Network extension groups of global VLANs in a fabric switch

Information

  • Patent Grant
  • 10044568
  • Patent Number
    10,044,568
  • Date Filed
    Thursday, September 28, 2017
    7 years ago
  • Date Issued
    Tuesday, August 7, 2018
    6 years ago
Abstract
One embodiment of the present invention provides a switch in a network of interconnected switches. The switch includes a network extension module, which maintains a mapping between a first virtual local area network (VLAN) identifier and a first global VLAN identifier of a network extension group. The network extension group is represented by a range of global VLAN identifiers for a tenant. A global VLAN identifier is persistent in a respective switch of the network and represents a virtual forwarding domain in the network. During operation, the network extension module includes the global VLAN identifier in a packet belonging to the first VLAN.
Description
BACKGROUND
Field

This disclosure relates to communication networks. More specifically, this disclosure relates to a system and method for virtualized network extension.


Related Art

The exponential growth of the Internet has made it a popular delivery medium for a variety of applications running on physical and virtual devices. Such applications have brought with them an increasing demand for bandwidth. As a result, equipment vendors race to build larger and faster switches with versatile capabilities, such as network virtualization and multi-tenancy, to accommodate diverse network demands efficiently. However, the size of a switch cannot grow infinitely. It is limited by physical space, power consumption, and design complexity, to name a few factors. Furthermore, switches with higher capability are usually more complex and expensive. More importantly, because an overly large and complex system often does not provide economy of scale, simply increasing the size and capability of a switch may prove economically unviable due to the increased per-port cost.


A flexible way to improve the scalability of a switch system is to build a fabric switch. A fabric switch is a collection of individual member switches. These member switches form a single, logical switch that can have an arbitrary number of ports and an arbitrary topology. As demands grow, customers can adopt a “pay as you grow” approach to scale up the capacity of the fabric switch.


Meanwhile, layer-2 and layer-3 (e.g., Ethernet and Internet Protocol (IP), respectively) switching technologies continue to evolve. IP facilitates routing and end-to-end data transfer in wide area networks (WANs) while providing safeguards for error-free communication. On the other hand, more routing-like functionalities are migrating into layer-2. Notably, the recent development of the Transparent Interconnection of Lots of Links (TRILL) protocol allows Ethernet switches to function more like routing devices. TRILL overcomes the inherent inefficiency of the conventional spanning tree protocol, which forces layer-2 switches to be coupled in a logical spanning-tree topology to avoid looping. TRILL allows routing bridges (RBridges) to be coupled in an arbitrary topology without the risk of looping by implementing routing functions in switches and including a hop count in the TRILL header.


As Internet traffic is becoming more diverse, network virtualization is becoming progressively more important as a value proposition for network architects. In addition, the evolution of virtual computing has make multi-tenancy attractive and, consequently, placed additional requirements on the network. For example, virtual servers are being allocated to a large number of tenants while a respective tenant operating multiple virtualized networks. It is often desirable that the network infrastructure can provide a large number virtualized network to support multi-tenancy and ensure network separation among the tenants.


While today's networks support many desirable features, some issues remain unsolved in efficiently facilitating virtualized networks across multiple networks.


SUMMARY

One embodiment of the present invention provides a switch in a network of interconnected switches. The switch includes a network extension module, which maintains a mapping between a first virtual local area network (VLAN) identifier and a first global VLAN identifier of a network extension group. The network extension group is represented by a range of global VLAN identifiers for a tenant. A global VLAN identifier is persistent in a respective switch of the network and represents a virtual forwarding domain in the network. During operation, the network extension module includes the global VLAN identifier in a packet belonging to the first VLAN.


In a variation on this embodiment, the mapping maps the first VLAN identifier to an internal identifier, and maps the internal identifier to the first global VLAN identifier. The internal identifier is internal and local to the switch, and is distinct from a VLAN identifier.


In a variation on this embodiment, the range is represented by: (i) a first and a second sets of bits in a continuous representation, and (ii) a tenant bit length indicating a number of bits dedicated to represent the tenant in the continuous representation.


In a variation on this embodiment, the switch is an edge switch. The first global VLAN identifier is then an edge global VLAN identifier of the network extension group. An edge global VLAN identifier corresponds to an individual VLAN of the tenant.


In a variation on this embodiment, the switch is an aggregate switch for one or more edge switches. The first global VLAN identifier is then an aggregate global VLAN identifier of the network extension group. The aggregate global VLAN identifier corresponds to a respective VLAN of the tenant.


In a further variation, the switch also includes an interface module, which maintains a network extension interface forwarding the packet comprising the first global VLAN identifier. The network extension interface couples a second network of interconnected switches.


In a further variation, the switch also includes a tunnel management module, which encapsulates the packet in a tunnel encapsulation header. The network extension interface is then a tunnel interface.


In a further variation, the network extension group is persistent in the second network and represents a virtual forwarding domain in the second network.


In a variation on this embodiment, the switch is an aggregate switch for one or more aggregate switches in remote networks of interconnected switches. The first global VLAN identifier is then an aggregate global VLAN identifier. The aggregate global VLAN identifier corresponds to a plurality of aggregate VLANs of the remote networks.


In a variation on this embodiment, the switch also includes a packet processor, which encapsulates the packet in an encapsulation header. The encapsulation header includes the first global VLAN identifier.


In a variation on this embodiment, the network is a switch group operating as a single Ethernet switch. A respective switch of the network is associated with a group identifier identifying the switch group.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A illustrates an exemplary network with support for network extension groups, in accordance with an embodiment of the present invention.



FIG. 1B illustrates an exemplary network extension group, in accordance with an embodiment of the present invention.



FIG. 1C illustrates exemplary mappings for supporting network extension groups, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary network extension based on network extension groups, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary tunnel-based network extension based on network extension groups, in accordance with an embodiment of the present invention.



FIG. 2C illustrates an exemplary hierarchical network extension based on network extension groups, in accordance with an embodiment of the present invention.



FIG. 3 presents a flowchart illustrating the process of a switch initializing a network extension group, in accordance with an embodiment of the present invention.



FIG. 4A presents a flowchart illustrating the process of an edge switch forwarding a packet based on a network extension group, in accordance with an embodiment of the present invention.



FIG. 4B presents a flowchart illustrating the process of an aggregate switch forwarding a packet based on a network extension group, in accordance with an embodiment of the present invention.



FIG. 5 illustrates an exemplary switch with support for network extension groups, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.


Overview


In embodiments of the present invention, the problem of facilitating efficient network virtualization is solved by creating a network extension group consistent within a network and persistent across multiple networks. A network can include a number of interconnected member switches. Typically, a tenant (e.g., a client or customer) deploys a plurality of end devices (e.g., physical servers or virtual machines) belonging to different virtual local area networks (VLANs) (e.g., Institute of Electrical and Electronics Engineers (IEEE) 802.1Q VLANs). Since the network can serve a plurality of tenants, each deploying a number of VLANs, a respective member switch of the network can serve a plurality of tenants while a plurality of member switches can serve the same tenant. Furthermore, a tenant can deploy its end devices across different networks. As a result, a network requires a large number of VLANs which are consistent within the network and persistent across multiple networks.


With existing technologies, the total number of VLANs a network can support for a tenant is limited by the number of bits dedicated for a VLAN identifier. On the other hand, if a tenant does not need a large number of VLANs, the same number of bits, though unused, remains dedicated for that tenant. If an additional VLAN identifier is incorporated in a packet to identify a respective tenant in a network, the number of tenants is limited by the number of bits dedicated for the additional VLAN identifier.


To solve this problem, member switches in a network provides a network extension group for a respective tenant. The network extension group is consistent within a network and can be persistent across multiple networks. The network extension group includes a range of global VLANs. A global VLAN creates a virtual forwarding domain within the network. A respective switch can select a global VLAN from the range as an aggregate global VLAN and the rest can operate as edge global VLANs. In some embodiments, a respective global VLAN in a network extension group is represented using the combined bits dedicated for both tenant and additional VLAN identifiers in a flat representation. As a result, a global VLAN identifier can be represented using any number of bits in the combined bits for representing a tenant and using the rest of the bits for representing a respective VLAN for the tenant.


An edge switch of a network, which receives packets via a local edge port from a device of a tenant, maps tenant VLANs to corresponding edge global VLANs specified in the network extension group for the tenant. This mapping can be local to the edge switch. In other words, the same tenant VLAN can be mapped to different edge global VLANs in different edge switches. On the other hand, an aggregate switch, which does not couple a device of the tenant via a local edge port, maintains the aggregate global VLAN specified in the network extension group for all VLANs for that tenant. Since the aggregate switch uses less hardware resources to support fewer numbers of aggregate global VLANs, the network extension group provides scalability within the network and allows an aggregate switch to support multiple edge switches.


Furthermore, a network extension group can be persistent in multiple networks. An aggregate switch can include the aggregate global VLAN identifier in a packet sent via the interconnection between the networks. In this way, a persistent network extension group allows interconnectivity of networks without being limited by the tenant VLANs at the interconnection. This increases the number of VLANs a tenant may have in a network. The persistent network extension group also facilitates a better representation of a tenant in the network. For example, the network can support more tenants than the number of tenants supported by an additional VLAN identifier (e.g., an IEEE 802.1ad tag). This allows a provider to deploy multiple smaller networks to form a large network, thereby facilitating isolation of network management and fault detection within respective small networks.


In some embodiments, a global VLAN of a network extension group can support Internet Protocol (IP) routing. A global VLAN then can be associated with an IP sub-network (subnet) and can operate as a logical layer-3 interface assigned with an IP address from the subnet in a respective aggregate switch. A respective aggregate switch can maintain a mapping between the global VLAN and the corresponding subnet. In some embodiments, the layer-3 interface operates as a default gateway for the corresponding global VLAN and is assigned a virtual IP address, which is consistent in a respective aggregate switch. Because the layer-3 interface is associated with the same virtual IP address in a respective aggregate switch, the layer-3 interface operates as a distributed layer-3 gateway, and can operate as a tunnel endpoint to forward traffic across network.


In some embodiments, the network is a fabric switch. In a fabric switch, any number of switches coupled in an arbitrary topology may logically operate as a single switch. The fabric switch can be an Ethernet fabric switch or a virtual cluster switch (VCS), which can operate as a single Ethernet switch. Any member switch may join or leave the fabric switch in “plug-and-play” mode without any manual configuration. In some embodiments, a respective switch in the fabric switch is a Transparent Interconnection of Lots of Links (TRILL) routing bridge (RBridge). In some further embodiments, a respective switch in the fabric switch is an Internet Protocol (IP) routing-capable switch (e.g., an IP router).


It should be noted that a fabric switch is not the same as conventional switch stacking. In switch stacking, multiple switches are interconnected at a common location (often within the same rack), based on a particular topology, and manually configured in a particular way. These stacked switches typically share a common address, e.g., an IP address, so they can be addressed as a single switch externally. Furthermore, switch stacking requires a significant amount of manual configuration of the ports and inter-switch links. The need for manual configuration prohibits switch stacking from being a viable option in building a large-scale switching system. The topology restriction imposed by switch stacking also limits the number of switches that can be stacked. This is because it is very difficult, if not impossible, to design a stack topology that allows the overall switch bandwidth to scale adequately with the number of switch units.


In contrast, a fabric switch can include an arbitrary number of switches with individual addresses, can be based on an arbitrary topology, and does not require extensive manual configuration. The switches can reside in the same location, or be distributed over different locations. These features overcome the inherent limitations of switch stacking and make it possible to build a large “switch farm,” which can be treated as a single, logical switch. Due to the automatic configuration capabilities of the fabric switch, an individual physical switch can dynamically join or leave the fabric switch without disrupting services to the rest of the network.


Furthermore, the automatic and dynamic configurability of the fabric switch allows a network operator to build its switching system in a distributed and “pay-as-you-grow” fashion without sacrificing scalability. The fabric switch's ability to respond to changing network conditions makes it an ideal solution in a virtual computing environment, where network loads often change with time.


It should also be noted that a fabric switch is distinct from a VLAN. A fabric switch can accommodate a plurality of VLANs. A VLAN is typically identified by a VLAN tag. In contrast, the fabric switch is identified a fabric identifier (e.g., a VCS identifier), which is assigned to the fabric switch. A respective member switch of the fabric switch is associated with the fabric identifier. Furthermore, when a member switch of a fabric switch learns a media access control (MAC) address of an end device (e.g., via layer-2 MAC address learning), the member switch generates a notification message, includes the learned MAC address in the payload of the notification message, and sends the notification message to all other member switches of the fabric switch. In this way, a learned MAC address is shared among a respective member switch of the fabric switch.


In this disclosure, the term “fabric switch” refers to a number of interconnected physical switches which form a single, scalable logical switch. These physical switches are referred to as member switches of the fabric switch. In a fabric switch, any number of switches can be connected in an arbitrary topology, and the entire group of switches functions together as one single, logical switch. This feature makes it possible to use many smaller, inexpensive switches to construct a large fabric switch, which can be viewed as a single logical switch externally. Although the present disclosure is presented using examples based on a fabric switch, embodiments of the present invention are not limited to a fabric switch. Embodiments of the present invention are relevant to any computing device that includes a plurality of devices operating as a single device.


Although the present disclosure is presented using examples based on an encapsulation protocol, embodiments of the present invention are not limited to networks defined using one particular encapsulation protocol associated with a particular Open System Interconnection Reference Model (OSI reference model) layer. For example, embodiments of the present invention can also be applied to a multi-protocol label switching (MPLS) network. In this disclosure, the term “encapsulation” is used in a generic sense, and can refer to encapsulation in any networking layer, sub-layer, or a combination of networking layers.


The term “end device” can refer to any device external to a network (e.g., does not perform forwarding in that network). Examples of an end device include, but are not limited to, a physical or virtual machine, a conventional layer-2 switch, a layer-3 router, or any other type of network device. Additionally, an end device can be coupled to other switches or hosts further away from a layer-2 or layer-3 network. An end device can also be an aggregation point for a number of network devices to enter the network. An end device hosting one or more virtual machines can be referred to as a host machine. In this disclosure, the terms “end device” and “host machine” are used interchangeably.


The term “hypervisor” is used in a generic sense, and can refer to any virtual machine manager. Any software, firmware, or hardware that creates and runs virtual machines can be a “hypervisor.” The term “virtual machine” also used in a generic sense and can refer to software implementation of a machine or device. Any virtual device which can execute a software program similar to a physical device can be a “virtual machine.” A host external device on which a hypervisor runs one or more virtual machines can be referred to as a “host machine.”


The term “VLAN” is used in a generic sense, and can refer to any virtualized network. Any virtualized network comprising a segment of physical networking devices, software network resources, and network functionality can be can be referred to as a “VLAN.” “VLAN” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “VLAN” can be replaced by other terminologies referring to a virtualized network or network segment, such as “Virtual Private Network (VPN),” “Virtual Private LAN Service (VPLS),” or “Easy Virtual Network (EVN).”


The term “packet” refers to a group of bits that can be transported together across a network. “Packet” should not be interpreted as limiting embodiments of the present invention to layer-3 networks. “Packet” can be replaced by other terminologies referring to a group of bits, such as “frame,” “cell,” or “datagram.”


The term “switch” is used in a generic sense, and can refer to any standalone or fabric switch operating in any network layer. “Switch” can be a physical device or software running on a computing device. “Switch” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. Any device that can forward traffic to an external device or another switch can be referred to as a “switch.” Examples of a “switch” include, but are not limited to, a layer-2 switch, a layer-3 router, a TRILL RBridge, or a fabric switch comprising a plurality of similar or heterogeneous smaller physical switches.


The term “RBridge” refers to routing bridges, which are bridges implementing the TRILL protocol as described in Internet Engineering Task Force (IETF) Request for Comments (RFC) “Routing Bridges (RBridges): Base Protocol Specification,” available at http://tools.ietf.org/html/rfc6325, which is incorporated by reference herein. Embodiments of the present invention are not limited to application among RBridges. Other types of switches, routers, and forwarders can also be used.


The term “edge port” refers to a port on a network which exchanges data frames with a device outside of the network (i.e., an edge port is not used for exchanging data frames with another member switch of a network). The term “inter-switch port” refers to a port which sends/receives data frames among member switches of the network. The terms “interface” and “port” are used interchangeably.


The term “switch identifier” refers to a group of bits that can be used to identify a switch. Examples of a switch identifier include, but are not limited to, a media access control (MAC) address, an Internet Protocol (IP) address, and an RBridge identifier. Note that the TRILL standard uses “RBridge ID” (RBridge identifier) to denote a 48-bit intermediate-system-to-intermediate-system (IS-IS) System ID assigned to an RBridge, and “RBridge nickname” to denote a 16-bit value that serves as an abbreviation for the “RBridge ID.” In this disclosure, “switch identifier” is used as a generic term, is not limited to any bit format, and can refer to any format that can identify a switch. The term “RBridge identifier” is also used in a generic sense, is not limited to any bit format, and can refer to “RBridge ID,” “RBridge nickname,” or any other format that can identify an RBridge.


The term “tunnel” refers to a data communication where one or more networking protocols are encapsulated using another networking protocol. Although the present disclosure is presented using examples based on a layer-3 encapsulation of a layer-2 protocol, “tunnel” should not be interpreted as limiting embodiments of the present invention to layer-2 and layer-3 protocols. A “tunnel” can be established for and using any networking layer, sub-layer, or a combination of networking layers.


Network Architecture



FIG. 1A illustrates an exemplary network with support for network extension groups, in accordance with an embodiment of the present invention. As illustrated in FIG. 1A, a network 100 includes member switches 101, 102, 103, 104, and 105. Network 100 can be a TRILL network and a respective member switch, such as switch 105, can be a TRILL RBridge. Network 100 can also be an IP network and a respective member switch, such as switch 105, can be an IP-capable switch, which calculates and maintains a local IP routing table (e.g., a routing information base or RIB), and is capable of forwarding packets based on its IP addresses. In some embodiments, network 100 is a fabric switch, and one or more switches in fabric switch 100 can be virtual switches (e.g., a software switch running on a computing device).


Switches 103 and 105 are coupled to host machines 120 and 130, respectively. Member switches in network 100 use edge ports to communicate with end devices and inter-switch ports to communicate with other member switches. For example, switch 103 is coupled to end devices, such as host machine 120, via edge ports and to switches 101, 102, and 104 via inter-switch ports. Host machines 120 and 130 include hypervisors 121 and 131, respectively. Virtual machines (VMs) 122, 123, 124, 125, and 126 run on hypervisor 121, and virtual machines 132, 133, 134, 135, and 136 run on hypervisor 131.


In this example, virtual machines 124, 125, 134, 135, and 136 belong to a tenant 1 and virtual machines 122, 123, 126, 132, and 133 belong to a tenant 2. Tenant 1 deploys VLANs 112 and 114, and tenant 2 deploys VLANs 112 and 116. Hence, the same VLAN identifier can be used by multiple tenants. Virtual machines 125, 134, and 135 are in VLAN 112 of tenant 1, virtual machines 124 and 136 are in VLAN 114 of tenant 1, virtual machines 122 and 133 are in VLAN 112 of tenant 2, and virtual machines 123, 126, and 132 are in VLAN 116 of tenant 2. Since network 100 is serving a plurality of tenants, each deploying a plurality of VLANs, a respective member switch of network 100 can serve both tenants 1 and 2, and a plurality of member switches can serve the same tenant 1 or 2.


With existing technologies, the total number of VLANs network 100 can support for tenant 1 or 2 is limited by the number of bits dedicated for a VLAN identifier (e.g., 12 bits in an IEEE 802.1Q tag). On the other hand, if tenant 1 or 2 does not need a large number of VLANs, the same number of bits, though unused, remains dedicated for that tenant. If an additional VLAN identifier (e.g., an IEEE 802.1ad tag or TRILL Fine Grain Labels (FGL)) is incorporated in a packet to identify tenant 1 or 2 in network 100, the number of tenants is limited by the number of bits dedicated for the additional VLAN identifier (e.g., an additional 12 bits in the 802.1ad tag).


To solve this problem, a respective member switch in network 100 supports a network extension group for a respective tenant. For example, a respective member switch in network 100 supports network extension groups 150 and 155 for tenants 1 and 2, respectively. A respective of network extension groups 150 and 155 includes a range of global VLAN identifiers and are consistent within network 100. As a result, a global VLAN of a network extension group in a respective member switch of network 100 remains within the range. A member switch can select one global VLAN as an aggregate global VLAN and the rest as edge global VLANs. For example, network extension group 150 includes aggregate global VLAN 152 and edge global VLANs 142 and 144. Similarly, network extension group 155 includes aggregate global VLAN 154 and edge global VLANs 146 and 148.


In network 100, switches 103, 104, and 105 are edge switches since these switches receive packets via edge ports from tenant devices. An edge switch in network 100 maps a VLAN of a tenant (i.e., a tenant VLAN) to a corresponding edge global VLAN specified in the network extension group for that tenant. For example, switches 103 and 105 maintain a mapping between VLANs 112 and 114 of tenant 1, and edge global VLANs 142 and 144, respectively, of network extension group 150. Here, the mapping is maintained using VLAN identifiers and their corresponding global VLAN identifiers. Switches 103 and 105 also maintain a mapping between VLANs 112 and 116 of tenant 2, and edge global VLANs 146 and 148, respectively, of network extension group 155. In this example, switch 103 determines that, since they belong to different tenants, virtual machines 122 and 125 are in different layer-2 domains even though they are configured with the same tenant VLAN identifier. As a result, switch 103 associates virtual machines 122 and 125 to global VLANs 148 and 142, respectively.


In some embodiments, the mapping between a tenant VLAN and a global VLAN can be local to a switch. For example, switch 103 can maintain a mapping between VLANs 112 and 116 of tenant 2, and edge global VLANs 146 and 148, respectively, of network extension group 155. On the other hand, another edge switch 105 can maintain a mapping between VLANs 112 and 116 of tenant 2, and edge global VLANs 148 and 146, respectively. However, a respective global VLAN identifier in switches 103 and 105 remains within the range of global VLAN identifiers associated with network extension group 155.


In network 100, switches 101 and 102 are aggregate switches for tenants 1 and 2 since switch 101 and 102 do not couple a device of tenants 1 and 2 via a local edge port. However, because switch 101 couples end device 110 of another tenant, switch 101 can be an edge switch for that tenant. An aggregate switch in network 100 maps an aggregate global VLAN specified in a network extension group for all VLANs of the corresponding tenant. For example, switch 101 maintains a mapping between tenant information of tenant 1, and aggregate global VLAN 152 of network extension group 150. Here, the mapping may be maintained without using a tenant VLAN identifier.


Since switch 101 does not forward packets to individual devices of tenant 1, switch 101 does not need to enforce VLAN separation to the traffic from tenant 1. As a result, packets belonging to a respective VLAN of tenant 1 can be mapped to the same aggregate global VLAN in switch 101. In some embodiments, another aggregate switch 102 can map tenant information of tenant 1 to another aggregate global VLAN if it is within the range of network extension group 150 (i.e., the VLAN identifier of the aggregate global VLAN is within the range of network extension group 150).


In some embodiments, switches in network 100 receive the mappings from a network manager. End device 110 can operate as a network manager. Examples of a network manager include, but are not limited to, VMWare vCenter, Citrix XenCenter, and Microsoft Virtual Machine Manager. A network administrator can configure the mapping from end device 110, which in turn, provides the mapping to switch 101. Switch 101 distributes the mapping to the corresponding member switch based on an internal information distribution service of network 100. Suppose that the network manager configures a mapping between tenant information of tenant 1 and aggregate global VLAN 152 for switch 102 from end device 110. Switch 101 receives the mapping and provides the mapping to switch 102.


In some embodiments, a packet forwarded via an inter-switch link in network 100 is encapsulated in an encapsulation header. The encapsulation header can be a fabric encapsulation header (e.g., an encapsulation header used to forward the packet in a fabric switch) or a tunnel header (e.g., an encapsulation header used to forward the packet via a tunnel). Examples of a fabric encapsulation header include, but are not limited to, a TRILL header, an IP header, an Ethernet header, and a combination thereof. Examples of a tunnel include, but are not limited to, Virtual Extensible Local Area Network (VXLAN), Generic Routing Encapsulation (GRE), and its variations, such as Network Virtualization using GRE (NVGRE) and openvSwitch GRE. The VLAN identifier of a global VLAN can be included in the encapsulation header.


During operation, virtual machine 125 sends a packet 190. Hypervisor 121 obtains packet 190 and sends it to switch 103. Upon receiving packet 190 via an edge port, switch 103 identifies that packet 190 belongs to VLAN 112 of tenant 1. Based on the local mapping, switch 103 determines that VLAN 112 of tenant 1 is mapped to edge global VLAN 142. Switch 103 encapsulates packet 190 in an encapsulate header to generate a transport packet 192. A packet used to transport traffic between an edge switch and an aggregate switch in a network can be referred to as a transport packet. Switch 103 includes the VLAN identifier of edge global VLAN 142 in the encapsulation header of packet 192 and forwards packet 192 to aggregate switch 102. Upon receiving packet 192, switch 102 processes packet 192 based on its header information.


In some embodiments, a respective member switch of network 100 (e.g., switch 103) runs a control plane with automatic configuration capabilities based on Fibre Channel (FC) protocol and forms a logical Ethernet switch based on the automatic configuration capabilities of the control plane. To an external end device, such as host machine 120, network 100 can appear as one, single Ethernet switch. Upon joining network 100 via the control plane, a respective member switch receives an automatically assigned identifier corresponding to the logical Ethernet switch. However, unlike an FC fabric, the data packets in network 100 can be encapsulated and forwarded based on another forwarding protocol. Examples of this forwarding protocol include, but are not limited to, Ethernet, TRILL, and IP. Furthermore, a respective member switch of network 100 can be associated with a group identifier, which identifies network 100 as a group of interconnected switches. If network 100 is a fabric switch, this group identifier can be a fabric identifier identifying the fabric switch.


In some embodiments, network 100 maintains a port profile for a respective virtual machine. A port profile represents Fibre Channel over Ethernet (FCoE) configuration, VLAN configuration, data center bridging (DCB) configuration, quality of service (QoS) configuration, and/or security configuration of one or more virtual machines. The MAC address of a virtual machine associates with the corresponding port profile to the virtual machine. The VLAN configuration in a port profile can indicate the global VLAN configuration for the virtual machine. Port profile management in a switch is specified in U.S. Patent Publication No. 2011/0299413, titled “Port profile management for virtual cluster switching,” the disclosure of which is incorporated herein in its entirety.


A respective member switch, such as switch 103, locally maintains network extension group to facilitate its fabric-wide deployment. FIG. 1B illustrates an exemplary network extension group, in accordance with an embodiment of the present invention. In some embodiments, a respective global VLAN in a network extension group is represented using the combined bits dedicated for both tenant and additional VLAN identifiers in a flat (e.g., a continuous and non-hierarchical) representation. Suppose that a tenant VLAN identifier is represented by A bits 162 and an additional VLAN identifier is represented by B bits 164. In some embodiments, a respective global VLAN in network extension group 150 is identified by a global VLAN identifier represented by the combined bits 162 and 164 of A.B (e.g., a concatenation) in a flat representation.


Starting from the most significant bit (MSB), any number of bits in A.B can be used to represent tenant 1. These bits can be referred to as tenant bits 166. The length of tenant bits 166 can be variable (denoted with a dotted arrow). For example, tenant bits 166 can include a subset of continuous bits in A from the MSB, or all bits of A and a subset of adjacent bits in B. Rest of the bits of A.B can be used to distinctly represent a respective global VLAN for tenant 1. These bits can be referred to as VLAN bits 168. If the length of tenant bits 166 is C, the global VLAN identifiers of network extension group 150 can be represented as A.B/C. Hence, aggregate global VLAN 152, and edge global VLANs 142 and 144 correspond to A.B/C. In this way, a respective switch in network 150 is aware of the bits dedicated as tenant bits 166 and can independently assign global VLAN identifiers corresponding to A.B/C.


For example, if the length of A and B is 12 bits each (e.g., IEEE 802.1ad tag or TRILL FGL), and A.B/C is 4.8./21, the most significant 21 bits of 000000000100.000000001000 is assigned as tenant bits 166 and the rest 3 bits (underlined bits) are assigned as VLAN bits 168. As a result, network extension group 150 facilitates 8 VLANs for tenant 1 in network 100 (e.g., global VLAN identifiers between 4.8 and 4.15) using VLAN bits 168. It should be noted that any number of bits, starting from the least significant bit (LSB), in A.B can also be used to represent a tenant or a VLAN, and rest of the bits can be used to represent a VLAN or tenant, respectively.



FIG. 1C illustrates exemplary mappings for supporting network extension groups, in accordance with an embodiment of the present invention. In this example, edge switch 103 maintains an internal identifier 172 (e.g., in a table, which can be a database table in a local persistent storage). An entry in mapping 172 maps one or more fields of a packet header to an internal identifier. This internal identifier is internal and local to switch 103, and not included in a packet in network 100. Mapping 172 maps VLANs 112 and 114 of tenant 1, and corresponding tenant information, to internal identifiers 182 and 184, respectively, and VLANs 112 and 116 of tenant 2, and corresponding tenant information, to internal identifiers 186 and 186, respectively. Examples of the tenant information include, but are not limited to, a tenant identifier, an IP subnet, a source MAC address, an ingress port, and a combination thereof.


Switch 103 also includes a global VLAN mapping 174. An entry in mapping 174 maps an internal identifier to a corresponding global VLAN. Mapping 174 maps internal identifiers 182 and 184 to edge global VLANs 142 and 144, respectively, and internal identifiers 186 and 188 to edge global VLANs 146 and 148, respectively. In some embodiments, internal identifiers 182, 184, 186, and 188 in switch 103 are mapped to one or more corresponding egress ports. If the header information of an ingress packet matches an internal identifier, switch 103 forwards that packet via the corresponding egress port.


On the other hand, aggregate switch 101 maintains an internal identifier mapping 176. An entry in mapping 176 maps one or more fields of a packet header to an internal identifier. Mapping 176 maps tenant information of tenant 1, regardless of any VLAN association, to an internal identifier 182. Similarly, mapping 176 maps tenant information of tenant 2, regardless of any VLAN association, to an internal identifier 184. In this way, the same internal identifier 182 can be mapped to different packet fields in different switches 103 and 101. Switch 101 also includes a global VLAN mapping 178. An entry in mapping 178 maps an internal identifier to a corresponding global VLAN. Mapping 178 maps internal identifiers 182 and 184 to aggregate global VLANs 152 and 154, respectively.


Since switch 101 does not forward packets for tenants 1 and 2 via a local edge port to a tenant device, mapping 178 does not distinguish between individual tenant VLANs of a tenant. Since mappings 176 and 178 are smaller than mappings 172 and 174, respectively, mappings 176 and 178 need less hardware resources. Hence, and network extension group 150 provides scalability in network 100 and allows aggregate switch 101 to support multiple edge switches 103, 104, and 105. In some embodiments, internal identifiers 182 and 184 in switch 101 are mapped to a corresponding egress port. If the header information of an ingress packet matches an internal identifier, switch 101 forwards that packet via the corresponding egress port.


Network Extension


In some embodiments, network extension group 150 can be persistent in multiple networks. FIG. 2A illustrates an exemplary network extension based on network extension groups, in accordance with an embodiment of the present invention. In this example, network 100 is coupled to network 200, which includes member switches 201, 202, 203, 204, and 205. Network 200 can be a TRILL network and a respective member switch, such as switch 205, can be a TRILL RBridge. Network 200 can also be an IP network and a respective member switch, such as switch 205, can be an IP-capable switch, which calculates and maintains a local IP routing table (e.g., a routing information base or RIB), and is capable of forwarding packets based on its IP addresses. In some embodiments, network 200 is a fabric switch, and one or more switches in fabric switch 200 can be virtual switches (e.g., a software switch running on a computing device).


In network 200, switches 203, 204, and 205 can operate as edge switches, and switches 201 and 202 can operate as aggregate switches. Switch 205 is coupled to host machine 220. Member switches in network 200 use edge ports to communicate with end devices and inter-switch ports to communicate with other member switches. For example, switch 205 is coupled to end devices, such as host machine 220, via edge ports and to switches 201, 202, and 204 via inter-switch ports. Host machine 220 includes hypervisors 221. Virtual machines 222, 223, and 224 run on hypervisor 221 and belong to tenant 1. Virtual machine 224 is in VLAN 112 of tenant 1, and virtual machines 222 and 223 are in VLAN 114 of tenant 1.


Suppose that packet 190 is destined to virtual machine 224 in host machine 220 coupled to network 200. With existing technologies, when transport packet 192, which includes packet 190 in its payload, reaches aggregate switch 102, switch 102 removes the encapsulation header, extracts packet 190, and forwards packet 190 to network 200 (e.g., either to switch 201 or 203). As a result, packet 190 can only carry the VLAN identifier (e.g., 12 bits in an IEEE 802.1Q tag) of tenant VLAN 112. Hence, the total number of VLANs a port of switch 102 coupling network 200 can support for tenant 1 is limited by the number of bits dedicated for the VLAN identifier. Furthermore, additional VLAN identifiers (e.g., an IEEE 802.1ad tags or TRILL FGLs) for representing tenant 1 can be different in networks 100 and 200. This leads to additional VLAN configuration in the member switches of network 200.


To solve this problem, interconnections between networks 100 and 200 are established via network extension interfaces (NEIs). A packet sent via a network extension interface includes an aggregate global VLAN identifier. Examples of a network extension interface include, but are not limited to, a physical or virtual port, a set of trunked port (e.g., a port channel interface), and a tunnel interface (e.g., a VXLAN or NVGRE tunnel interface). Furthermore, network extension group 150 can be persistent across network 100 and 200. As a result, the same range of global VLAN identifiers represented by A.B/C is used in network 200.


In some embodiments, a MAC address learned in network 200 is shared with network 100. Suppose that switch 205 learns the MAC address of virtual machine 224 (e.g., via MAC address learning or pre-configuration). Switch 205 generates a notification message, includes the learned MAC address in the payload of the notification message, and sends the notification message to a respective other member switch of network 200. Upon receiving the notification message, switch 201 learns the MAC address of virtual machine 224. Switch 201 also determines that it has network extension interfaces coupling network 100.


Switch 201 then sends an extension notification message comprising the learned MAC address via its local network extension interfaces. Upon receiving the extension notification message, switch 102 (or 105) learns the MAC address to be reachable via its local network extension interface. Switch 102 can map the learned MAC address to the network extension interface. Switch 102 then includes the learned MAC address in the payload of a notification message and sends the notification message to a respective other switch of network 100. A respective switch of network 100 thus learns the MAC address to be reachable via switch 102.


In this example, switch 102 can include the VLAN identifier of aggregate global VLAN 152 in the header of packet 190 to generate an extension packet 212. A packet sent via a network extension interface can be referred to as an extension packet. Switch 102 then forwards packet 212 to network 200. Suppose that switch 201 receives packet 212. Upon detecting the VLAN identifier of aggregate global VLAN 152 in its header, switch 201 determines that packet 212 belongs to network extension group 152. Switch 201 then extracts the VLAN identifier to obtain packet 190. Switch 201 encapsulates packet 190 in an encapsulation header to generate transport packet 214, includes the VLAN identifier of aggregate global VLAN 152 in the encapsulation header, and forwards packet 214 to switch 205. In this way, persistent network extension group 150 allows interconnectivity between networks 100 and 200 using network extension interfaces at the interconnection. This increases the number of VLANs tenant 1 may have in networks 100 and 200.


In some embodiments, a network extension interface can be a tunnel interface. FIG. 2B illustrates an exemplary tunnel-based network extension based on network extension groups, in accordance with an embodiment of the present invention. In this example, networks 100 and 200 are coupled via a layer-3 network 280. Hence, the network extension interfaces of networks 100 and 200 are tunnel interfaces (e.g., a VXLAN or NVGRE tunnel interface). One or more aggregate switches of network 100 establish corresponding tunnels 270 with one or more aggregate switches of network 200 via network 280. Network extension group 150 can be persistent across network 100 and 200. As a result, the same range of global VLAN identifiers represented by A.B/C is used in network 200.


Upon generating extension packet 212, which includes VLAN identifier of aggregate global VLAN 152, switch 102 encapsulates packet 212 in a tunnel encapsulation header (e.g., a VXLAN or NVGRE header) to generate tunnel-encapsulated extension packet 216. Suppose that switch 201 of network 200 is the remote tunnel endpoint of the tunnel. Switch 102 sets the switch identifier (e.g., an IP address) of switch 201 as the destination switch identifier of the tunnel encapsulation header, identifies the local port associated with the tunnel interface, and forwards packet 216 via the port. Switch 201 receives packet 216, identifies the local switch as the destination switch, and decapsulates the tunnel encapsulation header to obtain packet 212. Switch 201 then extracts the VLAN identifier of aggregate global VLAN 152 from packet 212 to obtain packet 190 and forwards packet 190 based on its header, as described in conjunction with FIG. 2A.


In some embodiments, aggregate global VLAN 152 of network extension group 150 can support Internet Protocol (IP) routing and can be associated with an IP subnet. Aggregate global VLAN 152 operates as a logical layer-3 interface assigned with an IP address, which can be a virtual IP address, from the subnet in aggregate switches 101 and 102. Switches 101 and 102 can maintain a mapping between aggregate global VLAN 152 and the corresponding subnet. In some embodiments, the layer-3 interface operates as a default gateway for a respective global VLAN of network extension group 150. Because the layer-3 interface is associated with the same virtual IP address in switches 101 and 102, the layer-3 interface operates as a distributed layer-3 gateway, and can operate as the tunnel endpoint address for the tunnels between networks 100 and 200.


Hierarchical Network Extension


Since a persistent network extension group allows interconnectivity between networks based on network extension interfaces, a provider can deploy multiple smaller networks to form a large hierarchical network. FIG. 2C illustrates an exemplary hierarchical network extension based on network extension groups, in accordance with an embodiment of the present invention. In this example, network 210 includes member switches 211, 212, 213, 214, and 215; and network 230 can include member switches 231, 232, and 233.


Network 210 and/or 230 can be a TRILL network and a respective member switch can be a TRILL RBridge. Network 210 and/or 230 can also be an IP network and a respective member switch can be an IP-capable switch, which calculates and maintains a local IP routing table (e.g., a routing information base or RIB), and is capable of forwarding packets based on its IP addresses. In some embodiments, network 210 and/or 230 are fabric switches, and one or more member switches can be virtual switches (e.g., a software switch running on a computing device). Member switches in network 210 and/or 230 use edge ports to communicate with end devices and inter-switch ports to communicate with other member switches.


Networks 100 and 210 are coupled to network 230. Suppose that two tenant networks 262 and 264, which can belong to the same or different tenants, are coupled to networks 100 and 210, respectively. A tenant network can include one or more host machines, each of which can host one or more virtual machines. For example, tenant network 262 can belong to tenant 1. Network extension groups 150 and 250 are configured for tenant networks 262 and 264, respectively, in networks 100 and 210, respectively. Network extension groups 150 and 250 include aggregate global VLANs 152 and 252, respectively.


In network 210, switches 213, 214, and 215 can operate as edge switches, and switches 211 and 212 can operate as aggregate switches. Hence, switches 211 and 212 include the VLAN identifier of aggregate VLAN 252 in extension packets which carries packets from tenant network 264. Since network 230 couple networks 100 and 210, member switches 231, 232, and 233 can operate as aggregate switches for the aggregate switches of networks 100 and 210. For example, aggregate global VLANs 152 and 252 can be further aggregated in network 230. A hierarchical network extension group 260 can be configured in network 230. Hierarchical network extension group 260 include aggregate global VLANs 152 and 252, and a hierarchical aggregate global VLAN 262.


Aggregate switches in network 100 or 210 forward packets from tenant network 262 or 264, respectively, to network 230 via hierarchical network extensions. In some embodiments, network extension interfaces of networks 100, 210, and 230 form the hierarchical network extensions. Upon identifying aggregate global VLAN 152 or 252 in an extension packet, a member switch in network 230 associates the packet with hierarchical network extension group 260, and use the VLAN identifier of hierarchical aggregate global VLAN 262 for any further communication. This allows a provider to deploy multiple smaller networks 100, 210, and 230 to form a large hierarchical network, thereby facilitating isolation of network management and fault detection within networks 100, 200, and 230.


Initialization and Operations


In the example in FIG. 1A, a respective member switch in network 100 initializes network extension groups 150 and 155. FIG. 3 presents a flowchart illustrating the process of a switch initializing a network extension group, in accordance with an embodiment of the present invention. During operation, the switch identifies a tenant (operation 302) and obtains an identifier range for a network extension group associated with the tenant (operation 304). The switch then obtains tenant VLAN identifiers and tenant information associated with the tenant (operation 306). Tenant information includes one or more of: MAC addresses of tenant devices, port identifiers of ports coupling tenant devices, and IP subnets of the tenant. The switch then checks whether the local switch is an aggregate switch for the tenant (operation 308).


If the local switch is an aggregate switch, the switch determines an aggregate global VLAN identifier in the range (operation 310) and associates the tenant information with the corresponding aggregate global VLAN identifier (operation 312). In some embodiments, the association is based on internal identifiers of the switch, as described in conjunction with FIG. 1C. This association can be configured by a network administrator as well. If the local switch is not an aggregate switch, the switch determines a set of edge global VLAN identifiers in the range corresponding to the tenant VLAN identifiers (operation 314). The switch then associates a respective tenant VLAN identifier and corresponding tenant information with the corresponding edge global VLAN identifier (operation 316).



FIG. 4A presents a flowchart illustrating the process of an edge switch forwarding a packet based on a network extension group, in accordance with an embodiment of the present invention. During operation, the switch receives a packet via a local edge port (operation 402) and determines an internal identifier for the packet based on the local port (e.g., a port identifier) and/or one or more fields in the packet's header (operation 404). The switch obtains an edge global VLAN identifier mapped to the determined internal identifier from the local mapping (operation 406). The switch encapsulates the packet in an encapsulation header to generate a transport packet (operation 408) and includes the obtained edge global VLAN identifier in the encapsulation header (operation 410), as described in conjunction with FIG. 1A. The switch then determines an egress port for the packet based on the determined internal identifier and transmits the packet via the port (operation 412). If the packet is a multi-destination packet, a plurality of egress ports can be mapped to the internal identifier.



FIG. 4B presents a flowchart illustrating the process of an aggregate switch forwarding a packet based on a network extension group, in accordance with an embodiment of the present invention. During operation, the switch receives a packet via a local inter-switch port (operation 452) and checks whether the packet is destined for the local switch (operation 454). If the packet is not destined for the local switch, the switch forwards the packet based on the egress switch identifier and edge global VLAN identifier in the encapsulation header of the packet (operation 456). If the packet is destined for the local switch, the switch decapsulates the encapsulation header to obtain the inner packet (e.g., an Ethernet frame) (operation 454). This inner packet can be a tenant packet.


The switch then checks whether the destination address of the inner packet (e.g., a destination MAC address) is reachable via a local network extension interface (operation 460). If the destination of the inner packet is not reachable via a local network extension interface, the packet is for a device coupled via a local edge port. The switch then forwards the inner packet based on the destination switch identifier (e.g., the destination MAC address) and a tenant VLAN identifier in the header of the inner packet (operation 462). If the destination of the inner packet is reachable via a local network extension interface, the switch determines an internal identifier for the packet based on the local port (e.g., a port identifier) and one or more fields in the packet's header (operation 464).


The switch identifies a network extension interface associated with the internal identifier (operation 466) and obtains an aggregate global VLAN identifier mapped to the internal identifier (operation 468). The switch includes the obtained aggregate global VLAN identifier in the packet header of the inner packet to generate an extension packet (operation 470), as described in conjunction with FIG. 2A. If the network extension interface is a tunnel interface, the switch identifies the tunnel interface of the network extension interface and encapsulates the extension packet in a corresponding tunnel header (operation 472). The switch determines an egress port associated with the network extension interface for the (encapsulated) extension packet and transmits the packet via the port (operation 474).


Exemplary Switch



FIG. 5 illustrates an exemplary switch with network extension group support, in accordance with an embodiment of the present invention. In this example, a switch 500 includes a number of communication ports 502, a packet processor 510, a network extension module 530, and a storage device 550. In some embodiments, packet processor 510 adds an encapsulation header to a packet. In some embodiments, switch 500 includes a switch group management module 524, which maintains a membership in a network of interconnected switches. A respective switch of the network is associated with a group identifier identifying the switch group


In some embodiments, the network group is a fabric switch. Switch 500 maintains a configuration database in storage 550 that maintains the configuration state of a respective switch within the fabric switch. Switch 500 maintains the state of the fabric switch, which is used to join other switches. Under such a scenario, communication ports 502 can include inter-switch communication channels for communication within a fabric switch. This inter-switch communication channel can be implemented via a regular communication port and based on any open or proprietary format (e.g., a TRILL or IP protocol).


Network extension module 530 maintains a mapping between a first VLAN identifier and a first global VLAN identifier of a network extension group. In some embodiments, the mapping maps the first VLAN identifier to an internal identifier, and maps the internal identifier to the first global VLAN identifier. Switch 500 can include an internal identifier module 522, which generates an internal identifier for a packet based on an ingress port and/or one or more fields of the packet. During operation, network extension module 530 includes the global VLAN identifier in a packet belonging to the first VLAN, as described in conjunction with FIGS. 1A and 2A. If switch 500 is an edge switch, the first global VLAN identifier is an edge global VLAN identifier of the network extension group.


On the other hand, if switch 500 is an aggregate switch, the first global VLAN identifier is an aggregate global VLAN identifier of the network extension group. Switch 500 can be an aggregate switch for one or more aggregate switches in remote networks, as described in conjunction with FIG. 2C. Switch 500 can also include an interface module 532, which maintains a network extension interface forwarding the packet comprising the first global VLAN identifier. In some embodiments, switch 500 includes a tunnel management module 540, which encapsulates the packet in a tunnel encapsulation header. The network extension interface is then a tunnel interface.


Note that the above-mentioned modules can be implemented in hardware as well as in software. In one embodiment, these modules can be embodied in computer-executable instructions stored in a memory which is coupled to one or more processors in switch 500. When executed, these instructions cause the processor(s) to perform the aforementioned functions.


In summary, embodiments of the present invention provide a switch and a method for providing a global VLAN across a plurality of networks. In one embodiment, the switch is in a network of interconnected switches. The switch includes a network extension module, which maintains a mapping between a first VLAN identifier and a first global VLAN identifier of a network extension group. The network extension group is represented by a range of global VLAN identifiers for a tenant. A global VLAN identifier is persistent in a respective switch of the network and represents a virtual forwarding domain in the network. During operation, the network extension module includes the global VLAN identifier in a packet belonging to the first VLAN.


The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.


The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A switch, comprising: network extension circuitry configured to: maintain a mapping between a information associated with a tenant and an aggregate global virtual local area network (VLAN) identifier of a network extension group associated with the tenant, wherein the network extension group comprises a set of edge global VLAN identifiers for individual VLAN identifiers of the tenant and the aggregate global VLAN identifier corresponding to the tenant;include the aggregate global VLAN identifier in a packet belonging to the tenant based on the mapping; andforwarding circuitry configured to determine an egress port for the packet based on a destination switch identifier of the packet and the aggregate global VLAN identifier;wherein a respective global VLAN identifier is persistent in a respective switch of a first network of interconnected switches, wherein the first network of interconnected switches is identified by a first fabric identifier.
  • 2. The switch of claim 1, wherein the switch is an aggregate switch for one or more edge switches in the first network of interconnected switches.
  • 3. The switch of claim 1, wherein the egress port is associated with a network extension interface, wherein a second network of interconnected switches is reachable via the network extension interface and identified by a second fabric identifier.
  • 4. The switch of claim 3, further comprising tunnel management circuitry configured to encapsulate the packet in a tunnel encapsulation header, wherein the network extension interface is a tunnel interface for a tunnel between the first and second networks of interconnected switches.
  • 5. The switch of claim 3, wherein the network extension group is persistent in the second network of interconnected switches and represents a virtual forwarding domain in the second network of interconnected switches.
  • 6. The switch of claim 3, wherein the network extension circuitry is further configured to identify a media access control (MAC) address from a payload of a notification message, wherein the MAC address is learned at a switch in the second network of interconnected switches.
  • 7. The switch of claim 1, wherein the switch is an aggregate switch for one or more aggregate switches in a remote network of interconnected switches, wherein the aggregate global VLAN identifier corresponds to a plurality of global VLANs of the remote network of interconnected switches.
  • 8. The switch of claim 1, further comprising a packet processor configured to decapsulate an encapsulation header of a second packet, wherein the encapsulation header includes an edge global VLAN identifier in the network extension group.
  • 9. The switch of claim 1, wherein a respective switch of the first network of interconnected switches is associated with the first fabric identifier.
  • 10. The switch of claim 1, wherein the mapping maps the information of the tenant to an internal identifier, and maps the internal identifier to the aggregate global VLAN identifier; and wherein the internal identifier is internal and local to the switch, and is distinct from a VLAN identifier.
  • 11. A method, comprising: maintaining, by a switch, a mapping between a information associated with a tenant and an aggregate global virtual local area network (VLAN) identifier of a network extension group associated with the tenant, wherein the network extension group comprises a set of edge global VLAN identifiers for individual VLAN identifiers of the tenant and the aggregate global VLAN identifier corresponding to the tenant;including the aggregate global VLAN identifier in a packet belonging to the tenant based on the mapping; anddetermining an egress port for the packet based on a destination switch identifier of the packet and the aggregate global VLAN identifier;wherein a respective global VLAN identifier is persistent in a respective switch of a first network of interconnected switches, wherein the first network of interconnected switches is identified by a first fabric identifier.
  • 12. The method of claim 11, wherein the switch is an aggregate switch for one or more edge switches in the first network of interconnected switches.
  • 13. The method of claim 11, wherein the egress port is associated with a network extension interface, wherein a second network of interconnected switches is reachable via the network extension interface and identified by a second fabric identifier.
  • 14. The method of claim 13, further comprising encapsulating the packet in a tunnel encapsulation header, wherein the network extension interface is a tunnel interface for a tunnel between the first and second networks of interconnected switches.
  • 15. The method of claim 13, wherein the network extension group is persistent in the second network of interconnected switches and represents a virtual forwarding domain in the second network of interconnected switches.
  • 16. The method of claim 13, further comprising identifying a media access control (MAC) address from a payload of a notification message, wherein the MAC address is learned at a switch in the second network of interconnected switches.
  • 17. The method of claim 11, wherein the switch is an aggregate switch for one or more aggregate switches in a remote network of interconnected switches, wherein the aggregate global VLAN identifier corresponds to a plurality of global VLANs of the remote network of interconnected switches.
  • 18. The method of claim 11, further comprising decapsulating an encapsulation header of a second packet, wherein the encapsulation header includes an edge global VLAN identifier in the network extension group.
  • 19. The method of claim 11, wherein a respective switch of the first network of interconnected switches is associated with the first fabric identifier.
  • 20. The method of claim 11, wherein the mapping maps the information of the tenant to an internal identifier, and maps the internal identifier to the aggregate global VLAN identifier; and wherein the internal identifier is internal and local to the switch, and is distinct from a VLAN identifier.
RELATED APPLICATIONS

This application is a continuation application of application Ser. No. 14/704,660, titled “Network Extension Groups,” by inventors Venkata R. K. Addanki, Mythilikanth Raman, Phanidhar Koganti, Shunjia Yu, and Suresh Vobbilisetty, filed on 5 May 2015, which claims the benefit of U.S. Provisional Application No. 61/992,563, titled “Virtual Fabric Extension Service,” by inventors Venkata R. K. Addanki, Mythilikanth Raman, Phanidhar Koganti, Shunjia Yu, and Suresh Vobbilisetty, filed 13 May 2014, the disclosure of which is incorporated by reference herein. The present disclosure is related to U.S. Pat. No. 8,867,552, titled “Virtual Cluster Switching,” by inventors Suresh Vobbilisetty and Dilip Chatwani, issued 21 Oct. 2014, and to U.S. patent application Ser. No. 13/971,397, titled “Global VLANs for Fabric Switches,” by inventors Suresh Vobbilisetty, Phanidhar Koganti, and Chi Lung Chong, filed 20 Aug. 2013, the disclosures of which are incorporated by reference herein.

US Referenced Citations (677)
Number Name Date Kind
829529 Keathley Aug 1906 A
5390173 Spinney Feb 1995 A
5802278 Isfeld Sep 1998 A
5878232 Marimuthu Mar 1999 A
5879173 Poplawski Mar 1999 A
5959968 Chin Sep 1999 A
5973278 Wehrill, III Oct 1999 A
5983278 Chong Nov 1999 A
5995262 Hirota Nov 1999 A
6041042 Bussiere Mar 2000 A
6085238 Yuasa Jul 2000 A
6092062 Lohman Jul 2000 A
6104696 Kadambi Aug 2000 A
6122639 Babu Sep 2000 A
6185214 Schwartz Feb 2001 B1
6185241 Sun Feb 2001 B1
6295527 McCormack Sep 2001 B1
6331983 Haggerty Dec 2001 B1
6438106 Pillar Aug 2002 B1
6498781 Bass Dec 2002 B1
6542266 Phillips Apr 2003 B1
6553029 Alexander Apr 2003 B1
6571355 Linnell May 2003 B1
6583902 Yuen Jun 2003 B1
6633761 Singhal Oct 2003 B1
6636963 Stein Oct 2003 B1
6771610 Seaman Aug 2004 B1
6870840 Hill Mar 2005 B1
6873602 Ambe Mar 2005 B1
6920503 Nanji Jul 2005 B1
6937576 DiBenedetto Aug 2005 B1
6956824 Mark Oct 2005 B2
6957269 Williams Oct 2005 B2
6975581 Medina Dec 2005 B1
6975864 Singhal Dec 2005 B2
7016352 Chow Mar 2006 B1
7061877 Gummalla Jun 2006 B1
7062177 Grivna Jun 2006 B1
7097308 Singhal Aug 2006 B2
7173934 Lapuh Feb 2007 B2
7197308 Singhal Mar 2007 B2
7206288 Cometto Apr 2007 B2
7274694 Cheng Sep 2007 B1
7310664 Merchant Dec 2007 B1
7313637 Tanaka Dec 2007 B2
7315545 Chowdhury et al. Jan 2008 B1
7316031 Griffith Jan 2008 B2
7330897 Baldwin Feb 2008 B2
7380025 Riggins May 2008 B1
7397768 Betker Jul 2008 B1
7397794 Lacroute Jul 2008 B1
7430164 Bare Sep 2008 B2
7453888 Zabihi Nov 2008 B2
7477894 Sinha Jan 2009 B1
7480258 Shuen Jan 2009 B1
7508757 Ge Mar 2009 B2
7558195 Kuo Jul 2009 B1
7558273 Grosser Jul 2009 B1
7571447 Ally Aug 2009 B2
7599901 Mital Oct 2009 B2
7653056 Dianes Jan 2010 B1
7688736 Walsh Mar 2010 B1
7688960 Aubuchon Mar 2010 B1
7690040 Frattura Mar 2010 B2
7706255 Kondrat et al. Apr 2010 B1
7716370 Devarapalli May 2010 B1
7720076 Dobbins May 2010 B2
7729296 Choudhary Jun 2010 B1
7787480 Mehta Aug 2010 B1
7792920 Istvan Sep 2010 B2
7796593 Ghosh Sep 2010 B1
7801021 Triantafillis Sep 2010 B1
7808992 Homchaudhuri Oct 2010 B2
7836332 Hara Nov 2010 B2
7843906 Chidambaram et al. Nov 2010 B1
7843907 Abou-Emara Nov 2010 B1
7860097 Lovett Dec 2010 B1
7898959 Arad Mar 2011 B1
7912091 Krishnan Mar 2011 B1
7924837 Shabtay Apr 2011 B1
7937438 Miller May 2011 B1
7937756 Kay May 2011 B2
7945941 Sinha May 2011 B2
7949638 Goodson May 2011 B1
7957386 Aggarwal Jun 2011 B1
8018938 Fromm Sep 2011 B1
8027354 Portolani Sep 2011 B1
8054832 Shukla Nov 2011 B1
8068442 Kompella Nov 2011 B1
8078704 Lee Dec 2011 B2
8090805 Chawla Jan 2012 B1
8102781 Smith Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8125928 Mehta Feb 2012 B2
8134922 Elangovan Mar 2012 B2
8155150 Chung Apr 2012 B1
8160063 Maltz Apr 2012 B2
8160080 Arad Apr 2012 B1
8170038 Belanger May 2012 B2
8175107 Yalagandula May 2012 B1
8095774 Lambeth Jun 2012 B1
8194674 Pagel Jun 2012 B1
8195774 Lambeth Jun 2012 B2
8204061 Sane Jun 2012 B1
8213313 Doiron Jul 2012 B1
8213336 Smith Jul 2012 B2
8230069 Korupolu Jul 2012 B2
8239960 Frattura Aug 2012 B2
8249069 Raman Aug 2012 B2
8270401 Barnes Sep 2012 B1
8295291 Ramanathan Oct 2012 B1
8295921 Wang Oct 2012 B2
8301686 Appajodu Oct 2012 B1
8339994 Gnanasekaran Dec 2012 B2
8351352 Eastlake Jan 2013 B1
8369335 Jha Feb 2013 B2
8369347 Xiong Feb 2013 B2
8392496 Linden Mar 2013 B2
8451717 Venkataraman May 2013 B2
8462774 Page Jun 2013 B2
8465774 Page Jun 2013 B2
8467375 Blair Jun 2013 B2
8520595 Yadav Aug 2013 B2
8553710 White Oct 2013 B1
8595479 Radhakrishnan Nov 2013 B2
8599850 Ha Dec 2013 B2
8599864 Chung Dec 2013 B2
8615008 Natarajan Dec 2013 B2
8619788 Sankaran Dec 2013 B1
8625616 Vobbilisetty Jan 2014 B2
8705526 Hasan Apr 2014 B1
8706905 McGlaughlin Apr 2014 B1
8717895 Koponen May 2014 B2
8724456 Hong May 2014 B1
8792501 Rustagi Jul 2014 B1
8798045 Aybay Aug 2014 B1
8798055 An Aug 2014 B1
8804732 Hepting Aug 2014 B1
8804736 Drake Aug 2014 B1
8806031 Kondur Aug 2014 B1
8826385 Congdon Sep 2014 B2
8918631 Kumar Dec 2014 B1
8937865 Kumar Jan 2015 B1
8948181 Kapadia Feb 2015 B2
8971173 Choudhury Mar 2015 B1
8995272 Agarwal Mar 2015 B2
9019976 Gupta Apr 2015 B2
9178793 Marlow Nov 2015 B1
9231890 Vobbilisetty Jan 2016 B2
9350680 Thayalan May 2016 B2
9401818 Venkatesh Jul 2016 B2
9438447 Basso Sep 2016 B2
9450870 Ananthapadmanabha Sep 2016 B2
9524173 Guntaka Dec 2016 B2
9626255 Guntaka Apr 2017 B2
9628407 Guntaka Apr 2017 B2
9699001 Addanki Jul 2017 B2
9800471 Addanki Oct 2017 B2
20010005527 Vaeth Jun 2001 A1
20010055274 Hegge Dec 2001 A1
20020019904 Katz Feb 2002 A1
20020021701 Lavian Feb 2002 A1
20020027885 Ben-Ami Mar 2002 A1
20020039350 Wang Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020087723 Williams Jul 2002 A1
20020091795 Yip Jul 2002 A1
20020138628 Tingley Sep 2002 A1
20020161867 Cochran Oct 2002 A1
20030026290 Umayabashi Feb 2003 A1
20030041085 Sato Feb 2003 A1
20030093567 Lolayekar May 2003 A1
20030097464 Martinez May 2003 A1
20030097470 Lapuh May 2003 A1
20030123393 Feuerstraeter Jul 2003 A1
20030147385 Montalvo Aug 2003 A1
20030152075 Hawthorne Aug 2003 A1
20030174706 Shankar Sep 2003 A1
20030189905 Lee Oct 2003 A1
20030189930 Terrell Oct 2003 A1
20030208616 Laing Nov 2003 A1
20030216143 Roese Nov 2003 A1
20030223428 BlanquerGonzalez Dec 2003 A1
20030233534 Bernhard Dec 2003 A1
20040001433 Gram Jan 2004 A1
20040003094 See Jan 2004 A1
20040010600 Baldwin Jan 2004 A1
20040088668 Bornowski Jan 2004 A1
20040037295 Tanaka Feb 2004 A1
20040047349 Fujita Mar 2004 A1
20040049699 Griffith Mar 2004 A1
20040057430 Paavolainen Mar 2004 A1
20040081171 Finn Apr 2004 A1
20040088437 Stimac May 2004 A1
20040095900 Siegel May 2004 A1
20040117508 Shimizu Jun 2004 A1
20040120326 Yoon Jun 2004 A1
20040156313 Hofmeister et al. Aug 2004 A1
20040165595 Holmgren Aug 2004 A1
20040165596 Garcia Aug 2004 A1
20040205234 Barrack Oct 2004 A1
20040213232 Regan Oct 2004 A1
20040225725 Enomoto Nov 2004 A1
20040243673 Goyal Dec 2004 A1
20050007951 Lapuh Jan 2005 A1
20050025179 McLaggan Feb 2005 A1
20050036488 Kalkunte Feb 2005 A1
20050044199 Shiga Feb 2005 A1
20050074001 Mattes Apr 2005 A1
20050094568 Judd May 2005 A1
20050094630 Valdevit May 2005 A1
20050108375 Hallak-Stamler May 2005 A1
20050111352 Ho May 2005 A1
20050122979 Gross Jun 2005 A1
20050152335 Lodha Jul 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050157751 Rabie Jul 2005 A1
20050169188 Cometto Aug 2005 A1
20050195813 Ambe Sep 2005 A1
20050207423 Herbst Sep 2005 A1
20050213561 Yao Sep 2005 A1
20050220096 Friskney Oct 2005 A1
20050259586 Hafid Nov 2005 A1
20050265330 Suzuki Dec 2005 A1
20050265356 Kawarai Dec 2005 A1
20050278565 Frattura Dec 2005 A1
20060007869 Hirota Jan 2006 A1
20060018302 Ivaldi Jan 2006 A1
20060023707 Makishima Feb 2006 A1
20060029055 Perera Feb 2006 A1
20060034292 Wakayama Feb 2006 A1
20060036648 Frey Feb 2006 A1
20060036765 Weyman Feb 2006 A1
20060039366 Ghosh Feb 2006 A1
20060059163 Frattura Mar 2006 A1
20060062187 Rune Mar 2006 A1
20060072550 Davis Apr 2006 A1
20060083172 Jordan Apr 2006 A1
20060083254 Ge Apr 2006 A1
20060092860 Higashitaniguchi May 2006 A1
20060098589 Kreeger May 2006 A1
20060126511 Youn Jun 2006 A1
20060140130 Kalkunte Jun 2006 A1
20060155828 Ikeda Jul 2006 A1
20060168109 Warmenhoven Jul 2006 A1
20060184937 Abels Aug 2006 A1
20060206655 Chappell Sep 2006 A1
20060209886 Silberman Sep 2006 A1
20060221960 Borgione Oct 2006 A1
20060227776 Chandrasekaran Oct 2006 A1
20060235995 Bhatia Oct 2006 A1
20060242311 Mai Oct 2006 A1
20060242398 Fontijn Oct 2006 A1
20060245439 Sajassi Nov 2006 A1
20060251067 DeSanti Nov 2006 A1
20060256767 Suzuki Nov 2006 A1
20060265515 Shiga Nov 2006 A1
20060285499 Tzeng Dec 2006 A1
20060291388 Amdahl Dec 2006 A1
20060291480 Cho Dec 2006 A1
20060294413 Filz Dec 2006 A1
20070036178 Hares Feb 2007 A1
20070053294 Ho Mar 2007 A1
20070061817 Atkinson Mar 2007 A1
20070074052 Hemmah Mar 2007 A1
20070081530 Nomura Apr 2007 A1
20070083625 Chamdani Apr 2007 A1
20070086362 Kato Apr 2007 A1
20070094464 Sharma Apr 2007 A1
20070097968 Du May 2007 A1
20070098006 Parry May 2007 A1
20070110068 Sekiguchi May 2007 A1
20070116224 Burke May 2007 A1
20070116422 Reynolds May 2007 A1
20070121617 Kanekar May 2007 A1
20070130295 Rastogi Jun 2007 A1
20070156659 Lim Jul 2007 A1
20070177525 Wijnands Aug 2007 A1
20070177597 Ju Aug 2007 A1
20070183313 Narayanan Aug 2007 A1
20070183393 Boyd Aug 2007 A1
20070206762 Chandra Sep 2007 A1
20070211712 Fitch Sep 2007 A1
20070220059 Lu Sep 2007 A1
20070226214 Smits Sep 2007 A1
20070230472 Jesuraj Oct 2007 A1
20070238343 Velleca Oct 2007 A1
20070258449 Bennett Nov 2007 A1
20070274234 Kubota Nov 2007 A1
20070280223 Pan Dec 2007 A1
20070289017 Copeland, III Dec 2007 A1
20070297406 Rooholamini Dec 2007 A1
20080052487 Akahane Feb 2008 A1
20080056135 Lee Mar 2008 A1
20080056300 Williams Mar 2008 A1
20080057918 Abrant Mar 2008 A1
20080065760 Damm Mar 2008 A1
20080075078 Watanabe Mar 2008 A1
20080080517 Roy Apr 2008 A1
20080095160 Yadav Apr 2008 A1
20080101386 Gray May 2008 A1
20080112133 Torudbakken May 2008 A1
20080112400 Dunbar et al. May 2008 A1
20080133760 Berkvens Jun 2008 A1
20080159260 Vobbilisetty Jul 2008 A1
20080159277 Vobbilisetty Jul 2008 A1
20080165705 Umayabashi Jul 2008 A1
20080172492 Raghunath Jul 2008 A1
20080181196 Regan Jul 2008 A1
20080181243 Vobbilisetty Jul 2008 A1
20080186968 Farinacci Aug 2008 A1
20080186981 Seto Aug 2008 A1
20080205377 Chao Aug 2008 A1
20080219172 Mohan Sep 2008 A1
20080225852 Raszuk Sep 2008 A1
20080228897 Ko Sep 2008 A1
20080240129 Elmeleegy Oct 2008 A1
20080253380 Cazares Oct 2008 A1
20080267179 Lavigne Oct 2008 A1
20080279196 Friskney Nov 2008 A1
20080285458 Lysne Nov 2008 A1
20080285555 Ogasahara Nov 2008 A1
20080288020 Einav Nov 2008 A1
20080298248 Roeck Dec 2008 A1
20080304498 Jorgensen Dec 2008 A1
20080304519 Koenen Dec 2008 A1
20080310342 Kruys Dec 2008 A1
20090022069 Khan Jan 2009 A1
20090024734 Merbach Jan 2009 A1
20090037607 Farinacci Feb 2009 A1
20090037977 Gai Feb 2009 A1
20090041046 Hirata Feb 2009 A1
20090044270 Shelly Feb 2009 A1
20090052326 Bergamasco Feb 2009 A1
20090067422 Poppe Mar 2009 A1
20090067442 Killian Mar 2009 A1
20090079560 Fries Mar 2009 A1
20090080345 Gray Mar 2009 A1
20090083445 Ganga Mar 2009 A1
20090092042 Yuhara Apr 2009 A1
20090092043 Lapuh Apr 2009 A1
20090094354 Rastogi Apr 2009 A1
20090106298 Furusho Apr 2009 A1
20090106405 Mazarick Apr 2009 A1
20090113408 Toeroe Apr 2009 A1
20090116381 Kanda May 2009 A1
20090122700 Aboba May 2009 A1
20090129384 Regan May 2009 A1
20090129389 Halna DeFretay May 2009 A1
20090138577 Casado May 2009 A1
20090138752 Graham May 2009 A1
20090144720 Roush Jun 2009 A1
20090161584 Guan Jun 2009 A1
20090161670 Shepherd Jun 2009 A1
20090168647 Holness Jul 2009 A1
20090199177 Edwards Aug 2009 A1
20090204965 Tanaka Aug 2009 A1
20090213783 Moreton Aug 2009 A1
20090213867 Devireddy Aug 2009 A1
20090222879 Kostal Sep 2009 A1
20090225752 Mitsumori Sep 2009 A1
20090232031 Vasseur Sep 2009 A1
20090245112 Okazaki Oct 2009 A1
20090245137 Hares Oct 2009 A1
20090245242 Carlson Oct 2009 A1
20090249444 Macauley Oct 2009 A1
20090252049 Ludwig Oct 2009 A1
20090252061 Small Oct 2009 A1
20090252503 Ishigami Oct 2009 A1
20090260083 Szeto Oct 2009 A1
20090279558 Davis Nov 2009 A1
20090279701 Moisand Nov 2009 A1
20090292858 Lambeth Nov 2009 A1
20090316721 Kanda Dec 2009 A1
20090323698 LeFaucheur Dec 2009 A1
20090323708 Ihle Dec 2009 A1
20090327392 Tripathi Dec 2009 A1
20090327462 Adams Dec 2009 A1
20100002382 Aybay Jan 2010 A1
20100027420 Smith Feb 2010 A1
20100027429 Jorgens Feb 2010 A1
20100042869 Szabo Feb 2010 A1
20100046471 Hattori Feb 2010 A1
20100054260 Pandey Mar 2010 A1
20100061269 Banerjee Mar 2010 A1
20100074175 Banks Mar 2010 A1
20100085981 Gupta Apr 2010 A1
20100097941 Carlson Apr 2010 A1
20100103813 Allan Apr 2010 A1
20100103939 Carlson Apr 2010 A1
20100114818 Lier May 2010 A1
20100131636 Suri May 2010 A1
20100157844 Casey Jun 2010 A1
20100158024 Sajassi Jun 2010 A1
20100165877 Shukla Jul 2010 A1
20100165995 Mehta Jul 2010 A1
20100168467 Johnston Jul 2010 A1
20100169467 Shukla Jul 2010 A1
20100169948 Budko Jul 2010 A1
20100182920 Matsuoka Jul 2010 A1
20100189119 Sawada Jul 2010 A1
20100192225 Ma Jul 2010 A1
20100195489 Zhou Aug 2010 A1
20100195529 Liu Aug 2010 A1
20100214913 Kompella Aug 2010 A1
20100215042 Sato Aug 2010 A1
20100215049 Raza Aug 2010 A1
20100220724 Rabie Sep 2010 A1
20100226368 Mack-Crane Sep 2010 A1
20100226381 Mehta Sep 2010 A1
20100246388 Gupta Sep 2010 A1
20100246580 Kaganoi Sep 2010 A1
20100254703 Kirkpatrick Oct 2010 A1
20100257263 Casado Oct 2010 A1
20100258263 Douxchamps Oct 2010 A1
20100265849 Harel Oct 2010 A1
20100271960 Krygowski Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281106 Ashwood-Smith Nov 2010 A1
20100284418 Gray Nov 2010 A1
20100284698 McColloch Nov 2010 A1
20100287262 Elzur Nov 2010 A1
20100287548 Zhou Nov 2010 A1
20100290464 Assarpour Nov 2010 A1
20100290472 Raman Nov 2010 A1
20100290473 Enduri Nov 2010 A1
20100299527 Arunan Nov 2010 A1
20100303071 Kotalwar Dec 2010 A1
20100303075 Tripathi Dec 2010 A1
20100303083 Belanger Dec 2010 A1
20100309820 Rajagopalan Dec 2010 A1
20100309912 Mehta Dec 2010 A1
20100316055 Belanger Dec 2010 A1
20100329110 Rose Dec 2010 A1
20100329265 Lapuh Dec 2010 A1
20110007738 Berman Jan 2011 A1
20110019678 Mehta Jan 2011 A1
20110032945 Mullooly Feb 2011 A1
20110035489 McDaniel Feb 2011 A1
20110035498 Shah Feb 2011 A1
20110044339 Kotalwar Feb 2011 A1
20110044352 Chaitou Feb 2011 A1
20110051723 Rabie Mar 2011 A1
20110058547 Waldrop Mar 2011 A1
20110064086 Xiong Mar 2011 A1
20110064089 Hidaka Mar 2011 A1
20110072208 Gulati Mar 2011 A1
20110085560 Chawla Apr 2011 A1
20110085562 Bao Apr 2011 A1
20110085563 Kotha Apr 2011 A1
20110088011 Ouali Apr 2011 A1
20110110266 Li May 2011 A1
20110134802 Rajagopalan Jun 2011 A1
20110134803 Dalvi Jun 2011 A1
20110134924 Hewson Jun 2011 A1
20110134925 Safrai Jun 2011 A1
20110142053 VanDerMerwe Jun 2011 A1
20110142062 Wang Jun 2011 A1
20110149526 Turner Jun 2011 A1
20110158113 Nanda Jun 2011 A1
20110161494 McDysan Jun 2011 A1
20110161695 Okita Jun 2011 A1
20110176412 Stine Jul 2011 A1
20110188373 Saito Aug 2011 A1
20110194403 Sajassi Aug 2011 A1
20110194563 Shen Aug 2011 A1
20110225540 d'Entremont Sep 2011 A1
20110228767 Singla Sep 2011 A1
20110228780 Ashwood-Smith Sep 2011 A1
20110231570 Altekar Sep 2011 A1
20110231574 Saunderson Sep 2011 A1
20110235523 Jha Sep 2011 A1
20110243133 Villait Oct 2011 A9
20110243136 Raman Oct 2011 A1
20110246669 Kanada Oct 2011 A1
20110255538 Srinivasan Oct 2011 A1
20110255540 Mizrahi Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110268118 Schlansker Nov 2011 A1
20110268120 Vobbilisetty Nov 2011 A1
20110268125 Vobbilisetty Nov 2011 A1
20110273988 Tourrilhes Nov 2011 A1
20110273990 Rajagopalan Nov 2011 A1
20110274114 Dhar Nov 2011 A1
20110280572 Vobbilisetty Nov 2011 A1
20110286357 Haris Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286462 Kompella Nov 2011 A1
20110055274 Hegge Dec 2011 A1
20110292947 Vobbilisetty Dec 2011 A1
20110296052 Guo Dec 2011 A1
20110299391 Vobbilisetty Dec 2011 A1
20110299413 Chatwani Dec 2011 A1
20110299414 Yu Dec 2011 A1
20110299527 Yu Dec 2011 A1
20110299528 Yu Dec 2011 A1
20110299531 Yu Dec 2011 A1
20110299532 Yu Dec 2011 A1
20110299533 Yu Dec 2011 A1
20110299534 Koganti Dec 2011 A1
20110299535 Vobbilisetty Dec 2011 A1
20110299536 Cheng Dec 2011 A1
20110317559 Kern Dec 2011 A1
20110317703 Dunbar et al. Dec 2011 A1
20120011240 Hara Jan 2012 A1
20120014261 Salam Jan 2012 A1
20120014387 Dunbar Jan 2012 A1
20120020220 Sugita Jan 2012 A1
20120027017 Rai Feb 2012 A1
20120033663 Guichard Feb 2012 A1
20120033665 Jacob Feb 2012 A1
20120033668 Humphries Feb 2012 A1
20120033669 Mohandas Feb 2012 A1
20120033672 Page Feb 2012 A1
20120039163 Nakajima Feb 2012 A1
20120042095 Kotha Feb 2012 A1
20120063363 Li Mar 2012 A1
20120075991 Sugita Mar 2012 A1
20120099567 Hart Apr 2012 A1
20120099602 Nagapudi Apr 2012 A1
20120099863 Xu Apr 2012 A1
20120102160 Breh Apr 2012 A1
20120106339 Mishra May 2012 A1
20120117438 Shaffer May 2012 A1
20120131097 Baykal May 2012 A1
20120131289 Taguchi May 2012 A1
20120134266 Roitshtein May 2012 A1
20120136999 Roitshtein May 2012 A1
20120147740 Nakash Jun 2012 A1
20120158997 Hsu Jun 2012 A1
20120163164 Terry Jun 2012 A1
20120170491 Kern Jul 2012 A1
20120177039 Berman Jul 2012 A1
20120210416 Mihelich Aug 2012 A1
20120221636 Surtani Aug 2012 A1
20120230225 Matthews Sep 2012 A1
20120239918 Huang Sep 2012 A1
20120243359 Keesara Sep 2012 A1
20120243539 Keesara Sep 2012 A1
20120250502 Brolin Oct 2012 A1
20120260079 Mruthyunjaya Oct 2012 A1
20120275297 Subramanian Nov 2012 A1
20120275347 Banerjee Nov 2012 A1
20120278804 Narayanasamy Nov 2012 A1
20120281700 Koganti Nov 2012 A1
20120287785 Kamble Nov 2012 A1
20120294192 Masood Nov 2012 A1
20120294194 Balasubramanian Nov 2012 A1
20120230800 Kamble Dec 2012 A1
20120320800 Kamble Dec 2012 A1
20120320926 Kamath et al. Dec 2012 A1
20120327766 Tsai et al. Dec 2012 A1
20120327937 Melman et al. Dec 2012 A1
20130003535 Sarwar Jan 2013 A1
20130003549 Matthews Jan 2013 A1
20130003608 Lei Jan 2013 A1
20130003737 Sinicrope Jan 2013 A1
20130003738 Koganti Jan 2013 A1
20130003747 Raman Jan 2013 A1
20130016606 Cirkovic Jan 2013 A1
20130028072 Addanki Jan 2013 A1
20130034015 Jaiswal Feb 2013 A1
20130034021 Jaiswal Feb 2013 A1
20130034094 Cardona Feb 2013 A1
20130044629 Biswas Feb 2013 A1
20130058354 Casado Mar 2013 A1
20130066947 Ahmad Mar 2013 A1
20130067466 Combs Mar 2013 A1
20130070762 Adams Mar 2013 A1
20130083693 Himura Apr 2013 A1
20130097345 Munoz Apr 2013 A1
20130114595 Mack-Crane et al. May 2013 A1
20130121142 Bai May 2013 A1
20130124707 Ananthapadmanabha May 2013 A1
20130124750 Anumala May 2013 A1
20130127848 Joshi May 2013 A1
20130132296 Koppenhagen May 2013 A1
20130135811 Dunwoody May 2013 A1
20130136123 Ge May 2013 A1
20130145008 Kannan Jun 2013 A1
20130148546 Eisenhauer Jun 2013 A1
20130148663 Xiong Jun 2013 A1
20130156425 Kirkpatrick Jun 2013 A1
20130194914 Agarwal Aug 2013 A1
20130201992 Masaki Aug 2013 A1
20130215754 Tripathi Aug 2013 A1
20130219473 Schaefer Aug 2013 A1
20130223221 Xu Aug 2013 A1
20130223438 Tripathi Aug 2013 A1
20130223449 Koganti Aug 2013 A1
20130238802 Sarikaya Sep 2013 A1
20130250947 Zheng Sep 2013 A1
20130250951 Koganti Sep 2013 A1
20130250958 Watanabe Sep 2013 A1
20130259037 Natarajan Oct 2013 A1
20130266015 Qu Oct 2013 A1
20130268590 Mahadevan Oct 2013 A1
20130272135 Leong Oct 2013 A1
20130294451 Li Nov 2013 A1
20130297757 Han Nov 2013 A1
20130301425 Udutha Nov 2013 A1
20130301642 Radhakrishnan Nov 2013 A1
20130308492 Baphna Nov 2013 A1
20130308641 Ackley Nov 2013 A1
20130308647 Rosset Nov 2013 A1
20130315125 Ravishankar Nov 2013 A1
20130315246 Zhang Nov 2013 A1
20130315586 Kipp Nov 2013 A1
20130322427 Stiekes Dec 2013 A1
20130332660 Talagala Dec 2013 A1
20130336104 Talla Dec 2013 A1
20130346583 Low Dec 2013 A1
20140013324 Zhang Jan 2014 A1
20140019608 Kawakami Jan 2014 A1
20140019639 Ueno Jan 2014 A1
20140025736 Wang Jan 2014 A1
20140029412 Janardhanan Jan 2014 A1
20140029419 Jain Jan 2014 A1
20140044126 Sabhanatarajan Feb 2014 A1
20140050223 Foo Feb 2014 A1
20140056298 Vobbilisetty Feb 2014 A1
20140059225 Gasparakis Feb 2014 A1
20140064056 Sakata Mar 2014 A1
20140071987 Janardhanan Mar 2014 A1
20140086253 Yong Mar 2014 A1
20140092738 Grandhi Apr 2014 A1
20140105034 Sun Apr 2014 A1
20140112122 Kapadia Apr 2014 A1
20140140243 Ashwood-Smith May 2014 A1
20140157251 Hocker Jun 2014 A1
20140169368 Grover Jun 2014 A1
20140188996 Lie Jul 2014 A1
20140192804 Ghanwani Jul 2014 A1
20140241147 Rajagopalan Aug 2014 A1
20140258446 Bursell Sep 2014 A1
20140269701 Kaushik Sep 2014 A1
20140269709 Benny Sep 2014 A1
20140269720 Srinivasan Sep 2014 A1
20140269733 Venkatesh Sep 2014 A1
20140298091 Carlen Oct 2014 A1
20140355477 Velayudhan Dec 2014 A1
20140362854 Addanki Dec 2014 A1
20140362859 Addanki Dec 2014 A1
20150009992 Zhang Jan 2015 A1
20150010007 Matsuhira Jan 2015 A1
20150016300 Devireddy Jan 2015 A1
20150030031 Zhou Jan 2015 A1
20150092593 Kompella Apr 2015 A1
20150103826 Davis Apr 2015 A1
20150110111 Song Apr 2015 A1
20150110487 Fenkes Apr 2015 A1
20150117256 Sabaa Apr 2015 A1
20150117454 Koponen Apr 2015 A1
20150127618 Alberti May 2015 A1
20150139234 Hu May 2015 A1
20150143369 Zheng May 2015 A1
20150172098 Agarwal Jun 2015 A1
20150188753 Anumala Jul 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195093 Mahadevan Jul 2015 A1
20150222506 Kizhakkiniyil Aug 2015 A1
20150248298 Gavrilov Sep 2015 A1
20150263897 Ganichev Sep 2015 A1
20150263899 Tubaltsev Sep 2015 A1
20150263991 MacChiano Sep 2015 A1
20150281066 Koley Oct 2015 A1
20150301901 Rath Oct 2015 A1
20150347468 Bester Dec 2015 A1
20160072899 Tung Mar 2016 A1
20160087885 Tripathi Mar 2016 A1
20160139939 Bosch May 2016 A1
20160182458 Shatzkamer Jun 2016 A1
20160212040 Bhagavathiperumal Jul 2016 A1
20160344640 Soderlund Nov 2016 A1
20170012880 Yang Jan 2017 A1
20170026197 Venkatesh Jan 2017 A1
20170097841 Chang Apr 2017 A1
Foreign Referenced Citations (38)
Number Date Country
1735062 Feb 2006 CN
1777149 May 2006 CN
101064682 Oct 2007 CN
101459618 Jun 2009 CN
101471899 Jul 2009 CN
101548511 Sep 2009 CN
101645880 Feb 2010 CN
102098237 Jun 2011 CN
102148749 Aug 2011 CN
102301663 Dec 2011 CN
102349268 Feb 2012 CN
102378176 Mar 2012 CN
102404181 Apr 2012 CN
102415065 Apr 2012 CN
102415065 Apr 2012 CN
102801599 Nov 2012 CN
102801599 Nov 2012 CN
102088388 Apr 2014 CN
0579567 May 1993 EP
0579567 Jan 1994 EP
0993156 Apr 2000 EP
0993156 Dec 2000 EP
1398920 Mar 2004 EP
1398920 Mar 2004 EP
1916807 Apr 2008 EP
2001167 Oct 2008 EP
2854352 Apr 2015 EP
2874359 May 2015 EP
2008056838 May 2008 WO
2009042919 Apr 2009 WO
2010111142 Sep 2010 WO
2010111142 Sep 2010 WO
2011132568 Oct 2011 WO
2011140028 Nov 2011 WO
2011140028 Nov 2011 WO
2012033663 Mar 2012 WO
2012093429 Jul 2012 WO
2014031781 Feb 2014 WO
Non-Patent Literature Citations (245)
Entry
Eastlake, D. et al., ‘RBridges: TRILL Header Options’, Dec. 24, 2009, pp. 1-17, TRILL Working Group.
Perlman, Radia et al., ‘RBridge VLAN Mapping’, TRILL Working Group, Dec. 4, 2009, pp. 1-12.
Touch, J. et al., ‘Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement’, May 2009, Network Working Group, pp. 1-17.
Switched Virtual Networks. ‘Internetworking Moves Beyond Bridges and Routers’ Data Communications, McGraw Hill. New York, US, vol. 23, No. 12, Sep. 1, 1994 (Sep. 1, 1994), pp. 66-70,72,74, XP000462385 ISSN: 0363-6399.
Knight S et al: ‘Virtual Router Redundancy Protocol’ Internet Citation Apr. 1, 1998 (Apr. 1, 1998), XP002135272 Retrieved from the Internet: URL:ftp://ftp.isi.edu/in-notes/rfc2338.txt [retrieved on Apr. 10, 2000].
Office Action dated Jun. 18, 215, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE GLOBECOM Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009 (Nov. 30, 2009), pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011].
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010.
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011.
Knight P et al: ‘Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts’, IEEE Communications Magazine, IEEE Service Center, Piscataway, US, vol. 42, No. 6, Jun. 1, 2004 (Jun. 1, 2004), pp. 124-131, XP001198207, ISSN: 0163-6804, DOI: 10.1109/MCOM.2004.1304248.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013.
Perlman, Radia et al., ‘RBridges: Base Protocol Specification; Draft-ietf-trill-rbridge-protocol-16.txt’, Mar. 3, 2010, pp. 1-117.
‘An Introduction to Brocade VCS Fabric Technology’, Brocade white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012.
‘RBridges: Base Protocol Specification’, IETF Draft, Perlman et al., Jun. 26, 2009.
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012.
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Jul. 31, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Aug. 29, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated May 24, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated Jan. 6, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Sep. 5, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Mar. 4, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Jan. 4, 2013, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Jun. 7, 2012, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Sep. 19, 2012, U.S. Appl. No. 13/092,864, filed Apr. 22, 2011.
Office action dated May 31, 2013, U.S. Appl. No. 13/098,360, filed Apr. 29, 2011.
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Oct. 2, 2013, U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Dec. 3, 2012, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 25, 2013, U.S. Appl. No. 13/030,688, filed Feb. 18, 2011.
Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Aug. 21, 2014, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed Feb. 3, 2012.
Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012.
Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office action dated Jun. 13, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012.
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012.
Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Jun. 10, 2015, U.S. Appl. No. 13/890,150, filed May 8, 2013.
Brocade, ‘Brocade Fabrics OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions’, pp. 1-6, 2009 Brocade Communications Systems, Inc.
Brocade, ‘FastIron and TurboIron 24x Configuration Guide’, Feb. 16, 2010.
Brocade, ‘The Effortless Network: Hyperedge Technology for the Campus LAN’ 2012.
Brocade ‘An Introduction to Brocade VCS Fabric Technology’, Dec. 3, 2012.
Brocade ‘Brocade Unveils ‘The Effortless Network’’, http://newsroom.brocade.com/press-releases/brocade-unveils-the-effortless-network-nasdaq-brcd-0859535, 2012.
Christensen, M. et al., ‘Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches’, May 2006.
FastIron Configuration Guide Supporting Ironware Software Release 07.0.00, Dec. 18, 2009.
Foundary FastIron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, Sep. 2008.
Huang, Nen-Fu et al., ‘An Effective Spanning Tree Algorithm for a Bridged LAN’, Mar. 16, 1992.
Knight, ‘Network Based IP VPN Architecture using Virtual Routers’, May 2003.
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007.
Kreeger, L. et al., ‘Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00’, Jan. 30, 2012.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT)’, draft-lapuh-network-smlt-08, Jul. 2008.
Lapuh, Roger et al., ‘Split Multi-Link Trunking (SMLT)’, Network Working Group, Oct. 2012.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08’, Jan. 2009.
Louati, Wajdi et al., ‘Network-based virtual personal overlay networks using programmable virtual routers’, IEEE Communications Magazine, Jul. 2005.
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1.
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf.
Narten, T. et al., ‘Problem Statement: Overlays for Network Virtualization d raft-na rten-n vo3-over l ay-problem-statement-01’, Oct. 31, 2011.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Aug. 7, 2014.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014.
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014.
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014.
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013.
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jan. 4, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jun. 7, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated Dec. 20, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated May 24, 2012.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Apr. 25, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Mar. 18, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jul. 31, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Feb. 22, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Oct. 2, 2013.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Oct. 26, 2012.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated May 16, 2013.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Jun. 21, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jun. 10, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jul. 3, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Jul. 16, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, dated Sep. 19, 2012.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jun. 19, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Mar. 4, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Sep. 5, 2013.
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, dated May 31, 2013.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Jul. 9, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015.
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011 dated Dec. 5, 2012.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Nov. 10, 2014.
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Feb. 28, 2014.
Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013, dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, dated Oct. 21, 2013.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014.
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015.
Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014.
Perlman, Radia et al., ‘Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology’, 2009.
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999.
S. Nadas et al., ‘Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6’, Internet Engineering Task Force, Mar. 2010.
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013.
Zhai F. Hu et al. ‘RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt’, May 15, 2012.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 13/598,204, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Aug. 21, 2015, U.S. Appl. No. 13/776,217, filed Feb. 25, 2013.
Office Action dated Aug. 19, 2015, U.S. Appl. No. 14/156,374, filed Jan. 15, 2014.
Office Action dated Sep. 2, 2015, U.S. Appl. No. 14/151,693, filed Jan. 9, 2014.
Office Action dated Sep. 17, 2015, U.S. Appl. No. 14/577,785, filed Dec. 19, 2014.
Office Action dated Sep. 22, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 5, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action dated Oct. 19, 2015, U.S. Appl. No. 14/215,996, filed Mar. 17, 2014.
Office Action dated Sep. 18, 2015, U.S. Appl. No. 13/345,566, filed Jan. 6, 2012.
Open Flow Switch Specification Version 1.1.0, Feb. 28, 2011.
Open Flow Switch Specification Version 1.0.0, Dec. 31, 2009.
Open Flow Configuration and Management Protocol 1.0 (OF-Config 1.0) Dec. 23, 2011.
Open Flow Switch Specification Version 1.2 Dec. 5, 2011.
Office action dated Feb. 2, 2016, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office Action dated Feb. 2, 2016. U.S. Appl. No. 14/154,106, filed Jan. 13, 2014.
Office Action dated Feb. 3, 2016, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office Action dated Feb. 4, 2016, U.S. Appl. No. 13/557,105, filed Jul. 24, 2012.
Office Action dated Feb. 11, 2016, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 13/971,397, filed Aug. 20, 2013.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 12/705,508, filed Feb. 12, 2010.
Office Action dated Jul. 6, 2016, U.S. Appl. No. 14/618,941, filed Feb. 10, 2015.
Office Action dated Jul. 20, 2016, U.S. Appl. No. 14/510,913, filed Oct. 9, 2014.
Office Action dated Jul. 29, 2016, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 28, 2016, U.S. Appl. No. 14/284,212, filed May 21, 2016.
Office Action dated Jan. 31, 2017, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office Action dated Jan. 27, 2017, U.S. Appl. No. 14/216,292, filed Mar. 17, 2014.
Office Action dated Jan. 26, 2017, U.S. Appl. No. 13/786,328, filed Mar. 5, 2013.
Office Action dated Dec. 2, 2016, U.S. Appl. No. 14/512,268, filed Oct. 10, 2014.
Office Action dated Dec. 1, 2016, U.S. Appl. No. 13/899,849, filed May 22, 2013.
Office Action dated Dec. 1, 2016, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 30, 2016, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated Nov. 21, 2016, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Feb. 8, 2017, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Feb. 8, 2017, U.S. Appl. No. 14/822,380, filed Aug. 10, 2015.
“Network based IP VPN Architecture using Virtual Routers” Paul Knight et al.
Yang Yu et al “A Framework of using OpenFlow to handle transient link failure”, TMEE, 2011 International Conference on, IEEE, Dec. 16, 2011.
Office Action for U.S. Appl. No. 15/227,789, dated Feb. 27, 2017.
Office Action for U.S. Appl. No. 14/822,380, dated Feb. 8, 2017.
Office Action for U.S. Appl. No. 14/704,660, dated Feb. 27, 2017.
Office Action for U.S. Appl. No. 14/510,913, dated Mar. 3, 2017.
Office Action for U.S. Appl. No. 14/473,941, dated Feb. 8, 2017.
Office Action for U.S. Appl. No. 14/329,447, dated Feb. 10, 2017.
Office Action for U.S. Appl. No. 14/662,095, dated Mar. 24, 2017.
Office Action for U.S. Appl. No. 15/005,967, dated Mar. 31, 2017.
Office Action for U.S. Appl. No. 15/215,377, dated Apr. 7, 2017.
Office Action for U.S. Appl. No. 13/098,490, dated Apr. 6, 2017.
Office Action for U.S. Appl. No. 14/662,092, dated Mar. 29, 2017.
Office Action for U.S. Appl. No. 14/817,097, dated May 4, 2017.
Office Action for U.S. Appl. No. 14/872,966, dated Apr. 20, 2017.
Office Action for U.S. Appl. No. 14/680,915, dated May 3, 2017.
Office Action for U.S. Appl. No. 14/792,166, dated Apr. 26, 2017.
Office Action for U.S. Appl. No. 14/660,803, dated May 17, 2017.
Office Action for U.S. Appl. No. 14/488,173, dated May 12, 2017.
Office Action for U.S. Appl. No. 13/288,822, dated May 26, 2017.
Office Action for U.S. Appl. No. 14/329,447, dated Jun. 8, 2017.
Office Action for U.S. Appl. No. 14/510,913, dated Jun. 30, 2017.
Office Action for U.S. Appl. No. 15/005,946, dated Jul. 14, 2017.
Office Action for U.S. Appl. No. 13/092,873, dated Jul. 19, 2017.
Office Action for U.S. Appl. No. 15/047,539, dated Aug. 7, 2017.
Office Action for U.S. Appl. No. 14/830,035, dated Aug. 28, 2017.
Office Action for U.S. Appl. No. 13/098,490, dated Aug. 24, 2017.
Office Action for U.S. Appl. No. 13/786,328, dated Aug. 21, 2017.
Office Action for U.S. Appl. No. 14/216,292, dated Oct. 6, 2017.
Office action dated Oct. 26, 2017, U.S. Appl. No. 14/817,097, filed Aug. 3, 2015.
Office Action dated Mar. 20, 2018, U.S. Appl. No. 14/867,865, filed Sep. 28, 2015.
Related Publications (1)
Number Date Country
20180019927 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
61992563 May 2014 US
Continuations (1)
Number Date Country
Parent 14704660 May 2015 US
Child 15718159 US