The present technology pertains to gathering network intrusion counter-intelligence and in particular to gathering actionable information from a malicious user as the user accesses network services through a decoy network environment.
Currently, network security involves identifying a malicious user and subsequently blocking the malicious user. In particular, blocklists are used to block traffic from domain names and IP addresses known to be compromised or otherwise associated with a known malicious user. After a user is blocked, little actionable information of attacks and malicious users can be gathered, as the user can no longer access network services. In particular, signatures of malicious users, e.g. patterns of network service access requests and specific requests received according to certain responses, remain unknown. This is problematic because a malicious user will simply evolve to exploit a network while their signature remains unknown and otherwise cannot be used to quickly identify the malicious user when they attack again.
In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without parting from the spirit and scope of the disclosure. Thus, the following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be references to the same embodiment or any embodiment; and, such references mean at least one of the embodiments.
Reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which can be exhibited by some embodiments and not by others.
The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Alternative language and synonyms can be used for any one or more of the terms discussed herein, and no special significance should be placed upon whether or not a term is elaborated or discussed herein. In some cases, synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any example term. Likewise, the disclosure is not limited to various embodiments given in this specification.
Without intent to limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles can be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, technical and scientific terms used herein have the meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.
Additional features and advantages of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or can be learned by practice of the herein disclosed principles. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the disclosure will become more fully apparent from the following description and appended claims, or can be learned by the practice of the principles set forth herein.
A method can include identifying a malicious user accessing network services through a network environment. Additionally, a decoy network environment at one or more decoy machines can be maintained. Network service access requests from the malicious user can be received at one or more machines in the network environment. Subsequently, the network service access requests from the malicious user can be directed to the decoy network environment based on an identification of the malicious user to satisfy the network access requests with network service access responses generated in the decoy network environment. Malicious user analytics can be maintained based on the network service access requests of the malicious user directed to the decoy network environment.
A system can identify a malicious user accessing network services through a network environment using network traffic data gathered for nodes in the network environment from sensors implemented at the nodes in the network environment. Additionally, the system can maintain a decoy network environment at one or more decoy machines. Network service access requests from the malicious user, e.g. as part of the malicious user accessing network services through the network environment, can be received at one or more machines in the network environment. Subsequently, the system can direct the network service access requests received from the malicious user to the decoy network environment based on an identification of the malicious user to satisfy the network service access requests with network service access responses generated in the decoy network environment. The system can maintain malicious user analytics based on the network service access requests of the malicious user directed to the decoy network environment.
A system can identify a malicious user accessing network services through a network. Additionally, the system can maintain a decoy network environment at one or more decoy machines. Subsequently, the system can direct network service access requests received from the malicious user to the decoy network environment based on an identification of the malicious user to satisfy the network service access requests with network service access responses generated in the decoy network environment. The system can maintain malicious user analytics based on the network service access requests of malicious user directed to the decoy network environment.
The disclosed technology addresses the need in the art for gathering network intrusion counter-intelligence. The present technology involves system, methods, and computer-readable media for gathering network intrusion counter-intelligence. In particular, the present technology involves systems, methods, and computer-readable media for gathering actionable information from a malicious user as the user accesses network services through a decoy network environment.
The present technology will be described in the following disclosure as follows. The discussion begins with an introductory discussion of network traffic data collection and a description of an example network traffic monitoring system and an example network environment, as shown in
Sensors implemented in networks are traditionally limited to collecting packet data at networking devices. In some embodiments, networks can be configured with sensors at multiple points, including on networking devices (e.g., switches, routers, gateways, firewalls, deep packet inspectors, traffic monitors, load balancers, etc.), physical servers, hypervisors or shared kernels, virtual partitions (e.g., VMs or containers), and other network elements. This can provide a more comprehensive view of the network. Further, network traffic data (e.g., flows) can be associated with, or otherwise include, host and/or endpoint data (e.g., host/endpoint name, operating system, CPU usage, network usage, disk space, logged users, scheduled jobs, open files, information regarding files stored on a host/endpoint, etc.), process data (e.g., process name, ID, parent process ID, path, CPU utilization, memory utilization, etc.), user data (e.g., user name, ID, login time, etc.), and other collectible data to provide more insight into network activity.
Sensors implemented in a network at multiple points can be used to collect data for nodes grouped together into a cluster. Nodes can be clustered together, or otherwise a cluster of nodes can be identified using one or a combination of applicable network operation factors. For example, endpoints performing similar workloads, communicating with a similar set of endpoints or networking devices, having similar network and security limitations (i.e., policies), and sharing other attributes can be clustered together.
In some embodiments, a cluster can be determined based on early fusion in which feature vectors of each node comprise the union of individual feature vectors across multiple domains. For example, a feature vector can include a packet header-based feature (e.g., destination network address for a flow, port, etc.) concatenated to an aggregate flow-based feature (e.g., the number of packets in the flow, the number of bytes in the flow, etc.). A cluster can then be defined as a set of nodes whose respective concatenated feature vectors are determined to exceed specified similarity thresholds (or fall below specified distance thresholds).
In some embodiments, a cluster can be defined based on late fusion in which each node can be represented as multiple feature vectors of different data types or domains. In such systems, a cluster can be a set of nodes whose similarity (and/or distance measures) across different domains, satisfy specified similarity (and/or distance) conditions for each domain. For example, a first node can be defined by a first network information-based feature vector and a first process-based feature vector while a second node can be defined by a second network information-based feature vector and a second process-based feature vector. The nodes can be determined to form a cluster if their corresponding network-based feature vectors are similar to a specified degree and their corresponding process-based feature vectors are only a specified distance apart.
Referring now to the drawings,
The configuration manager 102 can be used to provision and maintain the sensors 104, including installing sensor software or firmware in various nodes of a network, configuring the sensors 104, updating the sensor software or firmware, among other sensor management tasks. For example, the sensors 104 can be implemented as virtual partition images (e.g., virtual machine (VM) images or container images), and the configuration manager 102 can distribute the images to host machines. In general, a virtual partition can be an instance of a VM, container, sandbox, or other isolated software environment. The software environment can include an operating system and application software. For software running within a virtual partition, the virtual partition can appear to be, for example, one of many servers or one of many operating systems executed on a single physical server. The configuration manager 102 can instantiate a new virtual partition or migrate an existing partition to a different physical server. The configuration manager 102 can also be used to configure the new or migrated sensor.
The configuration manager 102 can monitor the health of the sensors 104. For example, the configuration manager 102 can request for status updates and/or receive heartbeat messages, initiate performance tests, generate health checks, and perform other health monitoring tasks. In some embodiments, the configuration manager 102 can also authenticate the sensors 104. For instance, the sensors 104 can be assigned a unique identifier, such as by using a one-way hash function of a sensor's basic input/out system (BIOS) universally unique identifier (UUID) and a secret key stored by the configuration image manager 102. The UUID can be a large number that can be difficult for a malicious sensor or other device or component to guess. In some embodiments, the configuration manager 102 can keep the sensors 104 up to date by installing the latest versions of sensor software and/or applying patches. The configuration manager 102 can obtain these updates automatically from a local source or the Internet.
The sensors 104 can reside on various nodes of a network, such as a virtual partition (e.g., VM or container) 120; a hypervisor or shared kernel managing one or more virtual partitions and/or physical servers 122, an application-specific integrated circuit (ASIC) 124 of a switch, router, gateway, or other networking device, or a packet capture (pcap) 126 appliance (e.g., a standalone packet monitor, a device connected to a network devices monitoring port, a device connected in series along a main trunk of a datacenter, or similar device), or other element of a network. The sensors 104 can monitor network traffic between nodes, and send network traffic data and corresponding data (e.g., host data, process data, user data, etc.) to the collectors 108 for storage. For example, the sensors 104 can sniff packets being sent over its hosts' physical or virtual network interface card (NIC), or individual processes can be configured to report network traffic and corresponding data to the sensors 104. Incorporating the sensors 104 on multiple nodes and within multiple partitions of some nodes of the network can provide for robust capture of network traffic and corresponding data from each hop of data transmission. In some embodiments, each node of the network (e.g., VM, container, or other virtual partition 120, hypervisor, shared kernel, or physical server 122, ASIC 124, pcap 126, etc.) includes a respective sensor 104. However, it should be understood that various software and hardware configurations can be used to implement the sensor network 104.
As the sensors 104 capture communications and corresponding data, they can continuously send network traffic data to the collectors 108. The network traffic data can include metadata relating to a packet, a collection of packets, a flow, a bidirectional flow, a group of flows, a session, or a network communication of another granularity. That is, the network traffic data can generally include any information describing communication on all layers of the Open Systems Interconnection (OSI) model. For example, the network traffic data can include source/destination MAC address, source/destination IP address, protocol, port number, etc. In some embodiments, the network traffic data can also include summaries of network activity or other network statistics such as number of packets, number of bytes, number of flows, bandwidth usage, response time, latency, packet loss, jitter, and other network statistics.
The sensors 104 can also determine additional data, included as part of gathered network traffic data, for each session, bidirectional flow, flow, packet, or other more granular or less granular network communication. The additional data can include host and/or endpoint information, virtual partition information, sensor information, process information, user information, tenant information, application information, network topology, application dependency mapping, cluster information, or other information corresponding to each flow.
In some embodiments, the sensors 104 can perform some preprocessing of the network traffic and corresponding data before sending the data to the collectors 108. For example, the sensors 104 can remove extraneous or duplicative data or they can create summaries of the data (e.g., latency, number of packets per flow, number of bytes per flow, number of flows, etc.). In some embodiments, the sensors 104 can be configured to only capture certain types of network information and disregard the rest. In some embodiments, the sensors 104 can be configured to capture only a representative sample of packets (e.g., every 1,000th packet or other suitable sample rate) and corresponding data.
