Existing network browser systems typically use a single protocol at a time to detect and discover network devices. Often times however, a network device such as a printer, scanner, server, or terminal computer may use a different network protocol to communicate over a network and may be undetectable using a non-compatible protocol. Even if more than one protocol may be used for discovery, some systems may only list network devices based on the network protocol used to discover them, requiring a user to perform additional configuration steps to display other devices on a network using another protocol.
Alternatively, if multiple protocols are used to discover and display a more inclusive listing of network devices, there may not be a convenient interface for constraining the view of discovered devices to a set useful for a user. For example, the discovery process may list devices that a user does not consider part of a particular network. An intelligent management of the presentation of devices resulting from an inclusive discovery process may align user interest and expectation with device listing.
Furthermore, because of inconsistency in the information available on devices using different protocols, browsing systems may provide only a uniform representation of each discovered device, thereby sacrificing an opportunity to provide device specific information for consistency, and further reducing presentation utility.
A graphical user interface integrates into a single view, multiple network devices discovered over a plurality of network protocols providing an intuitive user interface for indicating the existence of potentially accessible network resources based on a network profile definition.
In one embodiment, representation of the network devices may be reflective of the state of the network device. This representation may change dynamically based on device state changes. The representation may be customized by the manufacturer via a device registry in accordance with an embodiment of the claims.
In one embodiment, a customized interaction process may be presented to the user via a context menu that is based on the state of the device and is specific to the device or device type. Multiple different interaction scenarios may be initiated using the context menu. Scenarios may be based upon type, customization, connection, and other properties of the device. Additional embodiments are described.
Although the following text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.
It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘______’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term be limited, by implication or otherwise, to that single meaning. Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. § 112, sixth paragraph.
The blocks of the claimed method and apparatus are operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the methods or apparatus of the claims include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The blocks of the claimed method and apparatus may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The methods and apparatus may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
With reference to
Computer 110 typically includes a variety of computer readable media. Computer readable media may be any available media that may be accessed by computer 110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to store the desired information and which may accessed by computer 110. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media.
The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation,
The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110, although only a memory storage device 181 has been illustrated in
When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
While a Function Discovery component may expand network discovery, a result set that is too large may also detract from a clear presentation. For example, a discovery process may extend past a user's expected discovery scope and provide a device listing that is not entirely useful for a user. This may happen when a user is presented a large list of devices, not all of which a user considers as part of his immediate network. For example,
The claimed method and system may use a network profile to help define the set of devices presented to a user in a browser system. A network profile may be a collection of network signatures, where a network signature may correspond to a section of a network identified by the user machine for a particular connection. If a computer has a single network interface, e.g., a single network interface card (NIC), each time the NIC is connected to a different port on a network, a new network signature may be generated by the user computer for keeping track of network connections. Alternatively, if a computer has two NICs, then each NIC connected to a network may have a different network signature. Thus, every access point that a computer connects to may have a unique network signature. Further, the network signature is associated with a collection of devices discovered for that connection, thereby defining a set of discovered devices and identifying a network. A heuristic mechanism may then be employed to refine a network profile definition by using rule sets and user feedback. For example, a heuristic mechanism may be used to determine whether two network signatures belong to the same network, thereby providing a method of determining whether a particular connection provides access to the same network as another connection. In a more specific example, a heuristic mechanism may determine that two network signatures are part of the same network. Accordingly, the two signatures may be associated with the same network profile. This may be performed by adding the network signature for the second interface to an existing network profile containing a first signature for the first interface. Heuristic methods and means are discussed in depth further in this application.
Network profiles and network signatures may enable a browser, hereinafter referred to as a network explorer, to display a set of discovered network devices in an organized and useful manner, as illustrated in
In an alternative situation, if two adapters (NICs) are connected to the same network, the union of the devices discovered over those adapters may be displayed as one network profile. Thus, in instances when a user is connected to a “Work” profile via two different interfaces, e.g., wired and wireless interfaces, the browser may present only one network profile, “Work,” which includes all devices accessible for that profile. If it is determined that two connection points, or interfaces, connect to different networks or network profiles, then devices for each network profile may be presented separately, e.g., two network profiles will be listed separately in the drop down menu 402. In this embodiment, topology information may not be presented, only a device listing. In alternative embodiments, an enumeration of devices with topology information may be displayed, wherein the presentations of each device may be consistent with the list view.
As discussed above, heuristic mechanisms may be used to help define the network signature. These heuristics may provide a best guess based on various different network parameters and, like most heuristic processes, be refined via user feedback. The heuristic mechanisms may involve using discovery protocols that recognize subnet boundaries based on packet information or based on network segmentation as indicated by intermediate devices such as routers, hubs, and gateways. For example, a heuristic process may determine whether a DNS suffix of a subnet used by a set of discovered devices is similar or whether the MAC address of a detected default gateway between two connections is the same, thereby implying the same network. It should be noted that the heuristic methods described are only some examples of possible heuristic mechanisms that may be employed.
