presence or absence) for each subject across a defined subject population (populations are defined by a specific phenotype such as but not limited to “subjects who are healthy”, or “subjects with disease”). The method comprises computing all nodes (OTUs, or species, or strains) and edges (co-occurrence between OTUs, or species, or strains) that define the Network Ecology in a given subject's sample. Each co-occurrence is scored using a discrete binary variable denoting presence or absence. While the algorithm allows co-occurrences to be weighted based on the relative abundance of OTUs in the samples, in general, this is undesirable since low abundance OTUs may be important ecologically. Furthermore, a discretized measure of presence or absence of nodes eliminates bias and errors in the computed network ecologies that will arise from bias in methods used to generate relative abundance measures. A discreet method measuring presence or absence enables the detection of low frequency OTUs and the elucidation of networks that are often missed by methods based on relative abundance measures. Following derivation of all low and high order networks in a given subject, one can define all the network ecologies in a given phenotype (i.e., collections of data sets from subjects with a unifying characteristic, for example, all data sets from healthy subjects) by defining the node and edge combinations that are maximally observed across all subjects. Without being bound by theory, it is understood that such network ecologies are present in a mammalian subject. The algorithm iterates the construction of network ecologies to rank all ecologies (i.e. nodes and edges) within each sample based on co-occurrence, [maximum co-occurrence; maximum co-occurrence less 1; maximum co-occurrence less 2; etc.] until the networks with minimum co-occurrence are defined (i.e., a minimum edge score is achieved). This method can be computationally intensive for data sets containing a large number of subjects. For data sets containing a large number of subjects the algorithm uses a strategy whereby first seed network ecologies are constructed using the method defined above in a subset of subjects and then combinations of these seed networks are used to search for higher order networks across the entire data set.


Biological significance can be assigned to the observed network ecologies and members of a given Network Ecology based on multiple computed metrics including, but not limited to: (i) the frequency that a given OTU or Network Ecology is observed; (ii) the number of OTUs in the network; the frequency of occurrence of the network across subjects (i.e., pervasiveness); (iii) the phylogenetic breadth of the network, (iv) specific functional properties, and (v) whether the network occurs preferentially in individuals that are healthy versus those harboring disease (i.e., the various phenotypes). All network ecologies or OTUs that occur in one phenotype (e.g., health) are compared to those that occur in other phenotypes (e.g., one or more specific disease states) to core Network ecologies or OTUs that are found in one, two, or any multiple of phenotypes. Network ecologies are considered to be related if at least 70%, 80%, or 90% of their OTUs are in common. All network ecologies or OTUs are assigned a score for their biological significance based on but not limited to: (i) the intersections of phenotypes in which they occur or do not occur (e.g. present in health but not disease), and (ii) the various metrics above defined. The final output of all of these steps defines a set of Network Ecologies that are of high biological significance and a set of Keystone OTUs and/or metabolic functions that are integral components of these derived ecologies.


From these Network Ecologies, the method includes defining “Network Classes” that represent network groups or clusters with specific, related compositional characteristics with respect to OTU content, phylogenetic diversity, and metabolic functional capacity (FIG. 18). Network Classes can be first defined by setting an inclusion threshold for networks to include in the analysis that is based on biological characteristics of the networks such as but not limited to the size (number of OTUs) and pervasiveness (i.e., how frequently a given network is observed in a population of individuals). Selected network ecologies are then clustered using two vectors: one vector is phylogenetic relatedness of individual OTUs as defined by a computed phylogenetic tree, and the second vector is network relatedness based on the OTUs content in the individual networks. In another embodiment, clustering vectors are related based on metabolic functional pathways harbored by individual OTUs, and network relatedness is based on the functional pathways present in each individual network. Network Classes are defined by specific nodes in the dendrogram representing the computed network relatedness, and each class is characterized by a specific combination of OTUs. In one embodiment, these nodes are defined as branches of the hierarchical clustering tree based on the topological overlap measure; this measure is a highly robust measure of network interconnectedness. See Langfelder P, Zhang B, Horvath S. 2008. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24: 719-720.


From these Networks Classes, a target microbial composition's usefulness, e.g., as a therapeutic, is selected using desired phylogenetic and functional properties for subsequent testing in in vitro and in vivo models. Exemplary Network Classes are delineated in Table 12, and Table 13 defines taxonomic families that are characteristic of Network Classes.


As described herein, provided are compositions (Table 8) containing keystone OTUs for states of health, including one or more of the OTUs provided below in Table 9.


As described herein, provided are compositions containing keystone OTUs, keystone metabolic functions and, optionally, non-keystone OTUs, including one or more of the OTUs provided below in Table 10.


In some therapeutic compositions, keystone OTUs are provided from members of a genera or family selected from Table 9.


Exemplary network ecologies are provided in Table 8, Table 11, Table 12, Table 14a 14b, and 14c, and Table 17.


Exemplary functional network ecologies are provided in Table 18 and Table 21.


Thus, provided herein are methods for production of a composition containing a population of bacteria as either vegetative cells or spores or both, suitable for therapeutic administration to a mammalian subject in need thereof. The composition is produced by generally following the steps of: (a) defining a target composition by selecting a Network Ecology, Functional Network Ecology, a Network Class, or a set of Keystone OTUs or Keystone Metabolic Functions that comprise the Network Ecology or Functional Network Ecology of interest (a) providing bacterial OTUs obtained from one or more bacterial cultures, biological or environmental sources, or a mammalian donor subject; and (b) combining the bacterial OTUs in a ratio and an amount sufficient to form a Network Ecology or Functional Network Ecology. The composition is formulated such that a single oral dose contains at least about 1×104 colony forming units of the bacteria, and a single oral dose will typically contain about 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, or greater than 1×1015 CFUs of the bacteria. The concentration of bacterial of a given species or strain, or the aggregate of all species or strains, is e.g., 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, or greater than 1×1015 viable bacteria per gram of composition or per administered dose.


The bacterial compositions are generally formulated for oral or gastric administration, typically to a mammalian subject. In particular embodiments, the composition is formulated for oral administration as a solid, semi-solid, gel, or liquid form, such as in the form of a pill, tablet, capsule, or lozenge. In some embodiments, such formulations contain or are coated by an enteric coating to protect the bacteria through the stomach and small intestine, although compositions containing spores are generally resistant to the environment of the stomach and small intestine. Alternatively, the bacterial composition may be formulated for naso-gastric or rectal administration.


The bacterial compositions may be formulated to be effective in a given mammalian subject in a single administration or over multiple administrations. For example, a single administration is substantially effective to reduce Clostridium difficile (i.e., C. difficile) and/or C. difficile toxin content and/or toxin activity, in a mammalian subject to whom the composition is administered. Substantially effective means that Cl. difficile and/or C. difficile toxin content in the subject is reduced by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99% or greater than 99% following administration of the composition.


Methods for Determining 16S Sequences


OTUs can be defined either by full 16S sequencing of the rRNA gene, by sequencing of a specific hypervariable region of this gene (i.e. V1, V2, V3, V4, V5, V6, V7, V8, or V9), or by sequencing of any combination of hypervariable regions from this gene (e.g. V1-3 or V3-5). The bacterial 16S rDNA is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most microbes.


Using well known techniques, in order to determine the full 16S sequence or the sequence of any hypervariable region of the 16S sequence, genomic DNA is extracted from a bacterial sample, the 16S rDNA (full region or specific hypervariable regions) amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition of 16S gene or subdomain of the gene. If full 16S sequencing is performed, the sequencing method used may be, but is not limited to, Sanger sequencing. If one or more hypervariable regions are used, such as the V4 region, the sequencing can be, but is not limited to being, performed using the Sanger method or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions.


OTUs can be defined by a combination of nucleotide markers or genes, in particular highly conserved genes (e.g., “house-keeping” genes), or a combination thereof, full-genome sequence, or partial genome sequence generated using amplified genetic products, or whole genome sequence (WGS). Using well defined methods DNA extracted from a bacterial sample will have specific genomic regions amplified using PCR and sequenced to determine the nucleotide sequence of the amplified products. In the whole genome shotgun (WGS) method, extracted DNA will be directly sequenced without amplification. Sequence data can be generated using any sequencing technology including, but not limited to Sanger, Illumina, 454 Life Sciences, Ion Torrent, ABI, Pacific Biosciences, and/or Oxford Nanopore.


Methods for Preparing a Bacterial Composition for Administration to a Subject


Methods for producing bacterial compositions can include three main processing steps, combined with one or more mixing steps. The steps include organism banking, organism production, and preservation.


For banking, the strains included in the bacterial composition may be (1) isolated directly from a specimen or taken from a banked stock, (2) optionally cultured on a nutrient agar or broth that supports growth to generate viable biomass, and (3) the biomass optionally preserved in multiple aliquots in long-term storage.


In embodiments that use a culturing step, the agar or broth can contain nutrients that provide essential elements and specific factors that enable growth. An example would be a medium composed of 20 g/L glucose, 10 g/L yeast extract, 10 g/L soy peptone, 2 g/L citric acid, 1.5 g/L sodium phosphate monobasic, 100 mg/L ferric ammonium citrate, 80 mg/L magnesium sulfate, 10 mg/L hemin chloride, 2 mg/L calcium chloride, 1 mg/L menadione. A variety of microbiological media and variations are well known in the art (e.g. R. M. Atlas, Handbook of Microbiological Media (2010) CRC Press). Medium can be added to the culture at the start, may be added during the culture, or may be intermittently/continuously flowed through the culture. The strains in the bacterial composition may be cultivated alone, as a subset of the bacterial composition, or as an entire collection comprising the bacterial composition. As an example, a first strain may be cultivated together with a second strain in a mixed continuous culture, at a dilution rate lower than the maximum growth rate of either cell to prevent the culture from washing out of the cultivation.


The inoculated culture is incubated under favorable conditions for a time sufficient to build biomass. For bacterial compositions for human use, this is often at 37° C. temperature, pH, and other parameter with values similar to the normal human niche. The environment can be actively controlled, passively controlled (e.g., via buffers), or allowed to drift. For example, for anaerobic bacterial compositions (e.g., gut microbiota), an anoxic/reducing environment can be employed. This can be accomplished by addition of reducing agents such as cysteine to the broth, and/or stripping it of oxygen. As an example, a culture of a bacterial composition can be grown at 37° C., pH 7, in the medium above, pre-reduced with 1 g/L cysteine□HcL.


When the culture has generated sufficient biomass, it can be preserved for banking. The organisms can be placed into a chemical milieu that protects from freezing (adding ‘cryoprotectants’), drying (‘lyoprotectants’), and/or osmotic shock (‘osmoprotectants’), dispensing into multiple (optionally identical) containers to create a uniform bank, and then treating the culture for preservation. Containers are generally impermeable and have closures that assure isolation from the environment. Cryopreservation treatment is accomplished by freezing a liquid at ultra-low temperatures (e.g., at or below −80° C.). Dried preservation removes water from the culture by evaporation (in the case of spray drying or ‘cool drying’) or by sublimation (e.g., for freeze drying, spray freeze drying). Removal of water improves long-term bacterial composition storage stability at temperatures elevated above cryogenic. If the bacterial composition comprises spore forming species and results in the production of spores, the final composition can be purified by additional means, such as density gradient centrifugation preserved using the techniques described above. Bacterial composition banking can be done by culturing and preserving the strains individually, or by mixing the strains together to create a combined bank. As an example of cryopreservation, a bacterial composition culture can be harvested by centrifugation to pellet the cells from the culture medium, the supernate decanted and replaced with fresh culture broth containing 15% glycerol. The culture can then be aliquoted into 1 mL cryotubes, sealed, and placed at −80° C. for long-term viability retention. This procedure achieves acceptable viability upon recovery from frozen storage.


Organism production can be conducted using similar culture steps to banking, including medium composition and culture conditions. It can be conducted at larger scales of operation, especially for clinical development or commercial production. At larger scales, there can be several subcultivations of the bacterial composition prior to the final cultivation. At the end of cultivation, the culture is harvested to enable further formulation into a dosage form for administration. This can involve concentration, removal of undesirable medium components, and/or introduction into a chemical milieu that preserves the bacterial composition and renders it acceptable for administration via the chosen route. For example, a bacterial composition can be cultivated to a concentration of 1010 CFU/mL, then concentrated 20-fold by tangential flow microfiltration; the spent medium can be exchanged by diafiltering with a preservative medium consisting of 2% gelatin, 100 mM trehalose, and 10 mM sodium phosphate buffer. The suspension can then be freeze-dried to a powder and titrated.


After drying, the powder can be blended to an appropriate potency, and mixed with other cultures and/or a filler such as microcrystalline cellulose for consistency and ease of handling, and the bacterial composition formulated as provided herein.


Methods of Treating a Subject


In some embodiments, the compositions disclosed herein are administered to a patient or a user (sometimes collectively referred to as a “subject”). As used herein “administer” and “administration” encompasses embodiments in which one person directs another to consume a bacterial composition in a certain manner and/or for a certain purpose, and also situations in which a user uses a bacteria composition in a certain manner and/or for a certain purpose independently of or in variance to any instructions received from a second person. Non-limiting examples of embodiments in which one person directs another to consume a bacterial composition in a certain manner and/or for a certain purpose include when a physician prescribes a course of conduct and/or treatment to a patient, when a parent commands a minor user (such as a child) to consume a bacterial composition, when a trainer advises a user (such as an athlete) to follow a particular course of conduct and/or treatment, and when a manufacturer, distributer, or marketer recommends conditions of use to an end user, for example through advertisements or labeling on packaging or on other materials provided in association with the sale or marketing of a product.


The bacterial compositions offer a protective and/or therapeutic effect against diseases, disorders or conditions associated with dysbiosis of the gut microbiota, including but not limited to metabolic disorders such as pre-diabetes, type 1 diabetes, type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD), gastrointestinal disorders such as inflammatory bowel disease (IBD, such as ulcerative colitis and Crohns' disease), pouchitis and irritable bowel syndrome (IBS), and infectious diseases as described herein.


In some embodiments, the bacterial compositions offer a protective and/or therapeutic effect against diseases, disorders or conditions associated with dysbiosis of the gut microbiota, including but not limited to, metabolic diseases (e.g., Type 1 diabetes, Type 2 diabetes, Gestational diabetes, Diabetes complications, Prediabetes, NAFLD/NASH, Obesity, Weight Loss), GI diseases (Inflammatory bowel disease (IBD), Irritable bowel syndrome (IBS), Ulcerative Colitis, Crohn's Disease). Infectious diseases (Clostridium difficile Associated Diarrhea (CDAD), Carbapenem-resistant Enterobacteriaceae (CRE), Multidrug-resistant Acinetobacter, Drug-resistant Campylobacter, Extended spectrum β-lactamase producing Enterobacteriaceae (ESBLs), Vancomycin-resistant Enterococcus (VRE), Multidrug-resistant Pseudomonas aeruginosa, Drug-resistant Non-typhoidal Salmonella, Drug-resistant Salmonella Typhi, Drug-resistant Shigella, Methicillin-resistant Staphylococcus aureus (MRSA), Drug-resistant Streptococcus pneumonia, Vancomycin-resistant Staphylococcus aureus (VRSA), Erythromycin-resistant Group A Streptococcus, Clindamycin-resistant Group B Streptococcus, Pathogenic fungus, or Candida infection).


The present bacterial compositions can be administered to animals, including humans, laboratory animals (e.g., primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, chickens), and household pets (e.g., dogs, cats, rodents).


In the present method, the bacterial composition can be administered enterically, in other words, by a route of access to the gastrointestinal tract. This includes oral administration, rectal administration (including enema, suppository, or colonoscopy), by an oral or nasal tube (nasogastric, nasojejunal, oral gastric, or oral jejunal), as detailed more fully herein.


Pretreatment Protocols


Prior to administration of the bacterial composition, the patient can optionally have a pretreatment protocol to prepare the gastrointestinal tract to receive the bacterial composition.


As one way of preparing the patient for administration of the microbial ecosystem, at least one antibiotic can be administered to alter the bacteria in the patient. As another way of preparing the patient for administration of the microbial ecosystem, a standard colon-cleansing preparation can be administered to the patient to substantially empty the contents of the colon, such as used to prepare a patient for a colonscopy. By “substantially emptying the contents of the colon,” this application means removing at least 75%, at least 80%, at least 90%, at least 95%, or about 100% of the contents of the ordinary volume of colon contents. Antibiotic treatment can precede the colon-cleansing protocol.


If a patient has received an antibiotic for treatment of an infection, or if a patient has received an antibiotic as part of a specific pretreatment protocol, in one embodiment, the antibiotic can be stopped in sufficient time to allow the antibiotic to be substantially reduced in concentration in the gut before the bacterial composition is administered. In one embodiment, the antibiotic can be discontinued 1, 2, or 3 days before the administration of the bacterial composition. In another embodiment, the antibiotic can be discontinued 3, 4, 5, 6, or 7 antibiotic half-lives before administration of the bacterial composition. In another embodiment, the antibiotic can be chosen so the constituents in the bacterial composition have an MIC50 that is higher than the concentration of the antibiotic in the gut.


MIC50 of a bacterial composition or the elements in the composition can be determined by methods well known in the art. Reller et al., Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices, Clinical Infectious Diseases 49(11):1749-1755 (2009). In such an embodiment, the additional time between antibiotic administration and administration of the bacterial composition is not necessary. If the pretreatment protocol is part of treatment of an acute infection, the antibiotic can be chosen so that the infection is sensitive to the antibiotic, but the constituents in the bacterial composition are not sensitive to the antibiotic.


Administration of Bacterial Compositions


The bacterial compositions of the invention are suitable for administration to mammals and non-mammalian animals in need thereof. In certain embodiments, the mammalian subject is a human subject who has one or more symptoms of a dysbiosis.


When the mammalian subject is suffering from a disease, disorder or condition characterized by an aberrant microbiota, the bacterial compositions described herein are suitable for treatment thereof. In some embodiments, the mammalian subject has not received antibiotics in advance of treatment with the bacterial compositions. For example, the mammalian subject has not been administered at least two doses of vancomycin, metronidazole and/or or similar antibiotic compound within one week prior to administration of the therapeutic composition. In other embodiments, the mammalian subject has not previously received an antibiotic compound in the one month prior to administration of the therapeutic composition. In other embodiments, the mammalian subject has received one or more treatments with one or more different antibiotic compounds and such treatment(s) resulted in no improvement or a worsening of symptoms.


In some embodiments, the gastrointestinal disease, disorder or condition is diarrhea caused by C. difficile including recurrent C. difficile infection, ulcerative colitis, colitis, Crohn's disease, or irritable bowel disease. Beneficially, the therapeutic composition is administered only once prior to improvement of the disease, disorder or condition. In some embodiments the therapeutic composition is administered at intervals greater than two days, such as once every three, four, five or six days, or every week or less frequently than every week. Or the preparation may be administered intermittently according to a set schedule, e.g., once a day, once weekly, or once monthly, or when the subject relapses from the primary illness. In another embodiment, the preparation may be administered on a long-term basis to subjects who are at risk for infection with or who may be carriers of these pathogens, including subjects who will have an invasive medical procedure (such as surgery), who will be hospitalized, who live in a long-term care or rehabilitation facility, who are exposed to pathogens by virtue of their profession (livestock and animal processing workers), or who could be carriers of pathogens (including hospital workers such as physicians, nurses, and other health care professionals).


In embodiments, the bacterial composition is administered enterically. This preferentially includes oral administration, or by an oral or nasal tube (including nasogastric, nasojejunal, oral gastric, or oral jejunal). In other embodiments, administration includes rectal administration (including enema, suppository, or colonoscopy). The bacterial composition may be administered to at least one region of the gastrointestinal tract, including the mouth, esophagus, stomach, small intestine, large intestine, and rectum. In some embodiments it is administered to all regions of the gastrointestinal tract. The bacterial compositions may be administered orally in the form of medicaments such as powders, capsules, tablets, gels or liquids. The bacterial compositions may also be administered in gel or liquid form by the oral route or through a nasogastric tube, or by the rectal route in a gel or liquid form, by enema or instillation through a colonoscope or by a suppository.


If the composition is administered colonoscopically and, optionally, if the bacterial composition is administered by other rectal routes (such as an enema or suppository) or even if the subject has an oral administration, the subject may have a colon cleansing preparation. The colon-cleansing preparation can facilitate proper use of the colonoscope or other administration devices, but even when it does not serve a mechanical purpose it can also maximize the proportion of the bacterial composition relative to the other organisms previously residing in the gastrointestinal tract of the subject. Any ordinarily acceptable colon cleansing preparation may be used such as those typically provided when a subject undergoes a colonoscopy.


Dosages and Schedule for Administration


In some embodiments, the bacteria and bacterial compositions are provided in a dosage form. In certain embodiments, the dosage form is designed for administration of at least one OTU or combination thereof disclosed herein, wherein the total amount of bacterial composition administered is selected from 0.1 ng to 10 g, 10 ng to 1 g, 100 ng to 0.1 g, 0.1 mg to 500 mg, 1 mg to 100 mg, or from 10-15 mg. In other embodiments, the bacterial composition is consumed at a rate of from 0.1 ng to 10 g a day, 10 ng to 1 g a day, 100 ng to 0.1 g a day, 0.1 mg to 500 mg a day, 1 mg to 100 mg a day, or from 10-15 mg a day, or more.


In certain embodiments, the treatment period is at least 1 day, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 1 week, at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, or at least 1 year. In some embodiments the treatment period is from 1 day to 1 week, from 1 week to 4 weeks, from 1 month, to 3 months, from 3 months to 6 months, from 6 months to 1 year, or for over a year.


In one embodiment, 105 and 1012 microorganisms total can be administered to the patient in a given dosage form. In another embodiment, an effective amount can be provided in from 1 to 500 ml or from 1 to 500 grams of the bacterial composition having from 107 to 1011 bacteria per ml or per gram, or a capsule, tablet or suppository having from 1 mg to 1000 mg lyophilized powder having from 107 to 1011 bacteria. Those receiving acute treatment can receive higher doses than those who are receiving chronic administration.


Any of the preparations described herein can be administered once on a single occasion or on multiple occasions, such as once a day for several days or more than once a day on the day of administration (including twice daily, three times daily, or up to five times daily). In another embodiment, the preparation can be administered intermittently according to a set schedule, e.g., once weekly, once monthly, or when the patient relapses from the primary illness. In one embodiment, the preparation can be administered on a long-term basis to individuals who are at risk for infection with or who may be carriers of these pathogens.


Patient Selection


Particular bacterial compositions can be selected for individual patients or for patients with particular profiles. For example, 16S sequencing can be performed for a given patient to identify the bacteria present in his or her microbiota. The sequencing can either profile the patient's entire microbiome using 16S sequencing (to the family, genera, or species level), a portion of the patient's microbiome using 16S sequencing, or it can be used to detect the presence or absence of specific candidate bacteria that are biomarkers for health or a particular disease state. Based on the biomarker data, a particular composition can be selected for administration to a patient to supplement or complement a patient's microbiota in order to restore health or treat or prevent disease. In another embodiment, patients can be screened to determine the composition of their microbiota to determine the likelihood of successful treatment.


Combination Therapy


The bacterial compositions can be administered with other agents in a combination therapy mode, including anti-microbial agents and prebiotics. Administration can be sequential, over a period of hours or days, or simultaneous.


In one embodiment, the bacterial compositions are included in combination therapy with one or more anti-microbial agents, which include anti-bacterial agents, anti-fungal agents, anti-viral agents and anti-parasitic agents.


Anti-bacterial agents can include cephalosporin antibiotics (cephalexin, cefuroxime, cefadroxil, cefazolin, cephalothin, cefaclor, cefamandole, cefoxitin, cefprozil, and ceftobiprole); fluoroquinolone antibiotics (cipro, Levaquin, floxin, tequin, avelox, and norflox); tetracycline antibiotics (tetracycline, minocycline, oxytetracycline, and doxycycline); penicillin antibiotics (amoxicillin, ampicillin, penicillin V, dicloxacillin, carbenicillin, vancomycin, and methicillin); and carbapenem antibiotics (ertapenem, doripenem, imipenem/cilastatin, and meropenem).


Anti-viral agents can include Abacavir, Acyclovir, Adefovir, Amprenavir, Atazanavir, Cidofovir, Darunavir, Delavirdine, Didanosine, Docosanol, Efavirenz, Elvitegravir, Emtricitabine, Enfuvirtide, Etravirine, Famciclovir, Foscarnet, Fomivirsen, Ganciclovir, Indinavir, Idoxuridine, Lamivudine, Lopinavir Maraviroc, MK-2048, Nelfinavir, Nevirapine, Penciclovir, Raltegravir, Rilpivirine, Ritonavir, Saquinavir, Stavudine, Tenofovir Trifluridine, Valaciclovir, Valganciclovir, Vidarabine, Ibacitabine, Amantadine, Oseltamivir, Rimantidine, Tipranavir, Zalcitabine, Zanamivir and Zidovudine.


Examples of antifungal compounds include, but are not limited to polyene antifungals such as natamycin, rimocidin, filipin, nystatin, amphotericin B, candicin, and hamycin; imidazole antifungals such as miconazole, ketoconazole, clotrimazole, econazole, omoconazole, bifonazole, butoconazole, fenticonazole, isoconazole, oxiconazole, sertaconazole, sulconazole, and tioconazole; triazole antifungals such as fluconazole, itraconazole, isavuconazole, ravuconazole, posaconazole, voriconazole, terconazole, and albaconazole; thiazole antifungals such as abafungin; allylamine antifungals such as terbinafine, naftifine, and butenafine; and echinocandin antifungals such as anidulafungin, caspofungin, and micafungin. Other compounds that have antifungal properties include, but are not limited to polygodial, benzoic acid, ciclopirox, tolnaftate, undecylenic acid, flucytosine or 5-fluorocytosine, griseofulvin, and haloprogin.


In one embodiment, the bacterial compositions are included in combination therapy with one or more corticosteroids, mesalazine, mesalamine, sulfasalazine, sulfasalazine derivatives, immunosuppressive drugs, cyclosporin A, mercaptopurine, azathiopurine, prednisone, methotrexate, antihistamines, glucocorticoids, epinephrine, theophylline, cromolyn sodium, anti-leukotrienes, anti-cholinergic drugs for rhinitis, anti-cholinergic decongestants, mast-cell stabilizers, monoclonal anti-IgE antibodies, vaccines, and combinations thereof.


A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host well-being and health. Prebiotics can include complex carbohydrates, amino acids, peptides, or other essential nutritional components for the survival of the bacterial composition. Prebiotics include, but are not limited to, amino acids, biotin, fructooligosaccharide, galactooligosaccharides, inulin, lactulose, mannan oligosaccharides, oligofructose-enriched inulin, oligofructose, oligodextrose, tagatose, trans-galactooligosaccharide, and xylooligosaccharides.


Methods for Testing Bacterial Compositions for Populating Effect


In Vivo Assay for Determining Whether a Bacterial Composition Populates a Subject's Gastrointestinal Tract


In order to determine that the bacterial composition populates the gastrointestinal tract of a subject, an animal model, such as a mouse model, can be used. The model can begin by evaluating the microbiota of the mice. Qualitative assessments can be accomplished using 16S profiling of the microbial community in the feces of normal mice. It can also be accomplished by full genome sequencing, whole genome shotgun sequencing (WGS), or traditional microbiological techniques. Quantitative assessments can be conducted using quantitative PCR (qPCR), described below, or by using traditional microbiological techniques and counting colony formation.


Optionally, the mice can receive an antibiotic treatment to mimic the condition of dysbiosis. Antibiotic treatment can decrease the taxonomic richness, diversity, and evenness of the community, including a reduction of abundance of a significant number of bacterial taxa. Dethlefsen et al., The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing, PLoS Biology 6(11):3280 (2008). At least one antibiotic can be used, and antibiotics are well known. Antibiotics can include aminoglycoside antibiotic (amikacin, arbekacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, rhodostreptomycin, streptomycin, tobramycin, and apramycin), amoxicillin, ampicillin, Augmentin (an amoxicillin/clavulanate potassium combination), cephalosporin (cefaclor, defadroxil, cefazolin, cefixime, fefoxitin, cefprozil, ceftazimdime, cefuroxime, cephalexin), clavulanate potassium, clindamycin, colistin, gentamycin, kanamycin, metronidazole, or vancomycin. As an individual, nonlimiting specific example, the mice can be provided with drinking water containing a mixture of the antibiotics kanamycin, colistin, gentamycin, metronidazole and vancomycin at 40 mg/kg, 4.2 mg/kg, 3.5 mg/kg, 21.5 mg/kg, and 4.5 mg/kg (mg per average mouse body weight), respectively, for 7 days. Alternatively, mice can be administered ciprofloxacin at a dose of 15-20 mg/kg (mg per average mouse body weight), for 7 days. If the mice are provided with an antibiotic, a wash out period of from one day to three days may be provided with no antibiotic treatment and no bacterial composition treatment.


Subsequently, the bacterial composition is administered to the mice by oral gavage. The bacterial composition may be administered in a volume of 0.2 ml containing 104 CFUs of each type of bacteria in the bacterial composition. Dose-response may be assessed by using a range of doses, including, but not limited to 102, 103, 104, 105, 106, 107, 108, 109, and/or 1010.


The mice can be evaluated using 16S sequencing, full genome sequencing, whole genome shotgun sequencing (WGS), or traditional microbiological techniques to determine whether the bacterial composition has populated the gastrointestinal tract of the mice. For example only, one day, three days, one week, two weeks, and one month after administration of the bacterial composition to the mice, 16S profiling is conducted to determine whether the test bacterial composition has populated the gastrointestinal tract of the mice. Quantitative assessments, including qPCR and traditional microbiological techniques such as colony counting, can additionally or alternatively be performed, at the same time intervals.


Furthermore, the number of sequence counts that correspond exactly to those in the bacterial composition over time can be assessed to determine specifically which components of the bacterial composition reside in the gastrointestinal tract over a particular period of time. In one embodiment, the strains of the bacterial composition persist for a desired period of time. In another embodiment, the components of the bacterial composition persist for a desired period of time, while also increasing the ability of other microbes (such as those present in the environment, food, etc.) to populate the gastrointestinal tract, further increasing overall diversity, as discussed below.


Ability of Bacterial Compositions to Populate Different Regions of the Gastrointestinal Tract


The present bacterial compositions can also be assessed for their ability to populate different regions of the gastrointestinal tract. In one embodiment, a bacterial composition can be chosen for its ability to populate one or more than one region of the gastrointestinal tract, including, but not limited to the stomach, the small intestine (duodenum, jejunum, and ileum), the large intestine (the cecum, the colon (the ascending, transverse, descending, and sigmoid colon), and the rectum).


An in vivo study can be conducted to determine which regions of the gastrointestinal tract a given bacterial composition will populate. A mouse model similar to the one described above can be conducted, except instead of assessing the feces produced by the mice, particular regions of the gastrointestinal tract can be removed and studied individually. For example, at least one particular region of the gastrointestinal tract can be removed and a qualitative or quantitative determination can be performed on the contents of that region of the gastrointestinal tract. In another embodiment, the contents can optionally be removed and the qualitative or quantitative determination may be conducted on the tissue removed from the mouse.


qPCR


As one quantitative method for determining whether a bacterial composition populates the gastrointestinal tract, quantitative PCR (qPCR) can be performed. Standard techniques can be followed to generate a standard curve for the bacterial composition of interest, either for all of the components of the bacterial composition collectively, individually, or in subsets (if applicable). Genomic DNA can be extracted from samples using commercially-available kits, such as the Mo Bio Powersoil®-htp 96 Well Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.), the Mo Bio Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.), or the QIAamp DNA Stool Mini Kit (QIAGEN, Valencia, Calif.) according to the manufacturer's instructions.


In some embodiments, qPCR can be conducted using HotMasterMix (5PRIME, Gaithersburg, Md.) and primers specific for the bacterial composition of interest, and may be conducted on a MicroAmp® Fast Optical 96-well Reaction Plate with Barcode (0.1 mL) (Life Technologies, Grand Island, N.Y.) and performed on a BioRad C1000™ Thermal Cycler equipped with a CFX96™ Real-Time System (BioRad, Hercules, Calif.), with fluorescent readings of the FAM and ROX channels. The Cq value for each well on the FAM channel is determined by the CFX Manager™ software version 2.1. The log10 (cfu/ml) of each experimental sample is calculated by inputting a given sample's Cq value into linear regression model generated from the standard curve comparing the Cq values of the standard curve wells to the known log10 (cfu/ml) of those samples. The skilled artisan may employ alternative qPCR modes.


Methods for Characterization of Bacterial Compositions

In certain embodiments, provided are methods for testing certain characteristics of bacterial compositions. For example, the sensitivity of bacterial compositions to certain environmental variables is determined, e.g., in order to select for particular desirable characteristics in a given composition, formulation and/or use. For example, the constituents in the bacterial composition can be tested for pH resistance, bile acid resistance, and/or antibiotic sensitivity, either individually on a constituent-by-constituent basis or collectively as a bacterial composition comprised of multiple bacterial constituents (collectively referred to in this section as bacterial composition).


pH Sensitivity Testing

If a bacterial composition will be administered other than to the colon or rectum (i.e., for example, an oral route), optionally testing for pH resistance enhances the selection of bacterial compositions that will survive at the highest yield possible through the varying pH environments of the distinct regions of the GI tract. Understanding how the bacterial compositions react to the pH of the GI tract also assists in formulation, so that the number of bacteria in a dosage form can be increased if beneficial and/or so that the composition may be administered in an enteric-coated capsule or tablet or with a buffering or protective composition. As the pH of the stomach can drop to a pH of 1 to 2 after a high-protein meal for a short time before physiological mechanisms adjust it to a pH of 3 to 4 and often resides at a resting pH of 4 to 5, and as the pH of the small intestine can range from a pH of 6 to 7.4, bacterial compositions can be prepared that survive these varying pH ranges (specifically wherein at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or as much as 100% of the bacteria can survive gut transit times through various pH ranges). This can be tested by exposing the bacterial composition to varying pH ranges for the expected gut transit times through those pH ranges. Therefore, as a nonlimiting example only, 18-hour cultures of bacterial compositions can be grown in standard media, such as gut microbiota medium (“GMM”, see Goodman et al., Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice, PNAS 108(15):6252-6257 (2011)) or another animal-products-free medium, with the addition of pH adjusting agents for a pH of 1 to 2 for 30 minutes, a pH of 3 to 4 for 1 hour, a pH of 4 to 5 for 1 to 2 hours, and a pH of 6 to 7.4 for 2.5 to 3 hours. An alternative method for testing stability to acid is described in U.S. Pat. No. 4,839,281. Survival of bacteria may be determined by culturing the bacteria and counting colonies on appropriate selective or non-selective media.


Bile Acid Sensitivity Testing

Additionally, in some embodiments, testing for bile-acid resistance enhances the selection of bacterial compositions that will survive exposures to bile acid during transit through the GI tract. Bile acids are secreted into the small intestine and can, like pH, affect the survival of bacterial compositions. This can be tested by exposing the bacterial compositions to bile acids for the expected gut exposure time to bile acids. For example, bile acid solutions can be prepared at desired concentrations using 0.05 mM Tris at pH 9 as the solvent. After the bile acid is dissolved, the pH of the solution may be adjusted to 7.2 with 10% HCl. Bacterial compositions can be cultured in 2.2 ml of a bile acid composition mimicking the concentration and type of bile acids in the patient, 1.0 ml of 10% sterile-filtered feces media and 0.1 ml of an 18-hour culture of the given strain of bacteria. Incubations may be conducted for from 2.5 to 3 hours or longer. An alternative method for testing stability to bile acid is described in U.S. Pat. No. 4,839,281. Survival of bacteria can be determined by culturing the bacteria and counting colonies on appropriate selective or non-selective media.


Antibiotic Sensitivity Testing

As a further optional sensitivity test, bacterial compositions can be tested for sensitivity to antibiotics. In one embodiment, bacterial compositions can be chosen so that the bacterial constituents are sensitive to antibiotics such that if necessary they can be eliminated or substantially reduced from the patient's gastrointestinal tract by at least one antibiotic targeting the bacterial composition.


Adherence to Gastrointestinal Cells

The bacterial compositions may optionally be tested for the ability to adhere to gastrointestinal cells. A method for testing adherence to gastrointestinal cells is described in U.S. Pat. No. 4,839,281.


Methods for Purifying Spores

Solvent Treatments


To purify the bacterial spores, the fecal material is subjected to one or more solvent treatments. A solvent treatment is a miscible solvent treatment (either partially miscible or fully miscible) or an immiscible solvent treatment. Miscibility is the ability of two liquids to mix with each to form a homogeneous solution. Water and ethanol, for example, are fully miscible such that a mixture containing water and ethanol in any ratio will show only one phase. Miscibility is provided as a wt/wt %, or weight of one solvent in 100 g of final solution. If two solvents are fully miscible in all proportions, their miscibility is 100%. Provided as fully miscible solutions with water are alcohols, e.g., methanol, ethanol, isopropanol, butanol, etc. The alcohols can be provided already combined with water; e.g., a solution containing 10%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 89%, 85%, 90%, 95% or greater than 95% Other solvents are only partially miscible, meaning that only some portion will dissolve in water. Diethyl ether, for example, is partially miscible with water. Up to 7 grams of diethyl ether will dissolve in 93 g of water to give a 7% (wt/wt %) solution. If more diethyl ether is added, a two phase solution will result with a distinct diethyl ether layer above the water. Other miscible materials include ethers, dimethoxyethane, or tetrahydrofuran In contrast, an oil such as an alkane and water are immiscible and form two phases. Further, immiscible treatments are optionally combined with a detergent, either an ionic detergent or a non-ionic detergent. Exemplary detergents include Triton X-100, Tween 20, Tween 80, Nonidet P40, a pluronic, or a polyol.


Chromatography Treatments


To purify spore populations, the fecal materials are subjected to one or more chromatographic treatments, either sequentially or in parallel. In a chromatographic treatment, a solution containing the fecal material is contacted with a solid medium containing a hydrophobic interaction chromatographic (HIC) medium or an affinity chromatographic medium. In an alternative embodiment, a solid medium capable of absorbing a residual habitat product present in the fecal material is contacted with a solid medium that adsorbs a residual habitat product. In certain embodiments, the HIC medium contains sepharose or a derivatized sepharose such as butyl sepharose, octyl sepharose, phenyl sepharose, or butyl-s sepharose. In other embodiments, the affinity chromatographic medium contains material derivatized with mucin type I, II, III, IV, V, or VI, or oligosaccharides derived from or similar to those of mucins type I, II, III, IV, V, or VI. Alternatively, the affinity chromatographic medium contains material derivatized with antibodies that recognize spore-forming bacteria.


Mechanical Treatments


Provided herein is the physical disruption of the fecal material, particularly by one or more mechanical treatment such as blending, mixing, shaking, vortexing, impact pulverization, and sonication. As provided herein, the mechanical disrupting treatment substantially disrupts a non-spore material present in the fecal material and does not substantially disrupt a spore present in the fecal material. Mechanical treatments optionally include filtration treatments, where the desired spore populations are retained on a filter while the undesirable (non-spore) fecal components to pass through, and the spore fraction is then recovered from the filter medium. Alternatively, undesirable particulates and eukaryotic cells may be retained on a filter while bacterial cells including spores pass through. In some embodiments the spore fraction retained on the filter medium is subjected to a diafiltration step, wherein the retained spores are contacted with a wash liquid, typically a sterile saline-containing solution or other diluent, in order to further reduce or remove the undesirable fecal components.


Thermal Treatments


Provided herein is the thermal disruption of the fecal material. Generally, the fecal material is mixed in a saline-containing solution such as phosphate-buffered saline (PBS) and subjected to a heated environment, such as a warm room, incubator, water-bath, or the like, such that efficient heat transfer occurs between the heated environment and the fecal material. Preferably the fecal material solution is mixed during the incubation to enhance thermal conductivity and disrupt particulate aggregates. Thermal treatments can be modulated by the temperature of the environment and/or the duration of the thermal treatment. For example, the fecal material or a liquid comprising the fecal material is subjected to a heated environment, e.g., a hot water bath of at least about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or greater than 100 degrees Celsius, for at least about 1, 5, 10, 15, 20, 30, 45 seconds, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, or 50 minutes, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 hours. In certain embodiments the thermal treatment occurs at two different temperatures, such as 30 seconds in a 100 degree Celsius environment followed by 10 minutes in a 50 degree Celsius environment. In preferred embodiments the temperature and duration of the thermal treatment are sufficient to kill or remove pathogenic materials while not substantially damaging or reducing the germination-competency of the spores.


Irradiation Treatments


Provided are methods of treating the fecal material or separated contents of the fecal material with ionizing radiation, typically gamma irradiation, ultraviolet irradiation or electron beam irradiation provided at an energy level sufficient to kill pathogenic materials while not substantially damaging the desired spore populations. For example, ultraviolet radiation at 254 nm provided at an energy level below about 22,000 microwatt seconds per cm2 will not generally destroy desired spores.


Centrifugation and Density Separation Treatments


Provided are methods of separating desired spore populations from the other components of the fecal material by centrifugation. A solution containing the fecal material is subjected to one or more centrifugation treatments, e.g., at about 1000×g, 2000×g, 3000×g, 4000×g, 5000×g, 6000×g, 7000×g, 8000×g or greater than 8000×g. Differential centrifugation separates desired spores from undesired non-spore material; at low forces the spores are retained in solution, while at higher forces the spores are pelleted while smaller impurities (e.g., virus particles, phage) are retained in solution. For example, a first low force centrifugation pellets fibrous materials; a second, higher force centrifugation pellets undesired eukaryotic cells, and a third, still higher force centrifugation pellets the desired spores while small contaminants remain in suspension. In some embodiments density or mobility gradients or cushions (e.g., step cushions), such as Percoll, Ficoll, Nycodenz, Histodenz or sucrose gradients, are used to separate desired spore populations from other materials in the fecal material.


Also provided herein are methods of producing spore populations that combine two or more of the treatments described herein in order to synergistically purify the desired spores while killing or removing undesired materials and/or activities from the spore population. It is generally desirable to retain the spore populations under non-germinating and non-growth promoting conditions and media, in order to minimize the growth of pathogenic bacteria present in the spore populations and to minimize the germination of spores into vegetative bacterial cells.


Pharmaceutical Compositions and Formulations of the Invention

Formulations


Provided are formulations for administration to humans and other subjects in need thereof. Generally the bacterial compositions are combined with additional active and/or inactive materials in order to produce a final product, which may be in single dosage unit or in a multi-dose format.


In some embodiments, the composition comprises at least one carbohydrate. A “carbohydrate” refers to a sugar or polymer of sugars. The terms “saccharide,” “polysaccharide,” “carbohydrate,” and “oligosaccharide” may be used interchangeably. Most carbohydrates are aldehydes or ketones with many hydroxyl groups, usually one on each carbon atom of the molecule. Carbohydrates generally have the molecular formula CnH2nOn. A carbohydrate can be a monosaccharide, a disaccharide, trisaccharide, oligosaccharide, or polysaccharide. The most basic carbohydrate is a monosaccharide, such as glucose, sucrose, galactose, mannose, ribose, arabinose, xylose, and fructose. Disaccharides are two joined monosaccharides. Exemplary disaccharides include sucrose, maltose, cellobiose, and lactose. Typically, an oligosaccharide includes between three and six monosaccharide units (e.g., raffinose, stachyose), and polysaccharides include six or more monosaccharide units. Exemplary polysaccharides include starch, glycogen, and cellulose. Carbohydrates can contain modified saccharide units, such as 2′-deoxyribose wherein a hydroxyl group is removed, 2′-fluororibose wherein a hydroxyl group is replace with a fluorine, or N-acetylglucosamine, a nitrogen-containing form of glucose (e.g., 2′-fluororibose, deoxyribose, and hexose). Carbohydrates can exist in many different forms, for example, conformers, cyclic forms, acyclic forms, stereoisomers, tautomers, anomers, and isomers.


In some embodiments, the composition comprises at least one lipid. As used herein, a “lipid” includes fats, oils, triglycerides, cholesterol, phospholipids, fatty acids in any form including free fatty acids. Fats, oils and fatty acids can be saturated, unsaturated (cis or trans) or partially unsaturated (cis or trans). In some embodiments, the lipid comprises at least one fatty acid selected from lauric acid (12:0), myristic acid (14:0), palmitic acid (16:0), palmitoleic acid (16:1), margaric acid (17:0), heptadecenoic acid (17:1), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), linolenic acid (18:3), octadecatetraenoic acid (18:4), arachidic acid (20:0), eicosenoic acid (20:1), eicosadienoic acid (20:2), eicosatetraenoic acid (20:4), eicosapentaenoic acid (20:5) (EPA), docosanoic acid (22:0), docosenoic acid (22:1), docosapentaenoic acid (22:5), docosahexaenoic acid (22:6) (DHA), and tetracosanoic acid (24:0). In other embodiments, the composition comprises at least one modified lipid, for example, a lipid that has been modified by cooking.


In some embodiments, the composition comprises at least one supplemental mineral or mineral source. Examples of minerals include, without limitation: chloride, sodium, calcium, iron, chromium, copper, iodine, zinc, magnesium, manganese, molybdenum, phosphorus, potassium, and selenium. Suitable forms of any of the foregoing minerals include soluble mineral salts, slightly soluble mineral salts, insoluble mineral salts, chelated minerals, mineral complexes, non-reactive minerals such as carbonyl minerals, and reduced minerals, and combinations thereof.


In certain embodiments, the composition comprises at least one supplemental vitamin. The at least one vitamin can be fat-soluble or water soluble vitamins. Suitable vitamins include but are not limited to vitamin C, vitamin A, vitamin E, vitamin B12, vitamin K, riboflavin, niacin, vitamin D, vitamin B6, folic acid, pyridoxine, thiamine, pantothenic acid, and biotin. Suitable forms of any of the foregoing are salts of the vitamin, derivatives of the vitamin, compounds having the same or similar activity of the vitamin, and metabolites of the vitamin.


In other embodiments, the composition comprises an excipient. Non-limiting examples of suitable excipients include a buffering agent, a preservative, a stabilizer, a binder, a compaction agent, a lubricant, a dispersion enhancer, a disintegration agent, a flavoring agent, a sweetener, and a coloring agent.


In another embodiment, the excipient is a buffering agent. Non-limiting examples of suitable buffering agents include sodium citrate, magnesium carbonate, magnesium bicarbonate, calcium carbonate, and calcium bicarbonate.


In some embodiments, the excipient comprises a preservative. Non-limiting examples of suitable preservatives include antioxidants, such as alpha-tocopherol and ascorbate, and antimicrobials, such as parabens, chlorobutanol, and phenol.


In other embodiments, the composition comprises a binder as an excipient. Non-limiting examples of suitable binders include starches, pregelatinized starches, gelatin, polyvinylpyrolidone, cellulose, methylcellulose, sodium carboxymethylcellulose, ethylcellulose, polyacrylamides, polyvinyloxoazolidone, polyvinylalcohols, C12-C18 fatty acid alcohol, polyethylene glycol, polyols, saccharides, oligosaccharides, and combinations thereof.


In another embodiment, the composition comprises a lubricant as an excipient. Non-limiting examples of suitable lubricants include magnesium stearate, calcium stearate, zinc stearate, hydrogenated vegetable oils, sterotex, polyoxyethylene monostearate, talc, polyethyleneglycol, sodium benzoate, sodium lauryl sulfate, magnesium lauryl sulfate, and light mineral oil.


In other embodiments, the composition comprises a dispersion enhancer as an excipient. Non-limiting examples of suitable dispersants include starch, alginic acid, polyvinylpyrrolidones, guar gum, kaolin, bentonite, purified wood cellulose, sodium starch glycolate, isoamorphous silicate, and microcrystalline cellulose as high HLB emulsifier surfactants.


In some embodiments, the composition comprises a disintegrant as an excipient. In other embodiments, the disintegrant is a non-effervescent disintegrant. Non-limiting examples of suitable non-effervescent disintegrants include starches such as corn starch, potato starch, pregelatinized and modified starches thereof, sweeteners, clays, such as bentonite, microcrystalline cellulose, alginates, sodium starch glycolate, gums such as agar, guar, locust bean, karaya, pecitin, and tragacanth. In another embodiment, the disintegrant is an effervescent disintegrant. Non-limiting examples of suitable effervescent disintegrants include sodium bicarbonate in combination with citric acid, and sodium bicarbonate in combination with tartaric acid.


In another embodiment, the excipient comprises a flavoring agent. Flavoring agents can be chosen from synthetic flavor oils and flavoring aromatics; natural oils; extracts from plants, leaves, flowers, and fruits; and combinations thereof. In some embodiments the flavoring agent is selected from cinnamon oils; oil of wintergreen; peppermint oils; clover oil; hay oil; anise oil; Eucalyptus; Vanilla; Citrus Oil Such as Lemon Oil, Orange Oil, Grape and Grapefruit Oil; and fruit essences including apple, peach, pear, strawberry, raspberry, cherry, plum, pineapple, and apricot.


In other embodiments, the excipient comprises a sweetener. Non-limiting examples of suitable sweeteners include glucose (corn syrup), dextrose, invert sugar, fructose, and mixtures thereof (when not used as a carrier); saccharin and its various salts such as the sodium salt; dipeptide sweeteners such as aspartame; dihydrochalcone compounds, glycyrrhizin; Stevia Rebaudiana (Stevioside); chloro derivatives of sucrose such as sucralose; and sugar alcohols such as sorbitol, mannitol, sylitol, and the like. Also contemplated are hydrogenated starch hydrolysates and the synthetic sweetener 3,6-dihydro-6-methyl-1,2,3-oxathiazin-4-one-2,2-dioxide, particularly the potassium salt (acesulfame-K), and sodium and calcium salts thereof.


In yet other embodiments, the composition comprises a coloring agent. Non-limiting examples of suitable color agents include food, drug and cosmetic colors (FD&C), drug and cosmetic colors (D&C), and external drug and cosmetic colors (Ext. D&C). The coloring agents can be used as dyes or their corresponding lakes.


The weight fraction of the excipient or combination of excipients in the formulation is usually about 99% or less, such as about 95% or less, about 90% or less, about 85% or less, about 80% or less, about 75% or less, about 70% or less, about 65% or less, about 60% or less, about 55% or less, 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, about 20% or less, about 15% or less, about 10% or less, about 5% or less, about 2% or less, or about 1% or less of the total weight of the composition.


The bacterial compositions disclosed herein can be formulated into a variety of forms and administered by a number of different means. The compositions can be administered orally, rectally, or parenterally, in formulations containing conventionally acceptable carriers, adjuvants, and vehicles as desired. The term “parenteral” as used herein includes subcutaneous, intravenous, intramuscular, or intrasternal injection and infusion techniques. In an exemplary embodiment, the bacterial composition is administered orally.


Solid dosage forms for oral administration include capsules, tablets, caplets, pills, troches, lozenges, powders, and granules. A capsule typically comprises a core material comprising a bacterial composition and a shell wall that encapsulates the core material. In some embodiments, the core material comprises at least one of a solid, a liquid, and an emulsion. In other embodiments, the shell wall material comprises at least one of a soft gelatin, a hard gelatin, and a polymer. Suitable polymers include, but are not limited to: cellulosic polymers such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose (HPMC), methyl cellulose, ethyl cellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate, hydroxypropylmethyl cellulose phthalate, hydroxypropylmethyl cellulose succinate and carboxymethylcellulose sodium; acrylic acid polymers and copolymers, such as those formed from acrylic acid, methacrylic acid, methyl acrylate, ammonio methylacrylate, ethyl acrylate, methyl methacrylate and/or ethyl methacrylate (e.g., those copolymers sold under the trade name “Eudragit”); vinyl polymers and copolymers such as polyvinyl pyrrolidone, polyvinyl acetate, polyvinylacetate phthalate, vinylacetate crotonic acid copolymer, and ethylene-vinyl acetate copolymers; and shellac (purified lac). In yet other embodiments, at least one polymer functions as taste-masking agents.


Tablets, pills, and the like can be compressed, multiply compressed, multiply layered, and/or coated. The coating can be single or multiple. In one embodiment, the coating material comprises at least one of a saccharide, a polysaccharide, and glycoproteins extracted from at least one of a plant, a fungus, and a microbe. Non-limiting examples include corn starch, wheat starch, potato starch, tapioca starch, cellulose, hemicellulose, dextrans, maltodextrin, cyclodextrins, inulins, pectin, mannans, gum arabic, locust bean gum, mesquite gum, guar gum, gum karaya, gum ghatti, tragacanth gum, funori, carrageenans, agar, alginates, chitosans, or gellan gum. In some embodiments the coating material comprises a protein. In another embodiment, the coating material comprises at least one of a fat and an oil. In other embodiments, the at least one of a fat and an oil is high temperature melting. In yet another embodiment, the at least one of a fat and an oil is hydrogenated or partially hydrogenated. In one embodiment, the at least one of a fat and an oil is derived from a plant. In other embodiments, the at least one of a fat and an oil comprises at least one of glycerides, free fatty acids, and fatty acid esters. In some embodiments, the coating material comprises at least one edible wax. The edible wax can be derived from animals, insects, or plants. Non-limiting examples include beeswax, lanolin, bayberry wax, carnauba wax, and rice bran wax. Tablets and pills can additionally be prepared with enteric coatings.


Alternatively, powders or granules embodying the bacterial compositions disclosed herein can be incorporated into a food product. In some embodiments, the food product is a drink for oral administration. Non-limiting examples of a suitable drink include fruit juice, a fruit drink, an artificially flavored drink, an artificially sweetened drink, a carbonated beverage, a sports drink, a liquid diary product, a shake, an alcoholic beverage, a caffeinated beverage, infant formula and so forth. Other suitable means for oral administration include aqueous and nonaqueous solutions, emulsions, suspensions and solutions and/or suspensions reconstituted from non-effervescent granules, containing at least one of suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, coloring agents, and flavoring agents.


In some embodiments, the food product can be a solid foodstuff. Suitable examples of a solid foodstuff include without limitation a food bar, a snack bar, a cookie, a brownie, a muffin, a cracker, an ice cream bar, a frozen yogurt bar, and the like.


In other embodiments, the compositions disclosed herein are incorporated into a therapeutic food. In some embodiments, the therapeutic food is a ready-to-use food that optionally contains some or all essential macronutrients and micronutrients. In another embodiment, the compositions disclosed herein are incorporated into a supplementary food that is designed to be blended into an existing meal. In one embodiment, the supplemental food contains some or all essential macronutrients and micronutrients. In another embodiment, the bacterial compositions disclosed herein are blended with or added to an existing food to fortify the food's protein nutrition. Examples include food staples (grain, salt, sugar, cooking oil, margarine), beverages (coffee, tea, soda, beer, liquor, sports drinks), snacks, sweets and other foods.


In one embodiment, the formulations are filled into gelatin capsules for oral administration. An example of an appropriate capsule is a 250 mg gelatin capsule containing from 10 (up to 100 mg) of lyophilized powder (108 to 1011 bacteria), 160 mg microcrystalline cellulose, 77.5 mg gelatin, and 2.5 mg magnesium stearate. In an alternative embodiment, from 105 to 1012 bacteria may be used, 105 to 107, 106 to 107, or 108 to 1010, with attendant adjustments of the excipients if necessary. In an alternative embodiment, an enteric-coated capsule or tablet or with a buffering or protective composition can be used.


EXAMPLES

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.


The practice of the present invention will employ, unless otherwise indicated, conventional methods of protein chemistry, biochemistry, recombinant DNA techniques and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., T. E. Creighton, Proteins: Structures and Molecular Properties (W.H. Freeman and Company, 1993); A. L. Lehninger, Biochemistry (Worth Publishers, Inc., current addition); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.); Remington's Pharmaceutical Sciences, 18th Edition (Easton, Pa.: Mack Publishing Company, 1990); Carey and Sundberg Advanced Organic Chemistry 3rd Ed. (Plenum Press) Vols A and B (1992).


Example 1: Sequence-Based Genomic Characterization of Operational Taxonomic Units (OTU) and Functional Genes

Method for Determining 16S rDNA Gene Sequence


As described above, OTUs are defined either by full 16S sequencing of the rRNA gene, by sequencing of a specific hypervariable region of this gene (i.e. V1, V2, V3, V4, V5, V6, V7, V8, or V9), or by sequencing of any combination of hypervariable regions from this gene (e.g. V1-3 or V3-5). The bacterial 16S rRNA gene is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most microbes. rRNA gene sequencing methods are applicable to both the analysis of non-enriched samples, but also for identification of microbes after enrichment steps that either enrich the microbes of interest from the microbial composition and/or the nucleic acids that harbor the appropriate rDNA gene sequences as described below. For example, enrichment treatments prior to 16S rDNA gene characterization will increase the sensitivity of 16S as well as other molecular-based characterization nucleic acid purified from the microbes.


Using well known techniques, in order to determine the full 16S sequence or the sequence of any hypervariable region of the 16S rRNA sequence, genomic DNA is extracted from a bacterial sample, the 16S rDNA (full region or specific hypervariable regions) amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition of 16S gene or subdomain of the gene. If full 16S sequencing is performed, the sequencing method used may be, but is not limited to, Sanger sequencing. If one or more hypervariable regions are used, such as the V4 region, the sequencing may be, but is not limited to being, performed using the Sanger method or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions.


Method for Determining 18S rDNA and ITS Gene Sequence


Methods to assign and identify fungal OTUs by genetic means can be accomplished by analyzing 18S sequences and the internal transcribed spacer (ITS). The rRNA of fungi that forms the core of the ribosome is transcribed as a signal gene and consists of the 8S, 5.8S and 28S regions with ITS4 and 5 between the 8S and 5.8S and 5.8S and 28S regions, respectively. These two intercistronic segments between the 18S and 5.8S and 5.8S and 28S regions are removed by splicing and contain significant variation between species for barcoding purposes as previously described (Schoch et al Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241-6246. 2012). 18S rDNA is traditionally used for phylogenetic reconstruction however the ITS can serve this function as it is generally highly conserved but contains hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most fungus.


Using well known techniques, in order to determine the full 18S and ITS sequences or a smaller hypervariable section of these sequences, genomic DNA is extracted from a microbial sample, the rDNA amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition rDNA gene or subdomain of the gene. The sequencing method used may be, but is not limited to, Sanger sequencing or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions.


Method for Determining Other Marker Gene Sequences

In addition to the 16S and 18S rRNA gene, one may define an OTU by sequencing a selected set of genes that are known to be marker genes for a given species or taxonomic group of OTUs. These genes may alternatively be assayed using a PCR-based screening strategy. As example, various strains of pathogenic Escherichia coli can be distinguished using DNAs from the genes that encode heat-labile (LTI, LTIIa, and LTIIb) and heat-stable (STI and STII) toxins, verotoxin types 1, 2, and 2e (VT1, VT2, and VT2e, respectively), cytotoxic necrotizing factors (CNF1 and CNF2), attaching and effacing mechanisms (eaeA), enteroaggregative mechanisms (Eagg), and enteroinvasive mechanisms (Einv). The optimal genes to utilize for taxonomic assignment of OTUs by use of marker genes will be familiar to one with ordinary skill of the art of sequence based taxonomic identification.


Genomic DNA Extraction

Genomic DNA is extracted from pure microbial cultures using a hot alkaline lysis method. 1 μl of microbial culture is added to 9 μl of Lysis Buffer (25 mM NaOH, 0.2 mM EDTA) and the mixture is incubated at 95° C. for 30 minutes. Subsequently, the samples are cooled to 4° C. and neutralized by the addition of 10 μl of Neutralization Buffer (40 mM Tris-HCl) and then diluted 10-fold in Elution Buffer (10 mM Tris-HCl). Alternatively, genomic DNA is extracted from pure microbial cultures using commercially available kits such as the Mo Bio Ultraclean® Microbial DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.) or by standard methods known to those skilled in the art. For fungal samples, DNA extraction can be performed by methods described previously (US20120135127) for producing lysates from fungal fruiting bodies by mechanical grinding methods.


Amplification of 16S Sequences for Downstream Sanger Sequencing

To amplify bacterial 16S rDNA (e.g, in FIG. 1), 2 μl of extracted gDNA is added to a 20 μl final volume PCR reaction. For full-length 16 sequencing the PCR reaction also contains 1× HotMasterMix (5PRIME, Gaithersburg, Md.), 250 nM of 27f (AGRGTTTGATCMTGGCTCAG (SEQ ID NO: 2033), IDT, Coralville, Iowa), and 250 nM of 1492r (TACGGYTACCTTGTTAYGACTT (SEQ ID NO: 2034), IDT, Coralville, Iowa), with PCR Water (Mo Bio Laboratories, Carlsbad, Calif.) for the balance of the volume.



FIG. 1 shows the hypervariable regions mapped onto a 16s sequence and the sequence regions corresponding to these sequences on a sequence map. A schematic is shown of a 16S rRNA gene and the figure denotes the coordinates of hypervariable regions 1-9 (V1-V9), according to an embodiment of the invention. Coordinates of V1-V9 are 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294, and 1435-1465 respectively, based on numbering using E. coli system of nomenclature defined by Brosius et al., Complete nucleotide sequence of a 16S ribosomal RNA gene (16S rRNA) from Escherichia coli, PNAS 75(10):4801-4805 (1978).


Alternatively, other universal bacterial primers or thermostable polymerases known to those skilled in the art are used. For example, primers are available to those skilled in the art for the sequencing of the “V1-V9 regions” of the 16S rRNA (e.g., FIG. 1). These regions refer to the first through ninth hypervariable regions of the 16S rRNA gene that are used for genetic typing of bacterial samples. These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the E. coli system of nomenclature. See Brosius et al., Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, PNAS 75(10):4801-4805 (1978). In some embodiments, at least one of the V1, V2, V3, V4, V5, V6, V7, V8, and V9 regions are used to characterize an OTU. In one embodiment, the V1, V2, and V3 regions are used to characterize an OTU. In another embodiment, the V3, V4, and V5 regions are used to characterize an OTU. In another embodiment, the V4 region is used to characterize an OTU. A person of ordinary skill in the art can identify the specific hypervariable regions of a candidate 16S rRNA (e.g., FIG. 1) by comparing the candidate sequence in question to the reference sequence (as in FIG. 2) and identifying the hypervariable regions based on similarity to the reference hypervariable regions. FIG. 2 highlights in bold the nucleotide sequences for each hypervariable region in the exemplary reference E. coli 16S sequence described by Brosius et al.


The PCR is performed on commercially available thermocyclers such as a BioRad MyCycler™ Thermal Cycler (BioRad, Hercules, Calif.). The reactions are run at 94° C. for 2 minutes followed by 30 cycles of 94° C. for 30 seconds, 51° C. for 30 seconds, and 68° C. for 1 minute 30 seconds, followed by a 7 minute extension at 72° C. and an indefinite hold at 4° C. Following PCR, gel electrophoresis of a portion of the reaction products is used to confirm successful amplification of a ˜1.5 kb product.


To remove nucleotides and oligonucleotides from the PCR products, 2 μl of HT ExoSap-IT (Affymetrix, Santa Clara, Calif.) is added to 5 μl of PCR product followed by a 15 minute incubation at 37° C. and then a 15 minute inactivation at 80° C.


Amplification of 16S Sequences for Downstream Characterization by Massively Parallel Sequencing Technologies

Amplification performed for downstream sequencing by short read technologies such as Illumina require amplification using primers known to those skilled in the art that additionally include a sequence-based barcoded tag. As example, to amplify the 16s hypervariable region V4 region of bacterial 16S rDNA, 2 μl of extracted gDNA is added to a 20 μl final volume PCR reaction. The PCR reaction also contains 1× HotMasterMix (5PRIME, Gaithersburg, Md.), 200 nM of V4_515_f adapt (AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGCCGCGG TAA (SEQ ID NO: 2035), IDT, Coralville, Iowa), and 200 nM of barcoded 806rbc (CAAGCAGAAGACGGCATACGAGAT 12bpGolayBarcode AGTCAGTCAGCCGGACTAC HVGGGTWTCTAAT (SEQ ID NOs: 2036-2037, respectively, in order of appearance), IDT, Coralville, Iowa), with PCR Water (Mo Bio Laboratories, Carlsbad, Calif.) for the balance of the volume. These primers incorporate barcoded adapters for Illumina sequencing by synthesis. Optionally, identical replicate, triplicate, or quadruplicate reactions may be performed. Alternatively other universal bacterial primers or thermostable polymerases known to those skilled in the art are used to obtain different amplification and sequencing error rates as well as results on alternative sequencing technologies.


The PCR amplification is performed on commercially available thermocyclers such as a BioRad MyCycler™ Thermal Cycler (BioRad, Hercules, Calif.). The reactions are run at 94° C. for 3 minutes followed by 25 cycles of 94° C. for 45 seconds, 50° C. for 1 minute, and 72° C. for 1 minute 30 seconds, followed by a 10 minute extension at 72° C. and a indefinite hold at 4° C. Following PCR, gel electrophoresis of a portion of the reaction products is used to confirm successful amplification of a ˜1.5 kb product. PCR cleanup is performed as described above.


Sanger Sequencing of Target Amplicons from Pure Homogeneous Samples


To detect nucleic acids for each sample, two sequencing reactions are performed to generate a forward and reverse sequencing read. For full-length 16s sequencing primers 27f and 1492r are used. 40 ng of ExoSap-IT-cleaned PCR products are mixed with 25 pmol of sequencing primer and Mo Bio Molecular Biology Grade Water (Mo Bio Laboratories, Carlsbad, Calif.) to 15 μl total volume. This reaction is submitted to a commercial sequencing organization such as Genewiz (South Plainfield, N.J.) for Sanger sequencing.


Amplification of 18S and ITS Regions for Downstream Sequencing

To amplify the 18S or ITS regions, 2 μL fungal DNA were amplified in a final volume of 30 μL with 15 μL AmpliTaq Gold 360 Mastermix, PCR primers, and water. The forward and reverse primers for PCR of the ITS region are 5′-TCCTCCGCTTATTGATATGC-3′ (SEQ ID NO: 2038) and 5′-GGAAGTAAAAGTCGTAACAAGG-3′ (SEQ ID NO: 2039) and are added at 0.2 uM concentration each. The forward and reverse primers for the 18s region are 5′-GTAGTCATATGCTTGTCTC-3′ (SEQ ID NO: 2040) and 5′-CTTCCGTCAATTCCTTTAAG-3′ (SEQ ID NO: 2041) and are added at 0.4 uM concentration each. PCR is performed with the following protocol: 95 C for 10 min, 35 cycles of 95 C for 15 seconds, 52 C for 30 seconds, 72 C for 1.5s; and finally 72 C for 7 minutes followed by storage at 4 C. All forward primers contained the M13F-20 sequencing primer, and reverse primers included the M13R-27 sequencing primer. PCR products (3 μL) were enzymatically cleaned before cycle sequencing with 1 μL ExoSap-IT and 1 μL Tris EDTA and incubated at 37° C. for 20 min followed by 80° C. for 15 min. Cycle sequencing reactions contained 5 μL cleaned PCR product, 2 μL BigDye Terminator v3.1 Ready Reaction Mix, 1 μL 5× Sequencing Buffer, 1.6 pmol of appropriate sequencing primers designed by one skilled in the art, and water in a final volume of 10 μL. The standard cycle sequencing protocol is 27 cycles of 10 s at 96° C., 5 s at 50° C., 4 min at 60° C., and hold at 4° C. Sequencing cleaning is performed with the BigDye XTerminator Purification Kit as recommended by the manufacturer for 10-μL volumes. The genetic sequence of the resulting 18S and ITS sequences is performed using methods familiar to one with ordinary skill in the art using either Sanger sequencing technology or next-generation sequencing technologies such as but not limited to Illumina.


Preparation of Extracted Nucleic Acids for Metagenomic Characterization by Massively Parallel Sequencing Technologies

Extracted nucleic acids (DNA or RNA) are purified and prepared by downstream sequencing using standard methods familiar to one with ordinary skill in the art and as described by the sequencing technology's manufactures instructions for library preparation. In short, RNA or DNA are purified using standard purification kits such as but not limited to Qiagen's RNeasy Kit or Promega's Genomic DNA purification kit. For RNA, the RNA is converted to cDNA prior to sequence library construction. Following purification of nucleic acids, RNA is converted to cDNA using reverse transcription technology such as but not limited to Nugen Ovation RNA-Seq System or Illumina Truseq as per the manufacturer's instructions. Extracted DNA or transcribed cDNA are sheared using physical (e.g., Hydroshear), acoustic (e.g., Covaris), or molecular (e.g., Nextera) technologies and then size selected as per the sequencing technologies manufacturer's recommendations. Following size selection, nucleic acids are prepared for sequencing as per the manufacturer's instructions for sample indexing and sequencing adapter ligation using methods familiar to one with ordinary skill in the art of genomic sequencing.


Massively Parallel Sequencing of Target Amplicons from Heterogeneous Samples


DNA Quantification & Library Construction


The cleaned PCR amplification products are quantified using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies, Grand Island, N.Y.) according to the manufacturer's instructions. Following quantification, the barcoded cleaned PCR products are combined such that each distinct PCR product is at an equimolar ratio to create a prepared Illumina library.


Nucleic Acid Detection


The prepared library is sequenced on Illumina HiSeq or MiSeq sequencers (Illumina, San Diego, Calif.) with cluster generation, template hybridization, isothermal amplification, linearization, blocking and denaturation and hybridization of the sequencing primers performed according to the manufacturer's instructions. 16SV4SeqFw (TATGGTAATTGTGTGCCAGCMGCCGCGGTAA (SEQ ID NO: 2042)), 16SV4SeqRev (AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT (SEQ ID NO. 2037)), and 16SV4Index (ATTAGAWACCCBDGTAGTCCGGCTGACTGACT (SEQ ID NO: 2043) (IDT, Coralville, Iowa) are used for sequencing. Other sequencing technologies can be used such as but not limited to 454, Pacific Biosciences, Helicos, Ion Torrent, and Nanopore using protocols that are standard to someone skilled in the art of genomic sequencing.


Example 2. Sequence Read Annotation

Primary Read Annotation


Nucleic acid sequences are analyzed and annotated to define taxonomic assignments using sequence similarity and phylogenetic placement methods or a combination of the two strategies. A similar approach can be used to annotate protein names, protein function, transcription factor names, and any other classification schema for nucleic acid sequences. Sequence similarity based methods include those familiar to individuals skilled in the art including, but not limited to BLAST, BLASTx, tBLASTn, tBLASTx, RDP-classifier, DNAclust, and various implementations of these algorithms such as Qiime or Mothur. These methods rely on mapping a sequence read to a reference database and selecting the match with the best score and e-value. Common databases include, but are not limited to the Human Microbiome Project, NCBI non-redundant database, Greengenes, RDP, and Silva for taxonomic assignments. For functional assignments reads are mapped to various functional databases such as but not limited to COG, KEGG, BioCyc, and MetaCyc. Further functional annotations can be derived from 16S taxonomic annotations using programs such as PICRUST (M. Langille, et al 2013. Nature Biotechnology 31, 814-821). Phylogenetic methods can be used in combination with sequence similarity methods to improve the calling accuracy of an annotation or taxonomic assignment. Here tree topologies and nodal structure are used to refine the resolution of the analysis. In this approach we analyze nucleic acid sequences using one of numerous sequence similarity approaches and leverage phylogenetic methods that are well known to those skilled in the art, including but not limited to maximum likelihood phylogenetic reconstruction (see e.g. Liu K, Linder C R, and Warnow T. 2011. RAxML and FastTree: Comparing Two Methods for Large-Scale Maximum Likelihood Phylogeny Estimation. PLoS ONE 6: e27731. McGuire G, Denham M C, and Balding D J. 2001. Models of sequence evolution for DNA sequences containing gaps. Mol. Biol. Evol 18: 481-490. Wróbel B. 2008. Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J. Appl. Genet. 49: 49-67.) Sequence reads (e.g. 16S, 18S, or ITS) are placed into a reference phylogeny comprised of appropriate reference sequences. Annotations are made based on the placement of the read in the phylogenetic tree. The certainty or significance of the OTU annotation is defined based on the OTU's sequence similarity to a reference nucleic acid sequence and the proximity of the OTU sequence relative to one or more reference sequences in the phylogeny. As an example, the specificity of a taxonomic assignment is defined with confidence at the level of Family, Genus, Species, or Strain with the confidence determined based on the position of bootstrap supported branches in the reference phylogenetic tree relative to the placement of the OTU sequence being interrogated. Nucleic acid sequences can be assigned functional annotations using the methods described above.


Clade Assignments


The ability of 16S-V4 OTU identification to assign an OTU as a specific species depends in part on the resolving power of the 16S-V4 region of the 16S gene for a particular species or group of species. Both the density of available reference 16S sequences for different regions of the tree as well as the inherent variability in the 16S gene between different species will determine the definitiveness of a taxonomic annotation. Given the topological nature of a phylogenetic tree and the fact that tree represents hierarchical relationships of OTUs to one another based on their sequence similarity and an underlying evolutionary model, taxonomic annotations of a read can be rolled up to a higher level using a clade-based assignment procedure. Using this approach, clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood or other phylogenetic models familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another (generally, 1-5 bootstraps), and (ii) share a defined percent similarity (for 16S molecular data typically set to 95%-97% sequence similarity). OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. The power of clade based analysis is that members of the same clade, due to their evolutionary relatedness, are likely to play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. Notably in addition to 16S-V4 sequences, clade-based analysis can be used to analyze 18S, ITS, and other genetic sequences.


Notably, 16S sequences of isolates of a given OTU are phylogenetically placed within their respective clades, sometimes in conflict with the microbiological-based assignment of species and genus that may have preceded 16S-based assignment. Discrepancies between taxonomic assignment based on microbiological characteristics versus genetic sequencing are known to exist from the literature.


For a given network ecology or functional network ecology one can define a set of OTUs from the network's representative clades. As example, if a network was comprised of clade_100 and clade_102 it can be said to be comprised of at least one OTU from the group consisting of Corynebacterium coyleae, Corynebacterium mucifaciens, and Corynebacterium ureicelerivorans, and at least one OTU from the group consisting of Corynebacterium appendicis, Corynebacterium genitalium, Corynebacterium glaucum, Corynebacterium imitans, Corynebacterium riegelii, Corynebacterium sp. L_2012475, Corynebacterium sp. NML 93_0481, Corynebacterium sundsvallense, and Corynebacterium tuscaniae (see Table 1). Conversely as example, if a network was said to consist of Corynebacterium coyleae and/or Corynebacterium mucifaciens and/or Corynebacterium ureicelerivorans, and also consisted of Corynebacterium appendicis and/or Corynebacterium genitalium and/or Corynebacterium glaucum and/or Corynebacterium imitans and/or Corynebacterium riegelii and/or Corynebacterium sp. L_2012475 and/or Corynebacterium sp. NML 93_0481 and/or Corynebacterium sundsvallense and/or Corynebacterium tuscaniae it can be said to be comprised of clade_100 and clade_102.


The applicants made clade assignments to all OTUs reported in the application using the above described method and these assignments are reported in Table 1. In some embodiments, the network analysis permits substitutions of clade_172 by clade_172i. In another embodiment, the network analysis permits substitutions of clade_198 by clade_198i. In another embodiment, the network analysis permits substitutions of clade_260 by clade_260c, clade_260 g or clade_260h. In another embodiment, the network analysis permits substitutions of clade_262 by clade_262i. In another embodiment, the network analysis permits substitutions of clade_309 by clade_309c, clade_309e, clade_309 g, clade_309h or clade_309i. In another embodiment, the network analysis permits substitutions of clade_313 by clade_313f In another embodiment, the network analysis permits substitutions of clade_325 by clade_325f. In another embodiment, the network analysis permits substitutions of clade_335 by clade_335i. In another embodiment, the network analysis permits substitutions of clade_351 by clade_351e. In another embodiment, the network analysis permits substitutions of clade_354 by clade_354e. In another embodiment, the network analysis permits substitutions of clade_360 by clade_360c, clade_360 g, clade_360h, or clade_360i. In another embodiment, the network analysis permits substitutions of clade_378 by clade_378e. In another embodiment, the network analysis permits substitutions of clade_38 by clade_38e or clade_38i. In another embodiment, the network analysis permits substitutions of clade_408 by clade_408b, clade_408d, clade_408f, clade_408 g or clade_408h. In another embodiment, the network analysis permits substitutions of clade_420 by clade_420f. In another embodiment, the network analysis permits substitutions of clade_444 by clade_444i. In another embodiment, the network analysis permits substitutions of clade_478 by clade_478i. In another embodiment, the network analysis permits substitutions of clade_479 by clade_479c, by clade_479 g or by clade_479h. In another embodiment, the network analysis permits substitutions of clade_481 by clade_481a, clade_481b, clade_481e, clade_481 g, clade_481h or by clade_481i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_497 by clade_497e or by clade_497f. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_512 by clade_512i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_516 by clade_516c, by clade_516 g or by clade_516h. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_522 by clade_522i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_553 by clade_553i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_566 by clade_566f. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_572 by clade_572i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_65 by clade_65e. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_92 by clade_92e or by clade_92i. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_96 by clade_96 g or by clade_96h. In another embodiment, the network analysis permits the network analysis permits substitutions of clade_98 by clade_98i. These permitted clade substitutions are described in Table 22.


Metagenomic Read Annotation


Metagenomic or whole genome shotgun sequence data is annotated as described above, with the additional step that sequences are either clustered or assembled prior to annotation. Following sequence characterization as described above, sequence reads are demultiplexed using the indexing (i.e. barcodes). Following demultiplexing sequence reads are either: (i) clustered using a rapid clustering algorithm such as but not limited to UCLUST (http://drive5.com/usearch/manual/uclust_algo.html) or hash methods such VICUNA (Xiao Yang, Patrick Charlebois, Sante Gnerre, Matthew G Coole, Niall J. Lennon, Joshua Z. Levin, James Qu, Elizabeth M. Ryan, Michael C. Zody, and Matthew R. Henn. 2012. De novo assembly of highly diverse viral populations. BMC Genomics 13:475). Following clustering a representative read for each cluster is identified based and analyzed as described above in “Primary Read Annotation”. The result of the primary annotation is then applied to all reads in a given cluster. (ii) A second strategy for metagenomic sequence analysis is genome assembly followed by annotation of genomic assemblies using a platform such as but not limited to MetAMOS (T J. Treangen et al. 2013 Geneome Biology 14:R2), HUMAaN (Abubucker S, Segata N, Goll J, Schubert A M, Izard J, Cantarel B L, Rodriguez-Mueller B, Zucker J, Thiagaraj an M, Henrissat B, et al. 2012. Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome ed. J. A. Eisen. PLoS Computational Biology 8: e1002358) and other methods familiar to one with ordinary skill in the art.


Example 3. OTU Identification Using Microbial Culturing Techniques

The identity of the bacterial species which grow up from a complex fraction can be determined in multiple ways. First, individual colonies are picked into liquid media in a 96 well format, grown up and saved as 15% glycerol stocks at −80° C. Aliquots of the cultures are placed into cell lysis buffer and colony PCR methods can be used to amplify and sequence the 16S rDNA gene (Example 1). Alternatively, colonies are streaked to purity in several passages on solid media. Well separated colonies are streaked onto the fresh plates of the same kind and incubated for 48-72 hours at 37° C. The process is repeated multiple times in order to ensure purity. Pure cultures are analyzed by phenotypic- or sequence-based methods, including 16S rDNA amplification and sequencing as described in Example 1. Sequence characterization of pure isolates or mixed communities e.g. plate scrapes and spore fractions can also include whole genome shotgun sequencing. The latter is valuable to determine the presence of genes associated with sporulation, antibiotic resistance, pathogenicity, and virulence. Colonies are also scraped from plates en masse and sequenced using a massively parallel sequencing method as described in Example 1, such that individual 16S signatures can be identified in a complex mixture. Optionally, the sample can be sequenced prior to germination (if appropriate DNA isolation procedures are used to lsye and release the DNA from spores) in order to compare the diversity of germinable species with the total number of species in a spore sample. As an alternative or complementary approach to 16S analysis, MALDI-TOF-mass spec is used for species identification (Barreau M, Pagnier I, La Scola B. 2013. Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe 22: 123-125).


Example 4. Microbiological Strain Identification Approaches

Pure bacterial isolates are identified using microbiological methods as described in Wadsworth-KTL Anaerobic Microbiology Manual (Jouseimies-Somer H, Summanen P H, Citron D, Baron E, Wexler H M, Finegold S M. 2002. Wadsworth-KTL Anaerobic Bacteriology Manual), and The Manual of Clinical Microbiology (ASM Press, 10th Edition). These methods rely on phenotypes of strains and include Gram-staining to confirm Gram positive or negative staining behavior of the cell envelope, observance of colony morphologies on solid media, motility, cell morphology observed microscopically at 60× or 100× magnification including the presence of bacterial endospores and flagella. Biochemical tests that discriminate between genera and species are performed using appropriate selective and differential agars and/or commercially available kits for identification of Gram negative and Gram positive bacteria and yeast, for example, RapID tests (Remel) or API tests (bioMerieux). Similar identification tests can also be performed using instrumentation such as the Vitek 2 system (bioMerieux). Phenotypic tests that discriminate between genera and species and strains (for example the ability to use various carbon and nitrogen sources) can also be performed using growth and metabolic activity detection methods, for example the Biolog Microbial identification microplates. The profile of short chain fatty acid production during fermentation of particular carbon sources can also be used as a way to discriminate between species (Wadsworth-KTL Anaerobic Microbiology Manual, Jousimies-Somer, et al 2002). MALDI-TOF-mass spectrometry can also be used for species identification (as reviewed in Anaerobe 22:123).


Example 5. Computational Prediction of Network Ecologies

Source data comprising a genomic-based characterization of a microbiome of individual samples were used as input computationally delineate network ecologies that would have biological properties that are characteristic of a state of health and could catalyze a shift from a state of microbial dysbiosis to a state of health. Applicants obtained 16S and metagenomic sequence datasets from public data repositories (see e.g. The Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214. Data accessible at URL: hmpdacc.org) and MetaHit Project (Arumugam M, Raes J, Pelletier E, Paslier D L, Yamada T, Mende D R, Fernandes G R, Tap J, Bruls T, Batto J-M, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180. Data accessible at URL: metahit.eu) for relevant microbiome studies in multiple disease indications including CDAD, Type 2 Diabetes, Ulcerative Colitis, and Irritable Bowel Disease, or generated data sets from samples directly using the methods described in Examples 1 & 2 and further described in the literature (see e.g. Aagaard K, Riehle K, Ma J, Segata N, Mistretta T-A, Coarfa C, Raza S, Rosenbaum S, Van den Veyver I, Milosavljevic A, et al. 2012. A Metagenomic Approach to Characterization of the Vaginal Microbiome Signature in Pregnancy ed. A. J. Ratner. PLoS ONE 7: e36466. Jumpstart Consortium Human Microbiome Project Data Generation Working Group. 2012. Evaluation of 16S rDNA-Based Community Profiling for Human Microbiome Research ed. J. Ravel. PLoS ONE 7: e39315. The Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214.). Nucleic acid sequences were analyzed and taxonomic and phylogenetic assignments of specific OTUs were made using sequence similarity and phylogenetic methods that are well known to those skilled in the art, including but not limited to maximum likelihood phylogenetic reconstruction (see e.g. Liu K, Linder C R, and Warnow T. 2011. RAxML and FastTree: Comparing Two Methods for Large-Scale Maximum Likelihood Phylogeny Estimation. PLoS ONE 6: e27731. McGuire G, Denham M C, and Balding D J. 2001. Models of sequence evolution for DNA sequences containing gaps. Mol. Biol. Evol 18: 481-490. Wróbel B. 2008. Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J. Appl. Genet. 49: 49-67.) From these taxonomic assignments OTUs and clades in the dataset were defined using the method described in Examples 1 and 2. The certainty of the OTU call was defined based on the OTU's sequence similarity to a reference nucleic acid sequence and the proximity of the OTU sequence relative to one or more reference sequences in the phylogeny. The specificity of an OTU's taxonomic and phlylogenetic assignment determines whether the match is assigned at the level of Family, Genus, Species, or Strain, and the confidence of this assignment is determined based on the position of bootstrap supported branches in the reference phylogenetic tree relative to the placement of the OTU sequence being interrogated. In addition, microbial OTU assignments may be obtained from assignments made in peer-reviewed publications.


Applicants designated individual subject samples to biologically relevant sample phenotypes such as but not limited to “healthy state,” “recurrent Clostridium difficile infection,” “Crohn's disease,” “Insulin Resistance,” “Obesity,” “Type 2 diabetes,” “Ulcerative Colitis”. In one embodiment samples are assigned to “health” and “disease” phenotypes. In another embodiment, samples are assigned higher resolution phenotype such as but not limited to: “health:human”, “health:mouse”, “health:human microbiome project”, “health:microbiota donor”, “health:microbiota recipient”, “disease:microbiota recipient”, or “disease:no treatment”, “disease:human”, or “disease:mouse”. In another embodiment, samples where assigned to higher resolution phenotypes, such as but not limited to those defined in FIG. 19 that characterize phenotypes specific to samples from fecal donors and patients who received a fecal microbial transplant from these donors. FIG. 19 shows phenotypes assigned to samples for the computational derivation of Network Ecologies that typify microbiome states of health (Hpost, Hdon, & Hgen) and states of disease (DdonF & DpreF).


In another embodiment, other phenotypes that define a category of disease or health that represents the underlying state of the population under study can be used. Applicants then computationally determined the microbial network ecologies for each phenotype using the OTU and clade assignments that comprise the microbial profile for each sample and the algorithms described above in the Section entitled “Method of Determining Network Ecologies.”


Tables 8, 11, and 14a below provide exemplary network ecologies that define states of health as compared to states of dysbiosis or disease for multiple disease indications. The disease indications for which the network ecologies represent a health state are denoted in Table 8, and Keystone and Non-Keystone OTUs (see Example 6) are delineated in Tables 9-10. Importantly, Network Ecologies that represent a state of health in one disease indication can represent states of health in additional disease states. Additionally, Keystone OTUs found in a network associated with health for different disease indications can overlap. Applicants found that a large number of network ecologies overlapped particularly between those associated with health in the cases of CDAD and Type 2 Diabetes despite the analysis of substantially different genomic data sets for the two diseases.


Example 6. Identification of Network Classes, Keystone OTUs, Clades, and Functional Modalities

Identification of Keystone OTUs, Clades and Functions


The human body is an ecosystem in which the microbiota and the microbiome play a significant role in the basic healthy function of human systems (e.g. metabolic, immunological, and neurological). The microbiota and resulting microbiome comprise an ecology of microorganisms that co-exist within single subjects interacting with one another and their host (i.e., the mammalian subject) to form a dynamic unit with inherent biodiversity and functional characteristics. Within these networks of interacting microbes (i.e. ecologies), particular members can contribute more significantly than others; as such these members are also found in many different ecologies, and the loss of these microbes from the ecology can have a significant impact on the functional capabilities of the specific ecology. Robert Paine coined the concept “Keystone Species” in 1969 (see Paine R T. 1969. A note on trophic complexity and community stability. The American Naturalist 103: 91-93) to describe the existence of such lynchpin species that are integral to a given ecosystem regardless of their abundance in the ecological community. Paine originally describe the role of the starfish Pisaster ochraceus in marine systems and since the concept has been experimentally validated in numerous ecosystems.


Keystone OTUs (as shown in Table 9), Phylogenetic Clades (a.k.a. Clades), and/or Functions (for example, but not limited to, KEGG Orthology Pathways) are computationally-derived by analysis of network ecologies elucidated from a defined set of samples that share a specific phenotype. Keystone OTUs, Clades and/or Functions are defined as all Nodes within a defined set of networks that meet two or more of the following criteria. Using Criterion 1, the node is frequently observed in networks, and the networks in which the node is observed are found in a large number of individual subjects; the frequency of occurrence of these Nodes in networks and the pervasiveness of the networks in individuals indicates these Nodes perform an important biological function in many individuals. Using Criterion 2, the node is frequently observed in networks, and the Node is observed contains a large number of edges connecting it to other nodes in the network. These Nodes are thus “super-connectors”, meaning that they form a nucleus of a majority of networks (See FIG. 17) and as such have high biological significance with respect to their functional contributions to a given ecology.



FIG. 17 is a schematic representation of how Keystone OTUs (nodes 2 and 4, shaded circles) are central members of many network ecologies that contain non-Keystone OTUs (nodes 1, 3, and 5-9). Distinct network ecologies include [node 2--node 7], [node--3--node 2--node--4], [node 2--node 4--node 5--node 6--node 7], [node 1--node 2--node 8--node 9], and [node--node 3].


Using Criterion 3, the Node is found in networks containing a large number of Nodes (i.e., they are large networks), and the networks in which the Node is found occur in a large number of subjects; these networks are potentially of high interest as it is unlikely that large networks occurring in many individuals would occur by chance alone strongly suggesting biological relevance. Optionally, the required thresholds for the frequency at which a Node is observed in network ecologies, the frequency at which a given network is observed across subject samples, and the size of a given network to be considered a Keystone Node are defined by the 50th, 70th, 80th, or 90th percentiles of the distribution of these variables. Optionally, the required thresholds are defined by the value for a given variable that is significantly different from the mean or median value for a given variable using standard parametric or non-parametric measures of statistical significance. In another embodiment a Keystone Node is defined as one that occurs in a sample phenotype of interest such as but not limited to “health” and simultaneously does not occur in a sample phenotype that is not of interest such as but not limited to “disease.” Optionally, a Keystone Node is defined as one that is shown to be significantly different from what is observed using permuted test datasets to measure significance. In another embodiment of Criterion 2 Keystone OTUs, Clades, or Functions can be defined using a hierarchical clustering method that clusters Networks based on their OTU, Clade, or functional pathways. Statistically significant branch points in the hierarchy are defined based on the topological overlap measure; this measure is a highly robust measure of network interconnectedness (Langfelder P, Zhang B, Horvath S. 2008. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24: 719-720.). Once these branch points are defined the Keystones are delineated as OTUs, clades or functional pathways that are found consistently across all networks in all or a subset of the network clusters.


Applicants defined the Keystone OTUs and Clades characteristic of health states for the computationally determined networks reported in Table 8 for the various disease indications analyzed using the three criterion defined above. Keystone Clades were defined from the Keystone OTUs using clade definitions as outlined in Example 1. Keystone OTUs are reported in Table 9. Importantly, we identified the absence of Keystone OTUs in multiple particular disease states, indicating that bacterial compositions comprised of specific sets of Keystone OTUs are likely to have utility in multiple disease indications.


Demonstration that Keystone OTUs Inhibit C. difficile Growth in a Competitive In Vitro Simulation Assay


To screen the ability of binary combinations comprising at least one Keystone OTU (binary pairs) to inhibit the growth of Clostridium difficile in vitro, vials of −80° C. glycerol stock banks of each OTU were thawed and diluted to le8 CFU/mL. Each strain was then diluted 10× (to a final concentration of le7 CFU/mL of each strain) into 200 uL of PBS+15% glycerol in the wells of a 96-well plate. Plates were then frozen at −80° C. When needed for the assay, plates were removed from −80° C. and thawed at room temperature under anaerobic conditions prior to use.


An overnight culture of Clostridium difficile was grown under anaerobic conditions in SweetB-Fosln or other suitable media for the growth of C. difficile. SweetB-Fosln is a complex media composed of brain heart infusion, yeast extract, cysteine, cellobiose, maltose, soluble starch, and fructooligosaccharides/inulin, and hemin, and is buffered with morpholino-propane sulphonic acid (MOPS). After 24 hr of growth the culture was diluted 100,000 fold into SweetB-Fosln. The diluted C. difficile mixture was then aliquoted to wells of a 96-well plate (180 uL to each well). 20 uL of a unique binary pair of Keystone OTUs was then added to each well at a final concentration of le6 CFU/mL of each species. Alternatively the assay can be tested with binary pairs at different initial concentrations (1e9 CFU/mL, le8 CFU/mL, le7 CFU/mL, le5 CFU/mL, le4 CFU/mL, le3 CFU/mL, le2 CFU/mL). Control wells only inoculated with C. difficile were included for a comparison to the growth of C. difficile without inhibition. Additional wells were used for controls that either inhibit or do not inhibit the growth of C. difficile. Plates were wrapped with parafilm and incubated for 24 hr at 37° C. under anaerobic conditions. After 24 hr the wells containing C. difficile alone were serially diluted and plated to determine titer on selective media such as CCFA (Anaerobe Systems) or CDSA (Becton Dickinson). The 96-well plate was then frozen at −80° C. before quantifying C. difficile by qPCR.



C. difficile in each well was quantified by qPCR. A standard curve was generated from a well on each assay plate containing only pathogenic C. difficile grown in SweetB+Fosln media as provided herein and compare to the microbiological titer determined above. Genomic DNA was extracted from the standard curve samples along with the other wells. Genomic DNA was extracted from 5 μl of each sample using a dilution, freeze/thaw, and heat lysis protocol. 5 of thawed samples were added to 45 μL of UltraPure water (Life Technologies, Carlsbad, Calif.) and mixed by pipetting. The plates with diluted samples were frozen at −20° C. until use for qPCR which includes a heated lysis step prior to amplification. Alternatively the genomic DNA could be isolated using the Mo Bio Powersoil®-htp 96 Well Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.), Mo Bio Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.), or the QIAamp DNA Stool Mini Kit (QIAGEN, Valencia, Calif.) according to the manufacturer's instructions.


The qPCR reaction mixture contained 1× SsoAdvanced Universal Probes Supermix, 900 nM of Wr-tcdB-F primer (AGCAGTTGAATATAGTGGTTTAGTTAGAGTTG (SEQ ID NO: 2044), IDT, Coralville, Iowa), 900 nM of Wr-tcdB-R primer (CATGCTTTTTTAGTTTCTGGATTGAA (SEQ ID NO: 2045), IDT, Coralville, Iowa), 250 nM of Wr-tcdB-P probe (6FAM-CATCCAGTCTCAATTGTATATGTTTCTCCA-MGB (SEQ ID NO. 2046), Life Technologies, Grand Island, N.Y.), and Molecular Biology Grade Water (Mo Bio Laboratories, Carlsbad, Calif.) to 18 μl (Primers adapted from: Wroblewski, D. et al., Rapid Molecular Characterization of Clostridium difficile and Assessment of Populations of C. difficile in Stool Specimens, Journal of Clinical Microbiology 47:2142-2148 (2009)). This reaction mixture was aliquoted to wells of a Hard-shell Low-Profile Thin Wall 96-well Skirted PCR Plate (BioRad, Hercules, Calif.). To this reaction mixture, 2 μl of diluted, frozen, and thawed samples were added and the plate sealed with a Microseal ‘13’ Adhesive Seal (BioRad, Hercules, Calif.). The qPCR was performed on a BioRad C1000™ Thermal Cycler equipped with a CFX96™ Real-Time System (BioRad, Hercules, Calif.). The thermocycling conditions were 95° C. for 15 minutes followed by 45 cycles of 95° C. for 5 seconds, 60° C. for 30 seconds, and fluorescent readings of the FAM channel. Alternatively, the qPCR could be performed with other standard methods known to those skilled in the art.