Since the sensors 104 can be located throughout the network, network traffic and corresponding data can be collected from multiple vantage points or multiple perspectives in the network to provide a more comprehensive view of network behavior. The capture of network traffic and corresponding data from multiple perspectives rather than just at a single sensor located in the data path or in communication with a component in the data path, allows the data to be correlated from the various data sources, which can be used as additional data points by the analytics engine 110. Further, collecting network traffic and corresponding data from multiple points of view ensures more accurate data is captured. For example, a conventional sensor network can be limited to sensors running on external-facing network devices (e.g., routers, switches, network appliances, etc.) such that east-west traffic, including VM-to-VM or container-to-container traffic on a same host, may not be monitored. In addition, packets that are dropped before traversing a network device or packets containing errors cannot be accurately monitored by the conventional sensor network. The sensor network 104 of various embodiments substantially mitigates or eliminates these issues altogether by locating sensors at multiple points of potential failure. Moreover, the network traffic monitoring system 100 can verify multiple instances of data for a flow (e.g., source endpoint flow data, network device flow data, and endpoint flow data) against one another.
In some embodiments, the network traffic monitoring system 100 can assess a degree of accuracy of flow data sets from multiple sensors and utilize a flow data set from a single sensor determined to be the most accurate and/or complete. The degree of accuracy can be based on factors such as network topology (e.g., a sensor closer to the source can be more likely to be more accurate than a sensor closer to the destination), a state of a sensor or a node hosting the sensor (e.g., a compromised sensor/node can have less accurate flow data than an uncompromised sensor/node), or flow data volume (e.g., a sensor capturing a greater number of packets for a flow can be more accurate than a sensor capturing a smaller number of packets).
In some embodiments, the network traffic monitoring system 100 can assemble the most accurate flow data set and corresponding data from multiple sensors. For instance, a first sensor along a data path can capture data for a first packet of a flow but can be missing data for a second packet of the flow while the situation is reversed for a second sensor along the data path. The network traffic monitoring system 100 can assemble data for the flow from the first packet captured by the first sensor and the second packet captured by the second sensor.
As discussed, the sensors 104 can send network traffic and corresponding data to the collectors 106. In some embodiments, each sensor can be assigned to a primary collector and a secondary collector as part of a high availability scheme. If the primary collector fails or communications between the sensor and the primary collector are not otherwise possible, a sensor can send its network traffic and corresponding data to the secondary collector. In other embodiments, the sensors 104 are not assigned specific collectors but the network traffic monitoring system 100 can determine an optimal collector for receiving the network traffic and corresponding data through a discovery process. In such embodiments, a sensor can change where it sends it network traffic and corresponding data if its environments changes, such as if a default collector fails or if the sensor is migrated to a new location and it would be optimal for the sensor to send its data to a different collector. For example, it can be preferable for the sensor to send its network traffic and corresponding data on a particular path and/or to a particular collector based on latency, shortest path, monetary cost (e.g., using private resources versus a public resources provided by a public cloud provider), error rate, or some combination of these factors. In other embodiments, a sensor can send different types of network traffic and corresponding data to different collectors. For example, the sensor can send first network traffic and corresponding data related to one type of process to one collector and second network traffic and corresponding data related to another type of process to another collector.
The collectors 106 can be any type of storage medium that can serve as a repository for the network traffic and corresponding data captured by the sensors 104. In some embodiments, data storage for the collectors 106 is located in an in-memory database, such as dashDB from IBM®, although it should be appreciated that the data storage for the collectors 106 can be any software and/or hardware capable of providing rapid random access speeds typically used for analytics software. In various embodiments, the collectors 106 can utilize solid state drives, disk drives, magnetic tape drives, or a combination of the foregoing according to cost, responsiveness, and size requirements. Further, the collectors 106 can utilize various database structures such as a normalized relational database or a NoSQL database, among others.
In some embodiments, the collectors 106 can only serve as network storage for the network traffic monitoring system 100. In such embodiments, the network traffic monitoring system 100 can include a data mover module 108 for retrieving data from the collectors 106 and making the data available to network clients, such as the components of the analytics engine 110. In effect, the data mover module 108 can serve as a gateway for presenting network-attached storage to the network clients. In other embodiments, the collectors 106 can perform additional functions, such as organizing, summarizing, and preprocessing data. For example, the collectors 106 can tabulate how often packets of certain sizes or types are transmitted from different nodes of the network. The collectors 106 can also characterize the traffic flows going to and from various nodes. In some embodiments, the collectors 106 can match packets based on sequence numbers, thus identifying traffic flows and connection links. As it can be inefficient to retain all data indefinitely in certain circumstances, in some embodiments, the collectors 106 can periodically replace detailed network traffic data with consolidated summaries. In this manner, the collectors 106 can retain a complete dataset describing one period (e.g., the past minute or other suitable period of time), with a smaller dataset of another period (e.g., the previous 2-10 minutes or other suitable period of time), and progressively consolidate network traffic and corresponding data of other periods of time (e.g., day, week, month, year, etc.). In some embodiments, network traffic and corresponding data for a set of flows identified as normal or routine can be winnowed at an earlier period of time while a more complete data set can be retained for a lengthier period of time for another set of flows identified as anomalous or as an attack.
The analytics engine 110 can generate analytics using data collected by the sensors 104. Analytics generated by the analytics engine 110 can include applicable analytics of nodes or a cluster of nodes operating in a network. For example, analytics generated by the analytics engine 110 can include one or a combination of information related to flows of data through nodes, detected attacks on a network or nodes of a network, applications at nodes or distributed across the nodes, application dependency mappings for applications at nodes, policies implemented at nodes, and actual policies enforced at nodes.
Computer networks can be exposed to a variety of different attacks that expose vulnerabilities of computer systems in order to compromise their security. Some network traffic can be associated with malicious programs or devices. The analytics engine 110 can be provided with examples of network states corresponding to an attack and network states corresponding to normal operation. The analytics engine 110 can then analyze network traffic and corresponding data to recognize when the network is under attack. In some embodiments, the network can operate within a trusted environment for a period of time so that the analytics engine 110 can establish a baseline of normal operation. Since malware is constantly evolving and changing, machine learning can be used to dynamically update models for identifying malicious traffic patterns.
In some embodiments, the analytics engine 110 can be used to identify observations which differ from other examples in a dataset. For example, if a training set of example data with known outlier labels exists, supervised anomaly detection techniques can be used. Supervised anomaly detection techniques utilize data sets that have been labeled as normal and abnormal and train a classifier. In a case in which it is unknown whether examples in the training data are outliers, unsupervised anomaly techniques can be used. Unsupervised anomaly detection techniques can be used to detect anomalies in an unlabeled test data set under the assumption that the majority of instances in the data set are normal by looking for instances that seem to fit to the remainder of the data set.
The analytics engine 110 can include a data lake 130, an application dependency mapping (ADM) module 140, and elastic processing engines 150. The data lake 130 is a large-scale storage repository that provides massive storage for various types of data, enormous processing power, and the ability to handle nearly limitless concurrent tasks or jobs. In some embodiments, the data lake 130 is implemented using the Hadoop® Distributed File System (HDFS™) from Apache® Software Foundation of Forest Hill, Md. HDFS™ is a highly scalable and distributed file system that can scale to thousands of cluster nodes, millions of files, and petabytes of data. HDFS™ is optimized for batch processing where data locations are exposed to allow computations to take place where the data resides. HDFS™ provides a single namespace for an entire cluster to allow for data coherency in a write-once, read-many access model. That is, clients can only append to existing files in the node. In HDFS™, files are separated into blocks, which are typically 64 MB in size and are replicated in multiple data nodes. Clients access data directly from data nodes.
In some embodiments, the data mover 108 receives raw network traffic and corresponding data from the collectors 106 and distributes or pushes the data to the data lake 130. The data lake 130 can also receive and store out-of-band data 114, such as statuses on power levels, network availability, server performance, temperature conditions, cage door positions, and other data from internal sources, and third party data 116, such as security reports (e.g., provided by Cisco® Systems, Inc. of San Jose, Calif., Arbor Networks® of Burlington, Mass., Symantec® Corp. of Sunnyvale, Calif., Sophos® Group plc of Abingdon, England, Microsoft® Corp. of Seattle, Wash., Verizon® Communications, Inc. of New York, N.Y., among others), geolocation data, IP watch lists, Whois data, configuration management database (CMDB) or configuration management system (CMS) as a service, and other data from external sources. In other embodiments, the data lake 130 can instead fetch or pull raw traffic and corresponding data from the collectors 106 and relevant data from the out-of-band data sources 114 and the third party data sources 116. In yet other embodiments, the functionality of the collectors 106, the data mover 108, the out-of-band data sources 114, the third party data sources 116, and the data lake 130 can be combined. Various combinations and configurations are possible as would be known to one of ordinary skill in the art.
Each component of the data lake 130 can perform certain processing of the raw network traffic data and/or other data (e.g., host data, process data, user data, out-of-band data or third party data) to transform the raw data to a form useable by the elastic processing engines 150. In some embodiments, the data lake 130 can include repositories for flow attributes 132, host and/or endpoint attributes 134, process attributes 136, and policy attributes 138. In some embodiments, the data lake 130 can also include repositories for VM or container attributes, application attributes, tenant attributes, network topology, application dependency maps, cluster attributes, etc.
The flow attributes 132 relate to information about flows traversing the network. A flow is generally one or more packets sharing certain attributes that are sent within a network within a specified period of time. The flow attributes 132 can include packet header fields such as a source address (e.g., Internet Protocol (IP) address, Media Access Control (MAC) address, Domain Name System (DNS) name, or other network address), source port, destination address, destination port, protocol type, class of service, among other fields. The source address can correspond to a first endpoint (e.g., network device, physical server, virtual partition, etc.) of the network, and the destination address can correspond to a second endpoint, a multicast group, or a broadcast domain. The flow attributes 132 can also include aggregate packet data such as flow start time, flow end time, number of packets for a flow, number of bytes for a flow, the union of TCP flags for a flow, among other flow data.