When a heuristic mechanism incorrectly identifies a network profile, a user may adjust or correct the network profile definition, thereby providing the heuristic mechanism feedback for use in future decisions. For example, in the case where two network signatures are determined to be on the same network, but a few additional devices are associated with one signature but not the other, a heuristic mechanism may guess that those devices should not be included in the same network profile and additionally prompt a user to verify or revoke that decision.
Function Discovery (FD) 505 may be a common API that performs device discovery across multiple protocols 506, 507, 508 and that provides an inclusive result set. Function Discovery 505 may provide a listing of function instances. Each function instance may include a set of identifiers for a device discovered on a network.
A Device Extensibility Registry 509 may be used to provide device specific information or a reference to a Device Plugin (e.g., a COM component) that may be able to provide device specific information.
Network Item Factory 504 may be responsible for creating a network item based on a function instance received from a Function Discovery 505 component. Network Item Factory 504 maintains a collection of network items representing network devices on a given network. A network item object may include device specific information retrieved from other components based on the information contained in a corresponding function instance. For example, Network Item Factory may use a Device Extensibility Registry 509 to provide additional device specific information for the identified devices via a registry entry or via a reference to a device plugin (e.g., a COM component) that may be able to provide device specific information. Network Item Factory 504 may be responsible for implementing a duplicate detection algorithm.
Network Explorer Folder (NEF) 501 may be an object responsible for coordinating underlying components in the architecture to provide a view that may be rendered using a standard Folder View 502. The NEF 501 may communicate with a Network Profile Service 503 to get a list of connected networks. The Network Profile Service 503 may provide a list of connected networks and may enumerate a list of interfaces currently connected to a given network. NEF 501 may be responsible for creating a Folder View 502 for presenting the list of network profiles to a user thereby allowing a user to select a network profile corresponding to a connected network. The Folder View 502 may request NEF 501 for information on each item to be displayed in the Folder View 502. NEF 501 may retrieve the information from the Network Item Factory 504. NEF 501 may then pass a network item collection for a selected network profile to the Folder View 502 for presentation. In one embodiment, NEF 501 may provide representation information (e.g., an icon), context menu information, and property sheet data for each network item.
In one embodiment, the Network Item Factory 504 may retrieve information for a network item from the Device Extensibility Registry 509 based on information in a function instance. Specifically, Network Item Factory 504 may use the IDs in a function instance to find device specific information or device plugins by consulting the Device Extensibility Registry 509. A Device ID is specific to a particular device and may be the first ID searched for in the registry. If a Device ID is not found, then the Network Item Factory 504 may search for a Compatible ID. The Compatible ID may correspond to a more generic class of devices of which the particular device is a member. The registry may enable the claimed network explorer system to provide customization of the display of each device, based on Device ID, or to a group of devices, based on Compatible ID. The customization information may be provided by a manufacturer of a network device through information stored in the registry. Two extensibility models may be defined: basic and advanced extensibility. Registry entries illustrating both models may be illustrated in
Basic extensibility may not require any code implementation. All the device specific information may be stored in the registry under a generic compatibility ID 601 or a device specific device ID 602. Compatible IDs may correspond to a larger class of devices such as computers 603 and other devices 604, or may correspond to more specific device categories such as printers (not shown). The registry entries may include the location of the icon 605 and customized actions, e.g., through a context menu 606. Other device properties may be stored in a property sheet 607. The Network Item Factory may read the registry to obtain device specific information for displaying the device.
A Device ID 602 may correspond to a specific device such as a printer 608. The Device ID entry may provide device information provided by a manufacturer of the device. The entry may include a manufacturer provided icon 609, context menu 610 and a property sheet 611.
Advanced extensibility may require a device to provide an object that implements a set of standard interfaces and add a registry entry under the Device ID to point to the object 612, thereby providing dynamic updates of device specific information. Some existing browsing systems may provide only a uniform representation of each discovered device, thereby sacrificing device specific information for consistency, and further reducing presentation utility. Extensibility through device plugins may enable customization of the representation of discovered network devices and a set of options for interacting with a network device.
In one embodiment, the device plugin referenced by the registry may return different icons based on whether the device is busy or not. When the state of the device changes, the device plugin may use a callback function to notify the NEF 501 (
While certain devices may be detectable, a computer may not be able to immediately access device functions because the computer may not be equipped with the proper software drivers. In this case, registry information may simply reference the appropriate device drivers on a computer and provide an option to install them. Alternatively, the registry may provide other installation options. For example, where the drivers are not contained on the computer, an installation option may be to start an installation wizard which is capable of retrieving the necessary drivers from the Internet or other sources.
A network explorer process flow diagram is illustrated in
In block 701, a user may open a root network explorer Folder that, upon selection of a network profile, may create a new network explorer Folder specific to the selected network profile. A Network Item Factory 504 (
In block 702, upon association of a network specific instance of the NEF 501 (
In block 703, the Network Item Factory 504 receives a list of interfaces for a selected network from the Network Profile Service 503.
In block 704, the Network Item Factory 504 may load a Most Recently Used (MRU) device information for a network profile from a cache. In one embodiment, the MRU is used to cache the last device collection information for a particular network profile. MRU may enable cached, but subsequently removed/unconnected devices to be indicated on the folder view as unconnected (e.g., using a grayed out icon of the non-connected device). Logic may be included to determine how long an icon may persist in the network item view, thereby determining the duration of the display of that device icon in the Folder View 502 (
In block 705, the Network Item Factory 504 may begin querying Function Discovery (FD) 505 to discover network devices. This is an asynchronous process, and occurs in parallel with the rest of the process described below. In an alternative embodiment, LLTD may be a separate component managed by the Network Item Factory 504, instead of being a component managed by Function Discovery 505.
In block 706, function instances are returned as the result of the discovery process. Network Item Factory 504 may create network items based on the function instances. As discussed above, a network item may provide customized actions, icons and properties based on the settings in the registry located using first a device ID, and then a compatible ID. Moreover, the customization may be different based on whether the device is installed. For example, as illustrated in
In block 707, the NEF 501 may create a standard Folder View 502.
In block 708, Folder View 502 may request an item enumerator from the NEF 501.
In block 709, NEF 501 may query the Network Item Factory 504 for a Network Item Enumerator, which includes a collection of current items, representing the current set of known devices. The Enumerator may only contain a collection of references to network items (each view item ID corresponding to a network item), not the collection of the network items themselves. When there is a device change (e.g., add, remove or property change), Network Item Factory 504 may use a call back function to notify the NEF 501 and Folder View 502 that some view item has changed. Based on the collection of references the NEF 501 and Folder View 502 receives, the view can retrieve the latest device information from Network Item Factory 504 and update the Folder View 502 accordingly.
In block 710, the Folder View 502 may query the Enumerator for the collection of references for all the view items contained in the folder.
In block 711, the Folder View 502 may query the NEF 501 for specific information (e.g., icon, context menu, and/or property sheet) for a view item reference.
In block 712, NEF may query Network Item Factory 504 to return device specific icon, actions and properties. All the device specific information may be created only upon request, e.g., when the information is requested by the view. Before returning the results to the view, additional default actions and properties may be added, such as “Create shortcut” and “Properties”, before passing the information to view. When the user selects an action, a device specific application may be launched and a function instance ID may be passed to the application as an input parameter. This may allow the device specific application to uniquely identify the network devices. Note, because a query for network devices may take a long time, FD 505 queries may be made asynchronous. This may allow NEF 501 to access Network Item Factory 504 while FD 505 query updates. In one embodiment, Network Item Factory 504 may be guarded with a data lock to prevent concurrency problems.
In block 713, when a new device is detected after block 707, the Network Item Factory 504 may notify the Folder View 502, which then causes the Folder View 502 to redraw.
Duplicate Detection
When using a multiple protocol approach to device discovery, a single device may be detected multiple times using different protocols. Duplicate listings of a single device may only confuse a user and thus an intuitive user interface such as network explorer may implement a duplicate detection algorithm. In a first scenario, a device may announce its service using multiple protocols. For example, a printer may announce the printing service using SSDP, WS-D and Browser, separately. Because the device ID, name, MAC, and IP address may be the same in any protocol used, the algorithm may search for these parameters and eliminate duplicate entries, thereby presenting only a single device in a network explorer view.
In another situation a device may be a multi-homed device, such as a PC that is connected to two Local Area Networks at the same time. In this situation, the MAC address and IP address may be different between two function instances, but the device ID and the name will be the same, and hence the detection algorithm may base its determination on the device ID and name and still show only one device.
A multifunction device may announce each of its functions using separate service announcements. In one embodiment, multifunctional devices may be provided the option to advertise themselves as a composite device or as multiple independent devices (one for each function). In this case, the device ID and name may be different, but the MAC and IP address may be the same. If the duplicate detection algorithm determines that they should be treated as independent devices, the device may be presented in network explorer as separate items, e.g., with different device specific information such as Icon and Context Menu. The composite device may be provided a context menu including a set of options for each function of the multifunction device.