The invention generally relates to connectors for wiring computer and telephone networks. More particularly, the invention relates to connectors for termination of twisted pair cables to network subcomponents.
Twisted pair cables are commonly used for the wiring of computer and telephone networks. Twisted pair wire orientation is governed by EIA/TIA Standard 568B and industry connection methods.
Conventional twisted pair cable includes four twisted pair conductors inside an outer insulation jacket. In some cables a plastic cross shaped extrusion resides inside the cable jacket along with the wires to separate the four pairs from each other and maintain each pair within its own quadrant within the cable jacket.
The four twisted pairs are color coded as a blue pair, a green pair, an orange pair, and a brown pair. Each pair includes two conductors: a first conductor covered by solid color insulation colored to match that pair designation and a second conductor covered by white insulation with colored stripes that are the same color as the solid colored insulation twisted together. For example, the blue pair includes one wire solid blue in color and a second wire white with blue stripes. The same is true for the green, orange, and brown pairs. In the 568B standard, the color coding standardizes the position each conductor occupies when assembled into an RJ45 modular connector or modular jack.
There are 8 positions in a modular connector, one for each conductor. A prior art RJ45 plug includes a front where it mates with a jack and a rear where the twisted pair cable enters the plug. The RJ45 plug includes a locking tab to releasably secure it to the jack. Viewing the front of the RJ45 plug, with the locking tab at the top, eight conductor positions are designated one through eight from left to right. Under the standard, the blue pair typically is designated Pair #1 and occupies positions 4 and 5 with the solid blue conductor in position 4 and the white/blue conductor in position 5. The Orange pair is designated Pair #2 and occupies positions 1 and 2 with the white/orange conductor in position 1 and the Orange conductor in position 2. The green pair is designated Pair #3 and is also known as the split pair in the RJ45 assembly because it occupies positions 3 and 6 with the solid green conductor in position 6 and the white/green color conductor occupying position 3. The brown pair is designated Pair #4 and occupies positions 7 and 8. The white/brown conductor is located in position 7 and the solid brown conductor in position 8. The importance of these standardized positions will become apparent in the description of the sub components and assembly of the new connector of the present invention.
The most dominant interface for connecting 4 pair twisted pair cable in the market at the time of this application is the RJ45 connector interface as described by the FCC in 47 CFR 68 Subpart F. The FCC standard describes dimensional tolerances for the plug, port and features to assure operable compatibility between plugs and jacks made by various manufacturers. Other RJ style connector interfaces also exist.
Typically an industry standard modular jack has one port for mating with an RJ45 plug, that meets the requirements of FCC under 47 CFR 68 Subpart F and a second port that is adapted to attach twisted pair cable conductors to the jack. Generally, jacks are terminated to twisted pair cable in the field by stripping back the outer insulating jacket, exposing the conductor pairs, and terminating the individual conductors of these pairs to terminals on the jack. Patch cords in predetermined lengths, with RJ45 plugs assembled to each end, are available to connect hardware such as computer work stations and printers to the modular jacks and thus to the network.
Typical RJ modular plug designs are used with cable made up of 4 twisted pairs and a plug assembly that attaches to the cable, making connection with the 4 pairs. The twisted pairs are identified as Pair 1, Pair 2, Pair 3, and Pair 4. There exists a wiring standard known as TIA/EIA 568-B T568B that assigns the blue/blue-white pair as pair 1, the orange/orange-white pair as Pair 2, the green/green-white pair as Pair 3, and the brown/brown-white pair as Pair 4.
At the connection interface end of the plug assembly there are a series of 8 slots that house blade contacts that make up the physical and electrical interface between the plug assembly and a jack with which the plug mates. This interface configuration is well known by those skilled in the technology and fully defined by an industry standard. To assure proper continuity of signal pairs through a structured cabling system, it is required that the cable pairs assume specified positions within the plug assembly. Slots in the plug are identified as slot or “Pin 1” sequentially to slot or “Pin 8” across the series of slots. The orange/orange-white (Pair 2) occupies slot positions 1 and 2, the green/green-white pair (Pair 3), also known as the split pair, occupies slot positions 3 and 6, the blue/blue-white (Pair 1) occupies slot positions 4 and 5, and the brown/brown-white (Pair 4) occupies the 7 and 8 slot positions.
