The present invention relates generally to voice messaging systems having network interface units that interface the messaging systems to a telephone network and, more particularly, to a network interface unit having an embedded processor capable of executing software applications not otherwise capable of execution on the NIU and capable of communicating to other devices on a network external to the voice messaging system.
Messaging systems that provide voice and fax messaging capabilities are well known. One example of such a messaging system is the Network Applications Platform commercially available from UNISYS Corporation (“the NAP system”). The NAP system is a configuration of hardware and software that provides data and voice processing capabilities through applications running on an enterprise server. The NAP system provides the interface between these applications, called network applications, and a telephone network. A voicemail application is an example of a network application that runs on the NAP platform. The voicemail application determines how calls to the messaging system are handled, what prompts are played to callers, and which features are available. Presently, the NAP is implemented on selected UNISYS A Series and ClearPath HMP NX computer systems running the MCP operating system. Further details of the structure and function of the NAP are provided in the following U.S. patents and pending applications, all of which are hereby incorporated by reference in their entireties:
Generally, the NAP platform interfaces to a telephone network through a Network Interface Unit (NIU). Current NAP systems utilize a NIU available from Unisys Corporation, called the Telephony Services Platform (TSP). Generally, the TSP comprises a Multibus bus architecture that connects a variety of special purpose printed circuit boards that provide interfaces to the host computer system on which the NAP is implemented and to the telephone network to which the TSP is connected.
In greater detail,
As shown, the NIU 140, which in this example comprises a Unisys TSP, contains a series of interfaces, interface 1 (INT1), interface 2 (INT2), and interface 3 (INT3). One interface, such as INT1, interfaces the NIU 140 to the NAP platform 115 on the host computer 110. Communication between INT1 and NAP platform 115 is via a Small Computer Systems Interface (SCSI) bus 135. Others of the interfaces, such as INT2 and INT3, interface NIU 140 to PSTN 155. In the current TSP design, interfaces such as INT1, INT2, and INT3 are implemented on printed circuit boards housed within the NIU that can communicate with each other via a common bus 145. Bus 145 implements the Multibus protocol.
In operation, telephone based subscribers 165 may request processing performed by network application 120 or 125, or alternatively, access data from message store 130. The request is transmitted from telephone-based subscriber 165 through PSTN 155 to NIU 140. At NIU 140, the proper interface (i.e. INT1, INT2, or INT3) may route the request to messaging platform 115 of host computer 110 running network applications 120 and 125. Similarly, requested processed data may be communicated back to telephone-based subscribers using this data path.
a is a block diagram providing additional details of the Unisys TSP that implements the NIU 140 in
Briefly, an SS7 packet received at a PRIM is routed to the Signaling Manager 140-2a, which is the SS7 User Part (SS7 level 4). The Signaling Manager converts the SS7 packet to a proprietary message that is ultimately received by the host 110. Before sending the message to the host, the HMS module 140-2b selects the host (there can be more than one host connected to a given TSP).
Thus, the components of a TSP 140 may be summarized as follows:
Thus, as shown, the TSP 140 is connected to certain “ports” of the telephone network 155. A call coming into a given port is received by the TSP connected to that port. Specifically, a call comes into a PRIM board in the TSP, and the Signaling Manager on the PDP card of that TSP routes the call to the Host Management Services (HMS) module 140-2b. The call comes in on a reserved signaling channel 140-1a of the PRIM and is immediately transferred to the Signaling Manager 140-2a on the PDP board. The signaling manager reformats the call packet and gives it to the HMS module 140-2b, which in turn gives it to the Host Interface Module 140-2d. The Host Interface Module 140-2d places the call on the SCSI bus 135. The NAP 115 takes the call from the SCSI bus, creates a call record, interrogates a database information in memory to obtain the necessary information to route the call to the proper network application 120, 125, and then queues the call to an application interface module (AIM) (not shown). The AIM dequeues the call and gives it to the specified network application 120, 125.
Although effective in facilitating communication between various components of the NAP, the current TSP is limited to running particular proprietary hardware and software and for performing the special-purpose functions for which it was designed. This is the case with other prior art Network Interface Units as well. It would be desirable in a voice messaging system that employs a Network Interface Unit, such as the Unisys NAP, to have a general purpose computing capability within the NIU and also to have the ability to connect to networks external to the voice messaging system via that general purpose computing capability. The present invention satisfies such a need.