The host and/or endpoint attributes 134 describe host and/or endpoint data for each flow, and can include host and/or endpoint name, network address, operating system, CPU usage, network usage, disk space, ports, logged users, scheduled jobs, open files, and information regarding files and/or directories stored on a host and/or endpoint (e.g., presence, absence, or modifications of log files, configuration files, device special files, or protected electronic information). As discussed, in some embodiments, the host and/or endpoints attributes 134 can also include the out-of-band data 114 regarding hosts such as power level, temperature, and physical location (e.g., room, row, rack, cage door position, etc.) or the third party data 116 such as whether a host and/or endpoint is on an IP watch list or otherwise associated with a security threat, Whois data, or geocoordinates. In some embodiments, the out-of-band data 114 and the third party data 116 can be associated by process, user, flow, or other more granular or less granular network element or network communication.
The process attributes 136 relate to process data corresponding to each flow, and can include process name (e.g., bash, httpd, netstat, etc.), ID, parent process ID, path (e.g., /usr2/username/bin/,/usr/local/bin,/usr/bin, etc.), CPU utilization, memory utilization, memory address, scheduling information, nice value, flags, priority, status, start time, terminal type, CPU time taken by the process, the command that started the process, and information regarding a process owner (e.g., user name, ID, user's real name, e-mail address, user's groups, terminal information, login time, expiration date of login, idle time, and information regarding files and/or directories of the user).
The policy attributes 138 contain information relating to network policies. Policies establish whether a particular flow is allowed or denied by the network as well as a specific route by which a packet traverses the network. Policies can also be used to mark packets so that certain kinds of traffic receive differentiated service when used in combination with queuing techniques such as those based on priority, fairness, weighted fairness, token bucket, random early detection, round robin, among others. The policy attributes 138 can include policy statistics such as a number of times a policy was enforced or a number of times a policy was not enforced. The policy attributes 138 can also include associations with network traffic data. For example, flows found to be non-conformant can be linked or tagged with corresponding policies to assist in the investigation of non-conformance.
The analytics engine 110 can include any number of engines 150, including for example, a flow engine 152 for identifying flows (e.g., flow engine 152) or an attacks engine 154 for identify attacks to the network. In some embodiments, the analytics engine can include a separate distributed denial of service (DDoS) attack engine 155 for specifically detecting DDoS attacks. In other embodiments, a DDoS attack engine can be a component or a sub-engine of a general attacks engine. In some embodiments, the attacks engine 154 and/or the DDoS engine 155 can use machine learning techniques to identify security threats to a network. For example, the attacks engine 154 and/or the DDoS engine 155 can be provided with examples of network states corresponding to an attack and network states corresponding to normal operation. The attacks engine 154 and/or the DDoS engine 155 can then analyze network traffic data to recognize when the network is under attack. In some embodiments, the network can operate within a trusted environment for a time to establish a baseline for normal network operation for the attacks engine 154 and/or the DDoS.
The analytics engine 110 can further include a search engine 156. The search engine 156 can be configured, for example to perform a structured search, an NLP (Natural Language Processing) search, or a visual search. Data can be provided to the engines from one or more processing components.
The analytics engine 110 can also include a policy engine 158 that manages network policy, including creating and/or importing policies, monitoring policy conformance and non-conformance, enforcing policy, simulating changes to policy or network elements affecting policy, among other policy-related tasks.
The ADM module 140 can determine dependencies of applications of the network. That is, particular patterns of traffic can correspond to an application, and the interconnectivity or dependencies of the application can be mapped to generate a graph for the application (i.e., an application dependency mapping). In this context, an application refers to a set of networking components that provides connectivity for a given set of workloads. For example, in a conventional three-tier architecture for a web application, first endpoints of the web tier, second endpoints of the application tier, and third endpoints of the data tier make up the web application. The ADM module 140 can receive input data from various repositories of the data lake 130 (e.g., the flow attributes 132, the host and/or endpoint attributes 134, the process attributes 136, etc.). The ADM module 140 can analyze the input data to determine that there is first traffic flowing between external endpoints on port 80 of the first endpoints corresponding to Hypertext Transfer Protocol (HTTP) requests and responses. The input data can also indicate second traffic between first ports of the first endpoints and second ports of the second endpoints corresponding to application server requests and responses and third traffic flowing between third ports of the second endpoints and fourth ports of the third endpoints corresponding to database requests and responses. The ADM module 140 can define an ADM for the web application as a three-tier application including a first EPG comprising the first endpoints, a second EPG comprising the second endpoints, and a third EPG comprising the third endpoints.
The presentation module 116 can include an application programming interface (API) or command line interface (CLI) 160, a security information and event management (STEM) interface 162, and a web front-end 164. As the analytics engine 110 processes network traffic and corresponding data and generates analytics data, the analytics data may not be in a human-readable form or it can be too voluminous for a user to navigate. The presentation module 116 can take the analytics data generated by analytics engine 110 and further summarize, filter, and organize the analytics data as well as create intuitive presentations for the analytics data.
In some embodiments, the API or CLI 160 can be implemented using Hadoop® Hive from Apache® for the back end, and Java® Database Connectivity (JDBC) from Oracle® Corporation of Redwood Shores, Calif., as an API layer. Hive is a data warehouse infrastructure that provides data summarization and ad hoc querying. Hive provides a mechanism to query data using a variation of structured query language (SQL) that is called HiveQL. JDBC is an API for the programming language Java®, which defines how a client can access a database.
In some embodiments, the SIEM interface 162 can be implemented using Hadoop® Kafka for the back end, and software provided by Splunk®, Inc. of San Francisco, Calif. as the SIEM platform. Kafka is a distributed messaging system that is partitioned and replicated. Kafka uses the concept of topics. Topics are feeds of messages in specific ucategories. In some embodiments, Kafka can take raw packet captures and telemetry information from the data mover 108 as input, and output messages to a SIEM platform, such as Splunk®. The Splunk® platform is utilized for searching, monitoring, and analyzing machine-generated data.
In some embodiments, the web front-end 164 can be implemented using software provided by MongoDB®, Inc. of New York, N.Y. and Hadoop® ElasticSearch from Apache® for the back-end, and Ruby on Rails™ as the web application framework. MongoDB® is a document-oriented NoSQL database based on documents in the form of JavaScript® Object Notation (JSON) with dynamic schemas. ElasticSearch is a scalable and real-time search and analytics engine that provides domain-specific language (DSL) full querying based on JSON. Ruby on Rails™ is model-view-controller (MVC) framework that provides default structures for a database, a web service, and web pages. Ruby on Rails™ relies on web standards such as JSON or extensible markup language (XML) for data transfer, and hypertext markup language (HTML), cascading style sheets, (CSS), and JavaScript® for display and user interfacing.
Although
The network environment 200 can include a network fabric 202, a Layer 2 (L2) network 204, a Layer 3 (L3) network 206, and servers 208a, 208b, 208c, 208d, and 208e (collectively, 208). The network fabric 202 can include spine switches 210a, 210b, 210c, and 210d (collectively, “210”) and leaf switches 212a, 212b, 212c, 212d, and 212e (collectively, “212”). The spine switches 210 can connect to the leaf switches 212 in the network fabric 202. The leaf switches 212 can include access ports (or non-fabric ports) and fabric ports. The fabric ports can provide uplinks to the spine switches 210, while the access ports can provide connectivity to endpoints (e.g., the servers 208), internal networks (e.g., the L2 network 204), or external networks (e.g., the L3 network 206).
The leaf switches 212 can reside at the edge of the network fabric 202, and can thus represent the physical network edge. For instance, in some embodiments, the leaf switches 212d and 212e operate as border leaf switches in communication with edge devices 214 located in the external network 206. The border leaf switches 212d and 212e can be used to connect any type of external network device, service (e.g., firewall, deep packet inspector, traffic monitor, load balancer, etc.), or network (e.g., the L3 network 206) to the fabric 202.
Although the network fabric 202 is illustrated and described herein as an example leaf-spine architecture, one of ordinary skill in the art will readily recognize that various embodiments can be implemented based on any network topology, including any datacenter or cloud network fabric. Indeed, other architectures, designs, infrastructures, and variations are contemplated herein. For example, the principles disclosed herein are applicable to topologies including three-tier (including core, aggregation, and access levels), fat tree, mesh, bus, hub and spoke, etc. Thus, in some embodiments, the leaf switches 212 can be top-of-rack switches configured according to a top-of-rack architecture. In other embodiments, the leaf switches 212 can be aggregation switches in any particular topology, such as end-of-row or middle-of-row topologies. In some embodiments, the leaf switches 212 can also be implemented using aggregation switches.
Moreover, the topology illustrated in
Network communications in the network fabric 202 can flow through the leaf switches 212. In some embodiments, the leaf switches 212 can provide endpoints (e.g., the servers 208), internal networks (e.g., the L2 network 204), or external networks (e.g., the L3 network 206) access to the network fabric 202, and can connect the leaf switches 212 to each other. In some embodiments, the leaf switches 212 can connect endpoint groups (EPGs) to the network fabric 202, internal networks (e.g., the L2 network 204), and/or any external networks (e.g., the L3 network 206). EPGs are groupings of applications, or application components, and tiers for implementing forwarding and policy logic. EPGs can allow for separation of network policy, security, and forwarding from addressing by using logical application boundaries. EPGs can be used in the network environment 200 for mapping applications in the network. For example, EPGs can comprise a grouping of endpoints in the network indicating connectivity and policy for applications.
As discussed, the servers 208 can connect to the network fabric 202 via the leaf switches 212. For example, the servers 208a and 208b can connect directly to the leaf switches 212a and 212b, which can connect the servers 208a and 208b to the network fabric 202 and/or any of the other leaf switches. The servers 208c and 208d can connect to the leaf switches 212b and 212c via the L2 network 204. The servers 208c and 208d and the L2 network 204 make up a local area network (LAN). LANs can connect nodes over dedicated private communications links located in the same general physical location, such as a building or campus.