The orange-white, green-white, blue-white, and brown-white are the striped conductors of the pair while the partnering conductor of the pair is a solid color (orange, green, blue, and brown). The striped colored conductors occupy the odd sequence of slots (1,3,5, and 7). The solid colored conductors occupy the even series of slots (2,4,6, and 8).
This nomenclature and practice is consistent within structured cable systems in the industry to assure signal integrity and continuity as well as interoperability between vendor products. There also exists a wiring standard know as TIA/EIA 568-B T568A that defines a different wire placement. The design described herein can apply to either standard T568A or T568B however for the purpose of description, only the T568B will be referred too.
In many cases, the modular connector is installed by craft personnel in the field. Problems are associated with installing jacks and plugs in the field related to inconsistency of method that occur from one installer to the next. These result is failures in data transmission and the expenditure of large amounts of time and effort to troubleshoot and repair inadequate field made connections.
Thus the network wiring industry would benefit from a network wiring termination system that would allow for pre-termination of conductors, testing of the network wiring components prior to release to field personnel and ease of pulling network wiring through conduit and past obstacles that are commonly encountered in the installation of network cabling.
The connector system of the present invention solves many of the above discussed problems and generally includes a connector, connector cover, connector to RJ jack, a connector to connector jack and a RJ adapter. The connector system of the present invention is utilized to terminated twisted pair cables that are commonly routed within walls, ceilings and floors to be coupled the components of telephone and computer networks. The connector system of the present invention provides improved ease of coupling network components while at the same time providing improved signal performance for the network components by controlling cross talk that tends to occur between conductors of twisted pair cables when the twisted pairs are untwisted for coupling to the jacks that are used in currently available network systems.
The connector of the present invention is structured to maintain the twist of twisted pair cable as much as possible through the body of the connector until it reaches contacts within the connector that connect to other network components, such as the RJ adapter, connector to connector jack or connector to RJ jack. The connector of the present invention includes a pair separator body that guides the conductors of the twisted pairs to locations at which they are terminated by contacts that allow coupling to other components of the connector system. The pair separator generally maintains the quadrant arrangement of the twisted pairs similar to the quadrant arrangement of twisted pairs that occurs in the twisted pair cable.
For the purposes of this application, the term “quadrant” is considered to include the classical geometrical meaning of the term as well as meaning an approximate division of an area or structure into four areas or regions that meet at a central location. The quadrants need not be precisely the same size or shape nor do lines dividing the quadrants need to meet at right angles.
The connector cover of the present invention can be used to cover and enclose at least part of the connector once assembled to protect the connector from dirt and damage while it is in shipping and being routed through conduits, walls, ceilings, floors or other structures.
The connector to RJ jack of the present invention is intended for mounting in a wall or central location to which a patch cord is plugged in. The exterior connector of the connector to RJ jack is an industry standard RJ style connector such as RJ45 female coupler for receiving a RJ45 male patch cord. The interior connector side of the connector to RJ jack is intended for much longer term coupling. The connector side is intended for to provide the option for connection and disconnection several times during its life, but it is not intended for coupling and uncoupling as often as the RJ45 side of the connector to RJ jack.
The connector to connector jack in accordance with the present invention, allows for the coupling of preterminated twisted pair of cables if it is necessary to extend the length of twisted pair of cables by connecting them end to end.
The RJ adapter of the present invention can be connected to the connector of the present invention to provide an RJ style connection, such as an RJ45 connection, which then can be used as a patch cord or connected directly into the network port of a computer or telephone.
Some embodiments of the present invention utilize insulation displacement type electrical contacts which can be coupled to blade type contacts to provide a reusable but extremely reliable electrical connection between conductors.
Some embodiments of the present invention also utilize a pair guide to place and align twisted pairs within the body of the connector to maintain an appropriate relationship between the twisted pairs to minimize cross talk and interference between the twisted pairs.
Some embodiments of the present invention use stamped and formed contacts within the connector to RJ jack, connector to connector jack or RJ adapter. Other embodiments of the present invention utilize flexible or conventional printed circuits or printed circuit boards to connect contacts within the connector to RJ jack, connector to connector jack or RJ adapter and to manage crosstalk.
The design trend of high performance Ethernet cable has been to separate the position of four twisted pairs within the jacket of the cable into four separate quadrants extending along the length of the cable. This is done to control and manage cross talk between pairs. In many instances a cross or “X” shaped extruded divider extends through the interior of the cable along its full length with the twisted pair conductors thus creating a divisional barrier that defines the quadrants that each twisted pair resides within.