The Cq value for each well on the FAM channel was determined by the CFX Manager™ 3.0 software. The log 10 (cfu/mL) of C. difficile each experimental sample was calculated by inputting a given sample's Cq value into a linear regression model generated from the standard curve comparing the Cq values of the standard curve wells to the known log 10 (cfu/mL) of those samples. The log inhibition was calculated for each sample by subtracting the log 10 (cfu/mL) of C. difficile in the sample from the log 10 (cfu/mL) of C. difficile in the sample on each assay plate used for the generation of the standard curve that has no additional bacteria added. The mean log inhibition was calculated for all replicates for each composition.


A histogram of the range and standard deviation of each composition was plotted. Ranges or standard deviations of the log inhibitions that were distinct from the overall distribution were examined as possible outliers. If the removal of a single log inhibition datum from one of the binary pairs that were identified in the histograms would bring the range or standard deviation in line with those from the majority of the samples, that datum was removed as an outlier, and the mean log inhibition was recalculated.


The pooled variance of all samples evaluated in the assay was estimated as the average of the sample variances weighted by the sample's degrees of freedom. The pooled standard error was then calculated as the square root of the pooled variance divided by the square root of the number of samples. Confidence intervals for the null hypothesis were determined by multiplying the pooled standard error to the z score corresponding to a given percentage threshold. Mean log inhibitions outside the confidence interval were considered to be inhibitory if positive or stimulatory if negative with the percent confidence corresponding to the interval used. Samples with mean log inhibition greater than the 99% confidence interval (CI) of the null hypothesis are reported as ++++, those with a 95%<C.I.<99% as +++, those with a 90%<C.I.<95% as ++, those with a 80%<C.I.<90% as + while samples with mean log inhibition less than the 99% confidence interval (CI) of the null hypothesis are reported as −−−−, those with a 95%<C.I.<99% as −−−, those with a 90%<C.I.<95% as −−, those with a 80%<C.I.<90% as —. Many binary pairs comprising Keystone OTUs inhibit C. difficile as delineated in Table 20.


Assignment of a Network Classes Based on Phylogenetic Diversity and Functional Modalities


“Network Classes” can be delineated by clustering computationally determined network ecologies into groupings based on the OTUs observed in a given network. In one example, OTUs are treated individualistically with each OTU representing a unique entity within the network. In other examples, the OTUs are clustered according to their phylogenetic relationships defined by a phylogenetic tree, e.g., into clades. In yet another embodiment, functional modules such as but not limited to KEGG Orthology Pathways can be used to cluster the networks, OTUs and Clades according to the biological or biochemical functions they comprise. A set of ecological networks from which a Network Class is defined, is selected using one or a combination of the following criteria: (i) networks that are derived from a biological phenotype, (ii) the frequency at which a given network is observed across samples, or (iii) the size of the network. In one embodiment, the required thresholds for the frequency at which a given network is observed across subject samples, and the size of a given network to be considered for further analysis are defined by the 50th, 70th, 80th, or 90th percentiles of the distribution of these variables. In another embodiment, the required thresholds are defined by the value for a given variable that is significantly different from the mean or median value for a given variable using standard parametric or non-parametric measures of statistical significance. In yet another embodiment, ecological networks derived from Network Classes are selected that contain 5 or fewer, 10 or fewer, 15 or fewer, 20 or fewer, 25 or fewer, or 50 or fewer OTUs, Clades, or Functional modalities.


Network Class ecologies are defined using a heatmap analytical strategy whereby the OTU content of a given network is mapped relative to the networks in which it exists (See, e.g., FIG. 18). FIG. 18 is a Derivation of Network Ecology Classes, according to an embodiment of the invention. Subsets of networks are selected for use in defining Network Classes based on key biological criteria. Hierarchical Network clusters are defined by the presence (white) and absence (blue (or dark color)) of OTUs and/or Functional Metabolic Pathways and Classes are defined as branches of the hierarchical clustering tree based on the topological overlap measure.


Both OTUs comprising the network ecologies and the network ecologies themselves are ordered using a dendrogram that represents the relatedness of each OTU to every other OTU, or each Network Ecology to every other Network Ecology. The dendrogram for OTUs can be constructed using various clustering algorithms including but not limited to phylogenetic maximum likelihood, hierarchical clustering, or k-means clustering. In one embodiment, each row in the heatmap represents a single OTU, each column represents a Network Ecology and the color in the heatmap at a given row/column intersection represents whether the given OTU is present or absent in the given network. In another embodiment, the color in the heatmap represents the summed number of occurrences of the OTU in a set of related networks, represented as a cluster in the dendrogram of network ecologies. In another embodiment, the row and column intersections represent a summary variable calculated from the collapse of multiple rows and/or columns at selected nodes in the dendrograms. Network Classes are defined finding significant branch points in the hierarchical dendrogram. In one embodiment these branch points are defined as branches of the hierarchical clustering tree based on the topological overlap measure; this measure is a highly robust measure of network interconnectedness (Langfelder P, Zhang B, Horvath S. 2008. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24: 719-720.). Network Classes are defined based on OTU presence/absence or presence/absence and frequency patterns in network clusters; these patterns can be defined using specific OTUs, taxonomic groupings, or phylogenetic clades defined by the phylogenetically derived dendrogram (i.e. phylogenetic tree). Network Classes can be defined with the intent of maximizing the phylogenetic diversity of the class, and/or representing specific regions of functional relevance on the phylogenetic tree.


We defined a set of Network Classes for the Network Ecologies reported in Table 8 that were computationally inferred from health and disease datasets tied to CDAD studies using the method described above. We defined six Network Classes for these network ecologies (FIG. 18 and Tables 12-13).


Example 7. Biologically-Informed Optimization of Network Ecologies Based on Biological Properties

Network Ecologies can be optimized to have specific biological properties including but not limited to being of specific size (as example a specific number or OTUs); having a frequency of being observed in a population of healthy individuals (i.e. pervasiveness); having a certain percentage of spore forming OTUs as constituents; having a certain percentage of Keystone OTUs, clades or functions; having a defined phylogenetic breadth (as example defined by the total evolutionary distance spanned on a tree by the constituent members, or by the total number of genera or other taxonomic unit); or comprising specific functional capabilities such as but not limited to the ability metabolize secondary bile acids, or produce short chain fatty acids (SCFAs), or the biological intersection in which network ecology falls in a comparative phenotype map (see FIG. 19). The constituents of a network ecology can be optimized using both computational means as well as experimental means.


In one embodiment, we developed a biopriority score for networks that was computationally derived. This algorithm took the form of [F1*W1]+[F2*W2]+[F3*W3]+[F4*W4] where F is a biological criteria of interest and W is a weighting for that factor based on its importance to the derivation of the target network ecology. As example, if having a network with phylogenetic breadth was important one would weight this factor greater than the other factors. We developed a biopriority score that took into consideration the biological intersection of the network (FIG. 19), phylogenetic breadth, the pervasiveness or prevalence of the network in populations of healthy individuals, and the percentage of OTUs in the network that were Keystone OTUs. Network Ecologies reported in Table 8 were ranked based on this scoring and networks with a high score were preferentially screened and in vivo mouse model of C. difficile infection (Table 16).


In another embodiment we used a phylogenetic method paired with empirical testing to optimize the network ecologies for efficacy for the treatment of CDAD. Based on computational insights from our network analysis (Table 8), applicants defined Keystone Clades that represent specific phylogenetic clusters of OTUs. Applicants constructed various bacterial compositions using the methods described in Example 9 below, whereby applicants varied the phylogenetic breadth of the network ecologies based on the inclusion or exclusion of OTUs from specific clades. To test the effect of these variations on efficacy, 11 networks that feature clade substitutions, additions, or subtractions were tested at the same target dose of le7 CFU per OTU per animal in the mouse model of C. difficile infection experiment SP-376 (see Example 13 and Table 16). FIG. 3 provides an overview of the various clade substitutions or removals


The removal of clades 494 & 537 and the addition of clade_444 from network N1962, which was highly efficacious in protecting from symptoms of C. difficile infection with no mortality, yields network N1991, which was still largely protective of weight loss, but had increased mean maximum clinical scores relative to N1962.


N1990 adds clades 444 & 478 to N1962, and resulted in decreased mean minimum relative weight and increased mean maximum clinical scores relative to N1962 while remaining efficacious relative to the experiment's vehicle control.


Removal of clades 252 & 253 and the addition of clades 444 & 478 from N1962 produces N1975, which has increased mortality, decreased mean minimum relative weight and increased mean maximum clinical scores relative to N1962, which is only slightly less efficacious than the vehicle control.


The optimization of network ecologies to design microbiome therapeutics (as example a composition comprised of bacterial OTUs) with particular biological properties and features is executed using the strategy of having a core Backbone Network Ecology onto which R-Groups are added or subtracted to design toward particular characteristics. The Backbone forms a foundational composition of organisms or functions that are core to efficacy and need be present to observe efficacy. On this backbone one can make various compositional modifications using R-groups. R-Groups can be defined in multiple terms including but not limited to: individual OTUs, individual or multiple OTUs derived from a specific phylogenetic clade, and functional modalities comprised of multiple functional pathways and/or specific metabolic pathways. In other embodiments, R-groups could be considered prebiotics and other co-factors that are design into, or administered with a network ecology to promote specific biological properties.


Example 8. Network Analysis Across Multiple Data Sets and Selection of Target Network Ecologies with Capacity to Sporulate

One can select Network Ecologies and/or Network Class Ecologies as lead targets by defining networks with a specific biological function or activity such as sporulation. Networks Ecologies or Network Class Ecologies are first selected as described above and in Example 5 and 6. In one example, all Network Ecologies or Network Class Ecologies that contain at least one OTU that is capable of forming spores are targeted. In another example, all Network Ecologies or Network Class Ecologies that contain at least one OTU that is capable of forming spores, and that are comprised of at least 50%, 75%, or 100% Keystone OTUs are targeted. Keystone OTUs are selected as described above and in Example 6. OTUs are defined as spore formers using either phenotypic assays (see e.g. Stackebrandt and Hippe. Taxonomy and Systematics. In Clostridia. Biotechnology and Medical Applications.) or genetic assays (see e.g. Abecasis A B, Serrano M, Alves R, Quintais L, Pereira-Leal J B, and Henriques A O. 2013. A genomic signature and the identification of new sporulation genes. J. Bacteriol.; Paredes-Sabja D, Setlow P, and Sarker M R. 2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol. 19: 85-94). Exemplary network ecologies that are comprised of spore formers are illustrated in Table 11.


Example 9. Construction of Defined Ecobiotic Compositions

Source of Microbial Cultures. Pure cultures of organisms are isolated from the stool, oral cavity or other niche of the body of clinically qualified donors (as in Example 10) that contains microorganisms of interest using microbiological methods including those described below, and as are known to those skilled in the art. Alternatively, pure cultures are sourced from repositories such as the ATCC (atcc.org) or the DSMZ (dsmz.de/) which preserve and distribute cultures of bacteria, yeasts, phages, cell lines and other biological materials.


Enrichment and Purification of Bacteria. To purify individual bacterial strains, dilution plates were selected in which the density enables distinct separation of single colonies. Colonies were picked with a sterile implement (either a sterile loop or toothpick) and re-streaked to BBA or other solid media. Plates were incubated at 37° C. for 3-7 days. One or more well-isolated single colonies of the major morphology type were re-streaked. This process was repeated at least three times until a single, stable colony morphology is observed. The isolated microbe was then cultured anaerobically in liquid media for 24 hours or longer to obtain a pure culture of 106-1010 cfu/ml. Liquid growth medium might include Brain Heart Infusion-based medium (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010) supplemented with yeast extract, hemin, cysteine, and carbohydrates (for example, maltose, cellobiose, soluble starch) or other media described previously. The culture was centrifuged at 10,000×g for 5 min to pellet the bacteria, the spent culture media was removed, and the bacteria were resuspended in sterile PBS. Sterile 75% glycerol was added to a final concentration of 20%. An aliquot of glycerol stock was titered by serial dilution and plating. The remainder of the stock was frozen on dry ice for 10-15 min and then placed at −80° C. for long term storage.


Cell Bank Preparation

Cell banks (RCBs) of bacterial strains were prepared as follows. Bacterial strains were struck from −80° C. frozen glycerol stocks to Brucella blood agar with Hemin or Vitamin K (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010), M2GSC (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010) or other solid growth media and incubated for 24 to 48 h at 37° C. in an anaerobic chamber with a gas mixture of H2:CO2:N2 of 10:10:80. Single colonies were then picked and used to inoculate 250 ml to 1 L of Wilkins-Chalgren broth, Brain-Heart Infusion broth, M2GSC broth or other growth media, and grown to mid to late exponential phase or into the stationary phase of growth. Alternatively, the single colonies may be used to inoculate a pilot culture of 10 ml, which were then used to inoculate a large volume culture. The growth media and the growth phase at harvest were selected to enhance cell titer, sporulation (if desired) and phenotypes that might be associated desired in vitro or in vivo. Optionally, cultures were grown static or shaking, depending which yielded maximal cell titer. The cultures were then concentrated 10 fold or more by centrifugation at 5000 rpm for 20 min, and resuspended in sterile phosphate buffered saline (PBS) plus 15% glycerol. 1 ml aliquots were transferred into 1.8 ml cryovials which were then frozen on dry ice and stored at −80° C. The identity of a given cell bank was confirmed by PCR amplification of the 16S rDNA gene, followed by Sanger direct cycle sequencing. See Examples 1, 2. Each bank was confirmed to yield colonies of a single morphology upon streaking to Brucella blood agar or M2GSC agar. When more than one morphology was observed, colonies were confirmed to be the expected species by PCR and sequencing analysis of the 16S rDNA gene. Variant colony morphologies can be observed within pure cultures, and in a variety of bacteria the mechanisms of varying colony morphologies have been well described (van der Woude, Clinical Microbiology Reviews, 17:518, 2004), including in Clostridium species (Wadsworth-KTL Anaerobic Bacteriology Manual, 6th Ed, Jousimie-Somer, et al 2002). For obligate anaerobes, RCBs were confirmed to lack aerobic colony forming units at a limit of detection of 10 cfu/ml.


Titer Determination

The number of viable cells per ml was determined on the freshly harvested, washed and concentrated culture by plating serial dilutions of the RCB to Brucella blood agar or other solid media, and varied from 106 to 1010 cfu/ml. The impact of freezing on viability was determined by titering the banks after one or two freeze-thaw cycles on dry ice or at −80° C., followed by thawing in an anaerobic chamber at room temperature. Some strains displayed a 1-3 log drop in viable cfu/ml after the 1st and/or 2nd freeze thaw, while the viability of others were unaffected.


Preparation of Bacterial Compositions

Individual strains were typically thawed on ice and combined in an anaerobic chamber to create mixtures, followed by a second freeze at −80° C. to preserve the mixed samples. When making combinations of strains for in vitro or in vivo assays, the cfu in the final mixture was estimated based on the second freeze-thaw titer of the individual strains. For experiments in rodents, strains may be combined at equal counts in order to deliver between le4 and 1e10 per strain. Additionally, some bacteria may not grow to sufficient titer to yield cell banks that allowed the production of compositions where all bacteria were present at le10.


Selection of Media for Growth

Provided are appropriate media to support growth, including preferred carbon sources. For example, some organisms prefer complex sugars such as cellobiose over simple sugars. Examples of media used in the isolation of sporulating organisms include EYA, BHI, BHIS, and GAM (see below for complete names and references). Multiple dilutions are plated out to ensure that some plates will have well isolated colonies on them for analysis, or alternatively plates with dense colonies may scraped and suspended in PBS to generate a mixed diverse community.


Plates are incubated anaerobically or aerobically at 37° C. for 48-72 or more hours, targeting anaerobic or aerobic spore formers, respectively.


Solid plate media include:

    • Gifu Anaerobic Medium (GAM, Nissui) without dextrose supplemented with fructooligosaccharides/inulin (0.4%), mannitol (0.4%), inulin (0.4%), or fructose (0.4%), or a combination thereof.
    • Sweet GAM [Gifu Anaerobic Medium (GAM, Nissui)] modified, supplemented with glucose, cellobiose, maltose, L-arabinose, fructose, fructooligosaccharides/inulin, mannitol and sodium lactate)
    • Brucella Blood Agar (BBA, Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010)
    • PEA sheep blood (Anaerobe Systems; 5% Sheep Blood Agar with Phenylethyl Alcohol)
    • Egg Yolk Agar (EYA) (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010)
    • Sulfite polymyxin milk agar (Mevissen-Verhage et al., J. Clin. Microbiol. 25:285-289 (1987))
    • Mucin agar (Derrien et al., IJSEM 54: 1469-1476 (2004))
    • Polygalacturonate agar (Jensen & Canale-Parola, Appl. Environ. Microbiol. 52:880-997 (1986))
    • M2GSC (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010)
    • M2 agar (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010) supplemented with starch (1%), mannitol (0.4%), lactate (1.5 g/L) or lactose (0.4%)
    • Sweet B—Brain Heart Infusion agar (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010) supplemented with yeast extract (0.5%), hemin, cysteine (0.1%), maltose (0.1%), cellobiose (0.1%), soluble starch (sigma, 1%), MOPS (50 mM, pH 7).
    • PY-salicin (peptone-yeast extract agar supplemented with salicin) (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010).
    • Modified Brain Heart Infusion (M-BHI) [[sweet and sour]] contains the following per L: 37.5 g Brain Heart Infusion powder (Remel), 5 g yeast extract, 2.2 g meat extract, 1.2 g liver extract, 1 g cystein HCl, 0.3 g sodium thioglycolate, 10 mg hemin, 2 g soluble starch, 2 g FOS/Inulin, 1 g cellobiose, 1 g L-arabinose, 1 g mannitol, 1 Na-lactate, 1 mL Tween 80, 0.6 g MgSO4×7H2O, 0.6 g CaCl2, 6 g (NH4)2SO4, 3 g KH2PO4, 0.5 g K2HPO4, 33 mM Acetic acid, 9 mM propionic acid, 1 mM Isobutyric acid, 1 mM isovaleric acid, 15 g agar, and after autoclaving add 50 mL of 8% NaHCO3 solution and 50 mL 1M MOPS-KOH (pH 7).
    • Noack-Blaut Eubacterium agar (See Noack et al. J. Nutr. (1998) 128:1385-1391)
    • BHIS az1/ge2-BHIS az/ge agar (Reeves et. al. Infect. Immun. 80:3786-3794 (2012)) [Brain Heart Infusion agar (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010) supplemented with yeast extract 0.5%, cysteine 0.1%, 0.1% cellobiose, 0.1% inulin, 0.1% maltose, aztreonam 1 mg/L, gentamycin 2 mg/L]
    • BHIS CInM az1/ge2-BHIS CInM [Brain Heart Infusion agar (Atlas, Handbook of Microbiological Media, 4th ed, ASM Press, 2010) supplemented with yeast extract 0.5%, cysteine 0.1%, 0.1% cellobiose, 0.1% inulin, 0.1% maltose, aztreonam 1 mg/L, gentamycin 2 mg/L].


Method of Preparing the Bacterial Composition for Administration to a Patient

Two strains for the bacterial composition are independently cultured and mixed together before administration. Both strains are independently be grown at 37° C., pH 7, in a GMM or other animal-products-free medium, pre-reduced with 1 g/L cysteine ÿHCl. After each strain reaches a sufficient biomass, it is preserved for banking by adding 15% glycerol and then frozen at −80° C. in 1 ml cryotubes.


Each strain is then be cultivated to a concentration of 1010 CFU/mL, then concentrated 20-fold by tangential flow microfiltration; the spent medium is exchanged by diafiltering with a preservative medium consisting of 2% gelatin, 100 mM trehalose, and 10 mM sodium phosphate buffer, or other suitable preservative medium. The suspension is freeze-dried to a powder and titrated.


After drying, the powder is blended with microcrystalline cellulose and magnesium stearate and formulated into a 250 mg gelatin capsule containing 10 mg of lyophilized powder (108 to 1011 bacteria), 160 mg microcrystalline cellulose, 77.5 mg gelatin, and 2.5 mg magnesium stearate.


Example 10. Construction and Administration of an Ethanol-Treated Spore Preparation

Provision of fecal material. Fresh fecal samples were obtained from healthy human donors who have been screened for general good health and for the absence of infectious diseases, and meet inclusion and exclusion criteria, inclusion criteria include being in good general health, without significant medical history, physical examination findings, or clinical laboratory abnormalities, regular bowel movements with stool appearance typically Type 2, 3, 4, 5 or 6 on the Bristol Stool Scale, and having a BMI ≥18 kg/m2 and ≤25 kg/m2. Exclusion criteria generally included significant chronic or acute medical conditions including renal, hepatic, pulmonary, gastrointestinal, cardiovascular, genitourinary, endocrine, immunologic, metabolic, neurologic or hematological disease, a family history of, inflammatory bowel disease including Crohn's disease and ulcerative colitis, Irritable bowel syndrome, colon, stomach or other gastrointestinal malignancies, or gastrointestinal polyposis syndromes, or recent use of yogurt or commercial probiotic materials in which an organism(s) is a primary component. Non-related donors were screened for general health history for absence of chronic medical conditions (including inflammatory bowel disease; irritable bowel syndrome; Celiac disease; or any history of gastrointestinal malignancy or polyposis), absence of risk factors for transmissible infections, antibiotic non-use in the previous 6 months, and negative results in laboratory assays for blood-borne pathogens (HIV, HTLV, HCV, HBV, CMV, HAV and Treponema pallidum) and fecal bacterial pathogens (Salmonella, Shigella, Yersinia, Campylobacter, E. coli 0157), ova and parasites, and other infectious agents (Giardia, Cryptosporidium, Cyclospora, Isospora) prior to stool donation. Samples were collected directly using a commode specimen collection system, which contains a plastic support placed on the toilet seat and a collection container that rests on the support. Feces were deposited into the container, and the lid was then placed on the container and sealed tightly. The sample was then delivered on ice within 1-4 hours for processing. Samples were mixed with a sterile disposable tool, and 2-4 g aliquots were weighed and placed into tubes and flash frozen in a dry ice/ethanol bath. Aliquots are frozen at −80 degrees Celsius until use.


Optionally, the fecal material was suspended in a solution, and/or fibrous and/or particulate materials were removed using either filtration or centrifugation. A frozen aliquot containing a known weight of feces was removed from storage at −80° C. and allowed to thaw at room temperature. Sterile 1×PBS was added to create a 10% w/v suspension, and vigorous vortexing was performed to suspend the fecal material until the material appeared homogeneous. The material was then left to sit for 10 minutes at room temperature to sediment fibrous and particulate matter. The suspension above the sediment was then carefully removed into a new tube and contains a purified spore population. Optionally, the suspension was then centrifuged at a low speed, e.g., 1000×g, for 5 minutes to pellet particulate matter including fibers. The pellet was discarded and the supernatant, which contained vegetative organisms and spores, was removed into a new tube. The supernatant was then centrifuged at 6000×g for 10 minutes to pellet the vegetative organisms and spores. The pellet was then resuspended in 1×PBS with vigorous vortexing until the material appears homogenous.


Generation of a Spore Preparation from Alcohol Treatment of Fecal Material


A 10% w/v suspension of human fecal material in PBS was filtered, centrifuged at low speed, and the supernate containing spores was mixed with absolute ethanol in a 1:1 ratio and vortexed to mix. The suspension was incubated at room temperature for 1 hour. After incubation the suspension was centrifuged at high speed to concentrate spores into a pellet containing a purified spore-containing preparation. The supernate was discarded and the pellet resuspended in an equal mass of glycerol, and the purified spore preparation was placed into capsules and stored at −80 degrees Celsius.


Characterization of Spores Content in Purified Spore Populations

In one embodiment, counts of viable spores are determined by performing 10 fold serial dilutions in PBS and plating to Brucella Blood Agar Petri plates or applicable solid media. Plates are incubated at 37 degrees Celsius for 2 days. Colonies are counted from a dilution plate with 50-400 colonies and used to back-calculate the number of viable spores in the population. The ability to germinate into vegetative bacteria is also demonstrated. Visual counts are determined by phase contrast microscopy. A spore preparation is either diluted in PBS or concentrated by centrifugation, and a 5 microliter aliquot is placed into a Petroff Hauser counting chamber for visualization at 400× magnification. Spores are counted within ten 0.05 mm×0.05 mm grids and an average spore count per grid is determined and used to calculate a spore count per ml of preparation. Lipopolysaccharide (LPS) reduction in purified spore populations is measured using a Limulus amebocyte lysate (LAL) assay such as the commercially available ToxinSensor™ Chromogenic LAL Endotoxin Assay Kit (GenScript, Piscataway, N.J.) or other standard methods known to those skilled in the art.


In a second embodiment, counts of spores are determined using a spore germination assay. Germinating a spore fraction increases the number of viable spores that will grow on various media types. To germinate a population of spores, the sample is moved to the anaerobic chamber, resuspended in prereduced PBS, mixed and incubated for 1 hour at 37° C. to allow for germination. Germinants can include amino-acids (e.g., alanine, glycine), sugars (e.g., fructose), nucleosides (e.g., inosine), bile salts (e.g., cholate and taurocholate), metal cations (e.g., Mg2+, Ca2+), fatty acids, and long-chain alkyl amines (e.g., dodecylamine, Germination of bacterial spores with alkyl primary amines” J. Bacteriology, 1961.). Mixtures of these or more complex natural mixtures, such as rumen fluid or Oxgall, can be used to induce germination. Oxgall is dehydrated bovine bile composed of fatty acids, bile acids, inorganic salts, sulfates, bile pigments, cholesterol, mucin, lecithin, glycuronic acids, porphyrins, and urea. The germination can also be performed in a growth medium like prereduced BHIS/oxgall germination medium, in which BHIS (Brain heart infusion powder (37 g/L), yeast extract (5 g/L), L-cysteine HCl (1 g/L)) provides peptides, amino acids, inorganic ions and sugars in the complex BHI and yeast extract mixtures and Oxgall provides additional bile acid germinants.


In addition, pressure may be used to germinate spores. The selection of germinants can vary with the microbe being sought. Different species require different germinants and different isolates of the same species can require different germinants for optimal germination. Finally, it is important to dilute the mixture prior to plating because some germinants are inhibitory to growth of the vegetative-state microorganisms. For instance, it has been shown that alkyl amines must be neutralized with anionic lipophiles in order to promote optimal growth. Bile acids can also inhibit growth of some organisms despite promoting their germination, and must be diluted away prior to plating for viable cells.


For example, BHIS/oxgall solution is used as a germinant and contains 0.5×BHIS medium with 0.25% oxgall (dehydrated bovine bile) where 1×BHIS medium contains the following per L of solution: 6 g Brain Heart Infusion from solids, 7 g peptic digest of animal tissue, 14.5 g of pancreatic digest of casein, 5 g of yeast extract, 5 g sodium chloride, 2 g glucose, 2.5 g disodium phosphate, and 1 g cysteine. Additionally, Ca-DPA is a germinant and contains 40 mM CaCl2, and 40 mM dipicolinic acid (DPA). Rumen fluid (Bar Diamond, Inc.) is also a germinant. Simulated gastric fluid (Ricca Chemical) is a germinant and is 0.2% (w/v) Sodium Chloride in 0.7% (v/v) Hydrochloric Acid. Mucin medium is a germinant and prepared by adding the following items to 1 L of distilled sterile water: 0.4 g KH2PO4, 0.53 g Na2HPO4, 0.3 g NH4Cl, 0.3 g NaCl, 0.1 g MgCl2×6H2O, 0.11 g CaCl2, 1 ml alkaline trace element solution, 1 ml acid trace element solution, 1 ml vitamin solution, 0.5 mg resazurin, 4 g NaHCO3, 0.25 g Na2S×9H2O. The trace element and vitamin solutions prepared as described previously (Stams et al., 1993). All compounds were autoclaved, except the vitamins, which were filter-sterilized. The basal medium was supplemented with 0.7% (v/v) clarified, sterile rumen fluid and 0.25% (v/v) commercial hog gastric mucin (Type III; Sigma), purified by ethanol precipitation as described previously (Miller & Hoskins, 1981). This medium is referred herein as mucin medium.


Fetal Bovine Serum (Gibco) can be used as a germinant and contains 5% FBS heat inactivated, in Phosphate Buffered Saline (PBS, Fisher Scientific) containing 0.137M Sodium Chloride, 0.0027M Potassium Chloride, 0.0119M Phosphate Buffer. Thioglycollate is a germinant as described previously (Kamiya et al Journal of Medical Microbiology 1989) and contains 0.25M (pH10) sodium thioglycollate. Dodecylamine solution containing 1 mM dodecylamine in PBS is a germinant. A sugar solution can be used as a germinant and contains 0.2% fructose, 0.2% glucose, and 0.2% mannitol. Amino acid solution can also be used as a germinant and contains 5 mM alanine, 1 mM arginine, 1 mM histidine, 1 mM lysine, 1 mM proline, 1 mM asparagine, 1 mM aspartic acid, 1 mM phenylalanine. A germinant mixture referred to herein as Germix 3 can be a germinant and contains 5 mM alanine, 1 mM arginine, 1 mM histidine, 1 mM lysine, 1 mM proline, 1 mM asparagine, 1 mM aspartic acid, 1 mM phenylalanine, 0.2% taurocholate, 0.2% fructose, 0.2% mannitol, 0.2% glucose, 1 mM inosine, 2.5 mM Ca-DPA, and 5 mM KCl. BHIS medium+DPA is a germinant mixture and contains BHIS medium and 2 mM Ca-DPA. Escherichia coli spent medium supernatant referred to herein as EcSN is a germinant and is prepared by growing E. coli MG1655 in SweetB/Fos inulin medium anaerobically for 48 hr, spinning down cells at 20,000 rcf for 20 minutes, collecting the supernatant and heating to 60 C for 40 min. Finally, the solution is filter sterilized and used as a germinant solution.


Determination of Bacterial Pathogens in Purified Spore Populations

Bacterial pathogens present in a purified spore population are determined by qPCR using specific oligonucleotide primers as follows.


Standard Curve Preparation

The standard curve is generated from wells containing the pathogen of interest at a known concentration or simultaneously quantified by selective spot plating. Serial dilutions of duplicate cultures are performed in sterile phosphate-buffered saline. Genomic DNA is then extracted from the standard curve samples along with the other samples.


Genomic DNA Extraction


Genomic DNA may be extracted from 100 μl of fecal samples, fecal-derived samples, or purified spore preparations using the Mo Bio Powersoil®-htp 96 Well Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.) according to the manufacturer's instructions with two exceptions: the beadbeating is performed for 2×4:40 minutes using a BioSpec Mini-Beadbeater-96 (BioSpec Products, Bartlesville, Okla.) and the DNA is eluted in 50μ. 1 of Solution C6. Alternatively the genomic DNA could be isolated using the Mo Bio Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.), the Sigma-Aldrich Extract-N-AmpTMPlant PCR Kit, the QIAamp DNA Stool Mini Kit (QIAGEN, Valencia, Calif.) according to the manufacturer's instructions.


qPCR Composition and Conditions


The qPCR reaction to detect C. difficile contains 1× HotMasterMix (5PRIME, Gaithersburg, Md.), 900 nM of Wr-tcdB-F (AGCAGTTGAATATAGTGGTTTAGTTAGAGTTG (SEQ ID NO. 2044), IDT, Coralville, Iowa), 900 nM of Wr-tcdB-R (CATGCTTTTTTAGTTTCTGGATTGAA (SEQ ID NO. 2045), IDT, Coralville, Iowa), 250 nM of We-tcdB-P (6FAM-CATCCAGTCTCAATTGTATATGTTTCTCCA-MGB (SEQ ID NO. 2046), Life Technologies, Grand Island, N.Y.), and PCR Water (Mo Bio Laboratories, Carlsbad, Calif.) to 18 μl (Primers adapted from: Wroblewski, D. et al. Rapid Molecular Characterization of Clostridium difficile and Assessment of Populations of C. difficile in Stool Specimens. Journal of Clinical Microbiology 47:2142-2148 (2009)). This reaction mixture is aliquoted to wells of a MicroAmp® Fast Optical 96-well Reaction Plate with Barcode (0.1 mL) (Life Technologies, Grand Island, N.Y.). To this reaction mixture, 2 μl of extracted genomic DNA is added. The qPCR is performed on a BioRad C1000™ Thermal Cycler equipped with a CFX96™ Real-Time System (BioRad, Hercules, Calif.). The thermocycling conditions are 95° C. for 2 minutes followed by 45 cycles of 95° C. for 3 seconds, 60° C. for 30 seconds, and fluorescent readings of the FAM and ROX channels. Other bacterial pathogens can be detected by using primers and a probe specific for the pathogen of interest.


Data Analysis

The Cq value for each well on the FAM channel is determined by the CFX Manager™ Software Version 2.1. The log 10 (cfu/ml) of each experimental sample is calculated by inputting a given sample's Cq value into linear regression model generated from the standard curve comparing the Cq values of the standard curve wells to the known log 10 (cfu/ml) of those samples. Viral pathogens present in a purified spore population are determined by qPCR as described herein and otherwise known in the art.


Example 11. Characterization of Microbiome in Ethanol-Treated Spore Population and Patients Post-Treatment

Microbial Population Engraftment, Augmentation, and Reduction of Pathogen Carriage in Patients Treated with Spore Compositions.


Complementary genomic and microbiological methods were used to characterize the composition of the microbiota from Patient 1, 2, 3, 4, and 5, 6, 7, 8, 9, and 10 at pretreatment (pretreatment) and up to 4 weeks post-treatment.


Table 3 shows bacterial OTUs associated with engraftment and ecological augmentation and establishment of a more diverse microbial ecology in patients treated with an ethanol-treated spore preparation. OTUs that comprise an augmented ecology are below the limit of detection in the patient prior to treatment and/or exist at extremely low frequencies such that they do not comprise a significant fraction of the total microbial carriage and are not detectable by genomic and/or microbiological assay methods in the bacterial composition. OTUs that are members of the engrafting and augmented ecologies were identified by characterizing the OTUs that increase in their relative abundance post treatment and that respectively are: (i) present in the ethanol-treated spore preparation and not detectable in the patient pretreatment (engrafting OTUs), or (ii) absent in the ethanol-treated spore preparation, but increase in their relative abundance in the patient through time post treatment with the preparation due to the formation of favorable growth conditions by the treatment (augmenting OTUs). Notably, the latter OTUs can grow from low frequency reservoirs in the patient, or be introduced from exogenous sources such as diet. OTUs that comprise a “core” augmented or engrafted ecology can be defined by the percentage of total patients in which they are observed to engraft and/or augment; the greater this percentage the more likely they are to be part of a core ecology responsible for catalyzing a shift away from a dysbiotic ecology. The dominant OTUs in an ecology can be identified using several methods including but not limited to defining the OTUs that have the greatest relative abundance in either the augmented or engrafted ecologies and defining a total relative abundance threshold. As example, the dominant OTUs in the augmented ecology of Patient-1 were identified by defining the OTUs with the greatest relative abundance, which together comprise 60% of the microbial carriage in this patient's augmented ecology by day 25 post-treatment.


Patient treatment with the ethanol-treated spore preparation leads to the population of a microbial ecology that has greater diversity than prior to treatment (See FIGS. 5 & 6). Genomic-based microbiome characterization confirmed engraftment of a range of OTUs that were not detectable in the patient pretreatment (Table 3). These OTUs comprised both bacterial species that were capable and not capable of forming spores, and OTUs that represent multiple phylogenetic clades. Organisms not detectable in Patient 1 pre-treatment either engraft directly from the ethanol-treated spore fraction or are augmented by the creation of a gut environment favoring a healthy, diverse microbiota. Microbiological analysis shows that Bacteroides fragilis group species were increased by 4 and 6 logs in patients 1 and 2 (FIG. 7).



FIG. 5 shows the microbial diversity measured in the ethanol-treated spore treatment sample and patient pre- and post-treatment samples. Total microbial diversity is defined using the Chaol Alpha-Diversity Index and is measured at different genomic sampling depths to confirm adequate sequence coverage to assay the microbiome in the target samples. The patient pretreatment (purple) harbored a microbiome that was significantly reduced in total diversity as compared to the ethanol-treated spore product (red) and patient post treatment at days 5 (blue), 14 (orange), and 25 (green).



FIG. 6 shows patient microbial ecology is shifted by treatment with an ethanol-treated spore treatment from a dysbiotic state to a state of health. Principal Coordinates Analysis based on the total diversity and structure of the microbiome (Bray-Curtis Beta-Diversity) of the patient pre- and post-treatment delineates that the engraftment of OTUs from the spore treatment and the augmentation of the patient microbial ecology leads to a microbial ecology that is distinct from both the pretreatment microbiome and the ecology of the ethanol-treated spore treatment (Table 3).



FIG. 7 shows the augmentation of Bacteroides species in patients. Comparing the number of Bacteroides fragilis groups species in feces (cfu/g) pre-treatment and in week 4 post treatment reveals an increase of 4 logs or greater. The ability of 16S-V4 OTU identification to assign an OTU as a specific species depends in part on the resolution of the 16S-V4 region of the 16S gene for a particular species or group of species. Both the density of available reference 16S sequences for different regions of the tree as well as the inherent variability in the 16S gene between different species will determine the definitiveness of a taxonomic annotation to a given sequence read. Given the topological nature of a phylogenetic tree and that the tree represents hierarchical relationships of OTUs to one another based on their sequence similarity and an underlying evolutionary model, taxonomic annotations of a read can be rolled up to a higher level using a clade-based assignment procedure (Table 1). Using this approach, clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood or other phylogenetic models familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another (generally, 1-5 bootstraps), and (ii) within a 5% genetic similarity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. The power of clade based analysis is that members of the same clade, due to their evolutionary relatedness, play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention.


Stool samples were aliquoted and resuspended 10× vol/wt in either 100% ethanol (for genomic characterization) or PBS containing 15% glycerol (for isolation of microbes) and then stored at −80° C. until needed for use. For genomic 16S sequence analysis colonies picked from plate isolates had their full-length 16S sequence characterized as described in Examples 2 and 3, and primary stool samples were prepared targeting the 16S-V4 region using the method for heterogeneous samples described herein.


Notably, 16S sequences of isolates of a given OTU are phylogenetically placed within their respective clades despite that the actual taxonomic assignment of species and genus may suggest they are taxonomically distinct from other members of the clades in which they fall. Discrepancies between taxonomic names given to an OTU is based on microbiological characteristics versus genetic sequencing are known to exist from the literature. The OTUs footnoted in this table are known to be discrepant between the different methods for assigning a taxonomic name.


Engraftment of OTUs from the ethanol-treated spore preparation treatment into the patient as well as the resulting augmentation of the resident microbiome led to a significant decrease in and elimination of the carriage of pathogenic species other than C. difficile in the patient. 16S-V4 sequencing of primary stool samples demonstrated that at pretreatment, 20% of reads were from the genus Klebsiella and an additional 19% were assigned to the genus Fusobacterium. These striking data are evidence of a profoundly dysbiotic microbiota associated with recurrent C. difficile infection and chronic antibiotic use. In healthy individuals, Klebsiella is a resident of the human microbiome in only about 2% of subjects based on an analysis of HMP database (hmpdacc.org), and the mean relative abundance of Klebsiella is only about 0.09% in the stool of these people. Its surprising presence at 20% relative abundance in Patient 1 before treatment is an indicator of a proinflammatory gut environment enabling a “pathobiont” to overgrow and outcompete the commensal organisms normally found in the gut. Similarly, the dramatic overgrowth of Fusobacterium indicates a profoundly dysbiotic gut microbiota. One species of Fusobacterium, F. nucleatum (an OTU phylogenetically indistinguishable from Fusobacterium sp. 3_1_33 based on 16S-V4), has been termed “an emerging gut pathogen” based on its association with IBD, Crohn's disease, and colorectal cancer in humans and its demonstrated causative role in the development of colorectal cancer in animal models [Allen-Vercoe, Gut Microbes (2011) 2:294-8]. Importantly, neither Klebsiella nor Fusobacterium was detected in the 16S-V4 reads by Day 25 (Table 4).


To further characterize the colonization of the gut by Klebsiella and other Enterobacteriaceae and to speciate these organisms, pretreatment and Day 25 fecal samples stored at −80 C as PBS-glycerol suspensions were plated on a variety of selective media including MacConkey lactose media (selective for gram negative enterobacteria) and Simmons Citrate Inositol media (selective for Klebsiella spp) [Van Cregten et al, J. Clin. Microbiol. (1984) 20: 936-41]. Enterobacteria identified in the patient samples included K. pneumoniae, Klebsiella sp. Co 9935 and E. coli. Strikingly, each Klebsiella species was reduced by 2-4 logs whereas E. coli, a normal commensal organism present in a healthy microbiota, was reduced by less than 1 log (Table 14 below). This decrease in Klebsiella spp. carriage is consistent across multiple patients. Four separate patients were evaluated for the presence of Klebsiella spp. pre treatment and 4 weeks post treatment. Klebsiella spp. were detected by growth on selective Simmons Citrate Inositol media as previously described. Serial dilution and plating, followed by determining cfu/mL titers of morphologically distinct species and 16S full length sequence identification of representatives of those distinct morphological classes, allowed calculation of titers of specific species.


The genus Bacteroides is an important member of the gastrointestinal microbiota; 100% of stool samples from the Human Microbiome Project contain at least one species of Bacteroides with total relative abundance in these samples ranging from 0.96% to 93.92% with a median relative abundance of 52.67% (hmpdacc.org reference data set HMSMCP). Bacteroides in the gut has been associated with amino acid fermentation and degradation of complex polysaccharides. Its presence in the gut is enhanced by diets rich in animal-derived products as found in the typical western diet [David, L. A. et al, Nature (2013) doi:10.1038/nature12820]. Strikingly, prior to treatment, fewer than 0.008% of the 16S-V4 reads from Patient 1 mapped to the genus Bacteroides strongly suggesting that Bacteroides species were absent or that viable Bacteroides were reduced to an extremely minor component of the patient's gut microbiome. Post treatment, ≥42% of the 16S-V4 reads could be assigned to the genus Bacteroides within 5 days of treatment and by Day 25 post treatment 59.48% of the patients gut microbiome was comprised of Bacteroides. These results were confirmed microbiologically by the absence of detectable Bacteroides in the pretreatment sample plated on two different Bacteroides selective media: Bacteroides Bile Esculin (BBE) agar which is selective for Bacteroides fragilis group species [Livingston, S. J. et al J. Clin. Microbiol (1978). 7: 448-453] and Polyamine Free Arabinose (PFA) agar [Noack et al. J. Nutr. (1998) 128: 1385-1391; modified by replacing glucose with arabinose]. The highly selective BBE agar had a limit of detection of <2×103 cfu/g, while the limit of detection for Bacteroides on PFA agar was approximately 2×107 cfu/g due to the growth of multiple non-Bacteroides species in the pretreatment sample on that medium. Colony counts of Bacteroides species on Day 25 were up to 2×1010 cfu/g, consistent with the 16S-V4 sequencing, demonstrating a profound reconstitution of the gut microbiota in Patient 1 (Table 5 below).


The significant abundance of Bacteroides in Patient 1 on Day 25 (and as early as Day 5 as shown by 16S-V4 sequencing) is remarkable. Viable Bacteroides fragilis group species were not present in the ethanol-treated spore population based on microbiological plating (limit of detection of 10 cfu/ml). Thus, administration of the ethanol-treated spore population to Patient 1 resulted in microbial population of the patient's GI tract, not only due to the engraftment of bacterial species such as but not limited to spore forming species, but also the restoration of high levels of non-spore forming species commonly found in healthy individuals through the creation of a niche that allowed for the repopulation of Bacteroides species. These organisms were most likely either present at extremely low abundance in the GI tract of Patient 1, or present in a reservoir in the GI tract from which they could rebound to high titer. Those species may also be reinoculated via oral uptake from food following treatment. We term this healthy repopulation of the gut with OTUs that are not present in the bacterial composition such as but not limited to a spore population or ethanol-treated spore population, “Augmentation.” Augmentation is an important phenomenon in that it shows the ability to use an ethanol-treated spore ecology or other bacterial composition to restore a healthy microbiota by seeding a diverse array or commensal organisms beyond the actual component organisms in the bacterial composition such as but not limited to an ethanol-treated spore population itself; specifically the spore composition treatment itself and the engraftment of OTUs from the spore composition create a niche that enables the outgrowth of OTUs required to shift a dysbiotic microbiome to a microbial ecology that is associated with health. The diversity of Bacteroides species and their approximate relative abundance in the gut of Patient 1 is shown in Table 16, comprising at least 8 different species.



FIG. 8 shows species engrafting versus species augmenting in patients microbiomes after treatment with a bacterial composition such as but not limited to an ethanol-treated spore population. Relative abundance of species that engrafted or augmented as described were determined based on the number of 16S sequence reads. Each plot is from a different patient treated with the bacterial composition such as but not limited to an ethanol-treated spore population for recurrent C. difficile.


The impact of the bacterial composition such as but not limited to an ethanol-treated spore population treatment on carriage of imipenem resistant Enterobacteriaceae was assessed by plating pretreatment and Day 28 clinical samples from Patients 2, 4 and 5 on MacConkey lactose plus 1 ug/mL of imipenem. Resistant organisms were scored by morphology, enumerated and DNA was submitted for full length 16S rDNA sequencing as described above. Isolates were identified as Morganella morganii, Providencia rettgeri and Proteus penneri. Each of these are gut commensal organisms; overgrowth can lead to bacteremia and/or urinary tract infections requiring aggressive antibiotic treatment and, in some cases, hospitalization [Kim, B-N, et al Scan J. Inf Dis (2003) 35: 98-103; Lee, I-K and Liu, J-W J. Microbiol Immunol Infect (2006) 39: 328-334; O'Hara et al, Clin Microbiol Rev (2000) 13: 534]. The titer of organisms at pretreatment and Day 28 by patient is shown in Table 17. Importantly, administration of the bacterial composition such as but not limited to an ethanol-treated spore preparation resulted in greater than 100-fold reduction in 4 of 5 cases of Enterobacteriaceae carriage with multiple imipenem resistant organisms (See Table 17 which shows titers (in cfu/g) of imipenem-resistant M. morganii, P. rettgeri and P. penneri from Patients 2, 4 & 5).


In addition to speciation and enumeration, multiple isolates of each organism from Patient 4 were grown overnight in 96-well trays containing a 2-fold dilution series of imipenem in order to quantitatively determine the minimum inhibitory concentration (MIC) of antibiotic. Growth of organisms was detected by light scattering at 600 nm on a SpectraMax M5e plate reader. In the clinical setting, these species are considered resistant to imipenem if they have an MIC of 1 ug/mL or greater. M. morganii isolates from pretreatment samples from Patient 4 had MICs of 2-4 ug/mL and P. penneri isolates had MICs of 4-8 ug/mL. Thus, the bacterial composition, such as but not limited to, an ethanol-treated spores administered to Patient 4 caused the clearance of 2 imipenem resistant organisms (Table 4). While this example specifically uses a spore preparation, the methods herein describe how one skilled in the art would use a more general bacterial composition to achieve the same effects. The specific example should not be viewed as a limitation of the scope of this disclosure.


Identifying the Core Ecology from the Bacterial Combination


Ten different bacterial compositions were made by the ethanol-treated spore preparation methods from 6 different donors (as described above). The spore preparations were used to treat 10 patients, each suffering from recurrent C. difficile infection. Donors were identified using the inclusion/exclusion criteria described above under provision of fecal material. None of the patients experienced a relapse of C. difficile in the 4 weeks of follow up after treatment, whereas the literature would predict that 70-80% of subjects would experience a relapse following cessation of antibiotic [Van Nood, et al, NEJM (2013)]. Thus, the ethanol-treated spore preparations derived from multiple different donors and donations showed remarkable clinical efficacy. These ethanol-treated spore preparations are a subset of the bacterial compositions described herein and the results should not be viewed as a limitation on the scope of the broader set of bacterial compositions.


To define the Core Ecology underlying the remarkable clinical efficacy of the bacterial compositions e.g. ethanol-treated spore preparations, the following analysis was carried out. The OTU composition of the spore preparation was determined by 16S-V4 rDNA sequencing and computational assignment of OTUs per Example 2. A requirement to detect at least ten sequence reads in the ethanol-treated spore preparation was set as a conservative threshold to define only OTUs that were highly unlikely to arise from errors during amplification or sequencing. Methods routinely employed by those familiar to the art of genomic-based microbiome characterization use a read relative abundance threshold of 0.005% (see e.g. Bokulich, A. et al. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10: 57-59), which would equate to ≥2 reads given the sequencing depth obtained for the samples analyzed in this example, as cut-off which is substantially lower than the ≥10 reads used in this analysis. All taxonomic and clade assignments were made for each OTU as described in Example 2. The resulting list of OTUs, clade assignments, and frequency of detection in the spore preparations are shown in Table 18. Table 18 shows OTUs detected by a minimum of ten 16S-V4 sequence reads in at least one ethanol-treated spore preparatio. OTUs that engraft in a treated patients and the percentage of patients in which they engraft are denoted, as are the clades, spore forming status, and Keystone OTU status. Starred OTUs occur in ≥80% of the ethanol preps and engraft in ≥50% of the treated patients.


Next, it was reasoned that for an OTU to be considered a member of the Core Ecology of the bacterial composition, that OTU must be shown to engraft in a patient. Engraftment is important for two reasons. First, engraftment is a sine qua non of the mechanism to reshape the microbiome and eliminate C. difficile colonization. OTUs that engraft with higher frequency are highly likely to be a component of the Core Ecology of the spore preparation or broadly speaking a set bacterial composition. Second, OTUs detected by sequencing a bacterial composition (as in Table 6 may include non-viable cells or other contaminant DNA molecules not associated with the composition. The requirement that an OTU must be shown to engraft in the patient eliminates OTUs that represent non-viable cells or contaminating sequences. Table 6 also identifies all OTUs detected in the bacterial composition that also were shown to engraft in at least one patient post-treatment. OTUs that are present in a large percentage of the bacterial composition e.g. ethanol spore preparations analyzed and that engraft in a large number of patients represent a subset of the Core Ecology that are highly likely to catalyze the shift from a dysbiotic disease ecology to a healthy microbiome.


A third lens was applied to further refine insights into the Core Ecology of the bacterial composition (e.g. spore preparation). Computational-based, network analysis has enabled the description of microbial ecologies that are present in the microbiota of a broad population of healthy individuals (see Example 5). These network ecologies are comprised of multiple OTUs, some of which are defined as Keystone OTUs. Keystone OTUs are computationally defined as described in Example 6. Keystone OTUs form a foundation to the microbially ecologies in that they are found and as such are central to the function of network ecologies in healthy subjects. Keystone OTUs associated with microbial ecologies associated with healthy subjects are often are missing or exist at reduced levels in subjects with disease. Keystone OTUs may exist in low, moderate, or high abundance in subjects. Table 6 further notes which of the OTUs in the bacterial composition e.g. spore preparation are Keystone OTUs exclusively associated with individuals that are healthy and do not harbor disease. The presence of computationally derived Keystone OTUs in the Core Ecology of the doses validates the predictive capacity of computationally derived network ecologies.


There are several important findings from this data. A relatively small number of species, 16 in total, are detected in all of the spore preparations from 6 donors and 10 donations. This is surprising because the HMP database (hmpdacc.org) describes the enormous variability of commensal species across healthy individuals. The presence of a small number of consistent OTUs lends support to the concept of a Core Ecology and Backbone Networks. The engraftment data further supports this conclusion. A regression analysis shows a significant correlation between frequency of detection in a spore preparation and frequency of engraftment in a donor: R=0.43 (p<0.001). While this may seem obvious, there is no a priori requirement that an OTU detected frequently in the bacterial composition e.g. spore preparation will or should engraft. For instance, Lutispora thermophila, a spore former found in all ten spore preparations, did not engraft in any of the patients. Bilophila wadsworthia, a gram negative anaerobe, is present in 9 of 10 donations, yet it does not engraft in any patient, indicating that it is likely a non-viable contaminant in the ethanol-treated spore preparation. Finally, it is worth noting the high preponderance of previously defined Keystone OTUs among the most frequent OTUs in the spore preparations.


These three factors—prevalence in the bacterial composition such as but not limited to a spore preparation, frequency of engraftment, and designation as a Keystone OTUs—enabled the creation of a “Core Ecology Score” (CES) to rank individual OTUs. CES was defined as follows:

    • 40% weighting for presence of OTU in spore preparation
      • multiplier of 1 for presence in 1-3 spore preparations
      • multiplier of 2.5 for presence in 4-8 spore preparations
      • multiplier of 5 for presences in ≥9 spore preparations
    • 40% weighting for engraftment in a patient
      • multiplier of 1 for engraftment in 1-4 patients
      • multiplier of 2.5 for engraftment in 5-6 patients
      • multiplier of 5 for engraftment in ≥7 patients
    • 20% weighting to Keystone OTUs
      • multiplier of 1 for a Keystone OTU
      • multiplier of 0 for a non-Keystone OTU


Using this guide, the CES has a maximum possible score of 5 and a minimum possible score of 0.8. As an example, an OTU found in 8 of the 10 bacterial composition such as but not limited to a spore preparations that engrafted in 3 patients and was a Keystone OTU would be assigned the follow CES:





CES=(0.4×2.5)+(0.4×1)+(0.2×1)=1.6


Table 7 ranks the top 20 OTUs by CES with the further requirement that an OTU must be shown to engraft to be a considered an element of a core ecology.


Defining Efficacious Subsets of the Core Ecology


The number of organisms in the human gastrointestinal tract, as well as the diversity between healthy individuals, is indicative of the functional redundancy of a healthy gut microbiome ecology (see The Human Microbiome Consortia. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214). This redundancy makes it highly likely that subsets of the Core Ecology describe therapeutically beneficial components of the bacterial composition such as but not limited to an ethanol-treated spore preparation and that such subsets may themselves be useful compositions for populating the GI tract and for the treatment of C. difficile infection given the ecologies functional characteristics. Using the CES, individual OTUs can be prioritized for evaluation as an efficacious subset of the Core Ecology.


Another aspect of functional redundancy is that evolutionarily related organisms (i.e. those close to one another on the phylogenetic tree, e.g. those grouped into a single clade) will also be effective substitutes in the Core Ecology or a subset thereof for treating C. difficile.


To one skilled in the art, the selection of appropriate OTU subsets for testing in vitro (see Example 20 below) or in vivo (see Examples 13 or 14) is straightforward. Subsets may be selected by picking any 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 OTUs from Table 6, with a particular emphasis on those with higher CES, such as the OTUs described Table 7. In addition, using the clade relationships defined in Example 2 above and Table 1, related OTUs can be selected as substitutes for OTUs with acceptable CES values. These organisms can be cultured anaerobically in vitro using the appropriate media (selected from those described in Example 5 above), and then combined in a desired ratio. A typical experiment in the mouse C. difficile model utilizes at least 104 and preferably at least 105, 106, 107, 108, 109 or more than 109 colony forming units of a each microbe in the composition. Variations in the culture yields may sometimes mean that organisms are combined in unequal ratios, e.g. 1:10, 1:100, 1:1,000, 1:10,000, 1:100,000, or greater than 1:100,000. What is important in these compositions is that each strain be provided in a minimum amount so that the strain's contribution to the efficacy of the Core Ecology subset can be measured. Using the principles and instructions described here, it is straightforward for one of skill in the art to make clade-based substitutions to test the efficacy of subsets of the Core Ecology. Table 18 describes the clades for each OTU detected in a spore preparation, and Table 1 describes the OTUs that can be used for substitutions based on clade relationships. Examples of network ecologies empirically screened in vivo are presented in Example 13 below.


Example 12. Presence of Network Ecologies and Keystone OTUs in Clinically Prepped Ethanol-Treated Spore Preparation and CDAD Patients Post Treatment

Network ecologies computationally determined as described in Example 5 and reported in Table 8 as being networks or subsets of networks characteristic of health states in the context of CDAD or other disease indications (Table 14a-b) are observed in the ethanol-treated spore preparation (a.k.a. the bacterial composition) and the microbiome of patients post treatment (see Example 11) indicating that they play an important role in treatment of CDAD and other indications. For each computationally determined network ecology (Table 8), we determined whether the full network or a subset of the network was observed in the microbiome of (i) each of the 10 ethanol-treated spore preparations used to treat patients with recurrent Clostridium difficile associated diarrhea; (ii) the engrafted ecology of each of the 10 patients (see Example 11); (iii) the augmented ecology of each of the 10 patients (see Example 11); or (iv) of each of the 10 patient's microbiome pretreatment. If the computationally determined networks are indeed representative of a state of health and not a disease state, one would expect that these networks would be responsible for catalyzing a shift from a disease state to a health state. This can happen either by the network ecology changing the gut environment to favor the growth of OTUs that are required to establish a health state (i.e. promoting augmentation) or by the engraftment of OTUs in the bacterial composition or both. Applicants observed that numerous computationally determined networks and/or subsets of these networks were in fact observed both in the bacterial composition used to treat the patients and the microbiota that expanded post-treatment (Table 14b). These same networks or sub-sets of networks were significantly under-represented in the patients pre-treatment. To demonstrate this, we computed the percentage of network OTUs that are found in (i) the treatment bacterial composition, (ii) the post-treatment augmented ecology, (iii) the post-treatment engrafted ecology, and (iv) the pretreatment ecology (i.e. patient microbiome prior to administration of the bacterial composition). Applicants observed across all doses of bacterial composition and patient samples that on average 46%±19%, 28%±14%, 11%±8%, and 7%±4% of the computed networks OTUs were present in the various microbiome ecologies, respectively (reported here as average±standard deviation). There was a significant difference (p<0.0001, ANOVA) between all of these percentages indicating that prior to treatment, the OTUs found in CDAD patients are significantly under-represented in the networks, and that the network OTUs are significantly over-represented in the bacterial compositions and post-treatment patient samples, affirming the predictive utility of the computational network analysis. These results in combination with those reported in Table 14b demonstrate that, prior to treatment, the patients harbored a significantly lower number of OTUs that comprised network ecologies. In contrast, the ecology of the bacterial composition, as well as the augmenting ecologies whose appearance was catalyzed by the spore population, were significantly overrepresented in patients whose CDAD resolved due to treatment.


We observed both large and small computationally determined network ecologies characteristic of states of health in the ethanol-treated spore population and the patients post treatment (Table 14a). These observed networks ranged in size from 2-15 OTUs and were comprised of OTUs that represented from 29% to 100% of the OTUs in the computationally determined network ecology. Notably, on average the network ecologies found in the ethanol-treated spore population or the patient ecologies post treatment comprised 72%±15% (average±SD) of the computationally determined network ecology again strongly indicating an important role of the computed network ecologies in catalyzing a shift in a dysbiotic disease ecology to a state of health in these patients with recurrent CDAD. Further, Keystone OTUs in the computationally determined network ecologies were frequently observed in the ethanol-treated spore preparations and in the patients' post-treatment gut ecologies. Clades representing Keystone OTUs where typically more common in the bacterial composition and post-treatment patient ecologies than in the pre-treatment dysbiotic patient ecology (Table 15).


The computed network ecologies and their respective subsets that are observed in the ethanol-treated spore preparation and the various patient ecologies post-treatment represent both complete and foundational networks (e.g., Backbone Network Ecology). Microbial therapeutics can be comprised of these network ecologies in their entirety, or they can be modified by the addition or subtraction of other OTUs or functional modalities as described in Example 7 and Example 22 to design particular phylogenetic and/or functional characteristics, including metabolic functions such as SCFA production or bile acid metabolism, into the microbial therapeutic.


Example 13. In Vivo Validation of Network Ecology Bacterial Compositions Efficacy in Clostridium Difficile Infection Prevention Mouse Model

To test the therapeutic potential of the bacterial composition such as but not limited to a spore population, a prophylactic mouse model of C. difficile infection was used (model based on Chen X, Katchar K, Goldsmith J D, Nanthakumar N, Cheknis A, Gerding D N, Kelly C P. 2008. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135: 1984-1992.). Two cages of five mice each were tested for each arm of the experiment. All mice received an antibiotic cocktail consisting of 10% glucose, kanamycin (0.5 mg/ml), gentamicin (0.044 mg/ml), colistin (1062.5 U/ml), metronidazole (0.269 mg/ml), ciprofloxacin (0.156 mg/ml), ampicillin (0.1 mg/ml) and Vancomycin (0.056 mg/ml) in their drinking water on days −14 through −5 and a dose of 10 mg/kg Clindamycin by oral gavage on day −3. On day −1, test articles are spun for 5 minutes at 12,100 rcf, their supernatants' removed, and the remaining pellets are resuspended in sterile PBS, prereduced if bacterial composition is not in spore form, and delivered via oral gavage. On day 0 they were challenged by administration of approximately 4.5 log 10 cfu of C. difficile (ATCC 43255) or sterile PBS (for the Naive arm) via oral gavage. Optionally a positive control group received vancomycin from day −1 through day 3 in addition to the antibiotic protocol and C. difficile challenge specified above. Feces were collected from the cages for analysis of bacterial carriage. Mortality, weight and clinical scoring of C. difficile symptoms based upon a 0-4 scale by combining scores for Appearance (0-2 pts based on normal, hunched, piloerection, or lethargic), and Clinical Signs (0-2 points based on normal, wet tail, cold-to-the-touch, or isolation from other animals) are assessed every day from day −2 through day 6. Mean minimum weight relative to day −1 and mean maximum clinical score where a death is assigned a clinical score of 4 as well as average cumulative mortality are calculated. Reduced mortality, increased mean minimum weight relative to day −1, and reduced mean maximum clinical score with death assigned to a score of 4 relative to the vehicle control are used to assess the success of the test article.


Table 16 reports results for 15 experiments of the prophylactic mouse model of C. difficile infection. In the 15 experiments, 157 of the arms tested network ecologies, with 86 distinct networks ecologies tested (Table 17). Of those 157 arms, 136 of the arms and 73 of the networks performed better than the respective experiment's vehicle control arm by at least one of the following metrics: cumulative mortality, mean minimum relative weight, and mean maximum clinical score. Examples of efficacious networks include but are not limited to networks N1979 as tested in SP-361 which had 0% cumulative mortality, 0.97 mean minimum relative weight, and 0 mean maximum clinical score or N2007 which had 10% cumulative mortality, 0.91 mean minimum relative weight, and 0.9 mean maximum clinical score with both networks compared to the vehicle control in SP-361 which had 30% cumulative mortality, 0.88 mean minimum relative weight, and 2.4 mean maximum clinical score. In SP-376, N1962 had no cumulative mortality, mean maximum clinical scores of 0 at both target doses tested with mean minimum relative weights of 0.98 and 0.95 for target doses of le8 and le7 CFU/OTU/mouse respectively. These results confirm that bacterial compositions comprising bacteria identified from computationally determined networks or subsets of these determined networks have utility and efficacy in the mouse model.


Example 14. In Vivo Validation of Network Ecology Bacterial Composition Efficacy in Prophylactic and Relapse Prevention Hamster Model

Previous studies with hamsters using toxigenic and nontoxigenic strains of C. difficile demonstrated the utility of the hamster model in examining relapse post antibiotic treatment and the effects of prophylaxis treatments with cecal flora in C. difficile infection (Wilson et al. 1981, Wilson et al. 1983, Borriello et al. 1985) and more broadly in gastrointestinal infectious disease. To demonstrate prophylactic use of ethanol-treated spores and ethanol treated, gradient-purified spores to ameliorate C. difficile infection, the following hamster model was used. In the prophylactic model, Clindamycin (10 mg/kg s.c.) was given on day −5, the test article or control was administered on day −3, and C. difficile challenge occurred on day 0. In the positive control arm, vancomycin was then administered on day 1-5 (and vehicle control was delivered on day −3). Feces were collected on day −5, −4, −1, 1, 3, 5, 7, 9 and fecal samples were assessed for pathogen carriage and reduction by microbiological methods. 16S sequencing approaches or other methods could also be utilized by one skilled in the art. Mortality was assessed multiple times per day through 21 days post C. difficile challenge. The percentage survival curves showed that ethanol-treated spores and ethanol treated, gradient-purified spores better protected the hamsters compared to the Vancomycin control, and vehicle control.



FIG. 9 shows a prophylaxis model with the ethanol-treated spore preparation and the ethanol treated, gradient-purified spore preparation. In the relapse prevention model, hamsters were challenged with toxigenic C. difficile strains on day 0, and treated with clindamycin by oral gavage on day 1, and vancomycin was dosed on days 2-6. Test or control treatment was then administered on day 7, 8, and 9. The groups of hamsters for Each arm consisted of 8 hamsters per group. Fecal material was collected on day −1, 1, 3, 5, 7, 10 and 13 and hamster mortality was assessed throughout. Survival curves were used to assess the efficacy of the test articles, e.g., ethanol treated or ethanol treated, gradient purified spores versus the control treatment in preventing hamster death. The survival curves demonstrated maximum efficacy for the ethanol treated, gradient-purified spores followed by the ethanol-treated spores. Both treatments improved survival percentage over vancomycin treatment.


Also in the relapse prevention model, the efficacy of a bacterial community of pure cultures, N1962, was tested. The survival curves demonstrate protection against relapse by N1962 relative to the vancomycin control treatment.



FIG. 10 shows a relapse prevention model with ethanol-treated spores and ethanol treated, gradient purified spores. In particular, it shows an in vivo hamster Clostridium difficile relapse prevention model to validate efficacy of ethanol-treated spores and ethanol treated, gradient purified spores.



FIG. 11 shows a relapse prevention model with a bacterial community. In particular, it shows an in vivo hamster Clostridium difficile relapse prevention model to validate efficacy of network ecology bacterial composition.


Example 15. Derivation of Functional Profile of Individual Microbial OTUs or Consortia of OTUs Representing Specific Network Ecologies

To generate a functional profile of an OTU, or consortium of OTUs one can leverage multiple-omic data types. These include, but are not limited to functional prediction based on 16S rRNA sequence, functional annotation of metagenomic or full-genome sequences, transcriptomics, and metabolomics. A consortium of OTUs of interest can be defined using numerous criteria including but not limited to: (i) a computationally derived network of OTUs based on the analysis of samples that represent states of health and disease such as those delineated in Example 5 and reported in Table 8, (ii) a consortia of OTUs that are identified in an individual sample or group of samples using either a 16S-based, metagenomic-based, or microbiological-based methods such as delineated in Examples 3, 4 and 16, and (iii) a list of OTUs derived from the assessment of literature.


For 16S rRNA sequences, phylogenetic investigation of communities by reconstruction of unobserved states, also known as PICRUSt (Langille M G I, Zaneveld J, Caporaso J G, McDonald D, Knights D, Reyes J A, Clemente J C, Burkepile D E, Vega Thurber R L, Knight R, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol.), enables the prediction of a functional metabolic pathway of an OTU or a consortium of OTUs based on the KEGG database of reference functional pathways and functional ontologies (Kyoto Encyclopedia of Genes and Genomes; genome.jp/kegg/). PICRUSt matches the taxonomic annotation of a single 16S sequence read with a reference functional annotation of a genome sequence for a given OTU or set of OTUs. From these reference genome annotations, a functional annotation is assigned to each OTU. PICRUSt is composed of two high-level workflows: gene content inference and metagenome inference. The gene content inference produces gene content predictions for a set of reference OTUs as well as copy number predictions. The metagenome inference then uses these inputs and an OTU table that defines the OTUs in a sample and their relative abundances to then infer the functional metabolic profile of the OTUs in the OTU table. In an alternative, but related method, one can lookup for all of the OTUs in a consortia the OTU taxonomic identifications in a functional reference database such as IMG (http://img.jgi.doe.gov) and then derive a functional annotation of the network by concatenating the database's metabolic pathway maps (e.g. KEGG Pathway Orthology in case of IMG) for each of the OTUs in the consortia (see below for specific example).


To generate functional annotation from metagenomic or whole genome shotgun sequence data, reads are first clustered and then representative reads are annotated. Sequence annotation is then performed as described in Example 1, with the additional step that sequences are either clustered or assembled prior to annotation. Following sequence characterization as described above using a technology such as but not limited to Illumina, sequence reads are demultiplexed using the indexing barcodes. Following demultiplexing sequence reads are clustered using a rapid clustering algorithm such as but not limited to UCLUST (drive5.com/usearch/manual/uclust_algo.html) or hash-based methods such VICUNA (Xiao Yang, Patrick Charlebois, Sante Gnerre, Matthew G Coole, Niall J. Lennon, Joshua Z. Levin, James Qu, Elizabeth M. Ryan, Michael C. Zody, and Matthew R. Henn. 2012. De novo assembly of highly diverse viral populations. BMC Genomics 13:475). Following clustering a representative read for each cluster is identified and analyzed as described above in Example 2 “Primary Read Annotation”. The result of the primary annotation is then applied to all reads in a given cluster. In another embodiment, metagenomic sequences are first assembled into contigs and then these assembled contigs are annotated using methods familiar to one with ordinary skill in the art of genome assembly and annotation. Platforms such as but not limited to MetAMOS (T J. Treangen et al. 2013 Geneome Biology 14:R2), and HUMAaN (Abubucker S, Segata N, Goll J, Schubert A M, Izard J, Cantarel B L, Rodriguez-Mueller B, Zucker J, Thiagaraj an M, Henrissat B, et al. 2012. Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome ed. J. A. Eisen. PLoS Computational Biology 8: e1002358) are suitable for analysis of metagenomic data sets using the methods described above. Tools such as MetAMOS are also suitable for the generation of a functional annotation of complete genome sequence assembled from the sample or obtained from a reference genome database such as but not limited to NCBI's genome database (ncbi.nlm.nih.gov/genome). In all cases, functional pathways are derived from the sequence read annotations based on the mapping of the sequence annotations to a functional database, such as but not limited to KEGG (genome.jp/kegg), Biocyc (biocyc.org), IMG (img.jgi.doe.gov), MetaCyc (metacyc.org), or Reactome (reactome.org). Various tools are available for this task that are familiar to one with ordinary skill in the art including, but not limited to, The HMP Unified Metabolic Analysis Network (HUMAnN) (Abubucker S, Segata N, Goll J, Schubert A M, Izard J, Cantarel B L, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, et al. 2012. Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome ed. J. A. Eisen. PLoS Computational Biology 8: e1002358). The HUMAnN software recovers the presence, absence, and abundance of microbial gene families and pathways from metagenomic data. Cleaned short DNA reads are aligned to the KEGG Orthology (or any other characterized sequence database with functional annotation assigned to genetic sequences) using accelerated translated BLAST. Gene family abundances are calculated as weighted sums of the alignments from each read, normalized by gene length and alignment quality. Pathway reconstruction is performed using a maximum parsimony approach followed by taxonomic limitation (to remove false positive pathway identifications) and gap filling (to account for rare genes in abundant pathways). The resulting output is a set of matrices of pathway coverages (presence/absence) and abundances, as analyzed here for the seven primary body sites of the Human Microbiome Project.


Transcriptomic or RNA-Seq data are also a means to generate a functional profile of a sample (Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57-63). Briefly, long RNAs are first converted into a library of cDNA fragments through either RNA fragmentation or DNA fragmentation. Sequencing adaptors appropriate to the sequencing technology being used for downstream sequencing are subsequently added to each cDNA fragment and a short sequence is obtained from each cDNA using high-throughput sequencing technology. The resulting sequence reads are aligned with the reference genome or transcriptome and annotated and mapped to functional pathways as described above. Reads are categorized as three types: exonic reads, junction reads and poly(A) end-reads. These three types of reads in combination with the gene annotation are used to generate a base-resolution expression profile for each gene.


In yet another method to generate a metabolic profile of a microbial ecology, characterization of metabolites produced by the ecology are analyzed in tissues or fluids. Samples can include, without limitation, blood, urine, serum, feces, ileal fluid, gastric fluid, pulmonary aspirates, tissue culture fluid, or bacterial culture supernatants. Both targeted and untargeted methods can be utilized for metabolomics analysis (Patti G J, Yanes O, Siuzdak G. 2012. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13: 263-269.). Metabolomic methods utilize LC/MS-based technologies to generate a metabolite profile of sample. In the triple quadrupole (QqQ)-based targeted metabolomic workflow, standard compounds for the metabolites of interest are first used to set up selected reaction monitoring methods. Here, optimal instrument voltages are determined and response curves are generated using reference standards for absolute quantification. After the targeted methods have been established on the basis of standard metabolites, metabolites are extracted from the sample using methods familiar to one with ordinary skill in the art. Extraction methods can include liquid:liquid extraction using organic solvents or two-phase aqueous methods, solid phase extraction using hydrophobic or ion exchange resins, filtrations to remove solid contaminants, centrifugation or other means of clarification, and counter-current techniques. The data output provides quantification only of those metabolites for which standards are available. In the untargeted metabolomic workflow, extracted metabolites are first is separated by liquid chromatography followed by mass spectrometry (LC/MS). After data acquisition, the results are processed by using bioinformatic software such as XCMS to perform nonlinear retention time alignment and identify peaks that are changing between the groups of related samples. The m/z values for the peaks of interest are searched in a metabolite databases to obtain putative identifications. Putative identifications are then confirmed by comparing tandem mass spectrometry (MS/MS) data and retention time data to that of standard compounds. The untargeted workflow is global in scope and outputs data related to comprehensive cellular metabolism.


Applicants generated a functional profile for all of the computationally determined network ecologies delineated in Table 8 and Table 14a that were derived using the methods outlined in Example 5. Table 18 and Table 21 provide written description of the corresponding functional network ecologies respectively. For each network, applicants generated a functional metabolic profile by concatenating the KEGG Orthology Pathways for each OTU available in the IMG functional database (img.jgi.doe.gov). The taxonomic annotations of each OTU in the network were mapped to the taxon display names in the IMG database. For each taxon display name the taxon_iod with the best 16S sequence match to the 16S sequence of the OTU in the computed network ecology was selected (best match based on expectation value and an alignment score). The functional annotation for each OTU in the network was then derived from IMG's KEGG Orthology Pathway (i.e. ko_id) for the given taxon_iod. KEGG Orthology Pathways (KO) for all the OTUs in the network were concatenated and then the list was made unique to generate a non-redundant functional profile of the network. In another embodiment, the ko_id list is not made unique and the functional profile of the network is defined based on the relative abundances of the ko_ids not just their presence or absence. It is with the level of ordinary skill using the aforementioned disclosure to construct functional network ecologies that substitute the exemplified OTUs with equivalent OTUs that harbor the orthologous KEGG Orthology Pathways. Such substitutions are contemplated to be within the scope of the present invention, either literally or as an equivalent to the claimed invention as determined by determined by a court of competent jurisdiction.


Each functional network ecology was scored for its ability to metabolize bile acids and to produce short chain fatty acids (SCFAs). As described above, both bile acid metabolism and the production of SCFAs by bacterial ecologies plays an important role in human health. Specifically, applicants subsetted the KEGG Orthology Pathways computed for each network ecology to those described to be involved in secondary bile acid biosynthesis, butryrate (a.k.a. butanoate) metabolism, propionate (a.k.a. propanoate) metabolism, or pyruvate metabolism (leads to production of acetate). We identified and ranked network ecologies for their capacity to metabolize bile acid and produce SCFAs by defining a bile acid and SCFA functional score (F-Score) that defines a network ecologies' capacity to perform these two important metabolic roles. The F-score is defined by the total number of KEGG Orthology Pathways in a given network that mapped to secondary bile acid biosynthesis, a butyrate metabolism, a propionate metabolism, or a pyruvate metabolism (Table 18). A functional translation of the KEGG Orthology Pathways (i.e., KO numbers) and their respective metabolic ontology classification is provided in Table 19 as reference. Significantly, as shown in Table 18, there are only two computed network ecologies that did not harbor at least one pathway related to secondary bile acid biosynthesis, butyrate metabolism, propionate metabolism, or a pyruvate metabolism, suggesting both likely importance of these pathways to the metabolism of a large number of gastrointestinal ecologies, and the importance of these pathways to catalyzing a shift from a disease to a health state in the example cases of CDAD and Type 2 Diabetes.


Example 16. Use of Biolog Assay to Generate a Nutrient Utilization Functional Profile of an OTU or Consortium of OTU

Metabolic capabilities of individual organisms or a consortia of organisms can be determined using Biolog technology in which metabolic activity is detected by measurement of NADH production using a redox sensitive dye. Carbon source or other metabolic capabilities of a single species can be determined, as described below. Carbon source utilization of an ecology or network can also be assessed using the same methods.


A screen was performed to test the ability of Clostridium difficile and potential competitor species to utilize a panel of 190 different carbon sources. The screen was carried out using PM1 and PM2 MicroPlates (Biolog #12111, #12112), IF-0a base media (Biolog #72268) and Biolog Redox Dye Mix D (Biolog #74224). For each strain, a 1 uL aliquot from −80° C. glycerol stock was streaked out for single colonies to solid Brucella Blood Agar plates (BBA) (Anaerobe Systems #AS-111) and incubated anaerobically at 37° C. for 24 hr. A single colony was then re-streaked to a BBA plate and incubated anaerobically at 37° C. for 24 hr. The MicroPlates were pre-reduced by incubating for at least 24 hr in a hydrogen free anaerobic environment before use. All liquid media and supplements used were pre-reduced by placing them in an anaerobic chamber with loose lids for at least 24 hr before use. Alternatively, combinations of bacteria can also be tested.


The base media for inoculation was prepared by adding 0.029 mL of 1M potassium ferricyanide to 0.240 mL of Dye Mix D followed by addition of 19.7 mL of IF-0a, 4 mL sterile water and 0.024 mL 0.5 mM menadione. For some species, the concentrations of potassium ferricyanide and menadione were adjusted to achieve the optimal redox balance or to test multiple redox conditions. Potassium ferricyanide was tested at a final concentration of 0.38, 0.12, 0.038 and 0.06 mM. Menadione was tested at a final concentration of 0.5, 0.16 and 0.05 μM. In total, this yields 9 redox conditions for testing. Reduction of the tetrazolium dye that forms the basis for the endpoint measurement was sensitive to the redox state of each bacterial culture, and thus to the ratio of menadione to potassium ferricyanide. It was therefore important to test various ratios for each bacterial isolate and was also important in some cases to test a species at multiple menadione/potassium ferricyanide ratios in order to detect all conditions in which a possible nutrient utilization was detectable. Some species were tested beyond the 20 hr time point to detect all conditions resulting in a positive result. In these cases plates were read at 20, 44 or 96 hr.


Using a sterile, 1 μL microbiological loop, a loopful of biomass was scraped from the BBA plate and resuspended in the base media by vortexing. The OD was adjusted to 0.1 at 600 nm using a SpectraMax M5 plate reader. The bacterial suspension was then aliquoted into each well of the PM1 and PM2 plates (100 μL per well). The plates were incubated at 37° C. for 20 hr in a rectangular anaerobic jar (Mitsubishi) with 3 anaerobic, hydrogen-free gas packs (Mitsubishi AnaeroPack). After 20 hr, OD at 550 nm was read using a SpectraMax M5 plate reader. Wells were scored as a weak hit if the value was 1.5× above the negative control well, and a strong hit if the value was 2× above the negative control well. The results are shown in the Table in FIG. 4.


The following list of nutrient sources were tested: L-Arabinose, N-Acetyl-D-Glucosamine, D-Saccharic Acid, SuccinicAcid, D-Galactose, L-AsparticAcid, L-Proline, D-Alanine, D-Trehalose, D-Mannose, Dulcitol, D-Serine, D-Sorbitol, Glycerol, L-Fucose, D-Glucuronic Acid, D-Gluconic Acid, D, L-alpha-Glycerol-Phosphate, D-Xylose, L-Lactic Acid, Formic Acid, D-Mannitol, L-Glutamic Acid, D-Glucose-6-Phosphate, D-Galactonic Acid-gamma-Lactone, D,L-Malic Acid, D-Ribose, Tween 20, L-Rhamnose, D-Fructose, Acetic Acid, alpha-D-Glucose, Maltose, D-Mellibiose, Thymidine, L-Asparagine, D-Aspartic Acid, D-Glucosaminic Acid, 1,2-Propanediol, Tween 40, alpha-Keto-Glutaric Acid, alpha-Keto-ButyricAcid, alpha-Methyl-D-Galactoside, alpha-D-Lactose, Lactulose, Sucrose, Uridine, L-Glutamine, M-Tartaric Acid, D-Glucose-1-Phosphate, D-Fructose-6-Phosphate, Tween 80, alpha-Hydroxy-Glutaric-gamma-lactone, alpha-Hydroxy Butyric Acid, beta-Methyl-D-Glucoside, Adonitol, Maltotriose, 2-Deoxy Adenosine, Adenosine, Glycyl-L-Aspartic Acid, Citric Acid, M-Inositol, D-Threonine, Fumaric Acid, Bromo Succinic Acid, Propionic Acid, Mucic Acid, Glycolic Acid, Glyoxylic Acid, D-Cellobiose, Inosine, Glycyl-L-Glutamic Acid, Tricarballylic Acid, L-Serine, L-Threonine, L-Alanine, L-Alanyl-Glycine, Acetoacetic Acid, N-Acetyl-beta-D-Mannosamine, Mono Methyl Succinate, Methyl Pyruvate, D-Malic Acid, L-Malic Acid, Glycyl-L-Proline, p-Hydroxy Phenyl Acetic Acid, m-Hydroxy Phenyl Acetic Acid, Tyramine, D-Psicose, L-Lyxose, Glucuronamide, Pyruvic Acid, L-Galactonic Acid-gamma-Lactone, D-Galacturonic Acid, Pheylethyl-amine, 2-aminoethanol, Chondroitin Sulfate C, alpha-Cyclodextrin, beta-Cyclodextrin, gamma-Cyclodextrin, Dextrin, Gelatin, Glycogen, Inulin, Laminarin, Mannan, Pectin, N-Acetyl-D-Galactosamine, N-Acetyl-Neuramic Acid, beta-D-Allose, Amygdalin, D-Arabinose, D-Arabitol, L-Arabitol, Arbutin, 2-Deoxy-D-Ribose, I-Erythritol, D-Fucose, 3-O-beta-D-Galacto-pyranosyl-D-Arabinose, Gentibiose, L-Glucose, Lactitol, D-Melezitose, Maltitol, alpha-Methyl-D-Glucoside, beta-Methyl-D-Galactoside, 3-Methyl Glucose, beta-Methyl-D-GlucoronicAcid, alpha-Methyl-D-Mannoside, beta-Metyl-D-Xyloside, Palatinose, D-Raffinose, Salicin, Sedoheptulosan, L-Sorbose, Stachyose, D-Tagatose, Turanose, Xylitol, N-Acetyl-D-Glucosaminitol, gamma-Amino Butyric Acid, delta-Amino Valeric Acid, Butyric Acid, Capric Acid, Caproic Acid, Citraconic Acid, Citramalic Acid, D-Glucosamine, 2-Hydroxy Benzoic Acid, 4-Hydroxy Benzoic Acid, beta-Hydroxy Butyric Acid, gamma-Hydroxy Butyric Acid, alpha-Keto Valeric Acid, Itaconic Acid, 5-Keto-D-Gluconic Acid, D-Lactic Acid Methyl Ester, Malonic Acid, Melibionic Acid, Oxalic Acid, Oxalomalic Acid, Quinic Acid, D-Ribino-1,4-Lacton, Sebacic Acid, Sorbic Acid, Succinamic Acid, D-Tartaric Acid, L-Tartaric Acid, Acetamide, L-Alaninamide, N-Acetyl-L-Glutamic Acid, L-Arginine, Glycine, L-Histidine, L-Homserine, Hydroxy-L-Proline, L-Isoleucine, L-Leucine, L-Lysine, L-Methionine, L-Ornithine, L-Phenylalanine, L-Pyroglutamic Acid, L-Valine, D,L-Carnithine, Sec-Butylamine, D,L-Octopamine, Putrescine, Dihydroxy Acetone, 2,3-Butanediol, 2,3-Butanone, 3-Hydroxy 2-Butanone.


Additionally, one of skill in the art could design nutrient utilization assays for a broader set of nutrients using the methods described above including complex polysaccharides or prebiotics.


A similar screen can be performed to test the utilization of vitamins, amino acids, or cofactors. In these instances, Biolog MicroPlates for screening of vitamins, amino acids or cofactors that are of interest would be used in place of the PM1 and PM2 plates, for example PMS. Table 2 contains a list of representative vitamins, minerals, and cofactors. For each strain tested, a universal carbon source such as glucose will be used as a positive control to demonstrate reduction of the tetrazolium dye under the specific conditions of the assay.


Example 17. In Vitro Screening of Microbes for 7-Alphadehydroxylase Activity

Cultures of individual microbes are grown overnight and frozen for later use as described according to Example 9. The sodium salts of CA, CDCA, GCA, GCDCA, TCA, and TCDCA (Sigma) are obtained and prepared as aqueous stock solutions. For initial screening to define organisms capable of 7-alphadehydroxylation reactions, growth media are prepared containing 0.4 mM of each bile salt. Cultures are inoculated from a 1:100 dilution of the frozen stock into the media and grown in an anaerobic chamber for 24-48 hours, or until the culture is turbid. Two mL of culture is acidified by the addition of 1 mL of 2N HCl and 100 ug of 23-nordeoxycholic acid (Steraloids) as an internal reference standard. The acidified mixture is extracted twice with 6 mL of diethyl ether. The organic extracts are combined and then evaporated and derivatized to methyl esters with diazomethane. Gas chromatography is performed on a 7 ft (ca. 2 m) 3% OV-1 column at 260° C. and a 3% OV-17 column at 250° C. after trimethylsilylation of the methylated bile acids with Tri-Sil (Pierce, Rockford, Ill.). The retention times of the silylated bile acids are compared with those of reference products representing CA, CDCA, DCA and LCA.


For strains showing 7-alphadehydroxylase activity, a kinetic assessment is performed by harvesting a growing culture of each organisms of interest, washing and resuspending in fresh media at a concentration of between 108 to 1010 cfu/mL. The sodium salts of CA, CDCA, GCA, GCDCA, TCA, and TCDCA are then added at 0.5 to 5 mM and the resulting culture is sampled at 1, 2, 4 and 8 hours. The sample is analyzed as described above to find organisms with maximal activity. Highly active strains are selected for further incorporation into microbial compositions that exhibit maximal 7-alphadehydroxylase activity.


Example 18. In Vitro Screening of Microbes for Bile Salt Hydrolase Activity

Cultures of individual microbes are grown overnight and frozen for later use as described according to Example 9. The sodium salts of GCA, GCDCA, TCA, and TCDCA (Sigma) are obtained and prepared as aqueous stock solutions. Overnight, actively growing cultures are combined with 0.5 to 5 mM of conjugated bile acid and allowed to incubate for 24-48 hours. To analyze cultures, 0.5 mL of culture is first centrifuged at 3,000×g for 10 min to remove the bacteria, and is then acidified with 5 uL of 6 N HCl. This acidified supernatant is combined with an equal volume of methanol containing 4 mM of 23-nordeoxycholic as an internal standard. The samples are vortexed for at least 2 min and clarified by centrifugation at 1000×g for 15 min. Samples are filtered through a 0.2 um filter prior to HPLC analysis according to the method described by Jones et al 2003 J Med Sci 23: 277-80. Briefly, the isocratic method is performed on a reversed-phase C-18 column (LiChrosorb RP-18, 5 m, 250×4.6 mm from HiChrom, Novato, Calif., USA). Acetate buffer is prepared daily with 0.5 M sodium acetate, adjusted to pH 4.3 with o-phosphoric acid, and filtered through a 0.22 m filter. The flow is 1.0 mL/min and the detection is performed at 205 nm. The injection loop is set to 20 uL.


For strains showing bile salt hydrolase activity, a kinetic assessment is performed by harvesting a growing culture of each organisms of interest, washing and resuspending in fresh media at a concentration of between 108 to 1010 cfu/mL. The sodium salts of GCA, GCDCA, TCA, and TCDCA are then added at 0.5 to 5 mM and the resulting culture is sampled at 1, 2, 4 and 8 hours. The sample is analyzed by HPLC as described above to find organisms with maximal activity. Highly active strains are selected for further incorporation into microbial compositions that exhibit maximal bile salt hydrolase activity.


Example 19. In Vitro Screening of Microbial Communities for 7-Alphadehydroxylase Activity

Measurement of the conversion of 7-alpha-hydroxyl bile salts (primary bile salts) to 7-dehydroxy-bile salts (secondary bile salts) by single bacterial strains or bacterial communities is determined in an in vitro assay, and can be used to screen a library of organisms, whole communities or subsets of communities using limiting dilutions to identify simpler compositions. Communities to be studies include cecal or fecal communities from animals with altered gastrointestinal microbiota due to antibiotics, diet, genetics, enterohepatic metabolism, or other experimental perturbations that cause GI alterations, or from human fecal samples from healthy individuals or those with altered gastrointestinal microbiomes due to antibiotics, diet, enterohepatic metabolism dysfunction, metabolic dysfunction, or gastrointestinal infection. Dilutions or subsets of these communities (such as could be generated by selective culturing for of the whole community to enrich for aerobes, anaerobes, Gram positives, Gram negatives, spore formers or using other microbiological selections known to one skilled in the art) can be utilized to identify a group of organisms required for a particular multi-step conversion.


To assay 7-alpha-dehydroxylation activity in vitro, an enzymatic assay is established to quantify the amount of 7-alphahydroxy bile acid in a sample. Recombinant 7-alpha-hydroxysteroid dehydrogenase (7-alpha-HSDH) from E. coli (MyBiosource.com) is an enzyme that oxidizes the 7-hydroxy group to a ketone and simultaneously reduces NAD+ to NADH+H+. The production of NADH is monitored at 340 nm using the extinction co-efficient of 6.2×103 M-1 cm-1.


A community of microbes is prepared according to Example 9 or, alternatively a preparation of cecal or fecal bacteria from mice or from human feces or a dilution thereof, or an enriched community thereof, can be tested after being washed 5 times to remove bile acids from the matrix. To the initial sample, a mixture of one or more primary bile acids including but not limited to CA, CDCA or any of their taurine or glycine conjugates is added to a final total concentration of 0.5-5 mM. An initial 100 uL aliquot is removed and heated at 55° C. for 15 min to quench further enzymatic activity. The bacterial composition is then incubated under anaerobic conditions at 37° C., and aliquots are removed sequentially after 30 min, 1 hour, 2 hours, 4 and 8 hours and heated as per above. An assay mix is prepared by combining 0.9 mL glycine-NaOH buffer pH 9.5, 50 uL of 53 mM NAD+(Sigma), and 20 uL of freshly prepared 7-alpha-HSDH (4 mg/mL in distilled water). 80 uL of assay mix is combined with 20 uL of each aliquot in a 96-well microtiter plate and incubated at 37° C. on a SpectraMax m5 plate reader, monitoring A340. The incubation is allowed to proceed until the A340 value achieves its maximum. Total 7-alpha-hydroxyl bile acid is determined using the extinction coefficient for NADH. Changes due to dehydroxylation by the bacterial composition are calculated by subtracting the final value at any timepoint from the initial value.


Microbial communities of interest can be further fractionated using methods described in Example 9.


Example 20. In Vitro Evaluation of Mixed Microbial Cultures for Bile Acid Metabolism

Candidates strains identified in Examples 17, 18 and 19 above are tested using the methods defined for bile salt hydrolase activity and 7-alphadehydroxylase activity are combined in communities to evaluate synergies among strains and define ecologies for further testing in animal models. Synergies include: i) the potential for more rapid conversion from conjugated primary bile salts to unconjugated, dehydryoxylated bile acids; ii) the potential for a broader range of products than determined by the additive combination of activities; iii) equivalent activity at a lower concentration (cfu) of the individual strains. Combinations exhibiting such synergies are particularly favored for subsequent in vivo testing. Another important function of a community is to remove endproducts of a microbial conversion so as to avoid inhibition of growth through product accumulation. For bile acid conversion, communities can optionally include organisms capable of degrading taurine, using it both as a carbon and nitrogen source and using the sulfonic acid group as an electron acceptor in fermentation.


Example 21. Combinations of Bacterial Compositions for SCFA Production Under Variable Conditions

Combinations of synergistic bacterial compositions may be selected such that the composition is capable of producing SCFA under a wide range of in vitro conditions when the entire mixture is tested together. That is, a combination of bacterial compositions comprises multiple pairs of organisms that, together with a complex carbon source, are capable of synthesizing SCFA. Combinations may be constructed that are capable of producing a given set of SCFAs, for example butyrate and proprionate, but not acetate, or that produce butyrate, proprionate and acetate, but that the acetate is then used by another organism as a carbon source. A number of specific combinations of final SCFAs may be generated by communities designed by one skilled in the art. Construction of bacterial combinations follows the protocol described in Example 9.


Example 22. De Novo Design of Network Ecologies with Specific Functional Properties

The role of the microbiome in mediating and influencing human metabolic function is well established. Microbes produce secondary bile acids (as example, Louis P, Flint H J. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294: 1-8.), short chain fatty acids (for example, Smith P M et al. 2013 Science. The microbial metabolites, short-chain fatty acid regulate colonic Treg cell homeostasis 341: 569-73) as well as numerous other functional metabolites that influence immunity and metabolic health of the human host.


To identify consortia of microbes suitable for the use as therapeutics, to influence host metabolic functions, and to treat microbial dysbiosis one can computationally derive in silico network ecologies that possess specific metabolic functions such as, but not limited to, a single or multiple metabolic nodes in the functional pathways involved in secondary bile acid biosynthesis (FIG. 12), butyrate metabolism (FIG. 13), propionate metabolism (FIG. 14), or pyruvate metabolism (FIG. 15). As additional examples, network ecologies can be in silico designed to target host genes involved in important host:microbe innate and adaptive immune responses through targets such as the Toll-like receptors (TLRs) and nucleotide-binding oligomerization domains (NOD) (Saleh M, Trinchieri G. 2011. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11: 9-20. and Knight P, Campbell B J, Rhodes J M. 2008. Host-bacteria interaction in inflammatory bowel disease. Br Med Bull 88: 95-113.). In addition, the functional pathways to target for in silico network ecology design can be empirically defined by comparing the microbiomes of samples derived from different phenotypes such as but not limited to a state of disease and a state of health. For example, one can compare the microbiome and corresponding metabolic functional profile of individuals with and without insulin resistance. Vrieze et al. have shown that treatment with vancomycin can reduce the diversity of the microbiome and result in a small, but statistically significant change in peripheral insulin sensitivity. Similar changes are not observed following amoxicillin treatment (Vrieze, A et al., 2013, J Hepatol. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity dx.doi.org/10.1016/j.jhep.2013.11.034). Decreased insulin sensitivity was associated with a decrease in the presence of secondary bile acids DCA, LCA and iso-LCA and an increase in primary bile acids CA and CDCA increased. In another example, Applicants can compare the microbiome and metabolomic profile of healthy individuals to those with CDAD disease. In yet another example, Applicants can compare the microbiome and metabolomic profile of healthy individuals to those that harbor IBD, IBS, Ulcerative Colitis, Crohn's Disease, Type-2-Diabetes, or Type-1-Diabetes.