The WAN 206 can connect to the leaf switches 212d or 212e via the L3 network 206. WANs can connect geographically dispersed nodes over long-distance communications links, such as common carrier telephone lines, optical light paths, synchronous optical networks (SONET), or synchronous digital hierarchy (SDH) links. LANs and WANs can include L2 and/or L3 networks and endpoints.
The Internet is an example of a WAN that connects disparate networks throughout the world, providing global communication between nodes on various networks. The nodes typically communicate over the network by exchanging discrete frames or packets of data according to predefined protocols, such as the Transmission Control Protocol/Internet Protocol (TCP/IP). In this context, a protocol can refer to a set of rules defining how the nodes interact with each other. Computer networks can be further interconnected by an intermediate network node, such as a router, to extend the effective size of each network. The endpoints 208 can include any communication device or component, such as a computer, server, blade, hypervisor, virtual machine, container, process (e.g., running on a virtual machine), switch, router, gateway, host, device, external network, etc.
In some embodiments, the network environment 200 also includes a network controller running on the host 208a. The network controller is implemented using the Application Policy Infrastructure Controller (APIC™) from Cisco®. The APIC™ provides a centralized point of automation and management, policy programming, application deployment, and health monitoring for the fabric 202. In some embodiments, the APIC™ is operated as a replicated synchronized clustered controller. In other embodiments, other configurations or software-defined networking (SDN) platforms can be utilized for managing the fabric 202.
In some embodiments, a physical server 208 can have instantiated thereon a hypervisor 216 for creating and running one or more virtual switches (not shown) and one or more virtual machines 218, as shown for the host 208b. In other embodiments, physical servers can run a shared kernel for hosting containers. In yet other embodiments, the physical server 208 can run other software for supporting other virtual partitioning approaches. Networks in accordance with various embodiments can include any number of physical servers hosting any number of virtual machines, containers, or other virtual partitions. Hosts can also comprise blade/physical servers without virtual machines, containers, or other virtual partitions, such as the servers 208a, 208c, 208d, and 208e.
The network environment 200 can also integrate a network traffic monitoring system, such as the network traffic monitoring system 100 shown in
As shown in
The network traffic monitoring system 100 shown in
Currently, network security involves identifying a malicious user and subsequently blocking the malicious user. In particular, blocklists are used to block traffic from domain names and IP addresses known to be compromised or otherwise associated with a known malicious user. After a user is blocked, little actionable information can be gathered, as the user can no longer access network services. In particular, signatures of malicious users remain unknown. This is problematic because a malicious user will simply evolve to exploit a network while their signature remains unknown and otherwise cannot be used to quickly identify the malicious user when they attack again. For example, a malicious user might develop a pattern of network service access requests in accessing network services as part of attacking a network environment. However, if the user is automatically blocked, a user can no longer make network service access requests, thereby failing to expose the pattern of network service access requests which can subsequently be used to identify the malicious user or other malicious users. Accordingly, an opportunity to gather data from malicious user attacks and generate analytics from the data, e.g. as part of gathering network intrusion counter intelligence, is wasted.
The systems and methods described herein can be implemented with or included as part of a plurality of the network traffic monitoring systems 100 for use in gathering network intrusions counter intelligence. Specifically, a malicious user can be identified using data generated and/or gathered by the network traffic monitoring system 100. Subsequently, the malicious user can be directed to a secure area, e.g. a decoy network environment, where the user can continue to access network services as part of attacking a network environment, e.g. as part of controlling the malicious user's access to network services. Data can be gathered and generated for the malicious user based on the user's actions with the decoy network environment. For example, an attack pattern of a malicious user can be recognized. This is opposed to current network security systems and methods which simply block a malicious user, thereby forfeiting a wealth of counter-intelligence that can be gathered for the user if they are allowed continued access to a network environment, e.g. through a decoy network environment. In turn, this counter-intelligence can be used to enhance security in a network environment, potentially leading to greater protection of the network environment. For example, access request patterns of a malicious user can be utilized to identify other malicious users more quickly, thereby potentially minimizing an impact the other malicious users can have in a network environment.
A signature of a recognized malicious user can be refined using the example counter-intelligence gathering network environment 300. Specifically, a signature of a malicious user can be created and updated over time. This can lead to faster recognition of the same or different malicious users in attempting to access network services. For example, a signature of a malicious user can be updated over time to allow for faster recognition of the malicious user in future sessions the user has in accessing network services. Further a signature of a malicious user can be refined over time to determine intents of the same malicious user or different malicious users in accessing network services. For example, if a signature of a malicious user corresponds to a denial of service attack, then the signature of the malicious user can be used to recognize intents of other malicious users in carrying out denial of service attacks. Accordingly, the functioning of networking systems is improved in being able to recognize malicious user attacks more efficiently and more accurately.
The example counter-intelligence gathering network environment 300 shown in
The decoy network environment 304 functions to emulate the network environment 302. Specifically, the decoy network environment 304 can receive network service access requests and generate and provide responses to the access requests. The decoy network environment 304 can include virtualized machines that emulate machines in the network environment 302. For example, the decoy network environment 304 can emulate a port within the network environment 302. Further in the example, the decoy network environment 304 can receive network access requests destined for the port and serve responses to requests as if the port in the network environment 302 was actually implemented or located in the decoy network environment 304. The decoy network environment 304 can be implemented within or as part of the network environment 302. Specifically, the decoy network environment 304 can be implemented at logical or physical locations within the network environment 302 to form a subset of the network environment 302.
The decoy network environment 304 can be self-contained or otherwise closed. In being self-contained, network service access can be provided wholly from within the decoy network environment 304, e.g. without extending out of the decoy network environment. For example, network service access responses can be generated within the decoy network environment 304 independent of the network environment 302. More specifically, network access responses can be formulated within the decoy network environment 304 to limit exposure of the network environment 302 to attacks by a malicious user. In being self-contained, the decoy network environment 304 can be used to provide network service access to malicious users, e.g. for purposes of gathering network intrusion counter-intelligence while limiting exposure of the network environment 302 to the malicious users. More specifically, the malicious users' actions can be contained within the decoy network environment 304 to minimize or eliminate exposure of their actions to the entire network environment 302.
While the decoy network environment 304 was previously described to be implemented as part of the network environment 302, in certain embodiments, the decoy network environment 304 can be implemented separate from the network environment 302. Specifically, the decoy network environment 304 can be implemented at logical and physical locations separate from the network environment 302. For example, the decoy network environment 304 can be implemented at a datacenter of an entity providing counter-intelligence gathering services for an enterprise. In particular, many enterprises do not want to voluntarily expose portions of their network to malicious users to gather counter-intelligence, even if it is a self-contained network environment. Accordingly, implementing the decoy network environment 304 separate from an enterprise network can alleviate concerns the enterprise has with exposing a portion of their network to a malicious user. Further, implementing the decoy network environment 304 separate from an enterprise network can reduce a risk that the decoy network environment 304 is breached, thereby exposing the entire enterprise network to a malicious user.
The decoy network environment counter-intelligence system 306 functions to gather counter network intrusion counter-intelligence. More specifically, the decoy network environment counter-intelligence system 306 functions to facilitate network service access for a recognized malicious user for purposes of gathering network intrusion counter-intelligence. For example, the decoy network environment counter-intelligence system 306 can facilitate providing of network service access responses to a malicious user in response to network service access requests during a session for purposes of gathering network intrusion counter-intelligence during the session. Further in the example, as will be discussed in greater detail later, the decoy network environment counter-intelligence system 306 can develop a signature of one or more malicious users, as part of gathering network intrusion counter-intelligence, based on patterns of the network service access requests and responses. The decoy network environment counter-intelligence system 306 can be implemented, at least in part, at either or both the network environment 302 and the decoy network environment 304. Additionally, the decoy network environment counter-intelligence system 306 can be implemented, at least in part, remote from the network environment 302 and the decoy network environment 304.
In facilitating network service access, the decoy network environment counter-intelligence system 306 can direct or otherwise cause the network environment 302 to send network service access requests from a malicious user to the decoy network environment 304. The decoy network environment counter-intelligence system 306 can cause the network environment 302 to send network service access requests received from a malicious user to the decoy network environment 304 through an applicable tunneling mechanism or protocol. For example, the decoy network environment counter-intelligence system 306 can use secure shell tunneling to send malicious users' access requests from the network environment 302 to the decoy network environment 304. In using tunneling to forward malicious user access requests from the network environment 302 to the decoy network environment 304, the malicious user can be unaware or agnostic that the access requests are actually being sent from the network environment 302 to the decoy network environment 304. Accordingly, the malicious user can be tricked into thinking that they are actually interacting with the network environment 302.
The decoy network environment counter-intelligence system 306 can direct received network access requests to the decoy network environments based on locations in a network environment at which the requests are received. For example, if a network access request is received at a specific network environment, then the decoy network environment counter-intelligence system 306 can direct the network access request to a specific decoy network environment for the specific network environment. In another example, if a network access request is received at a specific port in a network environment, then the decoy network environment counter-intelligence system 306 can direct the request to a location in a decoy network environment emulating the specific port.
In response to network service access requests received from the network environment 302, the decoy network environment 304 can generate network service access responses. Network service access responses can include actual responses to fill network service access requests or dummy or fake responses to network service access responses. For example, if a network service access request includes a request for specific data, then the decoy network environment 304 can generate a response including dummy data. In another example, if a network service access request includes a request to run a specific application, then the decoy network environment 304 can generate responses including an output of running the specific application. Dummy or fake responses can be generated in order to elicit further malicious user interaction with a network environment, e.g. according to network access incentives/exploits as will be discussed in greater detail later. As discussed previously, the decoy network environment 304 can be self-contained. In being self-contained, the decoy network environment 304 can generate network access responses wholly within the decoy network environment 304. For example, the decoy network environment 304 can provide a user access to an application executing within the decoy network environment 304, e.g. as part of providing the user access to network services.
In facilitating network service access, the decoy network environment counter-intelligence system 306 can direct or otherwise cause the decoy network environment 304 to send network service access responses from the decoy network environment 304 back to the network environment 302. The network service access responses generated in the decoy network environment 304 can subsequently be provided from the network environment 302 back to a user, e.g. a malicious user. The decoy network environment counter-intelligence system 306 can cause the decoy network environment 304 to send network service access responses through an applicable tunneling mechanism or protocol. In using tunneling to forward access responses from the decoy network environment 304 to the network environment 302, a malicious user can be unaware or agnostic that access requests are actually being answered in the decoy network environment 304. Accordingly, the malicious user can be tricked into thinking that they are actually interacting with the network environment 302. Access responses can be sent from the decoy network environment 304 using the same tunnel that corresponding access requests are received through. This can further trick the user into thinking that that they are only interacting with the network environment 302 and not the decoy network environment 304, e.g. using dummy or fake responses.
The decoy network environment counter-intelligence system 306 can use IP tables and/or Internet Protocol Security (herein referred to as “IPsec”) to direct network service access requests from the network environment to the decoy network environment and vice versa. For example, the decoy network environment counter-intelligence system 306 can maintain IP tables and commands specifying to send traffic coming to a closed port in the network environment 302 to the decoy network environment 304. In another example, the decoy network environment counter-intelligence system 306 can maintain IP tables and commands used by the decoy network environment 304 to send back network service access responses using the same tunnel that corresponding requests are received through.
The decoy network environment counter-intelligence system 306 can function to identify a user currently or attempting to access network services as a malicious user. More specifically, the decoy network environment counter-intelligence system 306 can identify a user currently or attempting to access network services through the network environment 302 as a malicious user. In response to detecting a malicious user, the decoy network environment counter-intelligence system 306 can facilitate continued network service access for the malicious user, e.g. as part of gathering network intrusion counter-intelligence. For example, in response to detecting a malicious user, the decoy network environment counter-intelligence system 306 can cause the network environment 302 to direct network service access requests received from the user to the decoy network environment 304. Further in the example, in response to detecting the malicious user, the decoy network environment counter-intelligence system 306 can cause the decoy network environment 304 to generate and send responses to the requests back to the network environment 302. Still further in the example, in response to detecting the malicious user, the decoy network environment counter-intelligence system 306 can cause the network environment 302 to send the responses back to the malicious user to trick the malicious user into thinking they are interacting only with the network environment 302.
The decoy network environment counter-intelligence system 306 can identify a user as a malicious user based on locations in the network environment 302 targeted by the user. More specifically, the decoy network environment counter-intelligence system 306 can identify a user as a malicious user based on one or more ports targeted by a user in attempting to access or actually accessing network services. For example, if a user attempts to access network services through a closed port, then the decoy network environment counter-intelligence system 306 can identify the user as a malicious user. In another example, if a user attempts to access network services through the same port on multiple machines, then the decoy network environment counter-intelligence system 306 can identify the user as a malicious user.
Additionally, the decoy network environment counter-intelligence system 306 can identify a user as a malicious user based on activities of the user across a plurality of machines in the network environment 302. Specifically, the decoy network environment counter-intelligence system 306 can compare a user's interactions with a first machine in the network environment 302 to the user's interactions with a second machine in the network environment 302 to identify whether the user is a malicious user. For example, if a user attempts to access a closed port on multiple machines in the network environment 302 then the user can be identified as a malicious user. By comparing a user's interactions across a plurality of machines in the network environment 302, the decoy network environment counter-intelligence system 306 can distinguish between users who are or potentially could be classified as malicious users in error, e.g. due to configuration errors, and users who should actually be classified as malicious users. For example, a user can access multiple machines in the network environment 302, but in accessing one of the machines the user can attempt to access a closed port due to a configuration error. Further in the example, the decoy network environment counter-intelligence system 306 can determine that the user is not actually a malicious user since the user only attempted to access a single closed port, due to a configuration error, in interacting with multiple machines in the network environment 302.
Further, the decoy network environment counter-intelligence system 306 can identify a user as a malicious user based on characteristics of attempts to access network services or actual accessing of network services by the user. More specifically, if a user accesses or attempts to access network services according to a signature of a malicious user, as will be discussed in greater detail later, then the decoy network environment counter-intelligence system 306 can identify the user as a malicious user. For example, if a user continues to send the same network service access requests in a pattern that is characteristic of a flood attack, then the decoy network environment counter-intelligence system 306 can identify the user as a malicious user.
The decoy network environment counter-intelligence system 306 can identify a user as a malicious user based on malicious user analytics created for either or both the user or other users. More specifically, the decoy network environment counter-intelligence system 306 can identify a user based on a signature or either or both a user and an attack included as part of malicious user analytics. A signature included as part of malicious user analytics can include one or a combination of an identification of a malicious user, patterns of network service access requests of a malicious user, patterns of network service responses provided to a malicious user, network service access requests of a malicious user received in response to specific network service responses, a username utilized by a malicious user to access network services, and other applicable characteristics of a malicious user accessing or attempting to access network services. For example, a signature can include a malicious user responded with a specific access request after being provided a specific response. A signature used to identify a user as a malicious user through malicious user analytics can be a signature of another user. For example, a signature of a first malicious user can be utilized to identify a second user as a malicious user.
Additionally, the decoy network environment counter-intelligence system 306 can utilize network traffic data to identify a user as a malicious user. Specifically, the decoy network environment counter-intelligence system 306 can use network traffic data gathered by an applicable network traffic monitoring system, such as the network traffic monitoring system 100 shown in
The decoy network environment counter-intelligence system 306 can use or otherwise implement network access incentives/exploits for a malicious user to access network services for purposes of gathering network intrusion counter-intelligence. Network access incentives can include applicable network setups and responses for enticing a user to start or continue accessing network services. For example, network access incentives can include port configurations that are favorable to an attack. In another example, network access incentives can include exposing portions of an application to a user for purposes of electing a response from the user as part of a malicious attack. Network access incentives can be specific to malicious users and configured to entice or otherwise cause a malicious user to access network services. For example, a network access incentive can include classifying a user as a root administrator as part of the user accessing network services. The decoy network environment counter-intelligence system 306 can implement network access incentives/exploits the decoy network environment 304. For example, if a malicious user is accessing an emulated Windows® machine in the decoy network environment 304, then the decoy network environment counter-intelligence system 306 can make Microsoft Office® available to the user in the decoy network environment 304, to facilitate the user conducting a spam attack.
Additionally, the decoy network environment counter-intelligence system 306 can use third party data to generate and/or implement network access incentives/exploits. More specifically, the decoy network environment counter-intelligence system 306 can use third party data describing previously occurring attacks, potentially in different networks, to generate and implement network access incentives. For example, third party data can specify that a specific vulnerability exists in a specific web application. Further in the example, if a malicious user is attempting to access the specific web application, then the decoy network environment counter-intelligence system 306 can expose the vulnerability in the applications to the user in order to gather network intrusion-counter intelligence.
The decoy network environment counter-intelligence system 400 shown in
The malicious user alert engine 402 can provide alerts in stages. More specifically, the malicious user alert engine 402 can send a first alert warning of a malicious user and a second alert after the first alert including a more detailed analysis of the malicious user and their behaviors. For example, the malicious user alert engine 402 can send a first alert specifying that a malicious user has been detected and directed to a decoy network environment. Further in the example, the malicious user alert engine 402 can send a second more detailed alert including detected behavior patterns of the malicious user, an attack type of an attack put forth by the malicious user, and comparisons of the behaviors of the user to other malicious users.
The malicious user analytics manager 404 functions to maintain malicious user analytics as part of gathering network-intrusion counter intelligence. Malicious user analytics can include applicable analytics gathered and identified based on network service access of a malicious user, e.g. an attack by the malicious user. Specifically, malicious user analytics maintained by the malicious user analytics manager 404 can include one or a combination of an identification of a malicious user, locations a malicious user attacked as part of accessing network services, an IP address associated with a malicious user, machines that a malicious user communicated with and other machines/compromised machines that communicated with the machines that a malicious user communicated with, policy answers provided by a malicious user, an analysis of the behaviors of a malicious user, comparisons between behaviors of malicious users, a username that a malicious user utilized to gain network service access, and an identification of a compromised user account. For example, malicious user analytics can include a comparison of an attack by a malicious user to attacks by other malicious users.
The malicious user analytics manager 404 can identify a signature of either or both a malicious user and an attack put forth by a malicious user as part of generating malicious user analytics. Further, the malicious user analytics manager 404 can maintain malicious user analytics based on analytics generated for other malicious users. Specifically, the malicious user analytics manager 404 can compare a signature of a malicious user or an attack by a malicious user to other malicious users' signatures in order to generate malicious user analytics. More specifically, the malicious user analytics manager 404 can maintain malicious user analytics for a malicious user based on either or both network service access requests and network service access responses for other malicious users. For example, if another malicious user accessed the same applications in performing a denial of service attack as a current malicious user, then the malicious user analytics manager 404 can profile the attack of the current malicious user as a denial of service attack.
Further, the malicious user analytics manager 404 can perform analysis for determining whether a user account of a network is corrupted or otherwise compromised. Specifically, the malicious user analytics manager 404 can check to see if a username utilized by a malicious user to gain access to network services is actually a username of an authorized user account for a network. Accordingly, if the username is actually for an authorized user, then the malicious user analytics manager 404 can try to access network services through the user account using one or more passwords that a malicious user input to gain access to network services. Subsequently, if the malicious user analytics manager 404 can gain access through the user account using one or more passwords input by the malicious user, then the malicious user analytics manager 404 can determine that the user account is compromised. An applicable entity, e.g. a network administrator, can be informed, e.g. through the malicious user alert engine 402, that a user account is compromised, as determined by the malicious user analytics manager 404.
The malicious user analytics manager 404 can maintain malicious user analytics based on either or both network service access requests received from a malicious user and network service access responses provided to the malicious user in response to the access requests. In particular, the malicious user analytics manager 404 can identify a signature of a malicious user and/or an attack by the malicious user based on a pattern of network service access requests received from the user. Additionally, the malicious user analytics manager 404 can identify a signature of a malicious user and/or an attack by the malicious user based on a pattern of network service access responses provided to the user.
Further, the malicious user analytics manager 404 can identify a threat level of a malicious user, e.g. as included as part of malicious user analytics. More specifically, the malicious user analytics manager 404 can assign a threat level to a malicious user indicating a threat level of the user to a network environment. The malicious user analytics manager 404 can assign a threat level to a malicious user based on a signature of the malicious user or an attack of the malicious user. Further, the malicious user analytics manager 404 can assign a threat level to a malicious user based on malicious user analytics generated for other malicious users. For example, if an attack by a malicious user emulates an attack by another malicious user that crippled or disrupted service in a network environment, then the malicious user analytics manager 404 can assign a high threat level to the malicious user. A threat level can be reported as part of malicious user analytics.
The remedial action engine 406 functions to perform remedial actions in response to detection of a malicious user. Specifically, the remedial action engine 406 can quarantine a machine that a malicious user accesses or attempts to access. For example, the remedial action engine 406 can prevent a machine from communicating with other machines as part of quarantining the machine in response to detection of a malicious user. Additionally, the remedial action engine 406 can quarantine ports on a machine that a malicious user accesses or attempts to access. For example, if a malicious user attempts to access port 22 on a machine, then the remedial action engine 406 can quarantine port 22 to prevent network traffic flow through the part.
Further, the remedial action engine 406 can enforce policies as part of performing remedial actions in response to detecting a malicious user. More specifically, the remedial action engine 406 can enforce policies to mitigate an impact of a malicious user on machines in a network environment. For example, the remedial action engine 406 can block all traffic received from a malicious user on a specific port in a network environment. In another example, the remedial action engine 406 can forward traffic received from a malicious user in a network environment to a decoy network environment.
Each block shown in
At step 500, the decoy network environment counter-intelligence system 306 identifies a malicious user accessing network services through a network environment. A malicious user can be identified using network traffic data gathered by an applicable network traffic monitoring system, such as the network traffic monitoring system 100 shown in
At step 502, the decoy network environment counter-intelligence system 306 maintains a decoy network environment at one or more decoy machines. A decoy network environment can be maintained within a network environment, e.g. as part of a self-contained decoy network environment within the network environment. Further, a decoy network environment can be maintained separate from a network environment. For example, a decoy network environment can be maintained in a datacenter separate from a datacenter of an enterprise.
At step 504, network service access requests are received from the malicious user at one or more machines in the network environment. Received network service access requests can include either or both requests for data and requests to access a specific application. Network service access requests can be received from the malicious user in response to network access incentives/exploits, e.g. deployed in a decoy network environment. For example, network access incentives can cause the malicious user to continue to request network service access, e.g. through received network service access requests.
At step 506, the decoy network environment counter-intelligence system 306 directs the network service access requests received from the malicious user to the decoy network environment based on an identification of the malicious user as malicious. The network service access requests can be directed to the decoy network environment to satisfy the requests with network service access response generated in the decoy network environment. The network service access requests can be sent to the decoy network environment through tunnels, in order to trick the malicious user to think they are actually interacting with the network environment instead of the decoy network environment.
At step 508, the malicious user analytics manager 404 maintains malicious user analytics based on the network service access requests of the malicious user directed to the decoy network environment. Additionally, malicious user analytics can be maintained based on the network service access responses generated in the decoy network environment and provided to the malicious user. Malicious user analytics can be maintained based on access requests and responses identified by network traffic data gathered by an applicable network traffic monitoring system, such as the network traffic monitoring system 100 shown in
The disclosure now turns to
The interfaces 602 are typically provided as modular interface cards (sometimes referred to as “line cards”). Generally, they control the sending and receiving of data packets over the network and sometimes support other peripherals used with the network device 600. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like. In addition, various very high-speed interfaces may be provided such as fast token ring interfaces, wireless interfaces, Ethernet interfaces, Gigabit Ethernet interfaces, ATM interfaces, HSSI interfaces, POS interfaces, FDDI interfaces, WIFI interfaces, 3G/4G/5G cellular interfaces, CAN BUS, LoRA, and the like. Generally, these interfaces may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile RAM. The independent processors may control such communications intensive tasks as packet switching, media control, signal processing, crypto processing, and management. By providing separate processors for the communications intensive tasks, these interfaces allow the master microprocessor 604 to efficiently perform routing computations, network diagnostics, security functions, etc.
Although the system shown in
Regardless of the network device's configuration, it may employ one or more memories or memory modules (including memory 606) configured to store program instructions for the general-purpose network operations and mechanisms for roaming, route optimization and routing functions described herein. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store tables such as mobility binding, registration, and association tables, etc. Memory 606 could also hold various software containers and virtualized execution environments and data.
The network device 600 can also include an application-specific integrated circuit (ASIC), which can be configured to perform routing and/or switching operations. The ASIC can communicate with other components in the network device 600 via the bus 610, to exchange data and signals and coordinate various types of operations by the network device 600, such as routing, switching, and/or data storage operations, for example.
To enable user interaction with the computing device 700, an input device 745 can represent any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 735 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems can enable a user to provide multiple types of input to communicate with the computing device 700. The communications interface 740 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.
Storage device 730 is a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 725, read only memory (ROM) 720, and hybrids thereof.
The storage device 730 can include services 732, 734, 736 for controlling the processor 710. Other hardware or software modules are contemplated. The storage device 730 can be connected to the system connection 705. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as the processor 710, connection 705, output device 735, and so forth, to carry out the function.
For clarity of explanation, in some instances the present technology may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.
In some embodiments the computer-readable storage devices, mediums, and memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.
Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.
Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, rackmount devices, standalone devices, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.
The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.
Although a variety of examples and other information was used to explain aspects within the scope of the appended claims, no limitation of the claims should be implied based on particular features or arrangements in such examples, as one of ordinary skill would be able to use these examples to derive a wide variety of implementations. Further and although some subject matter may have been described in language specific to examples of structural features and/or method steps, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to these described features or acts. For example, such functionality can be distributed differently or performed in components other than those identified herein. Rather, the described features and steps are disclosed as examples of components of systems and methods within the scope of the appended claims.
Claim language reciting “at least one of” refers to at least one of a set and indicates that one member of the set or multiple members of the set satisfy the claim. For example, claim language reciting “at least one of A and B” means A, B, or A and B.
This application is a continuation of U.S. Non-Provisional patent application Ser. No. 15/862,363, filed Jan. 4, 2018, the content of which is hereby expressly incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5086385 | Launey et al. | Feb 1992 | A |
5319754 | Meinecke et al. | Jun 1994 | A |
5400246 | Wilson et al. | Mar 1995 | A |
5436909 | Dev et al. | Jul 1995 | A |
5555416 | Owens et al. | Sep 1996 | A |
5726644 | Jednacz et al. | Mar 1998 | A |
5742829 | Davis et al. | Apr 1998 | A |
5822731 | Schultz | Oct 1998 | A |
5831848 | Rielly et al. | Nov 1998 | A |
5903545 | Sabourin et al. | May 1999 | A |
6012096 | Link et al. | Jan 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6144962 | Weinberg et al. | Nov 2000 | A |
6239699 | Ronnen | May 2001 | B1 |
6247058 | Miller et al. | Jun 2001 | B1 |
6249241 | Jordan et al. | Jun 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6353775 | Nichols | Mar 2002 | B1 |
6525658 | Streetman et al. | Feb 2003 | B2 |
6546420 | Lemler et al. | Apr 2003 | B1 |
6597663 | Rekhter | Jul 2003 | B1 |
6611896 | Mason, Jr. et al. | Aug 2003 | B1 |
6654750 | Adams et al. | Nov 2003 | B1 |
6728779 | Griffin et al. | Apr 2004 | B1 |
6801878 | Hintz et al. | Oct 2004 | B1 |
6816461 | Scrandis et al. | Nov 2004 | B1 |
6847993 | Novaes et al. | Jan 2005 | B1 |
6848106 | Hipp | Jan 2005 | B1 |
6925490 | Novaes et al. | Aug 2005 | B1 |
6958998 | Shorey | Oct 2005 | B2 |
6983323 | Cantrell et al. | Jan 2006 | B2 |
6996817 | Birum et al. | Feb 2006 | B2 |
6999452 | Drummond-Murray et al. | Feb 2006 | B1 |
7002464 | Bruemmer et al. | Feb 2006 | B2 |
7024468 | Meyer et al. | Apr 2006 | B1 |
7096368 | Kouznetsov et al. | Aug 2006 | B2 |
7111055 | Falkner | Sep 2006 | B2 |
7120934 | Ishikawa | Oct 2006 | B2 |
7133923 | MeLampy et al. | Nov 2006 | B2 |
7162643 | Sankaran et al. | Jan 2007 | B1 |
7181769 | Keanini et al. | Feb 2007 | B1 |
7185103 | Jain | Feb 2007 | B1 |
7203740 | Putzolu et al. | Apr 2007 | B1 |
7302487 | Ylonen et al. | Nov 2007 | B2 |
7337206 | Wen et al. | Feb 2008 | B1 |
7349761 | Cruse | Mar 2008 | B1 |
7353511 | Ziese | Apr 2008 | B1 |
7356679 | Le et al. | Apr 2008 | B1 |
7360072 | Soltis et al. | Apr 2008 | B1 |
7370092 | Aderton et al. | May 2008 | B2 |
7395195 | Suenbuel et al. | Jul 2008 | B2 |
7444404 | Wetherall et al. | Oct 2008 | B2 |
7466681 | Ashwood-Smith et al. | Dec 2008 | B2 |
7467205 | Dempster et al. | Dec 2008 | B1 |
7496040 | Seo | Feb 2009 | B2 |
7496575 | Buccella et al. | Feb 2009 | B2 |
7530105 | Gilbert et al. | May 2009 | B2 |
7539770 | Meier | May 2009 | B2 |
7568107 | Rathi et al. | Jul 2009 | B1 |
7610330 | Quinn et al. | Oct 2009 | B1 |
7633942 | Bearden et al. | Dec 2009 | B2 |
7644438 | Dash et al. | Jan 2010 | B1 |
7676570 | Levy et al. | Mar 2010 | B2 |
7681131 | Quarterman et al. | Mar 2010 | B1 |
7693947 | Judge et al. | Apr 2010 | B2 |
7743242 | Oberhaus et al. | Jun 2010 | B2 |
7752307 | Takara | Jul 2010 | B2 |
7774498 | Kraemer et al. | Aug 2010 | B1 |
7783457 | Cunningham | Aug 2010 | B2 |
7787480 | Mehta et al. | Aug 2010 | B1 |
7788477 | Huang et al. | Aug 2010 | B1 |
7808897 | Mehta et al. | Oct 2010 | B1 |
7813822 | Hoffberg | Oct 2010 | B1 |
7844696 | Labovitz et al. | Nov 2010 | B2 |
7844744 | Abercrombie et al. | Nov 2010 | B2 |
7864707 | Dimitropoulos et al. | Jan 2011 | B2 |
7873025 | Patel et al. | Jan 2011 | B2 |
7873074 | Boland | Jan 2011 | B1 |
7874001 | Beck et al. | Jan 2011 | B2 |
7885197 | Metzler | Feb 2011 | B2 |
7895649 | Brook et al. | Feb 2011 | B1 |
7904420 | Ianni | Mar 2011 | B2 |
7930752 | Hertzog et al. | Apr 2011 | B2 |
7934248 | Yehuda et al. | Apr 2011 | B1 |
7957934 | Greifeneder | Jun 2011 | B2 |
7961637 | McBeath | Jun 2011 | B2 |
7970946 | Djabarov et al. | Jun 2011 | B1 |
7975035 | Popescu et al. | Jul 2011 | B2 |
8001610 | Chickering et al. | Aug 2011 | B1 |
8005935 | Pradhan et al. | Aug 2011 | B2 |
8040232 | Oh et al. | Oct 2011 | B2 |
8040822 | Proulx et al. | Oct 2011 | B2 |
8056134 | Ogilvie | Nov 2011 | B1 |
8115617 | Thubert et al. | Feb 2012 | B2 |
8135657 | Kapoor et al. | Mar 2012 | B2 |
8156430 | Newman | Apr 2012 | B2 |
8160063 | Maltz et al. | Apr 2012 | B2 |
8179809 | Eppstein et al. | May 2012 | B1 |
8181248 | Oh et al. | May 2012 | B2 |
8185824 | Mitchell et al. | May 2012 | B1 |
8239365 | Salman | Aug 2012 | B2 |
8239915 | Satish et al. | Aug 2012 | B1 |
8250657 | Nachenberg et al. | Aug 2012 | B1 |
8255972 | Azagury et al. | Aug 2012 | B2 |
8266697 | Coffman | Sep 2012 | B2 |
8272875 | Jurmain | Sep 2012 | B1 |
8281397 | Vaidyanathan et al. | Oct 2012 | B2 |
8291495 | Burns et al. | Oct 2012 | B1 |
8296847 | Mendonca et al. | Oct 2012 | B2 |
8311973 | Zadeh | Nov 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8370407 | Devarajan et al. | Feb 2013 | B1 |
8381289 | Pereira et al. | Feb 2013 | B1 |
8391270 | Van Der Stok et al. | Mar 2013 | B2 |
8407164 | Malik et al. | Mar 2013 | B2 |
8407798 | Lotem et al. | Mar 2013 | B1 |
8413235 | Chen et al. | Apr 2013 | B1 |
8442073 | Skubacz et al. | May 2013 | B2 |
8451731 | Lee et al. | May 2013 | B1 |
8462212 | Kundu et al. | Jun 2013 | B1 |
8489765 | Vasseur et al. | Jul 2013 | B2 |
8499348 | Rubin | Jul 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8527977 | Cheng et al. | Sep 2013 | B1 |
8549635 | Muttik et al. | Oct 2013 | B2 |
8570861 | Brandwine et al. | Oct 2013 | B1 |
8572600 | Chung et al. | Oct 2013 | B2 |
8572734 | McConnell et al. | Oct 2013 | B2 |
8572735 | Ghosh et al. | Oct 2013 | B2 |
8572739 | Cruz et al. | Oct 2013 | B1 |
8588081 | Salam et al. | Nov 2013 | B2 |
8600726 | Varshney et al. | Dec 2013 | B1 |
8613084 | Dalcher | Dec 2013 | B2 |
8615803 | Dacier et al. | Dec 2013 | B2 |
8630316 | Haba | Jan 2014 | B2 |
8631464 | Belakhdar et al. | Jan 2014 | B2 |
8640086 | Bonev et al. | Jan 2014 | B2 |
8656493 | Capalik | Feb 2014 | B2 |
8661544 | Yen et al. | Feb 2014 | B2 |
8677487 | Balupari et al. | Mar 2014 | B2 |
8683389 | Bar-Yam et al. | Mar 2014 | B1 |
8706914 | Duchesneau | Apr 2014 | B2 |
8713676 | Pandrangi et al. | Apr 2014 | B2 |
8719452 | Ding et al. | May 2014 | B1 |
8719835 | Kanso et al. | May 2014 | B2 |
8750287 | Bui et al. | Jun 2014 | B2 |
8752042 | Ratica | Jun 2014 | B2 |
8752179 | Zaitsev | Jun 2014 | B2 |
8755396 | Sindhu et al. | Jun 2014 | B2 |
8762951 | Kosche et al. | Jun 2014 | B1 |
8769084 | Westerfeld et al. | Jul 2014 | B2 |
8775577 | Alford et al. | Jul 2014 | B1 |
8776180 | Kumar et al. | Jul 2014 | B2 |
8812448 | Anderson et al. | Aug 2014 | B1 |
8812725 | Kulkarni | Aug 2014 | B2 |
8813236 | Saha et al. | Aug 2014 | B1 |
8825848 | Dotan et al. | Sep 2014 | B1 |
8832013 | Adams et al. | Sep 2014 | B1 |
8832461 | Saroiu et al. | Sep 2014 | B2 |
8849926 | Marzencki et al. | Sep 2014 | B2 |
8881258 | Paul et al. | Nov 2014 | B2 |
8887238 | Howard et al. | Nov 2014 | B2 |
8904520 | Nachenberg et al. | Dec 2014 | B1 |
8908685 | Patel et al. | Dec 2014 | B2 |
8914497 | Xiao et al. | Dec 2014 | B1 |
8931043 | Cooper et al. | Jan 2015 | B2 |
8954610 | Berke et al. | Feb 2015 | B2 |
8955124 | Kim et al. | Feb 2015 | B2 |
8966021 | Allen | Feb 2015 | B1 |
8966625 | Zuk et al. | Feb 2015 | B1 |
8973147 | Pearcy et al. | Mar 2015 | B2 |
8984331 | Quinn | Mar 2015 | B2 |
8990386 | He et al. | Mar 2015 | B2 |
8996695 | Anderson et al. | Mar 2015 | B2 |
8997227 | Mhatre et al. | Mar 2015 | B1 |
9014047 | Alcala et al. | Apr 2015 | B2 |
9015716 | Fletcher et al. | Apr 2015 | B2 |
9071575 | Lemaster et al. | Jun 2015 | B2 |
9088598 | Zhang et al. | Jul 2015 | B1 |
9110905 | Polley et al. | Aug 2015 | B2 |
9117075 | Yeh | Aug 2015 | B1 |
9130836 | Kapadia et al. | Sep 2015 | B2 |
9152789 | Natarajan et al. | Oct 2015 | B2 |
9160764 | Stiansen et al. | Oct 2015 | B2 |
9170917 | Kumar et al. | Oct 2015 | B2 |
9178906 | Chen et al. | Nov 2015 | B1 |
9185127 | Neou et al. | Nov 2015 | B2 |
9191400 | Ptasinski et al. | Nov 2015 | B1 |
9191402 | Yan | Nov 2015 | B2 |
9197654 | Ben-Shalom et al. | Nov 2015 | B2 |
9225793 | Dutta et al. | Dec 2015 | B2 |
9237111 | Banavalikar et al. | Jan 2016 | B2 |
9246702 | Sharma et al. | Jan 2016 | B1 |
9246773 | Degioanni | Jan 2016 | B2 |
9253042 | Lumezanu et al. | Feb 2016 | B2 |
9253206 | Fleischman | Feb 2016 | B1 |
9258217 | Duffield et al. | Feb 2016 | B2 |
9281940 | Matsuda et al. | Mar 2016 | B2 |
9286047 | Avramov et al. | Mar 2016 | B1 |
9294486 | Chiang et al. | Mar 2016 | B1 |
9317574 | Brisebois et al. | Apr 2016 | B1 |
9319384 | Yan et al. | Apr 2016 | B2 |
9369435 | Short et al. | Jun 2016 | B2 |
9369479 | Lin | Jun 2016 | B2 |
9378068 | Anantharam et al. | Jun 2016 | B2 |
9396327 | Shimomura et al. | Jun 2016 | B2 |
9405903 | Xie et al. | Aug 2016 | B1 |
9417985 | Baars et al. | Aug 2016 | B2 |
9418222 | Rivera et al. | Aug 2016 | B1 |
9426068 | Dunbar et al. | Aug 2016 | B2 |
9454324 | Madhavapeddi | Sep 2016 | B1 |
9462013 | Boss et al. | Oct 2016 | B1 |
9465696 | McNeil et al. | Oct 2016 | B2 |
9501744 | Brisebois et al. | Nov 2016 | B1 |
9531589 | Clemm et al. | Dec 2016 | B2 |
9563517 | Natanzon et al. | Feb 2017 | B1 |
9602536 | Brown, Jr. et al. | Mar 2017 | B1 |
9621413 | Lee | Apr 2017 | B1 |
9634915 | Bley | Apr 2017 | B2 |
9645892 | Patwardhan | May 2017 | B1 |
9684453 | Holt et al. | Jun 2017 | B2 |
9697033 | Koponen et al. | Jul 2017 | B2 |
9733973 | Prasad et al. | Aug 2017 | B2 |
9749145 | Banavalikar et al. | Aug 2017 | B2 |
9800608 | Korsunsky et al. | Oct 2017 | B2 |
9860208 | Ettema et al. | Jan 2018 | B1 |
9904584 | Konig et al. | Feb 2018 | B2 |
9916538 | Zadeh et al. | Mar 2018 | B2 |
9935851 | Gandham et al. | Apr 2018 | B2 |
10009240 | Rao et al. | Jun 2018 | B2 |
20010028646 | Arts et al. | Oct 2001 | A1 |
20020053033 | Cooper et al. | May 2002 | A1 |
20020097687 | Meiri et al. | Jul 2002 | A1 |
20020103793 | Koller et al. | Aug 2002 | A1 |
20020107857 | Teraslinna | Aug 2002 | A1 |
20020141343 | Bays | Oct 2002 | A1 |
20020184393 | Leddy et al. | Dec 2002 | A1 |
20030023601 | Fortier, Jr. et al. | Jan 2003 | A1 |
20030065986 | Fraenkel et al. | Apr 2003 | A1 |
20030097439 | Strayer et al. | May 2003 | A1 |
20030126242 | Chang | Jul 2003 | A1 |
20030145232 | Poletto et al. | Jul 2003 | A1 |
20030151513 | Herrmann et al. | Aug 2003 | A1 |
20030154399 | Zuk et al. | Aug 2003 | A1 |
20030177208 | Harvey, IV | Sep 2003 | A1 |
20040019676 | Iwatsuki et al. | Jan 2004 | A1 |
20040030776 | Cantrell et al. | Feb 2004 | A1 |
20040213221 | Civanlar et al. | Oct 2004 | A1 |
20040220984 | Dudfield et al. | Nov 2004 | A1 |
20040243533 | Dempster et al. | Dec 2004 | A1 |
20040255050 | Takehiro et al. | Dec 2004 | A1 |
20040268149 | Aaron | Dec 2004 | A1 |
20050028154 | Smith et al. | Feb 2005 | A1 |
20050039104 | Shah et al. | Feb 2005 | A1 |
20050063377 | Bryant et al. | Mar 2005 | A1 |
20050083933 | Fine et al. | Apr 2005 | A1 |
20050108331 | Osterman | May 2005 | A1 |
20050122325 | Twait | Jun 2005 | A1 |
20050138157 | Jung et al. | Jun 2005 | A1 |
20050166066 | Ahuja et al. | Jul 2005 | A1 |
20050177829 | Vishwanath | Aug 2005 | A1 |
20050182681 | Bruskotter et al. | Aug 2005 | A1 |
20050185621 | Sivakumar et al. | Aug 2005 | A1 |
20050198247 | Perry et al. | Sep 2005 | A1 |
20050198371 | Smith et al. | Sep 2005 | A1 |
20050198629 | Vishwanath | Sep 2005 | A1 |
20050207376 | Ashwood-Smith et al. | Sep 2005 | A1 |
20050257244 | Joly et al. | Nov 2005 | A1 |
20050289244 | Sahu et al. | Dec 2005 | A1 |
20060048218 | Lingafelt et al. | Mar 2006 | A1 |
20060077909 | Saleh et al. | Apr 2006 | A1 |
20060080733 | Khosmood et al. | Apr 2006 | A1 |
20060089985 | Poletto | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060143432 | Rothman et al. | Jun 2006 | A1 |
20060156408 | Himberger et al. | Jul 2006 | A1 |
20060159032 | Ukrainetz et al. | Jul 2006 | A1 |
20060173912 | Lindvall et al. | Aug 2006 | A1 |
20060195448 | Newport | Aug 2006 | A1 |
20060242701 | Black | Oct 2006 | A1 |
20060272018 | Fouant | Nov 2006 | A1 |
20060274659 | Ouderkirk | Dec 2006 | A1 |
20060280179 | Meier | Dec 2006 | A1 |
20060294219 | Ogawa et al. | Dec 2006 | A1 |
20070014275 | Bettink et al. | Jan 2007 | A1 |
20070025306 | Cox et al. | Feb 2007 | A1 |
20070044147 | Choi et al. | Feb 2007 | A1 |
20070097976 | Wood et al. | May 2007 | A1 |
20070118654 | Jamkhedkar et al. | May 2007 | A1 |
20070127491 | Verzijp et al. | Jun 2007 | A1 |
20070162420 | Ou et al. | Jul 2007 | A1 |
20070169179 | Narad | Jul 2007 | A1 |
20070195729 | Li et al. | Aug 2007 | A1 |
20070195794 | Fujita et al. | Aug 2007 | A1 |
20070195797 | Patel et al. | Aug 2007 | A1 |
20070201474 | Isobe | Aug 2007 | A1 |
20070211637 | Mitchell | Sep 2007 | A1 |
20070214348 | Danielsen | Sep 2007 | A1 |
20070230415 | Malik | Oct 2007 | A1 |
20070232265 | Park et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070300061 | Kim et al. | Dec 2007 | A1 |
20080002697 | Anantharamaiah et al. | Jan 2008 | A1 |
20080022385 | Crowell et al. | Jan 2008 | A1 |
20080028389 | Genty et al. | Jan 2008 | A1 |
20080046708 | Fitzgerald et al. | Feb 2008 | A1 |
20080049633 | Edwards et al. | Feb 2008 | A1 |
20080056124 | Nanda et al. | Mar 2008 | A1 |
20080082662 | Danliker et al. | Apr 2008 | A1 |
20080101234 | Nakil et al. | May 2008 | A1 |
20080120350 | Grabowski et al. | May 2008 | A1 |
20080126534 | Mueller et al. | May 2008 | A1 |
20080141246 | Kuck et al. | Jun 2008 | A1 |
20080155245 | Lipscombe et al. | Jun 2008 | A1 |
20080250122 | Zsigmond et al. | Oct 2008 | A1 |
20080270199 | Chess et al. | Oct 2008 | A1 |
20080282347 | Dadhia et al. | Nov 2008 | A1 |
20080295163 | Kang | Nov 2008 | A1 |
20080301765 | Nicol et al. | Dec 2008 | A1 |
20090059934 | Aggarwal et al. | Mar 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090109849 | Wood et al. | Apr 2009 | A1 |
20090133126 | Jang et al. | May 2009 | A1 |
20090138590 | Lee et al. | May 2009 | A1 |
20090180393 | Nakamura | Jul 2009 | A1 |
20090241170 | Kumar et al. | Sep 2009 | A1 |
20090292795 | Ford et al. | Nov 2009 | A1 |
20090296593 | Prescott | Dec 2009 | A1 |
20090300180 | Dehaan et al. | Dec 2009 | A1 |
20090307753 | Dupont et al. | Dec 2009 | A1 |
20090313373 | Hanna et al. | Dec 2009 | A1 |
20090313698 | Wahl | Dec 2009 | A1 |
20090319912 | Serr et al. | Dec 2009 | A1 |
20090323543 | Shimakura | Dec 2009 | A1 |
20090328219 | Narayanaswamy | Dec 2009 | A1 |
20100005288 | Rao et al. | Jan 2010 | A1 |
20100049839 | Parker et al. | Feb 2010 | A1 |
20100054241 | Shah et al. | Mar 2010 | A1 |
20100077445 | Schneider et al. | Mar 2010 | A1 |
20100095293 | O'Neill et al. | Apr 2010 | A1 |
20100095367 | Narayanaswamy | Apr 2010 | A1 |
20100095377 | Krywaniuk | Apr 2010 | A1 |
20100138526 | DeHaan et al. | Jun 2010 | A1 |
20100138810 | Komatsu et al. | Jun 2010 | A1 |
20100148940 | Gelvin et al. | Jun 2010 | A1 |
20100153316 | Duffield et al. | Jun 2010 | A1 |
20100153696 | Beachem et al. | Jun 2010 | A1 |
20100180016 | Bugwadia et al. | Jul 2010 | A1 |
20100194741 | Finocchio | Aug 2010 | A1 |
20100220584 | DeHaan et al. | Sep 2010 | A1 |
20100235514 | Beachem | Sep 2010 | A1 |
20100235879 | Burnside et al. | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100287266 | Asati et al. | Nov 2010 | A1 |
20100303240 | Beachem | Dec 2010 | A1 |
20100306180 | Johnson et al. | Dec 2010 | A1 |
20100317420 | Hoffberg | Dec 2010 | A1 |
20100319060 | Aiken et al. | Dec 2010 | A1 |
20110004935 | Moffie et al. | Jan 2011 | A1 |
20110010585 | Bugenhagen et al. | Jan 2011 | A1 |
20110022641 | Werth et al. | Jan 2011 | A1 |
20110055381 | Narasimhan et al. | Mar 2011 | A1 |
20110055388 | Yumerefendi et al. | Mar 2011 | A1 |
20110066719 | Miryanov et al. | Mar 2011 | A1 |
20110069685 | Tofighbakhsh | Mar 2011 | A1 |
20110072119 | Bronstein et al. | Mar 2011 | A1 |
20110083125 | Komatsu et al. | Apr 2011 | A1 |
20110085556 | Breslin et al. | Apr 2011 | A1 |
20110103259 | Aybay et al. | May 2011 | A1 |
20110107074 | Chan et al. | May 2011 | A1 |
20110107331 | Evans et al. | May 2011 | A1 |
20110126136 | Abella et al. | May 2011 | A1 |
20110126275 | