This application is a utility of U.S. Provisional Application Ser. No. 60/941,949, entitled “MANAGING COMMUNICATIONS OVER A SHARED MEDIUM,” filed on Jun. 4, 2007, which is hereby incorporated by reference.
The invention relates to managing secure communications over a shared medium.
A network of communication stations can share a communication medium (e.g., wires connecting multiple stations or spectrum for transmitting radio signals among stations) using any of a variety of access techniques. A shared communication can be difficult to provide security and controlled access. Even when communications are encrypted using an encryption key, the encryption key associated with the encryption can eventually be compromised through brute force cracking of the encryption key.
The following are various aspects described herein. In one aspect computer implemented key rotation methods are disclosed. Such method can include: providing a key counter for key rotation at a station; sending a key rotation communication to the station, the key rotation communication comprising a new network encryption key and an adjusted key counter, the key rotation communication being encrypted using a network membership key associated with the station; wherein a station key counter is operable to be compared to the adjusted key counter to determine the authenticity of the key rotation communication.
Systems for key rotation can include a network key generation module and a network key distribution module. The network key generation module can generate a current network key. The network key distribution module can distribute the current network key to a station and can further communicate a current key counter with the current network key. The communication of the current network key and the current key counter can be encrypted using a network membership key, the network membership key being associated with the station. The station can authenticate the current network key based upon the current key rotation based upon a previously received key counter.
Other key rotation systems can include an interface, a decryption module, a local key counter incrementing module and an authentication module. The interface can receive a key rotation communication from a headend device and the decryption module can decrypt the key rotation communication to derive a new key and a headend key counter. The local key counter incrementing module can produce a locally incremented key counter based upon a previous key counter and the authentication module can authenticate the key rotation communication based upon a comparison between the headend key counter derived from the key rotation communication and the locally produced incremented key counter.
Other aspects will be found in the detailed description, drawings and claims.
There are a many possible implementations of the invention, some example implementations are described below. However, such examples are descriptions of various implementations, and not descriptions of the invention, which is not limited to the detailed implementations described in this section but is described in broader terms in the claims.
A BPLN can include one or more cells. A cell is a group of broadband power line (BPL) devices in a BPLN that have similar characteristics such as association management, security, QoS and channel access settings, for example. Cells in a BPLN are logically isolated from each other, and communication to and from the backhaul occurs within the cell. Each cell in a BPLN includes a core-cell and may also include one or more sub-cells. There can be more than one cell on a given physical power line medium.
A core-cell includes a group of devices in a BPLN that includes a head end (HE), repeaters (R), and network termination units (NTU), but can exclude customer premise equipment (CPE). The head end (HE) is a device that bridges a cell to the backhaul network. At a given time, a cell will have one active head end and the head end manages the cell including the core-cell and any associated sub-cells. A repeater (RP) is a device that selectively retransmits media access control (MAC) service data units (MSDUs) to extend the effective range and bandwidth of the BPLN cell. Repeaters can also perform routing and quality of service (QoS) functions. The NTU is a device that connects a BPLN cell to the end users' network or devices. The NTU may in some cases bridge to other network technologies such as WiFi. A single NTU can serve more than one customer. Each Sub-Cell is associated with an active NTU. In some implementations, an HE, an NTU and/or an RP can be co-located at a single station. Thus, a single device may be designed to perform multiple functions. For example, a single device can simultaneously be programmed to perform the tasks associated with an RP and an NTU.
Various types of CPE devices (e.g., a computer) can be used as endpoint nodes in the network and such devices can communicate with other nodes in the network through the NTU.
Each node in the network communicates as a communication “station” (STA) using a PHY layer protocol that is used by the nodes to send transmissions to any other stations that are close enough to successfully receive the transmissions. STAs that cannot directly communicate with each other use one or more repeater STAs to communicate with each other. Any of a variety of communication system architectures can be used to implement the portion of the network interface module that converts data to and from a signal waveform that is transmitted over the communication medium. An application running on a station can provide data to and receives data from the network interface module. A MSDU is a segment of information received by the MAC layer. The MAC layer can process the received MSDUs and prepares them to generate “MAC protocol data units” (MPDUs). A MPDU is a segment of information including header and payload fields that the MAC layer has asked the PHY layer to transport. An MPDU can have any of a variety of formats based on the type of data being transmitted. A “PHY protocol data unit (PPDU)” refers to the modulated signal waveform representing an MPDU that is transmitted over the power line by the physical layer.
Apart from generating MPDUs from MSDUs, the MAC layer can provide several functions including channel access control, providing the required QoS for the MSDUs, retransmission of corrupt information, routing and repeating. Channel access control enables stations to share the powerline medium. Several types of channel access control mechanisms like carrier sense multiple access with collision avoidance (CSMA/CA), centralized Time Division Multiple Access (TDMA), distributed TDMA, token based channel access, etc., can be used by the MAC. Similarly, a variety of retransmission mechanism can also be used. The Physical layer (PHY) can also use a variety of techniques to enable reliable and efficient transmission over the transmission medium (power line, coax, twisted pair etc). Various modulation techniques like Orthogonal Frequency Division Multiplexing (OFDM), Wavelet modulations can be used. Forward error correction (FEC) code line Viterbi codes, Reed-Solomon codes, concatenated code, turbo codes, low density parity check code, etc., can be employed by the PHY to overcome errors. A preferred implementation of the MAC and PHY layers used by powerline medium is that based on HomePlug AV specification.