In some embodiments of the connector to RJ jack, the first or exterior port is a female RJ style port such as an industry standard RJ45 interface designed to accept an industry standard RJ45 modular connector defined by FCC Part 68. This port is intended to be the quick release patch port that may be connected and disconnected many times over the life of the jack. It is typically the port that patch cords are plugged into.
The second or interior port of the jack is intended to be a more permanent connection port that may be connected and disconnected occasionally throughout the life of the jack but with nowhere near the frequency of the opposing RJ45 port. This second port provides a very reliable and secure electrical connection because this port is more often than not located in restricted access areas such as the wall behind the face plate of an outlet box, or in the wall structures of modular furniture systems or in the rear of patch panels. For these reasons, in the prior art, a more secure connection system known as an Insulation Displacement Contact (IDC) is commonly used in this port to connect the conductors of the cable to the conductors that carry the signal through the jack.
The IDC has been shown to be a highly reliable connection type. The mechanics of an IDC connection are two fold. First, as a conductor wire of the cable is pressed into the slot of the IDC, the two opposing tines are rigid enough to sever and tear away the outer jacket insulation of the conductor wire exposing the copper conductive core. Secondly, as the wire is further pressed into the IDC slot, a high pressure squeezing force is created on the exposed copper by the opposing tines. This pressure creates an airtight physical and electrical connection between the conductor and the contact which creates a secure and reliable low resistance electrical path through the connection.
In jacks today, very little is done to manage the routing and the physical position of the cable and conductors leading up too this second port connection with the jack. Inconsistencies occur like the amount of outer cable jacket stripped back exposing the twisted pair conductors, the position and path of the twisted pairs as they exit the cable jacket and make their way to the IDC slots, the management or mismanagement (untwisting) that occurs as the conductors are positioned and terminated to the IDC contacts. These inconsistencies can create variation in functioning performance of the jack connection. It has been found that close management of the twist of the pairs of conductors in twisted pair cable is very important to reducing the performance-limiting cross talk that can occur between pairs.
The connector and connection method described here are designed to improve over and out perform other connections associated with the second port. This is accomplished by closely managing and reducing the length of conductor untwist in the connector, maintaining the quadrant division philosophy of the cable through the connector and jack to the greatest extent possible, and providing a connection system that is very repeatable from one connector and connection to the next, substantially eliminating operator installation inconsistencies.
The connector of the present invention is intended to be used primarily as a pre-terminated connector, meaning that it is assembled to a pre-specified length of twisted pair cable or twisted pair bundled cable in a controlled manufacturing environment. This should not be considered limiting. However because of the simplicity of the design it is conceived that the connector could also be installed in the field using appropriate hand crimp and trimming tools.
The connector includes the following characteristics and features.
In some embodiments of the invention, the connector includes a pair separator. The pair separator strategically maintains, to a substantial degree, the quadrant spacing and pair positioning of twisted pair cable conductors, as found inside the cable jacket, so that they may interface with a mating contact, mating connector or a mating jack.
The lay of the individual conductors or pairs within a twisted pair Ethernet cable is important to signal carrying capacity. Typically twisted pair cables are manufactured and structured with a controlled pitch of twist and they demonstrate superior performance in comparison to connection components inserted and used to connect hardware and build out a network. The connector design mimics or matches as closely as possible the structure of the cable to achieve optimal performance.
The design trend of high performance Ethernet cable has been to separate the position of four twisted pairs within the jacket of the cable into four separate quadrants extending along the length of the cable. This is done to control and manage cross talk between pairs. In many instances a cross or “X” shaped extruded divider extends through the interior of the cable along its full length with the twisted pair conductors thus creating a divisional barrier that defines the quadrants that each twisted pair resides within.
a is a block diagram of a connector system in accordance with the present invention.
b is a perspective view of a pair separator in accordance with the present invention.
a-43c are perspective views sequentially depicting the assembly of the RJ adapter connector and locking clip.
a is a perspective view of a twisted pair cable in accordance with the present invention.
b is a perspective view of the twisted pair cable with some of the twisted pairs straightened and prepared for insertion the pair separator in accordance with an embodiment of the invention.
c is a perspective view of the twisted pair cable inserted into the pair separator.
d is a perspective view of the twisted pair cable inserted into the pair separator with the twisted pairs bent at right angles and a center divider pulled through the pair separator.
a-50c sequentially illustrate trimming of the twisted pair conductors and placement of a strain relief on the connector in accordance with an embodiment of the invention.
a-69c are perspective views of pair guides in accordance with the present invention.
a are perspective views of the partially assembled connector including uninserted insulation displacement contacts.
a are perspective views of the partially assembled connector with the insulation displacement contacts inserted into the pair separator.