For both CDAD and insulin resistance, Applicants can define the functional metabolic profile of the respective disease and health microbiomes using the 16S and metagenomic genomic methods outlined in Example 15. In another embodiment, Applicants can use the transcriptomic and metabolomic methods outlined in Example 15. In another embodiment we use functional metabolic information garnered from the literature and derived from functional screens such as but not limited to Biolog MicroPlates (see Example 16). From these profiles, Applicants can generate a metabolic function matrix for both the disease state and the health state. This matrix is comprised of columns of OTUs and rows of KEGG Orthology Pathways delineated as described in Example 15. A metabolic function matrix can be generated for both the disease state and the health state. From these disease and health matrices, Applicants can compute a delta-function matrix (i.e. difference matrix) that defines the OTUs, the relative abundance of the metabolic pathways they harbor, and the difference in the relative abundance between the disease and health state. In another embodiment, the relative abundances are discretized to be a binary, ternary, or quaternary factor. This delta-function matrix defines the differences in the microbiome distinguishing the disease state from the health state.


One can then design a network ecology with the desired functional characteristics described by the delta-function matrix. In one embodiment, one can use a greedy algorithm to optimize for the most parsimonious solution to the delta-function matrix. One can design towards (i.e. select) the minimal number of OTUs to capture the full breadth of KEGG Orthology Pathways that are represented in the health state. In short, the greedy algorithm repetitively samples the OTUs spanning the greatest number of health associated KEGGs until the desired breath of KEGGs is obtained to define a functional network ecology comprised of specific OTUs. In another embodiment, one can optimize the greedy algorithm to weigh OTUs that are from specific phylogenetic clades. In another embodiment, one can start with the computationally derived network ecologies derived using the methods defined in Example 5 to both seed and constrain the greedy algorithm to return functional network ecologies that embody the co-occurrence relationships that exist between OTUs. Microbial therapeutic compositions comprised of the OTUs of the computed network ecologies are constructed using the methods defined in Example 9. In one embodiment, constraints around network ecologies are defined by networks found in specific individuals. In another embodiment, strains of each OTU that are used for construction preferentially are selected from strains isolated from the same individual since these strains are evolutionary co-evolved and have an increased likelihood of functional synergy.


In another embodiment, Applicants computationally defined in silico a network ecology with the explicit capacity to produce butyrate. In this embodiment, Applicants defined the health state in terms of the metabolic pathways and associated gene products required for the metabolism of non-digestable carbohydrates via fermentation by colonic bacteria and by the gene products leading from mono- and di-saccharides and simple substrates such as acetate and lactate to butyrate (FIGS. 12-15). We then used the IMG functional database (http://img.jgi.doe.gov) of OTU KEGG Orthology Pathways (i.e. ko_id) to generate a metabolic function matrix comprised of columns of OTUs and rows of KEGG Orthology Pathways delineated as described in Example 15. This matrix was restricted to OTUs known to reside in the gastrointestinal tract. From this metabolic function matrix we used the greedy algorithm described above to design network ecologies capable of butyrate production.


Example 23. Identification of Organisms Harboring Butyryl-CoA: Acetate CoA Transferase Genes

A panel of putative butyrate forming bacteria can be screened for the presence of butyryl-CoA: acetate CoA transferase genes to define candidates for SCFA production. Bacteria are scraped from isolated colonies on agar plates or from liquid culture (media selected from Example 9) and subjected to DNA isolation in 96-well plates. 1μ. 1 of microbial culture or an amount of a bacterial colony approximately 1 μL in volume is added to 9 μl of Lysis Buffer (25 mM NaOH, 0.2 mM EDTA) in each well of a 96 well, thin walled PCR plate, sealed with an adhesive seal, and the mixture is incubated at 95° C. for 30 minutes. Subsequently, the samples are cooled to 4° C. and neutralized by the addition of 10 μl of Neutralization Buffer (40 mM Tris-HCl) and then diluted 10-fold in Elution Buffer (10 mM Tris-HCl), at which point the genomic DNA is suitable for use in downstream amplifications such as PCR amplification. Alternatively, genomic DNA is extracted from pure microbial cultures using commercially available kits such as the Mo Bio Ultraclean® Microbial DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, Calif.) or by standard methods known to those skilled in the art.


Degenerate primers are designed to selectively amplify the gene for butyryl-CoA:acetate CoA transferase based on published genomic sequences. Examples of primers are BCoATforward: 5′ GCIGAICATTTCACITGGAAYWSITGGCAYATG (SEQ ID NO: 2047); and BCoATreverse: 5′ CCTGCCTTTGCAATRTCIACRAANGC (SEQ ID NO: 2048), where I=inosine; N=any base; W=A or T; Y=T or C; S=C or G. Amplification is as follows: 1 cycle of 95° C. for 3 min; 40 cycles of 95° C., 53° C., and 72° C. for 30 s each with data acquisition at 72° C.; 1 cycle each of 95° C. and 55° C. for 1 min; and a stepwise increase of the temperature from 55 to 95° C. (at 10 s/0.5° C.) to obtain melting curve data and evaluate product complexity. The target amplicon is about 530 nt in length.


Example 24. Identification of Organisms Harboring Butyrate-Kinase Genes

Butyrate may be produced by substrate level phosphorylation of butyrylCoA by butyrate-kinase and subsequent phosphorylation of ADP to generate ATP and butyrate. DNA isolation and PCR amplification was performed as in Example 23 with the exception that the following primers were used: BUKfor: 5′ GTATAGATTACTIR-YIATHAAYCCNGG (SEQ. ID NO: 2049); and BUKrev: 5′ CAAGCTCRTCIACIACIACNGGRTCNAC (SEQ ID NO: 2050), where I=inosine; N=any base; R=A or G.


Example 25. Identification of Organisms with Butyryl-CoA: Acetate CoA Transferase Enzymatic Activity

Bacterial strains are grown overnight in an anaerobic chamber at 37° C. in pre-reduced media selected from those described in Example 9. 10 mL of the bacterial culture is harvested by centrifugation at 10,000 rpm for 10 min, cooled to 4° C. on ice, and disrupted by sonication as described (Duncan, S. et al., 2002 Appl Environ Microbiol Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate producing bacteria from the human large intestine 68: 5186-90). ButyrylCoA: acetate CoA transferase activities are determined by the method of Barker, scaled for application to a microtiter plate (Barker H A, et al., 1955 Methods Enzymol 1: 599-600).


Example 26. Identification of Organisms with Butyrate-Kinase, Propionate-Kinase and Acetate-Kinase Enzymatic Activity

Bacterial strains are grown overnight in an anaerobic chamber at 37° C. in pre-reduced media selected from those described in Example 9. 10 mL of the bacterial culture is harvested by centrifugation at 10,000 rpm for 10 min, cooled to 4° C. on ice, and disrupted by sonication as described (Duncan, S. et al., 2002 Appl Environ Microbiol Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate producing bacteria from the human large intestine 68: 5186-90). Butyrate-, propionate-, and acetate-kinase activities were determined by colorimetric the method of Rose (Rose I A, 1955 Methods Enzymol Acetate kinase of bacteria 1: 591-5).


Example 27. Characterization of Propionate or Butyrate Production from a Variety of Carbon Sources

Strains identified as having either genes for butyrate or propionate fermentation or having the corresponding enzymatic activities are assayed in vitro using a variety of simple carbon sources for the production of propionate and butyrate. Bacteria are grown overnight in complex media selected from Example 9 in an anaerobic chamber at 37° C. When cultures are visibly turbid, the bacteria are pelleted at 10,000×g for 10 min, the spent media is removed, and they are resuspended in pre-reduced minimal media containing essential vitamins and cofactors (pyridoxamine, p-aminobenzoic acid, biotin, nicotinic acid, folic acid, nicotinamide, choline, pantothenate, riboflavin or vitamin), divalent mineral salts (including the chloride salts of Mg2+, Ca2+ and Mn2+), and organic nitrogenous nutrients (especially glycine, glutamate or asparagine) but lacking carbohydrate as a carbon source. Alternatively, strains may be resuspended in a dilution of the original rich media, for instance a 1:10 or 1:100 dilution, such that essential factors are available but a required carbon source is limiting.


Various carbon sources are added to individual cell suspensions. These include acetate and D and L isomers of lactate, simple sugars including glucose, galactose, mannose, arabinose, xylose or any other naturally sugar, amino sugars such as N-acetyl glucosamine, galactosamine, sialic acid or glucosamine, sugar alcohols such as glycerol, erythritol, threitol, mannitol, inositol or sorbitol. In addition, the cell suspensions are individually incubated with complex carbon sources including di-, tri-, oligo- and polysaccharide carbon sources including fructans, starches, cellulose, galactomannans, xylans, arabinoxylans, pectins, inulin, and fructooligosaccharides. Tested carbon sources also include glycopeptides and glycoproteins, such as mucin. The cell suspension is incubated overnight in a sealed 96-well plate in order prevent the escape of volatile products.


At the end of the incubation period, the production of propionate, butyrate and other SCFAs is determined according to the following protocol:


Reagents

    • Internal Standard: 2-ethylbutyric acid, 2-EBA (100 mM)
    • SCFA Mixed Standard: formic acid 10 mM, acetic acid 30 mM, propionic acid 20 mM, isobutyric acid 5 mM, n-butyric acid 20 mM, n-valeric acid 5 mM, isovaleric acid 5 mM, sodium lactate 10 mM, sodium succinate 10 mM, phenylacetic acid 5 mM
    • MTBSTFA Derivatizing Reagent (N-Methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide), purchased from Regis Technologies
    • Concentrated HCl
    • Deionized Water
    • Diethyl ether (unstabilized)
    • Hexane


Linearity Standards Preparation: Linearity Standard 1 is prepared using straight SCFA Standard. Linearity Standard 2 is prepared using 100 uL of SCFA Standard and 900 uL of water. Linearity Standard 3 is prepared using 100 uL of Linearity Standard 2 and 900 uL of water.


SCFA Extraction: Extractions of samples (Media and Culture Supernatant), water blanks, and linearity standards were prepared in 4-mL vials using 250 uL of sample, blank, or standard, 250 uL of concentrated HCl, and 50 uL of Internal Standard (2-EBA). Once combined, the sample, standards, and blanks were vortexed and allowed to stand for about 5-10 minutes. Diethyl ether (2000 uL) was added to each of the samples, standards and blanks, and each was liquid-liquid extracted for approximately 2 minutes. The aqueous and organic phases of the extracted samples, standards and blanks were allowed to separate. Once the layers separated, 1000 uL of the ether layer was transferred to 2-mL micro-centrifuge tubes and centrifuged at 14 k for 2 minutes to remove any remaining water.












TABLE 1









Sample/Standard/Blank*
250 uL



HCl
250 uL



Internal Standard (2-EBA)
 20 uL



Ether
2000 uL 







*substitute deionized water for blank preparations






Derivatization: Derivatization of all samples, blanks and standards was conducted in HPLC vials using 175 uL of the upper ether layer of samples or standards and 25 uL of MTBSTFA derivatizing reagent. The reaction mixture was vortexed and allowed to sit at RT for 24 hours. After 24 hours, the ether was removed using a gentle stream of nitrogen, and the residual material was dissolved in 50 uL of hexane. (Note: solvent was removed until no further change in volume was apparent, ˜5-10 min). The derivatized solutions were transferred to small-volume inserts for GC-MS analysis.


An aliquot of the resulting derivatized material is injected into a gas chromatograph (Hewlett Packard 6890) coupled to a mass spectrometer detector (Agilent Technologies 5973). Analyses are completed using DB-5MS (60 m, 0.25 mm i.d., 0.25 mm film coating; P. J. Cobert, St. Louis, Mo.) and electronic impact (70 eV) for ionization. A linear temperature gradient is used. The initial temperature of 80° C. is held for 1 min, then increased to 280° C. (15° C./min) and maintained at 280° C. for 5 min. The source temperature and emission current are 200° C. and 300 mA, respectively. The injector and transfer line temperatures are 250° C. Quantitation is completed in selected ion monitoring acquisition mode by comparison to labeled internal standards [formate was also compared to acetate-13C1,d2]. The m/z ratios of monitored ions for formic acid, acetic acid, propionic acid, butyric acid, acetate, proprionate and butyrate are as follows: 103 (formic acid), 117 (acetic acid), 131 (propionic acid), 145 (butyric acid), 121 ([2H2]- and [1-13C]acetate), 136 ([2H5]propionate), and 149 ([13C4]butyrate).


At the completion of the experiment, a database is generated for each tested organism defining what carbon sources yield which SCFAs. In each case where a microbe is capable of making propionate or butyrate from acetate, lactate, a simple sugar including a disaccharide, an amino sugar or sugar alcohol it is scored as positive for SCFA production. Also noted is whether organisms are capable of utilizing complex carbon sources such as polysaccharides to produce SCFA and which SCFAs are produced.


Example 28. Identification of Organisms Capable of Metabolizing Complex Carbon Sources Including Polysaccharides and Steroids

Individual strains are screened for their ability to metabolize complex carbon sources including polysaccharides and steroids (such as bile salts) according to Example 16 to determine bacterial strain nutrient utilization. For a more complete characterization, specialized plates are constructed utilizing polysaccharide carbon sources including fructans, starches, cellulose, galactomannans, xylans, arabinoxylans, pectins, inulin, and fructooligosaccharides as well as carbon sources including glycopeptides and glycoproteins (such as mucin). These can be made to order by Biolog.


At the end of the experiment, a catalogue of is generated for each tested organism defining what carbon sources it can utilize.


Example 29. Construction of Cross Feeding Compositions

Data from Examples 27 and 28 are analyzed to determine combinations where one organism can make SCFAs from at least one simple carbon source but not from at least one complex carbon source (a polysaccharide or a glycoprotein), and another organism cannot make SCFAs from a simple carbon source but can utilize at least one complex carbon source as a metabolic substrate.


In these cases, a bacterial mixture is made combining a washed overnight culture of the SCFA producer and a washed overnight culture of the SCFA non-producer in a minimal media as described in Example 27 with the addition of the at least one complex carbon source. The bacterial mixture is incubated anaerobically overnight at 37° C. in minimal media or a 1:10 or 1:100 dilution of rich media, and the next day is worked up according to Example 27 in order to detect whether SCFA has been produced. Control cultures include each microbe cultured individually, and the bacterial mixture cultured overnight without the complex carbon source.


Bacterial mixtures in which control cultures do not yield SCFA but the complete mixture does define synergistic bacterial compositions. Synergistic bacterial compositions may be tested for further effects in a variety of in vitro or in vivo models, with and without the complex carbon source, which may be considered a component of one embodiment of the synergistic bacterial composition.


Example 30. In Vivo Validation of Bacterial Composition Efficacy in for Amelioration of Leaky Gut

A murine model for “leaky gut syndrome” is constructed by intraperitoneal injection of pregnant C57BL/6N mice (Charles River, Wilmington, Mass.) with 20 mg/kg poly(I:C) in 200 uL of saline on embryonic day 12.5. Control pregnant mice are injected with 200 uL of saline only (Hsiao E Y et al., 2013 Cell Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders 155: 1451-63).


Pups are randomly selected for treatment with a single bacterial composition or a combination of bacterial compositions at the time of weaning (Day 20-22) and received oral gavage every other day for 6 days. In addition, groups of animals receive mouse chow supplemented with the complex carbohydrate relevant to the bacterial composition(s) that is (are) dosed. Control groups (saline injections) receive comparable combinations of bacterial compositions, with and without the complex carbohydrate.


Animals are tested at adolescence (3 weeks post-weaning) and adulthood (8 weeks post weaning) for leaky gut. Mice are fasted for 4 hr before gavage with 0.6 g/kg 4 kDa FITC-dextran (Sigma Aldrich). Four hours later, serum samples are read for fluorescence intensity at 521 nm using an xFluor4 spectrometer (Tecan). Increased fluorescence is taken as evidence of leaky gut, while decreased fluorescence is evidence for amelioration of leaky gut induced by poly(I:C) treatment. Preferred bacterial compositions decrease leak gut in mice.


Example 31. In Vivo Validation of Bacterial Composition Efficacy in Germ Free Mice Conventionalized with Human Obese Microbiota

Ridaura et al. (2013) showed that germ-free (GF) mice conventionalized with microbiota from female twins discordant for obesity showed taxonomic and phenotypic features of the human donor's microbiota. Mice receiving obese twin microbiota (Ob mice) showed significantly greater body mass and adiposity than recipients of lean twin microbiota (Ln mice). Furthermore, they observed that cohousing Ob mice and Ln mice prevented development of the obese phenotype in the Ob mice and showed that the rescue correlated with invasion of members of the microbiota from the Ln mice into the Ob mice.


Ob and Ln mice prepared as described by Ridaura et al. (2013) can be used to test the therapeutic potential of a bacterial composition for obesity. Ob and Ln mice are generated by introducing via oral gavage fecal samples from twins discordant for obesity into 8-9 week old adult male germ-free C57BL/6J mice. One gnotobiotic isolator is used per microbiota sample and each recipient mouse is individually caged within the isolator. The obese twin must have BMI >30 kg/m2 and the pair must have a sustained multi-year BMI difference of at least 5.5 kg/m2. Recipient mice are fed a low fat (4% by weight) high in plant polysaccharide (LF-HPP), autoclaved mouse chow (B&K Universal, East Yorkshire, U.K. diet 7378000).


To prepare the fecal samples for gavage into the GF mice, fecal samples provided by donors are frozen immediately after production, stored at −80° C. Samples are homogenized by mortar and pestle while submerged in liquid nitrogen and a 500 mg aliquot of the pulverized material is diluted in 5 mL of reduced PBS (PBS supplemented with 0.1% Resazurin (w/v), 0.05% L-cysteine-HCl) in an anaerobic Coy chamber (atmosphere, 75% N2, 20% CO2, 5% H2) and then vortexed for 5 min at room temperature. The suspension is settled by gravity for 5 min, and then the clarified supernatant transferred to an anaerobic crimped tube that is transported to a gnotobiotic mouse facility. Prior to transfer of the tube into the gnotobiotic isolator, the outer surface of the tube is sterilized by exposure for 20 min to chlorine dioxide in the transfer sleeve attached to the isolator. 200 μL aliquot of the suspension is provided into the stomachs of each recipient animal by gavage.


At day 15 post-colonization, the bacterial composition containing at least 108 CFU/ml per strain is administered daily by oral gavage for 4 weeks to half of the Ob mice and half of the Ln mice. The remaining Ob mice and Ln mice are administered PBS by the same regimen. Optionally, mice can receive 0-3 days of antibiotic pre-treatment prior to administration of the bacterial composition. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple doses of test article, and 103 to 1010 CFU/ml per strain of a bacterial composition may be delivered. The bacterial composition may optionally be administered together or co-formulated with prebiotic(s).


Feces are collected from the cages for analysis of bacterial carriage. Total body weight, fat mass and lean body mass are measured at baseline before colonization, at days 8 and 15 post-colonization, and days 22, 29, 35, and 42 post-colonization (7, 14, 21, and 28 days after administration of the bacterial composition) using quantitative magnetic resonance analysis of body composition (EchoMRT-3in1 instrument). At time of sacrifice, epididymal fat pads are also collected and weighed. Optionally, luminal contents of the stomach, small intestine, cecum, and colon contents as well as the liver, spleen, and mesenteric lymph nodes can be collected for subsequent analysis. Alternative or additional time points may also be collected.


By the end of the treatment period with the bacterial composition, the Ob mice receiving the bacterial composition is expected to show significant differences in body composition (change in % fat mass; fat pad weight/total body weight) as compared to the Ob group receiving PBS and the Ln groups.


Optionally, at the end of the treatment period, the body composition is determined for all mice. Bacterial compositions that produce significant changes in body composition in the Ob mice (decrease in % fat mass; decrease in fat pad weight; or decrease in total body weight) as compared to control Ob mice receiving PBS are identified as therapeutic candidates.


Example 32. In Vivo Validation of Bacterial Composition Efficacy in Germ Free Mice Conventionalized with Bacterial Composition and Lean/Obese Microbiota Controls

To test the potential of a bacterial composition's ability to treat obesity, 8-9 week old GF C57BL/6J mice can be conventionalized by introducing by oral gavage a) the bacterial composition, b) fecal samples from an obese female twin discordant for obesity (obese control), or c) fecal samples from the paired lean female twin (lean control). One gnotobiotic isolator is used per microbiota sample and each recipient mouse is individually caged within the isolator. The obese twin donors must have BMI >30 kg/m2 and the donating pair must have a sustained multi-year BMI difference of at least 5.5 kg/m2. Recipient mice are fed a low fat (4% by weight) high in plant polysaccharide (LF-HPP), autoclaved mouse chow (B&K Universal, East Yorkshire, U.K. diet 7378000).


To prepare the fecal samples for gavage into the GF mice, fecal samples provided by donors are frozen immediately after production, stored at −80° C. Samples are homogenized by mortar and pestle while submerged in liquid nitrogen and a 500 mg aliquot of the pulverized material is diluted in 5 mL of reduced PBS (PBS supplemented with 0.1% Resazurin (w/v), 0.05% L-cysteine-HCl) in an anaerobic Coy chamber (atmosphere, 75% N2, 20% CO2, 5% H2) and then vortexed for 5 min at room temperature. The suspension is settled by gravity for 5 min, and then the clarified supernatant transferred to an anaerobic crimped tube that is transported to a gnotobiotic mouse facility.


To prepare the bacterial composition for gavage into the GF mice, see Example 9. Prior to transfer of tubes into the gnotobiotic isolator, the outer surface of the tube is sterilized by exposure for 20 min to chlorine dioxide in the transfer sleeve attached to the isolator. 200 μL aliquots of the fecal suspensions are provided into the stomachs of the recipient animals by gavage.


Feces are collected from the cages for analysis of bacterial carriage. Total body weight, fat mass and lean body mass are measured at baseline before colonization, at days 8, 15, 22, 29, and 35. At time of sacrifice, epididymal fat pads are also collected and weighed. Optionally, luminal contents of the stomach, small intestine, cecum, and colon contents as well as the liver, spleen, and mesenteric lymph nodes can be collected for subsequent analysis. Alternative or additional timepoints may also be collected.


By the end of the treatment period with the bacterial composition, the mice receiving the bacterial composition is expected to show body composition (change in % fat mass; fat pad weight/total body weight) and microbial composition that is similar to the lean control and that is statistically different from the obese control.


Example 33. In Vivo Validation of Bacterial Composition Efficacy in Dietary Induced Obesity Mouse Model

Male C57BL/6 mice fed a high fat diet can be used to test bacterial compositions' ability to treat obesity in a diet-induced obesity (DIO mouse) prevention model. To do so, eight groups of mice (n=8) are used, with all combinations of +/−antibiotic pretreatment, bacterial composition vs. vehicle, and high fat vs. standard diet.


4 week old male C57BL/6 mice are group housed (2-5 mice per cage) in filter top cages with autoclaved bedding, and free access to autoclaved irradiated food (LabDiet 5053, LabDiet, St. Louis, Mo. 63144) and autoclaved water. For groups receiving antibiotic pretreatment, drinking water is replaced by an antibiotic cocktail consisting of 10% glucose, kanamycin (0.5 mg/mL), gentamicin (0.044 mg/mL), colistin (1062.5 U/mL), metronidazole (0.269 mg/mL), ciprofloxacin (0.156 mg/mL), ampicillin (0.1 mg/mL) and vancomycin (0.056 mg/mL) (all constituents from Sigma-Aldrich, St. Louis Mo.) for 1 week, after which autoclaved water is returned to all cages. The mice are dosed daily with a volume of 0.2 ml containing at least 1×108 cfu/ml per strain daily or an equal volume of sterile PBS. Optionally, the dose may range from 5×106 to 5×1010 cfu/ml per strain and or dosing may occur three times a week. After one week of dosing, a group (n=10) of mice dosed with vehicle and one with the bacterial composition are switched to a high fat diet (Research Diet D12492) and dosing is continued for all groups. Treatment is continued for 15 weeks following the diet shift. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple doses of test article, and 103 to 1010 CFU/ml per strain of a bacterial composition may be delivered. The bacterial composition may be optionally be administered together or co-formulated with prebiotic(s).


Body weight will be measured three times per week throughout the study. Blood will be drawn by submandibular bleed every three weeks, from which serum cholesterol and triglycerides will be measured. Fasting blood glucose will be measured in weeks 12 and 15 following the diet shift. At sacrifice, total body, gastrocnemius, liver, epididymal fat pad, and cecum weights are measured, and the contents of the cecum as well as one lobe of the liver are stored at −80° C. By the end of the experiment, successful treatments will have statistically significant differences in total body weight, epididymal fat pad mass, or cholesterol.


Example 34. In Vivo Validation of Bacterial Composition Efficacy in Nonobese Diabetic Mouse Model of Type-1-Diabetes

To demonstrate the efficacy of the microbial composition for improving the incidence of type 1 diabetes, a type 1 diabetes mouse model described previously is utilized (e.g. see Markle et al 2013. Sex differences in the gut microbiome drive hormone dependent regulation of autoimmunity. Science 339: 1084). Briefly, nonobese diabetic (NOD)/Jsd (NOD) Specific Pathogen Free (SPF) female mice are housed in sterilized static caging. The animals receive a standard mouse diet (LabDiet #5015, PMI Nutrition International) and autoclaved water. All staff uses autoclaved gowns, caps, masks, shoe covers, and sterile gloves. Animal handling and cage changes are done under HEPA filtered air. The pathogen status is determined by weekly exposure of CD-1 sentinel mice to soiled bedding from the cages in the room. Quarterly serological testing of sentinels confirmed the NOD mice are negative for: Mouse Hepatitis Virus, Minute Virus of Mice, Mouse Parvovirus, Murine Norovirus, Sendai Virus, Theiler's Murine Encephalomyelitis, Retrovirus and for endo- and ectoparasites. In addition, live animals are subjected to additional, annual comprehensive testing, including necropsy, histopathology, bacteriology and parasitology testing.


To test the microbial composition for prophylactic ability to reduce, delay or prevent disease appearance, weanling NOD females (aged 22-26 days) are gavaged with 250 uL the microbial bacterial composition using a 24 G round tip gavage needle. Recipients are rested for 24 hours, and this procedure is repeated once. Optionally, mice can receive 0-3 days of antibiotic pre-treatment prior to administration with the bacterial composition. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple doses of test article, and 103 to 1010 CFU/ml per strain of a bacterial composition may be delivered. The bacterial composition may be optionally be administered together or co-formulated with prebiotic(s).


As a negative control, a group of female weanling NOD mice are gavaged with cecal contents from a female NOD mouse, and as a positive control a third group of female NOD mice are given cecal contents from a male NOD diluted 50×(v/v) and delivered in 250 ul. Spontaneous development of T1D assessment is assessed biweekly by measuring glucose levels in blood and urine. Animals are checked daily and are classified as diabetic when blood glucose exceeds 16 mmol/L or urine glucose exceeds 250 mg/dL. Additionally, serum insulin autoantibody (IAA) is measured by a micro-IAA assay (mIAA). Briefly, 125-I labeled human insulin (Perkin Elmer) is incubated with NOD serum with and without cold (unlabeled) human insulin and the immune complex is isolated by binding to protein A and G Sepharose. The assay is performed on a 96-well filtration plate to retain Sepharose beads and radioactivity is counted on a Topcount 96-well plate beta counter or similar instrument. An index is calculated by taking the difference of cpm between wells without and with cold insulin. A positive is defined by any conventional cut-off measure including a value greater than the 99th percentile of control values, or a value 3 standard deviations beyond the mean of the control values. Furthermore Insulitis is assessed. Briefly, pancreata are dissected and immediately immersed in OCT media (Tissue-Tek, Torrance, Calif.), frozen in −20° C. 2-methylbutane, and stored at −70° C. Preparation of frozen sections is performed with a Leica C M 3050 Cryostat (Leica Canada). To maximize analysis of independent islet infiltrates, three 5-μm sections are cut at least 400 μm apart. Pancreatic sections are stained with Mayer's hematoxylin and eosin Y (H+E, Sigma) to visualize leukocyte infiltration. Assessment of insulitis severity in pancreatic sections is performed by one skilled in the art. Briefly, islets are graded according to the following criteria: 0, no visible infiltrates; 1, peri-insulitis as indicated by peri-vascular and peri-islet infiltrates; 2, <25% of the islet interior 9 occluded by leukocytes displaying invasive infiltrates; 3, >25% but <50% of the islet interior invaded by leukocytes; or 4, invasive insulitis involving 50%-100% of the islet field.


To evaluate the microbial composition for treatment of disease, the procedure above is repeated whereby NOD nonobese diabetic (NOD)/Jsd (NOD) Specific Pathogen Free (SPF) female mice are housed and evaluated for development of diabetes by the criteria described above. Once a mouse develops diabetes it is gavaged with the microbial composition, and blood glucose, urine glucose, and insulin serum levels are evaluated by ELISA weekly to determine disease progression. 7 weeks later animals are sacrificed and insulitis is evaluated by methods described above. Optionally, mice can receive 0-3 days of antibiotic pre-treatment prior to administration with the bacterial composition. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple doses of test article, and 103 to 1010 CFU/ml per strain of a bacterial composition may be delivered.


Example 35. In Vivo Validation of Bacterial Composition Efficacy in Nile Rat Model of Type-2-Diabetes

To test the efficacy of a microbial composition for delaying, treating or preventing the symptoms of type 2 diabetes, a Nile grass rat (Arvicanthis niloticus) model described previously is utilized (e.g. see Noda, K., et al. (2010). An animal model of spontaneous metabolic syndrome: Nile grass rat. The FASEB Journal 24, 2443-2453. or Chaabo, F., et al. (2010). Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus): a novel model for diet-induced type 2 diabetes and the metabolic syndrome. Nutrition & Metabolism 7, 29.). Nile rats, which spontaneously develop symptoms of type 2 diabetes and metabolic syndrome, are individually housed and have free access to autoclaved water and autoclaved standard laboratory chow (Lab Diet 5021; PMI Nutrition, St. Louis, Mo., USA). At 5 weeks of age, thrice-weekly dosing of the Nile rats with about 5×108 cfu/ml per strain of the microbial composition or an equal volume of sterile PBS by oral gavage while under light sedation with 50%/50% O2/CO2 is initiated. Optionally, the dose may range from 5×106 to 5×1010 cfu/ml per strain and/or dosing may occur once weekly. Dosing will continue for 20 weeks post initiation, optionally lasting 15, 30, 40, or 50 weeks. The model could be modified to address prediabetes by shortening the duration to about 3 to 10 weeks post initiation of dosing.


Body weight will be measured three times per week throughout the study. Blood glucose, cholesterol, triglycerides, and hemoglobin A1C will be measured after obtaining blood by tail bleed while under light sedation with 50%/50% O2/CO2 every three weeks following initiation of dosing. At sacrifice, total body, liver, kidney, epididymal fat pad, and cecum weights are measured. Terminal plasma samples are used for measurement of insulin, blood glucose, cholesterol, triglycerides, and hemoglobin A1C. Following perfusion with PBS under deep anesthesia, the liver and kidneys are excised and fixed in 4% paraformaldehyde. Subsequently, 15 μm sections are stained with Oil-Red-O and counterstained with Mayer's hematoxylin to facilitate the identification of stores of hydrophobic lipids. The contents of the cecum are flash frozen in liquid nitrogen and stored at −80° C.


Animals treated with successful compositions will have statistically significant differences in terminal body weight, blood glucose, hemoglobin A1C, liver or kidney accumulation of lipid, and/or insulin from control animals.


Example 36. In Vivo Validation of Bacterial Composition for Prophylactic Use and Treatment in a Mouse Model of Vancomycin Resistant Enterococcus (VRE) Colonization

The emergence and spread of highly antibiotic-resistant bacteria represent a major clinical challenge (Snitkin et al Science Translational Medicine, 2012). In recent years, the numbers of infections caused by organisms such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococcus (VRE), and Clostridium difficile have increased markedly, and many of these strains are acquiring resistance to the few remaining active antibiotics. Most infections produced by highly antibiotic-resistant bacteria are acquired during hospitalizations, and preventing patient-to-patient transmission of these pathogens is one of the major challenges confronting hospitals and clinics. Most highly antibiotic-resistant bacterial strains belong to genera that colonize mucosal surfaces, usually at low densities. The highly complex microbiota that normally colonizes mucosal surfaces inhibits expansion of and domination by bacteria such as Enterobacteriaceae and Enterococcaceae. Destruction of the normal flora by antibiotic administration, however, leads to disinhibition antibiotic-resistant members of these bacterial families, enabling to their expansion to very high densities (Ubeda et al Journal of Clinical Investigation 2010). High-density colonization by these organisms can be calamitous for the susceptible patient, resulting in bacteremia and sepsis (Taur et al, Clinical Infectious Disease, 2012).


To test prophylactic use and treatment of a bacterial composition, a VRE infection mouse model is used as previously described (Ubeda et al, Infectious Immunity 2013, Ubeda et al, Journal of Clinical Investigation, 2010). Briefly, experiments are done with 7-week-old C57BL/6J female mice purchased from Jackson Laboratory, housed with irradiated food, and provided with acidified water. Mice are individually housed to avoid exchange of microbiota between mice due to coprophagia. For experimental infections with VRE, mice are treated with ampicillin (0.5 g/liter) in their drinking water, which is changed every 3 days.


In the treatment model, on day 1, mice are infected by means of oral gavage with 108 CFU of the vancomycin-resistant Enterococcus faecium strain purchased from ATCC (ATCC 700221). One day after infection (day 1), antibiotic treatment is stopped and VRE levels are determined at different time points by plating serial dilutions of fecal pellets on Enterococcosel agar plates (Difco) with vancomycin (8 ug/ml; Sigma). VRE colonies are identified by appearance and confirmed by Gram staining or other methods previously described (e.g. see Examples 1, 2, 3, and 4). In addition, as previously described (Ubeda et al, Journal of Clinical Investigation 2010), PCR of the vanA gene, which confers resistance to vancomycin, confirms the presence of VRE in infected mice. The bacterial composition test article such as but not limited to an ethanol treated, gradient purified spore preparation (as described herein), fecal suspension, or a Network Ecology is delivered in PBS on days 1-3 while the negative control contains only PBS and is also delivered on days 1-3 by oral gavage. Fresh fecal stool pellets are obtained daily for the duration of the experiment from days −7 to day 10. The samples are immediately frozen and stored at −80° C. DNA is extracted using standard techniques and analyzed with 16S or comparable methods (e.g. see Examples 1 and 2).


In the colonization model, ampicillin is administered as described above for day −7 to day 1, treatment with the bacterial composition or vehicle control is administered on day 0-2 and the VRE resistant bacteria at 108 CFU are administered on day 14. Fecal samples are taken throughout the experiment daily from −7 to day 21 and submitted for 16S sequencing as previously described (e.g. see Examples 1 and 2).


In both models, titers of VRE in feces are used to evaluate the success of the bacterial composition versus the negative control. A preferred bacterial composition either prevents or reduces colonization by VRE compared to the negative control, or it accelerates the decrease in colonization after cessation of antibiotics. Furthermore, each bacterial composition is assessed for the ability of the bacterial composition test article to induce a healthy microbiome, as measured by engraftment, augmentation and increase in microbiota diversity.


Example 37. In Vivo Validation of a Bacterial Composition for Prophylactic Use and Treatment of a Mouse Model of Carbapenem Resistant Klebsiella (CRKp) Colonization

The emergence of Klebsiella pneumoniae strains with decreased susceptibility to carbapenems is a significant threat to hospitalized patients. Resistance to carbapenems in these organisms is most frequently mediated by K. pneumoniae carbapenemase (KPC), a class A beta-lactamase that also confers resistance to broad-spectrum cephalosporins and commercially available beta-lactam/beta-lactamase inhibitor combinations (Queenan et al, Clinical Microbiology Review, 2007). KPC-producing K. pneumoniae (KPC-Kp) strains often harbor resistance determinants against several other classes of antimicrobials, including aminoglycosides and fluoroquinolones, resulting in truly multidrug-resistant (MDR) organisms (Hirsch et al, Journal of Antimicrobial Chemotherapy, 2009). Considering the limited antimicrobial options, infections caused by KPC-Kp pose a tremendous therapeutic challenge and are associated with poor clinical outcomes.


A treatment protocol in a mouse model previously described in mice sensitive to KCP-Kp (e.g. Perez et al, Antimicrobial Agents Chemotherapy, 2011) is used to evaluate the bacterial composition (test article) for treating carbapenem resistant Klebsiella and reducing carriage in the GI tract. Female CF1 mice (Harlan Sprague-Dawley, Indianapolis, Ind.) are used and are individually housed and weighed between 25 and 30 g. The bacterial composition includes without limitation an ethanol treated, gradient purified spore preparation (as described herein), fecal suspension, or a Network Ecology.


The thoroughly characterized strain of K. pneumoniae, VA-367 (8, 9, 25) is used. This clinical isolate is genetically related to the KPC-Kp strain circulating in the Eastern United States. Characterization of the resistance mechanisms in K. pneumoniae VA-367 with PCR and DNA sequence analysis revealed the presence of blaKPC-3, blaTEM-1, blaSHV-11, and blaSHV-12 as well as qnrB19 and aac(6′)-1b. Additionally, PCR and DNA sequencing revealed disruptions in the coding sequences of the following outer membrane protein genes: ompK35, ompK36, and ompK37. Antibiotic susceptibility testing (AST) was performed with the agar dilution method and interpreted according to current recommendations from the Clinical and Laboratory Standards Institute (CLSI). A modified Hodge test were performed, according to a method described previously (e.g. see Anderson et al, Journal of Clinical Microbiology, 2007) with ertapenem, meropenem, and imipenem. Tigecycline and polymyxin E were evaluated by Etest susceptibility assays (AB bioMerieux, Solna, Sweden). Results for tigecycline were interpreted as suggested by the U.S. Food and Drug Administration (FDA) and according to CLSI recommendations (criteria for Pseudomonas) for polymyxin E.


In a prophylactic design, mice (10 per group) are assigned to receive either a bacterial composition (test article; e.g. see Example 9 or 10), or control group receiving only the vehicle. After 3 days of subcutaneous clindamycin treatment (Day −6, −5, −4) to sensitize them to KPC-Kp, mice are administered the test article or vehicle daily from day −10 to day 0, On day 0, 103 CFU of KPC-Kp VA-367 diluted in 0.5 ml phosphate-buffered saline (PBS) is administered by oral gavage. Fecal samples are collected 1, 4, 6, and 11 days after the administration of KPC-Kp to measure the concentration of carbapenem-resistant K. pneumoniae. Fecal samples (100 mg diluted in 800 ml of PBS) are plated onto MacConkey agar with 0.5 ug/ml of imipenem, and the number of CFU per gram of stool is determined. Efficacy of test articles is apparent as a reduction in KPC-Kp burden.


Alternatively other methods may be used to measure the levels of carbapenem-resistant K. pneumoniae e.g. PCR, antigen testing, as one who is skilled in the art could perform.


In a treatment design, mice are treated with subcutaneous clindamycin to reduce the normal intestinal flora 1 day before receiving 104 CFU of KPC-Kp VA-367 by oral gavage. For 7 days after oral gavage with KPC-Kp, mice receive oral gavage of normal saline (control group), or the bacterial composition. Fecal samples are collected at baseline and at 3, 6, 8, 11, 16, and 21 days after KPC-Kp VA-367 was given by gavage. The level of CRKp in feces is determined by plating serial dilutions of fecal suspensions to MacConkey agar with 0.5 ug/ml of imipenem, and the number of CFU per gram of stool is determined. Alternatively other methods may be used to measure the levels of carbapenem-resistant K. pneumoniae e.g. PCR, antigen testing, as one who's skilled in the art could perform. Efficacy of test articles is apparent as a reduction in KPC-Kp burden.


Example 38. In Vivo Validation of Bacterial Composition for Efficacy in for the Prophylactic Use or Treatment of Pathogenic Fungus in Mice Models

The bacterial compositions of the invention can be utilized for prophylaxis or treatment of pathogenic fungus in a mouse colonized with one of several Candida species. Adult male CD-1 (ICR) mice are intragastrically inoculated with C. albicans, C. tropicalis or C. parapsilosis as previously described (Mellado et al., Diagnostic Microbiology and Infectious Disease 2000). Tetracycline-HCl at 1 g/L and 5% glucose are included in the drinking water starting on Day −2, 2 days before Candida dosing on Day 0, and throughout the experiment, to enhance colonization. 5×107 Candida are dosed in 0.1 mL on Day 0. By Day 4 all mice are colonized as detected by fecal cfu assay described below. Test articles are used in both prophylactic and treatment regimens. Prophylactic dosing with a bacterial composition including without limitation an ethanol treated, gradient purified spore preparation (as described herein), fecal suspension, or a Network Ecology occurs on Day −1 with a dose between 104 and 1010 bacteria, while treatment dosing occurs on Days 1, 2 and 3 with a similar dose. Negative control groups in both regimes are dosed with PBS administered in a similar manner. All test article dosing is by oral gavage. Treated and untreated mice are kept separate in independently ventilated cages for all of the experiments. Sterilized food, bedding and bottles are used throughout the experiment. Sterilized tap water with or without supplements are also used to avoid contamination. Starting at day −1 postinfection (p.i.), mice are weighed daily and stool samples are collected from each animal and scored for consistency (0, normal feces; 1, mixed stool samples containing both solid and pasty feces; 2, pasty feces; 3, semiliquid feces; 4, liquid feces).


Feces are cultured for yeasts. Dilutions of fecal samples are titrated on Sabouraud Dextrose Chloramphenicol agar (Neogen cat #(7306) agar plates which are selective for fungi. After 24-48 h of incubation at 37° C., quantification of the cultures is achieved by counting the plates visually or by scanning the plates on a Colony Image Analysis Scanner (Spiral Biotech) and processed by the computer software CASBA 4 (Spiral Biotech). The results are noted as colony forming units (CFU) per gram of feces. Effect of bacterial composition on Candida colonization and quality of feces of infected mice is thus analyzed by comparing to placebo, and representative colonies are submitted for 16S/18S/ITS microbial identification before and after infection as previously described (e.g. See Example 1 and 2).


Using this model, the ability of test articles to prevent fungal dissemination and death is also tested. Starting on Day 4 in the above regimen, animals colonized with fungi are treated with immunosuppressive agents to induce deep neutropenia [defined as >500 polymorphonuclear cell per ml. Total white cells counts are performed using a hemacytometer Neubauer improved (Brand, Werthheim/Main, Germany)]. The immunosuppressive agents (150 mg/kg of cyclophosphamide (Sigma) and 65 mg/kg of 6-methyl-prednisolone (Sigma) are both administered intraperitoneally (i.p.) every 72-96 h until deep neutropenia is obtained and continue for 10 days. Test articles are delivered either on Day 4, 5 and 6, in parallel with the start of immunosuppression or for 3 consecutive days after deep neurtopenia is confirmed. Control animals are treated with PBS in each mode of treatment (Day 4-6, or 3 days post neutropenia. Mortality, dissemination and histology are monitored. When animals are severely ill, they are humanely euthanized with pentobarbital (Nembutal) or similar acceptable methods. Dissemination is quantified in kidneys, liver and spleen is quantified by suspending tissue separately in 2 mL of cooled PBS, and homogenizing using a lab-blender (Stomacher 80, Madrid, Spain). Aliquots of the homogenates are cultured for yeasts and bacterial flora. Results are expressed as CFU per gram of tissues. Candida dissemination is defined as positive cultures of at least two cultured organs. Positive culture is defined as plates yielding a value of >1.5 log 10 CFU/g of tissues. Histologic studies are also performed on five cut sections of liver, kidneys and spleen to detect yeasts.


Example 39. In Vivo Validation of Bacterial Composition for Efficacy for Prophylaxis or Treatment in a Mouse Model of Methicillin Resistant Staphylococcus aureus (MRSA)

Methicillin resistant Staphylococcus aureus (MRSA) is a Gram positive pathogen that is a major cause of nosocomial infections including sepsis, pneumonia and surgical site infections. Both nasal and gastrointestinal carriage of MRSA are implicated as sources of organisms associated with nosocomial infections. Rectal carriage of MRSA is common in patients in intensive care units and patients with both rectal and nasal colonization had significantly higher rates of MRSA infection than did patients with nasal colonization alone (Squier et al Staphylococcus aureus rectal carriage and its association with infections in patients in a surgical intensive care unit and a liver transplant unit. Infect Control Hosp Epidemiol 2002; 23:495-501.)


MRSA is also associated with gastrointestinal disease, including antibiotic associated diarrhea (Boyce and Havill, Nosocomial antibiotic-associated diarrhea associated with enterotoxin-producing strains of methicillin-resistant Staphylococcus aureus. Am J Gastroenterol. 2005 August; 100(8):1828-34; Lo and Bourchardt, Antibiotic-associated diarrhea due to methicillin-resistant Staphylococcus aureus, Diagnostic Microbiology & Infectious Disease 63:388-389, 2009).


A mouse model of MRSA colonization is used to test the efficacy of bacterial compositions in treating MRSA colonization of the gut. CF1 mice are treated with streptomycin (1 mg/ml), delivered in drinking water, for 5 days, after which they are orally inoculated with le7 cfu MRSA daily from Day 0 to Day 5 via their drinking water (Gries et al, Growth in Cecal Mucus Facilitates Colonization of the Mouse Intestinal Tract by Methicillin-Resistant Staphylococcus aureus, JID 2005; 192:1621-7). Drinking water is prepared fresh each day. Colonization by MRSA is monitored by determining cfu/ml in feces each day starting on the day prior to the first day of MRSA inoculation. Feces are homogenized in sterile PBS and serial dilutions are plated to Mannitol salt agar and incubated aerobically for 48 h at 37° C. Presumptive MRSA colonies are confirmed by 16S rDNA PCR and sequencing as in (Examples 1 and 2). Bacterial compositions, control PBS or vancomycin are delivered by oral gavage starting on Day 6 for 3 days. Efficacy is observed as a reduction in MRSA cfu/g in feces, and/or faster time to a reduction of MRSA cfu/g, in the animals treated with bacterial compositions but not in control animals. Efficacy is compared to that of the positive control vancomycin, which clears the colonization.


The efficacy of bacterial compositions in preventing MRSA colonization is tested in a mouse model of prophylaxis in which CF1 mice are treated with streptomycin, delivered in drinking water, for 5 days. After 2 days without streptomycin, the mice are treated with bacterial compositions or control PBS by oral gavage for 3 days, and then inoculated with le7 cfu MRSA by oral gavage. Colonization by MRSA is monitored by determining cfu/ml in feces each day starting on the day prior to the first day of MRSA inoculation. Feces are homogenized in sterile PBS and serial dilutions are plated to Mannitol salt agar and incubated aerobically for 48 h at 37° C. Presumptive MRSA colonies are confirmed by 16S rDNA PCR and sequencing as in Examples 1 and 2 for 16S sequencing. Efficacy is observed as a reduction in MRSA cfu/g in feces, and/or faster reduction of MRSA cfu/g, in the animals treated with bacterial compositions compared to control animals.


Example 40. Clinical Validation of Bacterial Composition for Efficacy in Obesity

To demonstrate a bacterial composition's ability to treat obesity, a group of 400 obese human subjects can be prospectively recruited. Inclusion criteria include BMI 30-45 kg/m2. Exclusion criteria include Type 1 or Type 2 diabetes, treatment with any kind of anti-diabetic, anti-hyperglycemic or anti-obesity medication or surgical procedure (e.g. bariatric surgery), significant co-morbidities, participation in a formal weight loss program, either systolic blood pressure >160 mm Hg or diastolic blood pressure >100 mmHg, subjects whose body weight is not stable, as judged by the Investigator (e.g. >5% change within 3 months prior to screening).


During a double blind treatment period of 12 weeks, the experimental treatment group (n=200) receives a daily oral dose of about 1×109 CFUs of viable bacteria either in the form of vegetative organisms or spores or both, whereas the control group (n=200) is administered a placebo at an identical frequency. The composition can be formulated in a delayed release enteric coated capsule or co-administered with bicarbonate buffer to aid passage of viable organisms through the stomach. The bacterial composition may be optionally be administered together or co-formulated with prebiotic(s).


Patients can be optionally treated with a broad spectrum antibiotic 0-10 days prior to first administration of the bacterial composition. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple daily doses of test article, and a range of 103 to 1010 CFU of a given composition may be delivered.


At baseline and 6, 12, and 24 weeks after the beginning of the treatment period, change in body weight, waist and hip circumference, and waist/hip ratio will be measured. By the end of the 24 week treatment challenge period, the experimental group is expected to show significant differences from the control group in weight loss and/or waist and hip circumference, optionally 5% or greater weight loss.


Optionally, in the event an effect is detected at the end of the 24 week treatment period, the durability of the effect may be tested. All subjects will be taken off the experimental treatment and change in weight measured after 2 weeks, 4 weeks, 8 weeks, 16 weeks, and 52 weeks.


Example 41. Clinical Validation of Bacterial Composition for Efficacy in Weight Loss

To demonstrate a bacterial composition's ability to cause weight loss, a group of 400 human subjects with BMI >25 kg/m2 is prospectively recruited. Inclusion criteria include BMI >25 kg/m2. Exclusion criteria include Type 1 or Type 2 diabetes, treatment with any kind of anti-diabetic, anti-hyperglycemic or anti-obesity medication or surgical procedure (e.g. bariatric surgery), significant co-morbidities, participation in a formal weight loss program, either systolic blood pressure >160 mm Hg or diastolic blood pressure >100 mmHg, subjects who do not show stable body weight as judged by PI (e.g. >5% change within 3 months prior to screening).


During a double blind treatment period of 24 weeks, the experimental treatment group (n=200) receives a daily oral dose of about 1×109 CFUs of viable bacteria either in the form of vegetative organisms or spores or both, whereas the control group (n=200) is administered a placebo at an identical frequency. The composition can be formulated in a delayed release enteric coated capsule or co-administered with bicarbonate buffer to aid passage of viable organisms through the stomach. The bacterial composition may be optionally be administered together or co-formulated with prebiotic(s).


Patients may be optionally treated with a broad spectrum antibiotic 0-10 days prior to first administration of the bacterial composition. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple daily doses of test article, and a range of 103 to 1010 CFU of a given composition may be delivered.


At baseline and 6, 12, and 24 weeks after the beginning of the treatment period, change in body weight will be measured. By the end of the 24 week treatment challenge period, the experimental group are expected to show significant differences from the control group in weight loss.


Optionally, in the event an effect is detected at the end of the 24 week treatment period, the durability of the effect may be tested. All subjects will be taken off the experimental treatment and change in weight measured after 2 weeks, 4 weeks, 8 weeks, 16 weeks, and 52 weeks.


Example 42. Clinical Validation of Bacterial Composition for Efficacy in Prediabetes

To demonstrate a bacterial composition's ability to treat prediabetes by exerting beneficial effects on markers associated with the onset of diabetes, a group of 60 human subjects with metabolic syndrome/prediabetes is prospectively recruited. Inclusion criteria include either (a) fasting plasma glucose between 5.6 and 6.9 mmol/L and 2 hr post-glucose load plasma glucose <7.8 mmol/L, and/or (b) 2 hr post-glucose load plasma glucose in oral glucose tolerance test (OGTT) between 7.8 and 11.0 mmol/L. Exclusion criteria include established gestational, Type 1 or Type 2 diabetes, treatment with any kind of anti-diabetic, anti-hyperglycemic or anti-obesity medication or surgical procedure, use of systemic long-acting corticosteroids or prolonged use (greater than 10 days) of systemic corticosteroids, or any significant medical condition that would complicate the measurement of the endpoint or put the patient at risk.


Optionally, the study can be performed specifically in obese patients meeting the above inclusion criteria with the additional inclusion criteria of BMI 30-45 kg/m2 as well as waist circumference >88 cm in women and >102 cm in men. Additional exclusion criteria include: 1) a history of surgical procedures for weight loss; 2) 2 repeat laboratory values at the screening visit of triglycerides >4.52 mmol; and 3) either systolic blood pressure >160 mm Hg or diastolic blood pressure >100 mmHg.


During a double blind treatment period of 12 weeks, the experimental treatment group (n=30) receives a daily oral dose of about 1×109 CFUs of viable bacteria either in the form of vegetative organisms or spores or both, whereas the control group is administered a placebo at an identical frequency (n=30). The composition can be formulated in a delayed release enteric coated capsule or co-administered with bicarbonate buffer to aid passage of viable organisms through the stomach. The bacterial composition may be optionally be administered together or co-formulated with prebiotic(s).


Patients can be optionally treated with a broad spectrum antibiotic 0-3 days prior to first administration of the bacterial composition. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple daily doses of test article, and a range of 103 to 1011 CFU of a given composition may be delivered.


At baseline and 4, 8 and 12 weeks after the beginning of the treatment period, glucose tolerance is tested by OGTT and HbA1c (glycosylated hemoglobin) levels measured. At the same timepoints, insulin secretion will be assessed by plasma insulin levels measured during the oral glucose tolerance tests. Homeostatic model assessment beta (HOMA-beta) will be used to quantify beta cell function and HOMA-IR for insulin sensitivity. In addition, subjects will perform home blood glucose testing once weekly at home.


By the end of the 12 week treatment period, the experimental group is expected to show significant differences from the control group in glucose tolerance, insulin sensitivity, and/or insulin secretion reflecting improved insulin sensitivity, decreased pre-diabetes symptoms and improvement in metabolic syndrome.


Optionally, in the event an effect is detected at the end of the 12 week treatment period, the durability of the effect may be tested. All subjects will be taken off their respective treatment and return for oral glucose tolerance tests after 2 weeks, 4 weeks, 8 weeks, 16 weeks, and 52 weeks to measure HbA1c, insulin secretion, HOMA-beta, and HOMA-IR.


Optionally, the treatment period can be extended to collect an additional endpoint of progression to type 2 diabetes at 6 months and 12 months after the beginning of the treatment period.


Example 43. Clinical Validation of Bacterial Composition for Efficacy in Type-2-Diabetes

To demonstrate a bacterial composition's ability to treat type 2 diabetes, a group of 60 human subjects with type 2 diabetes is prospectively recruited. Inclusion criteria include diagnosis of type 2 diabetes with inadequate glycemic control on diet and exercise, glycosylated hemoglobin between 7.5% and 10.0% at screening, BMI ≤45 kg/m2.


Exclusion criteria include gestational diabetes, type 1 diabetes, treatment with any kind of anti-diabetic medication in the 12 weeks prior to screening, use of anti-obesity medication/surgical procedure, use of systemic long-acting corticosteroids or prolonged use (greater than 10 days) of systemic corticosteroids, or any significant co-morbidities related to the underlying diabetic condition.


Optionally, the study can be done in non insulin dependent type 2 diabetics who have inadequate glycemic control who are taking oral medications such as metformin, sulfonylureas, DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors. Optionally, the study can be done in newly diagnosed non insulin dependent type 2 diabetics who are completely treatment naive.


During a double-blinded treatment period of 18 weeks, the experimental treatment group (n=30) receives a daily oral dose of about 1×109 CFUs of viable bacteria either in the form of vegetative organisms or spores or both, whereas the control group (n=30) is administered a placebo at an identical frequency. The composition can be formulated in a delayed release enteric coated capsule or co-administered with bicarbonate buffer to aid passage of viable organisms through the stomach. The bacterial composition may be optionally be administered together or co-formulated with prebiotic(s).


Patients may be optionally treated with a broad spectrum antibiotic 0-10 days prior to first administration of the bacterial composition. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple daily doses of test article, and a range of 103 to 1010 CFUs of a given composition may be delivered.


At baseline and 6, 12 and 18 weeks after the beginning of the treatment period, HbA1c (glycosylated hemoglobin) levels, fasting plasma glucose, fasting insulin, HOMA-beta, and HOMA-IR, In addition, subjects will perform home blood glucose testing once weekly at home.


Optionally high sensitivity C-reactive protein, adiponectin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, systolic and diastolic blood pressure can also be measured at the same timepoints.


By the end of the 18 week treatment period, the experimental group are expected to show significant differences from the control group in change in HbA1c, fasting plasma glucose, insulin sensitivity, and/or insulin secretion from baseline.


Optionally, in the event an effect is detected at the end of the 18 week treatment period, the durability of the effect may be tested. All subjects will be taken off the experimental treatment and return for measurement of HbA1c, fasting plasma glucose, fasting insulin, HOMA-beta, and HOMA-IR after 2 weeks, 4 weeks, 8 weeks, 16 weeks, and 52 weeks.


Example 44. Clinical Validation of Bacterial Composition for Efficacy in Recent Onset Type-1-Diabetes

To demonstrate a bacterial composition's ability to slow progression of recent onset type 1 diabetes, a group of 60 human subjects with recent onset type 1 diabetes is prospectively assembled.


Inclusion criteria include diagnosis of type 1 diabetes within 40 days prior to screening, positive test for at least one diabetes-related autoantibody such as GAD, IA-2, ZnT8, and/or anti-insulin (obtained within 10 days of onset of insulin therapy), peak stimulated C-peptide level ≥0.2 pmol/mL following mixed meal tolerance test (MMTT), and evidence of some fraction of residual (normal) pancreatic function. Exclusion criteria include any form of diabetes other than type 1 (e.g. type 2 diabetes), prior or current treatment with corticosteroids, significant co-morbidities.


During a double-blind treatment period of 18 weeks, the experimental treatment group (n=30) receives a daily oral dose of about 1×109 CFUs of viable bacteria either in the form of vegetative organisms or spores or both, whereas the control group (n=30) is administered a placebo at an identical frequency. The composition can be formulated in a delayed release enteric coated capsule or co-administered with bicarbonate buffer to aid passage of viable organisms through the stomach. The bacterial composition may be optionally be administered together or co-formulated with prebiotic(s).


Patients can be optionally treated with a broad spectrum antibiotic 0-10 days prior to first administration of the bacterial composition. Alternative dosing schedules and routes of administration (e.g. rectal) may be employed, including multiple daily doses of test article, and a range of 103 to 1010 CFUs of a given composition are delivered.


At baseline and 6, 12 and 18 weeks after the beginning of the treatment period, stimulated C-peptide released in 2 hours during a standard mixed meal tolerance test (MMTT) and HbA1c levels will be measured. In addition, subjects will record total daily dose of insulin in a diary.


By the end of the 18 week treatment period, the experimental group is expected to show significant differences from the control group in change in stimulated C-peptide, HbA1c, and/or insulin dosage from baseline.


Optionally, in the event an effect is detected at the end of the 18 week treatment period, the durability of the effect may be tested. All subjects will be taken off the experimental treatment and return for measurement of stimulated C-peptide in response to MMTT and HbA1c levels after 2 weeks, 4 weeks, 8 weeks, 16 weeks, and 52 weeks.


Example 45. Clinical Validation of Bacterial Composition for Efficacy in Reduction of Opportunistic Pathogenic Fungus in Humans

The dimorphic yeast, Candida albicans, is the leading fungal pathogen in normal hosts and in patients with damaged immune systems. In immunocompromised hosts such as cancer patients, transplant patients, post-operative surgical patients, premature newborns, or HIV-infected people, C. albicans ranks as the leading fungal pathogen. Invasion leading to systemic infection may also develop in neutropenic patients whose T cell function is comprised. (Hostetter M K, Clinical Microbiology Reviews, January 1994, pp. 29-42.) In this population, disease ranges from aggressive local infections such as periodontitis, oral ulceration, or esophagitis in HIV-infected patients, to complex and potentially lethal infections of the bloodstream with subsequent dissemination to brain, eye, heart, liver, spleen, kidneys, or bone. Recently, the incidence of systemic candidiasis, which is caused by Candida spp., predominantly Candida albicans, has increased. This increase over the last two decades has caused a rise in the use of antifungal drugs, including azoles, such as fluconazole or ketoconazol, leading to emergence of resistant organisms and thus increasing the need for alternative therapies (Looi et al., FEMS Microbiol Lett 2005).


In a prophylactic, randomized, double-blind study, healthy volunteers who have been prescreened as colonized with Candida albicans at >104 cfu/g by fecal culturing are randomized to receive either a placebo or a bacterial composition daily. Study volunteers are asked to avoid taking probiotics in any form in the week prior to dosing. The dosing of bacterial composition may, optionally, be modified to daily, every-other-day, weekly or any other frequency, and doses may range from 105 to 1010 CFU/mL. The subjects provide faecal and vaginal fluid samples pretreatment and on Days 7, 14 and 28 post-treatment that are cultivated on agar plates within 3 hours after delivery to the laboratory. Complementary genomic and microbiological methods are used to characterize the composition of the microbiota from each of the samples. C. albicans is detected by microbiological methods, for example by serial dilution and plating to fungal selective media CHROMagar Candida (BD cat #254093) which selects for fungal organisms, and against bacterial growth, or another fungal selective media, and also by using Taqman PCR based assay using similar methods as described previously (Maaroufi et al., J Clin Microbiol. 2003). A reduction in C. albicans levels in feces indicates efficacy in reducing colonization.


SUMMARY

Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification, including claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated to the contrary, the numerical parameters are approximations and may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.


Unless otherwise indicated, the term “at least” preceding a series of elements is to be understood to refer to every element in the series.


While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.


All references, issued patents and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes.


The foregoing description of the embodiments of the invention has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.


Some portions of this description describe the embodiments of the invention in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has also proven convenient at times, to refer to these arrangements of operations as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combinations thereof.


Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.


Embodiments of the invention may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a tangible computer readable storage medium or any type of media suitable for storing electronic instructions, and coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.


Embodiments of the invention may also relate to a computer data signal embodied in a carrier wave, where the computer data signal includes any embodiment of a computer program product or other data combination described herein. The computer data signal is a product that is presented in a tangible medium or carrier wave and modulated or otherwise encoded in the carrier wave, which is tangible, and transmitted according to any suitable transmission method.


Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.


Tables














TABLE 1






SEQ ID
Public DB
Phylogenetic
Spore
Pathogen


OTU
Number
Accession
Clade
Former
Status





















Corynebacterium coyleae

697
X96497
clade_100
N
N



Corynebacterium mucifaciens

711
NR_026396
clade_100
N
N



Corynebacterium ureicelerivorans

733
AM397636
clade_100
N
N



Corynebacterium appendicis

684
NR_028951
clade_102
N
N



Corynebacterium genitalium

698
ACLJ01000031
clade_102
N
N



Corynebacterium glaucum

699
NR_028971
clade_102
N
N



Corynebacterium imitans

703
AF537597
clade_102
N
N



Corynebacterium riegelii

719
EU848548
clade_102
N
N



Corynebacterium sp. L_2012475

723
HE575405
clade_102
N
N



Corynebacterium sp. NML 93_0481

724
GU238409
clade_102
N
N



Corynebacterium sundsvallense

728
Y09655
clade_102
N
N



Corynebacterium tuscaniae

730
AY677186
clade_102
N
N



Prevotella maculosa

1504
AGEK01000035
clade_104
N
N



Prevotella oris

1513
ADDV01000091
clade_104
N
N



Prevotella salivae

1517
AB108826
clade_104
N
N



Prevotella sp. ICM55

1521
HQ616399
clade_104
N
N



Prevotella sp. oral clone AA020

1528
AY005057
clade_104
N
N



Prevotella sp. oral clone GI032

1538
AY349396
clade_104
N
N



Prevotella sp. oral taxon G70

1558
GU432179
clade_104
N
N



Prevotella corporis

1491
L16465
clade_105
N
N



Bacteroides sp. 4_1_36

312
ACTC01000133
clade_110
N
N



Bacteroides sp. AR20

315
AF139524
clade_110
N
N



Bacteroides sp. D20

319
ACPT01000052
clade_110
N
N



Bacteroides sp. F_4

322
AB470322
clade_110
N
N



Bacteroides uniformis

329
AB050110
clade_110
N
N



Prevotella nanceiensis

1510
JN867228
clade_127
N
N



Prevotella sp. oral taxon 299

1548
ACWZ01000026
clade_127
N
N



Prevotella bergensis

1485
ACKS01000100
clade_128
N
N



Prevotella buccalis

1489
JN867261
clade_129
N
N



Prevotella timonensis

1564
ADEF01000012
clade_129
N
N



Prevotella oralis

1512
AEPE01000021
clade_130
N
N



Prevotella sp. SEQ072

1525
JN867238
clade_130
N
N



Leuconostoc carnosum

1177
NR_040811
clade_135
N
N



Leuconostoc gasicomitatum

1179
FN822744
clade_135
N
N



Leuconostoc inhae

1180
NR_025204
clade_135
N
N



Leuconostoc kimchii

1181
NR_075014
clade_135
N
N



Edwardsiella tarda

777
CP002154
clade_139
N
N



Photorhabdus asymbiotica

1466
Z76752
clade_139
N
N



Psychrobacter arcticus

1607
CP000082
clade_141
N
N



Psychrobacter cibarius

1608
HQ698586
clade_141
N
N



Psychrobacter cryohalolentis

1609
CP000323
clade_141
N
N



Psychrobacter faecalis

1610
HQ698566
clade_141
N
N



Psychrobacter nivimaris

1611
HQ698587
clade_141
N
N



Psychrobacter pulmonis

1612
HQ698582
clade_141
N
N



Pseudomonas aeruginosa

1592
AABQ07000001
clade_154
N
N



Pseudomonas sp. 2_1_26

1600
ACWU01000257
clade_154
N
N



Corynebacterium confusum

691
Y15886
clade_158
N
N



Corynebacterium propinquum

712
NR_037038
clade_158
N
N



Corynebacterium pseudodiphtheriticum

713
X84258
clade_158
N
N



Bartonella bacilliformis

338
NC_008783
clade_159
N
N



Bartonella grahamii

339
CP001562
clade_159
N
N



Bartonella henselae

340
NC_005956
clade_159
N
N



Bartonella quintana

341
BX897700
clade_159
N
N



Bartonella tamiae

342
EF672728
clade_159
N
N



Bartonella washoensis

343
FJ719017
clade_159
N
N



Brucella abortus

430
ACBJ01000075
clade_159
N
Category-B



Brucella canis

431
NR_044652
clade_159
N
Category-B



Brucella ceti

432
ACJD01000006
clade_159
N
Category-B



Brucella melitensis

433
AE009462
clade_159
N
Category-B



Brucella microti

434
NR_042549
clade_159
N
Category-B



Brucella ovis

435
NC_009504
clade_159
N
Category-B



Brucella sp. 83_13

436
ACBQ01000040
clade_159
N
Category-B



Brucella sp. BO1

437
EU053207
clade_159
N
Category-B



Brucella suis

438
ACBK01000034
clade_159
N
Category-B



Ochrobactrum anthropi

1360
NC_009667
clade_159
N
N



Ochrobactrum intermedium

1361
ACQA01000001
clade_159
N
N



Ochrobactrum pseudintermedium

1362
DQ365921
clade_159
N
N



Prevotella genomosp. C2

1496
AY278625
clade_164
N
N



Prevotella multisaccharivorax

1509
AFJE01000016
clade_164
N
N



Prevotella sp. oral clone IDR_CEC_0055

1543
AY550997
clade_164
N
N



Prevotella sp. oral taxon 292

1547
GQ422735
clade_164
N
N



Prevotella sp. oral taxon 300

1549
GU409549
clade_164
N
N



Prevotella marshii

1505
AEEI01000070
clade_166
N
N



Prevotella sp. oral clone IK053

1544
AY349401
clade_166
N
N



Prevotella sp. oral taxon 781

1554
GQ422744
clade_166
N
N



Prevotella stercorea

1562
AB244774
clade_166
N
N



Prevotella brevis

1487
NR_041954
clade_167
N
N



Prevotella ruminicola

1516
CP002006
clade_167
N
N



Prevotella sp. sp24

1560
AB003384
clade_167
N
N



Prevotella sp. sp34

1561
AB003385
clade_167
N
N



Prevotella albensis

1483
NR_025300
clade_168
N
N



Prevotella copri

1490
ACBX02000014
clade_168
N
N



Prevotella oulorum

1514
L16472
clade_168
N
N



Prevotella sp. BI_42

1518
AJ581354
clade_168
N
N



Prevotella sp. oral clone P4PB_83 P2

1546
AY207050
clade_168
N
N



Prevotella sp. oral taxon G60

1557
GU432133
clade_168
N
N



Prevotella amnii

1484
AB547670
clade_169
N
N



Bacteroides caccae

268
EU136686
clade_170
N
N



Bacteroides finegoldii

277
AB222699
clade_170
N
N



Bacteroides intestinalis

283
ABJL02000006
clade_171
N
N



Bacteroides sp. XB44A

326
AM230649
clade_171
N
N


Bifidobacteriaceae genomosp. C1
345
AY278612
clade_172
N
N



Bifidobacterium adolescentis

346
AAXD02000018
clade_172
N
N



Bifidobacterium angulatum

347
ABYS02000004
clade_172
N
N



Bifidobacterium animalis

348
CP001606
clade_172
N
N



Bifidobacterium breve

350
CP002743
clade_172
N
N



Bifidobacterium catenulatum

351
ABXY01000019
clade_172
N
N



Bifidobacterium dentium

352
CP001750
clade_172
N
OP



Bifidobacterium gallicum

353
ABXB03000004
clade_172
N
N



Bifidobacterium infantis

354
AY151398
clade_172
N
N



Bifidobacterium kashiwanohense

355
AB491757
clade_172
N
N



Bifidobacterium longum

356
ABQQ01000041
clade_172
N
N



Bifidobacterium pseudocatenulatum

357
ABXX02000002
clade_172
N
N



Bifidobacterium pseudolongum

358
NR_043442
clade_172
N
N



Bifidobacterium scardovii

359
AJ307005
clade_172
N
N



Bifidobacterium sp. HM2

360
AB425276
clade_172
N
N



Bifidobacterium sp. HMLN12

361
JF519685
clade_172
N
N



Bifidobacterium sp. M45

362
HM626176
clade_172
N
N



Bifidobacterium sp. MSX5B

363
HQ616382
clade_172
N
N



Bifidobacterium sp. TM_7

364
AB218972
clade_172
N
N



Bifidobacterium thermophilum

365
DQ340557
clade_172
N
N



Leuconostoc citreum

1178
AM157444
clade_175
N
N



Leuconostoc lactis

1182
NR_040823
clade_175
N
N



Eubacterium saburreum

858
AB525414
clade_178
Y
N



Eubacterium sp. oral clone IR009

866
AY349376
clade_178
Y
N


Lachnospiraceae bacterium ICM62
1061
HQ616401
clade_178
Y
N


Lachnospiraceae bacterium MSX33
1062
HQ616384
clade_178
Y
N


Lachnospiraceae bacterium oral taxon 107
1063
ADDS01000069
clade_178
Y
N



Alicyclobacillus acidocaldarius

122
NR_074721
clade_179
Y
N



Alicyclobacillus acidoterrestris

123
NR_040844
clade_179
N
N



Alicyclobacillus cycloheptanicus

125
NR_024754
clade_179
N
N



Acinetobacter baumannii

27
ACYQ01000014
clade_181
N
N



Acinetobacter calcoaceticus

28
AM157426
clade_181
N
N



Acinetobacter genomosp. C1

29
AY278636
clade_181
N
N



Acinetobacter haemolyticus

30
ADMT01000017
clade_181
N
N



Acinetobacter johnsonii

31
ACPL01000162
clade_181
N
N



Acinetobacter junii

32
ACPM01000135
clade_181
N
N



Acinetobacter lwoffii

33
ACPN01000204
clade_181
N
N



Acinetobacter parvus

34
AIEB01000124
clade_181
N
N



Acinetobacter schindleri

36
NR_025412
clade_181
N
N



Acinetobacter sp. 56A1

37
GQ178049
clade_181
N
N



Acinetobacter sp. CIP 101934

38
JQ638573
clade_181
N
N



Acinetobacter sp. CIP 102143

39
JQ638578
clade_181
N
N



Acinetobacter sp. M16_22

41
HM366447
clade_181
N
N



Acinetobacter sp. RUH2624

42
ACQF01000094
clade_181
N
N



Acinetobacter sp. SH024

43
ADCH01000068
clade_181
N
N



Lactobacillus jensenii

1092
ACQD01000066
clade_182
N
N



Alcaligenes faecalis

119
AB680368
clade_183
N
N



Alcaligenes sp. CO14

120
DQ643040
clade_183
N
N



Alcaligenes sp. S3

121
HQ262549
clade_183
N
N



Oligella ureolytica

1366
NR_041998
clade_183
N
N



Oligella urethralis

1367
NR_041753
clade_183
N
N



Eikenella corrodens

784
ACEA01000028
clade_185
N
N



Kingella denitrificans

1019
AEWV01000047
clade_185
N
N



Kingella genomosp. P1 oral cone

1020
DQ003616
clade_185
N
N


MB2_C20



Kingella kingae

1021
AFHS01000073
clade_185
N
N



Kingella oralis

1022
ACJW02000005
clade_185
N
N



Kingella sp. oral clone ID059

1023
AY349381
clade_185
N
N



Neisseria elongate

1330
ADBF01000003
clade_185
N
N



Neisseria genomosp. P2 oral clone

1332
DQ003630
clade_185
N
N


MB5_P15



Neisseria sp. oral clone JC012

1345
AY349388
clade_185
N
N



Neisseria sp. SMC_A9199

1342
FJ763637
clade_185
N
N



Simonsiella muelleri

1731
ADCY01000105
clade_185
N
N



Corynebacterium glucuronolyticum

700
ABYP01000081
clade_193
N
N



Corynebacterium pyruviciproducens

716
FJ185225
clade_193
N
N



Rothia aeria

1649
DQ673320
clade_194
N
N



Rothia dentocariosa

1650
ADDW01000024
clade_194
N
N



Rothia sp. oral taxon 188

1653
GU470892
clade_194
N
N



Corynebacterium accolens

681
ACGD01000048
clade_195
N
N



Corynebacterium macginleyi

707
AB359393
clade_195
N
N



Corynebacterium pseudogenitalium

714
ABYQ01000237
clade_195
N
N



Corynebacterium tuberculostearicum

729
ACVP01000009
clade_195
N
N



Lactobacillus casei

1074
CP000423
clade_198
N
N



Lactobacillus paracasei

1106
ABQV01000067
clade_198
N
N



Lactobacillus zeae

1143
NR_037122
clade_198
N
N



Prevotella dentalis

1492
AB547678
clade_205
N
N



Prevotella sp. oral clone ASCG10

1529
AY923148
clade_206
N
N



Prevotella sp. oral clone HF050

1541
AY349399
clade_206
N
N



Prevotella sp. oral clone ID019

1542
AY349400
clade_206
N
N



Prevotella sp. oral clone IK062

1545
AY349402
clade_206
N
N



Prevotella genomosp. P9 oral clone

1499
DQ003633
clade_207
N
N


MB7_G16



Prevotella sp. oral clone AU069

1531
AY005062
clade_207
N
N



Prevotella sp. oral clone CY006

1532
AY005063
clade_207
N
N



Prevotella sp. oral clone FL019

1534
AY349392
clade_207
N
N



Actinomyces genomosp. C1

56
AY278610
clade_212
N
N



Actinomyces genomosp. C2

57
AY278611
clade_212
N
N



Actinomyces genomosp. P1 oral clone

58
DQ003632
clade_212
N
N


MB6_C03



Actinomyces georgiae

59
GU561319
clade_212
N
N



Actinomyces israelii

60
AF479270
clade_212
N
N



Actinomyces massiliensis

61
AB545934
clade_212
N
N



Actinomyces meyeri

62
GU561321
clade_212
N
N



Actinomyces odontolyticus

66
ACYT01000123
clade_212
N
N



Actinomyces orihominis

68
AJ575186
clade_212
N
N



Actinomyces sp. CCUG 37290

71
AJ234058
clade_212
N
N



Actinomyces sp. ICM34

75
HQ616391
clade_212
N
N



Actinomyces sp. ICM41

76
HQ616392
clade_212
N
N



Actinomyces sp. ICM47

77
HQ616395
clade_212
N
N



Actinomyces sp. ICM54

78
HQ616398
clade_212
N
N



Actinomyces sp. oral clone IP081

87
AY349366
clade_212
N
N



Actinomyces sp. oral taxon 178

91
AEUH01000060
clade_212
N
N



Actinomyces sp. oral taxon 180

92
AEPP01000041
clade_212
N
N



Actinomyces sp. TeJ5

80
GU561315
clade_212
N
N



Haematobacter sp. BC14248

968
GU396991
clade_213
N
N



Paracoccus denitrificans

1424
CP000490
clade_213
N
N



Paracoccus marcusii

1425
NR_044922
clade_213
N
N



Grimontia hollisae

967
ADAQ01000013
clade_216
N
N



Shewanella putrefaciens

1723
CP002457
clade_216
N
N



Afipia genomosp. 4

111
EU117385
clade_217
N
N



Rhodopseudomonas palustris

1626
CP000301
clade_217
N
N



Methylobacterium extorquens

1223
NC_010172
clade_218
N
N



Methylobacterium podarium

1224
AY468363
clade_218
N
N



Methylobacterium radiotolerans

1225
GU294320
clade_218
N
N



Methylobacterium sp. 1sub

1226
AY468371
clade_218
N
N



Methylobacterium sp. MM4

1227
AY468370
clade_218
N
N



Clostridium baratii

555
NR_029229
clade_223
Y
N



Clostridium colicanis

576
FJ957863
clade_223
Y
N



Clostridium paraputrificum

611
AB536771
clade_223
Y
N



Clostridium sardiniense

621
NR_041006
clade_223
Y
N



Eubacterium budayi

837
NR_024682
clade_223
Y
N



Eubacterium moniliforme

851
HF558373
clade_223
Y
N



Eubacterium multiforme

852
NR_024683
clade_223
Y
N



Eubacterium nitritogenes

853
NR_024684
clade_223
Y
N



Achromobacter denitrificans

18
NR_042021
clade_224
N
N



Achromobacter piechaudii

19
ADMS01000149
clade_224
N
N



Achromobacter xylosoxidans

20
ACRC01000072
clade_224
N
N



Bordetella bronchiseptica

384
NR_025949
clade_224
N
OP



Bordetella holmesii

385
AB683187
clade_224
N
OP



Bordetella parapertussis

386
NR_025950
clade_224
N
OP



Bordetella pertussis

387
BX640418
clade_224
N
OP



Microbacterium chocolatum

1230
NR_037045
clade_225
N
N



Microbacterium flavescens

1231
EU714363
clade_225
N
N



Microbacterium lacticum

1233
EU714351
clade_225
N
N



Microbacterium oleivorans

1234
EU714381
clade_225
N
N



Microbacterium oxydans

1235
EU714348
clade_225
N
N



Microbacterium paraoxydans

1236
AJ491806
clade_225
N
N



Microbacterium phyllosphaerae

1237
EU714359
clade_225
N
N



Microbacterium schleiferi

1238
NR_044936
clade_225
N
N



Microbacterium sp. 768

1239
EU714378
clade_225
N
N



Microbacterium sp. oral strain C24KA

1240
AF287752
clade_225
N
N



Microbacterium testaceum

1241
EU714365
clade_225
N
N



Corynebacterium atypicum

686
NR_025540
clade_229
N
N



Corynebacterium mastitidis

708
AB359395
clade_229
N
N



Corynebacterium sp. NML 97_0186

725
GU238411
clade_229
N
N



Mycobacterium elephantis

1275
AF385898
clade_237
N
OP



Mycobacterium paraterrae

1288
EU919229
clade_237
N
OP



Mycobacterium phlei

1289
GU142920
clade_237
N
OP



Mycobacterium sp. 1776

1293
EU703152
clade_237
N
N



Mycobacterium sp. 1781

1294
EU703147
clade_237
N
N



Mycobacterium sp. AQ1GA4

1297
HM210417
clade_237
N
N



Mycobacterium sp. GN_10546

1299
FJ497243
clade_237
N
N



Mycobacterium sp. GN_10827

1300
FJ497247
clade_237
N
N



Mycobacterium sp. GN_11124

1301
FJ652846
clade_237
N
N



Mycobacterium sp. GN_9188

1302
FJ497240
clade_237
N
N



Mycobacterium sp. GR_2007_210

1303
FJ555538
clade_237
N
N



Anoxybacillus contaminans

172
NR_029006
clade_238
N
N



Anoxybacillus flavithermus

173
NR_074667
clade_238
Y
N



Bacillus aeolius

195
NR_025557
clade_238
N
N



Bacillus aerophilus

196
NR_042339
clade_238
Y
N



Bacillus aestuarii

197
GQ980243
clade_238
Y
N



Bacillus amyloliquefaciens

199
NR_075005
clade_238
Y
N



Bacillus anthracis

200
AAEN01000020
clade_238
Y
Category-A



Bacillus atrophaeus

201
NR_075016
clade_238
Y
OP



Bacillus badius

202
NR_036893
clade_238
Y
OP



Bacillus cereus

203
ABDJ01000015
clade_238
Y
OP



Bacillus circulans

204
AB271747
clade_238
Y
OP



Bacillus firmus

207
NR_025842
clade_238
Y
OP



Bacillus flexus

208
NR_024691
clade_238
Y
OP



Bacillus fordii

209
NR_025786
clade_238
Y
OP



Bacillus halmapalus

211
NR_026144
clade_238
Y
OP



Bacillus herbersteinensis

213
NR_042286
clade_238
Y
OP



Bacillus idriensis

215
NR_043268
clade_238
Y
OP



Bacillus lentus

216
NR_040792
clade_238
Y
OP



Bacillus licheniformis

217
NC_006270
clade_238
Y
OP



Bacillus megaterium

218
GU252124
clade_238
Y
OP



Bacillus nealsonii

219
NR_044546
clade_238
Y
OP



Bacillus niabensis

220
NR_043334
clade_238
Y
OP



Bacillus niacini

221
NR_024695
clade_238
Y
OP



Bacillus pocheonensis

222
NR_041377
clade_238
Y
OP



Bacillus pumilus

223
NR_074977
clade_238
Y
OP



Bacillus safensis

224
JQ624766
clade_238
Y
OP



Bacillus simplex

225
NR_042136
clade_238
Y
OP



Bacillus sonorensis

226
NR_025130
clade_238
Y
OP



Bacillus sp. 10403023 MM10403188

227
CAET01000089
clade_238
Y
OP



Bacillus sp. 2_A_57_CT2

230
ACWD01000095
clade_238
Y
OP



Bacillus sp. 2008724126

228
GU252108
clade_238
Y
OP



Bacillus sp. 2008724139

229
GU252111
clade_238
Y
OP



Bacillus sp. 7_16AIA

231
FN397518
clade_238
Y
OP



Bacillus sp. AP8

233
JX101689
clade_238
Y
OP



Bacillus sp. B27(2008)

234
EU362173
clade_238
Y
OP



Bacillus sp. BT1B_CT2

235
ACWC01000034
clade_238
Y
OP



Bacillus sp. GB1.1

236
FJ897765
clade_238
Y
OP



Bacillus sp. GB9

237
FJ897766
clade_238
Y
OP



Bacillus sp. HU19.1

238
FJ897769
clade_238
Y
OP



Bacillus sp. HU29

239
FJ897771
clade_238
Y
OP



Bacillus sp. HU33.1

240
FJ897772
clade_238
Y
OP



Bacillus sp. JC6

241
JF824800
clade_238
Y
OP



Bacillus sp. oral taxon F79

248
HM099654
clade_238
Y
OP



Bacillus sp. SRC_DSF1

243
GU797283
clade_238
Y
OP



Bacillus sp. SRC_DSF10

242
GU797292
clade_238
Y
OP



Bacillus sp. SRC_DSF2

244
GU797284
clade_238
Y
OP



Bacillus sp. SRC_DSF6

245
GU797288
clade_238
Y
OP



Bacillus sp. tc09

249
HQ844242
clade_238
Y
OP



Bacillus sp. zh168

250
FJ851424
clade_238
Y
OP



Bacillus sphaericus

251
DQ286318
clade_238
Y
OP



Bacillus sporothermodurans

252
NR_026010
clade_238
Y
OP



Bacillus subtilis

253
EU627588
clade_238
Y
OP



Bacillus thermoamylovorans

254
NR_029151
clade_238
Y
OP



Bacillus thuringiensis

255
NC_008600
clade_238
Y
OP



Bacillus weihenstephanensis

256
NR_074926
clade_238
Y
OP



Brevibacterium frigoritolerans

422
NR_042639
clade_238
N
N



Geobacillus kaustophilus

933
NR_074989
clade_238
Y
N



Geobacillus sp. E263

934
DQ647387
clade_238
N
N



Geobacillus sp. WCH70

935
CP001638
clade_238
N
N



Geobacillus stearothermophilus

936
NR_040794
clade_238
Y
N



Geobacillus thermocatenulatus

937
NR_043020
clade_238
N
N



Geobacillus thermodenitrificans

938
NR_074976
clade_238
Y
N



Geobacillus thermoglucosidasius

939
NR_043022
clade_238
Y
N



Geobacillus thermoleovorans

940
NR_074931
clade_238
N
N



Lysinibacillus fusiformis

1192
FN397522
clade_238
N
N



Lysinibacillus sphaericus

1193
NR_074883
clade_238
Y
N



Planomicrobium koreense

1468
NR_025011
clade_238
N
N



Sporosarcina newyorkensis

1754
AFPZ01000142
clade_238
N
N



Sporosarcina sp. 2681

1755
GU994081
clade_238
N
N



Ureibacillus composti

1968
NR_043746
clade_238
N
N



Ureibacillus suwonensis

1969
NR_043232
clade_238
N
N



Ureibacillus terrenus

1970
NR_025394
clade_238
N
N



Ureibacillus thermophilus

1971
NR_043747
clade_238
N
N



Ureibacillus thermosphaericus

1972
NR_040961
clade_238
N
N



Prevotella micans

1507
AGWK01000061
clade_239
N
N



Prevotella sp. oral clone DA058

1533
AY005065
clade_239
N
N



Prevotella sp. SEQ053

1523
JN867222
clade_239
N
N



Treponema socranskii

1937
NR_024868
clade_240
N
OP



Treponema sp. 6:H:D15A_4

1938
AY005083
clade_240
N
N



Treponema sp. oral taxon 265

1953
GU408850
clade_240
N
N



Treponema sp. oral taxon G85

1958
GU432215
clade_240
N
N



Porphyromonas endodontalis

1472
ACNN01000021
clade_241
N
N



Porphyromonas sp. oral clone BB134

1478
AY005068
clade_241
N
N



Porphyromonas sp. oral clone F016

1479
AY005069
clade_241
N
N



Porphyromonas sp. oral clone P2PB_52 P1

1480
AY207054
clade_241
N
N



Porphyromonas sp. oral clone P4GB_100

1481
AY207057
clade_241
N
N


P2



Acidovorax sp. 98_63833

26
AY258065
clade_245
N
N


Comamonadaceae bacterium NML000135
663
JN585335
clade_245
N
N


Comamonadaceae bacterium NML790751
664
JN585331
clade_245
N
N


Comamonadaceae bacterium NML910035
665
JN585332
clade_245
N
N


Comamonadaceae bacterium NML910036
666
JN585333
clade_245
N
N



Comamonas sp. NSP5

668
AB076850
clade_245
N
N



Delftia acidovorans

748
CP000884
clade_245
N
N



Xenophilus aerolatus

2018
JN585329
clade_245
N
N


Clostridiales sp. SS3/4
543
AY305316
clade_246
Y
N



Oribacfcerium sp. oral taxon 078

1380
ACIQ02000009
clade_246
N
N



Oribacterium sp. oral taxon 102

1381
GQ422713
clade_246
N
N



Weissella cibaria

2007
NR_036924
clade_247
N
N



Weissella confusa

2008
NR_040816
clade_247
N
N



Weissella hellenica

2009
AB680902
clade_247
N
N



Weissella kandleri

2010
NR_044659
clade_247
N
N



Weissella koreensis

2011
NR_075058
clade_247
N
N



Weissella paramesenteroides

2012
ACKU01000017
clade_247
N
N



Weissella sp. KLDS 7.0701

2013
EU600924
clade_247
N
N



Mobiluncus curtisii

1251
AEPZ01000013
clade_249
N
N



Clostridium beijerinckii

557
NR_074434
clade_252
Y
N



Clostridium botulinum

560
NC_010723
clade_252
Y
Category-A



Clostridium butyricum

561
ABDT01000017
clade_252
Y
N



Clostridium chauvoei

568
EU106372
clade_252
Y
N



Clostridium favososporum

582
X76749
clade_252
Y
N



Clostridium histolyticum

592
HF558362
clade_252
Y
N



Clostridium isatidis

597
NR_026347
clade_252
Y
N



Clostridium limosum

602
FR870444
clade_252
Y
N



Clostridium sartagoforme

622
NR_026490
clade_252
Y
N



Clostridium septicum

624
NR_026020
clade_252
Y
N



Clostridium sp. 7_2_43FAA

626
ACDK01000101
clade_252
Y
N



Clostridium sporogenes

645
ABKW02000003
clade_252
Y
N



Clostridium tertium

653
Y18174
clade_252
Y
N



Clostridium carnis

564
NR_044716
clade_253
Y
N



Clostridium celatum

565
X77844
clade_253
Y
N



Clostridium disporicum

579
NR_026491
clade_253
Y
N



Clostridium gasigenes

585
NR_024945
clade_253
Y
N



Clostridium quinii

616
NR_026149
clade_253
Y
N



Enhydrobacter aerosaccus

785
ACYI01000081
clade_256
N
N



Moraxella osloensis

1262
JN175341
clade_256
N
N



Moraxella sp. GM2

1264
JF837191
clade_256
N
N



Brevibacterium casei

420
JF951998
clade_257
N
N



Brevibacterium epidermidis

421
NR_029262
clade_257
N
N



Brevibacterium sanguinis

426
NR_028016
clade_257
N
N



Brevibacterium sp. H15

427
AB177640
clade_257
N
N



Clostridium hylemonae

593
AB023973
clade_260
Y
N



Clostridium scindens

623
AF262238
clade_260
Y
N


Lachnospiraceae bacterium 5_1_57FAA
1054
ACTR01000020
clade_260
Y
N



Acinetobacter radioresistens

35
ACVR01000010
clade_261
N
N



Clostridium glycyrrhizinilyticum

588
AB233029
clade_262
Y
N



Clostridium nexile

607
X73443
clade_262
Y
N



Coprococcus comes

674
ABVR01000038
clade_262
Y
N


Lachnospiraceae bacterium 1_1_57FAA
1048
ACTM01000065
clade_262
Y
N


Lachnospiraceae bacterium 1_4_56FAA
1049
ACTN01000028
clade_262
Y
N


Lachnospiraceae bacterium 8_1_57FAA
1057
ACWQ01000079
clade_262
Y
N



Ruminococcus lactaris

1663
ABOU02000049
clade_262
Y
N



Ruminococcus torques

1670
AAVP02000002
clade_262
Y
N



Lactobacillus alimentarius

1068
NR_044701
clade_263
N
N



Lactobacillus farciminis

1082
NR_044707
clade_263
N
N



Lactobacillus kimchii

1097
NR_025045
clade_263
N
N



Lactobacillus nodensis

1101
NR_041629
clade_263
N
N



Lactobacillus tucceti

1138
NR_042194
clade_263
N
N



Pseudomonas mendocina

1595
AAUL01000021
clade_265
N
N



Pseudomonas pseudoalcaligenes

1598
NR_037000
clade_265
N
N



Pseudomonas sp. NP522b

1602
EU723211
clade_265
N
N



Pseudomonas stutzeri

1603
AM905854
clade_265
N
N



Paenibacillus barcinonensis

1390
NR_042272
clade_270
N
N



Paenibacillus barengoltzii

1391
NR_042756
clade_270
N
N



Paenibacillus chibensis

1392
NR_040885
clade_270
N
N



Paenibacillus cookii

1393
NR_025372
clade_270
N
N



Paenibacillus durus

1394
NR_037017
clade_270
N
N



Paenibacillus glucanolyticus

1395
D78470
clade_270
N
N



Paenibacillus lactis

1396
NR_025739
clade_270
N
N



Paenibacillus lautus

1397
NR_040882
clade_270
Y
N



Paenibacillus pabuli

1398
NR_040853
clade_270
N
N



Paenibacillus polymyxa

1399
NR_037006
clade_270
Y
N



Paenibacillus popilliae

1400
NR_040888
clade_270
N
N



Paenibacillus sp. CIP 101062

1401
HM212646
clade_270
N
N



Paenibacillus sp. HGF5

1402
AEXS01000095
clade_270
Y
N



Paenibacillus sp. HGF7

1403
AFDH01000147
clade_270
Y
N



Paenibacillus sp. JC66

1404
JF824808
clade_270
N
N



Paenibacillus sp. R_27413

1405
HE586333
clade_270
N
N



Paenibacillus sp. R_27422

1406
HE586338
clade_270
N
N



Paenibacillus timonensis

1408
NR_042844
clade_270
N
N



Rothia mucilaginosa

1651
ACVO01000020
clade_271
N
N



Rothia nasimurium

1652
NR_025310
clade_271
N
N



Prevotella sp. oral taxon 302

1550
ACZK01000043
clade_280
N
N



Prevotella sp. oral taxon F68

1556
HM099652
clade_280
N
N



Prevotella tannerae

1563
ACIJ02000018
clade_280
N
N


Prevotellaceae bacterium P4P_62 P1
1566
AY207061
clade_280
N
N



Porphyromonas asaccharolytica

1471
AENO01000048
clade_281
N
N



Porphyromonas gingivails

1473
AE015924
clade_281
N
N



Porphyromonas macacae

1475
NR_025908
clade_281
N
N



Porphyromonas sp. UQD 301

1477
EU012301
clade_281
N
N



Porphyromonas uenonis

1482
ACLR01000152
clade_281
N
N



Leptotrichia buccalis

1165
CP001685
clade_282
N
N



Leptotrichia hofstadii

1168
ACVB02000032
clade_282
N
N



Leptotrichia sp. oral clone HE012

1173
AY349386
clade_282
N
N



Leptotrichia sp. oral taxon 223

1176
GU408547
clade_282
N
N



Bacteroides fluxus

278
AFBN01000029
clade_285
N
N



Bacteroides helcogenes

281
CP002352
clade_285
N
N



Parabacteroides johnsonii

1419
ABYH01000014
clade_286
N
N



Parabacteroides merdae

1420
EU136685
clade_286
N
N



Treponema denticola

1926
ADEC01000002
clade_288
N
OP



Treponema genomosp. P5 oral clone

1929
DQ003624
clade_288
N
N


MB3_P23



Treponema putidum

1935
AJ543428
clade_288
N
OP



Treponema sp. oral clone P2PB_53 P3

1942
AY207055
clade_288
N
N



Treponema sp. oral taxon 247

1949
GU408748
clade_288
N
N



Treponema sp. oral taxon 250

1950
GU408776
clade_288
N
N



Treponema sp. oral taxon 251

1951
GU408781
clade_288
N
N



Anaerococcus hydrogenalis

144
ABXA01000039
clade_289
N
N



Anaerococcus sp. 8404299

148
HM587318
clade_289
N
N



Anaerococcus sp. gpac215

156
AM176540
clade_289
N
N



Anaerococcus vaginalis

158
ACXU01000016
clade_289
N
N



Propionibacterium acidipropionici

1569
NC_019395
clade_290
N
N



Propionibacterium avidum

1571
AJ003055
clade_290
N
N



Propionibacterium granulosum

1573
FJ785716
clade_290
N
N



Propionibacterium jensenii

1574
NR_042269
clade_290
N
N



Propionibacterium propionicum

1575
NR_025277
clade_290
N
N



Propionibacterium sp. H456

1577
AB177643
clade_290
N
N



Propionibacterium thoenii

1581
NR_042270
clade_290
N
N



Bifidobacterium bifidum

349
ABQP01000027
clade_293
N
N



Leuconostoc mesenteroides

1183
ACKV01000113
clade_295
N
N



Leuconostoc pseudomesenteroides

1184
NR_040814
clade_295
N
N



Eubacterium sp. oral clone JI012

868
AY349379
clade_298
Y
N



Johnsonella ignava

1016
X87152
clade_298
N
N



Propionibacterium acnes

1570
ADJM01000010
clade_299
N
N



Propionibacterium sp. 434_HC2

1576
AFIL01000035
clade_299
N
N



Propionibacterium sp. LG

1578
AY354921
clade_299
N
N



Propionibacterium sp. S555a

1579
AB264622
clade_299
N
N



Alicyclobacillus contaminans

124
NR_041475
clade_301
Y
N



Alicyclobacillus herbarius

126
NR_024753
clade_301
Y
N



Alicyclobacillus pomorum

127
NR_024801
clade_301
Y
N



Alicyclobacillus sp. CCUG 53762

128
HE613268
clade_301
N
N



Actinomyces cardiffensis

53
GU470888
clade_303
N
N



Actinomyces funkei

55
HQ906497
clade_303
N
N



Actinomyces sp. HKU31

74
HQ335393
clade_303
N
N



Actinomyces sp. oral taxon C55

94
HM099646
clade_303
N
N



Kerstersia gyiorum

1018
NR_025669
clade_307
N
N



Pigmentiphaga daeguensis

1467
JN585327
clade_307
N
N



Aeromonas allosaccharophila

104
S39232
clade_308
N
N



Aeromonas enteropelogenes

105
X71121
clade_308
N
N



Aeromonas hydrophila

106
NC_008570
clade_308
N
N



Aeromonas jandaei

107
X60413
clade_308
N
N



Aeromonas salmonicida

108
NC_009348
clade_308
N
N



Aeromonas trota

109
X60415
clade_308
N
N



Aeromonas veronii

110
NR_044845
clade_308
N
N



Blautia coccoides

373
AB571656
clade_309
Y
N



Blautia glucerasea

374
AB588023
clade_309
Y
N



Blautia glucerasei

375
AB439724
clade_309
Y
N



Blautia hansenii

376
ABYU02000037
clade_309
Y
N



Blautia luti

378
AB691576
clade_309
Y
N



Blautia producta

379
AB600998
clade_309
Y
N



Blautia schinkii

380
NR_026312
clade_309
Y
N



Blautia sp. M25

381
HM626178
clade_309
Y
N



Blautia stercoris

382
HM626177
clade_309
Y
N



Blautia wexlerae

383
EF036467
clade_309
Y
N



Bryantella formatexigens

439
ACCL02000018
clade_309
Y
N



Clostridium coccoides

573
EF025906
clade_309
Y
N



Eubacterium cellulosolvens

839
AY178842
clade_309
Y
N


Lachnospiraceae bacterium 6_1_63FAA
1056
ACTV01000014
clade_309
Y
N



Marvinbryantia formatexigens

1196
AJ505973
clade_309
N
N



Ruminococcus hansenii

1662
M59114
clade_309
Y
N



Ruminococcus obeum

1664
AY169419
clade_309
Y
N



Ruminococcus sp. 5_1_39BFAA

1666
ACII01000172
clade_309
Y
N



Ruminococcus sp. K_1

1669
AB222208
clade_309
Y
N



Syntrophococcus sucromutans

1911
NR_036869
clade_309
Y
N



Rhodobacter sp. oral taxon C30

1620
HM099648
clade_310
N
N



Rhodobacter sphaeroides

1621
CP000144
clade_310
N
N



Lactobacillus antri

1071
ACLL01000037
clade_313
N
N



Lactobacillus coleohominis

1076
ACOH01000030
clade_313
N
N



Lactobacillus fermentum

1083
CP002033
clade_313
N
N



Lactobacillus gastricus

1085
AICN01000060
clade_313
N
N



Lactobacillus mucosae

1099
FR693800
clade_313
N
N



Lactobacillus oris

1103
AEKL01000077
clade_313
N
N



Lactobacillus pontis

1111
HM218420
clade_313
N
N



Lactobacillus reuteri

1112
ACGW02000012
clade_313
N
N



Lactobacillus sp. KLDS 1.0707

1127
EU600911
clade_313
N
N



Lactobacillus sp. KLDS 1.0709

1128
EU600913
clade_313
N
N



Lactobacillus sp. KLDS 1.0711

1129
EU600915
clade_313
N
N



Lactobacillus sp. KLDS 1.0713

1131
EU600917
clade_313
N
N



Lactobacillus sp. KLDS 1.0716

1132
EU600921
clade_313
N
N



Lactobacillus sp. KLDS 1.0718

1133
EU600922
clade_313
N
N



Lactobacillus sp. oral taxon 052

1137
GQ422710
clade_313
N
N



Lactobacillus vaginalis

1140
ACGV01000168
clade_313
N
N



Brevibacterium aurantiacum

419
NR_044854
clade_314
N
N



Brevibacterium linens

423
AJ315491
clade_314
N
N



Lactobacillus pentosus

1108
JN813103
clade_315
N
N



Lactobacillus plantarum

1110
ACGZ02000033
clade_315
N
N



Lactobacillus sp. KLDS 1.0702

1123
EU600906
clade_315
N
N



Lactobacillus sp. KLDS 1.0703

1124
EU600907
clade_315
N
N



Lactobacillus sp. KLDS 1.0704

1125
EU600908
clade_315
N
N



Lactobacillus sp. KLDS 1.0705

1126
EU600909
clade_315
N
N



Agrobacterium radiobacter

115
CP000628
clade_316
N
N



Agrobacterium tumefaciens

116
AJ389893
clade_316
N
N



Corynebacterium argentoratense

685
EF463055
clade_317
N
N



Corynebacterium diphtheriae

693
NC_002935
clade_317
N
OP



Corynebacterium pseudotuberculosis

715
NR_037070
clade_317
N
N



Corynebacterium renale

717
NR_037069
clade_317
N
N



Corynebacterium ulcerans

731
NR_074467
clade_317
N
N



Aurantimonas coralicida

191
AY065627
clade_318
N
N



Aureimonas altamirensis

192
FN658986
clade_318
N
N



Lactobacillus acidipiscis

1066
NR_024718
clade_320
N
N



Lactobacillus salivarius

1117
AEBA01000145
clade_320
N
N



Lactobacillus sp. KLDS 1.0719

1134
EU600923
clade_320
N
N



Lactobacillus buchneri

1073
ACGH01000101
clade_321
N
N



Lactobacillus genomosp. C1

1086
AY278619
clade_321
N
N



Lactobacillus genomosp. C2

1087
AY278620
clade_321
N
N



Lactobacillus hilgardii

1089
ACGP01000200
clade_321
N
N



Lactobacillus kefiri

1096
NR_042230
clade_321
N
N



Lactobacillus parabuchneri

1105
NR_041294
clade_321
N
N



Lactobacillus parakefiri

1107
NR_029039
clade_321
N
N



Lactobacillus curvatus

1079
NR_042437
clade_322
N
N



Lactobacillus sakei

1116
DQ989236
clade_322
N
N



Aneurinibacillus aneurinilyticus

167
AB101592
clade_323
N
N



Aneurinibacillus danicus

168
NR_028657
clade_323
N
N



Aneurinibacillus migulanus

169
NR_036799
clade_323
N
N



Aneurinibacillus terranovensis

170
NR_042271
clade_323
N
N



Staphylococcus aureus

1757
CP002643
clade_325
N
Category-B



Staphylococcus auricularis

1758
JQ624774
clade_325
N
N



Staphylococcus capitis

1759
ACFR01000029
clade_325
N
N



Staphylococcus caprae

1760
ACRH01000033
clade_325
N
N



Staphylococcus carnosus

1761
NR_075003
clade_325
N
N



Staphylococcus cohnii

1762
JN175375
clade_325
N
N



Staphylococcus condimenti

1763
NR_029345
clade_325
N
N



Staphylococcus epidermidis

1764
ACHE01000056
clade_325
N
N



Staphylococcus equorum

1765
NR_027520
clade_325
N
N



Staphylococcus haemolyticus

1767
NC_007168
clade_325
N
N



Staphylococcus hominis

1768
AM157418
clade_325
N
N



Staphylococcus lugdunensis

1769
AEQA01000024
clade_325
N
N



Staphylococcus pasteuri

1770
FJ189773
clade_325
N
N



Staphylococcus pseudintermedius

1771
CP002439
clade_325
N
N



Staphylococcus saccharolyticus

1772
NR_029158
clade_325
N
N



Staphylococcus saprophyticus

1773
NC_007350
clade_325
N
N



Staphylococcus sp. clone bottae7

1777
AF467424
clade_325
N
N



Staphylococcus sp. H292

1775
AB177642
clade_325
N
N



Staphylococcus sp. H780

1776
AB177644
clade_325
N
N



Staphylococcus succinus

1778
NR_028667
clade_325
N
N



Staphylococcus warneri

1780
ACPZ01000009
clade_325
N
N



Staphylococcus xylosus

1781
AY395016
clade_325
N
N



Cardiobacterium hominis

490
ACKY01000036
clade_326
N
N



Cardiobacterium valvarum

491
NR_028847
clade_326
N
N



Pseudomonas fluorescens

1593
AY622220
clade_326
N
N



Pseudomonas gessardii

1594
FJ943496
clade_326
N
N



Pseudomonas monteilii

1596
NR_024910
clade_326
N
N



Pseudomonas poae

1597
GU188951
clade_326
N
N



Pseudomonas putida

1599
AF094741
clade_326
N
N



Pseudomonas sp. G1229

1601
DQ910482
clade_326
N
N



Pseudomonas tolaasii

1604
AF320988
clade_326
N
N



Pseudomonas viridiflava

1605
NR_042764
clade_326
N
N



Bacillus alcalophilus

198
X76436
clade_327
Y
N



Bacillus clausii

205
FN397477
clade_327
Y
OP



Bacillus gelatini

210
NR_025595
clade_327
Y
OP



Bacillus halodurans

212
AY144582
clade_327
Y
OP



Bacillus sp. oral taxon F26

246
HM099642
clade_327
Y
OP



Listeria grayi

1185
ACCR02000003
clade_328
N
OP



Listeria innocua

1186
JF967625
clade_328
N
N



Listeria ivanovii

1187
X56151
clade_328
N
N



Listeria monocytogenes

1188
CP002003
clade_328
N
Category-B



Listeria welshimeri

1189
AM263198
clade_328
N
OP



Capnocytophaga sp. oral clone ASCH05

484
AY923149
clade_333
N
N



Capnocytophaga sputigena

489
ABZV01000054
clade_333
N
N



Leptotrichia genomosp. C1

1166
AY278621
clade_334
N
N



Leptotrichia shahii

1169
AY029806
clade_334
N
N



Leptotrichia sp. neutropenicPatient

1170
AF189244
clade_334
N
N



Leptotrichia sp. oral clone GT018

1171
AY349384
clade_334
N
N



Leptotrichia sp. oral clone GT020

1172
AY349385
clade_334
N
N



Bacteroides sp. 20_3

296
ACRQ01000064
clade_335
N
N



Bacteroides sp. 3_1_19

307
ADCJ01000062
clade_335
N
N



Bacteroides sp. 3_2_5

311
ACIB01000079
clade_335
N
N



Parabacteroides distasonis

1416
CP000140
clade_335
N
N



Parabacteroides goldsteinii

1417
AY974070
clade_335
N
N



Parabacteroides gordonii

1418
AB470344
clade_335
N
N



Parabacteroides sp. D13

1421
ACPW01000017
clade_335
N
N



Capnocytophaga genomosp. C1

477
AY278613
clade_336
N
N



Capnocytophaga ochracea

480
AEOH01000054
clade_336
N
N



Capnocytophaga sp. GEJ8

481
GU561335
clade_336
N
N



Capnocytophaga sp. oral strain A47ROY

486
AY005077
clade_336
N
N



Capnocytophaga sp. S1b

482
U42009
clade_336
N
N



Paraprevotella clara

1426
AFFY01000068
clade_336
N
N



Bacteroides heparinolyticus

282
JN867284
clade_338
N
N



Prevotella heparinolytica

1500
GQ422742
clade_338
N
N



Treponema genomosp. P4 oral clone

1928
DQ003618
clade_339
N
N


MB2_G19



Treponema genomosp. P6 oral clone

1930
DQ003625
clade_339
N
N


MB4_G11



Treponema sp. oral taxon 254

1952
GU408803
clade_339
N
N



Treponema sp. oral taxon 508

1956
GU413616
clade_339
N
N



Treponema sp. oral taxon 518

1957
GU413640
clade_339
N
N



Chlamydia muridarum

502
AE002160
clade_341
N
OP



Chlamydia trachomatis

504
U68443
clade_341
N
OP



Chlamydia psittaci

503
NR_036864
clade_342
N
Category-B



Chlamydophila pneumoniae

509
NC_002179
clade_342
N
OP



Chlamydophila psittaci

510
D85712
clade_342
N
OP



Anaerococcus octavius

146
NR_026360
clade_343
N
N



Anaerococcus sp. 8405254

149
HM587319
clade_343
N
N



Anaerococcus sp. 9401487

150
HM587322
clade_343
N
N



Anaerococcus sp. 9403502

151
HM587325
clade_343
N
N



Gardnerella vaginalis

923
CP001849
clade_344
N
N



Campylobacter lari

466
CP000932
clade_346
N
OP



Anaerobiospirillum succiniciproducens

142
NR_026075
clade_347
N
N



Anaerobiospirillum thomasii

143
AJ420985
clade_347
N
N



Ruminobacter amylophilus

1654
NR_026450
clade_347
N
N



Succinatimonas hippei

1897
AEVO01000027
clade_347
N
N



Actinomyces europaeus

54
NR_026363
clade_348
N
N



Actinomyces sp. oral clone GU009

82
AY349361
clade_348
N
N



Moraxella catarrhalis

1260
CP002005
clade_349
N
N



Moraxella lincolnii

1261
FR822735
clade_349
N
N



Moraxella sp. 16285

1263
JF682466
clade_349
N
N



Psychrobacter sp. 13983

1613
HM212668
clade_349
N
N



Actinobaculum massiliae

49
AF487679
clade_350
N
N



Actinobaculum schaalii

50
AY957507
clade_350
N
N



Actinobaculum sp. BM#101342

51
AY282578
clade_350
N
N



Actinobaculum sp. P2P_19 P1

52
AY207066
clade_350
N
N



Actinomyces sp. oral clone IO076

84
AY349363
clade_350
N
N



Actinomyces sp. oral taxon 848

93
ACUY01000072
clade_350
N
N



Clostridium innocuum

595
M23732
clade_351
Y
N



Clostridium sp. HGF2

628
AENW01000022
clade_351
Y
N



Actinomyces neuii

65
X71862
clade_352
N
N



Mobiluncus mulieris

1252
ACKW01000035
clade_352
N
N



Clostridium perfringens

612
ABDW01000023
clade_353
Y
Category-B



Sarcina ventriculi

1687
NR_026146
clade_353
Y
N



Clostridium bartlettii

556
ABEZ02000012
clade_354
Y
N



Clostridium bifermentans

558
X73437
clade_354
Y
N



Clostridium ghonii

586
AB542933
clade_354
Y
N



Clostridium glycolicum

587
FJ384385
clade_354
Y
N



Clostridium mayombei

605
FR733682
clade_354
Y
N



Clostridium sordellii

625
AB448946
clade_354
Y
N



Clostridium sp. MT4 E

635
FJ159523
clade_354
Y
N



Eubacterium tenue

872
M59118
clade_354
Y
N



Clostridium argentinense

553
NR_029232
clade_355
Y
N



Clostridium sp. JC122

630
CAEV01000127
clade_355
Y
N



Clostridium sp. NMBHI_1

636
JN093130
clade_355
Y
N



Clostridium subterminale

650
NR_041795
clade_355
Y
N



Clostridium sulfidigenes

651
NR_044161
clade_355
Y
N



Blastomonas natatoria

372
NR_040824
clade_356
N
N



Novospbingobium aromaticivorans

1357
AAAV03000008
clade_356
N
N



Sphingomonas sp. oral clone FI012

1745
AY349411
clade_356
N
N



Sphingopyxis alaskensis

1749
CP000356
clade_356
N
N



Oxalobacter formigenes

1389
ACDQ01000020
clade_357
N
N



Veillonella atypica

1974
AEDS01000059
clade_358
N
N



Veillonella dispar

1975
ACIK02000021
clade_358
N
N



Veillonella genomosp. P1 oral clone

1976
DQ003631
clade_358
N
N


MB5_P17



Veillonella parvula

1978
ADFU01000009
clade_358
N
N



Veillonella sp. 3_1_44

1979
ADCV01000019
clade_358
N
N



Veillonella sp. 6_1_27

1980
ADCW01000016
clade_358
N
N



Veillonella sp. ACP1

1981
HQ616359
clade_358
N
N



Veillonella sp. AS16

1982
HQ616365
clade_358
N
N



Veillonella sp. BS32b

1983
HQ616368
clade_358
N
N



Veillonella sp. ICM51a

1984
HQ616396
clade_358
N
N



Veillonella sp. MSA12

1985
HQ616381
clade_358
N
N



Veillonella sp. NVG 100cf

1986
EF108443
clade_358
N
N



Veillonella sp. OK11

1987
JN695650
clade_358
N
N



Veillonella sp. oral clone ASCG01

1990
AY923144
clade_358
N
N



Veillonella sp. oral clone ASCG02

1991
AY953257
clade_358
N
N



Veillonella sp. oral clone OH1A

1992
AY947495
clade_358
N
N



Veillonella sp. oral taxon 158

1993
AENU01000007
clade_358
N
N



Dorea formicigenerans

773
AAXA02000006
clade_360
Y
N



Dorea longicatena

774
AJ132842
clade_360
Y
N


Lachnospiraceae bacterium 2_1_46FAA
1050
ADLB01000035
clade_360
Y
N


Lachnospiraceae bacterium 2_1_58FAA
1051
ACTO01000052
clade_360
Y
N


Lachnospiraceae bacterium 4_1_37FAA
1053
ADCR01000030
clade_360
Y
N


Lachnospiraceae bacterium 9_1_43BFAA
1058
ACTX01000023
clade_360
Y
N



Ruminococcus gnavus

1661
X94967
clade_360
Y
N



Ruminococcus sp. ID8

1668
AY960564
clade_360
Y
N



Kocuria marina

1040
GQ260086
clade_365
N
N



Kocuria rhizophila

1042
AY030315
clade_365
N
N



Kocuria rosea

1043
X87756
clade_365
N
N



Kocuria varians

1044
AF542074
clade_365
N
N



Blautia hydrogenotrophica

377
ACBZ01000217
clade_368
Y
N


Clostridiaceae bacterium END_2
531
EF451053
clade_368
N
N



Lactonifactor longoviformis

1147
DQ100449
clade_368
Y
N



Robinsoniella peoriensis

1633
AF445258
clade_368
Y
N



Micrococcus antarcticus

1242
NR_025285
clade_371
N
N



Micrococcus luteus

1243
NR_075062
clade_371
N
N



Micrococcus lylae

1244
NR_026200
clade_371
N
N



Micrococcus sp. 185

1245
EU714334
clade_371
N
N



Lactobacillus brevis

1072
EU194349
clade_372
N
N



Lactobacillus parabrevis

1104
NR_042456
clade_372
N
N



Pediococcus acidilactici

1436
ACXB01000026
clade_372
N
N



Pediococcus pentosaceus

1437
NR_075052
clade_372
N
N



Lactobacillus dextrinicus

1081
NR_036861
clade_373
N
N



Lactobacillus perolens

1109
NR_029360
clade_373
N
N



Lactobacillus rhamnosus

1113
ABWJ01000068
clade_373
N
N



Lactobacillus saniviri

1118
AB602569
clade_373
N
N



Lactobacillus sp. BT6

1121
HQ616370
clade_373
N
N



Mycobacterium mageritense

1282
FR798914
clade_374
N
OP



Mycobacterium neoaurum

1286
AF268445
clade_374
N
OP



Mycobacterium smegmatis

1291
CP000480
clade_374
N
OP



Mycobacterium sp. HE5

1304
AJ012738
clade_374
N
N



Dysgonomonas gadei

775
ADLV01000001
clade_377
N
N



Dysgonomonas mossii

776
ADLW01000023
clade_377
N
N



Porphyromonas levii

1474
NR_025907
clade_377
N
N



Porphyromonas somerae

1476
AB547667
clade_377
N
N



Bacteroides barnesiae

267
NR_041446
clade_378
N
N



Bacteroides coprocola

272
ABIY02000050
clade_378
N
N



Bacteroides coprophilus

273
ACBW01000012
clade_378
N
N



Bacteroides dorei

274
ABWZ01000093
clade_378
N
N



Bacteroides massiliensis

284
AB200226
clade_378
N
N



Bacteroides plebeius

289
AB200218
clade_378
N
N



Bacteroides sp. 3_1_33FAA

309
ACPS01000085
clade_378
N
N



Bacteroides sp. 3_1_40A

310
ACRT01000136
clade_378
N
N



Bacteroides sp. 4_3_47FAA

313
ACDR02000029
clade_378
N
N



Bacteroides sp. 9_1_42FAA

314
ACAA01000096
clade_378
N
N



Bacteroides sp. NB_8

323
AB117565
clade_378
N
N



Bacteroides vulgatus

331
CP000139
clade_378
N
N



Bacteroides ovatus

287
ACWH01000036
clade_38
N
N



Bacteroides sp. 1_1_30

294
ADCL01000128
clade_38
N
N



Bacteroides sp. 2_1_22

297
ACPQ01000117
clade_38
N
N



Bacteroides sp. 2_2_4

299
ABZZ01000168
clade_38
N
N



Bacteroides sp. 3_1_23

308
ACRS01000081
clade_38
N
N



Bacteroides sp. D1

318
ACAB02000030
clade_38
N
N



Bacteroides sp. D2

321
ACGA01000077
clade_38
N
N



Bacteroides sp. D22

320
ADCK01000151
clade_38
N
N



Bacteroides xylanisolvens

332
ADKP01000087
clade_38
N
N



Treponema lecithinolyticum

1931
NR_026247
clade_380
N
OP



Treponema parvum

1933
AF302937
clade_380
N
OP



Treponema sp. oral clone JU025

1940
AY349417
clade_380
N
N



Treponema sp. oral taxon 270

1954
GQ422733
clade_380
N
N



Parascardovia denticolens

1428
ADEB01000020
clade_381
N
N



Scardovia inopinata

1688
AB029087
clade_381
N
N



Scardovia wiggsiae

1689
AY278626
clade_381
N
N


Clostridiales bacterium 9400853
533
HM587320
clade_384
N
N



Eubacterium infirmum

849
U13039
clade_384
Y
N



Eubacterium sp. WAL 14571

864
FJ687606
clade_384
Y
N



Mogibacterium diversum

1254
NR_027191
clade_384
N
N



Mogibacterium neglectum

1255
NR_027203
clade_384
N
N



Mogibacterium pumilum

1256
NR_028608
clade_384
N
N



Mogibacterium timidum

1257
Z36296
clade_384
N
N


Erysipeiotrichaceae bacterium 5_2_54FAA
823
ACZW01000054
clade_385
Y
N



Eubacterium biforme

835
ABYT01000002
clade_385
Y
N



Eubacterium cylindroides

842
FP929041
clade_385
Y
N



Eubacterium dolichum

844
L34682
clade_385
Y
N



Eubacterium sp. 3_1_31

861
ACTL01000045
clade_385
Y
N



Eubacterium tortuosum

873
NR_044648
clade_385
Y
N



Borrelia burgdorferi

389
ABGI01000001
clade_386
N
OP



Borrelia garinii

392
ABJV01000001
clade_386
N
OP



Borrelia sp. NE49

397
AJ224142
clade_386
N
OP



Caldimonas manganoxidans

457
NR_040787
clade_387
N
N


Comamonadaceae bacterium oral taxon
667
HM099651
clade_387
N
N


F47



Lautropia mirabilis

1149
AEQP01000026
clade_387
N
N



Lautropia sp. oral clone AP009

1150
AY005030
clade_387
N
N



Bulleidia extructa

441
ADFR01000011
clade_388
Y
N



Solobacterium moorei

1739
AECQ01000039
clade_388
Y
N



Peptoniphilus asaccharolyticus

1441
D14145
clade_389
N
N



Peptoniphilus duerdenii

1442
EU526290
clade_389
N
N



Peptoniphilus harei

1443
NR_026358
clade_389
N
N



Peptoniphilus indolicus

1444
AY153431
clade_389
N
N



Peptoniphilus lacrimalis

1446
ADDO01000050
clade_389
N
N



Peptoniphilus sp. gpac077

1450
AM176527
clade_389
N
N



Peptoniphilus sp. JC140

1447
JF824803
clade_389
N
N



Peptoniphilus sp. oral taxon 386

1452
ADCS01000031
clade_389
N
N



Peptoniphilus sp. oral taxon 836

1453
AEAA01000090
clade_389
N
N


Peptostreptococcaceae bacterium ph1
1454
JN837495
clade_389
N
N



Dialister pneumosintes

765
HM596297
clade_390
N
N



Dialister sp. oral taxon 502

767
GQ422739
clade_390
N
N



Cupriavidus metallidurans

741
GU230889
clade_391
N
N



Herbaspirillum seropedicae

1001
CP002039
clade_391
N
N



Herbaspirillum sp. JC206

1002
JN657219
clade_391
N
N



Janthinobacterium sp. SY12

1015
EF455530
clade_391
N
N



Massilia sp. CCUG 43427A

1197
FR773700
clade_391
N
N



Ralstonia pickettii

1615
NC_010682
clade_391
N
N



Ralstonia sp. 5_7_47FAA

1616
ACUF01000076
clade_391
N
N



Francisella novicida

889
ABSS01000002
clade_392
N
N



Francisella philomiragia

890
AY928394
clade_392
N
N



Francisella tularensis

891
ABAZ01000082
clade_392
N
Category-A



Ignatzschineria indica

1009
HQ823562
clade_392
N
N



Ignatzschineria sp. NML 95_0260

1010
HQ823559
clade_392
N
N



Coprococcus catus

673
EU266552
clade_393
Y
N


Lachnospiraceae bacterium oral taxon F15
1064
HM099641
clade_393
Y
N



Streptococcus mutans

1814
AP010655
clade_394
N
N



Clostridium cochlearium

574
NR_044717
clade_395
Y
N



Clostridium malenominatum

604
FR749893
clade_395
Y
N



Clostridium tetani

654
NC_004557
clade_395
Y
N



Acetivibrio ethanolgignens

6
FR749897
clade_396
Y
N



Anaerosporobacter mobilis

161
NR_042953
clade_396
Y
N



Bacteroides pectinophilus

288
ABVQ01000036
clade_396
Y
N



Clostridium aminovalericum

551
NR_029245
clade_396
Y
N



Clostridium phytofermentans

613
NR_074652
clade_396
Y
N



Eubacterium hallii

848
L34621
clade_396
Y
N



Eubacterium xylanophilum

875
L34628
clade_396
Y
N



Lactobacillus gasseri

1084
ACOZ01000018
clade_398
N
N



Lactobacillus hominis

1090
FR681902
clade_398
N
N



Lactobacillus iners

1091
AEKJ01000002
clade_398
N
N



Lactobacillus johnsonii

1093
AE017198
clade_398
N
N



Lactobacillus senioris

1119
AB602570
clade_398
N
N



Lactobacillus sp. oral clone HT002

1135
AY349382
clade_398
N
N



Weissella beninensis

2006
EU439435
clade_398
N
N



Sphingomonas echinoides

1744
NR_024700
clade_399
N
N



Sphingomonas sp. oral taxon A09

1747
HM099639
clade_399
N
N



Sphingomonas sp. oral taxon F71

1748
HM099645
clade_399
N
N



Zymomonas mobilis

2032
NR_074274
clade_399
N
N



Arcanobacterium haemolyticum

174
NR_025347
clade_400
N
N



Arcanobacterium pyogenes

175
GU585578
clade_400
N
N



Trueperella pyogenes

1962
NR_044858
clade_400
N
N



Lactococcus garvieae

1144
AF061005
clade_401
N
N



Lactococcus lactis

1145
CP002365
clade_401
N
N



Brevibacterium mcbrellneri

424
ADNU01000076
clade_402
N
N



Brevibacterium paucivorans

425
EU086796
clade_402
N
N



Brevibacterium sp. JC43

428
JF824806
clade_402
N
N



Selenomonas artemidis

1692
HM596274
clade_403
N
N



Selenomonas sp. FOBRC9

1704
HQ616378
clade_403
N
N



Selenomonas sp. oral taxon 137

1715
AENV01000007
clade_403
N
N



Desmospora activa

751
AM940019
clade_404
N
N



Desmospora sp. 8437

752
AFHT01000143
clade_404
N
N



Paenibacillus sp. oral taxon F45

1407
HM099647
clade_404
N
N



Corynebacterium ammoniagenes

682
ADNS01000011
clade_405
N
N



Corynebacterium aurimucosum

687
ACLH01000041
clade_405
N
N



Corynebacterium bovis

688
AF537590
clade_405
N
N



Corynebacterium canis

689
GQ871934
clade_405
N
N



Corynebacterium casei

690
NR_025101
clade_405
N
N



Corynebacterium durum

694
Z97069
clade_405
N
N



Corynebacterium efficiens

695
ACLI01000121
clade_405
N
N



Corynebacterium falsenii

696
Y13024
clade_405
N
N



Corynebacterium flavescens

697
NR_037040
clade_405
N
N



Corynebacterium glutamicum

701
BA000036
clade_405
N
N



Corynebacterium jeikeium

704
ACYW01000001
clade_405
N
OP



Corynebacterium kroppenstedtii

705
NR_026380
clade_405
N
N



Corynebacterium lipophiloflavum

706
ACHJ01000075
clade_405
N
N



Corynebacterium matruchotii

709
ACSH02000003
clade_405
N
N



Corynebacterium minutissimum

710
X82064
clade_405
N
N



Corynebacterium resistens

718
ADGN01000058
clade_405
N
N



Corynebacterium simulans

720
AF537604
clade_405
N
N



Corynebacterium singulare

721
NR_026394
clade_405
N
N



Corynebacterium sp. 1 ex sheep

722
Y13427
clade_405
N
N



Corynebacterium sp. NML 99_0018

726
GU238413
clade_405
N
N



Corynebacterium striatum

727
ACGE01000001
clade_405
N
OP



Corynebacterium urealyticum

732
X81913
clade_405
N
OP



Corynebacterium variabile

734
NR_025314
clade_405
N
N



Ruminococcus callidus

1658
NR_029160
clade_406
Y
N



Ruminococcus champanellensis

1659
FP929052
clade_406
Y
N



Ruminococcus sp. 18P13

1665
AJ515913
clade_406
Y
N



Ruminococcus sp. 9SE51

1667
FM954974
clade_406
Y
N



Aerococcus sanguinicola

98
AY837833
clade_407
N
N



Aerococcus urinae

99
CP002512
clade_407
N
N



Aerococcus urinaeequi

100
NR_043443
clade_407
N
N



Aerococcus viridans

101
ADNT01000041
clade_407
N
N



Anaerostipes caccae

162
ABAX03000023
clade_408
Y
N



Anaerostipes sp. 3_2_56FAA

163
ACWB01000002
clade_408
Y
N


Clostridiales bacterium 1_7_47FAA
541
ABQR01000074
clade_408
Y
N


Clostridiales sp. SM4_1
542
FP929060
clade_408
Y
N


Clostridiales sp. SSC_2
544
FP929061
clade_408
Y
N



Clostridium aerotolerans

546
X76163
clade_408
Y
N



Clostridium aldenense

547
NR_043680
clade_408
Y
N



Clostridium algidixylanolyticum

550
NR_028726
clade_408
Y
N



Clostridium amygdalinum

552
AY353957
clade_408
Y
N



Clostridium asparagiforme

554
ACCJ01000522
clade_408
Y
N



Clostridium bolteae

559
ABCC02000039
clade_408
Y
N



Clostridium celerecrescens

566
JQ246092
clade_408
Y
N



Clostridium citroniae

569
ADLJ01000059
clade_408
Y
N



Clostridium clostridiiformes

571
M59089
clade_408
Y
N



Clostridium clostridioforme

572
NR_044715
clade_408
Y
N



Clostridium hathewayi

590
AY552788
clade_408
Y
N



Clostridium indolis

594
AF028351
clade_408
Y
N



Clostridium lavalense

600
EF564277
clade_408
Y
N



Clostridium saccharolyticum

620
CP002109
clade_408
Y
N



Clostridium sp. M62_1

633
ACFX02000046
clade_408
Y
N



Clostridium sp. SS2_1

638
ABGC03000041
clade_408
Y
N



Clostridium sphenoides

643
X73449
clade_408
Y
N



Clostridium symbiosum

652
ADLQ01000114
clade_408
Y
N



Clostridium xylanolyticum

658
NR_037068
clade_408
Y
N



Eubacterium hadrum

847
FR749933
clade_408
Y
N



Fusobacterium naviforme

898
HQ223106
clade_408
N
N


Lachnospiraceae bacterium 3_1_57FAA
1052
ACTP01000124
clade_408
Y
N


Lachnospiraceae bacterium 5_1_63FAA
1055
ACTS01000081
clade_408
Y
N


Lachnospiraceae bacterium A4
1059
DQ789118
clade_408
Y
N


Lachnospiraceae bacterium DJF VP30
1060
EU728771
clade_408
Y
N


Lachnospiraceae genomosp. C1
1065
AY278618
clade_408
Y
N



Moryella indoligenes

1268
AF527773
clade_408
N
N



Clostridium difficile

578
NC_013315
clade_409
Y
OP



Selenomonas genomosp. P5

1697
AY341820
clade_410
N
N



Selenomonas sp. oral clone IQ048

1710
AY349408
clade_410
N
N



Selenomonas sputigena

1717
ACKP02000033
clade_410
N
N



Hyphomicrobium sulfonivorans

1007
AY468372
clade_411
N
N



Methylocella silvestris

1228
NR_074237
clade_411
N
N



Legionella pneumophila

1153
NC_002942
clade_412
N
OP



Lactobacillus coryniformis

1077
NR_044705
clade_413
N
N



Arthrobacter agilis

178
NR_026198
clade_414
N
N



Arthrobacter arilaitensis

179
NR_074608
clade_414
N
N



Arthrobacter bergerei

180
NR_025612
clade_414
N
N



Arthrobacter globiformis

181
NR_026187
clade_414
N
N



Arthrobacter nicotianae

182
NR_026190
clade_414
N
N



Mycobacterium abscessus

1269
AGQU01000002
clade_418
N
OP



Mycobacterium chelonae

1273
AB548610
clade_418
N
OP



Bacteroides salanitronis

291
CP002530
clade_419
N
N



Paraprevotella xylaniphila

1427
AFBR01000011
clade_419
N
N



Barnesiella intestinihominis

336
AB370251
clade_420
N
N



Barnesiella viscericola

337
NR_041508
clade_420
N
N



Parabacteroides sp. NS31_3

1422
JN029805
clade_420
N
N


Porphyromonadaceae bacterium NML
1470
EF184292
clade_420
N
N


060648



Tannerella forsythia

1913
CP003191
clade_420
N
N



Tannerella sp. 6_1_58FAA_CT1

1914
ACWX01000068
clade_420
N
N



Mycoplasma amphoriforme

1311
AY531656
clade_421
N
N



Mycoplasma genitalium

1317
L43967
clade_421
N
N



Mycoplasma pneumoniae

1322
NC_000912
clade_421
N
N



Mycoplasma penetrans

1321
NC_004432
clade_422
N
N



Ureaplasma parvum

1966
AE002127
clade_422
N
N



Ureaplasma urealyticum

1967
AAYN01000002
clade_422
N
N



Treponema genomosp. P1

1927
AY341822
clade_425
N
N



Treponema sp. oral taxon 228

1943
GU408580
clade_425
N
N



Treponema sp. oral taxon 230

1944
GU408603
clade_425
N
N



Treponema sp. oral taxon 231

1945
GU408631
clade_425
N
N



Treponema sp. oral taxon 232

1946
GU408646
clade_425
N
N



Treponema sp. oral taxon 235

1947
GU408673
clade_425
N
N



Treponema sp. ovine footrot

1959
AJ010951
clade_425
N
N



Treponema vincentii

1960
ACYH01000036
clade_425
N
OP



Eubacterium sp. AS15b

862
HQ616364
clade_428
Y
N



Eubacterium sp. OBRC9

863
HQ616354
clade_428
Y
N



Eubacterium sp. oral clone OH3A

871
AY947497
clade_428
Y
N



Eubacterium yurii

876
AEES01000073
clade_428
Y
N



Clostridium acetobutylicum

545
NR_074511
clade_430
Y
N



Clostridium algidicarnis

549
NR_041746
clade_430
Y
N



Clostridium cadaveris

562
AB542932
clade_430
Y
N



Clostridium carboxidivorans

563
FR733710
clade_430
Y
N



Clostridium estertheticum

580
NR_042153
clade_430
Y
N



Clostridium fallax

581
NR_044714
clade_430
Y
N



Clostridium felsineum

583
AF270502
clade_430
Y
N



Clostridium frigidicarnis

584
NR_024919
clade_430
Y
N



Clostridium kluyveri

598
NR_074165
clade_430
Y
N



Clostridium magnum

603
X77835
clade_430
Y
N



Clostridium putrefaciens

615
NR_024995
clade_430
Y
N



Clostridium sp. HPB_46

629
AY862516
clade_430
Y
N



Clostridium tyrobutyricum

656
NR_044718
clade_430
Y
N



Burkholderiales bacterium 1_1_47

452
ADCQ01000066
clade_432
N
OP



Parasutterella excrementihominis

1429
AFBP01000029
clade_432
N
N



Parasutterella secunda

1430
AB491209
clade_432
N
N



Sutterella morbirenis

1898
AJ832129
clade_432
N
N



Sutterella parvirubra

1899
AB300989
clade_432
Y
N



Sutterella sanguinus

1900
AJ748647
clade_432
N
N



Sutterella sp. YIT 12072

1901
AB491210
clade_432
N
N



Sutterella stercoricanis

1902
NR_025600
clade_432
N
N



Sutterella wadsworthensis

1903
ADMF01000048
clade_432
N
N



Propionibacterium freudenreichii

1572
NR_036972
clade_433
N
N



Propionibacterium sp. oral taxon 192

1580
GQ422728
clade_433
N
N



Tessaracoccus sp. oral taxon F04

1917
HM099640
clade_433
N
N



Peptoniphilus ivorii

1445
Y07840
clade_434
N
N



Peptoniphilus sp. gpac007

1448
AM176517
clade_434
N
N



Peptoniphilus sp. gpac018A

1449
AM176519
clade_434
N
N



Peptoniphilus sp. gpac148

1451
AM176535
clade_434
N
N



Flexispira rappini

887
AY126479
clade_436
N
N



Helicobacter bilis

993
ACDN01000023
clade_436
N
N



Helicobacter cinaedi

995
ABQT01000054
clade_436
N
N



Helicobacter sp. None

998
U44756
clade_436
N
N



Brevundimonas subvibrioides

429
CP002102
clade_438
N
N



Hyphomonas neptunium

1008
NR_074092
clade_438
N
N



Phenylobacterium zucineum

1465
AY628697
clade_438
N
N



Acetanaerobaeterium elongatum

4
NR_042930
clade_439
Y
N



Clostridium cellulosi

567
NR_044624
clade_439
Y
N



Ethanoligenens harbinense

832
AY675965
clade_439
Y
N



Streptococcus downei

1793
AEKN01000002
clade_441
N
N



Streptococcus sp. SHV515

1848
Y07601
clade_441
N
N



Acinetobacter sp. CIP 53.82

40
JQ638584
clade_443
N
N



Halomonas elongata

990
NR_074782
clade_443
N
N



Halomonas johnsoniae

991
FR775979
clade_443
N
N



Butyrivibrio fibrisolvens

456
U41172
clade_444
N
N



Eubacterium rectale

856
FP929042
clade_444
Y
N



Eubacterium sp. oral clone GI038

865
AY349374
clade_444
Y
N



Lachnobacterium bovis

1045
GU324407
clade_444
Y
N



Roseburia cecicola

1634
GU233441
clade_444
Y
N



Roseburia faecalis

1635
AY804149
clade_444
Y
N



Roseburia faecis

1636
AY305310
clade_444
Y
N



Roseburia hominis

1637
AJ270482
clade_444
Y
N



Roseburia intestinalis

1638
FP929050
clade_444
Y
N



Roseburia inulinivorans

1639
AJ270473
clade_444
Y
N



Roseburia sp. 11SE37

1640
FM954975
clade_444
N
N



Roseburia sp. 11SE38

1641
FM954976
clade_444
N
N



Shuttleworthia satelles

1728
ACIP02000004
clade_444
N
N



Shuttleworthia sp. MSX8B

1729
HQ616383
clade_444
N
N



Shuttleworthia sp. oral taxon G69

1730
GU432167
clade_444
N
N



Bdellovibrio sp. MPA

344
AY294215
clade_445
N
N



Desulfobulbus sp. oral clone CH031

755
AY005036
clade_445
N
N



Desulfovibrio desulfuricans

757
DQ092636
clade_445
N
N



Desulfovibrio fairfieldensis

758
U42221
clade_445
N
N



Desulfovibrio piger

759
AF192152
clade_445
N
N



Desulfovibrio sp. 3_1_syn3

760
ADDR01000239
clade_445
N
N



Geobacter bemidjiensis

941
CP001124
clade_445
N
N



Brachybacterium alimentarium

401
NR_026269
clade_446
N
N



Brachybacterium conglomeratum

402
AB537169
clade_446
N
N



Brachybacterium tyrofermentans

403
NR_026272
clade_446
N
N



Dermabacter hominis

749
FJ263375
clade_446
N
N



Aneurinibacillus thermoaerophilus

171
NR_029303
clade_448
N
N



Brevibacillus agri

409
NR_040983
clade_448
N
N



Brevibacillus brevis

410
NR_041524
clade_448
Y
N



Brevibacillus centrosporus

411
NR_043414
clade_448
N
N



Brevibacillus choshinensis

412
NR_040980
clade_448
N
N



Brevibacillus invocatus

413
NR_041836
clade_448
N
N



Brevibacillus laterosporus

414
NR_037005
clade_448
Y
N



Brevibacillus parabrevis

415
NR_040981
clade_448
N
N



Brevibacillus reuszeri

416
NR_040982
clade_448
N
N



Brevibacillus sp. phR

417
JN837488
clade_448
N
N



Brevibacillus thermoruber

418
NR_026514
clade_448
N
N



Lactobacillus murinus

1100
NR_042231
clade_449
N
N



Lactobacillus oeni

1102
NR_043095
clade_449
N
N



Lactobacillus ruminis

1115
ACGS02000043
clade_449
N
N



Lactobacillus vini

1141
NR_042196
clade_449
N
N



Gemella haemolysans

924
ACDZ02000012
clade_450
N
N



Gemella morbillorum

925
NR_025904
clade_450
N
N



Gemella morbillorum

926
ACRX01000010
clade_450
N
N



Gemella sanguinis

927
ACRY01000057
clade_450
N
N



Gemella sp. oral clone ASCE02

929
AY923133
clade_450
N
N



Gemella sp. oral clone ASCF04

930
AY923139
clade_450
N
N



Gemella sp. oral clone ASCF12

931
AY923143
clade_450
N
N



Gemella sp. WAL 1945J

928
EU427463
clade_450
N
N



Bacillus coagulans

206
DQ297928
clade_451
Y
OP



Sporolactobacillus inulinus

1752
NR_040962
clade_451
Y
N



Sporolactobacillus nakayamae

1753
NR_042247
clade_451
N
N



Gluconacetobacter entanii

945
NR_028909
clade_452
N
N



Gluconacetobacter europaeus

946
NR_026513
clade_452
N
N



Gluconacetobacter hansenii

947
NR_026133
clade_452
N
N



Gluconacetobacter oboediens

949
NR_041295
clade_452
N
N



Gluconacetobacter xylinus

950
NR_074338
clade_452
N
N



Auritibacter ignavus

193
FN554542
clade_453
N
N



Dermacoccus sp. Ellin185

750
AEIQ01000090
clade_453
N
N



Janibacter limosus

1013
NR_026362
clade_453
N
N



Janibacter melonis

1014
EF063716
clade_453
N
N



Kocuria palustris

1041
EU333884
clade_453
Y
N



Acetobacter aceti

7
NR_026121
clade_454
N
N



Acetobacter fabarum

8
NR_042678
clade_454
N
N



Acetobacter lovaniensis

9
NR_040832
clade_454
N
N



Acetobacter malorum

10
NR_025513
clade_454
N
N



Acetobacter orientalis

11
NR_028625
clade_454
N
N



Acetobacter pasteurianus

12
NR_026107
clade_454
N
N



Acetobacter pomorum

13
NR_042112
clade_454
N
N



Acetobacter syzygii

14
NR_040868
clade_454
N
N



Acetobacter tropicalis

15
NR_036881
clade_454
N
N



Gluconacetobacter azotocaptans

943
NR_028767
clade_454
N
N



Gluconacetobacter diazotrophicus

944
NR_074292
clade_454
N
N



Gluconacetobacter johannae

948
NR_024959
clade_454
N
N



Nocardia brasiliensis

1351
AIHV01000038
clade_455
N
N



Nocardia cyriacigeorgica

1352
HQ009486
clade_455
N
N



Nocardia farcinica

1353
NC_006361
clade_455
Y
N



Nocardia puris

1354
NR_028994
clade_455
N
N



Nocardia sp. 01_Je_025

1355
GU574059
clade_455
N
N



Rhodococcus equi

1623
ADNW01000058
clade_455
N
N



Bacillus sp. oral taxon F28

247
HM099650
clade_456
Y
OP



Oceanobacillus caeni

1358
NR_041533
clade_456
N
N



Oceanobacillus sr. Ndiop

1359
CAER01000083
clade_456
N
N



Ornithinibacillus bavariensis

1384
NR_044923
clade_456
N
N



Ornithinibacillus sp. 7_10AIA

1385
FN397526
clade_456
N
N



Virgibacillus proomii

2005
NR_025308
clade_456
N
N



Corynebacterium amycolatum

683
ABZU01000033
clade_457
N
OP



Corynebacterium hansenii

702
AM946639
clade_457
N
N



Corynebacterium xerosis

735
FN179330
clade_457
N
OP


Staphylococcaceae bacterium NML
1756
AY841362
clade_458
N
N



92 _0017




Staphylococcus fleurettii

1766
NR_041326
clade_458
N
N



Staphylococcus sciuri

1774
NR_025520
clade_458
N
N



Staphylococcus vitulinus

1779
NR_024670
clade_458
N
N



Stenotrophomonas maltophilia

1782
AAVZ01000005
clade_459
N
N



Stenotrophomonas sp. FG_6

1783
EF017810
clade_459
N
N



Mycobacterium africanum

1270
AF480605
clade_46
N
OP



Mycobacterium alsiensis

1271
AJ938169
clade_46
N
OP



Mycobacterium avium

1272
CP000479
clade_46
N
OP



Mycobacterium colombiense

1274
AM062764
clade_46
N
OP



Mycobacterium gordonae

1276
GU142930
clade_46
N
OP



Mycobacterium intracellulare

1277
GQ153276
clade_46
N
OP



Mycobacterium kansasii

1278
AF480601
clade_46
N
OP



Mycobacterium lacus

1279
NR_025175
clade_46
N
OP



Mycobacterium leprae

1280
FM211192
clade_46
N
OP



Mycobacterium lepromatosis

1281
EU203590
clade_46
N
OP



Mycobacterium mantenii

1283
FJ042897
clade_46
N
OP



Mycobacterium marinum

1284
NC_010612
clade_46
N
OP



Mycobacterium microti

1285
NR_025234
clade_46
N
OP



Mycobacterium parascrofulaceum

1287
ADNV01000350
clade_46
N
OP



Mycobacterium seoulense

1290
DQ536403
clade_46
N
OP



Mycobacterium sp. 1761

1292
EU703150
clade_46
N
N



Mycobacterium sp. 1791

1295
EU703148
clade_46
N
N



Mycobacterium sp. 1797

1296
EU703149
clade_46
N
N



Mycobacterium sp. B10_07.09.0206

1298
HQ174245
clade_46
N
N



Mycobacterium sp. NLA001000736

1305
HM627011
clade_46
N
N



Mycobacterium sp. W

1306
DQ437715
clade_46
N
N



Mycobacterium tuberculosis

1307
CP001658
clade_46
N
Category-C



Mycobacterium ulcerans

1308
AB548725
clade_46
N
OP



Mycobacterium vulneris

1309
EU834055
clade_46
N
OP



Xanthomonas campestris

2016
EF101975
clade_461
N
N



Xanthomonas sp. kmd_489

2017
EU723184
clade_461
N
N



Dietzia natronolimnaea

769
GQ870426
clade_462
N
N



Dietzia sp. BBDP51

770
DQ337512
clade_462
N
N



Dietzia sp. CA149

771
GQ870422
clade_462
N
N



Dietzia timorensis

772
GQ870424
clade_462
N
N



Gordonia bronchialis

951
NR_027594
clade_463
N
N



Gordonia polyisoprenivorans

952
DQ385609
clade_463
N
N



Gordonia sp. KTR9

953
DQ068383
clade_463
N
N



Gordonia sputi

954
FJ536304
clade_463
N
N



Gordonia terrae

955
GQ848239
clade_463
N
N



Leptotrichia goodfellowii

1167
ADAD01000110
clade_465
N
N



Leptotrichia sp. oral clone IK040

1174
AY349387
clade_465
N
N



Leptotrichia sp. oral clone P2PB_51 P1

1175
AY207053
clade_465
N
N


Bacteroidales genomosp. P7 oral clone
264
DQ003623
clade_466
N
N


MB3_P19



Butyricimonas virosa

454
AB443949
clade_466
N
N



Odoribacter laneus

1363
AB490805
clade_466
N
N



Odoribacter splanchnicus

1364
CP002544
clade_466
N
N



Capnocytophaga gingivalis

478
ACLQ01000011
clade_467
N
N



Capnocytophaga granulosa

479
X97248
clade_467
N
N



Capnocytophaga sp. oral clone AH015

483
AY005074
clade_467
N
N



Copnocytophoga sp. oral strain S3

487
AY005073
clade_467
N
N



Copnocytophaga sp. oral taxon 338

488
AEXX01000050
clade_467
N
N



Capnocytophaga canimorsus

476
CP002113
clade_468
N
N



Copnocytophoga sp. oral clone ID062

485
AY349368
clade_468
N
N



Catenibacterium mitsuokai

495
AB030224
clade_469
Y
N



Clostridium sp. TM_40

640
AB249652
clade_469
Y
N



Coprobacillus cateniformis

670
AB030218
clade_469
Y
N



Coprobacillus sp. 29_1

671
ADKX01000057
clade_469
Y
N



Lactobacillus catenaformis

1075
M23729
clade_469
N
N



Lactobacillus vitulinus

1142
NR_041305
clade_469
N
N



Cetobacterium somerae

501
AJ438155
clade_470
N
N



Clostridium rectum

618
NR_029271
clade_470
Y
N



Fusobacterium gonidiaformans

896
ACET01000043
clade_470
N
N



Fusobacterium mortiferum

897
ACDB02000034
clade_470
N
N



Fusobacterium necrogenes

899
X55408
clade_470
N
N



Fusobacterium necrophorum

900
AM905356
clade_470
N
N



Fusobacterium sp. 12_1B

905
AGWJ01000070
clade_470
N
N



Fusobacterium sp. 3_1_5R

911
ACDD01000078
clade_470
N
N



Fusobacterium sp. D12

918
ACDG02000036
clade_470
N
N



Fusobacterium ulcerans

921
ACDH01000090
clade_470
N
N



Fusobacterium varium

922
ACIE01000009
clade_470
N
N



Mycoplasma arthritidis

1312
NC_011025
clade_473
N
N



Mycoplasma faucium

1314
NR_024983
clade_473
N
N



Mycoplasma hominis

1318
AF443616
clade_473
N
N



Mycoplasma orale

1319
AY796060
clade_473
N
N



Mycoplasma salivarium

1324
M24661
clade_473
N
N



Mitsuokella jalaludinii

1247
NR_028840
clade_474
N
N



Mitsuokella multacida

1248
ABWK02000005
clade_474
N
N



Mitsuokella sp. oral taxon 521

1249
GU413658
clade_474
N
N



Mitsuokella sp. oral taxon G68

1250
GU432166
clade_474
N
N



Selenomonas genomosp. C1

1695
AY278627
clade_474
N
N



Selenomonas genomosp. P8 oral clone

1700
DQ003628
clade_474
N
N


MB5_P06



Selenomonas ruminantium

1703
NR_075026
clade_474
N
N


Veillonellaceae bacterium oral taxon 131
1994
GU402916
clade_474
N
N



Alloscardoria omnicolens

139
NR_042583
clade_475
N
N



Alloscardovia sp. OB7196

140
AB425070
clade_475
N
N



Bifidobacterium urinalis

366
AJ278695
clade_475
N
N



Eubacterium nodatum

854
U13041
clade_476
Y
N



Eubacterium saphenum

859
NR_026031
clade_476
Y
N



Eubacterium sp. oral clone JH012

867
AY349373
clade_476
Y
N



Eubacterium sp. oral clone JS001

870
AY349378
clade_476
Y
N



Faecalibacterium prausnitzii

880
ACOP02000011
clade_478
Y
N



Gemmiger formicilis

932
GU562446
clade_478
Y
N



Subdoligranulum variabile

1896
AJ518869
clade_478
Y
N


Clostridiaceae bacterium JC13
532
JF824807
clade_479
Y
N



Clostridium sp. MLG055

634
AF304435
clade_479
Y
N


Erysipelotrichaceae bacterium 3_1_53
822
ACTJ01000113
clade_479
Y
N



Prevotella loescheii

1503
JN867231
clade_48
N
N



Prevotella sp. oral clone ASCG12

1530
DQ272511
clade_48
N
N



Prevotella sp. oral clone GU027

1540
AY349398
clade_48
N
N



Prevotella sp. oral taxon 472

1553
ACZS01000106
clade_48
N
N



Selenomonas dianae

1693
GQ422719
clade_480
N
N



Selenomonas flueggei

1694
AF287803
clade_480
N
N



Selenomonas genomosp. C2

1696
AY278628
clade_480
N
N



Selenomonas genomosp. P6 oral clone

1698
DQ003636
clade_480
N
N


MB3_C41



Selenomonas genomosp. P7 oral clone

1699
DQ003627
clade_480
N
N


MB5_C08



Selenomonas infelix

1701
AF287802
clade_480
N
N



Selenomonas noxia

1702
GU470909
clade_480
N
N



Selenomonas sp. oral clone FT050

1705
AY349403
clade_480
N
N



Selenomonas sp. oral clone GI064

1706
AY349404
clade_480
N
N



Selenomonas sp. oral clone GT010

1707
AY349405
clade_480
N
N



Selenomonas sp. oral clone HU051

1708
AY349406
clade_480
N
N



Selenomonas sp. oral clone IK004

1709
AY349407
clade_480
N
N



Selenomonas sp. oral clone JI021

1711
AY349409
clade_480
N
N



Selenomonas sp. oral clone JS031

1712
AY349410
clade_480
N
N



Selenomonas sp. oral clone OH4A

1713
AY947498
clade_480
N
N



Selenomonas sp. oral clone P2PA_80 P4

1714
AY207052
clade_480
N
N



Selenomonas sp. oral taxon 149

1716
AEEJ01000007
clade_480
N
N


Veillonellaceae bacterium oral taxon 155
1995
GU470897
clade_480
N
N



Clostridium cocleatum

575
NR_026495
clade_481
Y
N



Clostridium ramosum

617
M23731
clade_481
Y
N



Clostridium saccharogumia

619
DQ100445
clade_481
Y
N



Clostridium spiroforme

644
X73441
clade_481
Y
N



Coprobacillus sp. D7

672
ACDT01000199
clade_481
Y
N


Clostridiales bacterium SY8519
535
AB477431
clade_482
Y
N



Clostridium sp. SY8519

639
AP012212
clade_482
Y
N



Eubacterium ramulus

855
AJ011522
clade_482
Y
N



Agrococcus jenensis

117
NR_026275
clade_484
Y
N



Microbacterium gubbeenense

1232
NR_025098
clade_484
N
N



Pseudoclavibacter sp. Timone

1590
FJ375951
clade_484
N
N



Tropheryma whipplei

1961
BX251412
clade_484
N
N



Zimmermannella bifida

2031
AB012592
clade_484
N
N



Erysipelothrix inopinata

819
NR_025594
clade_485
Y
N



Erysipelothrix rhusiopathiae

820
ACLK01000021
clade_485
Y
N



Erysipelothrix tonsillarum

821
NR_040871
clade_485
Y
N



Holdemania filiformis

1004
Y11466
clade_485
Y
N



Mollicutes bacterium pACH93

1258
AY297808
clade_485
Y
N



Coxiella burnetii

736
CP000890
clade_486
Y
Category-B



Legionella hackeliae

1151
M36028
clade_486
N
OP



Legionella longbeachae

1152
M36029
clade_486
N
OP



Legionella sp. D3923

1154
JN380999
clade_486
N
OP



Legionella sp. D4088

1155
JN381012
clade_486
N
OP



Legionella sp. H63

1156
JF831047
clade_486
N
OP



Legionella sp. NML 93L054

1157
GU062706
clade_486
N
OP



Legionella steelei

1158
HQ398202
clade_486
N
OP



Tatlockia micdadei

1915
M36032
clade_486
N
N



Clostridium hiranonis

591
AB023970
clade_487
Y
N



Clostridium irregulare

596
NR_029249
clade_487
Y
N



Helicobacter pullorum

996
ABQU01000097
clade_489
N
N


Acetobacteraceae bacterium AT_5844
16
AGEZ01000040
clade_490
N
N



Roseomonas cervicalis

1643
ADVL01000363
clade_490
N
N



Roseomonas mucosa

1644
NR_028857
clade_490
N
N



Roseomonas sp. NML94_0193

1645
AF533357
clade_490
N
N



Roseomonas sp. NML97_0121

1646
AF533359
clade_490
N
N



Roseomonas sp. NML98_0009

1647
AF533358
clade_490
N
N



Roseomonas sp. NML98_0157

1648
AF533360
clade_490
N
N



Rickettsia akari

1627
CP000847
clade_492
N
OP



Rickettsia conorii

1628
AE008647
clade_492
N
OP



Rickettsia prowazekii

1629
M21789
clade_492
N
Category-B



Rickettsia rickettsii

1630
NC_010263
clade_492
N
OP



Rickettsia slovaca

1631
L36224
clade_492
N
OP



Rickettsia typhi

1632
AE017197
clade_492
N
OP



Anaeroglobus geminatus

160
AGCJ01000054
clade_493
N
N



Megasphaera genomosp. C1

1201
AY278622
clade_493
N
N



Megasphaera micronuciformis

1203
AECS01000020
clade_493
N
N



Clostridium orbiscindens

609
Y18187
clade_494
Y
N



Clostridium sp. NML 04A032

637
EU815224
clade_494
Y
N



Flavonifractor plautii

886
AY724678
clade_494
Y
N



Pseudoflavonifractor capillosus

1591
AY136666
clade_494
Y
N


Ruminococcaceae bacterium D16
1655
ADDX01000083
clade_494
Y
N



Acetivibrio cellulolyticus

5
NR_025917
clade_495
Y
N


Clostridiales genomosp. BVAB3
540
CP001850
clade_495
N
N



Clostridium aldrichii

548
NR_026099
clade_495
Y
N



Clostridium clariflavum

570
NR_041235
clade_495
Y
N



Clostridium stercorarium

647
NR_025100
clade_495
Y
N



Clostridium straminisolvens

649
NR_024829
clade_495
Y
N



Clostridium thermocellum

655
NR_074629
clade_495
Y
N



Tsukamurella paurometabola

1963
X80628
clade_496
N
N



Tsukamurella tyrosinosolvens

1964
AB478958
clade_496
N
N



Abiotrophia para_adiacens

2
AB022027
clade_497
N
N



Carnobacterium divergens

492
NR_044706
clade_497
N
N



Carnobacterium maltaromaticum

493
NC_019425
clade_497
N
N



Enterococcus avium

800
AF133535
clade_497
N
N



Enterococcus caccae

801
AY943820
clade_497
N
N



Enterococcus casseliflavus

802
AEWT01000047
clade_497
N
N



Enterococcus durans

803
AJ276354
clade_497
N
N



Enterococcus faecalis

804
AE016830
clade_497
N
N



Enterococcus faecium

805
AM157434
clade_497
N
N



Enterococcus gallinarum

806
AB269767
clade_497
N
N



Enterococcus gilvus

807
AY033814
clade_497
N
N



Enterococcus hawaiiensis

808
AY321377
clade_497
N
N



Enterococcus hirae

809
AF061011
clade_497
N
N



Enterococcus italicus

810
AEPV01000109
clade_497
N
N



Enterococcus mundtii

811
NR_024906
clade_497
N
N



Enterococcus raffinosus

812
FN600541
clade_497
N
N



Enterococcus sp. BV2CASA2

813
JN809766
clade_497
N
N



Enterococcus sp. CCRI 16620

814
GU457263
clade_497
N
N



Enterococcus sp. F95

815
FJ463817
clade_497
N
N



Enterococcus sp. RfL6

816
AJ133478
clade_497
N
N



Enterococcus thailandicus

817
AY321376
clade_497
N
N



Fusobacterium canifelinum

893
AY162222
clade_497
N
N



Fusobacterium genomosp. C1

894
AY278616
clade_497
N
N



Fusobacterium genomosp. C2

895
AY278617
clade_497
N
N



Fusobacterium nucleatum

901
ADVK01000034
clade_497
Y
N



Fusobacterium periodonticum

902
ACJY01000002
clade_497
N
N



Fusobacterium sp. 1_1_41FAA

906
ADGG01000053
clade_497
N
N



Fusobacterium sp. 11_3_2

904
ACUO01000052
clade_497
N
N



Fusobacterium sp. 2_1_31

907
ACDC02000018
clade_497
N
N



Fusobacterium sp. 3_1_27

908
ADGF01000045
clade_497
N
N



Fusobacterium sp. 3_1_33

909
ACQE01000178
clade_497
N
N



Fusobacterium sp. 3_1_36A2

910
ACPU01000044
clade_497
N
N



Fusobacterium sp. AC18

912
HQ616357
clade_497
N
N



Fusobacterium sp. ACB2

913
HQ616358
clade_497
N
N



Fusobacterium sp. AS2

914
HQ616361
clade_497
N
N



Fusobacterium sp. CM1

915
HQ616371
clade_497
N
N



Fusobacterium sp. CM21

916
HQ616375
clade_497
N
N



Fusobacterium sp. CM22

917
HQ616376
clade_497
N
N



Fusobacterium sp. oral clone ASCF06

919
AY923141
clade_497
N
N



Fusobacterium sp. oral clone ASCF11

920
AY953256
clade_497
N
N



Granulicatella adiacens

959
ACKZ01000002
clade_497
N
N



Granulicatella elegans

960
AB252689
clade_497
N
N



Granulicatella paradiacens

961
AY879298
clade_497
N
N



Granulicatella sp. oral clone ASC02

963
AY923126
clade_497
N
N



Granulicatella sp. oral clone ASCA05

964
DQ341469
clade_497
N
N



Granulicatella sp. oral clone ASCB09

965
AY953251
clade_497
N
N



Granulicatella sp. oral clone ASCG05

966
AY923146
clade_497
N
N



Tetragenococcus halophilus

1918
NR_075020
clade_497
N
N



Tetragenococcus koreensis

1919
NR_043113
clade_497
N
N



Vagococcus fluvialis

1973
NR_026489
clade_497
N
N



Chryseobacterium anthropi

514
AM982793
clade_498
N
N



Chryseobacterium gleum

515
ACKQ02000003
clade_498
N
N



Chryseobacterium hominis

516
NR_042517
clade_498
N
N



Treponema refringens

1936
AF426101
clade_499
N
OP



Treponema sp. oral clone JU031

1941
AY349416
clade_499
N
N



Treponema sp. oral taxon 239

1948
GU408738
clade_499
N
N



Treponema sp. oral taxon 271

1955
GU408871
clade_499
N
N



Alistipes finegoldii

129
NR_043064
clade_500
N
N



Alistipes onderdonkii

131
NR_043318
clade_500
N
N



Alistipes putredinis

132
ABFK02000017
clade_500
N
N



Alistipes shahii

133
FP929032
clade_500
N
N



Alistipes sp. HGB5

134
AENZ01000082
clade_500
N
N



Alistipes sp. JC50

135
JF824804
clade_500
N
N



Alistipes sp. RMA 9912

136
GQ140629
clade_500
N
N



Mycoplasma agalactiae

1310
AF010477
clade_501
N
N



Mycoplasma bovoculi

1313
NR_025987
clade_501
N
N



Mycoplasma fermentans

1315
CP002458
clade_501
N
N



Mycoplasma flocculare

1316
X62699
clade_501
N
N



Mycoplasma ovipneumoniae

1320
NR_025989
clade_501
N
N



Arcobacter butzleri

176
AEPT01000071
clade_502
N
N



Arcobacter cryaerophilus

177
NR_025905
clade_502
N
N



Campylobacter curvus

461
NC_009715
clade_502
N
OP



Campylobacter rectus

467
ACFU01000050
clade_502
N
OP



Campylobacter showae

468
ACVQ01000030
clade_502
N
OP



Campylobacter sp. FOBRC14

469
HQ616379
clade_502
N
OP



Campylobacter sp. FOBRC15

470
HQ616380
clade_502
N
OP



Campylobacter sp. oral clone BB120

471
AY005038
clade_502
N
OP



Campylobacter sputorum

472
NR_044839
clade_502
N
OP



Bacteroides ureolyticus

330
GQ167666
clade_504
N
N



Campylobacter gracilis

463
ACYG01000026
clade_504
N
OP



Campylobacter hominis

464
NC_009714
clade_504
N
OP



Dialister invisus

762
ACIM02000001
clade_506
N
N



Dialister micraerophilus

763
AFBB01000028
clade_506
N
N



Dialister microaerophilus

764
AENT01000008
clade_506
N
N



Dialister propionicifaciens

766
NR_043231
clade_506
N
N



Dialister succinatiphilus

768
AB370249
clade_506
N
N



Megasphaera elsdenii

1200
AY038996
clade_506
N
N



Megasphaera genomosp. type_1

1202
ADGP01000010
clade_506
N
N



Megasphaera sp. BLPYG_07

1204
HM990964
clade_506
N
N



Megasphaera sp. UPII 199_6

1205
AFIJ01000040
clade_506
N
N



Chromobacterium violaceum

513
NC_005085
clade_507
N
N



Laribacter hongkongensis

1148
CP001154
clade_507
N
N



Methylophilus sp. ECd5

1279
AY436794
clade_507
N
N



Finegoldia magna

883
ACHM02000001
clade_509
N
N



Parvimonas micra

1431
AB729072
clade_509
N
N



Parvimonas sp. oral taxon 110

1432
AFII01000002
clade_509
N
N



Peptostreptococcus micros

1456
AM176538
clade_509
N
N



Peptostreptococcus sp. oral clone FJ023

1460
AY349390
clade_509
N
N



Peptostreptococcus sp. P4P_31 P3

1458
AY207059
clade_509
N
N



Helicobacter pylori

997
CP00001.2
clade_510
N
OP



Anaplasma marginale

165
ABOR01000019
clade_511
N
N



Anaplasma phagocytophilum

166
NC_007797
clade_511
N
N



Ehrlichia chaffeensis

783
AAIF01000035
clade_511
N
OP



Neorickettsia risticii

1349
CP001431
clade_511
N
N



Neorickettsia sennetsu

1350
NC_007798
clade_511
N
N



Eubacterium barkeri

834
NR_044661
clade_512
Y
N



Eubacterium callanderi

838
NR_026310
clade_512
N
N



Eubacterium limosum

850
CP002273
clade_512
Y
N



Pseudoramibacter alactolyticus

1606
AB036759
clade_512
N
N



Veillonella montpellierensis

1977
AF473836
clade_513
N
N



Veillonella sp. oral clone ASCA08

1988
AY923118
clade_513
N
N



Veillonella sp. oral clone ASCB03

1989
AY923122
clade_513
N
N



Inquilinus limosus

1012
NR_029046
clade_514
N
N



Sphingomonas sp. oral clone FZ016

1746
AY349412
clade_514
N
N



Anaerococcus lactolyticus

145
ABYO01000217
clade_515
N
N



Anaerococcus prevotii

147
CP001708
clade_515
N
N



Anaerococcus sp. gpac104

152
AM176528
clade_515
N
N



Anaerococcus sp. gpac126

153
AM176530
clade_515
N
N



Anaerococcus sp. gpac155

154
AM176536
clade_515
N
N



Anaerococcus sp. gpac199

155
AM176539
clade_515
N
N



Anaerococcus tetradius

157
ACGC01000107
clade_515
N
N



Bacteroides coagulans

271
AB547639
clade_515
N
N


Clostridiales bacterium 9403326
534
HM587324
clade_515
N
N


Clostridiales bacterium ph2
539
JN837487
clade_515
N
N



Peptostreptococcus sp. 9succ1

1457
X90471
clade_515
N
N



Peptostreptococcus sp. oral clone AP24

1459
AB175072
clade_515
N
N



Tissierella praeacuta

1924
NR_044860
clade_515
N
N



Anaerotruncus colihominis

164
ABGD02000021
clade_516
Y
N



Clostridium methylpentosum

606
ACEC01000059
clade_516
Y
N



Clostridium sp. YIT 12070

642
AB491208
clade_516
Y
N



Hydrogenoanaerobacterium saccharovorans

1005
NR_044425
clade_516
Y
N



Ruminococcus albus

1656
AY445600
clade_516
Y
N



Ruminococcus flavefaciens

1660
NR_025931
clade_516
Y
N



Clostridium haemolyticum

589
NR_024749
clade_517
Y
N



Clostridium novyi

608
NR_074343
clade_517
Y
N



Clostridium sp. LMG 16094

632
X95274
clade_517
Y
N



Helicobacter canadensis

994
ABQS01000108
clade_518
N
N



Eubacterium ventriosum

874
L34421
clade_519
Y
N



Peptostreptococcus anaerobius

1455
AY326462
clade_520
N
N



Peptostreptococcus stomatis

1461
ADGQ01000048
clade_520
N
N



Bilophila wadsworthia

367
ADCP01000166
clade_521
N
N



Desulfovibrio vulgaris

761
NR_074897
clade_521
N
N



Bacteroides galacturonicus

280
DQ497994
clade_522
Y
N



Eubacterium eligens

845
CP001104
clade_522
Y
N



Lachnospira multipara

1046
FR733699
clade_522
Y
N



Lachnospira pectinoschiza

1047
L14675
clade_522
Y
N



Lactobacillus rogosae

1114
GU269544
clade_522
Y
N



Actinomyces nasicola

64
AJ508455
clade_523
N
N



Cellulosimicrobium funkei

500
AY501364
clade_523
N
N



Lactococcus raffinolactis

1146
NR_044359
clade_524
N
N



Bacillus horti

214
NR_036860
clade_527
Y
OP



Bacillus sp. 9_3AIA

232
FN397519
clade_527
Y
OP


Bacteroidales genomosp. P1
258
AY341819
clade_529
N
N


Bacteroidales genomosp. P2 oral clone
259
DQ003613
clade_529
N
N


MB1_G13


Bacteroidales genomosp. P3 oral clone
260
DQ003615
clade_529
N
N


MB1_G34


Bacteroidales genomosp. P4 oral clone
261
DQ003617
clade_529
N
N


MB2_G17


Bacteroidales genomosp. P5 oral clone
262
DQ003619
clade_529
N
N


MB2_P04


Bacteroidales genomosp. P6 oral clone
263
DQ003634
clade_529
N
N


MB3_C19


Bacteroidales genomosp. P8 oral clone
265
DQ003626
clade_529
N
N


MB4_G15


Bacteroidetes bacterium oral taxon D27
333
HM099638
clade_530
N
N


Bacteroidetes bacterium oral taxon F31
334
HM099643
clade_530
N
N


Bacteroidetes bacterium oral taxon F44
335
HM099649
clade_530
N
N



Flavobacterium sp. NF2_1

885
FJ195988
clade_530
N
N



Myroides odoratimimus

1326
NR_042354
clade_530
N
N



Myroides sp. MY15

1327
GU253339
clade_530
N
N


Chlamydiales bacterium NS16
507
JN606076
clade_531
N
N



Chlamydophila pecorum

508
D88317
clade_531
N
OP



Parachlamydia sp. UWE25

1423
BX908798
clade_531
N
N



Fusobacterium russii

903
NR_044687
clade_532
N
N



Streptobacillus moniliformis

1784
NR_027615
clade_532
N
N


Eubacteriaceae bacterium P4P_50 P4
833
AY207060
clade_533
N
N



Eubacterium brachy

836
U13038
clade_533
Y
N



Filifactor alocis

881
CP002390
clade_533
Y
N



Filifactor villosus

882
NR_041928
clade_533
Y
N



Abiotrophia defectiva

1
ACIN02000016
clade_534
N
N



Abiotrophia sp. oral clone P4PA_155 P1

3
AY207063
clade_534
N
N



Catonella genomosp. P1 oral clone

496
DQ003629
clade_534
N
N


MB5_P12



Catonella morbi

497
ACIL02000016
clade_534
N
N



Catonella sp. oral clone FL037

498
AY349369
clade_534
N
N



Eremococcus coleocola

818
AENN01000008
clade_534
N
N



Facklamia hominis

879
Y10772
clade_534
N
N



Granulicatella sp. M658_99_3

962
AJ271861
clade_534
N
N



Campylobacter coli

459
AAFL01000004
clade_535
N
OP



Campylobacter concisus

460
CP000792
clade_535
N
OP



Campylobacter fetus

462
ACLG01001177
clade_535
N
OP



Campylobacter jejuni

465
AL139074
clade_535
N
Category-B



Campylobacter upsaliensis

473
AEPU01000040
clade_535
N
OP



Clostridium leptum

601
AJ305238
clade_537
Y
N



Clostridium sp. YIT 12069

641
AB491207
clade_537
Y
N



Clostridium sporosphaeroides

646
NR_044835
clade_537
Y
N



Eubacterium coprostanoligenes

841
HM037995
clade_537
Y
N



Ruminococcus bromii

1657
EU266549
clade_537
Y
N



Eubacterium siraeum

860
ABCA03000054
clade_538
Y
N



Atopobium minutum

183
HM007583
clade_539
N
N



Atopobium parvulum

184
CP001721
clade_539
N
N



Atopobium rimae

185
ACFE01000007
clade_539
N
N



Atopobium sp. BS2

186
HQ616367
clade_539
N
N



Atopobium sp. F0209

187
EU592966
clade_539
N
N



Atopobium sp. ICM42b10

188
HQ616393
clade_539
N
N



Atopobium sp. ICM57

189
HQ616400
clade_539
N
N



Atopobium vaginae

190
AEDQ01000024
clade_539
N
N


Coriobacteriaceae bacterium BV3Ac1
677
JN809768
clade_539
N
N



Actinomyces naeslundii

63
X81062
clade_54
N
N



Actinomyces oricola

67
NR_025559
clade_54
N
N



Actinomyces oris

69
BABV01000070
clade_54
N
N



Actinomyces sp. 7400942

70
EU484334
clade_54
N
N



Actinomyces sp. ChDC B197

72
AF543275
clade_54
N
N



Actinomyces sp. GEJ15

73
GU561313
clade_54
N
N



Actinomyces sp. M2231_94_1

79
AJ234063
clade_54
N
N



Actinomyces sp. oral clone GU067

83
AY349362
clade_54
N
N



Actinomyces sp. oral clone IO077

85
AY349364
clade_54
N
N



Actinomyces sp. oral clone IP073

86
AY349365
clade_54
N
N



Actinomyces sp. oral clone JA063

88
AY349367
clade_54
N
N



Actinomyces sp. oral taxon 170

89
AFBL01000010
clade_54
N
N



Actinomyces sp. oral taxon 171

90
AECW01000034
clade_54
N
N



Actinomyces urogenitalis

95
ACFH01000038
clade_54
N
N



Actinomyces viscosus

96
ACRE01000096
clade_54
N
N



Clostridium viride

657
NR_026204
clade_540
Y
N



Oscillibacter sp. G2

1386
HM626173
clade_540
Y
N



Oscillibacter valericigenes

1387
NR_074793
clade_540
Y
N



Oscillospira guilliermondii

1388
AB040495
clade_540
Y
N



Orientia tsutsugamushi

1383
AP008981
clade_541
N
OP



Megamonas funiformis

1198
AB300988
clade_542
N
N



Megamonas hypermegale

1199
AJ420107
clade_542
N
N



Butyrivibrio crossotus

455
ABWN01000012
clade_543
Y
N



Clostridium sp. L2_50

631
AAYW02000018
clade_543
Y
N



Coprococcus eutactus

675
EF031543
clade_543
Y
N



Coprococcus sp. ART55_1

676
AY350746
clade_543
Y
N



Eubacterium ruminantium

857
NR_024661
clade_543
Y
N



Aeromicrobium marinum

102
NR_025681
clade_544
N
N



Aeromicrobium sp. JC14

103
JF824798
clade_544
N
N



Luteococcus sanguinis

1190
NR_025507
clade_544
N
N


Propionibacteriaceae bacterium NML
1568
EF599122
clade_544
N
N


02_0265



Rhodococcus corynebacterioides

1622
X80615
clade_546
N
N



Rhodococcus erythropolis

1624
ACNO01000030
clade_546
N
N



Rhodococcus fascians

1625
NR_037021
clade_546
N
N



Segniliparus rotundus

1690
CP001958
clade_546
N
N



Segniliparus rugosus

1691
ACZI01000025
clade_546
N
N



Exiguobacterium acetylicum

878
FJ970034
clade_547
N
N



Micrococcus caseolyticus

1194
NR_074941
clade_547
N
N



Streptomyces sp. 1 AIP_2009

1890
FJ176782
clade_548
N
N



Streptomyces sp. SD 524

1892
EU544234
clade_548
N
N



Streptomyces sp. SD 528

1893
EU544233
clade_548
N
N



Streptomyces thermoviolaceus

1895
NR_027616
clade_548
N
N



Borrelia afzelii

388
ABCU01000001
clade_549
N
OP



Borrelia crocidurae

390
DQ057990
clade_549
N
OP



Borrelia duttonii

391
NC_011229
clade_549
N
OP



Borrelia hermsii

393
AY597657
clade_549
N
OP



Borrelia hispanica

394
DQ057988
clade_549
N
OP



Borrelia persica

395
HM161645
clade_549
N
OP



Borrelia recurrentis

396
AF107367
clade_549
N
OP



Borrelia spielmanii

398
ABKB01000002
clade_549
N
OP



Borrelia turicatae

399
NC_008710
clade_549
N
OP



Borrelia valaisiana

400
ABCY01000002
clade_549
N
OP



Providencia alcalifaciens

1586
ABXW01000071
clade_55
N
N



Providencia rettgeri

1587
AM040492
clade_55
N
N



Providencia rustigianii

1588
AM040489
clade_55
N
N



Providencia stuartii

1589
AF008581
clade_55
N
N



Treponema pallidum

1932
CP001752
clade_550
N
OP



Treponema phagedenis

1934
AEFH01000172
clade_550
N
N



Treponema sp. clone DDKL_4

1939
Y08894
clade_550
N
N



Acholeplasma laidlawii

17
NR_074448
clade_551
N
N



Mycoplasma putrefaciens

1323
U26055
clade_551
N
N


Mycoplasmataceae genomosp P1 oral clone
1325
DQ003614
clade_551
N
N



Spiroplasma insolitum

1750
NR_025705
clade_551
N
N



Collinsella aerofaciens

659
AAVN02000007
clade_553
Y
N



Collinsella intestinalis

660
ABXH02000037
clade_553
N
N



Collinsella stercoris

661
ABXJ01000150
clade_553
N
N



Collinsella tanakaei

662
AB490807
clade_553
N
N



Alkaliphilus metalliredigenes

137
AY137848
clade_554
Y
N



Alkaliphilus oremlandii

138
NR_043674
clade_554
Y
N



Caminicella sporogenes

458
NR_025485
clade_554
N
N



Clostridium sticklandii

648
L04167
clade_554
Y
N



Turicibacter sanguinis

1965
AF349724
clade_555
Y
N



Acidaminococcus fermentans

21
CP001859
clade_556
N
N



Acidaminococcus intestini

22
CP003058
clade_556
N
N



Acidaminococcus sp. D21

23
ACGB01000071
clade_556
N
N



Phascolarctobacterium faecium

1462
NR_026111
clade_556
N
N



Phascolarctobacterium sp. YIT 12068

1463
AB490812
clade_556
N
N



Phascolarctobacterium succinatutens

1464
AB490811
clade_556
N
N



Acidithiobacillus ferrivorans

25
NR_074660
clade_557
N
N



Fulvimonas sp. NML 060897

892
EF589680
clade_557
Y
N


Xanthomonadaceae bacterium NML
2015
EU313791
clade_557
N
N


03_0222



Catabacter hongkongensis

494
AB671763
clade_558
N
N



Christensenella minuta

512
AB490809
clade_558
N
N


Clostridiales bacterium oral clone P4PA
536
AY207065
clade_558
N
N


Clostridiales bacterium oral taxon 093
537
GQ422712
clade_558
N
N



Desulfitobacterium frappieri

753
AJ276701
clade_560
Y
N



Desulfitobacterium hafniense

754
NR_074996
clade_560
Y
N



Desulfotomaculum nigrificans

756
NR_044832
clade_560
Y
N



Heliobacterium modesticaldum

1000
NR_074517
clade_560
N
N



Alistipes indistinctus

130
AB490804
clade_561
N
N


Bacteroidales bacterium ph8
257
JN837494
clade_561
N
N



Candidatus Sulcia muelleri

475
CP002163
clade_561
N
N



Cytophaga xylanolytica

742
FR733683
clade_561
N
N


Flavobacteriaceae genomosp. C1
884
AY278614
clade_561
N
N



Gramella forsetii

958
NR_074707
clade_561
N
N



Sphingobacterium faecium

1740
NR_025537
clade_562
N
N



Sphingobacterium mizutaii

1741
JF708889
clade_562
N
N



Sphingobacterium multivorum

1742
NR_040953
clade_562
N
N



Sphingobacterium spiritivorum

1743
ACHA02000013
clade_562
N
N



Jonquetella anthropi

1017
ACOO02000004
clade_563
N
N



Pyramidobacter piscolens

1614
AY207056
clade_563
N
N


Synergistes genomosp. C1
1904
AY278615
clade_563
N
N


Synergistes sp. RMA 14551
1905
DQ412722
clade_563
N
N


Synergistetes bacterium ADV897
1906
GQ258968
clade_563
N
N



Candidatus Arthromitus sp.

474
NR_074460
clade_564
N
N


SFB_mouse_Yit



Gracilibacter thermotolerans

957
NR_043559
clade_564
N
N



Lutispora thermophila

1191
NR_041236
clade_564
Y
N



Brachyspira aalborgi

404
FM178386
clade_565
N
N



Brachyspira pilosicoli

405
NR_075069
clade_565
Y
N



Brachyspira sp. HIS3

406
FM178387
clade_565
N
N



Brachyspira sp. HIS4

407
FM178388
clade_565
N
N



Brachyspira sp. HIS5

408
FM178389
clade_565
N
N



Adlercreutzia equolifaciens

97
AB306661
clade_566
N
N


Coriobacteriaceae bacterium JC110
678
CAEM01000062
clade_566
N
N


Coriobacteriaceae bacterium phI
679
JN837493
clade_566
N
N



Cryptobacterium curtum

740
GQ422741
clade_566
N
N



Eggerthella lenta

778
AF292375
clade_566
Y
N



Eggerthella sinensis

779
AY321958
clade_566
N
N



Eggerthella sp. 1_3_56FAA

780
ACWN01000099
clade_566
N
N



Eggerthella sp. HGA1

781
AEXR01000021
clade_566
N
N



Eggerthella sp. YY7918

782
AP012211
clade_566
N
N



Gordonibacter pamelaeae

680
AM886059
clade_566
N
N



Gordonibacter pamelaeae

956
FP929047
clade_566
N
N



Slackia equolifaciens

1732
EU377663
clade_566
N
N



Slackia exigua

1733
ACUX01000029
clade_566
N
N



Slackia faecicanis

1734
NR_042220
clade_566
N
N



Slackia heliotrinireducens

1735
NR_074439
clade_566
N
N



Slackia isoflavoniconvertens

1736
AB566418
clade_566
N
N



Slackia piriformis

1737
AB490806
clade_566
N
N



Slackia sp. NATTS

1738
AB505075
clade_566
N
N



Streptomyces albus

1888
AJ697941
clade_566
Y
N


Chlamydiales bacterium NS11
505
JN606074
clade_567
Y
N


Chlamydiales bacterium NS13
506
JN606075
clade_567
N
N


Victivallaceae bacterium NML 080035
2003
FJ394915
clade_567
N
N



Victivallis vadensis

2004
ABDE02000010
clade_567
N
N



Anaerofustis stercorihominis

159
ABIL02000005
clade_570
Y
N



Butyricicoccus pullicaecorum

453
HH793440
clade_572
Y
N



Eubacterium desmolans

843
NR_044644
clade_572
Y
N



Papillibacter cinnamivorans

1415
NR_025025
clade_572
Y
N



Sporobacter termitidis

1751
NR_044972
clade_572
Y
N



Streptomyces griseus

1889
NR_074787
clade_573
N
N



Streptomyces sp. SD 511

1891
EU544231
clade_573
N
N



Streptomyces sp. SD 534

1894
EU544232
clade_573
N
N



Cloacibacillus evryensis

530
GQ258966
clade_575
N
N



Deferribacteres sp. oral clone JV001

743
AY349370
clade_575
N
N



Deferribacteres sp. oral clone JV006

744
AY349371
clade_575
Y
N



Deferribacteres sp. oral clone JV023

745
AY349372
clade_575
N
N


Synergistetes bacterium LBVCM1157
1907
GQ258969
clade_575
N
N


Synergistetes bacterium oral taxon 362
1909
GU410752
clade_575
N
N


Synergistetes bacterium oral taxon D48
1910
GU430992
clade_575
N
N



Clostridium colinum

577
NR_026151
clade_576
Y
N



Clostridium lactatifermentans

599
NR_025651
clade_576
Y
N



Clostridium piliforme

614
D14639
clade_576
Y
N



Peptococcus sp. oral clone JM048

1439
AY349389
clade_576
N
N



Helicobacter winghamensis

999
ACDO01000013
clade_577
N
N



Wolinella succinogenes

2014
BX571657
clade_577
N
N



Olsenella genomosp. C1

1368
AY278623
clade_578
N
N



Olsenella profusa

1369
FN178466
clade_578
N
N



Olsenella sp. F0004

1370
EU592964
clade_578
N
N



Olsenella sp. oral taxon 809

1371
ACVE01000002
clade_578
N
N



Olsenella uli

1372
CP002106
clade_578
N
N



Nocardiopsis dassonvillei

1356
CP002041
clade_579
N
N



Saccharomonospora viridis

1671
X54286
clade_579
Y
N



Thermobifida fusca

1921
NC_007333
clade_579
Y
N



Peptococcus niger

1438
NR_029221
clade_580
N
N



Peptococcus sp. oral taxon 167

1440
GQ422727
clade_580
N
N



Akkermansia muciniphila

118
CP001071
clade_583
N
N



Opitutus terrae

1373
NR_074978
clade_583
N
N


Clostridiales bacterium oral taxon F32
538
HM099644
clade_584
N
N



Leptospira borgpetersenii

1161
NC_008508
clade_585
N
OP



Leptospira broomii

1162
NR_043200
clade_585
N
OP



Leptospira interrogans

1163
NC_005823
clade_585
N
OP



Leptospira licerasiae

1164
EF612284
clade_585
Y
OP



Methanobrevibacter gottschalkii

1213
NR_044789
clade_587
N
N



Methanobrevibacter millerae

1214
NR_042785
clade_587
N
N



Methanobrevibacter oralis

1216
HE654003
clade_587
N
N



Methanobrevibacter thaueri

1219
NR_044787
clade_587
N
N



Methanobrevibacter smithii

1218
ABYV02000002
clade_588
N
N



Deinococcus radiodurans

746
AE000513
clade_589
N
N



Deinococcus sp. R_43890

747
FR682752
clade_589
N
N



Thermus aquaticus

1923
NR_025900
clade_589
N
N



Actinomyces sp. c109

81
AB167239
clade_590
N
N



Moorella thermoacetica

1259
NR_075001
clade_590
Y
N


Syntrophomonadaceae genomosp. P1
1912
AY341821
clade_590
N
N



Thermoanaerobacter pseudethanolicus

1920
CP000924
clade_590
Y
N



Anaerobaculum hydrogeniformans

141
ACJX02000009
clade_591
N
N



Flexistipes sinusarabici

888
NR_074881
clade_591
Y
N



Microcystis aeruginosa

1246
NC_010296
clade_592
N
N



Prochlorococcus marinus

1567
CP000551
clade_592
N
N



Methanobrevibacter acididurans

1208
NR_028779
clade_593
N
N



Methanobrevibacter arboriphilus

1209
NR_042783
clade_593
N
N



Methanobrevibacter curvatus

1210
NR_044796
clade_593
N
N



Methanobrevibacter cuticularis

1211
NR_044776
clade_593
N
N



Methanobrevibacter filiformis

1212
NR_044801
clade_593
N
N



Methanobrevibacter woesei

1220
NR_044788
clade_593
N
N



Roseiflexus castenholzii

1642
CP000804
clade_594
N
N



Methanobrevibacter olleyae

1215
NR_043024
clade_595
N
N



Methanobrevibacter ruminantium

1217
NR_042784
clade_595
N
N



Methanobrevibacter wolinii

1221
NR_044790
clade_595
N
N



Methanosphaera stadtmanae

1222
AY196684
clade_595
N
N


Chloroflexi genomosp. P1
511
AY331414
clade_596
N
N



Gloeobacter violaceus

942
NR_074282
clade_596
Y
N



Halorubrum lipolyticum

992
AB477978
clade_597
N
N



Methanobacterium formicicum

1207
NR_025028
clade_597
N
N



Acidilobus saccharovorans

24
AY350586
clade_598
N
N



Hyperthermus butylicus

1006
CP000493
clade_598
N
N



Ignicoccus islandicus

1011
X99562
clade_598
N
N



Metallosphaera sedula

1206
D26491
clade_598
N
N



Thermofilum pendens

1922
X14835
clade_598
N
N



Prevotella melaninogenica

1506
CP002122
clade_6
N
N



Prevotella sp. ICM1

1520
HQ616385
clade_6
N
N



Prevotella sp. oral clone FU048

1535
AY349393
clade_6
N
N



Prevotella sp. oral done GI030

1537
AY349395
clade_6
N
N



Prevotella sp. SEQ116

1526
JN867246
clade_6
N
N



Streptococcus anginosus

1787
AECT01000011
clade_60
N
N



Streptococcus milleri

1812
X81023
clade_60
N
N



Streptococcus sp. 16362

1829
JN590019
clade_60
N
N



Streptococcus sp. 69130

1832
X78825
clade_60
N
N



Streptococcus sp. AC15

1833
HQ616356
clade_60
N
N



Streptococcus sp. CM7

1839
HQ616373
clade_60
N
N



Streptococcus sp. OBRC6

1847
HQ616352
clade_60
N
N



Burkholderia ambifaria

442
AAUZ01000009
clade_61
N
OP



Burkholderia cenocepacia

443
AAHI001000060
clade_61
N
OP



Burkholderia cepacia

444
NR_041719
clade_61
N
OP



Burkholderia mallei

445
CP000547
clade_61
N
Category-B



Burkholderia multivorans

446
NC_010086
clade_61
N
OP



Burkholderia oklahomensis

447
DQ108388
clade_61
N
OP



Burkholderia pseudomallei

448
CP001408
clade_61
N
Category-B



Burkholderia rhizoxinica

449
HQ005410
clade_61
N
OP



Burkholderia sp. 383

450
CP000151
clade_61
N
OP



Burkholderia xenovorans

451
U86373
clade_61
N
OP



Prevotella buccae

1488
ACRB01000001
clade_62
N
N



Prevotella genomosp. P8 oral clone

1498
DQ003622
clade_62
N
N


MB3_P13



Prevotella sp. oral clone FW035

1536
AY349394
clade_62
N
N



Prevotella bivia

1486
ADFO01000096
clade_63
N
N



Prevotella disiens

1494
AEDO01000026
clade_64
N
N



Bacteroides faecis

276
GQ496624
clade_65
N
N



Bacteroides fragilis

279
AP006841
clade_65
N
N



Bacteroides nordii

285
NR_043017
clade_65
N
N



Bacteroides salyersiae

292
EU136690
clade_65
N
N



Bacteroides sp. 1_1_14

293
ACRP01000155
clade_65
N
N



Bacteroides sp. 1_1_6

295
ACIC01000215
clade_65
N
N



Bacteroides sp. 2_1_56FAA

298
ACWI01000065
clade_65
N
N



Bacteroides sp. AR29

316
AF139525
clade_65
N
N



Bacteroides sp. B2

317
EU722733
clade_65
N
N



Bacteroides thetaiotaomicron

328
NR_074277
clade_65
N
N



Actinobacillus minor

45
ACFT01000025
clade_69
N
N



Haemophilus parasuis

978
GU226366
clade_69
N
N



Vibrio cholerae

1996
AAUR01000095
clade_71
N
Category-B



Vibrio fluvialis

1997
X76335
clade_71
N
Category-B



Vibrio furnissii

1998
CP002377
clade_71
N
Category-B



Vibrio mimicus

1999
ADAF01000001
clade_71
N
Category-B



Vibrio parahaemolyticus

2000
AAWQ01000116
clade_71
N
Category-B



Vibrio sp. RC341

2001
ACZT01000024
clade_71
N
Category-B



Vibrio vulnificus

2002
AE016796
clade_71
N
Category-B



Lactobacillus acidophilus

1067
CP000033
clade_72
N
N



Lactobacillus amylolyticus

1069
ADNY01000006
clade_72
N
N



Lactobacillus amylovorus

1070
CP002338
clade_72
N
N



Lactobacillus crispatus

1078
ACOG01000151
clade_72
N
N



Lactobacillus delbrueckii

1080
CP002341
clade_72
N
N



Lactobacillus helveticus

1088
ACLM01000202
clade_72
N
N



Lactobacillus kalixensis

1094
NR_029083
clade_72
N
N



Lactobacillus kefiranofaciens

1095
NR_042440
clade_72
N
N



Lactobacillus leichmannii

1098
JX986966
clade_72
N
N



Lactobacillus sp. 66c

1120
FR681900
clade_72
N
N



Lactobacillus sp. KLDS 1.0701

1122
EU600905
clade_72
N
N



Lactobacillus sp. KLDS 1.0712

1130
EU600916
clade_72
N
N



Lactobacillus sp. oral clone HT070

1136
AY349383
clade_72
N
N



Lactobacillus ultunensis

1139
ACGU01000081
clade_72
N
N



Prevotella intermedia

1502
AF414829
clade_81
N
N



Prevotella nigrescens

1511
AFPX01000069
clade_81
N
N



Prevotella pallens

1515
AFPY01000135
clade_81
N
N



Prevotella sp. oral taxon 310

1551
GQ422737
clade_81
N
N



Prevotella genomosp. C1

1495
AY278624
clade_82
N
N



Prevotella sp. CM38

1519
HQ610181
clade_82
N
N



Prevotella sp. oral taxon 317

1552
ACQH01000158
clade_82
N
N



Prevotella sp. SG12

1527
GU561343
clade_82
N
N



Prevotella denticola

1493
CP002589
clade_83
N
N



Prevotella genomosp. P7 oral clone

1497
DQ003620
clade_83
N
N


MB2_P31



Prevotella histicola

1501
JN867315
clade_83
N
N



Prevotella multiformis

1508
AEWX01000054
clade_83
N
N



Prevotella sp. JCM 6330

1522
AB547699
clade_83
N
N



Prevotella sp. oral clone GI059

1539
AY349397
clade_83
N
N



Prevotella sp. oral taxon 782

1555
GQ422745
clade_83
N
N



Prevotella sp. oral taxon G71

1559
GU432180
clade_83
N
N



Prevotella sp. SEQ065

1524
JN867234
clade_83
N
N



Prevotella veroralis

1565
ACVA01000027
clade_83
N
N



Bacteroides acidifaciens

266
NR_028607
clade_85
N
N



Bacteroides cellulosilyticus

269
ACCH01000108
clade_85
N
N



Bacteroides clarus

270
AFBM01000011
clade_85
N
N



Bacteroides eggerthii

275
ACWG01000065
clade_85
N
N



Bacteroides oleiciplenus

286
AB547644
clade_85
N
N



Bacteroides pyogenes

290
NR_041280
clade_85
N
N



Bacteroides sp. 315_5

300
FJ848547
clade_85
N
N



Bacteroides sp. 31SF15

301
AJ583248
clade_85
N
N



Bacteroides sp. 31SF18

302
AJ583249
clade_85
N
N



Bacteroides sp. 35AE31

303
AJ583244
clade_85
N
N



Bacteroides sp. 35AE37

304
AJ583245
clade_85
N
N



Bacteroides sp. 35BE34

305
AJ583246
clade_85
N
N



Bacteroides sp. 35BE35

306
AJ583247
clade_85
N
N



Bacteroides sp. WH2

324
AY895180
clade_85
N
N



Bacteroides sp. XB12B

325
AM230648
clade_85
N
N



Bacteroides stercoris

327
ABFZ02000022
clade_85
N
N



Actinobacillus pleuropneumoniae

46
NR_074857
clade_88
N
N



Actinobacillus ureae

48
AEVG01000167
clade_88
N
N



Haemophilus aegyptius

969
AFBC01000053
clade_88
N
N



Haemophilus ducreyi

970
AE017143
clade_88
N
OP



Haemophilus haemolyticus

973
JN175335
clade_88
N
N



Haemophilus influenzae

974
AADP01000001
clade_88
N
OP



Haemophilus parahaemolyticus

975
GU561425
clade_88
N
N



Haemophilus parainfluenzae

976
AEWU01000024
clade_88
N
N



Haemophilus paraphrophaemolyticus

977
M75076
clade_88
N
N



Haemophilus somnus

979
NC_008309
clade_88
N
N



Haemophilus sp. 70334

980
HQ680854
clade_88
N
N



Haemophilus sp. HK445

981
FJ685624
clade_88
N
N



Haemophilus sp. oral clone ASCA07

982
AY923117
clade_88
N
N



Haemophilus sp. oral clone ASCG06

983
AY923147
clade_88
N
N



Haemophilus sp. oral clone BJ021

984
AY005034
clade_88
N
N



Haemophilus sp. oral clone BJ095

985
AY005033
clade_88
N
N



Haemophilus sp. oral taxon 851

987
AGRK01000004
clade_88
N
N



Haemophilus sputorum

988
AFNK01000005
clade_88
N
N



Histophilus somni

1003
AF549387
clade_88
N
N



Mannheimia haemolytica

1195
ACZX01000102
clade_88
N
N



Pasteurella bettyae

1433
L06088
clade_88
N
N



Moellerella wisconsensis

1253
JN175344
clade_89
N
N



Morganella morganii

1265
AJ301681
clade_89
N
N



Morganella sp. JB_T16

1266
AJ781005
clade_89
N
N



Proteus mirabilis

1582
ACLE01000013
clade_89
N
N



Proteus penneri

1583
ABVP01000020
clade_89
N
N



Proteus sp. HS7514

1584
DQ512963
clade_89
N
N



Proteus vulgaris

1585
AJ233425
clade_89
N
N



Eubacterium sp. oral clone JN088

869
AY349377
clade_90
Y
N



Oribacterium sinus

1374
ACKX01000142
clade_90
N
N



Oribacterium sp. ACB1

1375
HM120210
clade_90
N
N



Oribacterium sp. ACB7

1376
HM120211
clade_90
N
N



Oribacterium sp. CM12

1377
HQ616374
clade_90
N
N



Oribacterium sp. ICM51

1378
HQ616397
clade_90
N
N



Oribacterium sp. OBRC12

1379
HQ616355
clade_90
N
N



Oribacterium sp. oral taxon 108

1382
AFIH01000001
clade_90
N
N



Actinobacillus actinomycetemcomitans

44
AY362885
clade_92
N
N



Actinobacillus succinogenes

47
CP000746
clade_92
N
N



Aggregatibacter actinomycetemcomitans

112
CP001733
clade_92
N
N



Aggregatibacter aphrophilus

113
CP001607
clade_92
N
N



Aggregatibacter segnis

114
AEPS01000017
clade_92
N
N



Averyella dalhousiensis

194
DQ481464
clade_92
N
N


Bisgaard Taxon
368
AY683487
clade_92
N
N


Bisgaard Taxon
369
AY683489
clade_92
N
N


Bisgaard Taxon
370
AY683491
clade_92
N
N


Bisgaard Taxon
371
AY683492
clade_92
N
N



Buchnera aphidicola

440
NR_074609
clade_92
N
N



Cedecea davisae

499
AF493976
clade_92
N
N



Citrobacter amalonaticus

517
FR870441
clade_92
N
N



Citrobacter braakii

518
NR_028687
clade_92
N
N



Citrobacter farmeri

519
AF025371
clade_92
N
N



Citrobacter freundii

520
NR_028894
clade_92
N
N



Citrobacter gillenii

521
AF025367
clade_92
N
N



Citrobacter koseri

522
NC_009792
clade_92
N
N



Citrobacter murliniae

523
AF025369
clade_92
N
N



Citrobacter rodentium

524
NR_074903
clade_92
N
N



Citrobacter sedlakii

525
AF025364
clade_92
N
N



Citrobacter sp. 30_2

526
ACDJ01000053
clade_92
N
N



Citrobacter sp. KMSI_3

527
GQ468398
clade_92
N
N



Citrobacter werkmanii

528
AF025373
clade_92
N
N



Citrobacter youngae

529
ABWL02000011
clade_92
N
N



Cronobacter malonaticus

737
GU122174
clade_92
N
N



Cronobacter sakazakii

738
NC_009778
clade_92
N
N



Cronobacter turicensis

739
FN543093
clade_92
N
N



Enterobacter aerogenes

786
AJ251468
clade_92
N
N



Enterobacter asburiae

787
NR_024640
clade_92
N
N



Enterobacter cancerogenus

788
Z96078
clade_92
N
N



Enterobacter cloacae

789
FP929040
clade_92
N
N



Enterobacter cowanii

790
NR_025566
clade_92
N
N



Enterobacter hormaechei

791
AFHR01000079
clade_92
N
N



Enterobacter sp. 247BMC

792
HQ122932
clade_92
N
N



Enterobacter sp. 638

793
NR_074777
clade_92
N
N



Enterobacter sp. JC163

794
JN657217
clade_92
N
N



Enterobacter sp. SCSS

795
HM007811
clade_92
N
N



Enterobacter sp. TSE38

796
HM156134
clade_92
N
N


Enterobacteriaceae bacterium 9_2_54FAA
797
ADCU01000033
clade_92
N
N


Enterobacteriaceae bacterium CF01Ent_1
798
AJ489826
clade_92
N
N


Enterobacteriaceae bacterium Smarlab
799
AY538694
clade_92
N
N


3302238



Escherichia albertii

824
ABKX01000012
clade_92
N
N



Escherichia coli

825
NC_008563
clade_92
N
Category-B



Escherichia fergusonii

826
CU928158
clade_92
N
N



Escherichia hermannii

827
HQ407266
clade_92
N
N



Escherichia sp. 1_1_43

828
ACID01000033
clade_92
N
N



Escherichia sp. 4_1_40B

829
ACDM02000056
clade_92
N
N



Escherichia sp. B4

830
EU722735
clade_92
N
N



Escherichia vulneris

831
NR_041927
clade_92
N
N



Ewingella americana

877
JN175329
clade_92
N
N



Haemophilus genomosp. P2 oral clone

971
DQ003621
clade_92
N
N


MB3_C24



Haemophilus genomosp. P3 oral clone

972
DQ003635
clade_92
N
N


MB3_C38



Haemophilus sp. oral clone JM053

986
AY349380
clade_92
N
N



Hafnia alvei

989
DQ412565
clade_92
N
N



Klebsiella oxytoca

1024
AY292871
clade_92
N
OP



Klebsiella pneumoniae

1025
CP000647
clade_92
N
OP



Klebsiella sp. AS10

1026
HQ616362
clade_92
N
N



Klebsiella sp. Co9935

1027
DQ068764
clade_92
N
N



Klebsiella sp. enrichment culture clone

1036
HM195210
clade_92
N
N


SRC_DSD25



Klebsiella sp. OBRC7

1028
HQ616353
clade_92
N
N



Klebsiella sp. SP_BA

1029
FJ999767
clade_92
N
N



Klebsiella sp. SRC_DSD1

1033
GU797254
clade_92
N
N



Klebsiella sp. SRC_DSD11

1030
GU797263
clade_92
N
N



Klebsiella sp. SRC_DSD12

1031
GU797264
clade_92
N
N



Klebsiella sp. SRC_DSD15

1032
GU797267
clade_92
N
N



Klebsiella sp. SRC_DSD2

1034
GU797253
clade_92
N
N



Klebsiella sp. SRC_DSD6

1035
GU797258
clade_92
N
N



Klebsiella variicola

1037
CP001891
clade_92
N
N



Kluyvera ascorbata

1038
NR_028677
clade_92
N
N



Kluyvera cryocrescens

1039
NR_028803
clade_92
N
N



Leminorella grimontii

1159
AJ233421
clade_92
N
N



Leminorella richardii

1160
HF558368
clade_92
N
N



Pantoea agglomerans

1409
AY335552
clade_92
N
N



Pantoea ananatis

1410
CP001875
clade_92
N
N



Pantoea brenneri

1411
EU216735
clade_92
N
N



Pantoea citrea

1412
EF688008
clade_92
N
N



Pantoea conspicua

1413
EU216737
clade_92
N
N



Pantoea septica

1414
EU216734
clade_92
N
N



Pasteurella dagmatis

1434
ACZR01000003
clade_92
N
N



Pasteurella multocida

1435
NC_002663
clade_92
N
N



Plesiomonas shigelloides

1469
X60418
clade_92
N
N



Raoultella ornithinolytica

1617
AB364958
clade_92
N
N



Raoultella planticola

1618
AF129443
clade_92
N
N



Raoultella terrigena

1619
NR_037085
clade_92
N
N



Salmonella bongori

1683
NR_041699
clade_92
N
Category-B



Salmonella enterica

1672
NC_011149
clade_92
N
Category-B



Salmonella enterica

1673
NC_011205
clade_92
N
Category-B



Salmonella enterica

1674
DQ344532
clade_92
N
Category-B



Salmonella enterica

1675
ABEH02000004
clade_92
N
Category-B



Salmonella enterica

1676
ABAK02000001
clade_92
N
Category-B



Salmonella enterica

1677
NC_011080
clade_92
N
Category-B



Salmonella enterica

1678
EU118094
clade_92
N
Category-B



Salmonella enterica

1679
NC_011094
clade_92
N
Category-B



Salmonella enterica

1680
AE014613
clade_92
N
Category-B



Salmonella enterica

1682
ABFH02000001
clade_92
N
Category-B



Salmonella enterica

1684
ABEM01000001
clade_92
N
Category-B



Salmonella enterica

1685
ABAM02000001
clade_92
N
Category-B



Salmonella typhimurium

1681
DQ344533
clade_92
N
Category-B



Salmonella typhimurium

1686
AF170176
clade_92
N
Category-B



Serratia fonticola

1718
NR_025339
clade_92
N
N



Serratia liquefaciens

1719
NR_042062
clade_92
N
N



Serratia marcescens

1720
GU826157
clade_92
N
N



Serratia odorifera

1721
ADBY01000001
clade_92
N
N



Serratia proteamaculans

1722
AAUN01000015
clade_92
N
N



Shigella boydii

1724
AAKA01000007
clade_92
N
Category-B



Shigella dysenteriae

1725
NC_007606
clade_92
N
Category-B



Shigella flexneri

1726
AE005674
clade_92
N
Category-B



Shigella sonnei

1727
NC_007384
clade_92
N
Category-B



Tatumella ptyseos

1916
NR_025342
clade_92
N
N



Trabulsiella guamensis

1925
AY373830
clade_92
N
N



Yersinia aldovae

2019
AJ871363
clade_92
N
OP



Yersinia aleksiciae

2020
AJ627597
clade_92
N
OP



Yersinia bercovieri

2021
AF366377
clade_92
N
OP



Yersinia enterocolitica

2022
FR729477
clade_92
N
Category-B



Yersinia frederiksenii

2023
AF366379
clade_92
N
OP



Yersinia intermedia

2024
AF366380
clade_92
N
OP



Yersinia kristensenii

2025
ACCA01000078
clade_92
N
OP



Yersinia mollaretii

2026
NR_027546
clade_92
N
OP



Yersinia pestis

2027
AE013632
clade_92
N
Category-A



Yersinia pseudotuberculosis

2028
NC_009708
clade_92
N
OP



Yersinia rohdei

2029
ACCD01000071
clade_92
N
OP



Yokenella regensburgei

2030
AB273739
clade_92
N
N



Conchiformibius kuhniae

669
NR_041821
clade_94
N
N



Morococcus cerebrosus

1267
JN175352
clade_94
N
N



Neisseria bacilliformis

1328
AFAY01000058
clade_94
N
N



Neisseria cinerea

1329
ACDY01000037
clade_94
N
N



Neisseria flavescens

1331
ACQV01000025
clade_94
N
N



Neisseria gonorrhoeae

1333
CP002440
clade_94
N
OP



Neisseria lactamica

1334
ACEQ01000095
clade_94
N
N



Neisseria macacae

1335
AFQE01000146
clade_94
N
N



Neisseria meningitidis

1336
NC_003112
clade_94
N
OP



Neisseria mucosa

1337
ACDX01000110
clade_94
N
N



Neisseria pharyngis

1338
AJ239281
clade_94
N
N



Neisseria polysaccharea

1339
ADBE01000137
clade_94
N
N



Neisseria sicca

1340
ACKO02000016
clade_94
N
N



Neisseria sp. KEM232

1341
GQ203291
clade_94
N
N



Neisseria sp. oral clone AP132

1344
AY005027
clade_94
N
N



Neisseria sp. oral strain B33KA

1346
AY005028
clade_94
N
N



Neisseria sp. oral taxon 014

1347
ADEA01000039
clade_94
N
N



Neisseria sp. TM10_1

1343
DQ279352
clade_94
N
N



Neisseria subflava

1348
ACEO01000067
clade_94
N
N



Clostridium oroticum

610
FR749922
clade_96
Y
N



Clostridium sp. D5

627
ADBG01000142
clade_96
Y
N



Eubacterium contortum

840
FR749946
clade_96
Y
N



Eubacterium fissicatena

846
FR749935
clade_96
Y
N



Okadaella gastrococcus

1365
HQ699465
clade_98
N
N



Streptococcus agalactiae

1785
AAJO01000130
clade_98
N
N



Streptococcus alactolyticus

1786
NR_041781
clade_98
N
N



Streptococcus australis

1788
AEQR01000024
clade_98
N
N



Streptococcus bovis

1789
AEEL01000030
clade_98
N
N



Streptococcus canis

1790
AJ413203
clade_98
N
N



Streptococcus constellatus

1791
AY277942
clade_98
N
N



Streptococcus cristatus

1792
AEVC01000028
clade_98
N
N



Streptococcus dysgalactiae

1794
AP010935
clade_98
N
N



Streptococcus equi

1795
CP001129
clade_98
N
N



Streptococcus equinus

1796
AEVB01000043
clade_98
N
N



Streptococcus gallolyticus

1797
FR824043
clade_98
N
N



Streptococcus genomosp. C1

1798
AY278629
clade_98
N
N



Streptococcus genomosp. C2

1799
AY278630
clade_98
N
N



Streptococcus genomosp. C3

1800
AY278631
clade_98
N
N



Streptococcus genomosp. C4

1801
AY278632
clade_98
N
N



Streptococcus genomosp. C5

1802
AY278633
clade_98
N
N



Streptococcus genomosp. C6

1803
AY278634
clade_98
N
N



Streptococcus genomosp. C7

1804
AY278635
clade_98
N
N



Streptococcus genomosp. C8

1805
AY278609
clade_98
N
N



Streptococcus gordonii

1806
NC_009785
clade_98
N
N



Streptococcus infantarius

1807
ABJK02000017
clade_98
N
N



Streptococcus infantis

1808
AFNN01000024
clade_98
N
N



Streptococcus intermedius

1809
NR_028736
clade_98
N
N



Streptococcus lutetiensis

1810
NR_037096
clade_98
N
N



Streptococcus massiliensis

1811
AY769997
clade_98
N
N



Streptococcus mitis

1813
AM157420
clade_98
N
N



Streptococcus oligofermentans

1815
AY099095
clade_98
N
N



Streptococcus oralis

1816
ADMV01000001
clade_98
N
N



Streptococcus parasanguinis

1817
AEKM01000012
clade_98
N
N



Streptococcus pasteurianus

1818
AP012054
clade_98
N
N



Streptococcus peroris

1819
AEVF01000016
clade_98
N
N



Streptococcus pneumoniae

1820
AE008537
clade_98
N
N



Streptococcus porcinus

1821
EF121439
clade_98
N
N



Streptococcus pseudopneumoniae

1822
FJ827123
clade_98
N
N



Streptococcus pseudoporcinus

1823
AENS01000003
clade_98
N
N



Streptococcus pyogenes

1824
AE006496
clade_98
N
OP



Streptococcus ratti

1825
X58304
clade_98
N
N



Streptococcus salivarius

1826
AGBV01000001
clade_98
N
N



Streptococcus sanguinis

1827
NR_074974
clade_98
N
N



Streptococcus sinensis

1828
AF432857
clade_98
N
N



Streptococcus sp. 2_1_36FAA

1831
ACOI01000028
clade_98
N
N



Streptococcus sp. 2285_97

1830
AJ131965
clade_98
N
N



Streptococcus sp. ACS2

1834
HQ616360
clade_98
N
N



Streptococcus sp. AS20

1835
HQ616366
clade_98
N
N



Streptococcus sp. BS35a

1836
HQ616369
clade_98
N
N



Streptococcus sp. C150

1837
ACRI01000045
clade_98
N
N



Streptococcus sp. CM6

1838
HQ616372
clade_98
N
N



Streptococcus sp. ICM10

1840
HQ616389
clade_98
N
N



Streptococcus sp. ICM12

1841
HQ616390
clade_98
N
N



Streptococcus sp. ICM2

1842
HQ616386
clade_98
N
N



Streptococcus sp. ICM4

1844
HQ616387
clade_98
N
N



Streptococcus sp. ICM45

1843
HQ616394
clade_98
N
N



Streptococcus sp. M143

1845
ACRK01000025
clade_98
N
N



Streptococcus sp. M334

1846
ACRL01000052
clade_98
N
N



Streptococcus sp. oral clone ASB02

1849
AY923121
clade_98
N
N



Streptococcus sp. oral clone ASCA03

1850
DQ272504
clade_98
N
N



Streptococcus sp. oral clone ASCA04

1851
AY923116
clade_98
N
N



Streptococcus sp. oral clone ASCA09

1852
AY923119
clade_98
N
N



Streptococcus sp. oral clone ASCB04

1853
AY923123
clade_98
N
N



Streptococcus sp. oral clone ASCB06

1854
AY923124
clade_98
N
N



Streptococcus sp. oral clone ASCC04

1855
AY923127
clade_98
N
N



Streptococcus sp. oral clone ASCC05

1856
AY923128
clade_98
N
N



Streptococcus sp. oral clone ASCC12

1857
DQ272507
clade_98
N
N



Streptococcus sp. oral clone ASCD01

1858
AY923129
clade_98
N
N



Streptococcus sp. oral clone ASCD09

1859
AY923130
clade_98
N
N



Streptococcus sp. oral clone ASCD10

1860
DQ272509
clade_98
N
N



Streptococcus sp. oral clone ASCE03

1861
AY923134
clade_98
N
N



Streptococcus sp. oral clone ASCE04

1862
AY953253
clade_98
N
N



Streptococcus sp. oral clone ASCE05

1863
DQ272510
clade_98
N
N



Streptococcus sp. oral clone ASCE06

1864
AY923135
clade_98
N
N



Streptococcus sp. oral clone ASCE09

1865
AY923136
clade_98
N
N



Streptococcus sp. oral clone ASCE10

1866
AY923137
clade_98
N
N



Streptococcus sp. oral clone ASCE12

1867
AY923138
clade_98
N
N



Streptococcus sp. oral clone ASCF05

1868
AY923140
clade_98
N
N



Streptococcus sp. oral clone ASCF07

1869
AY953255
clade_98
N
N



Streptococcus sp. oral clone ASCF09

1870
AY923142
clade_98
N
N



Streptococcus sp. oral clone ASCG04

1871
AY923145
clade_98
N
N



Streptococcus sp. oral clone BW009

1872
AY005042
clade_98
N
N



Streptococcus sp. oral clone CH016

1873
AY005044
clade_98
N
N



Streptococcus sp. oral clone GK051

1874
AY349413
clade_98
N
N



Streptococcus sp. oral clone GM006

1875
AY349414
clade_98
N
N



Streptococcus sp. oral clone P2PA_41 P2

1876
AY207051
clade_98
N
N



Streptococcus sp. oral clone P4PA_30 P4

1877
AY207064
clade_98
N
N



Streptococcus sp. oral taxon 071

1878
AEEP01000019
clade_98
N
N



Streptococcus sp. oral taxon G59

1879
GU432132
clade_98
N
N



Streptococcus sp. oral taxon G62

1880
GU432146
clade_98
N
N



Streptococcus sp. oral taxon G63

1881
GU432150
clade_98
N
N



Streptococcus suis

1882
FM252032
clade_98
N
N



Streptococcus thermophilus

1883
CP000419
clade_98
N
N



Streptococcus uberis

1884
HQ391900
clade_98
N
N



Streptococcus urinalis

1885
DQ303194
clade_98
N
N



Streptococcus vestibularis

1886
AEKO01000008
clade_98
N
N



Streptococcus viridans

1887
AF076036
clade_98
N
N



Synergistetes bacterium oral clone 03 5

1908
GU227192
clade_98
N
N


D05









List of Operational Taxonomic Units (OTU) with taxonomic assignments made to Genus, Species, and Phylogenetic Clade. Clade membership of bacterial OTUs is based on 16S sequence data. Clades are defined based on the topology of a phylogenetic tree that is constructed from full-length 16S sequences using maximum likelihood methods familiar to individuals with ordinary skill in the art of phylogenetics. Clades are constructed to ensure that all OTUs in a given clade are: (i) within a specified number of bootstrap supported nodes from one another, and (ii) within 5% genetic similarity. OTUs that are within the same clade can be distinguished as genetically and phylogenetically distinct from OTUs in a different clade based on 16S-V4 sequence data, while OTUs falling within the same clade are closely related. OTUs falling within the same clade are evolutionarily closely related and may or may not be distinguishable from one another using 16S-V4 sequence data. Members of the same clade, due to their evolutionary relatedness, play similar functional roles in a microbial ecology such as that found in the human gut. Compositions substituting one species with another from the same clade are likely to have conserved ecological function and therefore are useful in the present invention. All OTUs are denoted as to their putative capacity to form spores and whether they are a Pathogen or Pathobiont (see Definitions for description of “Pathobiont”). NIAID Priority Pathogens are denoted as ‘Category-A’, ‘Category-B’, or ‘Category-C’, and Opportunistic Pathogens are denoted as ‘OP’. OTUs that are not pathogenic or for which their ability to exist as a pathogen is unknown are denoted as ‘N’. The ‘SEQ ID Number’ denotes the identifier of the OTU in the Sequence Listing File and ‘Public DB Accession’ denotes the identifier of the OTU in a public sequence repository.









TABLE 2





Representative vitamins, minerals, and cofactors

















L-glutamine



nickel chloride



BaCl2



hemin



potassium telurite



Fibrinogen



Bacto Vitamin-Free Casamino Acids



cocarboxylase



bovine albumin fraction V



FeCl2•H2O



L-cystine•2HCl



Bacto Casamino Acids



Agar



CuSO4



pyridoxine



SnCl2•2H2O



sodium selenite



CaCl2



NaCl



albumin fraction V



vitamin B12



folic acid



ZnCl2



FeSO4



oleic acid



Co(NO3)2•6H2O



L-cystine



Na2B4O7•10H2O



CaSO4•2H2O



AlCl3



SeCl4



Na2MoO4•2H2O



thiamine pyrophosphate



Pyridoxine•HCI



MnCl2•4H2O



aluminum sulphate



Na2HPO4



H3BO3



L-cysteine•HCl•H2O



adenine sulfate



long-chain fatty acids



KNO3



sodium metabisulfite



sodium molybdate



CoCl2•6H2O



Na2MoO4



Castenholz Salts



NaNO3



HCl



L-cysteine



copper sulfate



L-cysteine•HCl



thiamine•HCI



biotin



sodium chloride



thallium acetate



NiCl2•6H2O



NaVO3•H2O



nicotinamide adenine dinucleotide



nicotinic acid



Na2MoO4•H2O



CuCl2•2H2O



FeCl2•4H2O



(NH4)2MoO4



MnSO4



guanine•HCl



H2SO4



CoCl2



cholesterol



LiCl



pyridoxine•2HCI



Disodium ethylenediamine tetraacetic acid



Vitamin K1



KBr



alkalinized oleic acid



ZnSO4•7H2O



trypsin inhibitor



KI



ethanol



cobalt nitrate



Ethylenediamine tetraacetic acid



CuSO4•5H2O



calcium-D-pathothenate



Fe(NO3)3



CaCl2•2H2O



Sodium pyruvate



NaOH



p-aminobenzoic acid



a-ketoglutarate



boric acid



casein



Pyridoxine hydrochloride



Dried bovine hemoglobin



ZnSO4



Nicotinamide



FeCl3



Fe(NO3)3•6H2O



calcium pantothenate



cyanocobalamin



nitrilotriacetic acid



Adenine



sodium tartrate



magnesium sulfate



zinc sulfate



NaHCO3



Glucose



MgSO4•7H2O



Na2S•9H2O



riboflavin



ferric pyrophosphate



Essential growth factors V and X



Peptone



FeSO4•7H2O



catalase



MnSO4•7H2O



CuCl2



Na2SeO3•5H2O



thiamine



NiCl2



sodium tungstate



iron sulfate



calcium chloride



(NH4)6Mo7O24•4H2O



ACES buffer/KOH



Thioctic acid



succinate



formate



lactate



butyrate



acetate



Vitamin K



Mercaptoethane-sulfonic acid



Lipoic acid



ammonia



heme



S-Adenosylmethionine




















TABLE 3







Spore Forming
Dominant OTU in


OTU
Phylogenetic Clade
OTU
Augmented Ecology








Bacteroides sp. 2_1_22

clade38
N
Y



Streptococcus anginosus

clade60
N



Prevotella intermedia

clade81
N



Prevotella nigrescens

clade81
N



Oribacterium sp. ACB7

clade90
N



Prevotella salivae

clade104
N



Bacteroides intestinalis

clade171
N
Y



Bifidobacterium dentium

clade172
N



Alcaligenes faecalis

clade183
N



Rothia dentocariosa

clade194
N



Peptoniphilus lacrimalis

clade291
N



Anaerococcus sp. gpac155

clade294
N



Sutterella stercoricanis

clade302
N
Y



Bacteroides sp. 3_1_19

clade335
N
Y



Parabacteroides goldsteinii

clade335
N



Bacteroides dorei

clade378
N
Y



Bacteroides massiliensis

clade378
N



Lactobacillus iners

clade398
N



Granulicatella adiacens

clade460
N



Eggerthella sp. 1_3_56FAA

clade477
N



Gordonibacter pamelaeae

clade477
N



Finegoldia magna

clade509
N



Actinomyces nasicola

clade523
N



Streptobacillus moniliformis

clade532
N



Oscillospira guilliermondii

clade540
N



Orientia tsutsugamushi

clade541
N



Christensenella minuta

clade558
N



Clostridium oroticum

clade96
Y



Clostridium sp. D5

clade96
Y



Clostridium glycyrrhizinilyticum

clade147
Y



Coprococcus comes

clade147
Y



Ruminococcus lactaris

clade147
Y



Ruminococcus torques

clade147
Y
Y



Clostridiales sp. SS3/4

clade246
Y



Clostridium hylemonae

clade260
Y



Clostridium aerotolerans

clade269
Y



Clostridium asparagiforme

clade300
Y
Y



Clostridium sp. M62/1

clade300
Y



Clostridium symbiosum

clade300
Y


Lachnospiraceae genomosp. C1
clade300
Y



Blautia sp. M25

clade304
Y
Y



Blautia stercoris

clade304
Y



Ruminococcus hansenii

clade304
Y



Ruminococcus obeum

clade304
Y


Ruminococcus sp. 5_1_39BFAA
clade304
Y



Bryantella formatexigens

clade309
Y



Eubacterium cellulosolvens

clade309
Y



Clostridium sp. HGF2

clade351
Y



Clostridium bartlettii

clade354
Y



Clostridium bifermentans

clade354
Y



Clostridium glycolicum

clade354
Y



Eubacterium tenue

clade354
Y



Dorea formicigenerans

clade360
Y



Dorea longicatena

clade360
Y


Lachnospiraceae bacterium 2_1_46FAA
clade360
Y


Lachnospiraceae bacterium 9_1_43BFAA
clade360
Y
Y



Ruminococcus gnavus

clade360
Y



Clostridium hathewayi

clade362
Y



Blautia hydrogenotrophica

clade368
Y


Clostridiaceae bacterium END-2
clade368
Y



Roseburia faecis

clade369
Y



Roseburia hominis

clade370
Y



Roseburia intestinalis

clade370
Y



Eubacterium sp. WAL 14571

clade384
Y


Erysipelotrichaceae bacterium 5_2_54FAA
clade385
Y



Eubacterium biforme

clade385
Y



Eubacterium dolichum

clade385
Y



Coprococcus catus

clade393
Y



Acetivibrio ethanolgignens

clade396
Y



Anaerosporobacter mobilis

clade396
Y



Bacteroides pectinophilus

clade396
Y



Eubacterium hallii

clade396
Y



Eubacterium xylanophilum

clade396
Y



Anaerostipes caccae

clade408
Y



Clostridiales bacterium 1_7_47FAA

clade408
Y



Clostridium aldenense

clade408
Y



Clostridium citroniae

clade408
Y



Eubacterium hadrum

clade408
Y
Y



Acetanaerobacterium elongatum

clade439
Y



Faecalibacterium prausnitzii

clade478
Y



Gemmiger formicilis

clade478
Y
Y



Eubacterium ramulus

clade482
Y


Lachnospiraceae bacterium 3_1_57FAA_CT1
clade483
Y


Lachnospiraceae bacterium A4
clade483
Y
Y


Lachnospiraceae bacterium DJF VP30
clade483
Y



Holdemania filiformis

clade485
Y



Clostridium orbiscindens

clade494
Y



Pseudoflavonifractor capillosus

clade494
Y


Ruminococcaceae bacterium D16
clade494
Y



Acetivibrio cellulolyticus

clade495
Y



Eubacterium limosum

clade512
Y



Anaerotruncus colihominis

clade516
Y



Clostridium methylpentosum

clade516
Y



Clostridium sp. YIT 12070

clade516
Y



Hydrogenoanaerobacterium saccharovorans

clade516
Y



Eubacterium ventriosum

clade519
Y



Eubacterium eligens

clade522
Y



Lachnospira pectinoschiza

clade522
Y



Lactobacillus rogosae

clade522
Y
Y



Clostridium leptum

clade537
Y



Eubacterium coprostanoligenes

clade537
Y



Ruminococcus bromii

clade537
Y



Clostridium viride

clade540
Y



Butyrivibrio crossotus

clade543
Y



Coprococcus eutactus

clade543
Y



Eubacterium ruminantium

clade543
Y



Eubacterium rectale

clade568
Y
Y



Roseburia inulinivorans

clade568
Y



Butyricicoccus pullicaecorum

clade572
Y



Eubacterium desmolans

clade572
Y



Papillibacter cinnamivorans

clade572
Y



Sporobacter termitidis

clade572
Y



Clostridium lactatifermentans

clade576
Y









Bacterial OTUs associated with engraftment and ecological augmentation and establishment of a more diverse microbial ecology in patients treated with an ethanol-treated spore preparation. OTUs that comprise an augmented ecology are not present in the patient prior to treatment and/or exist at extremely low frequencies such that they do not comprise a significant fraction of the total microbial carriage and are not detectable by genomic and/or microbiological assay methods. OTUs that are members of the engrafting and augmented ecologies were identified by characterizing the OTUs that increase in their relative abundance post treatment and that respectively are: (i) present in the ethanol-treated spore preparation and absent in the patient pretreatment, or (ii) absent in the ethanol-treated spore preparation, but increase in their relative abundance through time post treatment with the preparation due to the formation of favorable growth conditions by the treatment. Notably, the latter OTUs can grow from low frequency reservoirs in the patient, or be introduced from exogenous sources such as diet. OTUs that comprise a “core” augmented or engrafted ecology can be defined by the percentage of total patients in which they are observed to engraft and/or augment; the greater this percentage the more likely they are to be part of a core ecology responsible for catalyzing a shift away from a dysbiotic ecology. The dominant OTUs in an ecology can be identified using several methods including but not limited to defining the OTUs that have the greatest relative abundance in either the augmented or engrafted ecologies and defining a total relative abundance threshold. As example, the dominant OTUs in the augmented ecology of Patient-1 were identified by defining the OTUs with the greatest relative abundance, which together comprise 60% of the microbial carriage in this patient's augmented ecology.









TABLE 4







Reduction in pathogen carriage post treatment with


bacterial composition treatment of Patient 1.












Pretreat-






ment
Day 5
Day 14
Day 25
















Klebsiella (% of total reads)

20.27%
1.32%
7.62%
0.00%



Fusobacterium (% total of reads)

19.14%
3.01%
0.01%
0.00%
















TABLE 5







Augmentation of Bacteroides as a function of


bacterial composition treatment of Patient 1.












Pretreatment titer
Day 25 titer


Media

Bacteroides species

(cfu/g)
(cfu/g)





BBE

B. fragilis group

<2 × 104
3 × 108 


PFA
All Bacteroides
<2 × 107
2 × 1010





















TABLE 6







% of Spore
% of Patients
Spore
Keystone


OTU
Clade
Preps with OTU
OTU Engrafts
Former
OTU








Prevotella

maculosa

clade_104
10%
 0%
N
N



Prevotella

copri

clade_168
20%
 0%
N
N



Bacteroides

caccae

clade_170
30%
 0%
N
Y



Bifidobacterium_sp_TM_7*

clade_172
90%
60%
N
N



Bifidobacterium_gallicum

clade_172
70%
20%
N
N



Bifidobacterium_dentium

clade_172
50%
 0%
N
N



Lactobacillus_casei

clade_198
20%
10%
N
N



Actinomyces

odontolyticus

clade_212
20%
30%
N
N



Clostridium

colicanis

clade_223
10%
10%
Y
N



Clostridiales_sp_SS3_4*

clade_246
100% 
70%
Y
N



Clostridium

sporogenes

clade_252
40%
40%
Y
N



Clostridium

butyricum

clade_252
20%
20%
Y
N



Clostridium

disporicum

clade_253
40%
30%
Y
N



Clostridium

hylemonae*

clade_260
100% 
50%
Y
N



Clostridium

scindens

clade_260
10%
60%
Y
N



Coprococcus

comes*

clade_262
90%
80%
Y
Y


Lachnospiraceae_bacterium_1_4_56FAA*
clade_262
90%
80%
Y
Y



Ruminococcus

torques

clade_262
30%
70%
Y
Y



Parabacteroides

merdae

clade_286
30%
20%
N
Y



Bifidobacterium bifidum

clade_293
10%
 0%
N
N



Johnsonella

ignava

clade_298
10%
10%
N
N



Blautia

glucerasea*

clade_309
100% 
80%
Y
N



Blautia_sp_M25*

clade_309
100% 
70%
Y
Y


Lachnospiraceae_bacterium_6_1_63FAA*
clade_309
100% 
60%
Y
N



Eubacterium

cellulosolvens

clade_309
10%
30%
Y
Y



Lactobacillus

fermentum

clade_313
10%
 0%
N
N



Sarcina

ventriculi

clade_353
10%
10%
Y
N



Clostridium

bartlettii*

clade_354
90%
70%
Y
N



Clostridium

bifermentans

clade_354
70%
70%
Y
N



Clostridium

mayombei

clade_354
50%
50%
Y
N



Dorea

longicatena*

clade_360
100% 
60%
Y
Y


Lachnospiraceae_bacterium_9_1_43BFAA
clade_360
100% 
30%
Y
N


Lachnospiraceae_bacterium_2_1_58FAA*
clade_360
80%
80%
Y
N


Lachnospiraceae_bacterium_2_1_46FAA
clade_360
50%
50%
Y
N



Lactobacillus

perolens

clade_373
10%
 0%
N
N



Bacteroides

dorei

clade_378
60%
50%
N
Y



Eubacterium

biforme

clade_385
10%
 0%
Y
N



Peptoniphilus_sp_gpac077

clade_389
10%
20%
N
N



Coprococcus

catus*

clade_393
100% 
70%
Y
Y



Eubacterium

hallii*

clade_396
90%
60%
Y
Y



Anaerosporobacter

mobilis

clade_396
40%
60%
Y
N



Bacteroides

pectinophilus

clade_396
10%
60%
Y
N



Lactobacillus

hominis

clade_398
10%
 0%
N
N



Lactococcus

lactis

clade_401
40%
40%
N
N



Ruminococcus

champanellensis*

clade_406
80%
50%
Y
N



Ruminococcus

callidus

clade_406
10%
10%
Y
N



Clostridium

clostridioforme*

clade_408
100% 
60%
Y
Y



Eubacterium

hadrum*

clade_408
100% 
90%
Y
Y



Clostridium

symbiosum

clade_408
30%
50%
Y
Y



Anaerostipes

caccae

clade_408
10%
50%
Y
N



Parasutterella

excrementihominis

clade_432
10%
 0%
N
N



Sutterella

stercoricanis

clade_432
10%
 0%
N
N



Eubacterium

rectale*

clade_444
100% 
80%
Y
Y



Lachnobacterium

bovis*

clade_444
100% 
80%
Y
N



Desulfovibrio

desulfuricans

clade_445
10%
 0%
N
Y



Eubacterium_sp_oral_clone_JS001*

clade_476
80%
70%
Y
N



Faecalibacterium

prausmtzii*

clade_478
100% 
60%
Y
Y



Subdoligranulum

variabile*

clade_478
100% 
80%
Y
Y



Coprobacillus_sp_D7*

clade_481
90%
60%
Y
N



Clostridium

cocleatum

clade_481
60%
20%
Y
N



Clostridium

spiroforme

clade_481
40%
50%
Y
N



Eubacterium

ramulus*

clade_482
80%
60%
Y
N



Flavonifractor

plautii

clade_494
70%
60%
Y
Y



Pseudoflavonifractor

capillosus

clade_494
60%
60%
Y
Y


Ruminococcaceae_bacterium_D16
clade_494
30%
50%
Y
Y



Acetivibrio

cellulolyticus*

clade_495
70%
80%
Y
N



Clostridium

stercorarium

clade_495
40%
50%
Y
N



Enterococcus

durans

clade_497
10%
10%
N
N



Enterococcus

faecium

clade_497
10%
10%
N
N



Dialister

invisus

clade_506
50%
10%
N
N



Eubacterium limosum

clade_512
20%
 0%
Y
N



Ruminococcus

flavefaciens

clade_516
60%
60%
Y
N



Eubacterium

ventriosum

clade_519
30%
60%
Y
Y



Bilophila

wadsworthia

clade_521
90%
 0%
N
Y



Lacluiospira

pectinoschiza

clade_522
40%
60%
Y
N



Eubacterium

eligens

clade_522
30%
50%
Y
Y



Catonella

morbi

clade_534
20%
 0%
N
N



Clostridium

sporosphaeroides*

clade_537
100% 
80%
Y
N



Ruminococcus

bromii

clade_537
60%
30%
Y
Y



Clostridium

leptum

clade_537
40%
70%
Y
Y



Clostridium_sp_YIT_12069

clade_537
40%
60%
Y
N



Clostridium

viride

clade_540
10%
10%
Y
N



Megamonas

funiformis

clade_542
50%
 0%
N
N



Eubacterium

ruminantium*

clade_543
80%
90%
Y
N



Coprococcus

eutactus

clade_543
20%
20%
Y
N



Collinsella

aerofaciens

clade_553
50%
10%
Y
Y



Alkaliphilus

metalliredigenes

clade_554
40%
10%
Y
N



Turicibacter

sanguinis

clade_555
80%
40%
Y
N



Phascolarctobacterium

faecium

clade_556
20%
 0%
N
N



Clostridiales

bacterium_oral_clone_P4PA*

clade_558
80%
50%
N
N



Lutispora

thermophila

clade_564
100% 
 0%
Y
N


Coriobacteriaceae_bacterium_JC110
clade_566
70%
 0%
N
N



Eggerthella_sp_1_3_56FAA

clade_566
70%
30%
N
N



Adlercreutzia

equolifaciens

clade_566
40%
 0%
N
N



Gordonibacter

pamelaeae

clade_566
30%
 0%
N
Y



Slackia

isoflavoniconvertens

clade_566
10%
 0%
N
N



Eubacterium

desmolans*

clade_572
90%
70%
Y
N



Papillibacter

cinnamivorans*

clade_572
90%
80%
Y
N



Clostridium

colinum

clade_576
30%
30%
Y
N



Akkermansia

muciniphila

clade_583
60%
10%
N
Y



Clostridiales

bacterium_oral_taxon_F32

clade_584
60%
30%
N
N



Prochlorococcus

marinus

clade_592
30%
 0%
N
N



Methanobrevibacter

wolinii

clade_595
30%
 0%
N
N



Bacteroides

fragilis

clade_65
20%
30%
N
Y



Lactobacillus

delbrueckii

clade_72
10%
 0%
N
N



Escherichia

coli

clade_92
50%
 0%
N
Y



Clostridium_sp_D5

clade_96
80%
60%
Y
N



Streptococcus

thermophilus

clade_98
90%
20%
N
Y



Streptococcus_sp_CM6

clade_98
20%
10%
N
N



Streptococcus_sp_oral_clone_ASCE05

clade_98
10%
 0%
N
N









OTUs detected by a minimum of ten 16S-V4 sequence reads in at least a one ethanol-treated spore preparation. OTUs that engraft in a treated patients and the percentage of patients in which they engraft are denoted, as are the clades, spore forming status, and Keystone OTU status. Starred OTUs occur in ≥80% of the ethanol preps and engraft in ≥50% of the treated patients.









TABLE 7







Top 20 OTUs ranked by CES











OTU
Clade
CES
Spore Former
Keystone OTU















Eubacterium

hadrum

clade_408
4.2
Y
Y



Eubacterium

rectale

clade_444
4.2
Y
Y



Subdoligranulum

variabile

clade_478
4.2
Y
Y



Blautia_sp_M25

clade_309
4.2
Y
Y



Coprococcus

catus

clade_393
4.2
Y
Y


Lachnospiraceae_bacterium_1_4_56FAA
clade_262
4.2
Y
Y



Coprococcus

comes

clade_262
4.2
Y
Y



Blautia

glucerasea

clade_309
4.0
Y
N



Lachnobacterium

bovis

clade_444
4.0
Y
N



Clostridium

sporosphaeroides

clade_537
4.0
Y
N



Clostridiales_sp_SS3_4

clade_246
4.0
Y
N



Papillibacter

cinnamivorans

clade_572
4.0
Y
N



Clostridium

bartlettii

clade_354
4.0
Y
N



Eubacterium

desmolans

clade_572
4.0
Y
N



Clostridium

clostridioforme

clade_408
3.2
Y
Y



Dorea

longicatena

clade_360
3.2
Y
Y



Faecalibacterium

prausnitzii

clade_478
3.2
Y
Y



Eubacterium

hallii

clade_396
3.2
Y
Y



Clostridium

leptum

clade_537
3.2
Y
Y


Lachnospiraceae_bacterium_6_1_63FAA
clade_309
3.0
Y
N

















Lengthy table referenced here




US20210252079A1-20210819-T00001


Please refer to the end of the specification for access instructions.













TABLE 9







Keystone OTUs that occur in Network Ecologies representing states of health for various disease indications (CDAD =



Clostridium difficile associated diarrhea, T2D = Type 2 Diabetes, Obesity = clinical obesity, UC = ulcerative colitis)
















Disease






Indication for






which Health


OTU
Clade
Family
Genus
Keystone OTU






Akkermansia muciniphila

clade_583
Verrucomicrobiaceae

Akkermansia

CDAD



Alistipes putredinis

clade_500
Rikenellaceae

Alistipes

CDAD, T2D



Alistipes shahii

clade_500
Rikenellaceae

Alistipes

CDAD, T2D



Bacteroides caccae

clade_170
Bacteroidaceae

Bacteroides

CDAD,






Obesity



Bacteroides cellulosilyticus

clade_85
Bacteroidaceae

Bacteroides

CDAD, T2D



Bacteroides dorei

clade_378
Bacteroidaceae

Bacteroides

CDAD,






Obesity, T2D



Bacteroides eggerthii

clade_85
Bacteroidaceae

Bacteroides

T2D



Bacteroides finegoldii

clade_170
Bacteroidaceae

Bacteroides

CDAD, UC



Bacteroides intestinalis

clade_171
Bacteroidaceae

Bacteroides

T2D



Bacteroides ovatus

clade_38
Bacteroidaceae

Bacteroides

Obesity, T2D



Bacteroides sp. D20

clade_110
Bacteroidaceae

Bacteroides

CDAD



Bacteroides stercoris

clade_85
Bacteroidaceae

Bacteroides

CDAD, T2D,






UC



Bacteroides thetaiotaomicron

clade_65
Bacteroidaceae

Bacteroides

CDAD,






Obesity



Bacteroides uniformis

clade_110
Bacteroidaceae

Bacteroides

T2D, UC



Bacteroides xylanisolvens

clade_38
Bacteroidaceae

Bacteroides

Obesity



Bifidobacterium longum

clade_172
Bifidobacteriaceae

Bifidobacterium

CDAD



Bilophila wadsworthia

clade_521
Desulfovibrionaceae

Bilophila

CDAD



Blautia sp. M25

clade_309
Lachnospiraceae

Blautia

CDAD



Butyricicoccus pullicaecorum

clade_572
Clostridiaceae

Butyricicoccus

CDAD



Butyrivibrio crossotus

clade_543
Lachnospiraceae

Butyrivibrio

CDAD



Catenibacterium mitsuokai

clade_469
Erysipelotrichaceae

Catenibacterium

Obesity



Clostridium lactatifermentans

clade_576
Clostridiaceae

Clostridium

CDAD



Clostridium leptum

clade_537
Clostridiaceae

Clostridium

CDAD,






Obesity, T2D



Clostridium nexile

clade_262
Clostridiaceae

Clostridium

CDAD



Clostridium sp. NML 04A032

clade_494
Clostridiaceae

Clostridium

CDAD



Coprococcus catus

clade_393
Lachnospiraceae

Coprococcus

CDAD, T2D



Coprococcus comes

clade_262
Lachnospiraceae

Coprococcus

CDAD, T2D



Desulfovibrio desulfuricans

clade_445
Desulfovibrionaceae

Desulfovibrio

T2D



Desulfovibrio piger

clade_445
Desulfovibrionaceae

Desulfovibrio

Obesity



Dorea formicigenerans

clade_360
Lachnospiraceae

Dorea

CDAD, T2D



Dorea longicatena

clade_360
Lachnospiraceae

Dorea

CDAD, T2D



Eubacterium coprostanoligenes

clade_537
Eubacteriaceae

Eubacterium

CDAD



Eubacterium eligens

clade_522
Eubacteriaceae

Eubacterium

T2D



Eubacterium hadrum

clade_408
Lachnospiraceae

Anaerostipes

CDAD



Eubacterium hallii

clade_396
Eubacteriaceae

Eubacterium

CDAD, T2D



Eubacterium rectale

clade_444
Eubacteriaceae

Eubacterium

CDAD, T2D



Eubacterium siraeum

clade_538
Eubacteriaceae

Eubacterium

CDAD



Eubacterium ventriosum

clade_519
Eubacteriaceae

Eubacterium

T2D



Faecalibacterium prausnitzii

clade_478
Ruminococcaceae

Faecalibacterium

CDAD, T2D



Gemmiger formicilis

clade_478
Hyphomicrobiaceae

Gemmiger

CDAD



Gordonibacter pamelaeae

clade_566
Coriobacteriaceae

Gordonibacter

Obesity



Holdemania filiformis

clade_485
Erysipelotrichaceae

Holdemania

CDAD,






Obesity, T2D


Lachnospiraceae bacterium 1_4_56FAA
clade_262
Lachnospiraceae

CDAD


Lachnospiraceae bacterium 3_1_57FAACT1
clade_408
Lachnospiraceae

CDAD



Odoribacter splanchnicus

clade_466
Porphyromonadaceae

Odoribacter

CDAD, T2D



Oscillibacter valericigenes

clade_540
Oscillospiraceae

Oscillibacter

CDAD



Oxalobacter formigenes

clade_357
Oxalobacteraceae

Oxalobacter

T2D



Parabacteroides johnsonii

clade_286
Porphyromonadaceae

Parabacteroides

CDAD, T2D



Parabacteroides merdae

clade_286
Porphyromonadaceae

Parabacteroides

CDAD,






Obesity, T2D



Pseudoflavonifractor capillosus

clade_494


Pseudoflavonifractor

T2D



Roseburia hominis

clade_444
Lachnospiraceae

Roseburia

CDAD



Roseburia intestinalis

clade_444
Lachnospiraceae

Roseburia

CDAD, T2D



Roseburia inulinivorans

clade_444
Lachnospiraceae

Roseburia

CDAD, T2D



Ruminococcus bromii

clade_537
Ruminococcaceae

Ruminococcus

CDAD



Ruminococcus lactaris

clade_262
Ruminococcaceae

Ruminococcus

CDAD



Ruminococcus obeum

clade_309
Lachnospiraceae

Blautia

CDAD, T2D



Ruminococcus torques

clade_262
Lachnospiraceae

Blautia

CDAD, T2D



Sporobacter termitidis

clade_572
Ruminococcaceae

Sporobacter

CDAD



Streptococcus parasanguinis

clade_98
Streptococcaceae

Streptococcus

CDAD



Subdoligranulum variabile

clade_478
Ruminococcaceae

Subdoligranulum

CDAD



Veillonella atypica

clade_358
Veillonellaceae

Veillonella

CDAD



Veillonella parvula

clade_358
Veillonellaceae

Veillonella

CDAD



Victivallis vadensis

clade_567
Victivallaceae

Victivallis

UC
















TABLE 10





Non-Keystone OTUs that occur in Network Ecologies


representing states of health


Non-Keystone OTUs


















Acidaminococcus fermentans





Acinetobacter johnsonii





Alistipes indistinctus





Anaerostipes caccae





Anaerotruncus colihominis





Auritibacter ignavus





Bacteroides coprocola





Bacteroides coprophilus





Bacteroides fragilis





Bacteroides pectinophilus





Bacteroides plebeius





Bacteroides salanitronis





Bacteroides sp. 1_1_30





Bacteroides sp. 20 3





Bacteroides sp. 3_1_40A





Bacteroides sp. D2





Bacteroides vulgatus





Barnesiella viscericola





Bifidobacterium adolescentis





Bifidobacterium bifidum





Bifidobacterium catenulatum





Bifidobacterium dentium





Bifidobacterium pseudocatenulatum





Blautia hansenii





Blautia hydrogenotrophica





Blautia producta





Campylobacter hominis





Campylobacter upsaliensis





Capnocytophaga sp. oral clone ASCH05





Capnocytophaga sp. oral taxon 338





Chlamydiales bacterium NS13





Chromobacterium violaceum





Citrobacter sp. 30_2





Clostridiales bacterium oral clone P4PA





Clostridiales sp. SS3/4





Clostridium asparagiforme





Clostridium bartlettii





Clostridium beijerinckii





Clostridium bifermentans





Clostridium bolteae





Clostridium botulinum





Clostridium butyricum





Clostridium celatum





Clostridium cocleatum





Clostridium glycolicum





Clostridium hathewayi





Clostridium hylemonae





Clostridium innocuum





Clostridium methylpentosum





Clostridium orbiscindens





Clostridium ramosum





Clostridium scindens





Clostridium symbiosum





Clostridium tertium





Clostridium thermocellum





Collinsella aerofaciens





Collinsella tanakaei





Coprobacillus sp. D7





Coprococcus eutactus





Corynebacterium pseudogenitalium





Dialister invisus





Eggerthella lenta





Enhydrobacter aerosaccus





Enterococcus raffinosus





Enterococcus sp. CCRI 16620





Escherichia coli





Eubacterium desmolans





Eubacterium nodatum





Eubacterium sp. WAL 14571





Eubacterium tenue





Gardnerella vaginalis





Granulicatella adiacens





Haemophilus parainfluenzae





Halorubrum lipolyticum





Heliobacterium modesticaldum





Lachnobacterium bovis




Lachnospiraceae bacterium 1_1_57FAA



Lachnospiraceae bacterium 5_1_57FAA




Lactobacillus ruminis





Lactococcus lactis





Marvinbryantia formatexigens





Methanobrevibacter smithii





Mitsuokella multacida




Mycoplasmataceae genomosp P1 oral clone




Neisseria meningitidis





Parabacteroides distasonis





Peptoniphilus sp. gpac077





Phascolarctobacterium sp. YIT 12068





Porphyromonas asaccharolytica





Prevotella buccae





Prevotella buccalis





Prevotella copri





Propionibacterium acnes





Proteus penneri





Psychrobacter pulmonis





Roseburia faecalis





Rothia mucilaginosa





Ruminococcus albus





Ruminococcus gnavus





Ruminococcus sp. ID8





Scardovia inopinata





Solobacterium moorei





Staphylococcus warneri





Streptococcus australis





Streptococcus dysgalactiae





Streptococcus infantis





Streptococcus mitis





Streptococcus peroris





Streptococcus pyogenes





Streptococcus salivarius





Streptococcus sanguinis





Streptococcus sp. oral clone ASCF07





Streptococcus suis





Streptococcus thermophilus





Streptococcus vestibularis





Sutterella wadsworthensis





Synergistetes bacterium oral taxon D48





Tannerella sp. 6_1_58FAA_CT1





Tissierella praeacuta





Veillonella dispar























TABLE 11







Network







Ecology ID

Eubacterium_eligens


Roseburia_intestinalis


Ruminococcus_gnavus


Clostridium_symbiosum


Coprococcus_comes











(a)












N1
X
X
X
X
X


N2
X
X
X
X
X


N3
X
X
X
X
X


N4
X
X
X
X
X


N5
X
X
X
X


N6
X
X
X
X


N7
X
X
X
X


N8
X
X
X
X


N9
X
X
X
X


N10
X
X
X
X


N11
X
X
X
X


N12
X
X
X

X


N13
X
X
X

X


N14
X
X
X

X


N15
X
X
X

X


N16
X
X
X

X


N17
X
X
X

X


N18
X
X
X

X


N19
X
X
X


N20
X
X
X


N21
X
X
X


N22
X
X
X


N23
X
X
X


N24
X
X
X


N25
X
X
X


N26
X
X
X


N27
X
X

X
X


N28
X
X

X
X


N29
X
X

X
X


N30
X
X

X
X


N31
X
X

X
X


N32
X
X

X
X


N33
X
X

X
X


N34
X
X

X


N35
X
X

X


N36
X
X

X


N37
X
X

X


N38
X
X

X







(b)












N39
X
X

X



N40
X
X

X


N41
X
X

X


N42
X
X


X


N43
X
X


X


N44
X
X


X


N45
X
X


X


N46
X
X


X


N47
X
X


X


N48
X
X


X


N49
X
X


X


N50
X
X


N51
X
X


N52
X
X


N53
X
X


N54
X
X


N55
X
X


N56
X
X


N57
X
X


N58
X

X
X
X


N59
X

X
X
X


N60
X

X
X
X


N61
X

X
X
X


N62
X

X
X
X


N63
X

X
X
X


N64
X

X
X
X


N65
X

X
X


N66
X

X
X


N67
X

X
X


N68
X

X
X


N69
X

X
X


N70
X

X
X


N71
X

X
X


N72
X

X
X


N73
X

X

X


N74
X

X

X


N75
X

X

X


N76
X

X

X







(c)












N77
X

X

X


N78
X

X

X


N79
X

X

X


N80
X

X

X


N81
X

X


N82
X

X


N83
X

X


N84
X

X


N85
X

X


N86
X

X


N87
X

X


N88
X

X


N89
X


X
X


N90
X


X
X


N91
X


X
X


N92
X


X
X


N93
X


X
X


N94
X


X
X


N95
X


X
X


N96
X


X
X


N97
X


X


N98
X


X


N99
X


X


N100
X


X


N101
X


X


N102
X


X


N103
X


X


N104
X


X


N105
X



X


N106
X



X


N107
X



X


N108
X



X


N109
X



X


N110
X



X


N111
X



X


N112
X



X


N113
X


N114
X







(d)












N115
X






N116
X


N117
X


N118
X


N119
X


N120

X
X
X
X


N121

X
X
X
X


N122

X
X
X
X


N123

X
X
X
X


N124

X
X
X
X


N125

X
X
X
X


N126

X
X
X
X


N127

X
X
X


N128

X
X
X


N129

X
X
X


N130

X
X
X


N131

X
X
X


N132

X
X
X


N133

X
X
X


N134

X
X
X


N135

X
X

X


N136

X
X

X


N137

X
X

X


N138

X
X

X


N139

X
X

X


N140

X
X

X


N141

X
X

X


N142

X
X

X


N143

X
X


N144

X
X


N145

X
X


N146

X
X


N147

X
X


N148

X
X


N149

X
X


N150

X
X


N151

X

X
X


N152

X

X
X







(e)












N153

X

X
X


N154

X

X
X


N155

X

X
X


N156

X

X
X


N157

X

X
X


N158

X

X
X


N159

X

X


N160

X

X


N161

X

X


N162

X

X


N163

X

X


N164

X

X


N165

X

X


N166

X

X


N167

X


X


N168

X


X


N169

X


X


N170

X


X


N171

X


X


N172

X


X


N173

X


X


N174

X


X


N175

X


N176

X


N177

X


N178

X


N179

X


N180

X


N181

X


N182


X
X
X


N183


X
X
X


N184


X
X
X


N185


X
X
X


N186


X
X
X


N187


X
X
X


N188


X
X
X


N189


X
X
X


N190


X
X







(f)












N191


X
X



N192


X
X


N193


X
X


N194


X
X


N195


X
X


N196


X
X


N197


X
X


N198


X

X


N199


X

X


N200


X

X


N201


X

X


N202


X

X


N203


X

X


N204


X

X


N205


X

X


N206


X


N207


X


N208


X


N209


X


N210


X


N211


X


N212


X


N213



X
X


N214



X
X


N215



X
X


N216



X
X


N217



X


N218



X


N219



X


N220




X


N221




X


N222




X


N223













Network





Ecology ID

Dorea_longicatena


Subdoligranulum_variabile


Faecalibacterium_prausnitzii











(a)










N1
X




N2

X


N3


X


N4


N5
X
X


N6
X

X


N7
X


N8

X
X


N9

X


N10


X


N11


N12
X
X


N13
X

X


N14
X


N15

X
X


N16

X


N17


X


N18


N19
X
X
X


N20
X
X


N21
X

X


N22
X


N23

X
X


N24

X


N25


X


N26


N27
X
X


N28
X

X


N29
X


N30

X
X


N31

X


N32


X


N33


N34
X
X
X


N35
X
X


N36
X

X


N37
X


N38

X
X







(b)










N39

X



N40


X


N41


N42
X
X
X


N43
X
X


N44
X

X


N45
X


N46

X
X


N47

X


N48


X


N49


N50
X
X
X


N51
X
X


N52
X

X


N53
X


N54

X
X


N55

X


N56


X


N57


N58
X
X


N59
X

X


N60
X


N61

X
X


N62

X


N63


X


N64


N65
X
X
X


N66
X
X


N67
X

X


N68
X


N69

X
X


N70

X


N71


X


N72


N73
X
X
X


N74
X
X


N75
X

X


N76
X







(c)










N77

X
X


N78

X


N79


X


N80


N81
X
X
X


N82
X
X


N83
X

X


N84
X


N85

X
X


N86

X


N87


X


N88


N89
X
X
X


N90
X
X


N91
X

X


N92
X


N93

X
X


N94

X


N95


X


N96


N97
X
X
X


N98
X
X


N99
X

X


N100
X


N101

X
X


N102

X


N103


X


N104


N105
X
X
X


N106
X
X


N107
X

X


N108
X


N109

X
X


N110

X


N111


X


N112


N113
X
X
X


N114
X
X







(d)










N115
X

X


N116
X


N117

X
X


N118

X


N119


X


N120
X
X


N121
X

X


N122
X


N123

X
X


N124

X


N125


X


N126


N127
X
X
X


N128
X
X


N129
X

X


N130
X


N131

X
X


N132

X


N133


X


N134


N135
X
X
X


N136
X
X


N137
X

X


N138
X


N139

X
X


N140

X


N141


X


N142


N143
X
X
X


N144
X
X


N145
X

X


N146
X


N147

X
X


N148

X


N149


X


N150


N151
X
X
X


N152
X
X







(e)










N153
X

X


N154
X


N155

X
X


N156

X


N157


X


N158


N159
X
X
X


N160
X
X


N161
X

X


N162
X


N163

X
X


N164

X


N165


X


N166


N167
X
X
X


N168
X
X


N169
X

X


N170
X


N171

X
X


N172

X


N173


X


N174


N175
X
X
X


N176
X
X


N177
X

X


N178
X


N179

X
X


N180

X


N181


X


N182
X
X
X


N183
X
X


N184
X

X


N185
X


N186

X
X


N187

X


N188


X


N189


N190
X
X
X







(f)










N191
X
X



N192
X

X


N193
X


N194

X
X


N195

X


N196


X


N197


N198
X
X
X


N199
X
X


N200
X

X


N201
X


N202

X
X


N203

X


N204


X


N205


N206
X
X
X


N207
X
X


N208
X

X


N209
X


N210

X
X


N211

X


N212


X


N213
X
X


N214
X


N215

X


N216


N217
X
X


N218
X


N219

X


N220
X
X


N221
X


N222

X


N223
X
X









Exemplary Functional Network Ecologies that are found only in healthy individuals, that contain only Keystone OTUs, and that have OTUs with the functional capacity to form spores.









TABLE 12







(a)












Core







Network ID

Faecalibacterium_prausnitzii


Ruminococcus_obeum


Alistipes_putredinis


Alistipes_shahii


Ruminococcus_torques






Core 1
100
100
15
15
99


Core 2
100
100
100
100
14


Core 3
100
100
100
100
8


Core 4
100
100
100
100
100


Core 5
100
100
100
100
100


Core 6
100
100
100
100
100














Core






Network ID

Coprococcus_catus


Dorea_longicatena


Eubacterium_rectale


Bifidobacterium_adaolescentis






Core 1
99
100
100
9


Core 2
100
100
100
100


Core 3
5
100
100
100


Core 4
11
11
14


Core 5
97
20
17


Core 6
100
11
11
2
















Core







Network ID

Coprococcus_comes


Roseburia_inulinivorans


Clostridium_leptum


Cordonibacter_pamelaeae








Core 1
13
99
13



Core 2
1
14
16



Core 3
100
8
8



Core 4
94
10
98
98



Core 5
7
13
91
99



Core 6
82
100
10
19











(b)













Core


Eubac-


Eubac-



Bacte-


Eubac-



Network ID

Dorea_formicigenerans


terium_eligens


terium_hallii


Subdoligranulum_variabile


roides_ovatus


terium_ventrisum






Core1
13
12
11
13
11
12


Core2
16
15
14
16
10
14


Core3
8
8
8
8
8
8


Core4
13
11
11
11
11
10


Core5
19
20
19
12
17
13


Core6
11
9
10
9
9
9
















Core


Bacte-


Bacte-





Network ID

Anaerotruncus_colihominis


roides_vulgatus


roides_xylanisolvens


Roseburia_intestinalis








Core1
9
9
9
11



Core2
10
11
19
9



Core3
8
7
8
8



Core4
10
15
7
6



Core5
16

7
7



Core6
10
10
5
5











(c)













Core

Bacte-



Paraba-



Bacte-




Network ID

roides_uniformis


Holdemania_filiformis


cteroides_merdae


Collinsella_aerofaciens


roides_dorei


Odoribacter_splanchnicus






Core 1
7
7
6
7
8


Core 2
7
3
8
6
7


Core 3
7
7
7
7
7
7


Core 4
5
6
6
5
3
7


Core 5
6
10



4


Core 6
4
4
3
4
3
6
















Core


Rumino-


Bacte-


Bacte-


Rumino-


Bacte-



Network ID

Bilophilia_wadsworthia


coccus_lactaris


roides_finegoldii


roides_thetaiotaomicron


coccus_gnavus


roides_caccae






Core 1

3


Core 2


Core 3
6
7
6
6
4
6


Core 4
5
7
5
4
5
1


Core 5
4


Core 6
4
3
6
6
3
4


















Core

Bacte-


Akker-


Bifido-


Eubac-


Rumino-


Bacte-




Network ID

roides_stercoris


mansia_muciniphila


bacterium_longum


terium_siraeum


coccus_bromii


roides_cellulosilyticus








Core 1



Core 2



Core 3
4
5
4
2
2



Core 4
1



Core 5



Core 6
3
3
3
3
3
3










Exemplary Network Ecologies Classes (a.k.a Core) defined from their occurrence in only healthy individuals, the size of the network, and the frequency of occurrence of the networks in individual subjects at or above the 90th percentile for the latter two metrics. OTUs represent diverse taxonomic families (see Table 1). Numbers in each cell represent the percentage of individual observed Network Ecologies within a given Network Class that contain the given OTU. (a) OTUs that are observed in at least 80% of a core's networks are primary signature OTUs of a given core. (b-c) OTUs observed in 11%-79% and ≤10% are secondary and tertiary signature OTUs respectively of a given Network Class. Primary signature OTUs are of greater significance than secondary signature OTUs which are of greater significance than tertiary keystone OTUs.









TABLE 13







Network Ecologies Classes (a.k.a. Core) encompass specific phylogenetic signature families


based on inclusion of OTUs that are observed in at least 80% of a Class' networks.














Core









Network ID
Ruminococcaceae**
Rikenellaceae
Lachnospiraceae**
Eubacteriaceae*
bifidobacteriaceae
Clostridiaceae*
Coriobacteriaceae





Core1
X

X
X
X




Core2
X
X
X
X
X


Core3
X
X
X
X
X


Core4
X
X
X


X
X


Core5
X
X
X


X
X


Core6
X
X
X























TABLE 14A








Percent
Percent of






Num. of
Num. of
of OTUs
Keystone


Network
Clades in
OTUs in
that are
OTUs in


Ecology
Network
Network
Spore
Network
Exemplary Network
Exemplary Network
Exemplary Keystone


ID
Ecology
Ecology
Formers
Ecology
clades
OTUs
OTUs






















N262.S
10
15
80
93.3
(clade_172 or

Alistipes putredinis,


Alistipes putredinis,








clade_172i), (clade_262

Bifidobacterium dentium,


Bifidobacterium longum,








or clade_262i),

Bifidobacterium longum,


Coprococcus comes,








(clade_360 or clade_360c

Coprococcus comes, Dorea


Dorea longicatena,








or clade_360g or

longicatena, Eubacterium


Eubacterium eligens,








clade_360h or

eligens, Eubacterium hallii,


Eubacterium hallii,








clade_360i), clade_396,

Eubacterium rectale,


Eubacterium rectale,








(clade_444 or

Faecalibacterium


Faecalibacterium








clade_444i), (clade_478

prausnitzii, Holdemania


prausnitzii, Holdemania








or clade_478i),

filiformis,


filiformis,








clade_485, clade_494,

Pseudoflavonifractor


Pseudoflavonifractor








clade_500, (clade_522 or

capillosus, Roseburia


capillosus, Roseburia








clade_522i)

intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N290.S
10
14
92.9
92.9
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus catus,


Coprococcus catus,








or clade_360c or

Coprococcus comes,


Coprococcus comes,








clade_360g or clade_360h

Coprococcus eutactus,


Dorea longicatena,








or clade_360i),

Dorea longicatena,


Eubacterium eligens,








clade_393, clade_396,

Eubacterium eligens,


Eubacterium hallii,








(clade_444 or

Eubacterium hallii,


Eubacterium rectale,








clade_444i), (clade_478

Eubacterium rectale,


Faecalibacterium








or clade_478i),

Faecalibacterium


prausnitzii,








clade_494, clade_500,

prausnitzii,


Pseudoflavonifractor








(clade_522 or

Pseudoflavonifractor


capillosus, Roseburia








clade_522i), clade_543

capillosus, Roseburia


intestinalis, Roseburia










intestinalis, Roseburia


inulinivorans,










inulinivorans,


Ruminococcus torques,










Ruminococcus torques,


Subdoligranulum










Subdoligranulum variabile


variabile



N284.S
9
13
92.3
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus catus,


Coprococcus catus,








or clade_360c or

Coprococcus comes, Dorea


Coprococcus comes,








clade_360g or clade_360h

longicatena, Eubacterium


Dorea longicatena,








or clade_360i),

hallii, Eubacterium rectale,


Eubacterium hallii,








clade_393, clade_396,

Eubacterium siraeum,


Eubacterium rectale,








(clade_444 or

Eubacterium ventriosum,


Eubacterium siraeum,








clade_444i), (clade_478

Faecalibacterium


Eubacterium ventriosum,








or clade_478i),

prausnitzii, Roseburia


Faecalibacterium








clade_500, clade_519,

intestinalis, Roseburia


prausnitzii, Roseburia








clade_538

inulinivorans,


intestinalis, Roseburia










Ruminococcus torques,


inulinivorans,










Subdoligranulum variabile


Ruminococcus torques,











Subdoligranulum











variabile



N271.S
9
13
84.6
92.3
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Eubacterium rectale,


Eubacterium hallii,








or clade_360i),

Faecalibacterium


Eubacterium rectale,








clade_396, (clade_444 or

prausnitzii, Holdemania


Faecalibacterium








clade_444i), (clade_478

filiformis,


prausnitzii, Holdemania








or clade_478i),

Pseudoflavonifractor


filiformis,








clade_485, clade_494,

capillosus, Roseburia


Pseudoflavonifractor








clade_500, (clade_98 or

intestinalis, Roseburia


capillosus, Roseburia








clade_98i)

inulinivorans,


intestinalis, Roseburia










Ruminococcus torques,


inulinivorans,










Streptococcus salivarius,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N282.S
9
13
84.6
92.3
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Eubacterium rectale,


Eubacterium hallii,








or clade_360i),

Faecalibacterium


Eubacterium rectale,








clade_396, clade_401,

prausnitzii, Holdemania


Faecalibacterium








(clade_444 or

filiformis, Lactococcus


prausnitzii, Holdemania








clade_444i), (clade_478

lactis, Pseudoflavonifractor


filiformis,








or clade_478i),

capillosus, Roseburia


Pseudoflavonifractor








clade_485, clade_494,

intestinalis, Roseburia


capillosus, Roseburia








clade_500

inulinivorans,


intestinalis, Roseburia










Ruminococcus torques,


inulinivorans,










Subdoligranulum variabile


Ruminococcus torques,











Subdoligranulum











variabile



N288.S
8
12
91.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes,


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Eubacterium rectale,


Eubacterium hallii,








or clade_360i),

Faecalibacterium


Eubacterium rectale,








clade_396, (clade_444 or

prausnitzii, Holdemania


Faecalibacterium








clade_444i), (clade_478

filiformis,


prausnitzii, Holdemania








or clade_478i),

Pseudoflavonifractor


filiformis,








clade_485, clade_494,

capillosus, Roseburia


Pseudoflavonifractor








clade_500

intestinalis, Roseburia


capillosus, Roseburia










inulinivorans,


intestinalis, Roseburia










Ruminococcus torques,


inulinivorans,










Subdoligranulum variabile


Ruminococcus torques,











Subdoligranulum











variabile



N302.S
8
12
91.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus catus,


Coprococcus catus,








or clade_360c or

Coprococcus comes, Dorea


Coprococcus comes,








clade_360g or clade_360h

longicatena, Eubacterium


Dorea longicatena,








or clade_360i),

hallii, Eubacterium rectale,


Eubacterium hallii,








clade_393, clade_396,

Eubacterium ventriosum,


Eubacterium rectale,








(clade_444 or

Faecalibacterium


Eubacterium ventriosum,








clade_444i), (clade_478

prausnitzii, Roseburia


Faecalibacterium








or clade_478i),

intestinalis, Roseburia


prausnitzii, Roseburia








clade_500, clade_519

inulinivorans,


intestinalis, Roseburia










Ruminococcus torques,


inulinivorans,










Subdoligranulum variabile


Ruminococcus torques,











Subdoligranulum











variabile



N279.S
9
12
83.3
100
(clade_172 or

Alistipes putredinis,


Alistipes putredinis,








clade_172i), (clade_262

Bifidobacterium longum,


Bifidobacterium longum,








or clade_262i),

Coprococcus comes, Dorea


Coprococcus comes,








(clade_360 or clade_360c

longicatena, Eubacterium


Dorea longicatena,








or clade_360g or

hallii, Eubacterium rectale,


Eubacterium hallii,








clade_360h or

Faecalibacterium


Eubacterium rectale,








clade_360i), clade_396,

prausnitzii, Holdemania


Faecalibacterium








(clade_444 or

filiformis,


prausnitzii, Holdemania








clade_444i), (clade_478

Pseudoflavonifractor


filiformis,








or clade_478i),

capillosus, Roseburia


Pseudoflavonifractor








clade_485, clade_494,

inulinivorans,


capillosus, Roseburia








clade_500

Ruminococcus torques,


inulinivorans,










Subdoligranulum variabile


Ruminococcus torques,











Subdoligranulum











variabile



N310.S
7
11
90.9
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Eubacterium rectale,


Eubacterium hallii,








or clade_360i),

Faecalibacterium


Eubacterium rectale,








clade_396, (clade_444 or

prausnitzii,


Faecalibacterium








clade_444i), (clade_478

Pseudoflavonifractor


prausnitzii,








or clade_478i),

capillosus, Roseburia


Pseudoflavonifractor








clade_494, clade_500

intestinalis, Roseburia


capillosus, Roseburia










inulinivorans,


intestinalis, Roseburia










Ruminococcus torques,


inulinivorans,










Subdoligranulum variabile


Ruminococcus torques,











Subdoligranulum











variabile



N323.S
7
11
90.9
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus catus,


Coprococcus catus,








or clade_360c or

Coprococcus comes, Dorea


Coprococcus comes,








clade_360g or clade_360h

longicatena, Eubacterium


Dorea longicatena,








or clade_360i),

hallii, Eubacterium rectale,


Eubacterium hallii,








clade_393, clade_396,

Faecalibacterium


Eubacterium rectale,








(clade_444 or

prausnitzii, Roseburia


Faecalibacterium








clade_444i), (clade_478

intestinalis, Roseburia


prausnitzii, Roseburia








or clade_478i), clade_500

inulinivorans,


intestinalis, Roseburia










Ruminococcus torques,


inulinivorans,










Subdoligranulum variabile


Ruminococcus torques,











Subdoligranulum











variabile



N331.S
7
11
90.9
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Eubacterium rectale,


Eubacterium hallii,








or clade_360i),

Eubacterium siraeum,


Eubacterium rectale,








clade_396, (clade_444 or

Faecalibacterium


Eubacterium siraeum,








clade_444i), (clade_478

prausnitzii, Roseburia


Faecalibacterium








or clade_478i),

intestinalis, Roseburia


prausnitzii, Roseburia








clade_500, clade_538

inulinivorans,


intestinalis, Roseburia










Ruminococcus torques,


inulinivorans,










Subdoligranulum variabile


Ruminococcus torques,











Subdoligranulum











variabile



N332.S
8
11
81.8
90.9
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Holdemania


prausnitzii, Holdemania








clade_485, clade_494,

filiformis,


filiformis,








clade_500, (clade_98 or

Pseudoflavonifractor


Pseudoflavonifractor








clade_98i)

capillosus, Roseburia


capillosus, Roseburia










intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Streptococcus


Subdoligranulum










thermophilus,


variabile










Subdoligranulum variabile



N301.S
7
10
90
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Eubacterium rectale,


Eubacterium hallii,








or clade_360i),

Faecalibacterium


Eubacterium rectale,








clade_396, (clade_444 or

prausnitzii, Holdemania


Faecalibacterium








clade_444i), (clade_478

filiformis, Roseburia


prausnitzii, Holdemania








or clade_478i),

intestinalis, Roseburia


filiformis, Roseburia








clade_485, clade_500

inulinivorans,


intestinalis, Roseburia










Ruminococcus torques


inulinivorans,











Ruminococcus torques



N312.S
7
10
90
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

eligens, Eubacterium hallii,


Eubacterium eligens,








or clade_360i),

Eubacterium rectale,


Eubacterium hallii,








clade_396, (clade_444 or

Faecalibacterium


Eubacterium rectale,








clade_444i), (clade_478

prausnitzii, Roseburia


Faecalibacterium








or clade_478i),

intestinalis, Roseburia


prausnitzii, Roseburia








clade_500, (clade_ 522 or

inulinivorans,


intestinalis, Roseburia








clade_522i)

Ruminococcus torques


inulinivorans,











Ruminococcus torques



N339.S
7
10
80
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Coprococcus comes,


Coprococcus comes,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_494, clade_500,

prausnitzii, Gordonibacter


prausnitzii, Gordonibacter








(clade_566 or clade_566f)

pamelaeae,


pamelaeae,










Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Roseburia


capillosus, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N325.S
8
10
90
90
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Anaerotruncus


Coprococcus comes,








or clade_360c or

colihominis, Coprococcus


Dorea longicatena,








clade_360g or clade_360h

comes, Dorea longicatena,


Eubacterium hallii,








or clade_360i),

Eubacterium hallii,


Eubacterium rectale,








clade_396, (clade_444 or

Eubacterium rectale,


Faecalibacterium








clade_444i), (clade_478

Faecalibacterium


prausnitzii,








or clade_478i),

prausnitzii,


Pseudoflavonifractor








clade_494, clade_500,

Pseudoflavonifractor


capillosus, Ruminococcus








(clade_516 or clade_516c

capillosus, Ruminococcus


torques, Subdoligranulum








or clade_516g or

torques, Subdoligranulum


variabile








clade_516h)

variabile



N340.S
7
10
90
90
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_354

Clostridium bartlettii,


Eubacterium hallii,








or clade_354e),

Eubacterium hallii,


Eubacterium rectale,








clade_396, (clade_444 or

Eubacterium rectale,


Faecalibacterium








clade_444i), (clade_478

Faecalibacterium


prausnitzii,








or clade_478i),

prausnitzii,


Pseudoflavonifractor








clade_494, clade_500

Pseudoflavonifractor


capillosus, Roseburia










capillosus, Roseburia


intestinalis, Roseburia










intestinalis, Roseburia


inulinivorans,










inulinivorans,


Ruminococcus torques,










Ruminococcus torques,


Subdoligranulum










Subdoligranulum variabile


variabile



N341.S
7
10
90
90
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Anaerotruncus


Eubacterium hallii,








(clade_444 or

colihominis, Eubacterium


Eubacterium rectale,








clade_444i), (clade_478

hallii, Eubacterium rectale,


Faecalibacterium








or clade_478i),

Faecalibacterium


prausnitzii,








clade_494, clade_500,

prausnitzii,


Pseudoflavonifractor








(clade_516 or clade_516c

Pseudoflavonifractor


capillosus, Roseburia








or clade_516g or

capillosus, Roseburia


intestinalis, Roseburia








clade_516h)

intestinalis, Roseburia


inulinivorans,










inulinivorans,


Ruminococcus torques,










Ruminococcus torques,


Subdoligranulum










Subdoligranulum variabile


variabile



N346.S
7
10
90
90
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Holdemania


prausnitzii, Holdemania








clade_485, clade_500,

filiformis, Roseburia


filiformis, Roseburia








(clade_516 or clade_516c

intestinalis, Roseburia


intestinalis, Roseburia








or clade_516g or

inulinivorans,


inulinivorans,








clade_516h)

Ruminococcus albus,


Ruminococcus torques,










Ruminococcus torques,


Subdoligranulum










Subdoligranulum variabile


variabile



N338.S
7
10
80
90
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium eligens,


Eubacterium eligens,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_500, (clade_522 or

prausnitzii, Roseburia


prausnitzii, Roseburia








clade_522i), (clade_98 or

intestinalis, Roseburia


intestinalis, Roseburia








clade_98i)

inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Streptococcus australis,


Subdoligranulum










Subdoligranulum variabile


variabile



N336.S
6
9
88.9
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Eubacterium rectale,


Eubacterium hallii,








or clade_360i),

Faecalibacterium


Eubacterium rectale,








clade_396, (clade_444 or

prausnitzii, Roseburia


Faecalibacterium








clade_444i), (clade_478

intestinalis, Roseburia


prausnitzii, Roseburia








or clade_478i), clade_500

inulinivorans,


intestinalis, Roseburia










Ruminococcus torques


inulinivorans,











Ruminococcus torques



N345.S
7
9
88.9
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i)

prausnitzii, Holdemania


prausnitzii, Holdemania








clade_485, clade_494,

filiformis,


filiformis,








clade_500

Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Roseburia


capillosus, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N355.S
6
9
88.9
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Eubacterium ventriosum,


Eubacterium ventriosum,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_500, clade_519

prausnitzii, Roseburia


prausnitzii, Roseburia










intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N356.S
6
9
88.9
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Coprococcus comes,


Coprococcus comes,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_500, clade_537

prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus bromii,


Ruminococcus bromii,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N343.S
7
9
77.8
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_286,

Coprococcus comes, Dorea


Coprococcus comes,








(clade_360 or clade_360c

longicatena, Eubacterium


Dorea longicatena,








or clade_360g or

hallii, Eubacterium rectale,


Eubacterium hallii,








clade_360h or

Faecalibacterium


Eubacterium rectale,








clade_360i), clade_396,

prausnitzii,


Faecalibacterium








(clade_444 or

Parabacteroides merdae,


prausnitzii,








clade_444i), (clade_478

Roseburia inulinivorans,


Parabacteroides merdae,








or clade_478i), clade_500

Ruminococcus torques


Roseburia inulinivorans,











Ruminococcus torques



N329.S
6
9
88.9
88.9
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Collinsella aerofaciens,


Eubacterium hallii,








(clade_444 or

Eubacterium hallii,


Eubacterium rectale,








clade_444i), (clade_478

Eubacterium rectale,


Faecalibacterium








or clade_478i),

Faecalibacterium


prausnitzii, Roseburia








clade_500, (clade_553 or

prausnitzii, Roseburia


intestinalis, Roseburia








clade_553i)

intestinalis, Roseburia


inulinivorans,










inulinivorans,


Ruminococcus torques,










Ruminococcus torques,


Subdoligranulum










Subdoligranulum variabile


variabile



N361.S
6
9
88.9
88.9
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Roseburia


prausnitzii, Roseburia








clade_500, (clade_516 or

intestinalis, Roseburia


intestinalis, Roseburia








clade_516c or clade_516g

inulinivorans,


inulinivorans,








or clade_516h)

Ruminococcus albus,


Ruminococcus torques,










Ruminococcus torques,


Subdoligranulum










Subdoligranulum variabile


variabile



N353.S
7
9
77.8
88.9
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Dialister invisus,


Eubacterium hallii,








(clade_444 or

Eubacterium hallii,


Eubacterium rectale,








clade_444i), (clade_478

Eubacterium rectale,


Faecalibacterium








or clade_478i),

Faecalibacterium


prausnitzii,








clade_494, clade_500,

prausnitzii,


Pseudoflavonifractor








clade_506

Pseudoflavonifractor


capillosus, Roseburia










capillosus, Roseburia


inulinivorans,










inulinivorans,


Ruminococcus torques,










Ruminococcus torques,


Subdoligranulum










Subdoligranulum variabile


variabile



N381.S
7
9
100
77.8
(clade_262 or

Anaerotruncus


Clostridium leptum,








clade_262i), (clade_444

colihominis, Clostridium


Eubacterium eligens,








or clade_444i),

leptum, Clostridium


Faecalibacterium








(clade_478 or

methylpentosum,


prausnitzii,








clade_478i), clade_494,

Eubacterium eligens,


Pseudoflavonifractor








(clade_516 or clade_516c

Faecalibacterium


capillosus, Roseburia








or clade_516g or

prausnitzii,


intestinalis, Roseburia








clade_516h), (clade_522

Pseudoflavonifractor


inulinivorans,








or clade_522i), clade_537

capillosus, Roseburia


Ruminococcus torques










intestinalis, Roseburia










inulinivorans,










Ruminococcus torques



N344.S
6
8
87.5
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Eubacterium rectale,


Eubacterium hallii,








or clade_360i),

Faecalibacterium


Eubacterium rectale,








clade_396, (clade_444 or

prausnitzii, Roseburia


Faecalibacterium








clade_444i), (clade_478

inulinivorans,


prausnitzii, Roseburia








or clade_478i), clade_500

Ruminococcus torques


inulinivorans,











Ruminococcus torques



N352.S
5
8
87.5
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), clade_500

prausnitzii, Roseburia


prausnitzii, Roseburia










intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N357.S
6
8
87.5
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Holdemania


prausnitzii, Holdemania








clade_485, clade_500

filiformis, Roseburia


filiformis, Roseburia










intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N358.S
5
8
87.5
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Coprococcus comes,


Coprococcus comes,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i), clade_500

Faecalibacterium


Faecalibacterium










prausnitzii, Roseburia


prausnitzii, Roseburia










intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N369.S
6
8
87.5
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium eligens,


Eubacterium eligens,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_500, (clade_522 or

prausnitzii, Roseburia


prausnitzii, Roseburia








clade_522i)

intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N372.S
6
8
87.5
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii,


prausnitzii,








clade_494, clade_500

Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Roseburia


capillosus, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N375.S
6
8
87.5
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Clostridium leptum,


Clostridium leptum,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_500, clade_537

prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N380.S
7
8
87.5
100
(clade_262 or

Bacteroides ovatus, Dorea


Bacteroides ovatus, Dorea








clade_262i), (clade_360

longicatena, Eubacterium


longicatena, Eubacterium








or clade_360c or

eligens, Eubacterium


eligens, Eubacterium








clade_360g or clade_360h

rectale, Eubacterium


rectale, Eubacterium








or clade_360i), (clade_38

ventriosum,


ventriosum,








or clade_38e or

Faecalibacterium


Faecalibacterium








clade_38i), (clade_444 or

prausnitzii, Roseburia


prausnitzii, Roseburia








clade_444i), (clade_478

intestinalis, Ruminococcus


intestinalis,








or clade_478i),

torques


Ruminococcus torques








clade_519, (clade_522 or







clade_522i)


N374.S
6
8
75
100
(clade_172 or

Alistipes putredinis,


Alistipes putredinis,








clade_172i), (clade_262

Bifidobacterium longum,


Bifidobacterium longum,








or clade_262i),

Coprococcus comes,


Coprococcus comes,








clade_396, (clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i), clade_500

Faecalibacterium


Faecalibacterium










prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N377.S
6
8
75
100
clade_170, (clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Bacteroides caccae,


Bacteroides caccae,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i), clade_500

Faecalibacterium


Faecalibacterium










prausnitzii, Roseburia


prausnitzii, Roseburia










intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N368.S
6
8
75
87.5
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Roseburia


prausnitzii, Roseburia








clade_500, (clade_98 or

intestinalis, Roseburia


intestinalis, Roseburia








clade_98i)

inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques










Streptococcus salivarius



N370.S
5
7
85.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Coprococcus comes,


Coprococcus comes,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i), clade_500

Faecalibacterium


Faecalibacterium










prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N373.S
6
7
85.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Holdemania


prausnitzii, Holdemania








clade_485, clade_500

filiformis, Roseburia


filiformis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N376.S
5
7
85.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), clade_500

prausnitzii, Roseburia


prausnitzii, Roseburia










intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N389.S
6
7
85.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_393,

Coprococcus catus,


Coprococcus catus,








clade_396, (clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i), clade_500

Faecalibacterium


Faecalibacterium










prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N394.S
5
7
85.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_ 444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), clade_500

prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N431.S
6
7
85.7
100
(clade_262 or

Bacteroides ovatus, Dorea


Bacteroides ovatus, Dorea








clade_262i), (clade_360

longicatena, Eubacterium


longicatena, Eubacterium








or clade_360c or

rectale, Eubacterium


rectale, Eubacterium








clade_360g or clade_360h

ventriosum,


ventriosum,








or clade_360i), (clade_38

Faecalibacterium


Faecalibacterium








or clade_38e or

prausnitzii, Roseburia


prausnitzii, Roseburia








clade_38i), (clade_444 or

intestinalis, Ruminococcus


intestinalis,








clade_444i), (clade_478

torques


Ruminococcus torques








or clade_478i), clade_519


N434.S
6
7
85.7
100
(clade_262 or

Bacteroides ovatus, Dorea


Bacteroides ovatus, Dorea








clade_262i), (clade_360

longicatena, Eubacterium


longicatena, Eubacterium








or clade_360c or

eligens, Eubacterium


eligens, Eubacterium








clade_360g or clade_360h

rectale, Faecalibacterium


rectale, Faecalibacterium








or clade_360i), (clade_38

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_38e or

intestinalis, Ruminococcus


intestinalis,








clade_38i), (clade_444 or

torques


Ruminococcus torques








clade_444i), (clade_478







or clade_478i),







(clade_522 or clade_522i)


N390.S
6
7
71.4
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Bilophila wadsworthia,


Bilophila wadsworthia,








(clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_500, clade_521

prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N397.S
6
7
71.4
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_38 or

Bacteroides ovatus,


Bacteroides ovatus,








clade_38e or clade_38i),

Eubacterium hallii,


Eubacterium hallii,








clade_396, (clade_444 or

Eubacterium_rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), clade_500

prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N387.S
6
7
85.7
85.7
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Collinsella aerofaciens,


Eubacterium hallii,








(clade_444 or

Eubacterium hallii,


Eubacterium rectale,








clade_444i), (clade_478

Eubacterium rectale,


Faecalibacterium








or clade_478i),

Faecalibacterium


prausnitzii, Roseburia








clade_500, (clade_553 or

prausnitzii, Roseburia


inulinivorans,








clade_553i)

inulinivorans,


Ruminococcus torques










Ruminococcus torques



N440.S
7
7
85.7
85.7
(clade_262 or

Clostridium leptum,


Clostridium leptum,








clade_262i), (clade_408

Clostridium symbiosum,


Desulfovibrio








or clade_408b or

Desulfovibrio


desulfuricans,








clade_408d or clade_408f

desulfuricans, Eubacterium


Eubacterium rectale,








or clade_408g or

rectale, Faecalibacterium


Faecalibacterium








clade_408h), (clade_444

prausnitzii,


prausnitzii,








or clade_444i),

Pseudoflavonifractor


Pseudoflavonifractor








clade_445, (clade_478 or

capillosus, Ruminococcus


capillosus, Ruminococcus








clade_478i), clade_494,

torques


torques








clade_537


N396.S
6
7
71.4
85.7
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Bacteroides fragilis,


Eubacterium hallii,








(clade_444 or

Eubacterium hallii,


Eubacterium rectale,








clade_444i), (clade_478

Eubacterium rectale,


Faecalibacterium








or clade_478i),

Faecalibacterium


prausnitzii, Roseburia








clade_500, (clade_65 or

prausnitzii, Roseburia


inulinivorans,








clade_65e)

inulinivorans,


Ruminococcus torques










Ruminococcus torques



N399.S
6
6
100
100
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Eubacterium hallii,


Eubacterium hallii,








or clade_360c or

Eubacterium rectale,


Eubacterium rectale,








clade_360g or clade_360h

Faecalibacterium


Faecalibacterium








or clade_360i),

prausnitzii,


prausnitzii,








clade_396, (clade_444 or

Pseudoflavonifractor


Pseudoflavonifractor








clade_444i), (clade_478

capillosus, Ruminococcus


capillosus, Ruminococcus








or clade_478i), clade_494

torques


torques



N403.S
4
6
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

rectale, Faecalibacterium


Eubacterium rectale,








clade_360g or clade_360h

prausnitzii, Roseburia


Faecalibacterium








or clade_360i),

intestinalis, Ruminococcus


prausnitzii, Roseburia








(clade_444 or

torques


intestinalis,








clade_444i), (clade_478


Ruminococcus torques








or clade_478i)


N414.S
5
6
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

eligens, Eubacterium


Eubacterium eligens,








clade_360g or clade_360h

rectale, Faecalibacterium


Eubacterium rectale,








or clade_360i),

prausnitzii, Ruminococcus


Faecalibacterium








(clade_444 or

torques


prausnitzii,








clade_444i), (clade_478


Ruminococcus torques








or clade_478i),







(clade_522 or clade_522i)


N430.S
6
6
100
100
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Eubacterium eligens,


Eubacterium eligens,








or clade_360c or

Eubacterium rectale,


Eubacterium rectale,








clade_360g or clade_360h

Eubacterium ventriosum,


Eubacterium ventriosum,








or clade_360i),

Faecalibacterium


Faecalibacterium








(clade_444 or

prausnitzii, Ruminococcus


prausnitzii,








clade_444i), (clade_478

torques


Ruminococcus torques








or clade_478i),







clade_519, (clade_522 or







clade_522i)


N432.S
4
6
100
100
(clade_262 or

Clostridium leptum,


Clostridium leptum,








clade_262i), (clade_444

Coprococcus comes,


Coprococcus comes,








or clade_444i),

Eubacterium rectale,


Eubacterium rectale,








(clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i), clade_537

prausnitzii, Roseburia


prausnitzii, Roseburia










intestinalis, Ruminococcus


intestinalis,










torques


Ruminococcus torques



N436.S
4
6
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

hallii, Eubacterium rectale,


Eubacterium hallii,








clade_360g or clade_360h

Roseburia inulinivorans,


Eubacterium rectale,








or clade_360i),

Ruminococcus torques


Roseburia inulinivorans,








clade_396, (clade_444 or


Ruminococcus torques








clade_444i)


N437.S
3
6
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i),

Faecalibacterium


Faecalibacterium








(clade_478 or clade_478i)

prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques,


Ruminococcus torques,










Subdoligranulum variabile


Subdoligranulum











variabile



N457.S
5
6
100
100
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Eubacterium eligens,


Eubacterium eligens,








or clade_360c or

Eubacterium rectale,


Eubacterium rectale,








clade_360g or clade_360h

Faecalibacterium


Faecalibacterium








or clade_360i),

prausnitzii, Roseburia


prausnitzii, Roseburia








(clade_444 or

intestinalis, Ruminococcus


intestinalis,








clade_444i), (clade_478

torques


Ruminococcus torques








or clade_478i),







(clade_522 or clade_522i)


N545
5
6
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

hallii, Eubacterium


Eubacterium hallii,








clade_360g or clade_360h

siraeum, Roseburia


Eubacterium siraeum,








or clade_360i),

intestinalis, Roseburia


Roseburia intestinalis,








clade_396, (clade_444 or

inulinivorans


Roseburia inulinivorans








clade_444i), clade_538


N386.S
5
6
83.3
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), clade_500

prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N402.S
5
6
83.3
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), clade_286,

longicatena, Eubacterium


Dorea longicatena,








(clade_360 or clade_360c

rectale, Faecalibacterium


Eubacterium rectale,








or clade_360g or

prausnitzii,


Faecalibacterium








clade_360h or

Parabacteroides merdae,


prausnitzii,








clade_360i), (clade_444

Ruminococcus torques


Parabacteroides merdae,








or clade_444i),


Ruminococcus torques








(clade_478 or clade_478i)


N405.S
4
6
83.3
100
(clade_262 or

Desulfovibrio


Desulfovibrio








clade_262i), (clade_444

desulfuricans, Eubacterium


desulfuricans,








or clade_444i),

rectale, Faecalibacterium


Eubacterium rectale,








clade_445, (clade_478 or

prausnitzii, Roseburia


Faecalibacterium








clade_478i)

intestinalis, Ruminococcus


prausnitzii, Roseburia










torques, Subdoligranulum


intestinalis,










variabile


Ruminococcus torques,











Subdoligranulum











variabile



N415.S
5
6
83.3
100
clade_170, (clade_262 or

Bacteroides caccae,


Bacteroides caccae,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

rectale, Faecalibacterium


Eubacterium rectale,








or clade_360i),

prausnitzii, Ruminococcus


Faecalibacterium








(clade_444 or

torques


prausnitzii,








clade_444i), (clade_478


Ruminococcus torques








or clade_478i)


N421.S
6
6
83.3
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Roseburia


Eubacterium hallii,








or clade_360i),

inulinivorans,


Roseburia inulinivorans,








clade_396, (clade_444 or

Subdoligranulum variabile


Subdoligranulum








clade_444i), (clade_478


variabile








or clade_478i), clade_500


N422.S
5
6
83.3
100
(clade_262 or

Alistipes putredinis, Dorea


Alistipes putredinis,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

rectale,


Eubacterium rectale,








clade_360g or clade_360h

Pseudoflavonifractor


Pseudoflavonifractor








or clade_360i),

capillosus, Roseburia


capillosus, Roseburia








(clade_444 or

intestinalis, Ruminococcus


intestinalis,








clade_444i), clade_494,

torques


Ruminococcus torques








clade_500


N423.S
5
6
83.3
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i),

Eubacterium siraeum,


Eubacterium siraeum,








(clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i), clade_500,

prausnitzii, Ruminococcus


prausnitzii,








clade_538

torques, Subdoligranulum


Ruminococcus torques,










variabile


Subdoligranulum











variabile



N458.S
6
6
83.3
100
(clade_262 or

Bacteroides ovatus, Dorea


Bacteroides ovatus, Dorea








clade_262i), (clade_360

longicatena, Eubacterium


longicatena, Eubacterium








or clade_360c or

eligens, Eubacterium


eligens, Eubacterium








clade_360g or clade_360h

rectale, Faecalibacterium


rectale, Faecalibacterium








or clade_360i), (clade_38

prausnitzii, Ruminococcus


prausnitzii,








or clade_38e or

torques


Ruminococcus torques








clade_38i), (clade_444 or







clade_444i), (clade_478







or clade_478i),







(clade_522 or clade_522i)


N459.S
5
6
83.3
100
(clade_262 or

Bacteroides ovatus, Dorea


Bacteroides ovatus, Dorea








clade_262i), (clade_360

longicatena, Eubacterium


longicatena, Eubacterium








or clade_360c or

rectale, Faecalibacterium


rectale, Faecalibacterium








clade_360g or clade_360h

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_360i), (clade_38

intestinalis, Ruminococcus


intestinalis,








or clade_38e or

torques


Ruminococcus torques








clade_38i), (clade_444 or







clade_444i), (clade_478







or clade_478i)


N493.S
6
6
100
83.3
(clade_262 or

Clostridium bartlettii,


Eubacterium hallii,








clade_262i), (clade_354

Eubacterium hallii,


Eubacterium rectale,








or clade_354e),

Eubacterium rectale,


Faecalibacterium








clade_396, (clade_444 or

Faecalibacterium


prausnitzii,








clade_444i), (clade_478

prausnitzii,


Pseudoflavonifractor








or clade_478i), clade_494

Pseudoflavonifractor


capillosus, Ruminococcus










capillosus, Ruminococcus


torques










torques



N416.S
6
6
83.3
83.3
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Anaerotruncus


Eubacterium hallii,








(clade_444 or

colihominis, Eubacterium


Eubacterium rectale,








clade_444i), clade_494,

hallii, Eubacterium rectale,


Pseudoflavonifractor








clade_500, (clade_516 or

Pseudoflavonifractor


capillosus, Ruminococcus








clade_516c or clade_516g

capillosus, Ruminococcus


torques








or clade_516h)

torques



N439.S
6
6
83.3
83.3
(clade_262 or

Bifidobacterium bifidum,


Dorea longicatena,








clade_262i), clade_293,

Dorea longicatena,


Eubacterium rectale,








(clade_360 or clade_360c

Eubacterium rectale,


Faecalibacterium








or clade_360g or

Faecalibacterium


prausnitzii,








clade_360h or

prausnitzii,


Pseudoflavonifractor








clade_360i), (clade_444

Pseudoflavonifractor


capillosus, Ruminococcus








or clade_444i),

capillosus, Ruminococcus


torques








(clade_478 or

torques








clade_478i), clade_494


N447.S
5
6
83.3
83.3
(clade_262 or

Dialister invisus,


Eubacterium rectale,








clade_262i), (clade_444

Eubacterium rectale,


Faecalibacterium








or clade_444i),

Faecalibacterium


prausnitzii,








(clade_478 or

prausnitzii,


Pseudoflavonifractor








clade_478i), clade_494,

Pseudoflavonifractor


capillosus, Ruminococcus








clade_506

capillosus, Ruminococcus


torques, Subdoligmnulum










torques, Subdoligranulum


variabile










variabile



N490.S
5
6
83.3
83.3
(clade_262 or

Eubacterium hallii,


Eubacterium hallii,








clade_262i), clade_396,

Eubacterium rectale,


Eubacterium rectale,








(clade_444 or

Faecalibacterium


Faecalibacterium








clade_444i), (clade_478

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_478i), (clade_98

intestinalis, Ruminococcus


intestinalis,








or clade_98i)

torques, Streptococcus


Ruminococcus torques










australis



N526
5
6
83.3
83.3
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), clade_271,

longicatena, Eubacterium


Dorea longicatena,








(clade_360 or clade_360c

hallii, Roseburia


Eubacterium hallii,








or clade_360g or

intestinalis, Roseburia


Roseburia intestinalis,








clade_360h or

inulinivorans, Rothia


Roseburia inulinivorans








clade_360i), clade_396,

mucilaginosa








(clade_444 or clade_444i)


N429.S
4
5
100
100
(clade_444 or

Eubacterium eligens,


Eubacterium eligens,








clade_444i), (clade_478

Eubacterium ventriosum,


Eubacterium ventriosum,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_519, (clade_522 or

prausnitzii, Roseburia


prausnitzii, Roseburia








clade_522i)

inulinivorans,


inulinivorans,










Subdoligranulum variabile


Subdoligranulum











variabile



N433.S
4
5
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

rectale, Faecalibacterium


Eubacterium rectale,








clade_360g or clade_360h

prausnitzii, Ruminococcus


Faecalibacterium








or clade_360i),

torques


prausnitzii,








(clade_444 or


Ruminococcus torques








clade_444i), (clade_478







or clade_478i)


N448.S
4
5
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Faecalibacterium


Faecalibacterium








clade_444i), (clade_478

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_478i)

inulinivorans,


inulinivorans,










Subdoligranulum variabile


Subdoligranulum











variabile



N488.S
4
5
100
100
(clade_262 or

Eubacterium hallii,


Eubacterium hallii,








clade_262i), clade_396,

Eubacterium rectale,


Eubacterium rectale,








(clade_444 or

Faecalibacterium


Faecalibacterium








clade_444i), (clade_478

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_478i)

intestinalis, Ruminococcus


intestinalis,










torques


Ruminococcus torques



N508.S
4
5
100
100
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Eubacterium rectale,


Eubacterium rectale,








or clade_360c or

Faecalibacterium


Faecalibacterium








clade_360g or clade_360h

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_360i),

intestinalis, Ruminococcus


intestinalis,








(clade_444 or

torques


Ruminococcus torques








clade_444i), (clade_478







or clade_478i)


N509.S
5
5
100
100
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Eubacterium rectale,


Eubacterium rectale,








or clade_360c or

Eubacterium ventriosum,


Eubacterium ventriosum,








clade_360g or clade_360h

Faecalibacterium


Faecalibacterium








or clade_360i),

prausnitzii, Ruminococcus


prausnitzii,








(clade_444 or

torques


Ruminococcus torques








clade_444i), (clade_478







or clade_478i), clade_519


N510.S
5
5
100
100
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Eubacterium eligens,


Eubacterium eligens,








or clade_360c or

Eubacterium rectale,


Eubacterium rectale,








clade_360g or clade_360h

Faecalibacterium


Faecalibacterium








or clade_360i),

prausnitzii, Ruminococcus


prausnitzii,








(clade_444 or

torques


Ruminococcus torques








clade_444i), (clade_478







or clade_478i),







(clade_522 or clade_522i)


N511.S
3
5
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i),

Faecalibacterium


Faecalibacterium








(clade_478 or clade_478i)

prausnitzii, Roseburia


prausnitzii, Roseburia










intestinalis, Ruminococcus


intestinalis,










torques


Ruminococcus torques



N408.S
5
5
80
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_478

Eubacterium eligens,


Eubacterium eligens,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_494, clade_500,

prausnitzii,


prausnitzii,








(clade_522 or clade_522i)

Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N446.S
5
5
80
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii, Roseburia


Eubacterium hallii,








or clade_360i),

inulinivorans


Roseburia inulinivorans








clade_396, (clade_444 or







clade_444i), clade_500


N451.S
4
5
80
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Coprococcus comes,


Coprococcus comes,








(clade_478 or

Eubacterium hallii,


Eubacterium hallii,








clade_478i), clade_500

Faecalibacterium


Faecalibacterium










prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N474.S
5
5
80
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Faecalibacterium


Faecalibacterium








or clade_444i),

prausnitzii, Gordonibacter


prausnitzii, Gordonibacter








(clade_478 or

pamelaeae,


pamelaeae,








clade_478i), clade_494,

Pseudoflavonifractor


Pseudoflavonifractor








(clade_566 or clade_566f)

capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N520.S
5
5
80
100
(clade_262 or

Clostridium leptum,


Clostridium leptum,








clade_262i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Gordonibacter


prausnitzii, Gordonibacter








clade_494, clade_537,

pamelaeae,


pamelaeae,








(clade_566 or clade_566f)

Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N521.S
5
5
80
100
(clade_262 or

Coprococcus catus,


Coprococcus catus,








clade_262i), clade_393,

Desulfovibrio


Desulfovibrio








(clade_444 or

desulfuricans,


desulfuricans,








clade_444i), clade_445,

Faecalibacterium


Faecalibacterium








(clade_478 or clade_478i)

prausnitzii, Roseburia


prausnitzii, Roseburia










inulinivorans,


inulinivorans,










Ruminococcus torques


Ruminococcus torques



N535.S
4
5
80
100
clade_358, clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Faecalibacterium


Faecalibacterium








clade_444i), (clade_478

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_478i)

inulinivorans,


inulinivorans,










Subdoligranulum variabile,


Subdoligranulum










Veillonella atypica


variabile, Veillonella











atypica



N516.S
5
5
60
100
clade_393, (clade_444 or

Bilophila wadsworthia,


Bilophila wadsworthia,








clade_444i), clade_445,

Coprococcus catus,


Coprococcus catus,








clade_521, (clade_522 or

Desulfovibrio


Desulfovibrio








clade_522i)

desulfuricans, Eubacterium


desulfuricans,










eligens, Eubacterium


Eubacterium eligens,










rectale


Eubacterium rectale



N463.S
5
5
100
80
clade_246, (clade_262 or

Clostridiales sp. SS3/4,


Clostridium








clade_262i), (clade_444

Clostridium


lactatifermentans,








or clade_444i),

lactatifermentans,


Faecalibacterium








(clade_478 or

Faecalibacterium


prausnitzii, Roseburia








clade_478i), clade_576

prausnitzii, Roseburia


inulinivorans,










inulinivorans,


Ruminococcus torques










Ruminococcus torques



N518.S
5
5
100
80
(clade_262 or

Clostridium bartlettii,


Eubacterium hallii,








clade_262i), (clade_354

Eubacterium hallii,


Eubacterium rectale,








or clade_354e),

Eubacterium rectale,


Pseudoflavonifractor








clade_396, (clade_444 or

Pseudoflavonifractor


capillosus, Ruminococcus








clade_444i), clade_494

capillosus, Ruminococcus


torques










torques



N586
3
5
100
80
clade_368, (clade_444 or

Blautia hydrogenotrophica,


Eubacterium rectale,








clade_444i), (clade_478

Eubacterium rectale,


Roseburia intestinalis,








or clade_478i)

Roseburia intestinalis,


Roseburia inulinivorans,










Roseburia inulinivorans,


Subdoligranulum










Subdoligranulum variabile


variabile



N450.S
5
5
80
80
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_478

Anaerotruncus


Faecalibacterium








or clade_478i),

colihominis,


prausnitzii,








clade_494, clade_500,

Faecalibacterium


Pseudoflavonifractor








(clade_516 or clade_516c

prausnitzii,


capillosus, Ruminococcus








or clade_516g or

Pseudoflavonifractor


torques








clade_516h)

capillosus, Ruminococcus










torques



N465.S
4
5
80
80
clade_168, (clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Faecalibacterium


Faecalibacterium








or clade_444i),

prausnitzii, Prevotella


prausnitzii, Roseburia








(clade_478 or clade_478i)

copri, Roseburia


intestinalis,










intestinalis, Ruminococcus


Ruminococcus torques










torques



N519.S
5
5
80
80
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), clade_401,

Faecalibacterium


Faecalibacterium








(clade_444 or

prausnitzii, Lactococcus


prausnitzii,








clade_444i), (clade_478

lactis, Pseudoflavonifractor


Pseudoflavonifractor








or clade_478i), clade_494

capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N537.S
5
5
80
80
(clade_260 or clade_260c

Clostridium scindens,


Desulfovibrio








or clade_260g or

Desulfovibrio


desulfuricans,








clade_260h), (clade_262

desulfuricans, Eubacterium


Eubacterium rectale,








or clade_262i),

rectale,


Pseudoflavonifractor








(clade_444 or

Pseudoflavonifractor


capillosus, Ruminococcus








clade_444i), clade_445,

capillosus, Ruminococcus


torques








clade_494

torques



N419.S
5
5
60
80
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i),

Pseudoflavonifractor


Pseudoflavonifractor








clade_494, clade_500,

capillosus, Ruminococcus


capillosus, Ruminococcus








(clade_98 or clade_98i)

torques, Streptococcus


torques










salivarius



N468.S
5
5
60
80
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_293,

Bifidobacterium bifidum,


Coprococcus comes,








(clade_360 or clade_360c

Coprococcus comes, Dorea


Dorea longicatena,








or clade_360g or

longicatena, Eubacterium


Eubacterium hallii








clade_360h or

hallii








clade_360i), clade_396,







clade_500


N477.S
5
5
60
80
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i),

Pseudoflavonifractor


Pseudoflavonifractor








clade_494, clade_500,

capillosus, Ruminococcus


capillosus, Ruminococcus








(clade_98 or clade_98i)

torques, Streptococcus


torques










thermophilus



N514.S
5
5
60
60
clade_393, (clade_420 or

Clostridiales bacterium


Coprococcus catus,








clade_420f), (clade_444
oral clone P4PA,

Eubacterium eligens,








or clade_444i),

Coprococcus catus,


Eubacterium rectale








(clade_522 or

Eubacterium eligens,








clade_522i), clade_558

Eubacterium rectale,










Tannerella sp.









6_1_58FAA_CT1


N382.S
5
5
100
40
(clade_260 or clade_260c

Clostridium hylemonae,


Coprococcus comes,








or clade_260g or

Clostridium symbiosum,


Ruminococcus bromii








clade_260h), (clade_262

Collinsella aerofaciens,








or clade_262i),

Coprococcus comes,








(clade_408 or clade_408b

Ruminococcus bromii








or clade_408d or







clade_408f or clade_408g







or clade_408h),







clade_537, (clade_553 or







clade_553i)


N460.S
3
4
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i),

Faecalibacterium


Faecalibacterium








(clade_478 or clade_478i)

prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N462.S
3
4
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena,


Dorea longicatena,








or clade_360c or

Faecalibacterium


Faecalibacterium








clade_360g or clade_360h

prausnitzii,


prausnitzii,








or clade_360i),

Subdoligranulum variabile


Subdoligranulum








(clade_478 or clade_478i)


variabile



N512.S
3
4
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

rectale, Ruminococcus


Eubacterium rectale,








clade_360g or clade_360h

torques


Ruminococcus torques








or clade_360i),







(clade_444 or clade_444i)


N517.S
4
4
100
100
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Eubacterium rectale,


Eubacterium rectale,








or clade_360c or

Faecalibacterium


Faecalibacterium








clade_360g or clade_360h

prausnitzii, Ruminococcus


prausnitzii,








or clade_360i),

torques


Ruminococcus torques








(clade_444 or







clade_444i), (clade_478







or clade_478i)


N523.S
3
4
100
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Faecalibacterium


Faecalibacterium








or clade_444i),

prausnitzii, Roseburia


prausnitzii, Roseburia








(clade_478 or clade_478i)

intestinalis, Ruminococcus


intestinalis,










torques


Ruminococcus torques



N547.S
3
4
100
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Faecalibacterium


Faecalibacterium








or clade_444i),

prausnitzii, Ruminococcus


prausnitzii,








(clade_478 or clade_478i)

torques, Subdoligranulum


Ruminococcus torques,










variabile


Subdoligranulum











variabile



N548.S
4
4
100
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Faecalibacterium


Faecalibacterium








or clade_444i),

prausnitzii,


prausnitzii,








(clade_478 or

Pseudoflavonifractor


Pseudoflavonifractor








clade_478i), clade_494

capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N577.S
3
4
100
100
(clade_262 or

Clostridium leptum,


Clostridium leptum,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena,


Dorea longicatena,








clade_360g or clade_360h

Ruminococcus torques


Ruminococcus torques








or clade_360i), clade_537


N581.S
4
4
100
100
(clade_262 or

Eubacterium siraeum,


Eubacterium siraeum,








clade_262i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii,


prausnitzii,








clade_494, clade_538

Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N585.S
2
4
100
100
(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i)

prausnitzii, Roseburia


prausnitzii, Roseburia










intestinalis, Roseburia


intestinalis, Roseburia










inulinivorans


inulinivorans



N616.S
4
4
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

hallii, Faecalibacterium


Eubacterium hallii,








clade_360g or clade_360h

prausnitzii


Faecalibacterium








or clade_360i),


prausnitzii








clade_396, (clade_478 or







clade_478i)


N466.S
4
4
75
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i),

Pseudoflavonifractor


Pseudoflavonifractor








clade_494, clade_500

capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N469.S
4
4
75
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena, Eubacterium


Dorea longicatena,








clade_360g or clade_360h

hallii


Eubacterium hallii








or clade_360i),







clade_396, clade_500


N480.S
4
4
75
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Ruminococcus


prausnitzii,








clade_500, clade_537

bromii, Ruminococcus


Ruminococcus bromii,










torques


Ruminococcus torques



N482.S
4
4
75
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_478

Eubacterium eligens,


Eubacterium eligens,








or clade_478i),

Faecalibacterium


Faecalibacterium








clade_500, (clade_522 or

prausnitzii, Ruminococcus


prausnitzii,








clade_522i)

torques


Ruminococcus torques



N484.S
4
4
75
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i), clade_500

prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N515.S
4
4
75
100
clade_393, (clade_444 or

Bilophila wadsworthia,


Bilophila wadsworthia,








clade_444i), clade_521,

Coprococcus catus,


Coprococcus catus,








(clade_522 or clade_522i)

Eubacterium eligens,


Eubacterium eligens,










Eubacterium rectale


Eubacterium rectale



N533.S
4
4
75
100
(clade_262 or

Desulfovibrio


Desulfovibrio








clade_262i), (clade_444

desulfuricans, Eubacterium


desulfuricans,








or clade_444i),

rectale,


Eubacterium rectale,








clade_445, clade_494

Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N709
4
4
75
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or

Gordonibacter pamelaeae,


Gordonibacter pamelaeae,








clade_444i), (clade_566

Roseburia inulinivorans


Roseburia inulinivorans








or clade_566f)


N730
4
4
75
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), clade_286,

Eubacterium hallii,


Eubacterium hallii,








clade_396, (clade_444 or

Parabacteroides merdae,


Parabacteroides merdae,








clade_444i)

Roseburia inulinivorans


Roseburia inulinivorans



N478.S
4
4
50
100
clade_170, (clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_478

Bacteroides caccae,


Bacteroides caccae,








or clade_478i), clade_500

Faecalibacterium


Faecalibacterium










prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N572.S
4
4
50
100
clade_286, (clade_444 or

Desulfovibrio


Desulfovibrio








clade_444i), clade_445,

desulfuricans, Eubacterium


desulfuricans,








(clade_478 or clade_478i)

rectale, Faecalibacterium


Eubacterium rectale,










prausnitzii,


Faecalibacterium










Parabacteroides merdae


prausnitzii,











Parabacteroides merdae



N400.S
4
4
100
75
(clade_262 or

Clostridium symbiosum,


Coprococcus comes,








clade_262i), (clade_408

Coprococcus comes,


Eubacterium rectale,








or clade_408b or

Eubacterium rectale,


Faecalibacterium








clade_408d or clade_408f

Faecalibacterium


prausnitzii








or clade_408g or

prausnitzii








clade_408h), (clade_444







or clade_444i),







(clade_478 or clade_478i)


N543.S
4
4
100
75
(clade_262 or

Clostridium bartlettii,


Faecalibacterium








clade_262i), (clade_354

Faecalibacterium


prausnitzii,








or clade_354e),

prausnitzii,


Pseudoflavonifractor








(clade_478 or

Pseudoflavonifractor


capillosus, Ruminococcus








clade_478i), clade_494

capillosus, Ruminococcus


torques










torques



N582.S
4
4
100
75
(clade_262 or

Clostridium symbiosum,


Eubacterium rectale,








clade_262i), (clade_408

Eubacterium rectale,


Faecalibacterium








or clade_408b or

Faecalibacterium


prausnitzii,








clade_408d or clade_408f

prausnitzii, Ruminococcus


Ruminococcus torques








or clade_408g or

torques








clade_408h), (clade_444







or clade_444i),







(clade_478 or clade_478i)


N621.S
4
4
100
75
clade_396, (clade_408 or

Anaerostipes caccae,


Eubacterium hallii,








clade_408b or clade_408d

Eubacterium hallii,


Eubacterium rectale,








or clade_408f or

Eubacterium rectale,


Faecalibacterium








clade_408g or

Faecalibacterium


prausnitzii








clade_408h), (clade_444

prausnitzii








or clade_444i),







(clade_478 or clade_478i)


N689
4
4
100
75
(clade_262 or

Clostridium


Coprococcus comes,








clade_262i), clade_396,

methylpentosum,


Eubacterium hallii,








(clade_444 or

Coprococcus comes,


Roseburia inulinivorans








clade_444i), (clade_516

Eubacterium hallii,








or clade_516c or

Roseburia inulinivorans








clade_516g or







clade_516h)


N769
4
4
100
75
(clade_260 or clade_260c

Clostridium scindens,


Faecalibacterium








or clade_260g or

Faecalibacterium


prausnitzii,








clade_260h), (clade_262

prausnitzii,


Pseudoflavonifractor








or clade_262i),

Pseudoflavonifractor


capillosus, Ruminococcus








(clade_478 or

capillosus, Ruminococcus


torques








clade_478i), clade_494

torques



N481.S
4
4
75
75
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_478

Collinsella aerofaciens,


Faecalibacterium








or clade_478i),

Faecalibacterium


prausnitzii,








clade_500, (clade_553 or

prausnitzii, Ruminococcus


Ruminococcus torques








clade_553i)

torques



N525.S
4
4
75
75
(clade_262 or

Anaerostipes caccae,


Desulfovibrio








clade_262i), (clade_408

Desulfovibrio


desulfuricans,








or clade_408b or

desulfuricans,


Pseudoflavonifractor








clade_408d or clade_408f

Pseudoflavonifractor


capillosus, Ruminococcus








or clade_408g or

capillosus, Ruminococcus


torques








clade_408h), clade_445,

torques








clade_494


N528.S
4
4
75
75
(clade_262 or

Clostridium symbiosum,


Desulfovibrio








clade_262i), (clade_408

Desulfovibrio


desulfuricans,








or clade_408b or

desulfuricans,


Pseudoflavonifractor








clade_408d or clade_408f

Pseudoflavonifractor


capillosus, Ruminococcus








or clade_408g or

capillosus, Ruminococcus


torques








clade_408h), clade_445,

torques








clade_494


N534.S
4
4
75
75
(clade_262 or

Bacteroides fragilis,


Eubacterium rectale,








clade_262i), (clade_444

Eubacterium rectale,


Faecalibacterium








or clade_444i),

Faecalibacterium


prausnitzii,








(clade_478 or

prausnitzii, Ruminococcus


Ruminococcus torques








clade_478i), (clade_65 or

torques








clade_65e)


N574.S
4
4
75
75
clade_396, (clade_478 or

Clostridium leptum,


Clostridium leptum,








clade_478i), clade_537,

Eubacterium hallii,


Eubacterium hallii,








(clade_98 or clade_98i)

Faecalibacterium


Faecalibacterium










prausnitzii, Streptococcus


prausnitzii










thermophilus



N580.S
4
4
75
75
(clade_262 or

Eubacterium hallii,


Eubacterium hallii,








clade_262i), clade_396,

Eubacterium rectale,


Eubacterium rectale,








(clade_444 or

Ruminococcus torques,


Ruminococcus torques








clade_444i), (clade_98 or

Streptococcus australis








clade_98i)


N590.S
3
4
75
75
clade_401, (clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i), clade_485

prausnitzii, Holdemania


prausnitzii, Holdemania










filiformis, Lactococcus


filiformis,










lactis, Subdoligranulum


Subdoligranulum










variabile


variabile



N591.S
4
4
75
75
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), clade_401,

Lactococcus lactis,


Pseudoflavonifractor








(clade_444 or

Pseudoflavonifractor


capillosus, Ruminococcus








clade_444i), clade_494

capillosus, Ruminococcus


torques










torques



N597.S
3
4
75
75
(clade_478 or

Eubacterium eligens,


Eubacterium eligens,








clade_478i), (clade_522

Faecalibacterium


Faecalibacterium








or clade_522i), (clade_98

prausnitzii, Streptococcus


prausnitzii,








or clade_98i)

australis, Subdoligranulum


Subdoligranulum










variabile


variabile



N664
4
4
75
75
(clade_360 or clade_360c

Bacteroides dorei,


Bacteroides dorei, Dorea








or clade_360g or

Clostridium


longicatena, Eubacterium








clade_360h or

methylpentosum, Dorea


ventriosum








clade_360i), (clade_378

longicatena, Eubacterium








or clade_378e),

ventriosum








(clade_516 or clade_516c







or clade_516g or







clade_516h), clade_519


N693
4
4
75
75
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








clade_401, (clade_444 or

Lactococcus lactis,


Roseburia inulinivorans








clade_444i)

Roseburia inulinivorans



N530.S
4
4
50
75
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i),

Ruminococcus torques,


Ruminococcus torques








clade_500, (clade_98 or

Streptococcus australis








clade_98i)


N687
4
4
100
50
clade_396, (clade_444 or

Bacteroides pectinophilus,


Faecalibacterium








clade_444i), (clade_478

Coprococcus eutactus,


prausnitzii, Roseburia








or clade_478i), clade_543

Faecalibacterium


intestinalis










prausnitzii, Roseburia










intestinalis



N470.S
2
3
100
100
(clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i), clade_485

prausnitzii, Holdemania


prausnitzii, Holdemania










filiformis,


filiformis,










Subdoligranulum variabile


Subdoligranulum











variabile



N529.S
3
3
100
100
(clade_262 or

Faecalibacterium


Faecalibacterium








clade_262i), (clade_478

prausnitzii,


prausnitzii,








or clade_478i), clade_494

Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N539.S
2
3
100
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Roseburia intestinalis,


Roseburia intestinalis,








or clade_444i)

Ruminococcus torques


Ruminococcus torques



N546.S
3
3
100
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Faecalibacterium


Faecalibacterium








or clade_444i),

prausnitzii, Ruminococcus


prausnitzii,








(clade_478 or clade_478i)

torques


Ruminococcus torques



N570.S
3
3
100
100
(clade_360 or clade_360c

Dorea longicatena,


Dorea longicatena,








or clade_360g or

Eubacterium rectale,


Eubacterium rectale,








clade_360h or

Faecalibacterium


Faecalibacterium








clade_360i), (clade_444

prausnitzii


prausnitzii








or clade_444i),







(clade_478 or clade_478i)


N579.S
3
3
100
100
(clade_262 or

Eubacterium hallii,


Eubacterium hallii,








clade_262i), clade_396,

Eubacterium rectale,


Eubacterium rectale,








(clade_444 or clade_444i)

Ruminococcus torques


Ruminococcus torques



N602.S
3
3
100
100
clade_396, (clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_478

Roseburia inulinivorans,


Roseburia inulinivorans,








or clade_478i)

Subdoligranulum variabile


Subdoligranulum











variabile



N614.S
3
3
100
100
(clade_262 or

Clostridium leptum,


Clostridium leptum,








clade_262i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), clade_537

prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N648.S
3
3
100
100
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Faecalibacterium


Faecalibacterium








or clade_360c or

prausnitzii, Ruminococcus


prausnitzii,








clade_360g or clade_360h

torques


Ruminococcus torques








or clade_360i),







(clade_478 or clade_478i)


N652.S
3
3
100
100
clade_393, (clade_444 or

Coprococcus catus,


Coprococcus catus,








clade_444i), (clade_522

Eubacterium eligens,


Eubacterium eligens,








or clade_522i)

Eubacterium rectale


Eubacterium rectale



N655.S
2
3
100
100
(clade_444 or

Eubactenum rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i)

prausnitzii,


prausnitzii,










Subdoligranulum variabile


Subdoligranulum











variabile



N672.S
3
3
100
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Pseudoflavonifractor


Pseudoflavonifractor








or clade_444i), clade_494

capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N681.S
2
3
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i)

prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N690.S
3
3
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








(clade_444 or clade_444i)

Roseburia inulinivorans


Roseburia inulinivorans



N692.S
3
3
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

hallii


Eubacterium hallii








clade_360g or clade_360h







or clade_360i), clade_396


N698.S
2
3
100
100
(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Roseburia intestinalis,


Roseburia intestinalis,








or clade_478i)

Subdoligranulum variabile


Subdoligranulum











variabile



N737.S
3
3
100
100
(clade_262 or

Coprococcus catus,


Coprococcus catus,








clade_262i), clade_393,

Eubacterium rectale,


Eubacterium rectale,








(clade_444 or clade_444i)

Ruminococcus torques


Ruminococcus torques



N738.S
3
3
100
100
(clade_262 or

Faecalibacterium


Faecalibacterium








clade_262i), (clade_478

prausnitzii, Holdemania


prausnitzii, Holdemania








or clade_478i), clade_485

filiformis, Ruminococcus


filiformis, Ruminococcus










torques


torques



N785
3
3
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Eubacterium


Dorea longicatena,








or clade_360c or

ventriosum


Eubacterium ventriosum








clade_360g or clade_360h







or clade_360i), clade_519


N841
3
3
100
100
(clade_262 or

Faecalibacterium


Faecalibacterium








clade_262i), (clade_478

prausnitzii, Ruminococcus


prausnitzii,








or clade_478i), clade_537

bromii, Ruminococcus


Ruminococcus bromii,










torques


Ruminococcus torques



N878
2
3
100
100
(clade_444 or

Eubacterium eligens,


Eubacterium eligens,








clade_444i), (clade_522

Roseburia intestinalis,


Roseburia intestinalis,








or clade_522i)

Roseburia inulinivorans


Roseburia inulinivorans



N880
2
3
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i)

Roseburia inulinivorans


Roseburia inulinivorans



N881
2
3
100
100
clade_396, (clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i)

Roseburia intestinalis,


Roseburia intestinalis,










Roseburia inulinivorans


Roseburia inulinivorans



N987
3
3
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), clade_396,

Eubacterium hallii,


Eubacterium hallii,








clade_537

Ruminococcus bromii


Ruminococcus bromii



N988
3
3
100
100
(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Ruminococcus bromii,


Ruminococcus bromii,








or clade_478i), clade_537

Subdoligranulum variabile


Subdoligranulum











variabile



N996
3
3
100
100
clade_393, clade_396,

Coprococcus catus,


Coprococcus catus,








(clade_444 or clade_444i)

Eubacterium hallii,


Eubacterium hallii,










Roseburia inulinivorans


Roseburia inulinivorans



N1061
3
3
100
100
(clade_262 or

Eubacterium hallii,


Eubacterium hallii,








clade_262i), clade_396,

Faecalibacterium


Faecalibacterium








(clade_478 or clade_478i)

prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N479.S
3
3
66.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), clade_500

prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N538.S
3
3
66.7
100
(clade_262 or

Desulfovibrio


Desulfovibrio








clade_262i), clade_445,

desulfuricans,


desulfuricans,








clade_494

Pseudoflavonifractor


Pseudoflavonifractor










capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N542.S
3
3
66.7
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), (clade_444

Eubacterium rectale,


Eubacterium rectale,








or clade_444i), clade_500

Ruminococcus torques


Ruminococcus torques



N578.S
3
3
66.7
100
(clade_262 or

Desulfovibrio


Desulfovibrio








clade_262i), clade_445,

desulfuricans,


desulfuricans,








(clade_478 or clade_478i)

Faecalibacterium


Faecalibacterium










prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N609.S
3
3
66.7
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), clade_286,

Parabacteroides merdae,


Parabacteroides merdae,








(clade_444 or clade_444i)

Ruminococcus torques


Ruminococcus torques



N611.S
3
3
66.7
100
(clade_262 or

Bacteroides dorei,


Bacteroides dorei,








clade_262i), (clade_378

Faecalibacterium


Faecalibacterium








or clade_378e),

prausnitzii, Ruminococcus


prausnitzii,








(clade_478 or clade_478i)

torques


Ruminococcus torques



N617.S
3
3
66.7
100
(clade_262 or

Alistipes putredinis, Dorea


Alistipes putredinis,








clade_262i), (clade_360

longicatena,


Dorea longicatena,








or clade_360c or

Ruminococcus torques


Ruminococcus torques








clade_360g or clade_360h







or clade_360i), clade_500


N666.S
3
3
66.7
100
(clade_444 or

Bilophila wadsworthia,


Bilophila wadsworthia,








clade_444i), clade_521,

Eubacterium eligens,


Eubacterium eligens,








(clade_522 or clade_522i)

Eubacterium rectale


Eubacterium rectale



N675.S
3
3
66.7
100
(clade_262 or

Bacteroides ovatus,


Bacteroides ovatus,








clade_262i), (clade_38 or

Faecalibacterium


Faecalibacterium








clade_38e or clade_38i),

prausnitzii, Ruminococcus


prausnitzii,








(clade_478 or clade_478i)

torques


Ruminococcus torques



N682.S
3
3
66.7
100
clade_170, (clade_444 or

Bacteroides caccae,


Bacteroides caccae,








clade_444i), (clade_478

Eubacterium rectale,


Eubacterium rectale,








or clade_478i)

Faecalibacterium


Faecalibacterium










prausnitzii


prausnitzii



N844
3
3
66.7
100
(clade_262 or

Bilophila wadsworthia,


Bilophila wadsworthia,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena


Dorea longicatena








clade_360g or clade_360h







or clade_360i), clade_521


N845
3
3
66.7
100
(clade_262 or

Bacteroides dorei,


Bacteroides dorei,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena


Dorea longicatena








clade_360g or clade_360h







or clade_360i),







(clade_378 or







clade_378e)


N846
3
3
66.7
100
clade_170, (clade_262 or

Bacteroides caccae,


Bacteroides caccae,








clade_262i), (clade_360

Coprococcus comes, Dorea


Coprococcus comes,








or clade_360c or

longicatena


Dorea longicatena








clade_360g or clade_360h







clade_360i)


N852
3
3
66.7
100
(clade_172 or

Bifidobacterium longum,


Bifidobacterium longum,








clade_172i), (clade_262

Faecalibacterium


Faecalibacterium








or clade_262i),

prausnitzii, Ruminococcus


prausnitzii,








(clade_478 or clade_478i)

torques


Ruminococcus torques



N876
2
3
66.7
100
clade_170, (clade_444 or

Bacteroides caccae,


Bacteroides caccae,








clade_444i)

Roseburia intestinalis,


Roseburia intestinalis,










Roseburia inulinivorans


Roseburia inulinivorans



N982
3
3
66.7
100
(clade_172 or

Bifidobacterium longum,


Bifidobacterium longum,








clade_172i), (clade_262

Coprococcus comes,


Coprococcus comes,








or clade_262i), clade_396

Eubacterium hallii


Eubacterium hallii



N1008
3
3
66.7
100
(clade_262 or

Bilophila wadsworthia,


Bilophila wadsworthia,








clade_262i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), clade_521

prausnitzii, Ruminococcus


prausnitzii,










torques


Ruminococcus torques



N649.S
3
3
33.3
100
(clade_378 or

Bacteroides dorei,


Bacteroides dorei,








clade_378e), (clade_444

Desulfovibrio


Desulfovibrio








or clade_444i), clade_445

desulfuricans, Eubacterium


desulfuricans,










rectale


Eubacterium rectale



N657.S
3
3
33.3
100
(clade_378 or

Bacteroides dorei,


Bacteroides dorei,








clade_378e), (clade_38 or

Bacteroides ovatus,


Bacteroides ovatus,








clade_38e or clade_38i),

Faecalibacterium


Faecalibacterium








(clade_478 or clade_478i)

prausnitzii


prausnitzii



N678.S
3
3
33.3
100
clade_445, (clade_478 or

Akkermansia muciniphila,


Akkermansia








clade_478i), clade_583

Desulfovibrio


muciniphila,










desulfuricans,


Desulfovibrio










Faecalibacterium


desulfuricans,










prausnitzii


Faecalibacterium











prausnitzii



N686.S
3
3
33.3
100
(clade_378 or

Bacteroides dorei,


Bacteroides dorei,








clade_378e), (clade_38 or

Bacteroides ovatus,


Bacteroides ovatus,








clade_38e or clade_38i),

Holdemania filiformis


Holdemania filiformis








clade_485


N710.S
3
3
33.3
100
(clade_478 or

Alistipes putredinis,


Alistipes putredinis,








clade_478i), clade_500,

Gordonibacter pamelaeae,


Gordonibacter pamelaeae,








(clade_566 or clade_566f)

Subdoligranulum variabile


Subdoligranulum











variabile



N522.S
3
3
100
66.7
(clade_408 or clade_408b

Clostridium symbiosum,


Eubacterium siraeum,








or clade_408d or

Eubacterium siraeum,


Pseudoflavonifractor








clade_408f or clade_408g

Pseudoflavonifractor


capillosus








or clade_408h),

capillosus








clade_494, clade_538


N651.S
3
3
100
66.7
(clade_444 or

Anaerotruncus


Eubacterium eligens,








clade_444i), (clade_516

colihominis, Eubacterium


Roseburia inulinivorans








or clade_516c or

eligens, Roseburia








clade_516g or

inulinivorans








clade_516h), (clade_522







or clade_522i)


N653.S
3
3
100
66.7
clade_396, (clade_408 or

Anaerostipes caccae,


Eubacterium ballii,








clade_408b or clade_408d

Eubacterium hallii,


Eubacterium rectale








or clade_408f or

Eubacterium rectale








clade_408g or







clade_408h), (clade_444







or clade_444i)


N654.S
3
3
100
66.7
(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i),

prausnitzii, Ruminococcus


prausnitzii








(clade_516 or clade_516c

albus








or clade_516g or







clade_516h)


N680.S
3
3
100
66.7
(clade_262 or

Blautia hydrogenotrophica,


Faecalibacterium








clade_262i), clade_368,

Faecalibacterium


prausnitzii,








(clade_478 or clade_478i)

prausnitzii, Ruminococcus


Ruminococcus torques










torques



N712.S
2
3
100
66.7
(clade_260 or clade_260c

Clostridium scindens,


Faecalibacterium








or clade_260g or

Faecalibacterium


prausnitzii,








clade_260h), (clade_478

prausnitzii,


Subdoligranulum








or clade_478i)

Subdoligranulum variabile


variabile



N792
3
3
100
66.7
(clade_444 or

Clostridium


Eubacterium rectale,








clade_444i), (clade_478

methylpentosum,


Subdoligranulum








or clade_478i),

Eubacterium rectale,


variabile








(clade_516 or clade_516c

Subdoligranulum variabile








or clade_516g or







clade_516h)


N802
3
3
100
66.7
(clade_408 or clade_408b

Anaerostipes caccae,


Clostridium leptum,








or clade_408d or

Clostridium leptum,


Holdemania filiformis








clade_408f or clade_408g

Holdemania filiformis








or clade_408h),







clade_485, clade_537


N804
3
3
100
66.7
clade_485, clade_494,

Coprococcus eutactus,


Holdemania filiformis,








clade_543

Holdemania filiformis,


Pseudoflavonifractor










Pseudoflavonifractor


capillosus










capillosus



N807
3
3
100
66.7
(clade_262 or

Anaerostipes caccae,


Coprococcus comes,








clade_262i), (clade_408

Coprococcus comes,


Subdoligranulum








or clade_408b or

Subdoligranulum variabile


variabile








clade_408d or clade_408f







or clade_408g or







clade_408h), (clade_478







or clade_478i)


N849
3
3
100
66.7
(clade_444 or

Clostridium cocleatum,


Eubacterium eligens,








clade_444i), (clade_481

Eubacterium eligens,


Eubacterium rectale








or clade_481a or

Eubacterium rectale








clade_481b or clade_481e







or clade_481g or







clade_481h or







clade_481i), (clade_522







or clade_522i)


N858
3
3
100
66.7
(clade_262 or

Anaerostipes caccae,


Pseudoflavonifractor








clade_262i), (clade_408

Pseudoflavonifractor


capillosus, Ruminococcus








or clade_408b or

capillosus, Ruminococcus


torques








clade_408d or clade_408f

torques








or clade_408g or







clade_408h), clade_494


N859
3
3
100
66.7
(clade_260 or clade_260c

Clostridium scindens,


Pseudoflavonifractor








or clade_260g or

Pseudoflavonifractor


capillosus, Ruminococcus








clade_260h), (clade_262

capillosus, Ruminococcus


torques








or clade_262i), clade_494

torques



N875
2
3
100
66.7
(clade_444 or

Anaerotruncus


Roseburia intestinalis,








clade_444i), (clade_516

colihominis, Roseburia


Roseburia inulinivorans








or clade_516c or

intestinalis, Roseburia








clade_516g or

inulinivorans








clade_516h)


N885
3
3
100
66.7
(clade_408 or clade_408b

Anaerostipes caccae,


Faecalibacterium








or clade_408d or

Faecalibacterium


prausnitzii, Holdemania








clade_408f or clade_408g

prausnitzii, Holdemania


filiformis








or clade_408h),

filiformis








(clade_478 or







clade_478i), clade_485


N942
3
3
100
66.7
(clade_260 or clade_260c

Clostridium scindens,


Eubacterium ball,








or clade_260g or

Eubacterium hallii,


Roseburia inulinivorans








clade_260h), clade_396,

Roseburia inulinivorans








(clade_444 or clade_444i)


N961
3
3
100
66.7
(clade_354 or

Clostridium bartlettii,


Eubacterium rectale,








clade_354e), (clade_444

Eubacterium rectale,


Subdoligranulum








or clade_444i),

Subdoligranulum variabile


variabile








(clade_478 or clade_478i)


N972
3
3
100
66.7
(clade_444 or

Anaerotruncus


Eubacterium rectale,








clade_444i), (clade_478

colihominis, Eubacterium


Subdoligranulum








or clade_478i),

rectale, Subdoligranulum


variabile








(clade_516 or clade_516c

variabile








or clade_516g or







clade_516h)


N1051
3
3
100
66.7
(clade_262 or

Anaerotruncus


Faecalibacterium








clade_262i), (clade_478

colihominis,


prausnitzii,








or clade_478i),

Faecalibacterium


Ruminococcus torques








(clade_516 or clade_516c

prausnitzii, Ruminococcus








or clade_516g or

torques








clade_516h)


N587.S
3
3
66.7
66.7
(clade_478 or

Alistipes putredinis,


Alistipes putredinis,








clade_478i), clade_500,

Clostridium


Subdoligranulum








(clade_516 or clade_516c

methylpentosum,


variabile








or clade_516g or

Subdoligranulum variabile








clade_516h)


N589.S
3
3
66.7
66.7
(clade_262 or

Bifidobacterium bifidum,


Faecalibacterium








clade_262i), clade_293,

Faecalibacterium


prausnitzii,








(clade_478 or clade_478i)

prausnitzii, Ruminococcus


Ruminococcus torques










torques



N612.S
3
3
66.7
66.7
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Ruminococcus torques,


Ruminococcus torques








or clade_444i), (clade_98

Streptococcus salivarius








or clade_98i)


N625.S
3
3
66.7
66.7
(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i), (clade_98

prausnitzii, Streptococcus


prausnitzii








or clade_98i)

salivarius



N656.S
3
3
66.7
66.7
clade_170, clade_396,

Bacteroides caccae,


Bacteroides caccae,








clade_537

Bacteroides pectinophilus,


Clostridium leptum










Clostridium leptum



N714.S
2
3
66.7
66.7
(clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i), (clade_98 or

prausnitzii, Streptococcus


prausnitzii,








clade_98i)

thermophilus,


Subdoligranulum










Subdoligranulum variabile


variabile



N779
3
3
66.7
66.7
(clade_444 or

Faecalibacterium


Faecalibacterium








clade_444i), (clade_478

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_478i), (clade_98

intestinalis, Streptococcus


intestinalis








or clade_98i)

australis



N781
3
3
66.7
66.7
clade_293, clade_393,

Bifidobacterium bifidum,


Coprococcus catus,








(clade_444 or clade_444i)

Coprococcus catus,


Eubacterium rectale










Eubacterium rectale



N828
3
3
66.7
66.7
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena, Streptococcus


Dorea longicatena








or clade_360c or

australis








clade_360g or clade_360h







or clade_360i), (clade_98







or clade_98i)


N829
3
3
66.7
66.7
(clade_262 or

Bacteroides fragilis,


Coprococcus comes,








clade_262i), (clade_360

Coprococcus comes, Dorea


Dorea longicatena








or clade_360c or


longicatena








clade_360g or clade_360h







or clade_360i), (clade_65







or clade_65e)


N860
3
3
66.7
66.7
(clade_262 or

Pseudoflavonifractor


Pseudoflavonifractor








clade_262i), clade_494,

capillosus, Ruminococcus


capillosus, Ruminococcus








(clade_98 or clade_98i)

torques, Streptococcus


torques










thermophilus



N894
3
3
66.7
66.7
clade_293, (clade_444 or

Bifidobacterium bifidum,


Eubacterium rectale,








clade_444i), (clade_478

Eubacterium rectale,


Subdoligranulum








or clade_478i)

Subdoligranulum variabile


variabile



N925
3
3
66.7
66.7
clade_396, (clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_98 or

Roseburia inulinivorans,


Roseburia inulinivorans








clade_98i)

Streptococcus australis



N927
3
3
66.7
66.7
clade_396, (clade_444 or

Dialister invisus,


Eubacterium hallii,








clade_444i), clade_506

Eubacterium hallii,


Roseburia inulinivorans










Roseburia inulinivorans



N935
3
3
66.7
66.7
clade_396, (clade_444 or

Bacteroides fragilis,


Eubacterium hallii,








clade_444i), (clade_65 or

Eubacterium hallii,


Roseburia inulinivorans








clade_65e)

Roseburia inulinivorans



N947
3
3
66.7
66.7
clade_396, (clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_98 or

Roseburia inulinivorans,


Roseburia inulinivorans








clade_98i)

Streptococcus










thermophilus



N983
3
3
66.7
66.7
clade_396, (clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i), (clade_98 or

Roseburia inulinivorans,


Roseburia inulinivorans








clade_98i)

Streptococcus salivarius



N1023
3
3
66.7
66.7
(clade_262 or

Dorea longicatena,


Dorea longicatena,








clade_262i), (clade_360

Ruminococcus torques,


Ruminococcus torques








or clade_360c or

Streptococcus salivarius








clade_360g or clade_360h







or clade_360i), (clade_98







or clade_98i)


N441.S
3
3
100
33.3
clade_252, (clade_262 or

Clostridium butyricum,


Ruminococcus torques








clade_262i), (clade_354

Eubacterium tenue,








or clade_354e)

Ruminococcus torques



N584.S
3
3
100
33.3
(clade_262 or

Clostridium symbiosum,


Coprococcus comes








clade_262i), (clade_408

Collinsella aerofaciens,








or clade_408b or

Coprococcus comes








clade_408d or clade_408f







or clade_408g or







clade_408h), (clade_553







or clade_553i)


N794
3
3
100
33.3
(clade_516 or clade_516c

Anaerotruncus


Clostridium leptum








or clade_516g or

colihominis, Clostridium








clade_516h), clade_537,

leptum, Coprococcus








clade_543

eutactus



N788
1
3
100
0
(clade_516 or clade_516c

Anaerotruncus








or clade_516g or

colihominis, Clostridium








clade_516h)

methylpentosum,










Ruminococcus albus



N524.S
1
2
100
100
(clade_478 or clade_478i)

Faecalibacterium


Faecalibacterium










prausnitzii,


prausnitzii,










Subdoligranulum variabile


Subdoligranulum











variabile



N604.S
2
2
100
100
(clade_262 or

Faecalibacterium


Faecalibacterium








clade_262i), (clade_478

prausnitzii, Ruminococcus


prausnitzii,








or clade_478i)

torques


Ruminococcus torques



N610.S
2
2
100
100
(clade_262 or

Eubacterium rectale,


Eubacterium rectale,








clade_262i), (clade_444

Ruminococcus torques


Ruminococcus torques








or clade_444i)


N623.S
2
2
100
100
(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Faecalibacterium


Faecalibacterium








or clade_478i)

prausnitzii


prausnitzii



N663.S
2
2
100
100
(clade_360 or clade_360c

Dorea longicatena,


Dorea longicatena,








or clade_360g or

Roseburia inulinivorans


Roseburia inulinivorans








clade_360h or







clade_360i), (clade_444







or clade_444i)


N669.S
2
2
100
100
(clade_262 or

Coprococcus comes, Dorea


Coprococcus comes,








clade_262i), (clade_360

longicatena


Dorea longicatena








or clade_360c or







clade_360g or clade_360h







clade_360i)


N676.S
2
2
100
100
(clade_262 or

Pseudoflavonifractor


Pseudoflavonifractor








clade_262i), clade_494

capillosus, Ruminococcus


capillosus, Ruminococcus










torques


torques



N703.S
2
2
100
100
(clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i), clade_485

prausnitzii, Holdemania


prausnitzii, Holdemania










filiformis


filiformis



N775.S
2
2
100
100
(clade_262 or

Coprococcus comes,


Coprococcus comes,








clade_262i), clade_396

Eubacterium hallii


Eubacterium hallii



N777.S
2
2
100
100
(clade_444 or

Eubacterium ventriosum,


Eubacterium ventriosum,








clade_444i), clade_519

Roseburia inulinivorans


Roseburia inulinivorans



N780.S
2
2
100
100
(clade_444 or

Faecalibacterium


Faecalibacterium








clade_444i), (clade_478

prausnitzii, Roseburia


prausnitzii, Roseburia








or clade_478i)

intestinalis


intestinalis



N817.S
2
2
100
100
clade_519, clade_537

Clostridium leptum,


Clostridium leptum,










Eubacterium ventriosum


Eubacterium ventriosum



N827.S
2
2
100
100
(clade_444 or

Eubacterium eligens,


Eubacterium eligens,








clade_444i), (clade_522

Eubacterium rectale


Eubacterium rectale








or clade_522i)


N836.S
2
2
100
100
(clade_478 or

Pseudoflavonifractor


Pseudoflavonifractor








clade_478i), clade_494

capillosus,


capillosus,










Subdoligranulum variabile


Subdoligranulum











variabile



N871.S
1
2
100
100
(clade_444 or clade_444i)

Roseburia intestinalis,


Roseburia intestinalis,










Roseburia inulinivorans


Roseburia inulinivorans



N874.S
2
2
100
100
clade_396, (clade_444 or

Eubacterium hallii,


Eubacterium hallii,








clade_444i)

Roseburia inulinivorans


Roseburia inulinivorans



N898.S
2
2
100
100
(clade_444 or

Eubacterium rectale,


Eubacterium rectale,








clade_444i), (clade_478

Subdoligranulum variabile


Subdoligranulum








or clade_478i)


variabile



N907.S
2
2
100
100
(clade_360 or clade_360c

Dorea longicatena,


Dorea longicatena,








or clade_360g or

Roseburia intestinalis


Roseburia intestinalis








clade_360h or







clade_360i), (clade_444







or clade_444i)


N998.S
2
2
100
100
clade_393, (clade_478 or

Coprococcus catus,


Coprococcus catus,








clade_478i)

Faecalibacterium


Faecalibacterium










prausnitzii


prausnitzii



N1088
2
2
100
100
clade_393, (clade_444 or

Coprococcus catus,


Coprococcus catus,








clade_444i)

Eubacterium rectale


Eubacterium rectale



N1089
2
2
100
100
(clade_478 or

Clostridium


Clostridium








clade_478i), clade_576

lactatifermentans,


lactatifermentans,










Faecalibacterium


Faecalibacterium










prausnitzii


prausnitzii



N660.S
2
2
50
100
(clade_172 or

Bifidobacterium longum,


Bifidobacterium longum,








clade_172i), clade_485

Holdemania filiformis


Holdemania filiformis



N665.S
2
2
50
100
clade_286, (clade_444 or

Parabacteroides merdae,


Parabacteroides merdae,








clade_444i)

Roseburia intestinalis


Roseburia intestinalis



N667.S
2
2
50
100
clade_500, (clade_522 or

Alistipes putredinis,


Alistipes putredinis,








clade_522i)

Eubacterium eligens


Eubacterium eligens



N733.S
2
2
50
100
(clade_262 or

Bacteroides ovatus,


Bacteroides ovatus,








clade_262i), (clade_38 or

Ruminococcus torques


Ruminococcus torques








clade_38e or clade_38i)


N734.S
2
2
50
100
(clade_262 or

Bilophila wadsworthia,


Bilophila wadsworthia,








clade_262i), clade_521

Ruminococcus torques


Ruminococcus torques



N739.S
2
2
50
100
(clade_478 or

Alistipes putredinis,


Alistipes putredinis,








clade_478i), clade_500

Faecalibacterium


Faecalibacterium










prausnitzii


prausnitzii



N741.S
2
2
50
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_500

Ruminococcus torques


Ruminococcus torques



N782.S
2
2
50
100
clade_171, (clade_522 or

Bacteroides intestinalis,


Bacteroides intestinalis,








clade_522i)

Eubacterium eligens


Eubacterium eligens



N789.S
2
2
50
100
clade_357, clade_537

Clostridium leptum,


Clostridium leptum,










Oxalobacter formigenes


Oxalobacter formigenes



N796.S
2
2
50
100
clade_500, clade_537

Alistipes putredinis,


Alistipes putredinis,










Ruminococcus bromii


Ruminococcus bromii



N798.S
2
2
50
100
(clade_378 or

Bacteroides dorei,


Bacteroides dorei,








clade_378e), clade_494

Pseudoflavonifractor


Pseudoflavonifractor










capillosus


capillosus



N800.S
2
2
50
100
clade_445, clade_537

Clostridium leptum,


Clostridium leptum,










Desulfovibrio


Desulfovibrio










desulfuricans


desulfuricans



N809.S
2
2
50
100
clade_445, (clade_478 or

Desulfovibrio


Desulfovibrio








clade_478i)

desulfuricans,


desulfuricans,










Faecalibacterium


Faecalibacterium










prausnitzii


prausnitzii



N816.S
2
2
50
100
(clade_38 or clade_38e or

Bacteroides ovatus,


Bacteroides ovatus,








clade_38i), (clade_522 or

Eubacterium eligens


Eubacterium eligens








clade_522i)


N842.S
2
2
50
100
clade_393, clade_500

Alistipes putredinis,


Alistipes putredinis,










Coprococcus catus


Coprococcus catus



N843.S
2
2
50
100
(clade_262 or

Alistipes putredinis,


Alistipes putredinis,








clade_262i), clade_500

Coprococcus comes


Coprococcus comes



N869.S
2
2
50
100
clade_537, (clade_566 or

Clostridium leptum,


Clostridium leptum,








clade_566f)

Gordonibacter pamelaeae


Gordonibacter pamelaeae



N986.S
2
2
50
100
(clade_172 or

Bifidobacterium longum,


Bifidobacterium longum,








clade_172i), (clade_262

Ruminococcus torques


Ruminococcus torques








or clade_262i)


N995.S
2
2
50
100
clade_500, clade_537

Alistipes putredinis,


Alistipes putredinis,










Clostridium leptum


Clostridium leptum



N1002.S
2
2
50
100
(clade_478 or

Alistipes putredinis,


Alistipes putredinis,








clade_478i), clade_500

Subdoligranulum variabile


Subdoligranulum











variabile



N1004.S
2
2
50
100
(clade_262 or

Desulfovibrio


Desulfovibrio








clade_262i), clade_445

desulfuricans,


desulfuricans,










Ruminococcus torques


Ruminococcus torques



N1019.S
2
2
50
100
clade_358, (clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i)

prausnitzii, Veillonella


prausnitzii, Veillonella










atypica


atypica



N1093
2
2
50
100
(clade_522 or

Akkermansia muciniphila,


Akkermansia








clade_522i), clade_583

Eubacterium eligens


muciniphila, Eubacterium











eligens



N668.S
2
2
0
100
(clade_378 or

Alistipes putredinis,


Alistipes putredinis,








clade_378e), clade_500

Bacteroides dorei


Bacteroides dorei



N685.S
2
2
0
100
clade_170, clade_286

Bacteroides caccae,


Bacteroides caccae,










Parabacteroides merdae


Parabacteroides merdae



N835.S
2
2
0
100
clade_500, (clade_566 or

Alistipes putredinis,


Alistipes putredinis,








clade_566f)

Gordonibacter pamelaeae


Gordonibacter pamelaeae



N851.S
2
2
0
100
clade_445, clade_521

Bilophila wadsworthia,


Bilophila wadsworthia,










Desulfovibrio


Desulfovibrio










desulfuricans


desulfuricans



N464.S
2
2
100
50
clade_252, (clade_262 or

Clostridium butyricum,


Ruminococcus torques








clade_262i)

Ruminococcus torques



N695.S
2
2
100
50
clade_396, (clade_516 or

Eubacterium hallii,


Eubacterium hallii








clade_516c or clade_516g

Ruminococcus albus








or clade_516h)


N776.S
2
2
100
50
(clade_516 or clade_516c

Eubacterium siraeum,


Eubacterium siraeum








or clade_516g or

Ruminococcus albus








clade_516h), clade_538


N793.S
2
2
100
50
(clade_516 or clade_516c

Anaerotruncus


Clostridium leptum








or clade_516g or

colihominis, Clostridium








clade_516h), clade_537

leptum



N815.S
2
2
100
50
(clade_522 or

Collinsella aerofaciens,


Eubacterium eligens








clade_522i), (clade_553

Eubacterium eligens








or clade_553i)


N833.S
2
2
100
50
(clade_260 or clade_260c

Clostridium scindens,


Coprococcus comes








or clade_260g or

Coprococcus comes








clade_260h), (clade_262







or clade_262i)


N891.S
2
2
100
50
clade_368, clade_485

Blautia hydrogenotrophica,


Holdemania filiformis










Holdemania filiformis



N1070.S
2
2
100
50
(clade_262 or

Anaerotruncus


Coprococcus comes








clade_262i), (clade_516

colihominis, Coprococcus








or clade_516c or

comes








clade_516g or







clade_516h)


N1092
2
2
100
50
clade_393, (clade_481 or

Clostridium cocleatum,


Coprococcus catus








clade_481a or clade_481b

Coprococcus catus








or clade_481e or







clade_481g or clade_481h







or clade_481i)


N795.S
2
2
50
50
clade_500, (clade_516 or

Alistipes putredinis,


Alistipes putredinis








clade_516c or clade_516g

Clostridium








or clade_516h)

methylpentosum



N797.S
2
2
50
50
(clade_478 or

Faecalibacterium


Faecalibacterium








clade_478i), (clade_98 or

prausnitzii, Streptococcus


prausnitzii








clade_98i)

salivarius



N808.S
2
2
50
50
clade_445, (clade_516 or

Clostridium


Desulfovibrio








clade_516c or clade_516g

methylpentosum,


desulfuricans








or clade_516h)

Desulfovibrio










desulfuricans



N811.S
2
2
50
50
clade_445, (clade_516 or

Desulfovibrio


Desulfovibrio








clade_516c or clade_516g

desulfuricans,


desulfuricans








or clade_516h)

Ruminococcus albus



N826.S
2
2
50
50
clade_500, clade_543

Alistipes putredinis,


Alistipes putredinis










Coprococcus eutactus



N830.S
2
2
50
50
(clade_262 or

Coprococcus comes,


Coprococcus comes








clade_262i), (clade_98 or

Streptococcus








clade_98i)

thermophilus



N832.S
2
2
50
50
clade_293, (clade_478 or

Bifidobacterium bifidum,


Subdoligranulum








clade_478i)

Subdoligranulum variabile


variabile



N840.S
2
2
50
50
(clade_444 or

Eubacterium rectale,


Eubacterium rectale








clade_444i), (clade_98 or

Streptococcus salivarius








clade_98i)


N945.S
2
2
50
50
(clade_260 or clade_260c

Alistipes putredinis,


Alistipes putredinis








or clade_260g or

Clostridium scindens








clade_260h), clade_500


N960.S
2
2
50
50
(clade_354 or

Alistipes putredinis,


Alistipes putredinis








clade_354e), clade_500

Clostridium bartlettii



N968.S
2
2
50
50
(clade_262 or

Escherichia coli,


Ruminococcus torques








clade_262i), (clade_92 or

Ruminococcus torques








clade_92e or clade_92i)


N1091
2
2
50
50
(clade_444 or

Alistipes indistinctus,


Eubacterium rectale








clade_444i), clade_561

Eubacterium rectale



N805.S
2
2
0
50
clade_293, clade_445

Bifidobacterium bifidum,


Desulfovibrio










Desulfovibrio


desulfuricans










desulfuricans



N822.S
2
2
0
50
clade_401, clade_500

Alistipes putredinis,


Alistipes putredinis










Lactococcus lactis



N928.S
2
2
0
50
clade_500, clade_506

Alistipes putredinis,


Alistipes putredinis










Dialister invisus



N936.S
2
2
0
50
clade_500, (clade_65 or

Alistipes putredinis,


Alistipes putredinis








clade_65e)

Bacteroides fragilis



N1078.S
2
2
0
50
clade_445, (clade_98 or

Desulfovibrio


Desulfovibrio








clade_98i)

desulfuricans,


desulfuricans










Streptococcus australis



N913.S
2
2
100
0
(clade_408 or clade_408b

Anaerotruncus








or clade_408d or

colihominis, Clostridium








clade_408f or clade_408g

symbiosum








or clade_408h),







(clade_516 or clade_516c







or clade_516g or







clade_516h)









Network Ecologies comprised of one or more clades, or two or more OTUs that are observed in the ethanol-treated spore preparation or the combined engrafted and augmented ecologies of at least one patient post-treatment with the bacterial composition. Network Ecologies are defined based on their clade or OTU content. The respective clades and 16S genetic sequences for each OTU are defined in Table 1. Network Ecology IDs with a “.s” indicates that the network is a subset of the computationally determined networks reported in Table 8 with the same Network Ecology ID.















TABLE 14B








Percent of


Percent of





Combined


Combined





Augmented


Augmented





& Engrafted


& Engrafted




Percent of
Post-

Percent of
Post-




Ethanol-
Treatment

Ethanol-
Treatment




treated spore
Patient

treated spore
Patient




Preparations
Ecologies

Preparations
Ecologies


Network
Number
Containing
Containing
Number
Containing
Containing


Ecology ID
of OTUs
Network
Network
of Clades
Network
Network





















N262.S
15
0
0
10
0
10


N290.S
14
0
0
10
20
10


N271.S
13
0
0
9
0
10


N282.S
13
0
0
9
0
10


N284.S
13
0
0
9
0
10


N302.S
12
0
0
8
20
10


N279.S
12
0
0
9
0
10


N288.S
12
0
0
8
0
10


N310.S
11
0
0
7
20
10


N323.S
11
0
0
7
20
10


N331.S
11
0
0
7
0
10


N332.S
11
0
0
8
0
10


N312.S
10
0
0
7
20
10


N325.S
10
0
0
8
20
10


N338.S
10
0
0
7
20
10


N339.S
10
0
0
7
20
10


N340.S
10
0
0
7
20
10


N341.S
10
0
0
7
20
10


N301.S
10
0
0
7
0
10


N346.S
10
0
0
7
0
10


N381.S
9
0
10
7
70
70


N343.S
9
10
0
7
20
0


N336.S
9
0
0
6
20
10


N353.S
9
0
0
7
20
0


N355.S
9
0
0
6
20
10


N356.S
9
0
0
6
20
10


N361.S
9
0
0
6
20
10


N329.S
9
0
0
6
10
0


N345.S
9
0
0
7
0
10


N344.S
8
10
0
6
20
10


N374.S
8
10
0
6
20
10


N375.S
8
10
0
6
20
10


N352.S
8
0
0
5
20
10


N358.S
8
0
0
5
20
10


N368.S
8
0
0
6
20
10


N369.S
8
0
0
6
20
10


N372.S
8
0
0
6
20
10


N377.S
8
0
0
6
20
0


N380.S
8
0
10
7
10
10


N357.S
8
0
0
6
0
10


N370.S
7
10
0
5
20
10


N389.S
7
10
0
6
20
10


N390.S
7
10
0
6
20
0


N394.S
7
10
0
5
20
10


N396.S
7
10
0
6
20
0


N376.S
7
0
0
5
20
10


N431.S
7
0
10
6
10
10


N434.S
7
0
10
6
10
10


N387.S
7
10
0
6
10
0


N397.S
7
0
0
6
10
0


N440.S
7
0
0
7
10
0


N373.S
7
0
0
6
0
10


N403.S
6
0
50
4
100
80


N432.S
6
0
50
4
100
70


N399.S
6
60
30
6
100
80


N493.S
6
50
30
6
100
70


N436.S
6
20
30
4
100
80


N437.S
6
20
30
3
100
80


N490.S
6
0
0
5
100
40


N414.S
6
40
50
5
70
80


N457.S
6
0
40
5
70
80


N430.S
6
30
40
6
60
50


N402.S
6
50
20
5
60
20


N447.S
6
20
10
5
50
20


N439.S
6
20
0
6
50
0


N415.S
6
20
10
5
30
10


N422.S
6
0
10
5
20
10


N421.S
6
20
0
6
20
10


N386.S
6
10
0
5
20
10


N416.S
6
0
0
6
20
10


N458.S
6
0
10
6
10
10


N459.S
6
0
10
5
10
10


N405.S
6
0
0
4
10
0


N526
6
0
0
5
10
0


N423.S
6
0
10
5
0
10


N545
6
0
0
5
0
10


N433.S
5
90
60
4
100
80


N508.S
5
0
50
4
100
80


N511.S
5
0
50
3
100
80


N488.S
5
0
40
4
100
80


N518.S
5
50
30
5
100
70


N448.S
5
30
30
4
100
80


N474.S
5
40
10
5
100
60


N520.S
5
20
10
5
100
50


N509.S
5
70
50
5
80
50


N510.S
5
40
50
5
70
80


N519.S
5
40
30
5
60
30


N429.S
5
0
30
4
60
50


N463.S
5
0
30
5
50
50


N382.S
5
20
0
5
50
0


N514.S
5
20
0
5
50
10


N450.S
5
0
10
5
20
10


N477.S
5
0
10
5
20
10


N535.S
5
0
10
4
20
30


N446.S
5
20
0
5
20
10


N468.S
5
20
0
5
20
0


N451.S
5
10
0
4
20
10


N408.S
5
0
0
5
20
10


N419.S
5
0
0
5
20
10


N465.S
5
0
0
4
20
0


N586
5
0
0
3
20
0


N516.S
5
10
0
5
10
0


N521.S
5
10
0
5
10
0


N537.S
5
10
0
5
10
0


N512.S
4
90
70
3
100
80


N460.S
4
90
60
3
100
80


N517.S
4
90
60
4
100
80


N400.S
4
60
60
4
100
80


N577.S
4
60
60
3
100
70


N582.S
4
50
60
4
100
80


N462.S
4
100
50
3
100
80


N547.S
4
90
50
3
100
80


N548.S
4
70
50
4
100
80


N543.S
4
60
50
4
100
70


N523.S
4
0
50
3
100
80


N616.S
4
90
40
4
100
80


N769
4
40
40
4
100
70


N585.S
4
0
30
2
100
90


N689
4
10
20
4
100
70


N687
4
0
20
4
100
90


N621.S
4
40
10
4
100
90


N574.S
4
60
0
4
100
50


N709
4
30
0
4
100
60


N580.S
4
20
0
4
100
40


N664
4
20
10
4
70
10


N515.S
4
40
0
4
70
0


N597.S
4
0
0
3
70
50


N591.S
4
40
30
4
60
30


N730
4
30
10
4
60
20


N693
4
10
10
4
60
30


N534.S
4
30
40
4
40
40


N590.S
4
30
30
3
30
30


N466.S
4
0
10
4
20
10


N480.S
4
0
10
4
20
10


N469.S
4
20
0
4
20
10


N478.S
4
10
0
4
20
0


N484.S
4
10
0
4
20
10


N482.S
4
0
0
4
20
10


N530.S
4
0
0
4
20
10


N481.S
4
10
0
4
10
0


N533.S
4
10
0
4
10
0


N572.S
4
10
0
4
10
0


N525.S
4
0
0
4
10
0


N528.S
4
0
0
4
10
0


N581.S
4
0
10
4
0
10


N737.S
3
90
70
3
100
80


N672.S
3
70
70
3
100
80


N570.S
3
100
60
3
100
90


N655.S
3
100
60
2
100
90


N546.S
3
90
60
3
100
80


N648.S
3
90
60
3
100
80


N681.S
3
90
60
2
100
80


N961
3
90
60
3
100
80


N579.S
3
80
60
3
100
80


N614.S
3
60
60
3
100
70


N539.S
3
0
60
2
100
80


N698.S
3
0
60
2
100
90


N692.S
3
90
50
3
100
80


N529.S
3
70
50
3
100
80


N859
3
40
50
3
100
70


N1061
3
80
40
3
100
80


N841
3
60
40
3
100
70


N988
3
60
40
3
100
80


N858
3
50
40
3
100
80


N602.S
3
30
40
3
100
90


N792
3
20
40
3
100
70


N1051
3
0
40
3
100
70


N881
3
0
40
2
100
90


N972
3
0
40
3
100
70


N712.S
3
60
30
2
100
80


N807
3
50
30
3
100
80


N653.S
3
40
30
3
100
90


N690.S
3
30
30
3
100
80


N880
3
30
30
2
100
80


N996
3
30
30
3
100
90


N714.S
3
100
20
2
100
50


N987
3
50
20
3
100
70


N942
3
20
20
3
100
80


N875
3
0
20
2
100
70


N860
3
70
10
3
100
40


N1023
3
0
10
3
100
40


N612.S
3
0
10
3
100
40


N625.S
3
0
10
3
100
50


N794
3
0
10
3
100
70


N844
3
100
0
3
100
0


N1008
3
90
0
3
100
0


N947
3
30
0
3
100
50


N654.S
3
20
0
3
100
70


N828
3
20
0
3
100
40


N982
3
20
0
3
100
50


N852
3
10
0
3
100
50


N779
3
0
0
3
100
50


N788
3
0
0
1
100
80


N925
3
0
0
3
100
50


N983
3
0
0
3
100
50


N785
3
80
50
3
80
50


N845
3
80
20
3
80
30


N611.S
3
70
20
3
80
30


N652.S
3
40
60
3
70
90


N878
3
0
40
2
70
90


N849
3
20
20
3
70
90


N651.S
3
0
20
3
70
70


N666.S
3
40
0
3
70
0


N441.S
3
10
0
3
70
50


N609.S
3
50
20
3
60
20


N781
3
50
0
3
50
0


N894
3
50
0
3
50
0


N589.S
3
40
0
3
50
0


N584.S
3
30
0
3
50
10


N927
3
30
0
3
50
20


N738.S
3
40
60
3
40
70


N470.S
3
40
50
2
40
70


N829
3
40
40
3
40
40


N802
3
30
30
3
40
70


N885
3
30
20
3
40
70


N804
3
20
20
3
40
70


N935
3
20
20
3
40
40


N656.S
3
30
10
3
30
10


N682.S
3
30
10
3
30
10


N846
3
30
10
3
30
10


N876
3
0
10
2
30
10


N710.S
3
20
10
3
20
10


N479.S
3
10
10
3
20
10


N542.S
3
10
10
3
20
10


N587.S
3
10
10
3
20
10


N617.S
3
10
10
3
20
10


N680.S
3
20
0
3
20
0


N657.S
3
10
10
3
10
10


N675.S
3
0
10
3
10
10


N538.S
3
10
0
3
10
0


N578.S
3
10
0
3
10
0


N649.S
3
10
0
3
10
0


N678.S
3
10
0
3
10
0


N522.S
3
0
10
3
0
10


N686.S
3
0
10
3
0
10


N1088
2
100
80
2
100
90


N898.S
2
100
80
2
100
90


N610.S
2
90
80
2
100
80


N623.S
2
100
70
2
100
90


N669.S
2
100
70
2
100
80


N998.S
2
100
70
2
100
90


N836.S
2
80
70
2
100
90


N676.S
2
70
70
2
100
80


N524.S
2
100
60
1
100
90


N604.S
2
90
60
2
100
80


N793.S
2
0
60
2
100
80


N775.S
2
90
50
2
100
80


N780.S
2
0
50
2
100
90


N907.S
2
0
50
2
100
90


N913.S
2
0
50
2
100
80


N833.S
2
60
40
2
100
70


N874.S
2
30
40
2
100
90


N1070.S
2
0
40
2
100
70


N871.S
2
0
40
1
100
90


N663.S
2
30
30
2
100
90


N1092
2
80
20
2
100
90


N830.S
2
100
10
2
100
40


N869.S
2
50
10
2
100
50


N797.S
2
0
10
2
100
50


N840.S
2
0
10
2
100
50


N734.S
2
90
0
2
100
0


N695.S
2
20
0
2
100
70


N986.S
2
10
0
2
100
50


N817.S
2
60
60
2
80
60


N798.S
2
60
30
2
80
40


N777.S
2
20
30
2
80
50


N968.S
2
70
0
2
80
30


N827.S
2
40
70
2
70
90


N464.S
2
40
40
2
70
50


N665.S
2
0
10
2
60
20


N1089
2
20
60
2
50
60


N832.S
2
50
0
2
50
0


N703.S
2
40
60
2
40
70


N1093
2
40
30
2
40
30


N660.S
2
0
0
2
40
50


N815.S
2
10
0
2
30
10


N1019.S
2
0
30
2
20
30


N1002.S
2
20
10
2
20
10


N685.S
2
20
10
2
20
10


N739.S
2
20
10
2
20
10


N835.S
2
20
10
2
20
10


N842.S
2
20
10
2
20
10


N843.S
2
20
10
2
20
10


N960.S
2
20
10
2
20
10


N995.S
2
20
10
2
20
10


N741.S
2
10
10
2
20
10


N795.S
2
10
10
2
20
10


N945.S
2
10
10
2
20
10


N796.S
2
0
10
2
20
10


N668.S
2
20
0
2
20
0


N891.S
2
20
0
2
20
0


N928.S
2
20
0
2
20
0


N936.S
2
20
0
2
20
0


N667.S
2
0
0
2
20
10


N826.S
2
0
0
2
20
10


N822.S
2
10
10
2
10
10


N733.S
2
0
10
2
10
10


N816.S
2
0
10
2
10
10


N1004.S
2
10
0
2
10
0


N805.S
2
10
0
2
10
0


N809.S
2
10
0
2
10
0


N851.S
2
10
0
2
10
0


N1078.S
2
0
0
2
10
0


N789.S
2
0
0
2
10
0


N800.S
2
0
0
2
10
0


N808.S
2
0
0
2
10
0


N811.S
2
0
0
2
10
0


N1091
2
0
10
2
0
10


N782.S
2
0
10
2
0
10


N776.S
2
0
0
2
0
10









Percentage of clinical ethanol-treated spore preparations, or combined engrafted and augmented ecologies of patient's post-treatment with the bacterial composition in which the Network Ecology is observed. Network Ecologies found in doses and patients post treatment comprised 2-15 OTUs. Network Ecology IDs with a “.s” indicates that the network is a subset of the computationally determined networks reported in Table 8 with the same Network Ecology.









TABLE 15







Presence of Keystone OTU Clades in ethanol-treated spore


population treatment and patient's pretreatment, augmented


and engrafted microbial ecologies post-treatment.














Percent of






EtOH





Purified



Percent of
Percent of
Spore
Percent of



Augmented
Engrafted
Treatment
Pretreatment


Keystone
Ecologies
Ecologies
Ecologies
Ecologies


clade
with clade
with clade
with clade
with clade














clade_65
20
20
40
20


clade_85
0
0
0
0


clade_98
40
30
100
80


clade_110
10
0
10
0


clade_170
10
0
30
0


clade_172
10
50
100
30


clade_262
50
80
100
30


clade_262
50
80
100
30


clade_286
0
20
60
20


clade_286
0
20
60
20


clade_309
40
100
100
40


clade_358
40
0
20
80


clade_360
20
100
100
60


clade_360
20
100
100
60


clade_378
10
30
80
0


clade_393
10
90
100
10


clade_396
70
90
100
10


clade_408
60
100
100
50


clade_444
70
90
100
10


clade_466
10
0
0
0


clade_478
0
90
100
30


clade_485
60
10
40
10


clade_494
50
80
100
30


clade_500
10
0
20
10


clade_521
0
0
100
30


clade_537
50
90
100
20


clade_538
10
0
0
0


clade_540
90
10
30
10


clade_543
10
90
100
0


clade_572
30
80
100
20


clade_576
50
30
50
30


clade_583
20
10
60
50
















TABLE 16







Efficacy of Network Ecologies screened in Clostridium difficile


Infection Prevention Mouse Model.
















Target Dose
Cumulative
Mean
Mean Max.


SP
SP

(CFU/OTU/
Mortality
Min. Rel.
Clin. Score


Expt.
Arm
Test Article
mouse)
(%)
Weight
(Death = 4)
















SP-327
3
Vehicle Control

30
0.89
2.2


SP-327
4
Vanco. Positive Control

0
0.99
1


SP-327
12
N1957
2.0E+07
0
0.87
0


SP-327
13
N1957
2.0E+06
40
0.86
2.2


SP-327
14
N1957
2.0E+05
50
0.80
2.8


SP-338
1
Vehicle Control

60
0.81
3.2


SP-338
2
Vanco. Positive Control

0
1.00
0


SP-338
3
10% fecal suspension

0
0.95
1


SP-338
5
N1957
2.0E+07
10
0.80
2


SP-338
6
N1957
2.0E+06
0
0.97
1


SP-338
7
N1957
2.0E+05
20
0.85
1.7


SP-338
11
N1957
2.0E+07
20
0.86
2


SP-338
12
N1957
2.0E+06
30
0.83
2.5


SP-338
13
N1961
2.0E+07
10
0.93
1.3


SP-338
14
N1955
2.0E+07
0
0.91
1.2


SP-338
15
N1955
2.0E+06
10
0.90
1.5


SP-338
16
N1955
2.0E+05
10
0.89
2.7


SP-338
17
N1967
2.0E+07
10
0.94
1.4


SP-338
18
N1983
2.0E+07
0
0.92
1


SP-338
19
N1989
2.0E+07
10
0.91
1.3


SP-338
20
N1996
2.0E+07
10
0.93
1.3


SP-338
21
Naïve

0
1.00
0


SP-339
1
Vehicle Control

20
0.88
2.2


SP-339
2
Vanco. Positive Control

0
0.99
0


SP-339
3
10% fecal suspension

0
0.97
0


SP-339
4
N1995
2.0E+07
20
0.83
2.1


SP-339
5
N1995
2.0E+06
10
0.91
1.5


SP-339
6
N1995
2.0E+05
0
0.96
1.2


SP-339
7
N1950
2.0E+07
0
0.94
1


SP-339
8
N1994
2.0E+07
20
0.87
1.8


SP-339
9
N1997
2.0E+07
0
0.95
1.2


SP-339
10
N1967
2.0E+07
0
0.93
1.2


SP-339
11
N1983
2.0E+07
10
0.83
2.2


SP-339
12
N1989
2.0E+07
0
0.88
1.5


SP-339
13
N1996
2.0E+07
0
0.97
1


SP-339
14
N2002
2.0E+07
20
0.92
2


SP-339
15
N2000
2.0E+07
0
0.98
1.2


SP-339
21
Naïve

0
0.98
0


SP-342
1
Vehicle Control

40
0.85
2.5


SP-342
2
Vanco. Positive Control

0
1.00
0


SP-342
5
N1957
2.0E+08
0
0.94
0.2


SP-342
6
N1957
2.0E+07
0
0.96
0


SP-342
7
N1957
2.0E+06
10
0.88
1.3


SP-342
8
N1980
2.0E+08
10
0.92
1.8


SP-342
9
N1998
2.0E+08
20
0.83
2.8


SP-342
10
N1976
2.0E+08
10
0.92
1.4


SP-342
11
N1987
2.0E+08
10
0.93
1.6


SP-342
12
N2005
2.0E+08
20
0.86
2.4


SP-342
13
N1958
2.0E+08
0
0.94
1.5


SP-342
14
N2004
2.0E+08
10
0.93
1.4


SP-342
15
N1949
2.0E+08
10
0.87
1.5


SP-342
18
N1970
2.0E+08
50
0.81
3


SP-342
21
Naïve

0
0.99
0


SP-361
1
Vehicle Control

30
0.88
2.6


SP-361
2
10% fecal suspension

0
0.99
0


SP-361
3
N435
1.0E+07
80
0.83
3.6


SP-361
4
N1979
1.0E+07
0
0.97
0


SP-361
5
N414
1.0E+07
0
0.97
0


SP-361
6
N512
1.0E+07
20
0.94
1.6


SP-361
7
N582
1.0E+07
10
0.93
0.9


SP-361
8
N571
1.0E+07
30
0.88
2.1


SP-361
9
N510
1.0E+07
0
0.93
0.3


SP-361
10
N1981
1.0E+07
40
0.83
2.8


SP-361
11
N1969
1.0E+07
80
0.82
3.6


SP-361
12
N461
1.0E+07
10
0.89
1.2


SP-361
13
N460
1.0E+07
0
0.93
1.1


SP-361
14
N1959
1.0E+07
30
0.89
1.9


SP-361
15
N2006
1.0E+07
30
0.89
1.9


SP-361
16
N1953
1.0E+07
10
0.83
2.3


SP-361
17
N1960
1.0E+07
0
0.92
1


SP-361
18
N2007
1.0E+07
10
0.91
0.9


SP-361
19
N1978
1.0E+07
10
0.91
1.3


SP-361
20
N1972
1.0E+07
30
0.83
2.6


SP-361
21
Naïve

0
1.00
0


SP-363
1
Vehicle Control

30
0.85
2.6


SP-363
2
10% fecal suspension

0
0.95
0


SP-363
8
N1974
1.0E+07
60
0.81
3.2


SP-363
9
N582
1.0E+07
60
0.81
3.2


SP-363
10
N435
1.0E+07
30
0.86
2.1


SP-363
11
N414
1.0E+07
40
0.83
2.5


SP-363
12
N457
1.0E+07
30
0.83
2.2


SP-363
13
N511
1.0E+07
20
0.87
2


SP-363
14
N513
1.0E+07
0
0.88
0.2


SP-363
15
N682
1.0E+07
30
0.82
2.6


SP-363
16
N736
1.0E+07
40
0.82
2.8


SP-363
17
N732
1.0E+07
10
0.86
1.3


SP-363
18
N1948
1.0E+07
60
0.85
3.2


SP-363
19
N853
1.0E+07
10
0.85
2.2


SP-363
20
N1979
1.0E+07
60
0.78
3.2


SP-363
21
N879
1.0E+07
40
0.83
2.8


SP-363
22
N999
1.0E+07
20
0.88
2.4


SP-363
23
N975
1.0E+07
30
0.80
2.6


SP-363
24
N861
1.0E+07
50
0.85
3


SP-363
25
N1095
1.0E+07
80
0.83
3.6


SP-363
26
Naïve

0
1.00
0


SP-364
1
Vehicle Control

40
0.83
2.8


SP-364
4
N582
1.0E+07
0
0.81
0.9


SP-364
5
N582
1.0E+06
0
0.84
0.9


SP-364
6
N582
1.0E+05
40
0.76
2.5


SP-364
13
N414
1.0E+07
0
0.84
0


SP-364
14
N414
1.0E+06
30
0.79
2.4


SP-364
15
N414
1.0E+05
10
0.76
2


SP-364
22
10% fecal suspension

0
0.97
0


SP-364
23
Naïve

0
0.99
0


SP-365
1
Vehicle Control

40
0.83
2.8


SP-365
4
10% fecal suspension

0
0.98
0


SP-365
13
N582
1.0E+07
60
0.80
3.2


SP-365
14
N582
1.0E+06
10
0.89
1.5


SP-365
15
N414
1.0E+07
20
0.86
1.7


SP-365
16
N414
1.0E+06
80
0.83
3.5


SP-365
21
Naïve

0
1.00
0


SP-366
1
Vehicle Control

20
0.82
2.4


SP-366
4
10% fecal suspension

0
0.93
1


SP-366
7
N582
1.0E+07
0
0.86
1


SP-366
10
N414
1.0E+07
20
0.83
2.4


SP-366
13
N402
1.0E+07
30
0.81
2.1


SP-366
16
N1982
1.0E+07
0
0.90
1.1


SP-366
19
N460
1.0E+07
10
0.83
2.2


SP-366
22
N513
6.7E+06
40
0.82
2.8


SP-366
23
N1966
1.0E+07
0
0.90
0.5


SP-366
24
N1977
1.0E+07
20
0.83
1.9


SP-366
25
N1979
1.0E+07
20
0.83
2.4


SP-366
26
N682
1.0E+07
20
0.83
2.3


SP-366
27
N1947
1.0E+07
10
0.82
1.3


SP-366
28
N582
1.0E+07
20
0.82
1.8


SP-366
29
N414
1.0E+07
0
0.85
1.5


SP-366
30
N603
1.0E+07
30
0.82
2.2


SP-366
31
Naïve

0
0.99
0


SP-368
1
Vehicle Control

50
0.85
2.8


SP-368
2
10% fecal suspension

0
0.97
0


SP-368
3
Ethanol-treated fecal spores A

20
0.90
1.8


SP-368
7
N1966
1.0E+07
0
0.89
1


SP-368
8
N1966
1.0E+06
10
0.91
1.5


SP-368
9
N1966
1.0E+05
50
0.82
3.1


SP-368
10
Ethanol-treated fecal spores B

0
0.99
0


SP-368
15
Ethanol-treated fecal spores C

0
0.95
1


SP-368
21
Naïve

0
1.00
0


SP-374
1
Vehicle Control

100
0.83
4


SP-374
4
10% fecal suspension

10
0.89
0.5


SP-374
11
N1966
1.0E+08
0
0.87
1


SP-374
12
N1966
1.0E+08
0
0.91
0.5


SP-374
13
N1966
1.0E+07
10
0.88
1.3


SP-374
14
N1966
1.0E+06
50
0.79
3


SP-374
15
N584
1.0E+08
0
0.89
1


SP-374
16
N584
1.0E+07
30
0.84
2.4


SP-374
17
N1962
1.0E+07
0
0.93
0


SP-374
18
N382
1.0E+07
10
0.85
1.5


SP-374
19
N1964
1.0E+07
20
0.89
1.8


SP-374
20
N1965
1.0E+07
30
0.85
2.1


SP-374
21
N306
1.0E+07
10
0.90
0.4


SP-374
22
N1988
1.0E+07
0
0.89
1


SP-374
23
N2003
1.0E+07
0
0.92
1.2


SP-374
24
N1993
1.0E+07
20
0.77
2.4


SP-374
25
Naïve

0
0.99
0


SP-376
1
Vehicle Control

60
0.83
3.2


SP-376
2
10% fecal suspension

0
0.98
0


SP-376
3
N1966
1.0E+08
30
0.79
2.4


SP-376
4
N1966
1.0E+07
0
0.95
0


SP-376
5
N1966
1.0E+08
30
0.79
2.6


SP-376
6
N1966
1.0E+07
10
0.88
2.2


SP-376
7
N1986
1.0E+07
40
0.80
2.8


SP-376
8
N1962
1.0E+08
0
0.98
0


SP-376
9
N1962
1.0E+07
0
0.95
0


SP-376
10
N1963
1.0E+07
40
0.81
2.6


SP-376
11
N1984
1.0E+08
0
0.97
0


SP-376
12
N1984
1.0E+07
0
0.90
1.1


SP-376
13
N1990
1.0E+08
0
0.92
1


SP-376
14
N1990
1.0E+07
0
0.92
1


SP-376
15
N1999
1.0E+08
10
0.87
1.4


SP-376
16
N1999
1.0E+07
0
0.93
0


SP-376
17
N1968
1.0E+07
50
0.78
3


SP-376
18
N1951
1.0E+07
0
0.93
1


SP-376
19
N1991
1.0E+07
0
0.93
1.1


SP-376
20
N1975
1.0E+07
50
0.78
3


SP-376
21
Naïve

0
0.99
0


SP-383
1
Vehicle Control

100
0.83
4


SP-383
2
10% fecal suspension

0
0.92
0.1


SP-383
9
N1962
1.0E+09
10
0.95
1.3


SP-383
10
N1962
1.0E+08
10
0.93
1.3


SP-383
11
N1962
1.0E+07
0
0.92
1


SP-383
12
N1984
1.0E+09
0
0.89
1


SP-383
13
N1984
1.0E+08
10
0.94
1.3


SP-383
14
N1984
1.0E+07
10
0.90
1.3


SP-383
21
Naïve

0
1.00
0


SP-390
1
Vehicle Control

80
0.82
3.6


SP-390
2
10% fecal suspension

0
0.98
0.1


SP-390
3
N1962
2.0E+07
0
0.97
0


SP-390
4
N1962
2.0E+06
0
0.98
0


SP-390
5
N1984
2.0E+07
0
0.95
1


SP-390
6
N1984
2.0E+06
0
0.95
0.1


SP-390
9
N1962
2.0E+07
0
0.93
1


SP-390
10
N1962
2.0E+06
10
0.93
1.3


SP-390
11
N1984
2.0E+07
20
0.86
2.2


SP-390
12
N1984
2.0E+06
30
0.88
2.1


SP-390
13
N1952
2.0E+07
0
0.89
1


SP-390
14
N2001
2.0E+07
0
0.95
0.2


SP-390
15
N1973
2.0E+07
10
0.90
0.7


SP-390
16
N1954
2.0E+07
0
0.94
1.1


SP-390
17
N1985
2.0E+07
10
0.86
1.8


SP-390
18
N1971
2.0E+07
0
0.89
0.9


SP-390
19
N1956
2.0E+07
0
0.95
0


SP-390
20
N1992
2.0E+07
0
0.95
0


SP-390
31
Naïve

0
0.98
0
















TABLE 17







Network Ecologies screened in vivo in Clostridium difficile Infection Prevention Mouse Model










Network





Ecology


ID
Exemplary Network Clades
Exemplary Network OTUs
Exemplary Keystone OTUs





N306
clade_252, (clade_260 or clade_260c or

Blautia producta, Clostridium hylemonae,

Coprococcus comes, Eubacterium



clade_260g or clade_260h), (clade_262
Clostridium innocuum, Clostridium

rectale, Faecalibacterium prausnitzii,




or clade_262i), (clade_309 or clade_309c
orbiscindens, Clostridium symbiosum,
Ruminococcus obeum, Ruminococcus



or clade_309e or clade_309g or
Clostridium tertium, Collinsella
torques



clade_309h or clade_309i), (clade_351 or
aerofaciens, Coprobacillus sp. D7,



clade_351e), (clade_38 or clade_38e or
Coprococcus comes, Eubacterium rectale,



clade_38i), (clade_408 or clade_408b or

Eubacterium sp. WAL 14571,




clade_408d or clade_408f or clade_408g
Faecalibacterium prausnitzii,



or clade_408h), (clade_444 or
Lachnospiraceae bacterium 5_1_57FAA,



clade_444i), (clade_478 or clade_478i),
Roseburia faecalis, Ruminococcus



(clade_481 or clade_481a or clade_481b
obeum, Ruminococcus torques



or clade_481e or clade_481g or



clade_481h or clade_481i), clade_494,



(clade_553 or clade_553i)


N382
clade_252, (clade_260 or clade_260c or

Blautia producta, Clostridium hylemonae,

Coprococcus comes, Ruminococcus



clade_260g or clade_260h), (clade_262
Clostridium innocuum, Clostridium
bromii



or clade_262i), (clade_309 or clade_309c
orbiscindens, Clostridium symbiosum,



or clade_309e or clade_309g or
Clostridium tertium, Collinsella



clade_309h or clade_309i), (clade_351 or
aerofaciens, Coprococcus comes,



clade_351e), (clade_360 or clade_360c or
Lachnospiraceae bacterium 5_1_57FAA,



clade_360g or clade_360h or clade_360i),
Ruminococcus bromii, Ruminococcus



(clade_408 or clade_408b or clade_408d
gnavus



or clade_408f or clade_408g or



clade_408h), clade_494, clade_537,



(clade_553 or clade_553i)


N402
(clade_262 or clade_262i), clade_286,
Alistipes shahii, Coprococcus comes,
Alistipes shahii, Coprococcus comes,



(clade_309 or clade_309c or clade_309e
Dorea formicigenerans, Dorea
Dorea formicigenerans, Dorea



or clade_309g or clade_309h or
longicatena, Eubacterium rectale,
longicatena, Eubacterium rectale,



clade_309i), (clade_360 or clade_360c or
Faecalibacterium prausnitzii, Odoribacter
Faecalibacterium prausnitzii,



clade_360g or clade_360h or clade_360i),
splanchnicus, Parabacteroides merdae,
Odoribacter splanchnicus,



(clade_444 or clade_444i), clade_466,
Ruminococcus obeum, Ruminococcus
Parabacteroides merdae, Ruminococcus



(clade_478 or clade_478i), clade_500
torques
obeum, Ruminococcus torques


N414
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Dorea
Coprococcus comes, Dorea



clade_309c or clade_309e or clade_309g
formicigenerans, Dorea longicatena,
formicigenerans, Dorea longicatena,



or clade_309h or clade_309i), (clade_360

Eubacterium eligens, Eubacterium


Eubacterium eligens, Eubacterium




or clade_360c or clade_360g or

rectale, Faecalibacterium prausnitzii,


rectale, Faecalibacterium prausnitzii,




clade_360h or clade_360i), (clade_444 or
Odoribacter splanchnicus, Ruminococcus
Odoribacter splanchnicus,



clade_444i), clade_466, (clade_478 or
obeum, Ruminococcus torques
Ruminococcus obeum, Ruminococcus



clade_478i), (clade_522 or clade_522i)

torques


N435
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Dorea
Coprococcus comes, Dorea



clade_309c or clade_309e or clade_309g
formicigenerans, Dorea longicatena,
formicigenerans, Dorea longicatena,



or clade_309h or clade_309i), (clade_360

Eubacterium rectale, Faecalibacterium


Eubacterium rectale, Faecalibacterium




or clade_360c or clade_360g or
prausnitzii, Odoribacter splanchnicus,
prausnitzii, Odoribacter splanchnicus,



clade_360h or clade_360i), (clade_444 or
Ruminococcus obeum, Ruminococcus
Ruminococcus obeum, Ruminococcus



clade_444i), clade_466, (clade_478 or
torques
torques



clade_478i)


N457
(clade_262 or clade_262i), (clade_309 or
Dorea longicatena, Eubacterium eligens,
Dorea longicatena, Eubacterium



clade_309c or clade_309e or clade_309g

Eubacterium rectale, Faecalibacterium


eligens, Eubacterium rectale,




or clade_309h or clade_309i), (clade_360
prausnitzii, Roseburia intestinalis,
Faecalibacterium prausnitzii, Roseburia



or clade_360c or clade_360g or
Ruminococcus obeum, Ruminococcus
intestinalis, Ruminococcus obeum,



clade_360h or clade_360i), (clade_444 or
torques
Ruminococcus torques



clade_444i), (clade_478 or clade_478i),



(clade_522 or clade_522i)


N460
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Dorea
Coprococcus comes, Dorea



clade_309c or clade_309e or clade_309g
formicigenerans, Eubacterium rectale,
formicigenerans, Eubacterium rectale,



or clade_309h or clade_309i), (clade_360
Faecalibacterium prausnitzii, Odoribacter
Faecalibacterium prausnitzii,



or clade_360c or clade_360g or
splanchnicus, Ruminococcus obeum,
Odoribacter splanchnicus,



clade_360h or clade_360i), (clade_444 or
Ruminococcus torques
Ruminococcus obeum, Ruminococcus



clade_444i), clade_466, (clade_478 or

torques



clade_478i)


N461
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Dorea
Coprococcus comes, Dorea



clade_309c or clade_309e or clade_309g
formicigenerans, Dorea longicatena,
formicigenerans, Dorea longicatena,



or clade_309h or clade_309i), (clade_360

Eubacterium rectale, Faecalibacterium


Eubacterium rectale, Faecalibacterium




or clade_360c or clade_360g or
prausnitzii, Ruminococcus obeum,
prausnitzii, Ruminococcus obeum,



clade_360h or clade_360i), (clade_444 or
Ruminococcus torques
Ruminococcus torques



clade_444i), (clade_478 or clade_478i)


N510
(clade_262 or clade_262i), (clade_309 or
Dorea longicatena, Eubacterium eligens,
Dorea longicatena, Eubacterium



clade_309c or clade_309e or clade_309g

Eubacterium rectale, Faecalibacterium


eligens, Eubacterium rectale,




or clade_309h or clade_309i), (clade_360
prausnitzii, Ruminococcus obeum,
Faecalibacterium prausnitzii,



or clade_360c or clade_360g or
Ruminococcus torques
Ruminococcus obeum, Ruminococcus



clade_360h or clade_360i), (clade_444 or

torques



clade_444i), (clade_478 or clade_478i),



(clade_522 or clade_522i)


N511
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Eubacterium rectale,
Coprococcus comes, Eubacterium



clade_309c or clade_309e or clade_309g
Faecalibacterium prausnitzii, Roseburia

rectale, Faecalibacterium prausnitzii,




or clade_309h or clade_309i), (clade_444
intestinalis, Ruminococcus obeum,
Roseburia intestinalis, Ruminococcus



or clade_444i), (clade_478 or clade_478i)
Ruminococcus torques
obeum, Ruminococcus torques


N512
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Dorea
Coprococcus comes, Dorea



clade_309c or clade_309e or clade_309g
formicigenerans, Dorea longicatena,
formicigenerans, Dorea longicatena,



or clade_309h or clade_309i), (clade_360

Eubacterium rectale, Ruminococcus


Eubacterium rectale, Ruminococcus




or clade_360c or clade_360g or
obeum, Ruminococcus torques
obeum, Ruminococcus torques



clade_360h or clade_360i), (clade_444 or



clade_444i)


N513
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Dorea
Coprococcus comes, Dorea



clade_309c or clade_309e or clade_309g
formicigenerans, Eubacterium rectale,
formicigenerans, Eubacterium rectale,



or clade_309h or clade_309i), (clade_360
Faecalibacterium prausnitzii,
Faecalibacterium prausnitzii,



or clade_360c or clade_360g or
Ruminococcus obeum, Ruminococcus
Ruminococcus obeum, Ruminococcus



clade_360h or clade_360i), (clade_444 or
torques
torques



clade_444i), (clade_478 or clade_478i)


N571
(clade_262 or clade_262i), (clade_309 or
Dorea longicatena, Eubacterium rectale,
Dorea longicatena, Eubacterium



clade_309c or clade_309e or clade_309g
Faecalibacterium prausnitzii,

rectale, Faecalibacterium prausnitzii,




or clade_309h or clade_309i), (clade_360
Ruminococcus obeum, Ruminococcus
Ruminococcus obeum, Ruminococcus



or clade_360c or clade_360g or
torques
torques



clade_360h or clade_360i), (clade_444 or



clade_444i), (clade_478 or clade_478i)


N582
(clade_262 or clade_262i), (clade_309 or
Clostridium symbiosum, Eubacterium

Eubacterium rectale, Faecalibacterium




clade_309c or clade_309e or clade_309g

rectale, Faecalibacterium prausnitzii,

prausnitzii, Ruminococcus obeum,



or clade_309h or clade_309i), (clade_408
Ruminococcus obeum, Ruminococcus
Ruminococcus torques



or clade_408b or clade_408d or
torques



clade_408f or clade_408g or



clade_408h), (clade_444 or clade_444i),



(clade_478 or clade_478i)


N584
(clade_260 or clade_260c or clade_260g

Blautia producta, Clostridium

Coprococcus comes



or clade_260h), (clade_262 or
symbiosum, Collinsella aerofaciens,



clade_262i), (clade_309 or clade_309c or
Coprococcus comes, Lachnospiraceae



clade_309e or clade_309g or clade_309h
bacterium 5_1_57FAA



or clade_309i), (clade_408 or clade_408b



or clade_408d or clade_408f or



clade_408g or clade_408h), (clade_553



or clade_553i)


N603
(clade_172 or clade_172i), (clade_309 or
Bifidobacterium adolescentis, Dorea
Dorea longicatena, Eubacterium



clade_309c or clade_309e or clade_309g
longicatena, Eubacterium rectale,

rectale, Faecalibacterium prausnitzii,




or clade_309h or clade_309i), (clade_360
Faecalibacterium prausnitzii,
Ruminococcus obeum



or clade_360c or clade_360g or
Ruminococcus obeum



clade_360h or clade_360i), (clade_444 or



clade_444i), (clade_478 or clade_478i)


N682
clade_170, (clade_309 or clade_309c or

Bacteroides caccae, Eubacterium rectale,


Bacteroides caccae, Eubacterium




clade_309e or clade_309g or clade_309h
Faecalibacterium prausnitzii,

rectale, Faecalibacterium prausnitzii,




or clade_309i), (clade_444 or
Ruminococcus obeum
Ruminococcus obeum



clade_444i), (clade_478 or clade_478i)


N732
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Faecalibacterium
Coprococcus comes, Faecalibacterium



clade_309c or clade_309e or clade_309g
prausnitzii, Ruminococcus obeum,
prausnitzii, Ruminococcus obeum,



or clade_309h or clade_309i), (clade_478
Ruminococcus torques
Ruminococcus torques



or clade_478i)


N736
(clade_262 or clade_262i), (clade_309 or
Dorea longicatena, Faecalibacterium
Dorea longicatena, Faecalibacterium



clade_309c or clade_309e or clade_309g
prausnitzii, Ruminococcus obeum,
prausnitzii, Ruminococcus obeum,



or clade_309h or clade_309i), (clade_360
Ruminococcus torques
Ruminococcus torques



or clade_360c or clade_360g or



clade_360h or clade_360i), (clade_478 or



clade_478i)


N853
(clade_262 or clade_262i), (clade_444 or

Eubacterium rectale, Faecalibacterium


Eubacterium rectale, Faecalibacterium




clade_444i), (clade_478 or clade_478i)
prausnitzii, Ruminococcus torques
prausnitzii, Ruminococcus torques


N861
(clade_262 or clade_262i), (clade_309 or
Clostridium hathewayi, Ruminococcus
Ruminococcus obeum, Ruminococcus



clade_309c or clade_309e or clade_309g
obeum, Ruminococcus torques
torques



or clade_309h or clade_309i), (clade_408



or clade_408b or clade_408d or



clade_408f or clade_408g or clade_408h)


N879
(clade_309 or clade_309c or clade_309e
Faecalibacterium prausnitzii, Roseburia
Faecalibacterium prausnitzii, Roseburia



or clade_309g or clade_309h or
intestinalis, Ruminococcus obeum
intestinalis, Ruminococcus obeum



clade_309i), (clade_444 or clade_444i),



(clade_478 or clade_478i)


N975
clade_170, (clade_262 or clade_262i),

Bacteroides caccae, Coprococcus comes,


Bacteroides caccae, Coprococcus




(clade_360 or clade_360c or clade_360g
Dorea longicatena
comes, Dorea longicatena



or clade_360h clade_360i)


N999
(clade_309 or clade_309c or clade_309e
Dorea formicigenerans, Faecalibacterium
Dorea formicigenerans,



or clade_309g or clade_309h or
prausnitzii, Ruminococcus obeum
Faecalibacterium prausnitzii,



clade_309i), (clade_360 or clade_360c or

Ruminococcus obeum



clade_360g or clade_360h or clade_360i),



(clade_478 or clade_478i)


N1095
(clade_444 or clade_444i), (clade_522 or

Eubacterium eligens, Eubacterium rectale


Eubacterium eligens, Eubacterium




clade_522i)


rectale



N1947
(clade_262 or clade_262i), (clade_309 or

Bacteroides sp. 3_1_23, Collinsella

Dorea longicatena, Eubacterium



clade_309c or clade_309e or clade_309g
aerofaciens, Dorea longicatena,

rectale, Faecalibacterium prausnitzii,




or clade_309h or clade_309i), (clade_360

Escherichia coli, Eubacterium rectale,

Roseburia intestinalis, Ruminococcus



or clade_360c or clade_360g or
Faecalibacterium prausnitzii, Roseburia
obeum, Ruminococcus torques



clade_360h or clade_360i), (clade_38 or
intestinalis, Ruminococcus obeum,



clade_38e or clade_38i), (clade_444 or
Ruminococcus torques



clade_444i), (clade_478 or clade_478i),



(clade_553 or clade_553i), (clade_92 or



clade_92e or clade_92i)


N1948
(clade_262 or clade_262i), (clade_38 or

Bacteroides sp. 1_1_6, Bacteroides sp.

Faecalibacterium prausnitzii,



clade_38e or clade_38i), (clade_478 or
3_1_23, Faecalibacterium prausnitzii,
Ruminococcus torques



clade_478i), (clade_65 or clade_65e)
Ruminococcus torques


N1949
(clade_309 or clade_309c or clade_309e

Bacteroides sp. 1_1_6, Bacteroides sp.




or clade_309g or clade_309h or
3_1_23, Bacteroides vulgatus, Blautia



clade_309i), (clade_378 or clade_378e),

producta, Enterococcus faecalis,




(clade_38 or clade_38e or clade_38i),
Erysipelotrichaceae bacterium 3_1_53,



(clade_479 or clade_479c or clade_479g

Escherichia coli




or clade_479h), (clade_497 or clade_497e



or clade_497f), (clade_65 or clade_65e),



(clade_92 or clade_92e or clade_92i)


N1950
clade_253, (clade_309 or clade_309c or

Bacteroides sp. 1_1_6, Bacteroides sp.




clade_309e or clade_309g or clade_309h
3_1_23, Bacteroides vulgatus, Blautia



or clade_309i), (clade_378 or

producta, Clostridium disporicum,




clade_378e), (clade_38 or clade_38e or
Erysipelotrichaceae bacterium 3_1_53



clade_38i), (clade_479 or clade_479c or



clade_479g or clade_479h), (clade_65 or



clade_65e)


N1951
(clade_260 or clade_260c or clade_260g

Blautia producta, Clostridium bolteae,

Coprococcus comes, Eubacterium



or clade_260h), (clade_262 or
Clostridium hylemonae, Clostridium

rectale




clade_262i), (clade_309 or clade_309c or
symbiosum, Coprococcus comes,



clade_309e or clade_309g or clade_309h

Eubacterium rectale, Lachnospiraceae




or clade_309i), (clade_360 or clade_360c
bacterium 5_1_57FAA, Ruminococcus



or clade_360g or clade_360h or
gnavus



clade_360i), (clade_408 or clade_408b or



clade_408d or clade_408f or clade_408g



or clade_408h), (clade_444 or



clade_444i)


N1952
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Ruminococcus



clade_260c or clade_260g or
Clostridium butyricum, Clostridium
bromii



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium innocuum, Clostridium



or clade_309g or clade_309h or
mayombei, Clostridium orbiscindens,



clade_309i), (clade_351 or clade_351e),
Clostridium symbiosum, Clostridium



(clade_354 or clade_354e), (clade_360 or
tertium, Collinsella aerofaciens,



clade_360c or clade_360g or clade_360h
Coprococcus comes, Lachnospiraceae



or clade_360i), (clade_408 or clade_408b
bacterium 5_1_57FAA, Ruminococcus



or clade_408d or clade_408f or
bromii, Ruminococcus gnavus



clade_408g or clade_408h), clade_494,



clade_537, (clade_553 or clade_553i)


N1953
clade_253, (clade_262 or clade_262i),

Bacteroides sp. 1_1_6, Bacteroides

Coprococcus comes, Dorea



(clade_309 or clade_309c or clade_309e

vulgatus, Clostridium disporicum,

formicigenerans, Eubacterium rectale,



or clade_309g or clade_309h or
Clostridium mayombei, Clostridium
Faecalibacterium prausnitzii,



clade_309i), (clade_354 or clade_354e),
symbiosum, Coprobacillus sp. D7,
Odoribacter splanchnicus,



(clade_360 or clade_360c or clade_360g
Coprococcus comes, Dorea
Ruminococcus obeum



or clade_360h or clade_360i), (clade_378
formicigenerans, Enterococcus faecalis,



or clade_378e), (clade_408 or clade_408b
Erysipelotrichaceae bacterium 3_1_53,



or clade_408d or clade_408f or

Escherichia coli, Eubacterium rectale,




clade_408g or clade_408h), (clade_444
Faecalibacterium prausnitzii, Odoribacter



or clade_444i), clade_466, (clade_478 or
splanchnicus, Ruminococcus obeum



clade_478i), (clade_479 or clade_479c or



clade_479g or clade_479h), (clade_481



or clade_481a or clade_481b or



clade_481e or clade_481g or clade_481h



or clade_481i), (clade_497 or clade_497e



or clade_497f), (clade_65 or clade_65e),



(clade_92 or clade_92e or clade_92i)


N1954
clade_252, clade_253, (clade_260 or

Blautia sp. M25, Clostridium bolteae,


Blautia sp. M25, Coprococcus comes,




clade_260c or clade_260g or
Clostridium butyricum, Clostridium
Ruminococcus bromii



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium innocuum, Clostridium



or clade_309g or clade_309h or
mayombei, Clostridium orbiscindens,



clade_309i), (clade_351 or clade_351e),
Clostridium symbiosum, Clostridium



(clade_354 or clade_354e), (clade_360 or
tertium, Collinsella aerofaciens,



clade_360c or clade_360g or clade_360h
Coprococcus comes, Lachnospiraceae



or clade_360i), (clade_408 or clade_408b
bacterium 5_1_57FAA, Ruminococcus



or clade_408d or clade_408f or
bromii, Ruminococcus gnavus



clade_408g or clade_408h), clade_494,



clade_537, (clade_553 or clade_553i)


N1955
(clade_309 or clade_309c or clade_309e

Bacteroides sp. 1_1_6, Bacteroides sp.




or clade_309g or clade_309h or
2_1_22, Bacteroides sp. 3_1_23,



clade_309i), (clade_354 or clade_354e),

Bacteroides vulgatus, Blautia producta,




(clade_378 or clade_378e), (clade_38 or
Citrobacter sp. 30_2, Clostridium



clade_38e or clade_38i), (clade_479 or
sordellii, Coprobacillus sp. D7,



clade_479c or clade_479g or
Enterococcus faecalis, Enterococcus



clade_479h), (clade_481 or clade_481a or
faecium, Erysipelotrichaceae bacterium



clade_481b or clade_481e or clade_481g
3_1_53, Escherichia coli



or clade_481h or clade_481i), (clade_497



or clade_497e or clade_497f), (clade_65



or clade_65e), (clade_92 or clade_92e or



clade_92i)


N1956
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Clostridium nexile, Ruminococcus



clade_260c or clade_260g or
Clostridium butyricum, Clostridium
bromii



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium innocuum, Clostridium



or clade_309g or clade_309h or
mayombei, Clostridium nexile,



clade_309i), (clade_351 or clade_351e),
Clostridium orbiscindens, Clostridium



(clade_354 or clade_354e), (clade_360 or
symbiosum, Clostridium tertium,



clade_360c or clade_360g or clade_360h
Collinsella aerofaciens, Lachnospiraceae



or clade_360i), (clade_408 or clade_408b
bacterium 5_1_57FAA, Ruminococcus



or clade_408d or clade_408f or
bromii, Ruminococcus gnavus



clade_408g or clade_408h), clade_494,



clade_537, (clade_553 or clade_553i)


N1957
(clade_309 or clade_309c or clade_309e

Bacteroides sp. 1_1_6, Bacteroides sp.




or clade_309g or clade_309h or
3_1_23, Bacteroides vulgatus, Blautia



clade_309i), (clade_351 or clade_351e),

producta, Clostridium innocuum,




(clade_354 or clade_354e), (clade_378 or
Clostridium sordellii, Coprobacillus sp.



clade_378e), (clade_38 or clade_38e or
D7, Enterococcus faecalis, Escherichia



clade_38i), (clade_481 or clade_481a or

coli




clade_481b or clade_481e or clade_481g



or clade_481h or clade_481i), (clade_497



or clade_497e or clade_497f), (clade_65



or clade_65e), (clade_92 or clade_92e or



clade_92i)


N1958
(clade_351 or clade_351e), (clade_354 or
Clostridium innocuum, Clostridium



clade_354e), (clade_481 or clade_481a or
sordellii, Coprobacillus sp. D7



clade_481b or clade_481e or clade_481g



or clade_481h or clade_481i)


N1959
clade_253, (clade_262 or clade_262i),

Bacteroides sp. 1_1_6, Bacteroides sp.

Coprococcus comes, Dorea



(clade_309 or clade_309c or clade_309e
3_1_23, Bacteroides vulgatus, Blautia
formicigenerans, Dorea longicatena,



or clade_309g or clade_309h or

producta, Clostridium disporicum,


Eubacterium eligens, Eubacterium




clade_309i), (clade_360 or clade_360c or
Coprococcus comes, Dorea

rectale, Faecalibacterium prausnitzii,




clade_360g or clade_360h or clade_360i),
formicigenerans, Dorea longicatena,
Ruminococcus obeum, Ruminococcus



(clade_378 or clade_378e), (clade_38 or
Enterococcus faecalis,
torques



clade_38e or clade_38i), (clade_444 or
Erysipelotrichaceae bacterium 3_1_53,



clade_444i), (clade_478 or clade_478i),

Escherichia coli, Eubacterium eligens,




(clade_479 or clade_479c or clade_479g
Eubacterium rectale, Faecalibacterium



or clade_479h), (clade_497 or clade_497e
prausnitzii, Ruminococcus obeum,



or clade_497f), (clade_522 or
Ruminococcus torques



clade_522i), (clade_65 or clade_65e),



(clade_92 or clade_92e or clade_92i)


N1960
clade_253, (clade_262 or clade_262i),
Clostridium disporicum, Clostridium
Coprococcus comes, Dorea



(clade_309 or clade_309c or clade_309e
mayombei, Clostridium symbiosum,
formicigenerans, Eubacterium rectale,



or clade_309g or clade_309h or

Coprobacillus sp. D7, Coprococcus

Faecalibacterium prausnitzii,



clade_309i), (clade_354 or clade_354e),
comes, Dorea formicigenerans,
Ruminococcus obeum



(clade_360 or clade_360c or clade_360g
Enterococcus faecalis,



or clade_360h or clade_360i), (clade_408
Erysipelotrichaceae bacterium 3_1_53,



or clade_408b or clade_408d or

Escherichia coli, Eubacterium rectale,




clade_408f or clade_408g or
Faecalibacterium prausnitzii,



clade_408h), (clade_444 or clade_444i),
Ruminococcus obeum



(clade_478 or clade_478i), (clade_479 or



clade_479c or clade_479g or



clade_479h), (clade_481 or clade_481a or



clade_481b or clade_481e or clade_481g



or clade_481h or clade_481i), (clade_497



or clade_497e or clade_497f), (clade_92



or clade_92e or clade_92i)


N1961
(clade_309 or clade_309c or clade_309e

Bacteroides sp. 1_1_6, Bacteroides sp.




or clade_309g or clade_309h or
3_1_23, Bacteroides vulgatus, Blautia



clade_309i), (clade_351 or clade_351e),

producta, Clostridium innocuum,




(clade_378 or clade_378e), (clade_38 or
Enterococcus faecalis, Escherichia coli



clade_38e or clade_38i), (clade_497 or



clade_497e or clade_497f), (clade_65 or



clade_65e), (clade_92 or clade_92e or



clade_92i)


N1962
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Ruminococcus



clade_260c or clade_260g or
Clostridium butyricum, Clostridium
bromii



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium innocuum, Clostridium



or clade_309g or clade_309h or
mayombei, Clostridium orbiscindens,



clade_309i), (clade_351 or clade_351e),
Clostridium symbiosum, Clostridium



(clade_354 or clade_354e), (clade_360 or
tertium, Collinsella aerofaciens,



clade_360c or clade_360g or clade_360h
Coprococcus comes, Lachnospiraceae



or clade_360i), (clade_408 or clade_408b
bacterium 5_1_57FAA, Ruminococcus



or clade_408d or clade_408f or
bromii, Ruminococcus gnavus



clade_408g or clade_408h), clade_494,



clade_537, (clade_553 or clade_553i)


N1963
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium

Coprococcus comes, Ruminococcus



clade_260c or clade_260g or
disporicum, Clostridium hylemonae,
bromii



clade_260h), (clade_262 or clade_262i),
Clostridium innocuum, Clostridium



(clade_309 or clade_309c or clade_309e
orbiscindens, Clostridium symbiosum,



or clade_309g or clade_309h or
Clostridium tertium, Collinsella



clade_309i), (clade_351 or clade_351e),
aerofaciens, Coprococcus comes,



(clade_360 or clade_360c or clade_360g
Lachnospiraceae bacterium 5_1_57FAA,



or clade_360h or clade_360i), (clade_408
Ruminococcus bromii, Ruminococcus



or clade_408b or clade_408d or
gnavus



clade_408f or clade_408g or



clade_408h), clade_494, clade_537,



(clade_553 or clade_553i)


N1964
clade_170, (clade_260 or clade_260c or
Alistipes shahii, Bacteroides caccae,
Alistipes shahii, Bacteroides caccae,



clade_260g or clade_260h), (clade_262

Bacteroides stercoris, Blautia producta,


Bacteroides stercoris, Coprococcus




or clade_262i), clade_286, (clade_309 or
Clostridium hathewayi, Clostridium
comes, Eubacterium rectale,



clade_309c or clade_309e or clade_309g
symbiosum, Collinsella aerofaciens,
Holdemania filiformis, Parabacteroides



or clade_309h or clade_309i), (clade_408
Coprococcus comes, Eubacterium rectale,
merdae, Ruminococcus bromii,



or clade_408b or clade_408d or
Holdemania filiformis, Lachnospiraceae
Ruminococcus obeum, Ruminococcus



clade_408f or clade_408g or
bacterium 5_1_57FAA, Parabacteroides
torques



clade_408h), (clade_444 or clade_444i),
merdae, Ruminococcus bromii,



clade_485, clade_500, clade_537,
Ruminococcus obeum, Ruminococcus



(clade_553 or clade_553i), clade_85
torques


N1965
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Eubacterium



clade_260c or clade_260g or
Clostridium butyricum, Clostridium

rectale, Faecalibacterium prausnitzii,




clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium mayombei,
Roseburia intestinalis, Ruminococcus



(clade_309 or clade_309c or clade_309e
Clostridium symbiosum, Collinsella
bromii, Ruminococcus obeum



or clade_309g or clade_309h or
aerofaciens, Coprococcus comes,



clade_309i), (clade_354 or clade_354e),

Eubacterium rectale, Faecalibacterium




(clade_408 or clade_408b or clade_408d
prausnitzii, Lachnospiraceae bacterium



or clade_408f or clade_408g or
5_1_57FAA, Roseburia intestinalis,



clade_408h), (clade_444 or clade_444i),
Ruminococcus bromii, Ruminococcus



(clade_478 or clade_478i), clade_537,
obeum



(clade_553 or clade_553i)


N1966
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes



clade_260c or clade_260g or
Clostridium butyricum, Clostridium



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium mayombei,



(clade_309 or clade_309c or clade_309e
Clostridium symbiosum, Collinsella



or clade_309g or clade_309h or
aerofaciens, Coprococcus comes,



clade_309i), (clade_354 or clade_354e),
Lachnospiraceae bacterium 5_1_57FAA



(clade_408 or clade_408b or clade_408d



or clade_408f or clade_408g or



clade_408h), (clade_553 or clade_553i)


N1967
(clade_309 or clade_309c or clade_309e

Bacteroides sp. 1_1_6, Bacteroides sp.




or clade_309g or clade_309h or
3_1_23, Bacteroides vulgatus, Blautia



clade_309i), (clade_378 or clade_378e),

producta, Enterococcus faecium,




(clade_38 or clade_38e or clade_38i),

Escherichia coli




(clade_497 or clade_497e or clade_497f),



(clade_65 or clade_65e), (clade_92 or



clade_92e or clade_92i)


N1968
clade_252, clade_253, (clade_351 or
Clostridium butyricum, Clostridium
Faecalibacterium prausnitzii,



clade_351e), (clade_354 or clade_354e),
disporicum, Clostridium innocuum,
Ruminococcus bromii



(clade_478 or clade_478i), clade_494,
Clostridium mayombei, Clostridium



clade_537, (clade_553 or clade_553i)
orbiscindens, Clostridium tertium,




Collinsella aerofaciens, Faecalibacterium




prausnitzii, Ruminococcus bromii


N1969
clade_252, clade_253, (clade_262 or

Blautia producta, Clostridium butyricum,

Dorea formicigenerans, Ruminococcus



clade_262i), (clade_309 or clade_309c or
Clostridium disporicum, Clostridium
torques



clade_309e or clade_309g or clade_309h
mayombei, Dorea formicigenerans,



or clade_309i), (clade_354 or
Erysipelotrichaceae bacterium 3_1_53,



clade_354e), (clade_360 or clade_360c or
Ruminococcus torques



clade_360g or clade_360h or clade_360i),



(clade_479 or clade_479c or clade_479g



or clade_479h)


N1970
(clade_351 or clade_351e), (clade_354 or

Bacteroides sp. 1_1_6, Bacteroides sp.




clade_354e), (clade_378 or clade_378e),
3_1_23, Bacteroides vulgatus,



(clade_38 or clade_38e or clade_38i),
Clostridium innocuum, Clostridium



(clade_481 or clade_481a or clade_481b
sordellii, Coprobacillus sp. D7,



or clade_481e or clade_481g or
Enterococcus faecalis, Escherichia coli



clade_481h or clade_481i), (clade_497 or



clade_497e or clade_497f), (clade_65 or



clade_65e), (clade_92 or clade_92e or



clade_92i)


N1971
clade_252, clade_253, (clade_260 or

Blautia producta, Blautia schinkii,

Coprococcus comes, Ruminococcus



clade_260c or clade_260g or
Clostridium bolteae, Clostridium
bromii



clade_260h), (clade_262 or clade_262i),
butyricum, Clostridium disporicum,



(clade_309 or clade_309c or clade_309e
Clostridium hylemonae, Clostridium



or clade_309g or clade_309h or
innocuum, Clostridium mayombei,



clade_309i), (clade_351 or clade_351e),
Clostridium orbiscindens, Clostridium



(clade_354 or clade_354e), (clade_360 or
symbiosum, Clostridium tertium,



clade_360c or clade_360g or clade_360h
Collinsella aerofaciens, Coprococcus



or clade_360i), (clade_408 or clade_408b
comes, Lachnospiraceae bacterium



or clade_408d or clade_408f or
5_1_57FAA, Ruminococcus bromii,



clade_408g or clade_408h), clade_494,
Ruminococcus gnavus



clade_537, (clade_553 or clade_553i)


N1972
clade_253, (clade_262 or clade_262i),
Clostridium disporicum, Clostridium
Coprococcus comes, Dorea



(clade_309 or clade_309c or clade_309e
mayombei, Clostridium symbiosum,
formicigenerans, Eubacterium rectale,



or clade_309g or clade_309h or

Coprobacillus sp. D7, Coprococcus

Faecalibacterium prausnitzii,



clade_309i), (clade_354 or clade_354e),
comes, Dorea formicigenerans,
Ruminococcus obeum



(clade_360 or clade_360c or clade_360g
Erysipelotrichaceae bacterium 3153,



or clade_360h or clade_360i), (clade_408

Eubacterium rectale, Faecalibacterium




or clade_408b or clade_408d or
prausnitzii, Ruminococcus obeum



clade_408f or clade_408g or



clade_408h), (clade_444 or clade_444i),



(clade_478 or clade_478i), (clade_479 or



clade_479c or clade_479g or



clade_479h), (clade_481 or clade_481a or



clade_481b or clade_481e or clade_481g



or clade_481h or clade_481i)


N1973
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Ruminococcus



clade_260c or clade_260g or
Clostridium butyricum, Clostridium
bromii



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium innocuum, Clostridium



or clade_309g or clade_309h or
mayombei, Clostridium orbiscindens,



clade_309i), (clade_351 or clade_351e),
Clostridium symbiosum, Clostridium



(clade_354 or clade_354e), (clade_360 or
tertium, Coprococcus comes,



clade_360c or clade_360g or clade_360h
Lachnospiraceae bacterium 5_1_57FAA,



or clade_360i), (clade_408 or clade_408b
Ruminococcus bromii, Ruminococcus



or clade_408d or clade_408f or
gnavus



clade_408g or clade_408h), clade_494,



clade_537


N1974
(clade_262 or clade_262i), (clade_309 or
Coprococcus comes, Dorea
Coprococcus comes, Dorea



clade_309c or clade_309e or clade_309g
formicigenerans, Dorea longicatena,
formicigenerans, Dorea longicatena,



or clade_309h or clade_309i), (clade_360

Eubacterium rectale, Faecalibacterium


Eubacterium rectale, Faecalibacterium




or clade_360c or clade_360g or
prausnitzii, Odoribacter splanchnicus,
prausnitzii, Odoribacter splanchnicus,



clade_360h or clade_360i), (clade_444 or
Roseburia intestinalis, Ruminococcus
Roseburia intestinalis, Ruminococcus



clade_444i), clade_466, (clade_478 or
obeum, Ruminococcus torques
obeum, Ruminococcus torques



clade_478i)


N1975
(clade_260 or clade_260c or clade_260g

Blautia producta, Clostridium bolteae,

Coprococcus comes, Eubacterium



or clade_260h), (clade_262 or
Clostridium hylemonae, Clostridium

rectale, Faecalibacterium prausnitzii,




clade_262i), (clade_309 or clade_309c or
innocuum, Clostridium mayombei,
Ruminococcus bromii



clade_309e or clade_309g or clade_309h
Clostridium orbiscindens, Clostridium



or clade_309i), (clade_351 or
symbiosum, Collinsella aerofaciens,



clade_351e), (clade_354 or clade_354e),
Coprococcus comes, Eubacterium rectale,



(clade_360 or clade_360c or clade_360g
Faecalibacterium prausnitzii,



or clade_360h or clade_360i), (clade_408
Lachnospiraceae bacterium 5_1_57FAA,



or clade_408b or clade_408d or
Ruminococcus bromii, Ruminococcus



clade_408f or clade_408g or
gnavus



clade_408h), (clade_444 or clade_444i),



(clade_478 or clade_478i), clade_494,



clade_537, (clade_553 or clade_553i)


N1976
(clade 351 or clade_351e), (clade_378 or

Bacteroides sp. 1_1_6, Bacteroides sp.




clade_378e), (clade_38 or clade_38e or
3_1_23, Bacteroides vulgatus,



clade_38i), (clade_481 or clade_481a or
Clostridium innocuum, Coprobacillus sp.



clade_481b or clade_481e or clade_481g
D7, Enterococcus faecalis



or clade_481h or clade_481i), (clade_497



or clade_497e or clade_497f), (clade_65



or clade_65e)


N1977
clade_252, clade_253, (clade_262 or

Blautia producta, Clostridium butyricum,

Dorea formicigenerans, Ruminococcus



clade_262i), (clade_309 or clade_309c or
Clostridium disporicum, Clostridium
torques



clade_309e or clade_309g or clade_309h
mayombei, Dorea formicigenerans,



or clade_309i), (clade_354 or
Erysipelotrichaceae bacterium 3_1_53,



clade_354e), (clade_360 or clade_360c or

Eubacterium tenue, Ruminococcus




clade_360g or clade_360h or clade_360i),
torques



(clade_479 or clade_479c or clade_479g



or clade_479h)


N1978
clade_253, (clade_262 or clade_262i),

Bacteroides sp. 1_1_6, Bacteroides

Coprococcus comes, Dorea



(clade_309 or clade_309c or clade_309e

vulgatus, Clostridium disporicum,

formicigenerans, Eubacterium rectale,



or clade_309g or clade_309h or
Clostridium mayombei, Clostridium
Faecalibacterium prausnitzii,



clade_309i), (clade_354 or clade_354e),
symbiosum, Coprobacillus sp. D7,
Odoribacter splanchnicus,



(clade_360 or clade_360c or clade_360g
Coprococcus comes, Dorea
Ruminococcus obeum



or clade_360h or clade_360i), (clade_378
formicigenerans, Erysipelotrichaceae



or clade_378e), (clade_408 or clade_408b
bacterium 3_1_53, Escherichia coli,



or clade_408d or clade_408f or

Eubacterium rectale, Faecalibacterium




clade_408g or clade_408h), (clade_444
prausnitzii, Odoribacter splanchnicus,



or clade_444i), clade_466, (clade_478 or
Ruminococcus obeum



clade_478i), (clade_479 or clade_479c or



clade_479g or clade_479h), (clade_481



or clade_481a or clade_481b or



clade_481e or clade_481g or clade_481h



or clade_481i), (clade_65 or clade_65e),



(clade_92 or clade_92e or clade_92i)


N1979
(clade_262 or clade_262i), (clade_309 or

Bacteroides sp. 1_1_6, Coprococcus

Coprococcus comes, Dorea



clade_309c or clade_309e or clade_309g
comes, Dorea formicigenerans, Dorea
formicigenerans, Dorea longicatena,



or clade_309h or clade_309i), (clade_360
longicatena, Eubacterium rectale,

Eubacterium rectale, Faecalibacterium




or clade_360c or clade_360g or
Faecalibacterium prausnitzii,
prausnitzii, Ruminococcus obeum,



clade_360h or clade_360i), (clade_444 or
Ruminococcus obeum, Ruminococcus
Ruminococcus torques



clade_444i), (clade_478 or clade_478i),
torques



(clade_65 or clade_65e)


N1980
(clade_309 or clade_309c or clade_309e

Blautia producta, Clostridium innocuum,




or clade_309g or clade_309h or
Clostridium sordellii, Coprobacillus sp.



clade_309i), (clade_351 or clade_351e),
D7, Enterococcus faecalis, Escherichia



(clade_354 or clade_354e), (clade_481 or

coli




clade_481a or clade_481b or clade_481e



or clade_481g or clade_481h or



clade_481i), (clade_497 or clade_497e or



clade_497f), (clade_92 or clade_92e or



clade_92i)


N1981
(clade_262 or clade_262i), (clade_309 or

Bacteroides sp. 3_1_23, Dorea

Dorea longicatena, Eubacterium



clade_309c or clade_309e or clade_309g
longicatena, Eubacterium eligens,

eligens, Eubacterium rectale,




or clade_309h or clade_309i), (clade_360

Eubacterium rectale, Faecalibacterium

Faecalibacterium prausnitzii,



or clade_360c or clade_360g or
prausnitzii, Ruminococcus obeum,
Ruminococcus obeum, Ruminococcus



clade_360h or clade_360i), (clade_38 or
Ruminococcus torques
torques



clade_38e or clade_38i), (clade_444 or



clade_444i), (clade_478 or clade_478i),



(clade_522 or clade_522i)


N1982
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Dorea



clade_260c or clade_260g or
Clostridium butyricum, Clostridium
formicigenerans, Eubacterium rectale,



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium mayombei,
Ruminococcus obeum, Ruminococcus



(clade_309 or clade_309c or clade_309e
Clostridium symbiosum, Collinsella
torques



or clade_309g or clade_309h or
aerofaciens, Coprococcus comes, Dorea



clade_309i), (clade_354 or clade_354e),
formicigenerans, Erysipelotrichaceae



(clade_360 or clade_360c or clade_360g
bacterium 3_1_53, Eubacterium rectale,



or clade_360h or clade_360i), (clade_408
Lachnospiraceae bacterium 5_1_57FAA,



or clade_408b or clade_408d or
Ruminococcus obeum, Ruminococcus



clade_408f or clade_408g or
torques



clade_408h), (clade_444 or clade_444i),



(clade_479 or clade_479c or clade_479g



or clade_479h), (clade_553 or



clade_553i)


N1983
clade_252, clade_253, (clade_309 or

Bacteroides sp. 1_1_6, Bacteroides sp.




clade_309c or clade_309e or clade_309g
3_1_23, Bacteroides vulgatus, Blautia



or clade_309h or clade_309i), (clade_354

producta, Clostridium butyricum,




or clade_354e), (clade_378 or
Clostridium disporicum, Clostridium



clade_378e), (clade_38 or clade_38e or
mayombei, Enterococcus faecium,



clade_38i), (clade_479 or clade_479c or
Erysipelotrichaceae bacterium 3_1_53,



clade_479g or clade_479h), (clade_497

Escherichia coli




or clade_497e or clade_497f), (clade_65



or clade_65e), (clade_92 or clade_92e or



clade_92i)


N1984
clade_253, (clade_260 or clade_260c or

Blautia producta, Clostridium


Eubacterium rectale




clade_260g or clade_260h), (clade_309
disporicum, Clostridium innocuum,



or clade_309c or clade_309e or
Clostridium mayombei, Clostridium



clade_309g or clade_309h or clade_309i),
orbiscindens, Clostridium symbiosum,



(clade_351 or clade_351e), (clade_354 or
Collinsella aerofaciens, Eubacterium



clade_354e), (clade_408 or clade_408b or

rectale, Lachnospiraceae bacterium




clade_408d or clade_408f or clade_408g
5_1_57FAA



or clade_408h), (clade_444 or



clade_444i), clade_494, (clade_553 or



clade_553i)


N1985
clade_252, clade_253, (clade_260 or

Blautia glucerasei, Clostridium bolteae,

Coprococcus comes, Ruminococcus



clade_260c or clade_260g or
Clostridium butyricum, Clostridium
bromii



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium innocuum, Clostridium



or clade_309g or clade_309h or
mayombei, Clostridium orbiscindens,



clade_309i), (clade_351 or clade_351e),
Clostridium symbiosum, Clostridium



(clade_354 or clade_354e), (clade_360 or
tertium, Collinsella aerofaciens,



clade_360c or clade_360g or clade_360h
Coprococcus comes, Lachnospiraceae



or clade_360i), (clade_408 or clade_408b
bacterium 5_1_57FAA, Ruminococcus



or clade_408d or clade_408f or
bromii, Ruminococcus gnavus



clade_408g or clade_408h), clade_494,



clade_537, (clade_553 or clade_553i)


N1986
clade_253, (clade_260 or clade_260c or

Blautia producta, Clostridium

Coprococcus comes



clade_260g or clade_260h), (clade_262
disporicum, Clostridium symbiosum,



or clade_262i), (clade_309 or clade_309c
Collinsella aerofaciens, Coprococcus



or clade_309e or clade_309g or
comes, Lachnospiraceae bacterium



clade_309h or clade_309i), (clade_408 or
5_1_57FAA



clade_408b or clade_408d or clade_408f



or clade_408g or clade_408h),



(clade_553 or clade_553i)


N1987
(clade_309 or clade_309c or clade_309e

Blautia producta, Clostridium sordellii,




or clade_309g or clade_309h or

Escherichia coli




clade_309i), (clade_354 or clade_354e),



(clade_92 or clade_92e or clade_92i)


N1988
clade_252, clade_253, (clade_260 or
Alistipes shahii, Blautia producta,
Alistipes shahii, Coprococcus comes,



clade_260c or clade_260g or
Clostridium bolteae, Clostridium

Eubacterium rectale, Faecalibacterium




clade_260h), (clade_262 or clade_262i),
butyricum, Clostridium disporicum,
prausnitzii, Holdemania filiformis,



(clade_309 or clade_309c or clade_309e
Clostridium mayombei, Clostridium
Roseburia intestinalis, Ruminococcus



or clade_309g or clade_309h or
symbiosum, Collinsella aerofaciens,
obeum, Ruminococcus torques



clade_309i), (clade_354 or clade_354e),
Coprococcus comes, Eubacterium rectale,



(clade_408 or clade_408b or clade_408d
Faecalibacterium prausnitzii, Holdemania



or clade_408f or clade_408g or
filiformis, Lachnospiraceae bacterium



clade_408h), (clade_444 or clade_444i),
5_1_57FAA, Roseburia intestinalis,



(clade_478 or clade_478i), clade_485,
Ruminococcus obeum, Ruminococcus



clade_500, (clade_553 or clade_553i)
torques


N1989
clade_252, clade_253, (clade_262 or

Bacteroides sp. 1_1_6, Bacteroides sp.

Dorea formicigenerans, Ruminococcus



clade_262i), (clade_309 or clade_309c or
3123, Bacteroides vulgatus, Blautia
torques



clade_309e or clade_309g or clade_309h

producta, Clostridium butyricum,




or clade_309i), (clade_354 or
Clostridium disporicum, Clostridium



clade_354e), (clade_360 or clade_360c or
mayombei, Dorea formicigenerans,



clade_360g or clade_360h or clade_360i),
Enterococcus faecium,



(clade_378 or clade_378e), (clade_38 or
Erysipelotrichaceae bacterium 3_1_53,



clade_38e or clade_38i), (clade_479 or

Escherichia coli, Eubacterium tenue,




clade_479c or clade_479g or
Ruminococcus torques



clade_479h), (clade_497 or clade_497e or



clade_497f), (clade_65 or clade_65e),



(clade_92 or clade_92e or clade_92i)


N1990
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium

Coprococcus comes, Eubacterium



clade_260c or clade_260g or
disporicum, Clostridium hylemonae,

rectale, Faecalibacterium prausnitzii,




clade_260h), (clade_262 or clade_262i),
Clostridium innocuum, Clostridium
Ruminococcus bromii



(clade_309 or clade_309c or clade_309e
orbiscindens, Clostridium symbiosum,



or clade_309g or clade_309h or
Clostridium tertium, Collinsella



clade_309i), (clade_351 or clade_351e),
aerofaciens, Coprococcus comes,



(clade_360 or clade_360c or clade_360g

Eubacterium rectale, Faecalibacterium




or clade_360h or clade_360i), (clade_408
prausnitzii, Lachnospiraceae bacterium



or clade_408b or clade_408d or
5_1_57FAA, Ruminococcus bromii,



clade_408f or clade_408g or
Ruminococcus gnavus



clade_408h), (clade_444 or clade_444i),



(clade_478 or clade_478i), clade_494,



clade_537, (clade_553 or clade_553i)


N1991
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Eubacterium



clade_260c or clade_260g or
Clostridium butyricum, Clostridium

rectale




clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium innocuum, Clostridium



or clade_309g or clade_309h or
mayombei, Clostridium symbiosum,



clade_309i), (clade_351 or clade_351e),
Clostridium tertium, Collinsella



(clade_354 or clade_354e), (clade_360 or
aerofaciens, Coprococcus comes,



clade_360c or clade_360g or clade_360h

Eubacterium rectale, Lachnospiraceae




or clade_360i), (clade_408 or clade_408b
bacterium 5_1_57FAA, Ruminococcus



or clade_408d or clade_408f or
gnavus



clade_408g or clade_408h), (clade_444



or clade_444i), (clade_553 or clade_553i)


N1992
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Lachnospiraceae bacterium



clade_260c or clade_260g or
Clostridium butyricum, Clostridium
1_4_56FAA, Ruminococcus bromii



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium innocuum, Clostridium



or clade_309g or clade_309h or
mayombei, Clostridium orbiscindens,



clade_309i), (clade_351 or clade_351e),
Clostridium symbiosum, Clostridium



(clade_354 or clade_354e), (clade_360 or
tertium, Collinsella aerofaciens,



clade_360c or clade_360g or clade_360h
Lachnospiraceae bacterium 1_4_56FAA,



or clade_360i), (clade_408 or clade_408b
Lachnospiraceae bacterium 5_1_57FAA,



or clade_408d or clade_408f or
Ruminococcus bromii, Ruminococcus



clade_408g or clade_408h), clade_494,
gnavus



clade_537, (clade_553 or clade_553i)


N1993
clade_110, clade_170, (clade_378 or

Bacteroides caccae, Bacteroides


Bacteroides caccae, Bacteroides




clade_378e), (clade_38 or clade_38e or

eggerthii, Bacteroides sp. 1_1_6,


eggerthii, Bacteroides stercoris,




clade_38i), (clade_65 or clade_65e),

Bacteroides sp. 3_1_23, Bacteroides


Bacteroides uniformis




clade_85

stercoris, Bacteroides uniformis,






Bacteroides vulgatus



N1994
clade_253, (clade_378 or clade_378e),

Bacteroides sp. 1_1_6, Bacteroides sp.




(clade_38 or clade_38e or clade_38i),
3_1_23, Bacteroides vulgatus,



(clade_479 or clade_479c or clade_479g
Clostridium disporicum, Enterococcus



or clade_479h), (clade_497 or clade_497e
faecium, Erysipelotrichaceae bacterium



or clade_497f), (clade_65 or clade_65e),
3_1_53, Escherichia coli



(clade_92 or clade_92e or clade_92i)


N1995
clade_253, (clade_309 or clade_309c or

Bacteroides sp. 1_1_6, Bacteroides sp.




clade_309e or clade_309g or clade_309h
3_1_23, Bacteroides vulgatus, Blautia



or clade_309i), (clade_378 or

producta, Clostridium disporicum,




clade_378e), (clade_38 or clade_38e or
Enterococcus faecium,



clade_38i), (clade_479 or clade_479c or
Erysipelotrichaceae bacterium 3_1_53,



clade_479g or clade_479h), (clade_497

Escherichia coli




or clade_497e or clade_497f), (clade_65



or clade_65e), (clade_92 or clade_92e or



clade_92i)


N1996
clade_253, (clade_309 or clade_309c or

Blautia producta, Clostridium




clade_309e or clade_309g or clade_309h
disporicum, Erysipelotrichaceae



or clade_309i), (clade_479 or clade_479c
bacterium 3_1_53



or clade_479g or clade_479h)


N1997
clade_253, (clade_309 or clade_309c or

Blautia producta, Clostridium




clade_309e or clade_309g or clade_309h
disporicum, Enterococcus faecium,



or clade_309i), (clade_479 or clade_479c
Erysipelotrichaceae bacterium 3_1_53,



or clade_479g or clade_479h),

Escherichia coli




(clade_497 or clade_497e or clade_497f),



(clade_92 or clade_92e or clade_92i)


N1998
(clade_378 or clade_378e), (clade_38 or

Bacteroides sp. 1_1_6, Bacteroides sp.




clade_38e or clade_38i), (clade_65 or
3_1_23, Bacteroides vulgatus



clade_65e)


N1999
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Eubacterium



clade_260c or clade_260g or
Clostridium butyricum, Clostridium

rectale, Faecalibacterium prausnitzii




clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium mayombei,



(clade_309 or clade_309c or clade_309e
Clostridium symbiosum, Collinsella



or clade_309g or clade_309h or
aerofaciens, Coprococcus comes,



clade_309i), (clade_354 or clade_354e),

Eubacterium rectale, Faecalibacterium




(clade_408 or clade_408b or clade_408d
prausnitzii, Lachnospiraceae bacterium



or clade_408f or clade_408g or
5_1_57FAA



clade_408h), (clade_444 or clade_444i),



(clade_478 or clade_478i), (clade_553 or



clade_553i)


N2000
clade_252, clade_253, (clade_262 or

Blautia producta, Clostridium butyricum,

Dorea formicigenerans, Ruminococcus



clade_262i), (clade_309 or clade_309c or
Clostridium disporicum, Clostridium
torques



clade_309e or clade_309g or clade_309h
mayombei, Dorea formicigenerans,



or clade_309i), (clade_354 or
Erysipelotrichaceae bacterium 3_1_53,



clade_354e), (clade_360 or clade_360c or

Eubacterium tenue, Ruminococcus




clade_360g or clade_360h or clade_360i),
torques



(clade_479 or clade_479c or clade_479g



or clade_479h)


N2001
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Ruminococcus



clade_260c or clade_260g or
Clostridium disporicum, Clostridium
bromii



clade_260h), (clade_262 or clade_262i),
hylemonae, Clostridium innocuum,



(clade_309 or clade_309c or clade_309e
Clostridium mayombei, Clostridium



or clade_309g or clade_309h or
orbiscindens, Clostridium symbiosum,



clade_309i), (clade_351 or clade_351e),
Clostridium tertium, Collinsella



(clade_354 or clade_354e), (clade_360 or
aerofaciens, Coprococcus comes,



clade_360c or clade_360g or clade_360h
Lachnospiraceae bacterium 5_1_57FAA,



or clade_360i), (clade_408 or clade_408b
Ruminococcus bromii, Ruminococcus



or clade_408d or clade_408f or
gnavus



clade_408g or clade_408h), clade_494,



clade_537, (clade_553 or clade_553i)


N2002
clade_252, clade_253, (clade_309 or

Blautia producta, Clostridium butyricum,




clade_309c or clade_309e or clade_309g
Clostridium disporicum, Clostridium



or clade_309h or clade_309i), (clade_354
mayombei, Erysipelotrichaceae bacterium



or clade_354e), (clade_479 or clade_479c
3_1_53



or clade_479g or clade_479h)


N2003
clade_252, clade_253, (clade_260 or

Blautia producta, Clostridium bolteae,

Coprococcus comes, Ruminococcus



clade_260c or clade_260g or
Clostridium butyricum, Clostridium
bromii



clade_260h), (clade_262 or clade_262i),
disporicum, Clostridium hylemonae,



(clade_309 or clade_309c or clade_309e
Clostridium mayombei, Clostridium



or clade_309g or clade_309h or
sordellii, Clostridium symbiosum,



clade_309i), (clade_354 or clade_354e),
Clostridium tertium, Collinsella



(clade_360 or clade_360c or clade_360g
aerofaciens, Coprobacillus sp. D7,



or clade_360h or clade_360i), (clade_38
Coprococcus comes, Eubacterium sp.



or clade_38e or clade_38i), (clade_408 or
WAL 14571, Lachnospiraceae bacterium



clade_408b or clade_408d or clade_408f
5_1_57FAA, Ruminococcus bromii,



or clade_408g or clade_408h),
Ruminococcus gnavus



(clade_481 or clade_481a or clade_481b



or clade_481e or clade_481g or



clade_481h or clade_481i), clade_537,



(clade_553 or clade_553i)


N2004
(clade_351 or clade_351e), (clade_378 or

Bacteroides sp. 1_1_6, Bacteroides sp.




clade_378e), (clade_38 or clade_38e or
3_1_23, Bacteroides vulgatus,



clade_38i), (clade_497 or clade_497e or
Clostridium innocuum, Enterococcus



clade_497f), (clade_65 or clade_65e),
faecalis, Escherichia coli



(clade_92 or clade_92e or clade_92i)


N2005
(clade_309 or clade_309c or clade_309e

Bacteroides sp. 1_1_6, Bacteroides sp.




or clade_309g or clade_309h or
3_1_23, Bacteroides vulgatus, Blautia



clade_309i), (clade_378 or clade_378e),

producta, Enterococcus faecalis,




(clade_38 or clade_38e or clade_38i),

Escherichia coli




(clade_497 or clade_497e or clade_497f),



(clade_65 or clade_65e), (clade_92 or



clade_92e or clade_92i)


N2006
clade_170, (clade_262 or clade_262i),

Bacteroides caccae, Bacteroides sp.


Bacteroides caccae, Coprococcus




(clade_309 or clade_309c or clade_309e
1_1_6, Coprococcus comes, Dorea
comes, Dorea formicigenerans, Dorea



or clade_309g or clade_309h or
formicigenerans, Dorea longicatena,
longicatena, Eubacterium rectale,



clade_309i), (clade_360 or clade_360c or

Eubacterium rectale, Faecalibacterium

Faecalibacterium prausnitzii,



clade_360g or clade_360h or clade_360i),
prausnitzii, Ruminococcus obeum,
Ruminococcus obeum, Ruminococcus



(clade_444 or clade_444i), (clade_478 or
Ruminococcus torques
torques



clade_478i), (clade_65 or clade_65e)


N2007
clade_253, (clade_262 or clade_262i),

Bacteroides sp. 1_1_6, Bacteroides

Coprococcus comes, Dorea



(clade_309 or clade_309c or clade_309e

vulgatus, Clostridium disporicum,

formicigenerans, Eubacterium rectale,



or clade_309g or clade_309h or
Clostridium mayombei, Clostridium
Faecalibacterium prausnitzii,



clade_309i), (clade_354 or clade_354e),
symbiosum, Coprobacillus sp. D7,
Odoribacter splanchnicus,



(clade_360 or clade_360c or clade_360g
Coprococcus comes, Dorea
Ruminococcus obeum



or clade_360h or clade_360i), (clade_378
formicigenerans, Enterococcus faecalis,



or clade_378e), (clade_408 or clade_408b
Erysipelotrichaceae bacterium 3_1_53,



or clade_408d or clade_408f or

Eubacterium rectale, Faecalibacterium




clade_408g or clade_408h), (clade_444
prausnitzii, Odoribacter splanchnicus,



or clade_444i), clade_466, (clade_478 or
Ruminococcus obeum



clade_478i), (clade_479 or clade_479c or



clade_479g or clade_479h), (clade_481



or clade_481a or clade_481b or



clade_481e or clade_481g or clade_481h



or clade_481i), (clade_497 or clade_497e



or clade_497f), (clade_65 or clade_65e)


















TABLE 18





Net ID
F-Score
KEGG Orthology Pathways

















N253
29
KO:K00004, KO:K00023, KO:K00101, KO:K00102, KO:K00116, KO:K00156, KO:K00158, KO:K00163, KO:K00627,




KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659, KO:K01720, KO:K01734,




KO:K01905, KO:K01907, KO:K01908, KO:K03366, KO:K03416, KO:K03417, KO:K03777, KO:K03778, KO:K03821,




KO:K04020, KO:K05973


N250
29
KO:K00004, KO:K00023, KO:K00101, KO:K00102, KO:K00116, KO:K00156, KO:K00158, KO:K00163, KO:K00627,




KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659, KO:K01720, KO:K01734,




KO:K01905, KO:K01907, KO:K01908, KO:K03366, KO:K03416, KO:K03417, KO:K03777, KO:K03778, KO:K03821,




KO:K04020, KO:K05973


N249
29
KO:K00004, KO:K00023, KO:K00101, KO:K00102, KO:K00116, KO:K00156, KO:K00158, KO:K00163, KO:K00627,




KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659, KO:K01720, KO:K01734,




KO:K01905, KO:K01907, KO:K01908, KO:K03366, KO:K03416, KO:K03417, KO:K03777, KO:K03778, KO:K03821,




KO:K04020, KO:K05973


N252
29
KO:K00004, KO:K00023, KO:K00101, KO:K00102, KO:K00116, KO:K00156, KO:K00158, KO:K00163, KO:K00627,




KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659, KO:K01720, KO:K01734,




KO:K01905, KO:K01907, KO:K01908, KO:K03366, KO:K03416, KO:K03417, KO:K03777, KO:K03778, KO:K03821,




KO:K04020, KO:K05973


N251
28
KO:K00023, KO:K00101, KO:K00102, KO:K00116, KO:K00156, KO:K00158, KO:K00163, KO:K00627, KO:K00634,




KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659, KO:K01720, KO:K01734, KO:K01905,




KO:K01907, KO:K01908, KO:K03366, KO:K03416, KO:K03417, KO:K03777, KO:K03778, KO:K03821, KO:K04020,




KO:K05973


N257
27
KO:K00023, KO:K00101, KO:K00102, KO:K00116, KO:K00156, KO:K00158, KO:K00163, KO:K00627, KO:K00634,




KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659, KO:K01720, KO:K01734, KO:K01905,




KO:K01907, KO:K03366, KO:K03416, KO:K03417, KO:K03777, KO:K03778, KO:K03821, KO:K04020, KO:K05973


N254
27
KO:K00023, KO:K00101, KO:K00102, KO:K00116, KO:K00156, KO:K00158, KO:K00163, KO:K00627, KO:K00634,




KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659, KO:K01720, KO:K01734, KO:K01905,




KO:K01907, KO:K03366, KO:K03416, KO:K03417, KO:K03777, KO:K03778, KO:K03821, KO:K04020, KO:K05973


N255
27
KO:K00023, KO:K00101, KO:K00102, KO:K00116, KO:K00156, KO:K00158, KO:K00163, KO:K00627, KO:K00634,




KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659, KO:K01720, KO:K01734, KO:K01905,




KO:K01907, KO:K03366, KO:K03416, KO:K03417, KO:K03777, KO:K03778, KO:K03821, KO:K04020, KO:K05973


N1036
17
KO:K00101, KO:K00116, KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K00932, KO:K01069, KO:K01442,




KO:K01659, KO:K01720, KO:K01734, KO:K01908, KO:K03417, KO:K03777, KO:K03778, KO:K04020


N968
17
KO:K00101, KO:K00116, KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K00932, KO:K01069, KO:K01442,




KO:K01659, KO:K01720, KO:K01734, KO:K01908, KO:K03417, KO:K03777, KO:K03778, KO:K04020


N335
15
KO:K00102, KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069,




KO:K01442, KO:K01659, KO:K01734, KO:K03366, KO:K03778, KO:K13923


N329
15
KO:K00102, KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069,




KO:K01442, KO:K01659, KO:K01734, KO:K03366, KO:K03778, KO:K13923


N365
13
KO:K00004, KO:K00116, KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069,




KO:K01442, KO:K01659, KO:K01734, KO:K03778


N363
13
KO:K00004, KO:K00116, KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069,




KO:K01442, KO:K01659, KO:K01734, KO:K03778


N282
13
KO:K00004, KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442,




KO:K01659, KO:K01734, KO:K03366, KO:K03778


N280
13
KO:K00004, KO:K00116, KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069,




KO:K01442, KO:K01659, KO:K01734, KO:K03778


N306
13
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K01905, KO:K03417, KO:K03778, KO:K07246


N623
12
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K13923


N350
12
KO:K00102, KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K01905, KO:K03778


N324
12
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442,




KO:K01659, KO:K01734, KO:K03778


N914
12
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K13923


N351
12
KO:K00102, KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K01905, KO:K03778


N296
12
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442,




KO:K01659, KO:K01734, KO:K03778


N917
12
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K13923


N299
12
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442,




KO:K01659, KO:K01734, KO:K03778


N790
12
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K13923


N386
12
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03366, KO:K03778


N275
12
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442,




KO:K01659, KO:K01734, KO:K03778


N777
12
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K13923


N318
12
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442,




KO:K01659, KO:K01734, KO:K03778


N271
12
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03366, KO:K03778


N816
12
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03366, KO:K03778


N256
12
KO:K00102, KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K04020


N259
12
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K07246


N262
12
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03366, KO:K03778


N382
12
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K01905,




KO:K03417, KO:K03778, KO:K07246


N424
11
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N640
11
KO:K00102, KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K04020


N505
11
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N590
11
KO:K00004, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N641
11
KO:K00004, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N625
11
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N410
11
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K07246


N586
11
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K01905, KO:K03778


N326
11
KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659,




KO:K01734, KO:K03778


N522
11
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K01896, KO:K03417,




KO:K03778, KO:K07246


N265
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N588
11
KO:K00102, KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K04020


N1074
11
KO:K00004, KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N610
11
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N408
11
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K07246


N548
11
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N383
11
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K10783


N269
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N901
11
KO:K00004, KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N419
11
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N443
11
KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659,




KO:K01734, KO:K03778


N470
11
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N908
11
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442,




KO:K01734, KO:K03778


N631
11
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N619
11
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K01905, KO:K03778


N926
11
KO:K00004, KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N429
11
KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01659,




KO:K01734, KO:K03778


N390
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K04020


N368
11
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N345
11
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417,




KO:K03778, KO:K07246


N354
11
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N825
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K04020


N822
11
KO:K00004, KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N573
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K04020


N666
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K04020


N288
11
KO:K00156, KO:K00158, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N650
11
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K01905, KO:K03778


N338
11
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N381
11
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K10783


N292
11
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417,




KO:K03778, KO:K07246


N818
11
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442,




KO:K01734, KO:K03778


N516
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K04020


N515
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K04020


N276
11
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K10783


N258
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N851
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01734, KO:K03778,




KO:K04020, KO:K07246


N307
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03417,




KO:K03778, KO:K07246


N400
11
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417,




KO:K03778, KO:K07246


N361
10
KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N558
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N891
10
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K01905, KO:K03778,




KO:K07246


N904
10
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03778


N274
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N612
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03366,




KO:K03778


N501
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N643
10
KO:K00156, KO:K00158, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03366,




KO:K03778


N633
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03366,




KO:K03778


N866
10
KO:K00102, KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K01905,




KO:K03778


N444
10
KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01734,




KO:K03778


N535
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N552
10
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03778


N1072
10
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K01905, KO:K03778,




KO:K07246


N597
10
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N539
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N717
10
KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N471
10
KO:K00156, KO:K00158, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03366,




KO:K03778


N268
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N298
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N409
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778,




KO:K10783


N489
10
KO:K00156, KO:K00158, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03366,




KO:K03778


N266
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N319
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N566
10
KO:K00043, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778,




KO:K07246


N542
10
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03778


N337
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N886
10
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N528
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K03778,




KO:K07246


N295
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N966
10
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03366,




KO:K03778


N940
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03366,




KO:K03778


N407
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778,




KO:K10783


N481
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N336
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N530
10
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03778


N567
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K03778,




KO:K07246


N525
10
KO:K00043, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778,




KO:K07246


N771
10
KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N644
10
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N560
10
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03778


N595
10
KO:K00156, KO:K00158, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03366,




KO:K03778


N349
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N531
10
KO:K00004, KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03366,




KO:K03778


N568
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N707
10
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K01905,




KO:K03778


N366
10
KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N797
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03366,




KO:K03778


N791
10
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N375
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N387
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N346
10
KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N342
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N834
10
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03366,




KO:K03778


N314
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N332
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N352
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N367
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N333
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N519
10
KO:K00004, KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03366,




KO:K03778


N353
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N680
10
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K01905,




KO:K03778


N283
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778,




KO:K10783


N264
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N281
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N821
10
KO:K00156, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03778


N273
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N260
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N817
10
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03366,




KO:K03778


N438
10
KO:K00116, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01734,




KO:K03778


N263
10
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N261
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N313
10
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N401
10
KO:K00102, KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778,




KO:K04020


N584
10
KO:K00102, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K03778,




KO:K07246


N286
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N426
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N362
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N270
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N716
9
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K07246


N277
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N614
9
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N423
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N311
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N546
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1073
9
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K07246


N635
9
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N492
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N770
9
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K07246


N422
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N882
9
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K04020


N427
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N700
9
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1030
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N450
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N322
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N308
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N549
9
KO:K00004, KO:K00116, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N404
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1070
9
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734


N601
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N954
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N699
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N884
9
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N309
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N488
9
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03366, KO:K03778


N496
9
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N364
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N502
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N297
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N618
9
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N310
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N526
9
KO:K00004, KO:K00116, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N1083
9
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N749
9
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K04020


N608
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N555
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N955
9
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N454
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N622
9
KO:K00004, KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N477
9
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N497
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N325
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N285
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N534
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N896
9
KO:K00116, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01734


N1008
9
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01659, KO:K01734, KO:K03778, KO:K04020


N465
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N328
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N646
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N449
9
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N320
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N445
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1097
9
KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N384
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N898
9
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K07246


N406
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N536
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N321
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N563
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N965
9
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K07246


N278
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N734
9
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K04020


N453
9
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N868
9
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K01905, KO:K03778


N870
9
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N442
9
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N323
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N494
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N447
9
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N591
9
KO:K00004, KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N327
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N417
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N607
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N921
9
KO:K00102, KO:K00156, KO:K00656, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K13923


N556
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N482
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N267
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N602
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N385
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N294
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N474
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N572
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N663
9
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N799
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01442, KO:K01734, KO:K03778, KO:K07246


N413
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N394
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N392
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N393
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N371
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N395
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N391
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N372
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N370
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N389
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N369
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N388
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N355
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N379
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N356
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N397
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N331
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N358
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N374
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N378
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N343
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N377
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N341
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N344
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N348
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N575
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N340
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N347
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N373
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N376
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N359
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N357
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N302
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N284
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N334
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N576
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N304
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N291
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N290
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N339
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N396
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N316
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N301
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N289
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N440
9
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N300
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N330
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N360
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N778
9
KO:K00102, KO:K00156, KO:K00656, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K13923


N303
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N315
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N398
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N432
9
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N431
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N667
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N439
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N312
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N317
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N793
9
KO:K00116, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01505, KO:K01734


N305
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N380
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N293
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N272
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N399
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N823
9
KO:K00156, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N279
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N824
9
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K04020


N789
9
KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N414
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N435
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N402
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N459
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N460
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N433
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N403
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N458
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N517
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N682
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N434
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N415
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N609
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N639
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N569
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N466
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1025
8
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N768
8
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N636
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N726
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N698
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N691
8
KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N869
8
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N605
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N630
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N718
8
KO:K00156, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N448
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N418
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N919
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N714
8
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N479
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N561
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N411
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N865
8
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N499
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N909
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N543
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N759
8
KO:K00004, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N761
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1018
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01442, KO:K01734, KO:K03778


N456
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N735
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N928
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01442, KO:K01734, KO:K03778


N495
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N500
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N480
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N478
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N701
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N547
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N945
8
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N762
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N493
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N739
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N912
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N484
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N720
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1014
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N744
8
KO:K00156, KO:K00656, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N451
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N565
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N498
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N483
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N628
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N889
8
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N624
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N731
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1038
8
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03366, KO:K03778


N727
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N615
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N697
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N538
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N688
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1037
8
KO:K00163, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N541
8
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N721
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N971
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1096
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N629
8
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N504
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N587
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N476
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N564
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N746
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N490
8
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N767
8
KO:K00102, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N693
8
KO:K00004, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N559
8
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N712
8
KO:K00102, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N467
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N711
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N938
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N405
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N524
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N593
8
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N941
8
KO:K00102, KO:K00156, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1056
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N752
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1019
8
KO:K00156, KO:K00656, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N503
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N455
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N485
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1042
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N684
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N876
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N657
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N658
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N678
8
KO:K00156, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N792
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N661
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N462
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N672
8
KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N664
8
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778, KO:K10783


N656
8
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N655
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N844
8
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K04020


N674
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N784
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N675
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N463
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N830
8
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N659
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N839
8
KO:K00102, KO:K00156, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N833
8
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N782
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N509
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N579
8
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N795
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N430
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N416
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N794
8
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N651
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1091
8
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734


N1093
8
KO:K00156, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N437
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N582
8
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N683
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N989
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N621
7
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N627
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1055
7
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N922
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N469
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N935
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1013
7
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03366


N1021
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N958
7
KO:K00156, KO:K00656, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N907
7
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03366


N937
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N604
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N961
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N634
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1085
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N900
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N592
7
KO:K00627, KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N452
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1045
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N960
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N979
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N748
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N702
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N972
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N906
7
KO:K00102, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N892
7
KO:K00043, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N745
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N598
7
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N725
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N957
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N527
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1028
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1033
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N715
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N428
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N872
7
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03366


N686
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N446
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N687
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N638
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1065
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1011
7
KO:K00656, KO:K01067, KO:K01442, KO:K01659, KO:K01734, KO:K03778, KO:K07246


N733
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1002
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1076
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01734, KO:K03417, KO:K07246


N952
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1032
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N708
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N743
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1060
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N487
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N632
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N980
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N871
7
KO:K00656, KO:K01067, KO:K01442, KO:K01659, KO:K01734, KO:K03778, KO:K07246


N890
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N974
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1022
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N867
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N758
7
KO:K00634, KO:K00656, KO:K01067, KO:K01442, KO:K01734, KO:K03778, KO:K07246


N924
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N981
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N473
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1044
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N723
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N611
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N875
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N1005
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N975
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N992
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N936
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N933
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N913
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01734, KO:K03417, KO:K07246


N994
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N685
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1054
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N997
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N760
7
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N532
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1039
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N1041
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N988
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N944
7
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N585
7
KO:K00163, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N754
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N959
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N696
7
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N887
7
KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N550
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1050
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1051
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01659, KO:K01734, KO:K03778


N973
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01659, KO:K01734, KO:K03778


N475
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N486
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N910
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N421
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1068
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1000
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1052
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N741
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N491
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1040
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N948
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N540
7
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N903
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N888
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N468
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N695
7
KO:K00116, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N976
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1012
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N719
7
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N507
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N895
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N692
7
KO:K00634, KO:K00656, KO:K01067, KO:K01442, KO:K01734, KO:K03778, KO:K07246


N894
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N995
7
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N613
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N877
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N617
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N722
7
KO:K00116, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1035
7
KO:K00158, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03366, KO:K03778


N649
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N679
7
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N677
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N803
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N660
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N787
7
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N807
7
KO:K00043, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N804
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N800
7
KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N788
7
KO:K00116, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01734, KO:K10783


N785
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N854
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N843
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N846
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N855
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01659, KO:K01734, KO:K03778


N654
7
KO:K00116, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N842
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N838
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N783
7
KO:K00156, KO:K00656, KO:K01067, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N796
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N836
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N670
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N837
7
KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N520
7
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N669
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N835
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N671
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N840
7
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N829
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N819
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N518
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N580
7
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N668
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N780
7
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03366


N831
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N577
7
KO:K00627, KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N832
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N798
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N815
7
KO:K00102, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N820
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N826
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N441
7
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01442, KO:K01734, KO:K03778


N583
7
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01442, KO:K01734, KO:K03778


N464
7
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01442, KO:K01734, KO:K03778


N461
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N848
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N513
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N511
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N596
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N537
6
KO:K00102, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N732
6
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N506
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1015
6
KO:K00158, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03366


N606
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N943
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N946
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734


N915
6
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N1059
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N923
6
KO:K00158, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03366


N1001
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1064
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N706
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N642
6
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N764
6
KO:K00158, KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N874
6
KO:K00163, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N600
6
KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N710
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N993
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N523
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N626
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1043
6
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N557
6
KO:K00102, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N916
6
KO:K00656, KO:K01069, KO:K01659, KO:K01734, KO:K03778, KO:K10783


N1077
6
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N978
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N990
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N553
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1082
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734


N529
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N544
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N902
6
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1027
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N694
6
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1029
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1084
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N931
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1075
6
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01734, KO:K03366


N551
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1087
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1010
6
KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N724
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N769
6
KO:K00102, KO:K00656, KO:K01069, KO:K01659, KO:K01734, KO:K03778


N705
6
KO:K00158, KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N603
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N740
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N950
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N420
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1053
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N977
6
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N594
6
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N1080
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N953
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N425
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N472
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N878
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N753
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N766
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N873
6
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N1023
6
KO:K00627, KO:K00656, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N967
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N956
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1031
6
KO:K00163, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N985
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N814
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N812
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N662
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N809
6
KO:K00656, KO:K01069, KO:K01659, KO:K01734, KO:K03778, KO:K10783


N858
6
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N508
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N681
6
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N845
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N673
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N521
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1095
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N581
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N827
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N570
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N571
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N574
6
KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N779
6
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N578
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N457
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N652
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N828
6
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734


N514
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N653
6
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N849
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N436
6
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N853
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N786
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N512
6
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N510
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N861
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N647
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1071
5
KO:K00043, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N932
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N750
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N893
5
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N897
5
KO:K00043, KO:K00627, KO:K00656, KO:K01442, KO:K01734


N729
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1003
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1069
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N616
5
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N964
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N920
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778


N1061
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N738
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N983
5
KO:K00627, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N757
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778


N755
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1004
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N879
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N962
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1016
5
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01734


N533
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N645
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N736
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N713
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1006
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N925
5
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01734


N620
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N880
5
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N747
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N885
5
KO:K00043, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N737
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N554
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N951
5
KO:K00102, KO:K00656, KO:K01069, KO:K01734, KO:K03778


N690
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778


N730
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778


N999
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N589
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N545
5
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N763
5
KO:K00656, KO:K01659, KO:K01734, KO:K03778, KO:K10783


N1067
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N703
5
KO:K00656, KO:K01659, KO:K01734, KO:K03778, KO:K10783


N773
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778


N756
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K10783


N1062
5
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N1046
5
KO:K00627, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N742
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N704
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N751
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N939
5
KO:K00627, KO:K00656, KO:K01069, KO:K01734, KO:K03778


N984
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N599
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N1066
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N689
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K10783


N562
5
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N918
5
KO:K00656, KO:K01069, KO:K01734, KO:K03778, KO:K10783


N1078
5
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01734


N1007
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N637
5
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N859
5
KO:K00102, KO:K00656, KO:K01069, KO:K01734, KO:K03778


N676
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N856
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N665
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N775
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778


N857
5
KO:K00656, KO:K01069, KO:K01734, KO:K03778, KO:K10783


N802
5
KO:K00043, KO:K00627, KO:K00656, KO:K01442, KO:K01734


N801
5
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N774
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N847
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N648
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N862
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N852
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N841
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N860
5
KO:K00627, KO:K00656, KO:K01069, KO:K01734, KO:K03778


N864
5
KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N863
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N709
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N982
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N949
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N986
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N1047
4
KO:K00656, KO:K01659, KO:K01734, KO:K03778


N1086
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N1017
4
KO:K00656, KO:K01067, KO:K01442, KO:K01734


N899
4
KO:K00116, KO:K00656, KO:K01442, KO:K01734


N927
4
KO:K00656, KO:K01067, KO:K01442, KO:K01734


N969
4
KO:K00116, KO:K00656, KO:K01069, KO:K01734


N772
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N991
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N1079
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N1058
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N987
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N1063
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N1049
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N728
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N1009
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N1098
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N947
4
KO:K00627, KO:K00656, KO:K01442, KO:K01734


N883
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N934
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N905
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N963
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N1034
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N998
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N929
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N881
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N765
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N1081
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N1048
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N970
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N1024
4
KO:K00102, KO:K00656, KO:K01442, KO:K01734


N911
4
KO:K00656, KO:K01069, KO:K01734, KO:K10783


N1026
4
KO:K00627, KO:K00656, KO:K01442, KO:K01734


N942
4
KO:K00102, KO:K00656, KO:K01442, KO:K01734


N813
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N811
4
KO:K00116, KO:K00656, KO:K01069, KO:K01734


N810
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N808
4
KO:K00656, KO:K01069, KO:K01734, KO:K10783


N805
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N806
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N1088
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N781
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N776
4
KO:K00116, KO:K00656, KO:K01442, KO:K01734


N1020
3
KO:K00656, KO:K01442, KO:K01734


N930
3
KO:K00656, KO:K01442, KO:K01734


N996
3
KO:K00656, KO:K01442, KO:K01734


N1057
3
KO:K00656, KO:K01442, KO:K01734


N1089
3
KO:K00656, KO:K01659, KO:K01734


N1094
3
KO:K00627, KO:K00656, KO:K03778


N850
3
KO:K00656, KO:K01734, KO:K03778


N1090
2
KO:K00656, KO:K01442


N1092
2
KO:K01442, KO:K01734


N412
0


N287
0









KEGG Orthology Pathway (KO) characterization and F-score of computationally determined network ecologies reported in Table 8 that represent states of health for multiple disease indications.













TABLE 19






KEGG
KEGG
KEGG
Full KEGG


KEGG
annotation
annotation
annotation
annotation


number
level 1
level 2
level 3
level 4







KO:K01442
Metabolism
Lipid
00121 Secondary bile acid
E3.5.1.24; choloylglycine




metabolism
biosynthesis [PATH:ko00121]
hydrolase [EC:3.5.1.24]


KO:K00004
Metabolism
Carbohydrate
00650 Butanoate metabolism
BDH, butB; (R,R)-butanediol




metabolism
[PATH:ko00650]
dehydrogenase/diacetyl reductase






[EC:1.1.1.4 1.1.1.303]


KO:K00023
Metabolism
Carbohydrate
00650 Butanoate metabolism
E1.1.1.36, phbB; acetoacetyl-CoA




metabolism
[PATH:ko00650]
reductase [EC:1.1.1.36]


KO:K00043
Metabolism
Carbohydrate
00650 Butanoate metabolism
E1.1.1.61; 4-hydroxybutyrate




metabolism
[PATH:ko00650]
dehydrogenase [EC:1.1.1.61]


KO:K00101
Metabolism
Carbohydrate
00620 Pyruvate metabolism
E1.1.2.3, lldD; L-lactate




metabolism
[PATH:ko00620]
dehydrogenase (cytochrome)






[EC:1.1.2.3]


KO:K00102
Metabolism
Carbohydrate
00620 Pyruvate metabolism
E1.1.2.4, dld; D-lactate




metabolism
[PATH:ko00620]
dehydrogenase (cytochrome)






[EC:1.1.2.4]


KO:K00116
Metabolism
Carbohydrate
00620 Pyruvate metabolism
mqo; malate dehydrogenase




metabolism
[PATH:ko00620]
(quinone) [EC:1.1.5.4]


KO:K00156
Metabolism
Carbohydrate
00620 Pyruvate metabolism
poxB; pyruvate dehydrogenase




metabolism
[PATH:ko00620]
(quinone) [EC:1.2.5.1]


KO:K00158
Metabolism
Carbohydrate
00620 Pyruvate metabolism
E1.2.3.3, poxL; pyruvate oxidase




metabolism
[PATH:ko00620]
[EC:1.2.3.3]


KO:K00163
Metabolism
Carbohydrate
00650 Butanoate metabolism
aceE; pyruvate dehydrogenase E1




metabolism
[PATH:ko00650]
component [EC:1.2.4.1]


KO:K00627
Metabolism
Carbohydrate
00620 Pyruvate metabolism
DLAT, aceF, pdhC; pyruvate




metabolism
[PATH:ko00620]
dehydrogenase E2 component






(dihydrolipoamide acetyltransferase)






[EC:2.3.1.12]


KO:K00634
Metabolism
Carbohydrate
00650 Butanoate metabolism
ptb; phosphate butyryltransferase




metabolism
[PATH:ko00650]
[EC:2.3.1.19]


KO:K00656
Metabolism
Carbohydrate
00650 Butanoate metabolism
E2.3.1.54, pflD; formate C-




metabolism
[PATH:ko00650]
acetyltransferase [EC:2.3.1.54]


KO:K00929
Metabolism
Carbohydrate
00650 Butanoate metabolism
E2.7.2.7, buk; butyrate kinase




metabolism
[PATH:ko00650]
[EC:2.7.2.7]


KO:K00932
Metabolism
Carbohydrate
00640 Propanoate metabolism
E2.7.2.15, tdcD, pduW; propionate




metabolism
[PATH:ko00640]
kinase [EC:2.7.2.15]


KO:K01067
Metabolism
Carbohydrate
00620 Pyruvate metabolism
E3.1.2.1, ACH1; acetyl-CoA




metabolism
[PATH:ko00620]
hydrolase [EC:3.1.2.1]


KO:K01069
Metabolism
Carbohydrate
00620 Pyruvate metabolism
E3.1.2.6, gloB;




metabolism
[PATH:ko00620]
hydroxyacylglutathione hydrolase






[EC:3.1.2.6]


KO:K01505
Metabolism
Carbohydrate
00640 Propanoate metabolism
E3.5.9 9.7; 1-aminocyclopropane-1-




metabolism
[PATH:ko00640]
carboxylate deaminase [EC:3.5.99.7]


KO:K01659
Metabolism
Carbohydrate
00640 Propanoate metabolism
E2.3.3.5, prpC; 2-methylcitrate




metabolism
[PATH:ko00640]
synthase [EC:2.3.3.5]


KO:K01720
Metabolism
Carbohydrate
00640 Propanoate metabolism
E4.2.1.79, prpD; 2-methylcitrate




metabolism
[PATH:ko00640]
dehydratase [EC:4.2.1.79]


KO:K01734
Metabolism
Carbohydrate
00620 Pyruvate metabolism
E4.2.3.3, mgsA; methylglyoxal




metabolism
[PATH:ko00620]
synthase [EC:4.2.3.3]


KO:K01896
Metabolism
Carbohydrate
00650 Butanoate metabolism
ACSM; medium-chain acyl-CoA




metabolism
[PATH:ko00650]
synthetase [EC:6.2.1.2]


KO:K01905
Metabolism
Carbohydrate
00640 Propanoate metabolism
E6.2.1.13; acetyl-CoA synthetase




metabolism
[PATH:ko00640]
(ADP-forming) [EC:6.2.1.13]


KO:K01907
Metabolism
Carbohydrate
00650 Butanoate metabolism
AACS, acsA; acetoacetyl-CoA




metabolism
[PATH:ko00650]
synthetase [EC:6.2.1.16]


KO:K01908
Metabolism
Carbohydrate
00640 Propanoate metabolism
E6.2.1.17, prpE; propionyl-CoA




metabolism
[PATH:ko00640]
synthetase [EC:6.2.1.17]


KO:K03366
Metabolism
Carbohydrate
00650 Butanoate metabolism
butA; (R,R)-butanediol




metabolism
[PATH:ko00650]
dehydrogenase/diacetyl reductase






[EC:1.1.1.4 1.1.1.303]


KO:K03416
Metabolism
Carbohydrate
00640 Propanoate metabolism
E2.1.3.1; methylmalonyl-CoA




metabolism
[PATH:ko00640]
carboxyltransferase [EC:2.1.3.1]


KO:K03417
Metabolism
Carbohydrate
00640 Propanoate metabolism
E4.1.3.30, prpB; methylisocitrate




metabolism
[PATH:ko00640]
lyase [EC:4.1.3.30]


KO:K03777
Metabolism
Carbohydrate
00620 Pyruvate metabolism
dld; D-lactate dehydrogenase




metabolism
[PATH:ko00620]
[EC:1.1.1.28]


KO:K03778
Metabolism
Carbohydrate
00620 Pyruvate metabolism
ldhA; D-lactate dehydrogenase




metabolism
[PATH:ko00620]
[EC:1.1.1.28]


KO:K03821
Metabolism
Carbohydrate
00650 Butanoate metabolism
phbC, phaC; polyhydroxyalkanoate




metabolism
[PATH:ko00650]
synthase [EC:2.3.1.—]


KO:K04020
Metabolism
Carbohydrate
00620 Pyruvate metabolism
eutD; phosphotransacetylase




metabolism
[PATH:ko00620]


KO:K05973
Metabolism
Carbohydrate
00650 Butanoate metabolism
E3.1.1.75, phaZ; poly(3-




metabolism
[PATH:ko00650]
hydroxybutyrate) depolymerase






[EC:3.1.1.75]


KO:K07246
Metabolism
Carbohydrate
00650 Butanoate metabolism
ttuC, dmlA; tartrate




metabolism
[PATH:ko00650]
dehydrogenase/decarboxylase/D-






malate dehydrogenase [EC:1.1.1.93






4.1.1.73 1.1.1.83]


KO:K10783
Metabolism
Carbohydrate
00650 Butanoate metabolism
E1.3.1.44; trans-2-enoyl-CoA




metabolism
[PATH:ko00650]
reductase (NAD+) [EC:1.3.1.44]


KO:K13923
Metabolism
Carbohydrate
00640 Propanoate metabolism
pduL; phosphotransacylase




metabolism
[PATH:ko00640]









KEGG Orthology Pathway (KO) hierarchical ontology for KOs identified in computationally determined networks characteristic of states of health and reported in Table 18.









TABLE 20







Keystone OTUs inhibit C. difficile growth in a competitive in vitro simulation assay












OTU-1 is a

OTU-2 is a

C. diff



OTU-1
Key-stone
OTU-2
Key-Stone
Inhibition Score















Bacteroides_caccae

1

Bacteroides_eggerthii


++++



Bacteroides_sp_D20

1

Bacteroides_eggerthii




Clostridium_nexile

1

Bacteroides_eggerthii




Coprococcus_catus

1

Bacteroides_eggerthii


+



Dorea_formicigenerans

1

Bacteroides_eggerthii




Dorea_longicatena

1

Bacteroides_eggerthii






Faecalibacterium_prausnitzii

1

Bacteroides_eggerthii




Odoribacter_splanchnicus

1

Bacteroides_eggerthii




Parabacteroides_merdae

1

Bacteroides_eggerthii




Roseburia_intestinalis

1

Bacteroides_eggerthii




Ruminococcus_obeum

1

Bacteroides_eggerthii


++++



Bacteroides_caccae

1

Bifidobacterium_adolescentis


++++



Bacteroides_sp_D20

1

Bifidobacterium_adolescentis


++++



Clostridium_nexile

1

Bifidobacterium_adolescentis


++++



Coprococcus_catus

1

Bifidobacterium_adolescentis




Dorea_formicigenerans

1

Bifidobacterium_adolescentis


++++



Dorea_longicatena

1

Bifidobacterium_adolescentis


++++



Faecalibacterium_prausnitzii

1

Bifidobacterium_adolescentis


+



Odoribacter_splanchnicus

1

Bifidobacterium_adolescentis


+++



Parabacteroides_merdae

1

Bifidobacterium_adolescentis


++++



Roseburia_intestinalis

1

Bifidobacterium_adolescentis


+++



Ruminococcus_obeum

1

Bifidobacterium_adolescentis


++++



Ruminococcus_torques

1

Bifidobacterium_adolescentis


++++



Bacteroides_caccae

1

Bifidobacterium_pseudocatenulatum


++++



Bacteroides_sp_D20

1

Bifidobacterium_pseudocatenulatum


−−



Clostridium_nexile

1

Bifidobacterium_pseudocatenulatum


++++



Coprococcus_catus

1

Bifidobacterium_pseudocatenulatum




Dorea_formicigenerans

1

Bifidobacterium_pseudocatenulatum


+++



Dorea_longicatena

1

Bifidobacterium_pseudocatenulatum


++++



Faecalibacterium_prausnitzii

1

Bifidobacterium_pscudocatcnulatum


++



Odoribacter_splanchnicus

1

Bifidobacterium_pseudocatenulatum


+



Parabacteroides_merdae

1

Bifidobacterium_pseudocatenulatum


++++



Roseburia_intestinalis

1

Bifidobacterium_pseudocatenulatum


+++



Ruminococcus_obeum

1

Bifidobacterium_pscudocatcnulatum


++++



Ruminococcus_torques

1

Bifidobacterium_pseudocatenulatum


++++



Bacteroides_caccae

1

Blautia_schinkii




Bacteroides_sp_D20

1

Blautia_schinkii


−−



Clostridium_nexile

1

Blautia_schinkii


−−



Coprococcus_catus

1

Blautia_schinkii


−−−



Coprococcus_comes

1

Blautia_schinkii


+



Dorea_formicigenerans

1

Blautia_schinkii




Dorea_longicatena

1

Blautia_schinkii


+++



Eubacterium_rectale

1

Blautia_schinkii


+



Faecalibacterium_prausnitzii

1

Blautia_schinkii




Faecalibacterium_prausnitzii

1

Blautia_schinkii




Odoribacter_splanchnicus

1

Blautia_schinkii






Odoribacter_splanchnicus

1

Blautia_schinkii




Parabacteroides_merdae

1

Blautia_schinkii




Roseburia_intestinalis

1

Blautia_schinkii






Ruminococcus_obeum

1

Blautia_schinkii




Ruminococcus_torques

1

Blautia_schinkii




Coprococcus_comes

1

Clostridium
butyricum


++++



Coprococcus_comes

1

Clostridium
orbiscindens


++++



Faecalibacterium_prausnitzii

1

Clostridium
orbiscindens




Coprococcus_comes

1

Clostridium_bolteae


++++



Coprococcus_comes

1

Clostridium_hylemonae


+



Clostridium_nexile

1

Clostridium_sp_HGF2


++++



Dorea_formicigenerans

1

Clostridium_sp_HGF2




Clostridium_nexile

1
Erysipelotrichaceae_bacterium



Coprococcus_catus

1
Erysipelotrichaceae_bacterium



Dorea_formicigenerans

1
Erysipelotrichaceae_bacterium

−−



Dorea_longicatena

1
Erysipelotrichaceae_bacterium



Faecalibacterium_prausnitzii

1
Erysipelotrichaceae_bacterium





Odoribacter_splanchnicus

1
Erysipelotrichaceae_bacterium



Roseburia_intestinalis

1
Erysipelotrichaceae_bacterium





Bacteroides_caccae

1
Lachnospiraceae_bacterium_5_1_57FAA



Bacteroides_sp_D20

1
Lachnospiraceae_bacterium_5_1_57FAA

−−−



Clostridium_nexile

1
Lachnospiraceae_bacterium_5_1_57FAA





Coprococcus_catus

1
Lachnospiraceae_bacterium_5_1_57FAA



Coprococcus_comes

1
Lachnospiraceae_bacterium_5_1_57FAA



Coprococcus_comes

1
Lachnospiraceae_bacterium_5_1_57FAA

++++



Dorea_formicigenerans

1
Lachnospiraceae_bacterium_5_1_57FAA

−−



Dorea_longicatena

1
Lachnospiraceae_bacterium_5_1_57FAA

++++



Eubacterium_rectale

1
Lachnospiraceae_bacterium_5_1_57FAA



Faecalibacterium_prausnitzii

1
Lachnospiraceae_bacterium_5_1_57FAA



Faecalibacterium_prausnitzii

1
Lachnospiraceae_bacterium_5_1_57FAA



Faecalibacterium_prausnitzii

1
Lachnospiraceae_bacterium_5_1_57FAA

++++



Odoribacter_splanchnicus

1
Lachnospiraceae_bacterium_5_1_57FAA

−−



Odoribacter_splanchnicus

1
Lachnospiraceae_bacterium_5_1_57FAA



Parabacteroides_merdae

1
Lachnospiraceae_bacterium_5_1_57FAA





Roseburia_intestinalis

1
Lachnospiraceae_bacterium_5_1_57FAA



Ruminococcus_obeum

1
Lachnospiraceae_bacterium_5_1_57FAA



Ruminococcus_torques

1
Lachnospiraceae_bacterium_5_1_57FAA



Bacteroides_eggerthii



Alistipes_shahii

1
−−



Bacteroides_sp_1_1_6



Alistipes_shahii

1
++++



Bacteroides_sp_3_1_23



Alistipes_shahii

1
+



Bifidobacterium_adolescentis



Alistipes_shahii

1
++++



Bifidobacterium_pseudocatenulatum



Alistipes_shahii

1



Blautia_schinkii



Alistipes_shahii

1



Clostridium_sp_HGF2



Alistipes_shahii

1



Coprobacillus_sp_D7



Alistipes_shahii

1
++++



Enterococcus_faecalis



Alistipes_shahii

1
++++


Erysipelotrichaceae_bacterium


Alistipes_shahii

1
−−−


Lachnospiraceae_bacterium_5_1_57FAA


Alistipes_shahii

1



Bacteroides_sp_1_1_6



Bacteroides_caccae

1
++++



Bacteroides_sp_3_1_23



Bacteroides_caccae

1
+++



Clostridium_sp_HGF2



Bacteroides_caccae

1



Coprobacillus_sp_D7



Bacteroides_caccae

1
+++



Enterococcus_faecalis



Bacteroides_caccae

1
++++


Erysipelotrichaceae_bacterium


Bacteroides_caccae

1
++



Bacteroides_sp_1_1_6



Bacteroides_sp_D20

1
++++



Bacteroides_sp_3_1_23



Bacteroides_sp_D20

1
++++



Clostridium_sp_HGF2



Bacteroides_sp_D20

1



Coprobacillus_sp_D7



Bacteroides_sp_D20

1



Enterococcus_faecalis



Bacteroides_sp_D20

1
++++


Erysipelotrichaceae_bacterium


Bacteroides_sp_D20

1



Bacteroides_sp_1_1_6



Clostridium_nexile

1
++++



Bacteroides_sp_3_1_23



Clostridium_nexile

1
++++



Coprobacillus_sp_D7



Clostridium_nexile

1



Enterococcus_faecalis



Clostridium_nexile

1
++++



Bacteroides_sp_1_1_6



Coprococcus_catus

1
++++



Bacteroides_sp_3_1_23



Coprococcus_catus

1



Clostridium_sp_HGF2



Coprococcus_catus

1
−−−



Coprobacillus_sp_D7



Coprococcus_catus

1
−−−



Enterococcus_faecalis



Coprococcus_catus

1
++++



Bacteroides_eggerthii



Coprococcus_comes

1
+++



Bacteroides_sp_1_1_6



Coprococcus_comes

1
+++



Bacteroides_sp_3_1_23



Coprococcus_comes

1
++++



Bifidobacterium_adolescentis



Coprococcus_comes

1
++++



Bifidobacterium_pseudocatenulatum



Coprococcus_comes

1
++++



Clostridium_butyricum



Coprococcus_comes

1
++++



Clostridium_disporicum



Coprococcus_comes

1
++++



Clostridium_hylemonae



Coprococcus_comes

1
+



Clostridium_innocuum



Coprococcus_comes

1
++++



Clostridium_mayombei



Coprococcus_comes

1
++++



Clostridium_sp_HGF2



Coprococcus_comes

1



Clostridium_tertium



Coprococcus_comes

1
++++



Coprobacillus_sp_D7



Coprococcus_comes

1
+++



Enterococcus_faecalis



Coprococcus_comes

1
++++


Erysipelotrichaceae_bacterium


Coprococcus_comes

1




Bacteroides_sp_1_1_6



Dorea_formicigenerans

1
+++



Bacteroides_sp_3_1_23



Dorea_formicigenerans

1



Coprobacillus_sp_D7



Dorea_formicigenerans

1




Enterococcus_faecalis



Dorea_formicigenerans

1
++++



Bacteroides_sp_1_1_6



Dorea_longicatena

1
++++



Bacteroides_sp_3_1_23



Dorea_longicatena

1
+++



Clostridium_sp_HGF2



Dorea_longicatena

1
−−



Coprobacillus_sp_D7



Dorea_longicatena

1



Enterococcus_faecalis



Dorea_longicatena

1
++++



Bacteroides_eggerthii



Eubacterium_rectale

1



Bacteroides_sp_1_1_6



Eubacterium_rectale

1
++++



Bacteroides_sp_3_1_23



Eubacterium_rectale

1
+++



Bifidobacterium_adolescentis



Eubacterium_rectale

1
++++



Bifidobacterium_pseudocatenulatum



Eubacterium_rectale

1



Clostridium
butyricum



Eubacterium_rectale

1
++++



Clostridium
orbiscindens



Eubacterium_rectale

1
+



Clostridium_bolteae



Eubacterium_rectale

1
++



Clostridium_disporicum



Eubacterium_rectale

1
++++



Clostridium_hylemonae



Eubacterium_rectale

1



Clostridium_innocuum



Eubacterium_rectale

1
++++



Clostridium_mayombei



Eubacterium_rectale

1
++++



Clostridium_sp_HGF2



Eubacterium_rectale

1
−−



Clostridium_tertium



Eubacterium_rectale

1
++++



Coprobacillus_sp_D7



Eubacterium_rectale

1
+++



Enterococcus_faecalis



Eubacterium_rectale

1
++++


Erysipelotrichaceae_bacterium


Eubacterium_rectale

1



Lachnospiraceae_bacterium_5_1_57FAA


Eubacterium_rectale

1
+++



Bacteroides_eggerthii



Faecalibacterium_prausnitzii

1




Bacteroides_sp_1_1_6



Faecalibacterium_prausnitzii

1
++++



Bacteroides_sp_1_1_6



Faecalibacterium_prausnitzii

1
+++



Bacteroides_sp_3_1_23



Faecalibacterium_prausnitzii

1
++



Bacteroides_sp_3_1_23



Faecalibacterium_prausnitzii

1



Bifidobacterium_adolescentis



Faecalibacterium_prausnitzii

1
+



Bifidobacterium_pseudocatenulatum



Faecalibacterium_prausnitzii

1



Clostridium
butyricum



Faecalibacterium_prausnitzii

1
++++



Clostridium
orbiscindens



Faecalibacterium_prausnitzii

1



Clostridium_bolteae



Faecalibacterium_prausnitzii

1
++



Clostridium_disporicum



Faecalibacterium_prausnitzii

1



Clostridium_hylemonae



Faecalibacterium_prausnitzii

1



Clostridium_innocuum



Faecalibacterium_prausnitzii

1
++++



Clostridium_mayombei



Faecalibacterium_prausnitzii

1
++++



Clostridium_sp_HGF2



Faecalibacterium_prausnitzii

1
++



Clostridium_sp_HGF2



Faecalibacterium_prausnitzii

1
−−



Clostridium_tertium



Faecalibacterium_prausnitzii

1
++++



Coprobacillus_sp_D7



Faecalibacterium_prausnitzii

1
−−−



Coprobacillus_sp_D7



Faecalibacterium_prausnitzii

1



Enterococcus_faecalis



Faecalibacterium_prausnitzii

1
++++



Enterococcus_faecalis



Faecalibacterium_prausnitzii

1
++++


Erysipelotrichaceae_bacterium


Faecalibacterium_prausnitzii

1
−−


Lachnospiraceae_bacterium_5_1_57FAA


Faecalibacterium_prausnitzii

1
++++



Bacteroides_eggerthii



Odoribacter_splanchnicus

1




Bacteroides_sp_1_1_6



Odoribacter_splanchnicus

1
++++



Bacteroides_sp_1_1_6



Odoribacter_splanchnicus

1
+



Bacteroides_sp_3_1_23



Odoribacter_splanchnicus

1
+



Bacteroides_sp_3_1_23



Odoribacter_splanchnicus

1



Bifidobacterium_adolescentis



Odoribacter_splanchnicus

1
++++



Bifidobacterium_pseudocatenulatum



Odoribacter_splanchnicus

1
+++



Clostridium_sp_HGF2



Odoribacter_splanchnicus

1



Clostridium_sp_HGF2



Odoribacter_splanchnicus

1
−−−



Coprobacillus_sp_D7



Odoribacter_splanchnicus

1




Coprobacillus_sp_D7



Odoribacter_splanchnicus

1
+++



Enterococcus_faecalis



Odoribacter_splanchnicus

1
++++



Enterococcus_faecalis



Odoribacter_splanchnicus

1
++++


Erysipelotrichaceae_bacterium


Odoribacter_splanchnicus

1
−−



Bacteroides_sp_1_1_6



Parabacteroides_merdae

1
++++



Bacteroides_sp_3_1_23



Parabacteroides_merdae

1
+++



Clostridium_sp_HGF2



Parabacteroides_merdae

1
+++



Coprobacillus_sp_D7



Parabacteroides_merdae

1




Enterococcus_faecalis



Parabacteroides_merdae

1
++++


Erysipelotrichaceae_bacterium


Parabacteroides_merdae

1



Bacteroides_sp_1_1_6



Roseburia_intestinalis

1
++++



Bacteroides_sp_3_1_23



Roseburia_intestinalis

1
+



Clostridium_sp_HGF2



Roseburia_intestinalis

1
−−−



Coprobacillus_sp_D7



Roseburia_intestinalis

1




Enterococcus_faecalis



Roseburia_intestinalis

1
++++



Clostridium_butyricum



Ruminococcus_bromii

1
++++



Clostridium_orbiscindens



Ruminococcus_bromii

1



Clostridium_bolteae



Ruminococcus_bromii

1
+++



Clostridium_disporicum



Ruminococcus_bromii

1



Clostridium_hylemonae



Ruminococcus_bromii

1



Clostridium_innocuum



Ruminococcus_bromii

1
++++



Clostridium_mayombei



Ruminococcus_bromii

1
++++



Clostridium_tertium



Ruminococcus_bromii

1
++++


Lachnospiraceae_bacterium_5_1_57FAA


Ruminococcus_bromii

1
++++



Bacteroides_sp_1_1_6



Ruminococcus_obeum

1
+++



Bacteroides_sp_3_1_23



Ruminococcus_obeum

1
+++



Clostridium_sp_HGF2



Ruminococcus_obeum

1
−−



Coprobacillus_sp_D7



Ruminococcus_obeum

1
+



Enterococcus_faecalis



Ruminococcus_obeum

1
++++


Erysipelotrichaceae_bacterium


Ruminococcus_obeum

1



Bacteroides_eggerthii



Ruminococcus_torques

1
++++



Bacteroides_sp_1_1_6



Ruminococcus_torques

1
++++



Bacteroides_sp_3_1_23



Ruminococcus_torques

1
++++



Clostridium_sp_HGF2



Ruminococcus_torques

1



Coprobacillus_sp_D7



Ruminococcus_torques

1
++++



Enterococcus_faecalis



Ruminococcus_torques

1
++++


Erysipelotrichaceae_bacterium


Ruminococcus_torques

1
+



Alistipes_shahii

1

Alistipes_shahii

1



Bacteroides_caccae

1

Alistipes_shahii

1



Bacteroides_sp_D20

1

Alistipes_shahii

1




Clostridium_nexile

1

Alistipes_shahii

1



Coprococcus_catus

1

Alistipes_shahii

1




Coprococcus_comes

1

Alistipes_shahii

1



Dorea_formicigenerans

1

Alistipes_shahii

1
−−−−



Dorea_longicatena

1

Alistipes_shahii

1
++++



Eubacterium_rectale

1

Alistipes_shahii

1



Faecalibacterium_prausnitzii

1

Alistipes_shahii

1



Faecalibacterium_prausnitzii

1

Alistipes_shahii

1
+



Odoribacter_splanchnicus

1

Alistipes_shahii

1



Odoribacter_splanchnicus

1

Alistipes_shahii

1



Parabacteroides_merdae

1

Alistipes_shahii

1



Roseburia_intestinalis

1

Alistipes_shahii

1




Ruminococcus_obeum

1

Alistipes_shahii

1



Ruminococcus_torques

1

Alistipes_shahii

1



Bacteroides_caccae

1

Bacteroides_caccae

1
++++



Bacteroides_sp_D20

1

Bacteroides_caccae

1
+++



Clostridium_nexile

1

Bacteroides_caccae

1



Coprococcus_catus

1

Bacteroides_caccae

1
++++



Dorea_formicigenerans

1

Bacteroides_caccae

1
+++



Dorea_longicatena

1

Bacteroides_caccae

1



Faecalibacterium_prausnitzii

1

Bacteroides_caccae

1




Odoribacter_splanchnicus

1

Bacteroides_caccae

1



Parabacteroides_merdae

1

Bacteroides_caccae

1
+



Roseburia_intestinalis

1

Bacteroides_caccae

1
+



Ruminococcus_obeum

1

Bacteroides_caccae

1
++++



Bacteroides_sp_D20

1

Bacteroides_sp_D20

1



Clostridium_nexile

1

Bacteroides_sp_D20

1




Coprococcus_catus

1

Bacteroides_sp_D20

1



Dorea_formicigenerans

1

Bacteroides_sp_D20

1




Dorea_longicatena

1

Bacteroides_sp_D20

1



Faecalibacterium_prausnitzii

1

Bacteroides_sp_D20

1



Odoribacter_splanchnicus

1

Bacteroides_sp_D20

1



Roseburia_intestinalis

1

Bacteroides_sp_D20

1




Clostridium_nexile

1

Clostridium_nexile

1
++



Dorea_formicigenerans

1

Clostridium_nexile

1



Clostridium_nexile

1

Coprococcus_catus

1



Coprococcus_catus

1

Coprococcus_catus

1



Dorea_formicigenerans

1

Coprococcus_catus

1



Dorea_longicatena

1

Coprococcus_catus

1



Faecalibacterium_prausnitzii

1

Coprococcus_catus

1



Odoribacter_splanchnicus

1

Coprococcus_catus

1



Roseburia_intestinalis

1

Coprococcus_catus

1



Bacteroides_caccae

1

Coprococcus_comes

1
+++



Bacteroides_sp_D20

1

Coprococcus_comes

1



Clostridium_nexile

1

Coprococcus_comes

1



Coprococcus_catus

1

Coprococcus_comes

1
−−



Coprococcus_comes

1

Coprococcus_comes

1



Coprococcus_comes

1

Coprococcus_comes

1
++



Dorea_formicigenerans

1

Coprococcus_comes

1



Dorea_longicatena

1

Coprococcus_comes

1



Faecalibacterium_prausnitzii

1

Coprococcus_comes

1



Odoribacter_splanchnicus

1

Coprococcus_comes

1



Parabacteroides_merdae

1

Coprococcus_comes

1




Roseburia_intestinalis

1

Coprococcus_comes

1




Ruminococcus_obeum

1

Coprococcus_comes

1
++++



Ruminococcus_torques

1

Coprococcus_comes

1
++++



Dorea_formicigenerans

1

Dorea_formicigenerans

1
−−



Clostridium_nexile

1

Dorea_longicatena

1



Dorea_formicigenerans

1

Dorea_longicatena

1
++



Dorea_longicatena

1

Dorea_longicatena

1




Faecalibacterium_prausnitzii

1

Dorea_longicatena

1




Odoribacter_splanchnicus

1

Dorea_longicatena

1



Bacteroides_caccae

1

Eubacterium_rectale

1



Bacteroides_sp_D20

1

Eubacterium_rectale

1
−−



Clostridium_nexile

1

Eubacterium_rectale

1




Coprococcus_catus

1

Eubacterium_rectale

1
−−−



Coprococcus_comes

1

Eubacterium_rectale

1
+



Coprococcus_comes

1

Eubacterium_rectale

1
++++



Dorea_formicigenerans

1

Eubacterium_rectale

1




Dorea_longicatena

1

Eubacterium_rectale

1
++++



Eubacterium_rectale

1

Eubacterium_rectale

1
+++



Eubacterium_rectale

1

Eubacterium_rectale

1



Faecalibacterium_prausnitzii

1

Eubacterium_rectale

1
−−



Faecalibacterium_prausnitzii

1

Eubacterium_rectale

1



Odoribacter_splanchnicus

1

Eubacterium_rectale

1




Parabacteroides_merdae

1

Eubacterium_rectale

1




Roseburia_intestinalis

1

Eubacterium_rectale

1
−−−−



Ruminococcus_bromii

1

Eubacterium_rectale

1
+



Ruminococcus_obeum

1

Eubacterium_rectale

1
++



Ruminococcus_torques

1

Eubacterium_rectale

1
+



Bacteroides_caccae

1

Faecalibacterium_prausnitzii

1



Bacteroides_sp_D20

1

Faecalibacterium_prausnitzii

1
−−



Clostridium_nexile

1

Faecalibacterium_prausnitzii

1



Clostridium_nexile

1

Faecalibacterium_prausnitzii

1




Coprococcus_catus

1

Faecalibacterium_prausnitzii

1
−−−



Coprococcus_comes

1

Faecalibacterium_prausnitzii

1



Coprococcus_comes

1

Faecalibacterium_prausnitzii

1
+++



Dorea_formicigenerans

1

Faecalibacterium_prausnitzii

1



Dorea_formicigenerans

1

Faecalibacterium_prausnitzii

1
−−−



Dorea_longicatena

1

Faecalibacterium_prausnitzii

1
+++



Eubacterium_rectale

1

Faecalibacterium_prausnitzii

1
+



Faecalibacterium_prausnitzii

1

Faecalibacterium_prausnitzii

1
+



Faecalibacterium_prausnitzii

1

Faecalibacterium_prausnitzii

1



Faecalibacterium_prausnitzii

1

Faecalibacterium_prausnitzii

1
+



Faecalibacterium_prausnitzii

1

Faecalibacterium_prausnitzii

1



Odoribacter_splanchnicus

1

Faecalibacterium_prausnitzii

1
−−



Parabacteroides_merdae

1

Faecalibacterium_prausnitzii

1




Roseburia_intestinalis

1

Faecalibacterium_prausnitzii

1



Ruminococcus_obeum

1

Faecalibacterium_prausnitzii

1



Ruminococcus_torques

1

Faecalibacterium_prausnitzii

1



Bacteroides_caccae

1

Odoribacter_splanchnicus

1



Bacteroides_sp_D20

1

Odoribacter_splanchnicus

1
−−−



Clostridium_nexile

1

Odoribacter_splanchnicus

1



Clostridium_nexile

1

Odoribacter_splanchnicus

1
−−−



Coprococcus_catus

1

Odoribacter_splanchnicus

1
−−



Coprococcus_comes

1

Odoribacter_splanchnicus

1



Dorea_formicigenerans

1

Odoribacter_splanchnicus

1



Dorea_formicigenerans

1

Odoribacter_splanchnicus

1




Dorea_longicatena

1

Odoribacter_splanchnicus

1
++++



Eubacterium_rectale

1

Odoribacter_splanchnicus

1
+



Faecalibacterium_prausnitzii

1

Odoribacter_splanchnicus

1



Faecalibacterium_prausnitzii

1

Odoribacter_splanchnicus

1
−−−



Faecalibacterium_prausnitzii

1

Odoribacter_splanchnicus

1
+



Odoribacter_splanchnicus

1

Odoribacter_splanchnicus

1



Odoribacter_splanchnicus

1

Odoribacter_splanchnicus

1




Odoribacter_splanchnicus

1

Odoribacter_splanchnicus

1
+



Parabacteroides_merdae

1

Odoribacter_splanchnicus

1



Roseburia_intestinalis

1

Odoribacter_splanchnicus

1



Ruminococcus_obeum

1

Odoribacter_splanchnicus

1
+



Ruminococcus_torques

1

Odoribacter_splanchnicus

1



Bacteroides_sp_D20

1

Parabacteroides_merdae

1



Clostridium_nexile

1

Parabacteroides_merdae

1
++



Coprococcus_catus

1

Parabacteroides_merdae

1
+++



Dorea_formicigenerans

1

Parabacteroides_merdae

1



Dorea_longicatena

1

Parabacteroides_merdae

1



Faecalibacterium_prausnitzii

1

Parabacteroides_merdae

1
+



Odoribacter_splanchnicus

1

Parabacteroides_merdae

1



Parabacteroides_merdae

1

Parabacteroides_merdae

1
+++



Roseburia_intestinalis

1

Parabacteroides_merdae

1



Clostridium_nexile

1

Roseburia_intestinalis

1




Dorea_formicigenerans

1

Roseburia_intestinalis

1



Dorea_longicatena

1

Roseburia_intestinalis

1




Faecalibacterium_prausnitzii

1

Roseburia_intestinalis

1



Odoribacter_splanchnicus

1

Roseburia_intestinalis

1




Roseburia_intestinalis

1

Roseburia_intestinalis

1



Coprococcus_comes

1

Ruminococcus_bromii

1
++++



Eubacterium_rectale

1

Ruminococcus_bromii

1
+



Faecalibacterium_prausnitzii

1

Ruminococcus_bromii

1



Ruminococcus_bromii

1

Ruminococcus_bromii

1




Bacteroides_sp_D20

1

Ruminococcus_obeum

1



Clostridium_nexile

1

Ruminococcus_obeum

1




Coprococcus_catus

1

Ruminococcus_obeum

1



Dorea_formicigenerans

1

Ruminococcus_obeum

1
++++



Dorea_longicatena

1

Ruminococcus_obeum

1




Faecalibacterium_prausnitzii

1

Ruminococcus_obeum

1



Odoribacter_splanchnicus

1

Ruminococcus_obeum

1




Parabacteroides_merdae

1

Ruminococcus_obeum

1



Roseburia_intestinalis

1

Ruminococcus_obeum

1



Ruminococcus_obeum

1

Ruminococcus_obeum

1
++++



Bacteroides_caccae

1

Ruminococcus_torques

1
++++



Bacteroides_sp_D20

1

Ruminococcus_torques

1
++



Clostridium_nexile

1

Ruminococcus_torques

1
+



Coprococcus_catus

1

Ruminococcus_torques

1
+



Dorea_formicigenerans

1

Ruminococcus_torques

1
++++



Dorea_longicatena

1

Ruminococcus_torques

1



Faecalibacterium_prausnitzii

1

Ruminococcus_torques

1



Odoribacter_splanchnicus

1

Ruminococcus_torques

1



Parabacteroides_merdae

1

Ruminococcus_torques

1
+



Roseburia_intestinalis

1

Ruminococcus_torques

1
+



Ruminococcus_obeum

1

Ruminococcus_torques

1
++++



Ruminococcus_torques

1

Ruminococcus_torques

1
++++



Bacteroides_ovatus



Alistipes_shahii

1



Bacteroides_vulgatus



Alistipes_shahii

1
+++



Bacteroides_vulgatus



Alistipes_shahii

1
+



Blautia_producta



Alistipes_shahii

1
++++



Clostridium_hathewayi



Alistipes_shahii

1
++++



Clostridium_symbiosum



Alistipes_shahii

1



Collinsella_aerofaciens



Alistipes_shahii

1
++++



Escherichia_coli



Alistipes_shahii

1
++++



Escherichia_coli



Alistipes_shahii

1
++++



Eubacterium_eligens



Alistipes_shahii

1
−−



Streptococcus_thermophilus



Alistipes_shahii

1



Bacteroides_ovatus



Bacteroides_caccae

1



Bacteroides_vulgatus



Bacteroides_caccae

1
++++



Bacteroides_vulgatus



Bacteroides_caccae

1
+



Blautia_producta



Bacteroides_caccae

1
++++



Collinsella_aerofaciens



Bacteroides_caccae

1
++++



Escherichia_coli



Bacteroides_caccae

1
++++



Escherichia_coli



Bacteroides_caccae

1
++++



Eubacterium_eligens



Bacteroides_caccae

1
++



Streptococcus_thermophilus



Bacteroides_caccae

1
++



Bacteroides_vulgatus



Bacteroides_sp_D20

1
+



Blautia_producta



Bacteroides_sp_D20

1
++++



Escherichia_coli



Bacteroides_sp_D20

1
++++



Eubacterium_eligens



Bacteroides_sp_D20

1




Streptococcus_thermophilus



Bacteroides_sp_D20

1
+



Bacteroides_vulgatus



Clostridium_nexile

1
++++



Blautia_producta



Clostridium_nexile

1
++++



Escherichia_coli



Clostridium_nexile

1
++++



Eubacterium_eligens



Clostridium_nexile

1
+



Streptococcus_thermophilus



Clostridium_nexile

1
+



Bacteroides_vulgatus



Coprococcus_catus

1
+



Blautia_producta



Coprococcus_catus

1
++++



Escherichia_coli



Coprococcus_catus

1
++++



Eubacterium_eligens



Coprococcus_catus

1



Streptococcus_thermophilus



Coprococcus_catus

1



Bacteroides_ovatus



Coprococcus_comes

1



Bacteroides_vulgatus



Coprococcus_comes

1
++++



Bacteroides_vulgatus



Coprococcus_comes

1



Blautia_producta



Coprococcus_comes

1
++++



Clostridium_hathewayi



Coprococcus_comes

1
++++



Collinsella_aerofaciens



Coprococcus_comes

1
++++



Collinsella_aerofaciens



Coprococcus_comes

1
+++



Escherichia_coli



Coprococcus_comes

1
++++



Escherichia_coli



Coprococcus_comes

1
++++



Eubacterium_eligens



Coprococcus_comes

1
++



Streptococcus_thermophilus



Coprococcus_comes

1
++



Bacteroides_vulgatus



Dorea_formicigenerans

1
++



Escherichia_coli



Dorea_formicigenerans

1
++



Streptococcus_thermophilus



Dorea_formicigenerans

1



Bacteroides_vulgatus



Dorea_longicatena

1
++++



Blautia_producta



Dorea_longicatena

1
++++



Escherichia_coli



Dorea_longicatena

1
++++



Eubacterium_eligens



Dorea_longicatena

1
++



Streptococcus_thermophilus



Dorea_longicatena

1
+



Bacteroides_ovatus



Eubacterium_rectale

1



Bacteroides_vulgatus



Eubacterium_rectale

1
++++



Bacteroides_vulgatus



Eubacterium_rectale

1



Blautia_producta



Eubacterium_rectale

1
++++



Blautia_producta



Eubacterium_rectale

1
++++



Clostridium_hathewayi



Eubacterium_rectale

1
++++



Clostridium_symbiosum



Eubacterium_rectale

1
++



Clostridium_symbiosum



Eubacterium_rectale

1
+



Collinsella_aerofaciens



Eubacterium_rectale

1
++++



Collinsella_aerofaciens



Eubacterium_rectale

1
++++



Escherichia_coli



Eubacterium_rectale

1
++++



Escherichia_coli



Eubacterium_rectale

1
++++



Eubacterium_eligens



Eubacterium_rectale

1



Ruminococcus_gnavus



Eubacterium_rectale

1
++++



Streptococcus_thermophilus



Eubacterium_rectale

1



Bacteroides_ovatus



Faecalibacterium_prausnitzii

1




Bacteroides_vulgatus



Faecalibacterium_prausnitzii

1
++++



Bacteroides_vulgatus



Faecalibacterium_prausnitzii

1
+++



Bacteroides_vulgatus



Faecalibacterium_prausnitzii

1
−−−



Blautia_producta



Faecalibacterium_prausnitzii

1
++++



Blautia_producta



Faecalibacterium_prausnitzii

1
++++



Clostridium_hathewayi



Faecalibacterium_prausnitzii

1
+++



Clostridium_symbiosum



Faecalibacterium_prausnitzii

1
+++



Clostridium_symbiosum



Faecalibacterium_prausnitzii

1
++++



Collinsella_aerofaciens



Faecalibacterium_prausnitzii

1
++++



Collinsella_aerofaciens



Faecalibacterium_prausnitzii

1
++++



Escherichia_coli



Faecalibacterium_prausnitzii

1
++++



Escherichia_coli



Faecalibacterium_prausnitzii

1
++++



Escherichia_coli



Faecalibacterium_prausnitzii

1
++



Eubacterium_eligens



Faecalibacterium_prausnitzii

1



Eubacterium_eligens



Faecalibacterium_prausnitzii

1



Streptococcus_thermophilus



Faecalibacterium_prausnitzii

1



Streptococcus_thermophilus



Faecalibacterium_prausnitzii

1



Bacteroides_ovatus



Odoribacter_splanchnicus

1
−−



Bacteroides_vulgatus



Odoribacter_splanchnicus

1
+++



Bacteroides_vulgatus



Odoribacter_splanchnicus

1
+++



Bacteroides_vulgatus



Odoribacter_splanchnicus

1




Blautia_producta



Odoribacter_splanchnicus

1
++++



Blautia_producta



Odoribacter_splanchnicus

1
++++



Clostridium_hathewayi



Odoribacter_splanchnicus

1
++++



Clostridium_symbiosum



Odoribacter_splanchnicus

1
++



Collinsella_aerofaciens



Odoribacter_splanchnicus

1
++++



Escherichia_coli



Odoribacter_splanchnicus

1
++++



Escherichia_coli



Odoribacter_splanchnicus

1
++++



Escherichia_coli



Odoribacter_splanchnicus

1
++++



Eubacterium_eligens



Odoribacter_splanchnicus

1



Eubacterium_eligens



Odoribacter_splanchnicus

1



Streptococcus_thermophilus



Odoribacter_splanchnicus

1



Streptococcus_thermophilus



Odoribacter_splanchnicus

1
+



Bacteroides_ovatus



Parabacteroides_merdae

1



Bacteroides_vulgatus



Parabacteroides_merdae

1
++++



Blautia_producta



Parabacteroides_merdae

1
++++



Escherichia_coli



Parabacteroides_merdae

1
++++



Eubacterium_eligens



Parabacteroides_merdae

1



Streptococcus_thermophilus



Parabacteroides_merdae

1



Bacteroides_vulgatus



Roseburia_intestinalis

1
+



Blautia_producta



Roseburia_intestinalis

1
++++



Escherichia_coli



Roseburia_intestinalis

1
++++



Eubacterium_eligens



Roseburia_intestinalis

1



Streptococcus_thermophilus



Roseburia_intestinalis

1



Blautia_producta



Ruminococcus_bromii

1
++++



Clostridium_symbiosum



Ruminococcus_bromii

1
++++



Collinsella_aerofaciens



Ruminococcus_bromii

1
++++



Ruminococcus_gnavus



Ruminococcus_bromii

1
++++



Bacteroides_ovatus



Ruminococcus_obeum

1



Bacteroides_vulgatus



Ruminococcus_obeum

1
++++



Bacteroides_vulgatus



Ruminococcus_obeum

1



Blautia_producta



Ruminococcus_obeum

1
++++



Collinsella_aerofaciens



Ruminococcus_obeum

1
++++



Escherichia_coli



Ruminococcus_obeum

1
+++



Escherichia_coli



Ruminococcus_obeum

1
++++



Eubacterium_eligens



Ruminococcus_obeum

1
+



Streptococcus_thermophilus



Ruminococcus_obeum

1
+++



Bacteroides_ovatus



Ruminococcus_torques

1
++++



Bacteroides_vulgatus



Ruminococcus_torques

1
++++



Bacteroides_vulgatus



Ruminococcus_torques

1
++++



Blautia_producta



Ruminococcus_torques

1
++++



Collinsella_aerofaciens



Ruminococcus_torques

1
++++



Escherichia_coli



Ruminococcus_torques

1
++++



Escherichia_coli



Ruminococcus_torques

1
++++



Eubacterium_eligens



Ruminococcus_torques

1
++



Streptococcus_thermophilus



Ruminococcus_torques

1
+



Bacteroides_sp_D20

1

Bacteroides_ovatus






Clostridium_nexile

1

Bacteroides_ovatus




Coprococcus_catus

1

Bacteroides_ovatus




Dorea_formicigenerans

1

Bacteroides_ovatus




Dorea_longicatena

1

Bacteroides_ovatus






Faecalibacterium_prausnitzii

1

Bacteroides_ovatus




Odoribacter_splanchnicus

1

Bacteroides_ovatus




Roseburia_intestinalis

1

Bacteroides_ovatus




Bacteroides_sp_D20

1

Bacteroides_vulgatus




Clostridium_nexile

1

Bacteroides_vulgatus




Coprococcus_catus

1

Bacteroides_vulgatus


++



Dorea_formicigenerans

1

Bacteroides_vulgatus




Dorea_longicatena

1

Bacteroides_vulgatus




Faecalibacterium_prausnitzii

1

Bacteroides_vulgatus




Odoribacter_splanchnicus

1

Bacteroides_vulgatus




Parabacteroides_merdae

1

Bacteroides_vulgatus


+



Roseburia_intestinalis

1

Bacteroides_vulgatus




Alistipes_shahii

1

Blautia_producta




Bacteroides_caccae

1

Blautia_producta


+



Bacteroides_sp_D20

1

Blautia_producta




Clostridium_nexile

1

Blautia_producta






Coprococcus_catus

1

Blautia_producta


−−−−



Coprococcus_comes

1

Blautia_producta




Coprococcus_comes

1

Blautia_producta


++++



Dorea_formicigenerans

1

Blautia_producta


++++



Dorea_formicigenerans

1

Blautia_producta


−−



Dorea_longicatena

1

Blautia_producta


+++



Eubacterium_rectale

1

Blautia_producta


+



Faecalibacterium_prausnitzii

1

Blautia_producta




Faecalibacterium_prausnitzii

1

Blautia_producta


+



Faecalibacterium_prausnitzii

1

Blautia_producta


++++



Odoribacter_splanchnicus

1

Blautia_producta






Odoribacter_splanchnicus

1

Blautia_producta


+



Parabacteroides_merdae

1

Blautia_producta


+++



Roseburia_intestinalis

1

Blautia_producta


−−



Ruminococcus_obeum

1

Blautia_producta




Ruminococcus_torques

1

Blautia_producta




Bacteroides_caccae

1

Clostridium_hathewayi


++++



Bacteroides_sp_D20

1

Clostridium_hathewayi


++++



Clostridium_nexile

1

Clostridium_hathewayi




Coprococcus_catus

1

Clostridium_hathewayi


+++



Dorea_formicigenerans

1

Clostridium_hathewayi


++++



Dorea_longicatena

1

Clostridium_hathewayi


+



Faecalibacterium_prausnitzii

1

Clostridium_hathewayi




Odoribacter_splanchnicus

1

Clostridium_hathewayi




Parabacteroides_merdae

1

Clostridium_hathewayi


+



Roseburia_intestinalis

1

Clostridium_hathewayi


+++



Ruminococcus_obeum

1

Clostridium_hathewayi


++++



Ruminococcus_torques

1

Clostridium_hathewayi


++++



Bacteroides_caccae

1

Clostridium_symbiosum


+++



Bacteroides_sp_D20

1

Clostridium_symbiosum




Clostridium_nexile

1

Clostridium_symbiosum


+



Coprococcus_catus

1

Clostridium_symbiosum






Coprococcus_comes

1

Clostridium_symbiosum




Coprococcus_comes

1

Clostridium_symbiosum


++++



Dorea_formicigenerans

1

Clostridium_symbiosum




Dorea_longicatena

1

Clostridium_symbiosum


++++



Faecalibacterium_prausnitzii

1

Clostridium_symbiosum




Odoribacter_splanchnicus

1

Clostridium_symbiosum




Parabacteroides_merdae

1

Clostridium_symbiosum






Roseburia_intestinalis

1

Clostridium_symbiosum


−−



Ruminococcus_obeum

1

Clostridium_symbiosum


++++



Ruminococcus_torques

1

Clostridium_symbiosum


++



Bacteroides_sp_D20

1

Collinsella_aerofaciens


++++



Clostridium_nexile

1

Collinsella_aerofaciens


+



Coprococcus_catus

1

Collinsella_aerofaciens


++++



Dorea_formicigenerans

1

Collinsella_aerofaciens


++



Dorea_longicatena

1

Collinsella_aerofaciens


++++



Faecalibacterium_prausnitzii

1

Collinsella_aerofaciens


+++



Odoribacter_splanchnicus

1

Collinsella_aerofaciens


+++



Parabacteroides_merdae

1

Collinsella_aerofaciens


++++



Roseburia_intestinalis

1

Collinsella_aerofaciens


++



Bacteroides_sp_D20

1

Escherichia_coli


++++



Clostridium_nexile

1

Escherichia_coli


++++



Coprococcus_catus

1

Escherichia_coli


++++



Dorea_formicigenerans

1

Escherichia_coli


++++



Dorea_longicatena

1

Escherichia_coli


++++



Faecalibacterium_prausnitzii

1

Escherichia_coli


+++



Odoribacter_splanchnicus

1

Escherichia_coli


+++



Parabacteroides_merdae

1

Escherichia_coli


++++



Roseburia_intestinalis

1

Escherichia_coli


+++



Dorea_formicigenerans

1

Eubacterium_eligens


−−



Coprococcus_comes

1

Ruminococcus_gnavus


++++



Faecalibacterium_prausnitzii

1

Ruminococcus_gnavus


++++



Ruminococcus_bromii

1

Ruminococcus_gnavus


++++


















TABLE 21





Net ID
F-Score
KEGG Orthology Pathways

















N968.S
16
KO:K00101, KO:K00116, KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K00932, KO:K01069,




KO:K01659, KO:K01720, KO:K01734, KO:K01908, KO:K03417, KO:K03777, KO:K03778, KO:K04020


N282.S
12
KO:K00004, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442,




KO:K01659, KO:K01734, KO:K03366, KO:K03778


N390.S
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K04020


N515.S
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K04020


N516.S
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K04020


N586
11
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K01905, KO:K03778


N590.S
11
KO:K00004, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659,




KO:K01734, KO:K03366, KO:K03778


N666.S
11
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778, KO:K04020


N271.S
10
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N338.S
10
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N368.S
10
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N381.S
10
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778, KO:K10783


N382.S
10
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K01905,




KO:K03417, KO:K07246


N519.S
10
KO:K00004, KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03366, KO:K03778


N535.S
10
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N597.S
10
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659,




KO:K01734, KO:K03778


N680.S
10
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734,




KO:K01905, KO:K03778


N822.S
10
KO:K00004, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734,




KO:K03366, KO:K03778


N1008
9
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01659, KO:K01734, KO:K03778,




KO:K04020


N329.S
9
KO:K00102, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N332.S
9
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N346.S
9
KO:K00116, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N353.S
9
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N361.S
9
KO:K00116, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N375.S
9
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N377.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N380.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N387.S
9
KO:K00102, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N396.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N397.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N415.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N419.S
9
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03366,




KO:K03778


N431.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N434.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N440.S
9
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K03778,




KO:K07246


N447.S
9
KO:K00634, KO:K00656, KO:K00929, KO:K01067, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N458.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N459.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N481.S
9
KO:K00102, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N526
9
KO:K00004, KO:K00116, KO:K00163, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01659,




KO:K01734


N530.S
9
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734,




KO:K03778


N534.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N591.S
9
KO:K00004, KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366,




KO:K03778


N682.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N816.S
9
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734,




KO:K03778


N891.S
9
KO:K00102, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K01905,




KO:K03778


N1091
8
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734


N1093
8
KO:K00156, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N262.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N279.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N284.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N288.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N290.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N301.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N302.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N310.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N312.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N323.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N325.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N331.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N336.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N339.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N340.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N341.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N343.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N344.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N345.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N352.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N355.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N356.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N357.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N358.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N369.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N370.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N372.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N373.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N374.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N376.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N386.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N389.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N394.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N400.S
8
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K07246


N405.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N408.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N422.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N423.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N429.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N430.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N432.S
8
KO:K00627, KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N437.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N450.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N477.S
8
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N478.S
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N482.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N490.S
8
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N493.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N509.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N543.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N547.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N582.S
8
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N584.S
8
KO:K00102, KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K07246


N651.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N655.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N656.S
8
KO:K00156, KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N657.S
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N664
8
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778, KO:K10783


N667.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N675.S
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N693
8
KO:K00004, KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N698.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N712.S
8
KO:K00102, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N714.S
8
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N734.S
8
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01734, KO:K03778, KO:K04020


N782.S
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N789.S
8
KO:K00156, KO:K00163, KO:K00627, KO:K00656, KO:K01067, KO:K01069, KO:K01442, KO:K01734


N792
8
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N794
8
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N817.S
8
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N844
8
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K04020


N851.S
8
KO:K00102, KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01734, KO:K04020


N876
8
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N1051
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01659, KO:K01734, KO:K03778


N402.S
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N403.S
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N414.S
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N416.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N433.S
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N448.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N451.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N460.S
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N462.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N466.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N470.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N479.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N480.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N484.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N511.S
7
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N518.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N520.S
7
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N524.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N542.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N580.S
7
KO:K00158, KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N587.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N611.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N612.S
7
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N625.S
7
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03366


N649.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N685.S
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N686.S
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N687
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N733.S
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N739.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N777.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N785
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N788
7
KO:K00116, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01734, KO:K10783


N793.S
7
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734


N795.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778, KO:K10783


N798.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N804
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N807
7
KO:K00043, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N815.S
7
KO:K00102, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N829
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N836.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N846
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N875
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N894
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N898.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N913.S
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01734, KO:K03417, KO:K07246


N935
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N936.S
7
KO:K00156, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N945.S
7
KO:K00102, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N961
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N972
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N988
7
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N995.S
7
KO:K00627, KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1002.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1019.S
6
KO:K00156, KO:K00656, KO:K01067, KO:K01069, KO:K01659, KO:K01734


N1023
6
KO:K00627, KO:K00656, KO:K01442, KO:K01734, KO:K03366, KO:K03778


N1070.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01069, KO:K01442, KO:K01734


N399.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N421.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N436.S
6
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N439.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N441.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N446.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N457.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N464.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N465.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N468.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N469.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N474.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N488.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N508.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N510.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N512.S
6
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N514.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N517.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N521.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N522.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03417, KO:K07246


N523.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N525.S
6
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N528.S
6
KO:K00656, KO:K01069, KO:K01734, KO:K03417, KO:K03778, KO:K07246


N537.S
6
KO:K00102, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N539.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N546.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N548.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N572.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N577.S
6
KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778


N581.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N602.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N614.S
6
KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N617.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N621.S
6
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N652.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N654.S
6
KO:K00116, KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N668.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N678.S
6
KO:K00156, KO:K00627, KO:K00656, KO:K01069, KO:K01659, KO:K01734


N681.S
6
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N710.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N741.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N769
6
KO:K00102, KO:K00656, KO:K01069, KO:K01659, KO:K01734, KO:K03778


N779
6
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N796.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N826.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N827.S
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N828
6
KO:K00158, KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734


N832.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N840.S
6
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03366


N843.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N845
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N849
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N858
6
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N878
6
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N928.S
6
KO:K00634, KO:K00929, KO:K01067, KO:K01442, KO:K01734, KO:K03778


N960.S
6
KO:K00634, KO:K00656, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N1061
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N463.S
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N529.S
5
KO:K00656, KO:K01069, KO:K01659, KO:K01734, KO:K03778


N533.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N545
5
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N570.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N574.S
5
KO:K00627, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N578.S
5
KO:K00656, KO:K01069, KO:K01659, KO:K01734, KO:K03778


N579.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N585.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N589.S
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N609.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N610.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N616.S
5
KO:K00634, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N623.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01659, KO:K01734


N648.S
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N653.S
5
KO:K00043, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N665.S
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N672.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N689
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K10783


N730
5
KO:K00634, KO:K00656, KO:K01442, KO:K01734, KO:K03778


N737.S
5
KO:K00656, KO:K01069, KO:K01442, KO:K01734, KO:K03778


N797.S
5
KO:K00627, KO:K00656, KO:K01659, KO:K01734, KO:K03366


N800.S
5
KO:K00627, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N802
5
KO:K00043, KO:K00627, KO:K00656, KO:K01442, KO:K01734


N830.S
5
KO:K00627, KO:K00634, KO:K00656, KO:K01442, KO:K01734


N833.S
5
KO:K00102, KO:K00634, KO:K00656, KO:K01442, KO:K01734


N835.S
5
KO:K00634, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N841
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N842.S
5
KO:K00634, KO:K00929, KO:K01442, KO:K01734, KO:K03778


N852
5
KO:K00656, KO:K01442, KO:K01659, KO:K01734, KO:K03778


N859
5
KO:K00102, KO:K00656, KO:K01069, KO:K01734, KO:K03778


N860
5
KO:K00627, KO:K00656, KO:K01069, KO:K01734, KO:K03778


N880
5
KO:K00634, KO:K00656, KO:K01069, KO:K01442, KO:K01734


N885
5
KO:K00043, KO:K00656, KO:K01442, KO:K01659, KO:K01734


N925
5
KO:K00158, KO:K00627, KO:K00656, KO:K01442, KO:K01734


N983
5
KO:K00627, KO:K00656, KO:K01442, KO:K01734, KO:K03366


N1004.S
4
KO:K00656, KO:K01069, KO:K01734, KO:K03778


N1078.S
4
KO:K00158, KO:K00627, KO:K00656, KO:K01069


N1088
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N538.S
4
KO:K00656, KO:K01069, KO:K01734, KO:K03778


N604.S
4
KO:K00656, KO:K01659, KO:K01734, KO:K03778


N669.S
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N676.S
4
KO:K00656, KO:K01069, KO:K01734, KO:K03778


N690.S
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N692.S
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N695.S
4
KO:K00116, KO:K00656, KO:K01442, KO:K01734


N709
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N738.S
4
KO:K00656, KO:K01659, KO:K01734, KO:K03778


N775.S
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N776.S
4
KO:K00116, KO:K00656, KO:K01442, KO:K01734


N780.S
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N781
4
KO:K00656, KO:K01069, KO:K01442, KO:K01734


N808.S
4
KO:K00656, KO:K01069, KO:K01734, KO:K10783


N809.S
4
KO:K00656, KO:K01069, KO:K01659, KO:K01734


N811.S
4
KO:K00116, KO:K00656, KO:K01069, KO:K01734


N869.S
4
KO:K00627, KO:K00656, KO:K01442, KO:K01734


N871.S
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N881
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N907.S
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N927
4
KO:K00656, KO:K01067, KO:K01442, KO:K01734


N942
4
KO:K00102, KO:K00656, KO:K01442, KO:K01734


N947
4
KO:K00627, KO:K00656, KO:K01442, KO:K01734


N982
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N986.S
4
KO:K00656, KO:K01442, KO:K01734, KO:K03778


N987
4
KO:K00634, KO:K00656, KO:K01442, KO:K01734


N998.S
4
KO:K00656, KO:K01442, KO:K01659, KO:K01734


N1089
3
KO:K00656, KO:K01659, KO:K01734


N663.S
3
KO:K00656, KO:K01442, KO:K01734


N703.S
3
KO:K00656, KO:K01659, KO:K01734


N805.S
3
KO:K00656, KO:K01069, KO:K01442


N874.S
3
KO:K00656, KO:K01442, KO:K01734


N996
3
KO:K00656, KO:K01442, KO:K01734


N1092
2
KO:K01442, KO:K01734


N660.S
2
KO:K00656, KO:K01442









Functional Network Ecologies comprised of two or more OTUs that are observed in the ethanol-treated spore preparation or the combined engrafted and augmented ecologies of at least one patient post-treatment with the bacterial composition. Network Ecology IDs with a “.s” indicates that the network is a subset of the computationally determined networks reported in Table 8 with the same Network Ecology ID.









TABLE 22







Phlogenitic clades with alternatove embodiments








Phylogenetic



Clade
OTUs in clade





clade_172
Bifidobacteriaceae genomosp. C1, Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium




animalis, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium gallicum,





Bifidobacterium infantis, Bifidobacterium kashiwanohense, Bifidobacterium longum, Bifidobacterium





pseudocatenulatum, Bifidobacterium pseudolongum, Bifidobacterium scardovii, Bifidobacterium sp. HM2,





Bifidobacterium sp. HMLN12, Bifidobacterium sp. M45, Bifidobacterium sp. MSX5B, Bifidobacterium sp. TM_7,





Bifidobacterium thermophilum



clade_172i
Bifidobacteriaceae genomosp. C1, Bifidobacterium angulatum, Bifidobacterium animalis, Bifidobacterium breve,




Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium gallicum, Bifidobacterium infantis,





Bifidobacterium kashiwanohense, Bifidobacterium pseudocatenulatum, Bifidobacterium pseudolongum,





Bifidobacterium scardovii, Bifidobacterium sp. HM2, Bifidobacterium sp. HMLN12, Bifidobacterium sp. M45,





Bifidobacterium sp. MSX5B, Bifidobacterium sp. TM_7, Bifidobacterium thermophilum



clade_198

Lactobacillus casei, Lactobacillus paracasei, Lactobacillus zeae



clade_198i

Lactobacillus zeae



clade_260

Clostridium hylemonae, Clostridium scindens, Lachnospiraceae bacterium 5_1_57FAA



clade_260c

Clostridium hylemonae, Lachnospiraceae bacterium 5_1_57FAA



clade_260g

Clostridium hylemonae, Lachnospiraceae bacterium 5_1_57FAA



clade_260h

Clostridium hylemonae, Lachnospiraceae bacterium 5_1_57FAA



clade_262

Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium 1_1_57FAA,




Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA, Ruminococcus lactaris,




Ruminococcus torques



clade_262i

Clostridium glycyrrhizinilyticum, Clostridium nexile, Coprococcus comes, Lachnospiraceae bacterium 1_1_57FAA,




Lachnospiraceae bacterium 1_4_56FAA, Lachnospiraceae bacterium 8_1_57FAA, Ruminococcus lactaris


clade_309

Blautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia producta, Blautia





schinkii, Blautia sp. M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides,





Eubacterium cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens, Ruminococcus





hansenii, Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp. K_1, Syntrophococcus





sucromutans



clade_309c

Blautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii, Blautia sp.




M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides, Eubacterium




cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens, Ruminococcus hansenii,





Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp. K_1, Syntrophococcus sucromutans



clade_309e

Blautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii, Blautia sp.




M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides, Eubacterium




cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens, Ruminococcus hansenii,





Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp. K_1, Syntrophococcus sucromutans



clade_309g

Blautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii, Blautia sp.




M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides, Eubacterium




cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens, Ruminococcus hansenii,





Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp. K_1, Syntrophococcus sucromutans



clade_309h

Blautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii, Blautia sp.




M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides, Eubacterium




cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens, Ruminococcus hansenii,





Ruminococcus obeum, Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp. K_1, Syntrophococcus sucromutans



clade_309i

Blautia coccoides, Blautia glucerasea, Blautia glucerasei, Blautia hansenii, Blautia luti, Blautia schinkii, Blautia sp.




M25, Blautia stercoris, Blautia wexlerae, Bryantella formatexigens, Clostridium coccoides, Eubacterium




cellulosolvens, Lachnospiraceae bacterium 6_1_63FAA, Marvinbryantia formatexigens, Ruminococcus hansenii,





Ruminococcus sp. 5_1_39BFAA, Ruminococcus sp. K_1, Syntrophococcus sucromutans



clade_313

Lactobacillus antri, Lactobacillus coleohominis, Lactobacillus fermentum, Lactobacillus gastricus, Lactobacillus





mucosae, Lactobacillus oris, Lactobacillus pontis, Lactobacillus reuteri, Lactobacillus sp. KLDS 1.0707, Lactobacillus




sp. KLDS 1.0709, Lactobacillus sp. KLDS 1.0711, Lactobacillus sp. KLDS 1.0713, Lactobacillus sp. KLDS 1.0716,




Lactobacillus sp. KLDS 1.0718, Lactobacillus sp. oral taxon 052, Lactobacillus vaginalis



clade_313f

Lactobacillus antri, Lactobacillus coleohominis, Lactobacillus fermentum, Lactobacillus gastricus, Lactobacillus





mucosae, Lactobacillus oris, Lactobacillus pontis, Lactobacillus sp. KLDS 1.0707, Lactobacillus sp. KLDS 1.0709,





Lactobacillus sp. KLDS 1.0711, Lactobacillus sp. KLDS 1.0713, Lactobacillus sp. KLDS 1.0716, Lactobacillus sp.




KLDS 1.0718, Lactobacillus sp. oral taxon 052, Lactobacillus vaginalis


clade_325

Staphylococcus aureus, Staphylococcus auricularis, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus





carnosus, Staphylococcus cohnii, Staphylococcus condimenti, Staphylococcus epidermidis, Staphylococcus equorum,





Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pasteuri,





Staphylococcus pseudintermedius, Staphylococcus saccharolyticus, Staphylococcus saprophyticus, Staphylococcus sp.




H292, Staphylococcus sp. H780, Staphylococcus sp. clone bottae7, Staphylococcus succinus, Staphylococcus warneri,




Staphylococcus xylosus



clade_325f

Staphylococcus aureus, Staphylococcus auricularis, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus





carnosus, Staphylococcus cohnii, Staphylococcus condimenti, Staphylococcus epidermidis, Staphylococcus equorum,





Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus





pseudintermedius, Staphylococcus saccharolyticus, Staphylococcus saprophyticus, Staphylococcus sp. H292,





Staphylococcus sp. H780, Staphylococcus sp. clone bottae7, Staphylococcus succinus, Staphylococcus xylosus



clade_335

Bacteroides sp. 20_3, Bacteroides sp. 3_1_19, Bacteroides sp. 3_2_5, Parabacteroides distasonis, Parabacteroides





goldsteinii, Parabacteroides gordonii, Parabacteroides sp. D13



clade_335i

Bacteroides sp. 20_3, Bacteroides sp. 3119, Bacteroides sp. 3_2_5, Parabacteroides goldsteinii, Parabacteroides





gordonii, Parabacteroides sp. D13



clade_351

Clostridium innocuum, Clostridium sp. HGF2



clade_351e

Clostridium sp. HGF2



clade_354

Clostridium bartlettii, Clostridium bifermentans, Clostridium ghonii, Clostridium glycolicum, Clostridium mayombei,





Clostridium sordellii, Clostridium sp. MT4 E, Eubacterium tenue



clade_354e

Clostridium bartlettii, Clostridium ghonii, Clostridium glycolicum, Clostridium mayombei, Clostridium sordellii,





Clostridium sp. MT4 E, Eubacterium tenue



clade_360

Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium




2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus




gnavus, Ruminococcus sp. ID8



clade_360c

Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium




2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus




gnavus



clade_360g

Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium




2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus



gnavus


clade_360h

Dorea formicigenerans, Dorea longicatena, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium




2_1_58FAA, Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus




gnavus



clade_360i

Dorea formicigenerans, Lachnospiraceae bacterium 2_1_46FAA, Lachnospiraceae bacterium 2_1_58FAA,




Lachnospiraceae bacterium 4_1_37FAA, Lachnospiraceae bacterium 9_1_43BFAA, Ruminococcus gnavus,




Ruminococcus sp. ID8



clade_378

Bacteroides barnesiae, Bacteroides coprocola, Bacteroides coprophilus, Bacteroides dorei, Bacteroides massiliensis,





Bacteroides plebeius, Bacteroides sp. 3_1_33FAA, Bacteroides sp. 3_1_40A, Bacteroides sp. 4_3_47FAA, Bacteroides




sp. 9_1_42FAA, Bacteroides sp. NB_8, Bacteroides vulgatus


clade_378e

Bacteroides barnesiae, Bacteroides coprocola, Bacteroides coprophilus, Bacteroides dorei, Bacteroides massiliensis,





Bacteroides plebeius, Bacteroides sp. 3_1_33FAA, Bacteroides sp. 3_1_40A, Bacteroides sp. 4_3_47FAA, Bacteroides




sp. 9_1_42FAA, Bacteroides sp. NB_8


clade_38

Bacteroides ovatus, Bacteroides sp. 1_1_30, Bacteroides sp. 2_1_22, Bacteroides sp. 2_2_4, Bacteroides sp. 3_1_23,





Bacteroides sp. D1, Bacteroides sp. D2, Bacteroides sp. D22, Bacteroides xylanisolvens



clade_38e

Bacteroides sp. 1_1_30, Bacteroides sp. 2_1_22, Bacteroides sp. 2_2_4, Bacteroides sp. 3_1_23, Bacteroides sp. D1,





Bacteroides sp. D2, Bacteroides sp. D22, Bacteroides xylanisolvens



clade_38i

Bacteroides sp. 1_1_30, Bacteroides sp. 2_1_22, Bacteroides sp. 2_2_4, Bacteroides sp. 3_1_23, Bacteroides sp. D1,




Bacteroides sp. D2, Bacteroides sp. D22, Bacteroides xylanisolvens


clade_408

Anaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales bacterium 1_7_47FAA, Clostridiales sp. SM4_1,




Clostridiales sp. SSC_2, Clostridium aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum,




Clostridium amygdalinum, Clostridium asparagiforme, Clostridium bolteae, Clostridium celerecrescens, Clostridium





citroniae, Clostridium clostridiiformes, Clostridium clostridioforme, Clostridium hathewayi, Clostridium indolis,





Clostridium lavalense, Clostridium saccharolyticum, Clostridium sp. M62_1, Clostridium sp. SS2_1, Clostridium





sphenoides, Clostridium symbiosum, Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme,




Lachnospiraceae bacterium 3_1_57FAA, Lachnospiraceae bacterium 5_1_63FAA, Lachnospiraceae bacterium A4,



Lachnospiraceae bacterium DJF VP30, Lachnospiraceae genomosp. C1, Moryella indoligenes


clade_408b

Anaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales bacterium 1_7_47FAA, Clostridiales sp. SM4_1,




Clostridiales sp. SSC_2, Clostridium aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum,




Clostridium amygdalinum, Clostridium asparagiforme, Clostridium bolteae, Clostridium celerecrescens, Clostridium





citroniae, Clostridium clostridiiformes, Clostridium clostridioforme, Clostridium indolis, Clostridium lavalense,





Clostridium saccharolyticum, Clostridium sp. M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium





symbiosum, Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme, Lachnospiraceae bacterium




5_1_63FAA, Lachnospiraceae bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae genomosp. C1,




Moryella indoligenes



clade_408d

Anaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales sp. SM4_1, Clostridiales sp. SSC_2, Clostridium





aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum, Clostridium amygdalinum, Clostridium





celerecrescens, Clostridium citroniae, Clostridium clostridiiformes, Clostridium clostridioforme, Clostridium





hathewayi, Clostridium lavalense, Clostridium saccharolyticum, Clostridium sp. M62_1, Clostridium sp. SS2_1,





Clostridium sphenoides, Clostridium symbiosum, Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium





naviforme, Lachnospiraceae bacterium 3_1_57FAA, Lachnospiraceae bacterium 5_1_63FAA, Lachnospiraceae




bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae genomosp. C1, Moryella indoligenes


clade_408f

Anaerostipes sp. 3_2_56FAA, Clostridiales bacterium 1_7_47FAA, Clostridiales sp. SM4_1, Clostridiales sp. SSC_2,





Clostridium aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum, Clostridium amygdalinum,





Clostridium asparagiforme, Clostridium bolteae, Clostridium celerecrescens, Clostridium citroniae, Clostridium





clostridiiformes, Clostridium clostridioforme, Clostridium hathewavi, Clostridium lavalense, Clostridium





saccharolyticum, Clostridium sp. M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium symbiosum,





Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme, Lachnospiraceae bacterium 3_1_57FAA,




Lachnospiraceae bacterium 5163FAA, Lachnospiraceae bacterium A4, Lachnospiraceae bacterium DJF VP30,



Lachnospiraceae genomosp. C1, Moryella indoligenes


clade_408g

Anaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales sp. SM4_1, Clostridiales sp. SSC_2, Clostridium





aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum, Clostridium amygdalinum, Clostridium





celerecrescens, Clostridium citroniae, Clostridium clostridiiformes, Clostridium clostridioforme, Clostridium lavalense,





Clostridium saccharolyticum, Clostridium sp. M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium





symbiosum, Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme, Lachnospiraceae bacterium




5_1_63FAA, Lachnospiraceae bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae genomosp. C1,




Moryella indoligenes



clade_408h

Anaerostipes caccae, Anaerostipes sp. 3_2_56FAA, Clostridiales sp. SM4_1, Clostridiales sp. SSC_2, Clostridium





aerotolerans, Clostridium aldenense, Clostridium algidixylanolyticum, Clostridium amygdalinum, Clostridium





celerecrescens, Clostridium citroniae, Clostridium clostridiiformes, Clostridium clostridioforme, Clostridium lavalense,





Clostridium saccharolyticum, Clostridium sp. M62_1, Clostridium sp. SS2_1, Clostridium sphenoides, Clostridium





symbiosum, Clostridium xylanolyticum, Eubacterium hadrum, Fusobacterium naviforme, Lachnospiraceae bacterium




5_1_63FAA, Lachnospiraceae bacterium A4, Lachnospiraceae bacterium DJF VP30, Lachnospiraceae genomosp. C1,




Moryella indoligenes



clade_420

Barnesiella intestinihominis, Barnesiella viscericola, Parabacteroides sp. NS31_3, Porphyromonadaceae bacterium




NML 060648, Tannerella forsythia, Tannerella sp. 6_1_58FAA_CT1


clade_420f

Barnesiella viscericola, Parabacteroides sp. NS31_3, Porphyromonadaceae bacterium NML 060648, Tannerella





forsythia, Tannerella sp. 6_1_58FAA_CT1



clade_444

Butyrivibrio fibrisolvens, Eubacterium rectale, Eubacterium sp. oral clone GI038, Lachnobacterium bovis, Roseburia





cecicola, Roseburia faecalis, Roseburia faecis, Roseburia hominis, Roseburia intestinalis, Roseburia inulinivorans,





Roseburia sp. 11SE37, Roseburia sp. 11SE38, Shuttleworthia satelles, Shuttleworthia sp. MSX8B, Shuttleworthia sp.




oral taxon G69


clade_444i

Butyrivibrio fibrisolvens, Eubacterium sp. oral clone GI038, Lachnobacterium bovis, Roseburia cecicola, Roseburia





faecis, Roseburia hominis, Roseburia inulinivorans, Roseburia sp. 11SE37, Roseburia sp. 11SE38, Shuttleworthia





satelles, Shuttleworthia sp. MSX8B, Shuttleworthia sp. oral taxon G69



clade_478

Faecalibacterium prausnitzii, Gemmiger formicilis, Subdoligranulum variabile



clade_478i

Gemmiger formicilis, Subdoligranulum variabile



clade_479
Clostridiaceae bacterium JC13, Clostridium sp. MLG055, Erysipelotrichaceae bacterium 3_1_53


clade_479c

Clostridium sp. MLG055, Erysipelotrichaceae bacterium 3_1_53



clade_479g

Clostridium sp. MLG055, Erysipelotrichaceae bacterium 3_1_53



clade_479h

Clostridium sp. MLG055, Erysipelotrichaceae bacterium 3_1_53



clade_481

Clostridium cocleatum, Clostridium ramosum, Clostridium saccharogumia, Clostridium spiroforme, Coprobacillus sp.




D7


clade_481a

Clostridium cocleatum, Clostridium spiroforme, Coprobacillus sp. D7



clade_481b

Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme, Coprobacillus sp. D7



clade_481e

Clostridium cocleatum, Clostridium saccharogumia, Clostridium spiroforme, Coprobacillus sp. D7



clade_481g

Clostridium cocleatum, Clostridium spiroforme, Coprobacillus sp. D7



clade_481h

Clostridium cocleatum, Clostridium spiroforme, Coprobacillus sp. D7



clade_481i

Clostridium ramosum, Clostridium saccharogumia, Clostridium spiroforme, Coprobacillus sp. D7



clade_497

Abiotrophia para

adiacens, Carnobacterium divergens, Carnobacterium maltaromaticum, Enterococcus avium,





Enterococcus caccae, Enterococcus casseliflavus, Enterococcus durans, Enterococcus faecalis, Enterococcus faecium,





Enterococcus gallinarum, Enterococcus gilvus, Enterococcus hawaiiensis, Enterococcus hirae, Enterococcus italicus,





Enterococcus mundtii, Enterococcus raffinosus, Enterococcus sp. BV2CASA2, Enterococcus sp. CCRI 16620,





Enterococcus sp. F95, Enterococcus sp. RfL6, Enterococcus thailandicus, Fusobacterium canifelinum, Fusobacterium




genomosp. C1, Fusobacterium genomosp. C2, Fusobacterium nucleatum, Fusobacterium periodonticum,




Fusobacterium sp. 11_3_2, Fusobacterium sp. 1_1_41FAA, Fusobacterium sp. 2_1_31, Fusobacterium sp. 3_1_27,





Fusobacterium sp. 3_1_33, Fusobacterium sp. 3_1_36A2, Fusobacterium sp. AC18, Fusobacterium sp. ACB2,





Fusobacterium sp. AS2, Fusobacterium sp. CM1, Fusobacterium sp. CM21, Fusobacterium sp. CM22, Fusobacterium




sp. oral clone ASCF06, Fusobacterium sp. oral clone ASCF11, Granulicatella adiacens, Granulicatella elegans,




Granulicatella paradiacens, Granulicatella sp. oral clone ASC02, Granulicatella sp. oral clone ASCA05, Granulicatella




sp. oral clone ASCB09, Granulicatella sp. oral clone ASCG05, Tetragenococcus halophilus, Tetragenococcus




koreensis, Vagococcus fluvialis



clade_497e

Abiotrophia para

adiacens, Carnobacterium divergens, Carnobacterium maltaromaticum, Enterococcus avium,





Enterococcus caccae, Enterococcus casseliflavus, Enterococcus durans, Enterococcus faecium, Enterococcus





gallinarum, Enterococcus gilvus, Enterococcus hawaiiensis, Enterococcus hirae, Enterococcus italicus, Enterococcus





mundtii, Enterococcus raffinosus, Enterococcus sp. BV2CASA2, Enterococcus sp. CCRI 16620, Enterococcus sp. F95,





Enterococcus sp. RfL6, Enterococcus thailandicus, Fusobacterium canifelinum, Fusobacterium genomosp. C1,





Fusobacterium genomosp. C2, Fusobacterium nucleatum, Fusobacterium periodonticum, Fusobacterium sp. 11_3_2,





Fusobacterium sp. 1_1_41FAA, Fusobacterium sp. 2_1_31, Fusobacterium sp. 3_1_27, Fusobacterium sp. 3_1_33,





Fusobacterium sp. 3_1_36A2, Fusobacterium sp. AC18, Fusobacterium sp. ACB2, Fusobacterium sp. AS2,





Fusobacterium sp. CM1, Fusobacterium sp. CM21, Fusobacterium sp. CM22, Fusobacterium sp. oral clone ASCF06,





Fusobacterium sp. oral clone ASCF11, Granulicatella adiacens, Granulicatella elegans, Granulicatella paradiacens,





Granulicatella sp. oral clone ASC02, Granulicatella sp. oral clone ASCA05, Granulicatella sp. oral clone ASCB09,





Granulicatella sp. oral clone ASCG05, Tetragenococcus halophilus, Tetragenococcus koreensis, Vagococcus fluvialis



clade_497f

Abiotrophia para

adiacens, Carnobacterium divergens, Carnobacterium maltaromaticum, Enterococcus avium,





Enterococcus caccae, Enterococcus casseliflavus, Enterococcus faecalis, Enterococcus gallinarum, Enterococcus





gilvus, Enterococcus hawaiiensis, Enterococcus italicus, Enterococcus mundtii, Enterococcus raffinosus, Enterococcus




sp. BV2CASA2, Enterococcus sp. CCRI 16620, Enterococcus sp. F95, Enterococcus sp. RfL6, Enterococcus




thailandicus, Fusobacterium canifelinum, Fusobacterium genomosp. C1, Fusobacterium genomosp. C2, Fusobacterium





nucleatum, Fusobacterium periodonticum, Fusobacterium sp. 11_3_2, Fusobacterium sp. 1_1_41FAA, Fusobacterium




sp. 2_1_31, Fusobacterium sp. 3_1_27, Fusobacterium sp. 3_1_33, Fusobacterium sp. 3_1_36A2, Fusobacterium sp.



AC18, Fusobacterium sp. ACB2, Fusobacterium sp. AS2, Fusobacterium sp. CM1, Fusobacterium sp. CM21,




Fusobacterium sp. CM22, Fusobacterium sp. oral clone ASCF06, Fusobacterium sp. oral clone ASCF11, Granulicatella





adiacens, Granulicatella elegans, Granulicatella paradiacens, Granulicatella sp. oral clone ASC02, Granulicatella sp.




oral clone ASCA05, Granulicatella sp. oral clone ASCB09, Granulicatella sp. oral clone ASCG05, Tetragenococcus




halophilus, Tetragenococcus koreensis, Vagococcus fluvialis



clade_512

Eubacterium barkeri, Eubacterium callanderi, Eubacterium limosum, Pseudoramibacter alactolyticus



clade_512i

Eubacterium barkeri, Eubacterium callanderi, Pseudoramibacter alactolyticus



clade_516

Anaerotruncus colihominis, Clostridium methylpentosum, Clostridium sp. YIT 12070, Hydrogenoanaerobacterium





saccharovorans, Ruminococcus albus, Ruminococcus flavefaciens



clade 516c

Clostridium methylpentosum, Clostridium sp. YIT 12070, Hydrogenoanaerobacterium saccharovorans, Ruminococcus





albus, Ruminococcus flavefaciens



clade_516g

Clostridium methylpentosum, Clostridium sp. YIT 12070, Hydrogenoanaerobacterium saccharovorans, Ruminococcus





albus, Ruminococcus flavefaciens



clade_516h

Clostridium methylpentosum, Clostridium sp. YIT 12070, Hydrogenoanaerobacterium saccharovorans, Ruminococcus





albus, Ruminococcus flavefaciens



clade_519

Eubacterium ventriosum



clade_522

Bacteroides galacturonicus, Eubacterium eligens, Lachnospira multipara, Lachnospira pectinoschiza, Lactobacillus





rogosae



clade_522i

Bacteroides galacturonicus, Lachnospira multipara, Lachnospira pectinoschiza, Lactobacillus rogosae



clade_553

Collinsella aerofaciens, Collinsella intestinalis, Collinsella stercoris, Collinsella tanakaei



clade_553i

Collinsella intestinalis, Collinsella stercoris, Collinsella tanakaei



clade_566

Adlercreutzia equolifaciens, Coriobacteriaceae bacterium JC110, Coriobacteriaceae bacterium phI, Cryptobacterium





curtum, Eggerthella lenta, Eggerthella sinensis, Eggerthella sp. 1_3_56FAA, Eggerthella sp. HGA1, Eggerthella sp.




YY7918, Gordonibacter pamelaeae, Slackia equolifaciens, Slackia exigua, Slackia faecicanis, Slackia




heliotrinireducens, Slackia isoflavoniconvertens, Slackia piriformis, Slackia sp. NATTS, Streptomyces albus



clade_566f
Coriobacteriaceae bacterium JC110, Coriobacteriaceae bacterium phI, Cryptobacterium curtum, Eggerthella lenta,




Eggerthella sinensis, Eggerthella sp. 1_3_56FAA, Eggerthella sp. HGA1, Eggerthella sp. YY7918, Gordonibacter





pamelaeae, Slackia equolifaciens, Slackia exigua, Slackia faecicanis, Slackia heliotrinireducens, Slackia





isoflavoniconvertens, Slackia piriformis, Slackia sp. NATTS, Streptomyces albus



clade_572

Butyricicoccus pullicaecorum, Eubacterium desmolans, Papillibacter cinnamivorans, Sporobacter termitidis



clade_572i

Butyricicoccus pullicaecorum, Papillibacter cinnamivorans, Sporobacter termitidis



clade_65

Bacteroides faecis, Bacteroides fragilis, Bacteroides nordii, Bacteroides salyersiae, Bacteroides sp. 1_1_14, Bacteroides




sp. 1_1_6, Bacteroides sp. 2_1_56FAA, Bacteroides sp. AR29, Bacteroides sp. B2, Bacteroides thetaiotaomicron


clade_65e

Bacteroides faecis, Bacteroides fragilis, Bacteroides nordii, Bacteroides salyersiae, Bacteroides sp. 1_1_14, Bacteroides




sp. 1_1_6, Bacteroides sp. 2_1_56FAA, Bacteroides sp. AR29, Bacteroides sp. B2


clade_92

Actinobacillus actinomycetemcomitans, Actinobacillus succinogenes, Aggregatibacter actinomycetemcomitans,





Aggregatibacter aphrophilus, Aggregatibacter segnis, Avetyella dalhousiensis, Bisgaard Taxon, Buchnera aphidicola,





Cedecea davisae, Citrobacter amalonaticus, Citrobacter braakii, Citrobacter farmeri, Citrobacter freundii, Citrobacter gillenii,





Citrobacter koseri, Citrobacter murliniae, Citrobacter rodentium, Citrobacter sedlakii, Citrobacter sp. 30_2,





Citrobacter sp. KMSI_3, Citrobacter werkmanii, Citrobacter youngae, Cronobacter malonaticus, Cronobacter sakazakii,





Cronobacter turicensis, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter cancerogenus,





Enterobacter cloacae, Enterobacter cowanii, Enterobacter hormaechei, Enterobacter sp. 247BMC, Enterobacter sp. 638,





Enterobacter sp. JC163, Enterobacter sp. SCSS, Enterobacter sp. TSE38, Enterobacteriaceae bacterium 9_2_54FAA,




Enterobacteriaceae bacterium CF01Ent_1, Enterobacteriaceae bacterium Smarlab 3302238, Escherichia albertii,




Escherichia coli, Escherichia fergusonii, Escherichia hermannii, Escherichia sp. 1_1_43, Escherichia sp. 4_1_40B,





Escherichia sp. B4, Escherichia vulneris, Ewingella americana, Haemophilus genomosp. P2 oral clone MB3_C24,





Haemophilus genomosp. P3 oral clone MB3_C38, Haemophilus sp. oral clone JM053, Hafnia alvei, Klebsiella oxytoca,





Klebsiella pneumoniae, Klebsiella sp. AS10, Klebsiella sp. Co9935, Klebsiella sp. OBRC7, Klebsiella sp.




SP_BA, Klebsiella sp. SRC_DSD1, Klebsiella sp. SRC_DSD11, Klebsiella sp. SRC_DSD12, Klebsiella sp.



SRC_DSD15, Klebsiella sp. SRC_DSD2, Klebsiella sp. SRC_DSD6, Klebsiella sp. enrichment culture clone



SRC_DSD25, Klebsiella variicola, Kluyvera ascorbata, Kluyvera cryocrescens, Leminorella grimontii, Leminorella richardii,




Pantoea agglomerans, Pantoea ananatis, Pantoea brenneri, Pantoea citrea, Pantoea conspicua, Pantoea septica,





Pasteurella dagmatis, Pasteurella multocida, Plesiomonas shigelloides, Raoultella ornithinolytica, Raoultella planticola,





Raoultella terrigena, Salmonella bongori, Salmonella enterica, Salmonella typhimurium, Serratia fonticola, Serratia liquefaciens,





Serratia marcescens, Serratia odorifera, Serratia proteamaculans, Shigella boydii, Shigella dysenteriae,





Shigella flexneri, Shigella sonnei, Tatumella ptyseos, Trabulsiella guamensis, Yersinia aldovae, Yersinia aleksiciae,





Yersinia bercovieri, Yersinia enterocolitica, Yersinia frederiksenii, Yersinia intermedia, Yersinia kristensenii,





Yersinia mollaretii, Yersinia pestis, Yersinia pseudotuberculosis, Yersinia rohdei, Yokenella regensburgei



clade_92e

Actinobacillus actinomycetemcomitans, Actinobacillus succinogenes, Aggregatibacter actinomycetemcomitans,





Aggregatibacter aphrophilus, Aggregatibacter segnis, Averyella dalhousiensis, Bisgaard Taxon, Buchnera aphidicola,





Cedecea davisae, Citrobacter amalonaticus, Citrobacter braakii, Citrobacter farmeri, Citrobacter freundii, Citrobacter





gillenii, Citrobacter koseri, Citrobacter murliniae, Citrobacter rodentium, Citrobacter sedlakii, Citrobacter sp. 30_2,





Citrobacter sp. KMSI_3, Citrobacter werkmanii, Citrobacter youngae, Cronobacter malonaticus, Cronobacter sakazakii,





Cronobacter turicensis, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter cancerogenus,





Enterobacter cloacae, Enterobacter cowanii, Enterobacter hormaechei, Enterobacter sp. 247BMC, Enterobacter sp. 638,





Enterobacter sp. JC163, Enterobacter sp. SCSS, Enterobacter sp. TSE38, Enterobacteriaceae bacterium 9_2_54FAA,




Enterobacteriaceae bacterium CF01Ent_1, Enterobacteriaceae bacterium Smarlab 3302238, Escherichia albertii,




Escherichia fergusonii, Escherichia hermannii, Escherichia sp. 1_1_43, Escherichia sp. 4_1_40B, Escherichia sp. B4,





Escherichia vulneris, Ewingella americana, Haemophilus genomosp. P2 oral clone MB3_C24, Haemophilus genomosp.




P3 oral clone MB3_C38, Haemophilus sp. oral clone JM053, Hafnia alvei, Klebsiella oxytoca, Klebsiella pneumoniae,




Klebsiella sp. AS10, Klebsiella sp. Co9935, Klebsiella sp. OBRC7, Klebsiella sp. SP_BA, Klebsiella sp. SRC_DSD1,





Klebsiella sp. SRC_DSD11, Klebsiella sp. SRC_DSD12, Klebsiella sp. SRC_DSD15, Klebsiella sp. SRC_DSD2,





Klebsiella sp. SRC_DSD6, Klebsiella sp. enrichment culture clone SRC_DSD25, Klebsiella variicola, Kluyvera ascorbata,





Kluyvera cryocrescens, Leminorella grimontii, Leminorella richardii, Pantoea agglomerans, Pantoea





ananatis, Pantoea brenneri, Pantoea citrea, Pantoea conspicua, Pantoea septica, Pasteurella dagmatis, Pasteurella





multocida, Plesiomonas shigelloides, Raoultella ornithinolytica, Raoultella planticola, Raoultella terrigena, Salmonella





bongori, Salmonella enterica, Salmonella typhimurium, Serratia fonticola, Serratia liquefaciens, Serratia marcescens,





Serratia odorifera, Serratia proteamaculans, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei,





Tatumella ptyseos, Trabulsiella guamensis, Yersinia aldovae, Yersinia aleksiciae, Yersinia bercovieri, Yersinia





enterocolitica, Yersinia frederiksenii, Yersinia intermedia, Yersinia kristensenii, Yersinia mollaretii, Yersinia pestis,





Yersinia pseudotuberculosis, Yersinia rahdei, Yokenella regensburgei



clade_92i

Actinobacillus actinomycetemcomitans, Actinobacillus succinogenes, Aggregatibacter actinomycetemcomitans,





Aggregatibacter aphrophilus, Aggregatibacter segnis, Averyella dalhousiensis, Bisgaard Taxon, Buchnera aphidicola,





Cedecea davisae, Citrobacter amalonaticus, Citrobacter braakii, Citrobacter farmeri, Citrobacter freundii, Citrobacter





gillenii, Citrobacter koseri, Citrobacter murliniae, Citrobacter rodentium, Citrobacter sedlakii, Citrobacter sp. 30_2,





Citrobacter sp. KMSI_3, Citrobacter werkmanii, Citrobacter youngae, Cronobacter malonaticus, Cronobacter





sakazakii, Cronobacter turicensis, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter cancerogenus,





Enterobacter cloacae, Enterobacter cowanii, Enterobacter hormaechei, Enterobacter sp. 247BMC, Enterobacter sp. 638,





Enterobacter sp. JC163, Enterobacter sp. SCSS, Enterobacter sp. TSE38, Enterobacteriaceae bacterium 9_2_54FAA,




Enterobacteriaceae bacterium CF01Ent_1, Enterobacteriaceae bacterium Smarlab 3302238, Escherichia albertii,




Escherichia fergusonii, Escherichia hermannii, Escherichia sp. 1_1_43, Escherichia sp. 4_1_40B, Escherichia sp. B4,





Escherichia vulneris, Ewingella americana, Haemophilus genomosp. P2 oral clone MB3_C24, Haemophilus genomosp.




P3 oral clone MB3_C38, Haemophilus sp. oral clone JM053, Hafnia alvei, Klebsiella oxytoca, Klebsiella pneumoniae,




Klebsiella sp. AS10, Klebsiella sp. Co9935, Klebsiella sp. OBRC7, Klebsiella sp. SP_BA, Klebsiella sp. SRC_DSD1,





Klebsiella sp. SRC_DSD11, Klebsiella sp. SRC_DSD12, Klebsiella sp. SRC_DSD15, Klebsiella sp. SRC_DSD2,





Klebsiella sp. SRC_DSD6, Klebsiella sp. enrichment culture clone SRC_DSD25, Klebsiella variicola, Kluyvera





ascorbata, Kluyvera cryocrescens, Leminorella grimontii, Leminorella richardii, Pantoea agglomerans, Pantoea





ananatis, Pantoea brenneri, Pantoea citrea, Pantoea conspicua, Pantoea septica, Pasteurella dagmatis, Pasteurella





multocida, Plesiomonas shigelloides, Raoultella ornithinolytica, Raoultella planticola, Raoultella terrigena, Salmonella





bongori, Salmonella enterica, Salmonella typhimurium, Serratia fonticola, Serratia liquefaciens, Serratia marcescens,





Serratia odorifera, Serratia proteamaculans, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei,





Tatumella ptyseos, Trabulsiella guamensis, Yersinia aldovae, Yersinia aleksiciae, Yersinia bercovieri, Yersinia





enterocolitica, Yersinia frederiksenii, Yersinia intermedia, Yersinia kristensenii, Yersinia mollaretii, Yersinia pestis,





Yersinia pseudotuberculosis, Yersinia rohdei, Yokenella regensburgei



clade_96

Clostridium oroticum, Clostridium sp. D5, Eubacterium contortum, Eubacterium fissicatena



clade_96g

Clostridium oroticum, Clostridium sp. D5, Eubacterium fissicatena



clade_96h

Clostridium oroticum, Clostridium sp. D5, Eubacterium fissicatena



clade_98

Okadaella gastrococcus, Streptococcus agalactiae, Streptococcus alactolyticus, Streptococcus australis, Streptococcus





bovis, Streptococcus canis, Streptococcus constellatus, Streptococcus cristatus, Streptococcus dysgalactiae,





Streptococcus equi, Streptococcus equinus, Streptococcus gallolyticus, Streptococcus genomosp. C1, Streptococcus




genomosp. C2, Streptococcus genomosp. C3, Streptococcus genomosp. C4, Streptococcus genomosp. C5,




Streptococcus genomosp. C6, Streptococcus genomosp. C7, Streptococcus genomosp. C8, Streptococcus gordonii,





Streptococcus infantarius, Streptococcus infantis, Streptococcus intermedius, Streptococcus lutetiensis, Streptococcus





massiliensis, Streptococcus mitis, Streptococcus oligofermentans, Streptococcus oralis, Streptococcus parasanguinis,





Streptococcus pasteurianus, Streptococcus peroris, Streptococcus pneumoniae, Streptococcus porcinus, Streptococcus





pseudopneumoniae, Streptococcus pseudoporcinus, Streptococcus pyogenes, Streptococcus ratti, Streptococcus





salivarius, Streptococcus sanguinis, Streptococcus sinensis, Streptococcus sp. 2285_97, Streptococcus sp. 2_1_36FAA,





Streptococcus sp. ACS2, Streptococcus sp. AS20, Streptococcus sp. BS35a, Streptococcus sp. C150, Streptococcus sp.




CM6, Streptococcus sp. ICM10, Streptococcus sp. ICM12, Streptococcus sp. ICM2, Streptococcus sp. ICM4,




Streptococcus sp. ICM45, Streptococcus sp. M143, Streptococcus sp. M334, Streptococcus sp. oral clone ASB02,





Streptococcus sp. oral clone ASCA03, Streptococcus sp. oral clone ASCA04, Streptococcus sp. oral clone ASCA09,





Streptococcus sp. oral clone ASCB04, Streptococcus sp. oral clone ASCB06, Streptococcus sp. oral clone ASCC04,





Streptococcus sp. oral clone ASCC05, Streptococcus sp. oral clone ASCC12, Streptococcus sp. oral clone ASCD01,





Streptococcus sp. oral clone ASCD09, Streptococcus sp. oral clone ASCD10, Streptococcus sp. oral clone ASCE03,





Streptococcus sp. oral clone ASCE04, Streptococcus sp. oral clone ASCE05, Streptococcus sp. oral clone ASCE06,





Streptococcus sp. oral clone ASCE09, Streptococcus sp. oral clone ASCE10, Streptococcus sp. oral clone ASCE12,





Streptococcus sp. oral clone ASCF05, Streptococcus sp. oral clone ASCF07, Streptococcus sp. oral clone ASCF09,





Streptococcus sp. oral clone ASCG04, Streptococcus sp. oral clone BW009, Streptococcus sp. oral clone CH016,





Streptococcus sp. oral clone GK051, Streptococcus sp. oral clone GM006, Streptococcus sp. oral clone P2PA_41 P2,





Streptococcus sp. oral clone P4PA_30 P4, Streptococcus sp. oral taxon 071, Streptococcus sp. oral taxon G59,





Streptococcus sp. oral taxon G62, Streptococcus sp. oral taxon G63, Streptococcus suis, Streptococcus thermophilus,





Streptococcus uberis, Streptococcus urinalis, Streptococcus vestibularis, Streptococcus viridans, Synergistetes




bacterium oral clone 03 5 D05


clade_98i

Okadaella gastrococcus, Streptococcus agalactiae, Streptococcus alactolyticus, Streptococcus australis, Streptococcus





bovis, Streptococcus canis, Streptococcus constellatus, Streptococcus cristatus, Streptococcus dysgalactiae,





Streptococcus equi, Streptococcus equinus, Streptococcus gallolyticus, Streptococcus genomosp. C1, Streptococcus




genomosp. C2, Streptococcus genomosp. C3, Streptococcus genomosp. C4, Streptococcus genomosp. C5,




Streptococcus genomosp. C6, Streptococcus genomosp. C7, Streptococcus genomosp. C8, Streptococcus gordonii,





Streptococcus infantarius, Streptococcus infantis, Streptococcus intermedius, Streptococcus lutetiensis, Streptococcus





massiliensis, Streptococcus oligofermentans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus





pasteurianus, Streptococcus peroris, Streptococcus pneumoniae, Streptococcus porcinus, Streptococcus





pseudopneumoniae, Streptococcus pseudoporcinus, Streptococcus pyogenes, Streptococcus ratti, Streptococcus





salivarius, Streptococcus sanguinis, Streptococcus sinensis, Streptococcus sp. 2285_97, Streptococcus sp. 2_1_36FAA,





Streptococcus sp. ACS2, Streptococcus sp. AS20, Streptococcus sp. BS35a, Streptococcus sp. C150, Streptococcus sp.




CM6, Streptococcus sp. ICM10, Streptococcus sp. ICM12, Streptococcus sp. ICM2, Streptococcus sp. ICM4,




Streptococcus sp. ICM45, Streptococcus sp. M143, Streptococcus sp. M334, Streptococcus sp. oral clone ASB02,





Streptococcus sp. oral clone ASCA03, Streptococcus sp. oral clone ASCA04, Streptococcus sp. oral clone ASCA09,





Streptococcus sp. oral clone ASCB04, Streptococcus sp. oral clone ASCB06, Streptococcus sp. oral clone ASCC04,





Streptococcus sp. oral clone ASCC05, Streptococcus sp. oral clone ASCC12, Streptococcus sp. oral clone ASCD01,





Streptococcus sp. oral clone ASCD09, Streptococcus sp. oral clone ASCD10, Streptococcus sp. oral clone ASCE03,





Streptococcus sp. oral clone ASCE04, Streptococcus sp. oral clone ASCE05, Streptococcus sp. oral clone ASCE06,





Streptococcus sp. oral clone ASCE09, Streptococcus sp. oral clone ASCE10, Streptococcus sp. oral clone ASCE12,





Streptococcus sp. oral clone ASCF05, Streptococcus sp. oral clone ASCF07, Streptococcus sp. oral clone ASCF09,





Streptococcus sp. oral clone ASCG04, Streptococcus sp. oral clone BW009, Streptococcus sp. oral clone CH016,





Streptococcus sp. oral clone GK051, Streptococcus sp. oral clone GM006, Streptococcus sp. oral clone P2PA_41 P2,





Streptococcus sp. oral clone P4PA_30 P4, Streptococcus sp. oral taxon 071, Streptococcus sp. oral taxon G59,





Streptococcus sp. oral taxon G62. Streptococcus sp. oral taxon G63, Streptococcus suis, Streptococcus thermophilus,





Streptococcus uberis, Streptococcus urinalis, Streptococcus vestibularis, Streptococcus viridans, Synergistetes




bacterium oral clone 03 5 DOS

















LENGTHY TABLES




The patent application contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).





Claims
  • 1. A composition comprising a plurality of isolated bacteria, wherein the plurality of isolated bacteria comprises a first bacterial operational taxonomic units (OTU) comprising a 16S rDNA sequence that is at least 97% identical to SEQ ID NO: 774, a second bacterial OTU comprising a 16S rDNA sequence that is at least 97% identical to SEQ ID NO: 856, a third bacterial OTU comprising a 16S rDNA sequence that is at least 97% identical to SEQ ID NO: 880, and a fourth bacterial OTU comprising a 16S rDNA sequence that is at least 97% identical to SEQ ID NO: 1670.
  • 2. The composition of claim 1, wherein the first bacterial OTU comprises a 16S rDNA sequence that is at least 98% identical to SEQ ID NO: 774, the second bacterial OTU comprises a 16S rDNA sequence that is at least 98% identical to SEQ ID NO: 856, the third bacterial OTU comprises a 16S rDNA sequence that is at least 98% identical to SEQ ID NO: 880, the fourth bacterial OTU comprises a 16S rDNA sequence that is at least 98% identical to SEQ ID NO: 1670, or any combination thereof.
  • 3. The composition of claim 1, wherein the first bacterial OTU comprises a 16S rDNA sequence that is at least 99% identical to SEQ ID NO: 774, the second bacterial OTU comprises a 16S rDNA sequence that is at least 99% identical to SEQ ID NO: 856, the third bacterial OTU comprises a 16S rDNA sequence that is at least 99% identical to SEQ ID NO: 880, the fourth bacterial OTU comprises a 16S rDNA sequence that is at least 99% identical to SEQ ID NO: 1670, or any combination thereof.
  • 4. The composition of claim 1, wherein the first bacterial OTU comprises the 16S rDNA sequence set forth in SEQ ID NO: 774, the second bacterial OTU comprises the 16S rDNA sequence set forth in SEQ ID NO: 856, the third bacterial OTU comprises the 16S rDNA sequence set forth in SEQ ID NO: 880, the fourth bacterial OTU comprises the 16S rDNA sequence set forth in SEQ ID NO: 1670, or any combination thereof.
  • 5. The composition of claim 1, wherein the first bacterial OTU is Dorea longicatena, the second bacterial OTU is Eubacterium rectale, the third bacterial OTU is Faecalibacterium prausnitzii, the fourth bacterial OTU is Ruminococcus torques, or any combination thereof.
  • 6. The composition of claim 1, which is substantially depleted of (i) a pathogenic material, (ii) a residual habitat product of a fecal material, or (iii) both.
  • 7. The composition of claim 1, wherein one or more of the plurality of isolated bacteria are in a spore form.
  • 8. The composition of claim 1, wherein one or more of the plurality of isolated bacteria are in a vegetative form.
  • 9. The composition of claim 1, wherein one or more of the plurality of isolated bacteria are lyophilized.
  • 10. The composition of claim 1, which is encapsulated in an enteric coating.
  • 11. The composition of claim 1, which further comprises one or more anti-microbial agents.
  • 12. The composition of claim 11, wherein the one or more anti-microbial agents are selected from an anti-bacterial agent, an anti-fungal agent, an anti-viral agent, an anti-parasitic agent, or any combination thereof.
  • 13. The composition of claim 1, which is capable of inducing the formation of IgA, RegIII-gamma, IL-10, regulatory T cells, TGF-beta, alpha-defensin, beta-defensin, or any combination thereof when administered to a mammalian subject.
  • 14. The composition of claim 1, which is in the form of a capsule, a tablet, a powder, or any combination thereof.
  • 15. The composition of claim 1, which is prepared by an ethanol treatment.
  • 16. The composition of claim 1, which is prepared by a heat treatment.
  • 17. A single dosage unit comprising the composition of claim 1.
  • 18. A pharmaceutical formulation comprises an effective amount of the composition of claim 1 and an excipient.
  • 19. The pharmaceutical formulation of claim 18, which is formulated for oral administration.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 15/990,539, filed May 25, 2018 (currently allowed), which is a divisional of U.S. application Ser. No. 14/777,252, filed Sep. 15, 2015 (now U.S. Pat. No. 10,076,546), which is the National Stage of International Application No. PCT/US2014/030817, filed Mar. 17, 2014, which claims the benefit of U.S. Provisional Application No. 61/798,666, filed Mar. 15, 2013, all of which are incorporated by reference in their entirety.

Provisional Applications (1)
Number Date Country
61798666 Mar 2013 US
Divisions (2)
Number Date Country
Parent 15990539 May 2018 US
Child 17140385 US
Parent 14777252 Sep 2015 US
Child 15990539 US