One implementation of the PHY layers is to use OFDM modulation. In OFDM modulation, data are transmitted in the form of OFDM “symbols.” Each symbol has a predetermined time duration or symbol time Ts. Each symbol is generated from a superposition of N sinusoidal carrier waveforms that are orthogonal to each other and form the OFDM carriers. Each carrier has a peak frequency fi and a phase Φi measured from the beginning of the symbol. For each of these mutually orthogonal carriers, a whole number of periods of the sinusoidal waveform is contained within the symbol time Ts. Equivalently, each carrier frequency is an integral multiple of a frequency interval Δf=1/Ts. The phases Φi and amplitudes Ai of the carrier waveforms can be independently selected (according to an appropriate modulation scheme) without affecting the orthogonality of the resulting modulated waveforms. The carriers occupy a frequency range between frequencies f1 and fN referred to as the OFDM bandwidth.
The CPE devices 205a-d can communicate with the headend 215 through a network of network termination units 220a-d and repeaters 225a-d. In some implementations, the network termination units can operate to translate the data signals from the CPE devices in any of a variety of communications protocols onto a powerline network. For example, a CPE 205a-d might communicate with an NTU 220a-d using a IEEE 802.11 wireless protocol, and the NTU 220a-d can convert the wireless signal to a signal suitable for transmission on a powerline medium. Systems for transmitting and receiving powerline network signals are further described in
In various implementations, repeaters 225a-d can be located throughout the powerline network to provide the ability for a data signal to travel on the powerline carrier medium over long distances. As discussed above, the headend 215 can provide a gateway for the data signal to be transferred to a backhaul network 210. For example, the headend 215 can extract the data signal from the powerline network and convert the signal for transmission on a packet switched network such as the Internet. In various implementations, one or more of the repeaters 225a-d can be equipped to transfer the signal from the powerline network to the backhaul network 210.
In some implementations, the headend 215 can also include an authorization server. Another implementation includes the authorization server on the backhaul network 210. The authorization server can be operable to authenticate CPE devices 205a-d for transmission of data over the powerline network. When a CPE device 205a-d is not authorized, in various implementations, the CPE device 205a-d can be provided access to a registration server 230. The registration server 230, in various implementations, can enable the user of a CPE device 205a-d to register the CPE device 205a-d with the network to obtain access to the powerline network.
In various implementations, the registration server 230 can provide a limited registration to a CPE device 205a-d to try the powerline network. For example, the registration can be limited by a period of time, bandwidth, destination address, or any other limitation that might allow the user to have limited access to the network. In additional implementations, the registration server 230 can require payment prior to using the network. For example, the registration server can provide web pages operable to collect payment information from the user. In various implementations, the registration server can allow the user to pay for any of a variety of different access plans. For example, an access plan might allow a user to purchase access for a specified period of time, at a specified bandwidth, or combinations thereof. In some implementations the registration server and authorization server can be co-located as shown in
Referring to
At the transmitter 302, modules implementing the PHY layer receive an MPDU from the MAC layer. The MPDU is sent to an encoder module 320 to perform processing such as scrambling, error correction coding and interleaving.
The encoded data is fed into a mapping module 322 that takes groups of data bits (e.g., 1, 2, 3, 4, 6, 8, or 10 bits), depending on the constellation used for the current symbol (e.g., a BPSK, QPSK, 8-QAM, 16-QAM constellation), and maps the data value represented by those bits onto the corresponding amplitudes of in-phase (I) and quadrature-phase (Q) components of a carrier waveform of the current symbol. This results in each data value being associated with a corresponding complex number Ci=Ai exp(jΦi) whose real part corresponds to the I component and whose imaginary part corresponds to the Q component of a carrier with peak frequency fi. Alternatively, any appropriate modulation scheme that associates data values to modulated carrier waveforms can be used.
The mapping module 322 also determines which of the carrier frequencies f1, . . . , fN within the OFDM bandwidth are used by the system 300 to transmit information. For example, some carriers that are experiencing fades can be avoided, and no information is transmitted on those carriers. Instead, the mapping module 322 uses coherent BPSK modulated with a binary value from the Pseudo Noise (PN) sequence for that carrier. For some carriers (e.g., a carrier i=10) that correspond to restricted bands (e.g., an amateur radio band) on a medium 304 that may radiate power no energy is transmitted on those carriers (e.g., A10=0). The mapping module 322 also determines the type of modulation to be used on each of the carriers (or “tones”) according to a “tone map.” The tone map can be a default tone map, or a customized tone map determined by the receiving station, as described in more detail below.
An inverse discrete Fourier transform (IDFT) module 324 performs the modulation of the resulting set of N complex numbers (some of which may be zero for unused carriers) determined by the mapping module 322 onto N orthogonal carrier waveforms having peak frequencies f1, . . . ,fN. The modulated carriers are combined by IDFT module 324 to form a discrete time symbol waveform S(n) (for a sampling rate fR), which can be written as
where the time index n goes from 1 to N, Ai is the amplitude and Φi is the phase of the carrier with peak frequency fi=(i/N)fR, and j=√−1. In some implementations, the discrete Fourier transform corresponds to a fast Fourier transform (FFT) in which N is a power of 2.