The network connector system 100 of the present invention, as depicted in
Referring particularly to
Referring to
In one aspect of the invention, pair separator 114 takes the form of a generally rectangular prism having smaller sides 118, larger sides 120 and ends 122. Ends 122 include first end 124 and second end 126. First end 124 defines channels 128. In one aspect of the inventions there are four channels 128. Second end 126 defines hole 130. In one aspect of the invention, there are eight holes 130. Each channel 128 is connected to two holes 130 via conductor conduit 132.
Pair separator 114 also defines rectangular notch 134 located in one of larger sides 120 and wall structures 136, each located on one of smaller sides 118. Pair separator 114 also defines slots 138. Each of slots 138 is in communication with a conductor conduit 132 near the end of a hole 130. In one aspect of the invention, there are two slots 138 on each of smaller sides 118 and larger sides 120.
b-13 depict a non-conductive, typically injected molded part, pair separator 114. Pair separator's 114 design and shape make up the primary body of this connector that attaches to twisted pair cable 112. Pair separator 114 may be a prism with some rounded edges to create a desired smooth profile. It is design to be small and substantially dimensionally equivalent to the diameter of the twisted pair cable 112 that it attaches to.
Pair separator 114 has two smaller sides 118, two larger sides 120 and two opposing ends 122. First end 124 has four channels 128 that extend into the body of Pair Separator 114. Second end 126 is opposite first end 124 and has eight holes 130 that also extend creating channels 128 into the interior of the Pair Separator body. Rectangular notch 134 partially extends into Pair Separator 114 from second end 126 in a position that creates a window on one of smaller sides 118 or larger sides 120 of Pair Separator 114. Occurring within the interior of Pair Separator, the four channels 128 of first end 124 each individually split into two channels that communicate with eight holes 130 of second end 126.
Pair Separator 114 maintains the quadrant spacing and isolation of the four twisted pairs 140 substantially continuing the arrangement within the cable jacket. As will be shown, the channels 128 of first end 124 accept the conductors of a twisted pair cable 112 such that one pair occupies one channel 128 entering into first end 124. As the cable conductors are pushed further into Pair Separator 114, the individual conductors that make a pair are split apart such that each individual conductor protrudes down its own hole 130 that opens through second end 126. In some embodiments, prior to inserting the conductors, it is desirable to have the conductors of each pair pre-oriented and slightly separated for a short length to aid in positioning of the proper conductor into the proper channel 128. The channels 128 on first end 124 are shaped and designed to accept the cross sectional profile of two twisted conductors while the holes 130 of second end 126 are sized and shaped to accommodate an individual conductor.
As will be shown, rectangular notch 134 in second end 126 serves as a guide or key to orient the connector 102 to assure that the continuity of cable pairs is maintained through the connector 102 termination.
The four remaining sides of the Pair Separator include smaller sides 118 and larger sides 120. Common to each of smaller sides 118 and larger sides 120 are two rectangular windows 135 that are equally sized and extend into Pair Separator 114. Rectangular windows 135 are positioned and aligned such that each extends into and opens to one of the eight channels 128. As will be shown, rectangular windows 135 guide and hold blade contacts that pierce through the insulating jacket of the conductors making physical and electrical contact with the copper core of the conductors.
Adjacent to rectangular windows 135 in the smaller sides 118 of Pair Separator 114 are protruding wall structures 136 that have a ramped surface facing second end 126 of Pair Separator 114. As will be shown, opposing wall structures 136 act as catches to a latch that will secure the connector into the jack port when it is terminated to the jack.
Two slots 138 exist near first end 124 of Pair Separator 114 on both of the larger sides 120. These slots 138 are intended to be retention features that interlock and hold strain relief 116 that encapsulates first end 124 of Pair Separator 114, the cable interface that enters into first end 124, and a portion of the length of the twisted pair cable 112.
Assembly of the Connector to the Cable
Referring to
Connector to RJ Jack
Referring to
Insert 160 includes insert body 166 which defines port window 168 and floor wall 170. Floor wall 170 defines cantilever latch arm 172. Insert body 166 also defines channels 174. Two opposing guides 176 extend upwardly from floor wall 170.
Contact conductors 164 may be supported by IDC plate 178. Contact conductors 164 include split fork portion 180 and spring portion 182. Split fork portion 180 extends from one side of IDC plate 178 and spring portion 182 extends from an opposing side of IDC plate 178. The assembled IDC plate 178 and contact conductors 164 formed IDC plate assembly 184.
Guides 176 further include release latch mechanisms 186. Release latch mechanisms 186 include tabs 188 and wedged legs 190.
IDC plate 178 includes base 192. Base 192 supports cantilever wall structure 194 which in turns supports catch bumps 196. IDC plate also defines walls 198 including protruding wall 200.
Jack Insert Assembly
Protruding upward from the floor wall 170 generally parallel to the port window wall in the mid-section of the insert are two opposing guides 176. Guides 176 accept the IDC plate 178 and contact conductors 164. The assembly of the IDC plate assembly 184 into the insert body 166 is achieved by sliding IDC plate 178 into guides 176 and towards floor 170 of insert body 166. The motion is perpendicular to the general plane of floor wall 170. The IDC plate 178 is supported by the floor wall 170 and guides 176 serve to hold IDC plate 178 securely upright and to prevent movement of IDC plate 178 towards the front or rear of insert body 166 or connector to RJ jack 106, when assembled. IDC plate assembly 184 is not fully captured until the insert 160 is fully seated into housing 162.
Opposing each other and extending from the top of each of guides 176 in a cantilever manner are two release latch mechanisms 186. At the free ends of release latch mechanisms 186 are an upward protruding tab 188 and a downward protruding wedge leg 190. As will be described, release latch mechanisms 186 are used to release catch features that hold and prevent connector 102 from coming out when connected.
The IDC plate 178 has a base 192 that holds contact conductors 164 in a position and orientation required for Pair Separator 114 and blade heads 158 protruding from it to align and mate with slots in contact conductors 164. IDC plate 178 has two opposing cantilever wall structures 194 that roughly parallel the orientation and direction of the contact conductors 164 protruding from base 192 of IDC plate 178. On the inside or opposing sides of cantilever wall structures 194 are two protruding catch bumps 196 with ramped lead-ins. Catch bumps 196 are positioned to interlock with the protruding wall structures 136. This interlock occurs when connector 102 has been fully inserted into the connector to RJ jack 106.
A pattern of walls 198 protruding outward a specific distance from the IDC Plate base 192 serve as stop features to prevent connector 102 from being inserted to far. The tops of walls 198 act to stop Pair Separator 114 when inserted into the jack port. Protruding wall 200 extends further from base 192 than walls 198. Protruding wall 200 functions as a keying device to assure connector 102 is inserted correctly. Protruding wall 200 slides into rectangular notch 134. If connector 102 is inserted 180° out of proper orientation, it will bottom out on protruding wall 200 preventing the blade contacts 154 from making contact with contact conductors 164 and release latching mechanism 186 from interlocking.
Jack Assembly
The assembly of the connector to RJ jack 106 is shown in
As insert 160 is slid into the cavity of housing 162, tabs 188 deflect downward. They deflect to this position until they slide into alignment with windows 203. When insert 160 is fully slid into housing 162, tabs 188 recoil to their original state such that the tabs 188 protrude from windows 203 and above the top wall of the jack housing.
In another embodiment depicted in
Printed circuit board (PCB) 204 provides the signal path from split fork contacts 208 which include split fork portion 212 and tail portion 214 to RJ45 spring contacts 206. The placement of split fork contacts 208 into the PCB 204 can be accomplished by re-flow soldering methods or an interference press fit design between the PCB 204 plated thru holes and the tail portion 214. It is also possible that this is done with a combination of the two methods, for example one type of contact is re-flow soldered into position and the other type is press fit into place.
As shown, the assembly of IDC plate 210, split fork portion 212, tail portion 214, and PCB 204 create a sub assembly that slides into guides 176 of the jack insert 160. The fully assembled jack insert 160 can then be assembled into the jack housing 162 in the same manner as previously described. Advantages that may be realized in using a PCB 204 connector to RJ jack 106 center around signal path tuning and compensation control that can be achieved thru the circuit trace paths on the PCB 204. This can be important to controlling the cross talk between pairs as the signal is transmitted through connector 102 and connector to RJ jack 106.
Mating the Connector to the Jack
The connection between the jack and connector is made as illustrated in
In
Connector 102 can be removed from connector to RJ jack 106 by pressing down on two tabs 188, protruding from housing 162, and pulling connector 102 straight out. When tabs 188 are pressed down, the wedge leg 190 below tab 188 comes into contact with the cantilever wall structure 194. As tabs 188 are pressed to flush with the top surface of the jack, wedge leg 190 displace cantilever wall structures 194 outward the required distance to disengage the interlock between the catch bumps 196 and the protruding wall structures 136. In this position, connector 102 can be pulled straight out of the port with the only retention to be overcome arising from the friction of the IDC split fork contacts 208 squeezing the blade contacts 154 of connector 102. When connector 102 is free of the jack, the tabs 188 recoil to their undeflected position.
Connector to connector jack 108 is a two port connection device used to connect two terminated cable ends.
Referring to
Once the IDC plates 218 are soldered to flexible printed circuit 222 as shown in
Referring to
Referring to
Contacts 228 include first end 230, opposing end 232 and middle section 234. First end 230 defines tab 236 into which is cut slot 238 having V entry 240. Opposing end 232 defines contact fingers 242.
Adapter housing 226 defines latching tab 244, back end 246 and front end 248. Front end 248 defines elongate windows 250. Referring particularly to
The electrical contacts 228 are fabricated from a copper alloy material with conductivity characteristics favorable for carrying electrical signals. The first ends 230 have a rectangular tab 236 with a slot 238 cut partially to the center of the tab and a “V” entry 240 to slot 238 from the exterior side of tab 236. Contacts 228 are commonly known as insulation displacement contacts or IDC's. IDCs are typically designed to engage a wire or conductor that is pressed into the “V” entry 240 and slot 238. When pressing an insulated wire into slot 238, the walls that border slot 238 cut through and displace the insulation material on the wire and the opposing tines of the slot 238 squeeze the conductive material of the wire, thereby making physical and electrical contact with the wire. The IDC connection type is beneficial in that it provides and maintains high pressure in the contact region creating a gas tight seal of the electrical contact region. It is naturally redundant in that both tines typically make electrical contact with the conductor material. In the case of a blade contact 154 as used in connector 102, there is no insulation to displace. The blade contact 154 simply presses into slot 238 and the two tines create an opposing squeezing contact pressure on blade contact 154.
Opposing the IDC tab ends of the contacts are a planar array of contact 242. Contact fingers 242 provide the RJ45 contact interface with the springs in the RJ45 modular jack. Their position and alignment in the RJ45 adapter housing replicate the contact point positions typical of all RJ45 modular connectors as well as the requirements specified by the standard FCC CFR 47 Part 68 Subpart F.
The middle sections 234 create a physical and electrical path between the IDC tabs and the RJ45 contact tips. The paths as shown tend to keep conductor pairs together as much as possible as well as on a common plane along the path. There may be other middle section path designs that are not shown that could improve the signal carrying characteristics of the adapter and connector assembly. These may involve a twisting or partial twist of the conductor paths within a pair or a greater degree of varying the planar paths each conductor or pair takes.
Adapter housing 226 performs a structural nesting function for holding contacts 228 securely in position as well as creates an interface structure with latching tab 244 to interface with the RJ45 port of a modular jack. Adapter housing 226 has a back end 246 that defines an open cavity to the internal features of the housing. The Adapter Housing has a front end 248 whose size shape and features are designed to fall within the requirements of the previously mentioned standard FCC CFR 47 Part 68 Subpart F. Front end 248 is the RJ45 interface end. Part of the structure of front end 248 includes latching tab 244 that also meets the requirements of the above mentioned standard. The RJ45 contact interface is created by a series of elongated windows 2115 in the front end that provide an opening for the contact fingers 242 of the RJ45 Adapter 110. It is within the region of these windows that electrical and physical contact is made between the RJ45 Adapter Cap contacts and the RJ45 modular Jack contact springs, when mated.
Back end 246 of RJ Adapter has a rectangular opening roughly equivalent to but slightly larger than the profile of connector 102. It is sized to accept connector 102 and protruding blade contact 154.
Extending into the cavity opening toward the middle of the RJ45 Adapter housing body are a series of channels 252 and ramp features 254. These features aid in guiding the contact fingers 242 and middle sections 234 into their correct positions during assembly of the electrical contacts 238 into adapter housing 226. The electrical contacts are assembled by inserting the contact tip ends into the back opening 2113 and then subsequently inserting each into it's own individual interior channel 252. The electrical contacts 228 are inserted until the bottom ends 256 of the IDC tabs are securely seated or pressed into the provided slots 258 inside the cavity of the adapter housing. When seated into these slots 258, tabs 236 are held in the correct orientation and position to accept and mate with the pre-terminated cable connector 102.
Referring to
Locking collar 262 includes rear arms 264 and front opposing arms 265. Rear arms 264 are sized and adapted to fit into keeper slot 260. Front opposing arms 265 engage wall structures 136 of connector 102, thus providing a stop to keep connector 102 from being pulled out of RJ adapter 110. Thus assembled, connector 102 secured to RJ adapter 110 can be used as an RJ45 patch cable.
Referring to
Referring to
IDC pair separator 266 generally includes front end 268 and rear end 270. Rear end 270 defines four port openings 272 therein. Front end 274 defines exit ports 274 and rectangular port 276. There are eight exit ports 274 and a single centrally located rectangular port 276.
Each of port openings 272 is adapted to receive a cross sectional profile of a twisted pair connector pair and four very short lengths of the twisted pairs are straightened to separate the individual conductors of the pair into short paths parallel to each other.
Exit ports 274 will typically number eight, and provide a path through which one of each twisted pair conductor leads 152 of the port for twisted pairs 140 exit IDC pair separator 266.
Rectangular port 276 is centrally positioned and passes through IDC pair separator 266 from front end 268 to rear end 270. Rectangular port 276 provides a channel for the center plus or cross shape divider commonly found in many twisted pair cables to pass through IDC pair separator 266.
It is believed that by allowing the center plus or cross shape divider of the cable to be pushed through the IDC pair separator 266 at the time as the conductors are pushed into and through the IDC pair separator 266, less disruption occurs in the lay or twist of the conductors of the cable. Thus, in this embodiment, unlike previously described embodiments, it is not required that prior to inserting the conductor into IDC pair separator 266, that the conductors be folded back at approximately 90° angles to expose the center plus divider to allow trimming back of the center plus divider. In the previously described embodiments, it is necessary for the conductor to be returned back to their original paths to be inserted into pair separator 114. In this embodiment, the conductors and the divider are all pushed through IDC pair separator 266 simultaneously and all trimming of conductors and the divider is done after the pairs are located.
Referring to
The conductor wire is pressed into conductor slot 284. When this is done, the insulation jacket of the conductor shears away and conductor tines 280 squeeze tightly onto the conductive core of the wire. This creates a high pressure gas tight seal connection and the springing recoil of the conductor tines 280 maintains pressure over time.
Referring to
a-46d and
a-46b depict preparation of a cable and how IDC pair separator 266 is positioned onto the cable and its conductors. Referring to 46a, the outer jacket of the cable is removed a specified distance exposing the four conductor pairs divided by a plus shaped spacer.
Referring to
Referring to
Referring to
Conductor Connection slot 286 are sized specifically to make contact with a blade type contact discussed below.
The overall size and shape of insulation displacement contacts 278 are such that they fit snugly into rectangular slots 292. When conductor tines 280 and connection tines 282 are deflected by the placement of the wire into the conductor slot 284, the tightness increases due to slight deflection of the tines.
a-50c depicts the final steps in assembly of the IDC pair separator 266 to the twisted pair cable in making a completed connector 102.
Referring to
c depicts the addition of strain relief 116 to IDC pair separator 266. Strain relief 116 may either have been slid onto twisted pair cable prior to beginning assembly or can be insert molded directly onto the cable and IDC pair separator 266.
Contact spring retainer 300 holds eight contact springs 302 that make-up IDC to RJ adapter 296 electrical path. Blade portion 306 of contacts springs 302 are pressed through holes in contact spring retainer 300. Blade portions 306 are positioned to mate with insulation displacement contacts 278 of IDC pair separator 266.
Contact spring retainer 300 further includes cantilever snaps 308 protruding therefrom. Cantilever snaps 308 seat into and lock into slots 304 of adapter housing 298. This interlock holds contact spring retainer 300 in place and keeps it from coming out of adapter housing 298.
Each of
Contacts springs 302 also include RJ interface portion 310. RJ interface portions 310 protrude through openings 312 and are exposed to make contact with RJ 45 jack springs when mated.
Referring to
After IDC to RJ Adapter and IDC pair separator 266 are fully matted, locking clip 314 is securely positioned around IDC pair separator 266 to couple IDC pair separator 266 to IDC to RJ Adapter 296.
Insert sled 320 generally includes spring retainer plate 322, contacts springs 324 and sled body 326. Sled body 326 generally includes guides 328 and latch 330. Spring retainer plate 322 supports contacts springs 324. Spring retainer plate 322 is receivable in the guides 328 to join it with sled body 326. Housing 318 is sized and adapted to receive insert sled 320.
Sled body 326 includes catch features 336. Catch features 336 are positioned to interlock with inset slots 294 of IDC pair separator 266.
Referring to
Referring to
Referring to
Referring to
Referring particularly to
Referring particularly to
Referring particularly to
Pair separator 338 also defines wall slots 382 and tower slots 384. In some embodiments of the invention, four wall slots pass through wall 370 in substantially parallel orientation. Each of wall holes 380 is substantially adjacent to two wall slots 382.
In the embodiment depicted, tower slots 384 pierce towers 368 on opposing sides thereof. Tower slots 384 are in communication with tower holes 378. In one aspect of the invention, tower slots 384 are aligned on similar opposing sides of towers 368.
Wall slots 382 and towers slots 384 also present contact channels 386. Contact channels 386 straddle wall slots 382 and tower slots 384.
Referring particularly to
Referring to
Referring to
Orientation of twisted pairs 140 is such that pair two will reside as shown in left tower 368, pair four will reside in right tower 368, pair one will protrude out of the left wall holes 380 and pair three will protrude from right wall hole 380 as depicted. It is noted that these positions will vary depending upon whether first handed pair guide 356 or second handled pair guide 358 is used.
Referring now
Referring now to
a depict connector 102 with insulation displacement contacts 278 fully inserted.
Referring to
Referring to
Referring to
Insert 394 generally includes interface contacts 396, printed circuit board 398 and insert housing 400. Interface contacts 396 generally include RJ contacts 402, top side contacts 404 and bottom side contacts 406. RJ contacts 402, in one aspect of the invention, are coupled to printed circuit board 398 and arranged for use in a male RJ style connector, which is well known in the art. Top side contacts 404 are adapted to fit into plated through holes in printed circuit board 398 and to coupled to insulation displacement contacts 278 located in towers 368. Bottom side contacts 406 are adapted to press into printed circuit board 398 through holes from bottom side of printed circuit board 398 and to couple with insulation displacement contacts 278 of wall 370.
Insert housing 400 presents cantilever latches 408.
Referring to
Contact assembly 428 supports top side contacts 404, bottom side contacts 406 and presents keying ledge 410 similar to that described above with relation to RJ adapter 110 of this embodiment. These structures are generally similar to and operate similarly to those described above with relation to RJ adapter 100 and in accordance with this embodiment of the invention.
The present invention may be embodied in other specific forms without departing from the spirit of the essential attributes thereof, therefore, the illustrated embodiments should be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention.
This application claims priority to U.S. Provisional Applications 60/751,199 filed Dec. 16, 2005 entitled “Network Connector and Connection System”, 60/831,649 filed Jul. 18, 2006 entitled “Network Connector and Connection System” and 60/837,494 filed Aug. 14, 2006 entitled “Network Connector and Connection System.” All of the above referenced Applications are incorporated in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5969295 | Boucino et al. | Oct 1999 | A |
6280232 | Beecher et al. | Aug 2001 | B1 |
6305950 | Doorhy | Oct 2001 | B1 |
6325660 | Diaz et al. | Dec 2001 | B1 |
6371793 | Doorhy et al. | Apr 2002 | B1 |
6524128 | Marowsky et al. | Feb 2003 | B2 |
6558204 | Weatherley | May 2003 | B1 |
6953362 | Mossner et al. | Oct 2005 | B2 |
7223112 | AbuGhazaleh et al. | May 2007 | B2 |
7229309 | Carroll et al. | Jun 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20070161296 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
60837494 | Aug 2006 | US | |
60831649 | Jul 2006 | US | |
60751199 | Dec 2005 | US |