The present invention relates to a messaging system having a network interface unit (NIU) with an embedded services processor (ESP). In a contemplated messaging system architecture, the messaging platform may comprise a host computer having a messaging platform running messaging applications. The host computer may be electronically coupled to a NIU that may be connected to a telephone network. The NIU may comprise a first interface to the messaging platform on the host computer for communicating between the NIU and the messaging platform. Further, the NIU may comprise a second interface to the telephone network to receive calls from subscribers. The NIU may further comprise at least one ESP that may be operatively coupled to the first and second NIU interfaces. The ESP may comprise a processor, a memory, and an operating system executing on the processor that provide a general purpose computing capability within NIU for executing software applications that are otherwise incapable of executing within the NIU. The ESP may also provide a network interface for connection of the NIU to other computer networks external to the messaging system.
In an illustrative implementation, the ESP may be capable of running commercially available hardware and commodity software, and may have the ability to communicate with the computer networks external to the messaging system using Internet-based communication protocols and standards. In this implementation, the ESP may comprise a single board computer residing in the NIU that runs a commodity operating system providing an application execution environment, and that maintains a communications interface to enable Internet-based communication.
In operation, the ESP may interface with other NIU components by communicating messages over a standard Multibus bus architecture (i.e. Multibus (IEEE 1296) open bus standard). These messages may be communicated to the NIU components through resident Multibus messaging software to engage messaging system operation and functions.
A presently preferred implementation of a messaging system running commercially available hardware and commodity software and communicating data employing Internet-based protocols and standards in accordance with the present invention is further described with reference to the accompanying drawings in which:
The present invention is directed to a messaging system having a network interface unit (NIU) with an embedded services processor (ESP). According to the present invention, the messaging system comprises a messaging platform operating on a host computer and running messaging applications. The host computer is electronically coupled to a NIU that, in turn, is connected to a telephone network. The NIU comprises a first interface to the messaging platform on the host computer for communicating between the NIU and the messaging platform, and a second interface to the telephone network to receive calls from subscribers. The NIU further comprise at least one embedded services processor (ESP) that is operatively coupled to the first and second NIU interfaces through a bus backplane. In a preferred embodiment, the ESP comprises a processor, a memory, and an operating system executing on the processor that provide a general purpose computing capability within NIU for executing software applications that are otherwise incapable of executing within the NIU. The ESP may also provide a network interface for connection of the NIU to other computer networks external to the messaging system.
In the preferred embodiment, the NIU 215 comprises a modified Telephony Services Processor (TSP) of the type described above and illustrated in
In one preferred implementation, the ESP 250 comprises an EWSIII SBCP5200 single board computer commercially available from RadiSys Corporation. This board includes an Intel Pentium processor and executes the Microsoft Windows NT 4.0 operating system. A pair of 10/100 BaseT Ethernet controllers provide the network interface for connecting to and communicating across communications network 260. This enables the ESP 250 to support connection to 100 Megabit Ethernet communications networks. The ESP 250 connects to the Multibus bus 270 within the standard TSP chassis, enabling it to communicate with the other interface boards INT1, INT2, INT3, etc. (e.g., PRIM and PDP boards) within the TSP 215.
Communication between the ESP and interface boards INT1, INT2, and INT3 of TSP 215 can occur one of two ways, using messaging passing or using interconnect spacing. Generally, a message is a unit of data that is passed over Multibus 270. Further, any application employing Multibus 270 can send a message to any other application running on the same interface board or to any other interface board connected to Multibus 270, independent of operating system. A message contains a sender address and a destination address. The addresses, when taken in combination, define a slot (i.e. an interface board in the system) and a port (a function of this interface board). If messaging passing is employed, the source and the destination of the message must be identified. This is accomplished by assigning a slot number and a Port ID to the source and destination of the message, respectively. The slot number identifies the interface board's backplane slot and port ID identifies the desired function to be carried out by the interface board having the slot number. Comparatively, interconnect space messaging employs an address space, that is separate from conventional memory and I/O spaces. In the interconnect space, interface boards coupled to Multibus 270 can exchange data. The data is passed using Multibus 270 employs access methods and message structures of the Multibus (IEEE 1296) open bus standard.
Having a general purpose computing capability within NIU (TSP) 215, and more generally, at the point in the architecture of messaging system 200 where the messaging platform 235 interfaces to the telephone network 280, enables a variety of new and improved features and operations for the messaging system 200. For example, the network interface connection provided by the ESP 250 can be used to transfer call information from NIU 215 to another NIU (not shown) in a distributed messaging system architecture, as more fully described in co-pending, commonly assigned, patent application Ser. No. 09/636,666, filed herewith, and entitled “Distributed Network Applications Platform Architecture”, which is incorporated herein by reference in its entirety. The ESP 250 can also be utilized as a mechanism for offloading certain kinds of processing from the host computer system 210 of the messaging platform 200 to another computer, such as the external server computer 265 of
In operation, application process 310 may require external server operating system 335 to execute various instructions or perform processing, as is the case in the aforementioned co-pending application entitled “Media Resource Server in a Universal Messaging System”. Application process 315 communicates these instructions to ESP process 320 through bus interface 315 and bus driver 330. In turn, ESP process 320 processes the instructions and communicates them to external server operating system 335 for processing using ESP interface 325. The processed data may then be communicated back to application process 310 using the same communication path.
If, however, at block 520 the ESP processing is not intended to process data for the host computer, processing proceeds to block 545 where a check is performed to determine if the ESP processing is intended to communicate data to external networks (e.g., network 260). If the results of this check prove to be negative (i.e., ESP processing not intended for external networks), processing proceeds to block 515 and therefrom. However, if the contrary proves to be true, processing proceeds to block 550 where the ESP invokes bus messaging to receive data from the host computer at block 555. The data is then processed by the ESP at block 560 and communicated to the requesting external networks at block 565. Processing proceeds to block 570 and therefrom.
As the foregoing illustrates, the present invention is directed to a messaging system having a network interface unit (NIU) with an embedded services processor (ESP) that provides a general purpose computing capability within the NIU and that may also have the ability to connect to networks external to the messaging system via that general purpose computing capability. It is understood that changes may be made to the embodiments described above without departing from the broad inventive concepts thereof. For example, the present invention is by no means limited to use in a messaging system that employs the Unisys Network Applications Platform, nor is the invention limited to use with the Unisys Telephony Services Processor (TSP). Rather, the present invention may be employed in connection with any suitable messaging platform and network interface unit architecture. Accordingly, the present invention is not limited to the particular embodiments disclosed, but is intended to cover all modifications that are within the spirit and scope of the invention as defined by the appended claims.
It should also be noted that the present invention may be implemented in a variety of computer systems. The various techniques described herein may be implemented in hardware or software, or a combination of both. Preferably, the techniques are implemented in computer programs executing on programmable computers that each include a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to data entered using the input device to perform the functions described above and to generate output information. The output information is applied to one or more output devices. Each program is preferably implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language. Each such computer program is preferably stored on a storage medium or device (e.g., ROM or magnetic disk) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform the procedures described above. The system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner.
Number | Name | Date | Kind |
---|---|---|---|
4688212 | MacGinitie et al. | Aug 1987 | A |
5029199 | Jones et al. | Jul 1991 | A |
5133004 | Heileman, Jr. et al. | Jul 1992 | A |
5134647 | Pugh et al. | Jul 1992 | A |
5138710 | Kruesi et al. | Aug 1992 | A |
5283879 | Carteau et al. | Feb 1994 | A |
5301226 | Olson et al. | Apr 1994 | A |
5323450 | Goldhagen et al. | Jun 1994 | A |
5384829 | Heileman, Jr. et al. | Jan 1995 | A |
5394460 | Olson et al. | Feb 1995 | A |
5513314 | Kandasamy et al. | Apr 1996 | A |
5557668 | Brady | Sep 1996 | A |
5572709 | Fowler et al. | Nov 1996 | A |
5592611 | Midgely et al. | Jan 1997 | A |
5608865 | Midgely et al. | Mar 1997 | A |
5613108 | Morikawa | Mar 1997 | A |
5623538 | Petty | Apr 1997 | A |
5633999 | Clowes et al. | May 1997 | A |
5659599 | Arumainayagam et al. | Aug 1997 | A |
5675723 | Ekrot et al. | Oct 1997 | A |
5678042 | Pisello et al. | Oct 1997 | A |
5680551 | Martino, II | Oct 1997 | A |
5689550 | Garson et al. | Nov 1997 | A |
5689706 | Rao et al. | Nov 1997 | A |
5696895 | Hemphill et al. | Dec 1997 | A |
5724347 | Bell et al. | Mar 1998 | A |
5724418 | Brady | Mar 1998 | A |
5732214 | Subrahmanyam | Mar 1998 | A |
5740231 | Cohn et al. | Apr 1998 | A |
5832240 | Larsen et al. | Nov 1998 | A |
6078733 | Osborne | Jun 2000 | A |
6233315 | Reformato et al. | May 2001 | B1 |
6233318 | Picard et al. | May 2001 | B1 |
6295302 | Hellwig et al. | Sep 2001 | B1 |
6396907 | Didcock | May 2002 | B1 |
6487533 | Hyde-Thomson et al. | Nov 2002 | B1 |
6792082 | Levine | Sep 2004 | B1 |
Number | Date | Country |
---|---|---|
0 567 294 | Oct 1993 | EP |
0 760 573 | Mar 1997 | EP |
WO 95 24092 | Sep 1995 | WO |
WO 9712469 | Mar 1997 | WO |