A post-processing module 326 combines a sequence of consecutive (potentially overlapping) symbols into a “symbol set” that can be transmitted as a continuous block over the communication medium 304. The post-processing module 326 prepends a preamble to the symbol set that can be used for automatic gain control (AGC) and symbol timing synchronization. To mitigate intersymbol and intercarrier interference (e.g., due to imperfections in the system 300 and/or the communication medium 304) the post-processing module 326 can extend each symbol with a cyclic prefix that is a copy of the last part of the symbol. The post-processing module 326 can also perform other functions such as applying a pulse shaping window to subsets of symbols within the symbol set (e.g., using a raised cosine window or other type of pulse shaping window) and overlapping the symbol subsets.
An analog front end (AFE) module 328 couples an analog signal containing a continuous-time (e.g., low-pass filtered) version of the symbol set to the communication medium 304. The effect of the transmission of the continuous-time version of the waveform S(t) over the communication medium 304 can be represented by convolution with a function g(τ;t) representing an impulse response of transmission over the communication medium. The communication medium 304 may add noise n(t), which may be random noise and/or narrowband noise emitted by a jammer.
At the receiver 306, modules implementing the PHY layer receive a signal from the communication medium 304 and generate an MPDU for the MAC layer. An AFE module 330 operates in conjunction with an automatic gain control (AGC) module 332 and a time synchronization module 334 to provide sampled signal data and timing information to a discrete Fourier transform (DFT) module 336.
After removing the cyclic prefix, the receiver 306 feeds the sampled discrete-time symbols into DFT module 336 to extract the sequence of N complex numbers representing the encoded data values (by performing an N-point DFT). Demodulator/Decoder module 338 maps the complex numbers onto the corresponding bit sequences and performs the appropriate decoding of the bits (including de-interleaving and descrambling).
Any of the modules of the communication system 300 including modules in the transmitter 302 or receiver 306 can be implemented in hardware, software, or a combination of hardware and software.
In various implementations, the stations (e.g., repeaters 420a-c and NTUs 410a-h) are provided with a network encryption key (NEK). The NEK can be used to facilitate communications among the stations and provide protection from unauthorized devices joining the network. However, as with any key, the NEK can be cracked if it is used for an extended period of time. In various implementations, the NEK can be rotated periodically to make it more difficult to crack the NEK. In some implementations, the rotated key can be transmitted to the stations (e.g., NTUs 410a-h, repeaters 420a-c, etc.) by a headend 400.
However, it can be difficult to determine whether a new NEK (e.g., rotated NEK) is authentic. For example, a device attempting to compromise the network could send a communication indicating that the network is using a new NEK and compromise one or more network devices. In some implementations, the headend 400 can transmit a key rotation counter to each of the devices in a network (e.g., NTUs 410a-h, repeaters 420a-c, etc.). For example, the transmitted key counter can be an initial n-digit number sent with the NEK during an initial connection to the network. In some implementations, the n-digit number can be identical across all of the devices in the network. In other implementations, each device can be provided with a counter that is specific to the particular device. For example, NTU 410a might receive a key counter of 53045, while NTU 410b might receive a key counter of 20783. When the headend 400 sends a new NEK, the headend 400 can use the particular key counter associated with the specific device to which the NEK is being transmitted to provide authentication for the new NEK.
In some implementations, the key rotation counter can be incremented by a function each time a new NEK is transmitted. In those implementations where the key rotation counter is specific to each of the various devices on the network, a particular key counter associated with a particular device can be incremented by a function each time a new NEK is sent to the particular device. In various implementations, any incrementing function can be used. For example, the counter could be incremented by a period (e.g., by summing with a number), by multiplying by a number, or by any other function.
In some implementations, the function associated with the increment can be transmitted when the initial counter is sent. In other implementations, the function associated with the increment can be transmitted when the new NEK is sent. In still further implementations, network stations (e.g., NTUs 410a-h, repeaters 420a-c, etc.) can have prior knowledge of the function based upon initial setup before deployment. Thus, the station receiving the new NEK with the incremented counter can increment its own counter (e.g., previously received from the headend 400 when the initial NEK was received) using a known function and determine that the key rotation request is authentic.
In the various implementations described above, any or all of the communications between the headend and the stations (e.g., NTUs 410a-h, repeaters 420a-c, etc.) can be encrypted using a network membership key (NMK) associated with the respective station. The NMK associated with the respective device can be retrieved, for example, from a key store 430.
In the example of
After expiration of a rotation period associated with the current NEK, the headend device 400 can determine to rotate the NEK. To do so, the headend 400 can retrieve an NMK associated with the NTU 410a from the key store 430, as shown by signal 465. The headend 400 can also rotate the key rotation counter using a function and generate a new NEK. The headend 400 can then use the NMK to encrypt the new NEK and the incremented key rotation counter. The encrypted new NEK and incremented key rotation counter can be transmitted to the NTU 410a, as shown by signal 470 and signal 475. The NTU 410a can decrypt the key rotation communication using its NMK. The NTU 410a can locally increment the previously received key rotation counter. If the decrypted key rotation counter matches the locally incremented key rotation counter, the new NEK is determined to be authentic and the previous NEK is discarded in favor of the new NEK. If the decrypted key rotation counter does not match the locally incremented key rotation counter, the new NEK is disregarded and the previous NEK continues to be used.
After expiration of a rotation period associated with the current NEK, the headend device 400 can determine to rotate the NEK. To do so, the headend 400 can retrieve an NMK associated with the repeater 420b from the key store 430, as shown by signal 520. The headend 400 can also rotate the key rotation counter using a function and generate a new NEK. The headend 400 can then use the NMK associated with the repeater 420b to encrypt the new NEK and the incremented key rotation counter. The encrypted new NEK and incremented key rotation counter can be transmitted to the repeater 420b, as shown by signal 530. The repeater 420b can decrypt the key rotation communication using its NMK. The repeater 420b can locally increment the previously received key rotation counter. If the decrypted key rotation counter matches the locally incremented key rotation counter, the new NEK is determined to be authentic and the previous NEK is discarded in favor of the new NEK. If the decrypted key rotation counter does not match the locally incremented key rotation counter, the new NEK is disregarded and the previous NEK continues to be used.
Upon receiving a request for the NEK, a headend/authentication server 610 can authenticate the request by retrieving the NMK associated with the requesting station 600 from a key store 620, as shown by signals (2) and (3), and attempting to decrypt the NEK request using the NMK associated with the requesting station 600. If the NMK associated with the requesting station 600 is operable to decrypt the NEK request, the headend/authentication server 610 can identify a current key rotation counter and encrypt the NEK and the current key rotation counter using the NMK associated with the requesting station 600 and communicate the encrypted NEK and current key rotation counter to the requesting station 600 as shown by signal (4). The new station 600 can receive the encrypted NEK and current key rotation counter, and use its NMK to decrypt the NEK and current key rotation counter. Upon decrypting the NEK, the new station 600 can encrypt communications to other network devices using the NEK.
After the expiration of the NEK, the headend/authentication server 610 can retrieve the NMK associated with the station 600 from a key store 620 as shown by signals (5) and (6). The headend/authentication server 610 can also increment the current key rotation counter and generate a new NEK. The headend/authentication server 610 can encrypt the incremented key rotation counter and the new NEK using the NMK associated with the station 600, thereby generating a key rotation communication.
The key rotation communication can be transmitted to the station 600 as shown at signal (7). The key rotation communication can be decrypted by the station using the NMK associated with the station. The station can locally increment the current key rotation counter and compare the locally incremented counter with the key rotation counter received in the key rotation communication. If the locally incremented counter matches the counter value received in the key rotation communication, the key rotation communication is authenticated, and the station can begin using the new NEK and can discard the previous NEK. If the locally incremented counter does not match the counter value received in the key rotation communication, the key rotation communication can be disregarded.
The NEK can thereafter be rotated to protect the network encryption key from cracking using brute force algorithms. In order to protect stations from illegitimate key rotations requests, an authentication server can provide a counter to the stations. In some implementations, the same counter can be provided to all stations. In other implementations, the counter can be a pseudo-random number that may differ between stations. In some implementations, the counter can be provided in an encrypted format, for example, using a network membership key (NMK) associated with the station, or using a device access key associated with the station. In other implementations, the counter can be provided to the station with the first NEK, both the counter and the NEK being encrypted using the NMK associated with that device.
The counter can serve to test that a new NEK is authentic. In some implementations, a rotation message can be sent to the stations. To do so, the HE or AS 702 can query the key store 703 as for the NMK associated with the station 701 as shown by signal 730. The NMK associated with the station is then received by the HE or AS 702, as shown by signal 735. A rotation message can be generated. The rotation message can include the new NEK and an incremented counter. In various implementations, the increment associated with the counter might not be linear, or might not be incremental, but rather the counter may be incremented according to some function known to both the authentication server and the stations. The rotation message can be encrypted using the retrieved NMK associated with the respective station 701 and then transmitted to the station 701 as shown by signal 740.
Upon receiving a rotation message, the station 701 can decrypt the message using the station's NMK. The station 701 can compare the counter value included in the rotation message to its own counter value. If the counter values match, the new NEK is authenticated, and replaces the previous NEK.
At optional stage 810, the key counter can be incremented. The key counter can be incremented, for example, by a headend device (e.g., headend 400 of
At stage 820, a key rotation communication can be transmitted. The key rotation communication can be transmitted, for example, by a headend device (e.g., headend 400 of
At stage 910, a key rotation communication is received. The key rotation communication can be received, for example, by a station (e.g., NTU 410 or repeater 420 of
At stage 920, a local key counter can be incremented. The local key counter can be incremented, for example, by a station (e.g., NTU 410 or repeater 420 of
At stage 930, the new key can be authenticated. The new key can be authenticated, for example, by a station (e.g., NTU 410 or repeater 420 of
The systems and methods disclosed herein may use data signals conveyed using networks (e.g., local area network, wide area network, internet, etc.), fiber optic medium, carrier waves, wireless networks (e.g., wireless local area networks, wireless metropolitan area networks, cellular networks, etc.), etc. for communication with one or more data processing devices (e.g., mobile devices). The data signals can carry any or all of the data disclosed herein that is provided to or from a device.
The methods and systems described herein may be implemented on many different types of processing devices by program code comprising program instructions that are executable by one or more processors. The software program instructions may include source code, object code, machine code, or any other stored data that is operable to cause a processing system to perform methods described herein.
The systems and methods may be provided on many different types of computer-readable media including computer storage mechanisms (e.g., CD-ROM, diskette, RAM, flash memory, computer's hard drive, etc.) that contain instructions for use in execution by a processor to perform the methods' operations and implement the systems described herein.
The computer components, software modules, functions and data structures described herein may be connected directly or indirectly to each other in order to allow the flow of data needed for their operations. It is also noted that software instructions or a module can be implemented for example as a subroutine unit of code, or as a software function unit of code, or as an object (as in an object-oriented paradigm), or as an applet, or in a computer script language, or as another type of computer code or firmware. The software components and/or functionality may be located on a single device or distributed across multiple devices depending upon the situation at hand.
This written description sets forth the best mode of the invention and provides examples to describe the invention and to enable a person of ordinary skill in the art to make and use the invention. This written description does not limit the invention to the precise terms set forth. Thus, while the invention has been described in detail with reference to the examples set forth above, those of ordinary skill in the art may effect alterations, modifications and variations to the examples without departing from the scope of the invention.
As used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Finally, as used in the description herein and throughout the claims that follow, the meanings of “and” and “or” include both the conjunctive and disjunctive and may be used interchangeably unless the context clearly dictates otherwise.
Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
These and other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4578530 | Zeidler | Mar 1986 | A |
4689786 | Sidhu et al. | Aug 1987 | A |
4807248 | Pyatt et al. | Feb 1989 | A |
5328530 | Semiatin et al. | Jul 1994 | A |
5359625 | Vander Mey et al. | Oct 1994 | A |
5491750 | Bellare et al. | Feb 1996 | A |
5570355 | Dail et al. | Oct 1996 | A |
5613012 | Hoffman et al. | Mar 1997 | A |
5617421 | Chin et al. | Apr 1997 | A |
5682428 | Johnson | Oct 1997 | A |
5732076 | Ketseoglou et al. | Mar 1998 | A |
6074086 | Yonge, III | Jun 2000 | A |
6111919 | Yonge, III | Aug 2000 | A |
6141355 | Palmer et al. | Oct 2000 | A |
6167137 | Marino et al. | Dec 2000 | A |
6173400 | Perlman et al. | Jan 2001 | B1 |
6185185 | Bass et al. | Feb 2001 | B1 |
6188690 | Holden et al. | Feb 2001 | B1 |
6189040 | Oohara | Feb 2001 | B1 |
6201794 | Stewart et al. | Mar 2001 | B1 |
6243761 | Mogul et al. | Jun 2001 | B1 |
6269132 | Yonge, III | Jul 2001 | B1 |
6269163 | Rivest et al. | Jul 2001 | B1 |
6272135 | Nakatsugawa | Aug 2001 | B1 |
6278685 | Yonge, III | Aug 2001 | B1 |
6307940 | Yamamoto et al. | Oct 2001 | B1 |
6310892 | Olkin | Oct 2001 | B1 |
6388995 | Gai et al. | May 2002 | B1 |
6519231 | Ding et al. | Feb 2003 | B1 |
6574195 | Roberts | Jun 2003 | B2 |
6591364 | Patel | Jul 2003 | B1 |
6606303 | Hassel et al. | Aug 2003 | B1 |
6631136 | Chowdhury et al. | Oct 2003 | B1 |
6711163 | Reid et al. | Mar 2004 | B1 |
6775656 | Gettwart et al. | Aug 2004 | B1 |
6804252 | Johnson | Oct 2004 | B1 |
6904462 | Sinha | Jun 2005 | B1 |
6910136 | Wasserman et al. | Jun 2005 | B1 |
7039021 | Kokudo | May 2006 | B1 |
7065643 | Cornils et al. | Jun 2006 | B1 |
7085284 | Negus | Aug 2006 | B1 |
7089298 | Nyman et al. | Aug 2006 | B2 |
7181620 | Hur | Feb 2007 | B1 |
7234058 | Baugher et al. | Jun 2007 | B1 |
7346021 | Yoshizawa et al. | Mar 2008 | B2 |
7350076 | Young et al. | Mar 2008 | B1 |
7352770 | Yonge, III | Apr 2008 | B1 |
7369579 | Logvinov et al. | May 2008 | B2 |
7395097 | Perdomo et al. | Jul 2008 | B2 |
7409543 | Bjorn | Aug 2008 | B1 |
7496039 | Yamada et al. | Feb 2009 | B2 |
7506042 | Ayyagari | Mar 2009 | B2 |
7558294 | Yonge, III | Jul 2009 | B2 |
7558575 | Losh et al. | Jul 2009 | B2 |
7573891 | Chow et al. | Aug 2009 | B1 |
7609681 | Kurobe et al. | Oct 2009 | B2 |
7623542 | Yonge, III et al. | Nov 2009 | B2 |
7684333 | Dasylva et al. | Mar 2010 | B1 |
7756039 | Yonge, III | Jul 2010 | B2 |
7797751 | Hughes et al. | Sep 2010 | B1 |
7804842 | Malik et al. | Sep 2010 | B2 |
7826475 | Lee et al. | Nov 2010 | B2 |
7826618 | Klingler et al. | Nov 2010 | B2 |
7894487 | Yonge, III | Feb 2011 | B2 |
7949356 | Yonge, III | May 2011 | B2 |
7961694 | Chan et al. | Jun 2011 | B1 |
8112358 | Yonge, III | Feb 2012 | B2 |
8170051 | Yonge, III | May 2012 | B2 |
8429406 | Yonge, III et al. | Apr 2013 | B2 |
8467369 | Yonge, III et al. | Jun 2013 | B2 |
8488615 | Yonge, III et al. | Jul 2013 | B2 |
8503480 | Yonge, III et al. | Aug 2013 | B2 |
8510470 | Yonge, III et al. | Aug 2013 | B2 |
20010000709 | Takahashi et al. | May 2001 | A1 |
20020015496 | Weaver et al. | Feb 2002 | A1 |
20020025810 | Takayama et al. | Feb 2002 | A1 |
20020029260 | Dobbins et al. | Mar 2002 | A1 |
20020060986 | Fukushima et al. | May 2002 | A1 |
20020097679 | Berenbaum | Jul 2002 | A1 |
20020107023 | Chari et al. | Aug 2002 | A1 |
20020114303 | Crosbie et al. | Aug 2002 | A1 |
20020122411 | Zimmerman et al. | Sep 2002 | A1 |
20020124177 | Harper et al. | Sep 2002 | A1 |
20020133622 | Pinto | Sep 2002 | A1 |
20020137462 | Rankin | Sep 2002 | A1 |
20020141417 | Umayabashi | Oct 2002 | A1 |
20030012166 | Benveniste | Jan 2003 | A1 |
20030018812 | Lakshminarayana et al. | Jan 2003 | A1 |
20030048183 | Vollmer et al. | Mar 2003 | A1 |
20030067892 | Beyer et al. | Apr 2003 | A1 |
20030086437 | Benveniste | May 2003 | A1 |
20030095551 | Gotoh et al. | May 2003 | A1 |
20030137993 | Odman | Jul 2003 | A1 |
20030193959 | Lui et al. | Oct 2003 | A1 |
20030224784 | Hunt et al. | Dec 2003 | A1 |
20030228846 | Berliner et al. | Dec 2003 | A1 |
20030229783 | Hardt | Dec 2003 | A1 |
20040047319 | Elg | Mar 2004 | A1 |
20040070912 | Kopp | Apr 2004 | A1 |
20040081089 | Ayyagari et al. | Apr 2004 | A1 |
20040090982 | Xu | May 2004 | A1 |
20040128310 | Zmudzinski et al. | Jul 2004 | A1 |
20040165532 | Poor et al. | Aug 2004 | A1 |
20040174829 | Ayyagari | Sep 2004 | A1 |
20040190542 | Ono et al. | Sep 2004 | A1 |
20040210630 | Simonnet et al. | Oct 2004 | A1 |
20040218577 | Nguyen et al. | Nov 2004 | A1 |
20040234073 | Sato et al. | Nov 2004 | A1 |
20040264428 | Choi et al. | Dec 2004 | A1 |
20050001694 | Berkman | Jan 2005 | A1 |
20050021539 | Short et al. | Jan 2005 | A1 |
20050025176 | Ko et al. | Feb 2005 | A1 |
20050068227 | Caspi et al. | Mar 2005 | A1 |
20050071631 | Langer | Mar 2005 | A1 |
20050089005 | Sakoda et al. | Apr 2005 | A1 |
20050114489 | Yonge, III | May 2005 | A1 |
20050117515 | Miyake | Jun 2005 | A1 |
20050117750 | Rekimoto | Jun 2005 | A1 |
20050135291 | Ketchum et al. | Jun 2005 | A1 |
20050147075 | Terry | Jul 2005 | A1 |
20050169222 | Ayyagari et al. | Aug 2005 | A1 |
20050190785 | Yonge, III et al. | Sep 2005 | A1 |
20050210157 | Sakoda | Sep 2005 | A1 |
20050243765 | Schrader et al. | Nov 2005 | A1 |
20050249186 | Kelsey et al. | Nov 2005 | A1 |
20060002406 | Ishihara et al. | Jan 2006 | A1 |
20060039371 | Castro et al. | Feb 2006 | A1 |
20060072517 | Barrow et al. | Apr 2006 | A1 |
20060077997 | Yamaguchi et al. | Apr 2006 | A1 |
20060104301 | Beyer et al. | May 2006 | A1 |
20060159260 | Pereira et al. | Jul 2006 | A1 |
20060168647 | Chiloyan | Jul 2006 | A1 |
20060224813 | Rooholamini et al. | Oct 2006 | A1 |
20060251017 | Bishop | Nov 2006 | A1 |
20060251021 | Nakano et al. | Nov 2006 | A1 |
20060252378 | Bishop | Nov 2006 | A1 |
20060256741 | Nozaki | Nov 2006 | A1 |
20060268746 | Wijting et al. | Nov 2006 | A1 |
20070004404 | Buckley et al. | Jan 2007 | A1 |
20070019609 | Anjum | Jan 2007 | A1 |
20070025244 | Ayyagari et al. | Feb 2007 | A1 |
20070025384 | Ayyagari et al. | Feb 2007 | A1 |
20070025391 | Yonge, III et al. | Feb 2007 | A1 |
20070026794 | Ayyagari et al. | Feb 2007 | A1 |
20070030811 | Frei et al. | Feb 2007 | A1 |
20070053520 | Eckleder | Mar 2007 | A1 |
20070058661 | Chow | Mar 2007 | A1 |
20070058732 | Riedel et al. | Mar 2007 | A1 |
20070060141 | Kangude et al. | Mar 2007 | A1 |
20070097867 | Kneckt et al. | May 2007 | A1 |
20070115973 | Koga et al. | May 2007 | A1 |
20070118730 | Platt | May 2007 | A1 |
20070133388 | Lee et al. | Jun 2007 | A1 |
20070133449 | Schacht et al. | Jun 2007 | A1 |
20070140185 | Garg et al. | Jun 2007 | A1 |
20070147322 | Agrawal et al. | Jun 2007 | A1 |
20070189189 | Andrews et al. | Aug 2007 | A1 |
20070220570 | Dawson et al. | Sep 2007 | A1 |
20070254596 | Corson et al. | Nov 2007 | A1 |
20070271398 | Manchester et al. | Nov 2007 | A1 |
20070286074 | Xu | Dec 2007 | A1 |
20070286111 | Corson et al. | Dec 2007 | A1 |
20080002599 | Yau et al. | Jan 2008 | A1 |
20080151820 | Solis et al. | Jun 2008 | A1 |
20080178003 | Eastham et al. | Jul 2008 | A1 |
20080181219 | Chen et al. | Jul 2008 | A1 |
20080186230 | Wengler et al. | Aug 2008 | A1 |
20080192666 | Koskan et al. | Aug 2008 | A1 |
20080212591 | Wu et al. | Sep 2008 | A1 |
20080222447 | Ram et al. | Sep 2008 | A1 |
20080247408 | Yoon et al. | Oct 2008 | A1 |
20080267106 | Buddhikot et al. | Oct 2008 | A1 |
20080279126 | Katar et al. | Nov 2008 | A1 |
20080298252 | Yonge, III | Dec 2008 | A1 |
20080298589 | Katar et al. | Dec 2008 | A1 |
20080298594 | Yonge, III | Dec 2008 | A1 |
20080301052 | Yonge, III | Dec 2008 | A1 |
20080301446 | Yonge, III | Dec 2008 | A1 |
20080310414 | Yonge, III | Dec 2008 | A1 |
20090010276 | Yonge, III | Jan 2009 | A1 |
20090034552 | Yonge, III | Feb 2009 | A1 |
20090040930 | Yonge, III | Feb 2009 | A1 |
20090067389 | Lee et al. | Mar 2009 | A1 |
20090074007 | Yonge, III | Mar 2009 | A1 |
20090092075 | Corson et al. | Apr 2009 | A1 |
20090106551 | Boren et al. | Apr 2009 | A1 |
20090116461 | Yonge, III | May 2009 | A1 |
20090119190 | Realini | May 2009 | A1 |
20090154487 | Ryan et al. | Jun 2009 | A1 |
20090207769 | Park et al. | Aug 2009 | A1 |
20090311963 | Haverty | Dec 2009 | A1 |
20100014444 | Ghanadan et al. | Jan 2010 | A1 |
20100091760 | Yoon | Apr 2010 | A1 |
20100100724 | Kaliski, Jr. | Apr 2010 | A1 |
20100161972 | Staring et al. | Jun 2010 | A1 |
20120072715 | Yonge, III | Mar 2012 | A1 |
20130235730 | Yonge, III et al. | Sep 2013 | A1 |
20130272315 | Yonge, III et al. | Oct 2013 | A1 |
20130287041 | Yonge, III et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1748574 | Jan 2007 | EP |
1748597 | Jan 2007 | EP |
1179919 | Jul 2010 | EP |
3107317 | May 1991 | JP |
2002135177 | May 2002 | JP |
2005073240 | Mar 2005 | JP |
WO9634329 | Oct 1996 | WO |
WO9857439 | Dec 1998 | WO |
WO02103943 | Dec 2002 | WO |
WO03100996 | Dec 2003 | WO |
WO2004038980 | May 2004 | WO |
Entry |
---|
Co-pending U.S. Appl. No. 13/113,474, filed May 23, 2011, 32 pages. |
“U.S. Appl. No. 11/970,271 Final Office Action”, Jul. 19, 2011, 21 pages. |
“U.S. Appl. No. 11/970,271 Office Action”, Mar. 9, 2012, 19 pages. |
“U.S. Appl. No. 11/970,271 Office Action”, Oct. 7, 2011, 20 pages. |
“U.S. Appl. No. 11/970,271 Office Action”, Dec. 7, 2010, 21 pages. |
“U.S. Appl. No. 11/970,297 Final Office Action”, Apr. 16, 2012, 32 pages. |
“U.S. Appl. No. 11/970,297 Office Action”, Mar. 30, 2011, 30 pages. |
“U.S. Appl. No. 11/970,297 Office Action”, Sep. 29, 2011, 31 pages. |
“U.S. Appl. No. 11/970,323 Office Action”, Dec. 7, 2010, 12 pages. |
“U.S. Appl. No. 11/970,339 Final Office Action”, Jul. 7, 2011, 14 pages. |
“U.S. Appl. No. 11/970,339 Office Action”, Jan. 19, 2011, 22 pages. |
“U.S. Appl. No. 12/108,334 Final Office Action”, Jun. 14, 2011, 28 pages. |
“U.S. Appl. No. 12/108,334 Office Action”, Feb. 16, 2011, 26 pages. |
“U.S. Appl. No. 12/108,334 Office Action”, Aug. 3, 2010, 20 pages. |
“U.S. Appl. No. 12/133,270 Final Office Action”, Nov. 18, 2011, 23 pages. |
“U.S. Appl. No. 12/133,270 Office Action”, Jun. 3, 2011, 67 pages. |
“U.S. Appl. No. 12/133,301 Office Action”, Mar. 1, 2012, 38 pages. |
“U.S. Appl. No. 12/133,312 Final Office Action”, Feb. 16, 2011, 24 pages. |
“U.S. Appl. No. 12/133,312 Office Action”, Jun. 8, 2011, 24 pages. |
“U.S. Appl. No. 12/133,312 Office Action”, Jul. 28, 2010, 29 pages. |
“U.S. Appl. No. 12/133,315 Final Office Action”, Jun. 9, 2011, 38 pages. |
“U.S. Appl. No. 12/133,315 Final Office Action”, Jul. 20, 2010, 30 pages. |
“U.S. Appl. No. 12/133,315 Office Action”, Dec. 24, 2009, 28 pages. |
“U.S. Appl. No. 12/133,315 Office Action”, Dec. 28, 2010, 36 pages. |
“U.S. Appl. No. 12/133,325 Final Office Action”, Dec. 9, 2010, 33 pages. |
“U.S. Appl. No. 12/133,325 Office Action”, May 27, 2010, 31 pages. |
“U.S. Appl. No. 11/970,339 Office Action”, Jun. 18, 2012, 26 pages. |
“U.S. Appl. No. 12/108,334 Office Action”, Aug. 3, 2012, 18 pages. |
“U.S. Appl. No. 12/133,315 Office Action”, Aug. 9, 2012, 37 pages. |
“U.S. Appl. No. 12/133,301 Office Action”, Sep. 22, 2010, 42 pages. |
“U.S. Appl. No. 12/133,301 Final Office Action”, Mar. 22, 2011, 39 pages. |
Notification of First Office Action, The State Intellectual Property Office of the People's Republic of China, issued in Chinese Application No. 200880100486.9, Nov. 21, 2012, 11 pages. |
“U.S. Appl. No. 13/303,913 Office Action, Dec. 26, 2012, 37 pages.” |
“U.S. Appl. No. 11/970,339 Final Office Action”, Dec. 11, 2012 , 25 pages. |
“U.S. Appl. No. 12/133,301 Office Action”, Sep. 25, 2013 , 44 pages. |
U.S. Appl. No. 12/133,301 Final Office Action, Sep. 26, 2012, 54 pages. |
Muir, Andrew et al., “An Efficient Packet Sensing MAC Protocol for Wireless Networks”, 20 Pages. |
Co-pending U.S. Appl. No. 13/873,168, filed Apr. 29, 2013, 20 pages. |
Co-pending U.S. Appl. No. 13/917,394, filed Jun. 13, 2013, 34 pages. |
Co-pending U.S. Appl. No. 13/933,924, filed Jul. 2, 2013, 36 pages. |
“U.S. Appl. No. 11/970,339 Office Action”, Jun. 27, 2013 , 22 pages. |
“U.S. Appl. No. 13/113,474 Office Action”, Jun. 17, 2013 , 10 pages. |
Afkhamie et al., “An Overview of the upcoming HomePlug AV Standard”, May 2005, IEEE 0-7803-8844-5/05, pp. 400-404. |
European Search Report—EP09178487, Search Authority , Munich Patent Office, Jan. 21, 2010. |
Faure, Jean-Philippe et al., Call for Submissions. Draft Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications. Feb. 14, 2007, 4 pages. |
Faure, Jean-Philippe et al., Coexistence/interoperability Cluster, FTR SG Requirements. Draft Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications. Feb. 5, 2007 , 13 pages. |
HomePlug Powerline Alliance Inc., “HomePlug AV White Paper,” Doc. Ver. No. HPAVWP-050818, Aug. 2005, pp. 1-11. |
International Search Report and Written Opinion—PCT/US2008/065811, International Searching Authority, European Patent Office, Nov. 25, 2008. |
International Search Report and Written Opinion—PCT/US2008/065831, International Searching Authority, European Patent Office, Feb. 20, 2009, 22 pages. |
Katar et al., “Beacon Schedule Persistence to Mitigate Beacon Loss in HomePlug AV Networks,” May 2006, IEEE 1-4244-0113-05/06, pp. 184-188. |
Lee et al., “HomePlug 1.0 Powerline Communication LANs-Protocol Description and Performance Results version 5.4,” 2000, International Journal of Communication Systems, 2000 00: 1-6, pp. 1-25. |
Loh et al, Quality of Support and priority Management in HomePNA 2.0 Link Layer, IEEE, 6 pages, 2003. |
Notification of First Office Action, The State Intellectual Property Office of the People's Republic of China, issued in Chinese Application No. 200610107587.1, dated Oct. 11, 2010, 6 pages. |
Notification of Reasons for Rejection, Japanese Patent Office, issued in Japanese Patent Application No. 2006-205200, dated Jan. 18, 2011, 3 pages. |
Opera Specification—Part 1: Technology, Open PLC European Research Alliance, 198 pages, 1006. |
U.S. Appl. No. 11/970,339 Office Action, May 22, 2014, 18 pages. |
U.S. Appl. No. 13/873,168 Final Office Action, Jun. 11, 2014, 22 pages. |
U.S. Appl. No. 11/970,339 Final Office Action, Jan. 3, 2014 , 27 pages. |
U.S. Appl. No. 13/873,168 Office Action, Dec. 16, 2013 , 23 pages. |
U.S. Appl. No. 12/133,301 Final Office Action, Apr. 17, 2014, 28 pages. |
“U.S. Appl. No. 13/303,913 Final Office Action”, Sep. 16, 2014, 8 pages. |
“U.S. Appl. No. 12/133,301 Office Action”, Oct. 2, 2014, 34 pages. |
“U.S. Appl. No. 13/917,394 Office Action”, Oct. 17, 2014, 49 Pages. |
“U.S. Appl. No. 11/970,297 Office Action”, Jan. 21, 2015, 38 pages. |
Number | Date | Country | |
---|---|---|---|
20080298590 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60941949 | Jun 2007 | US |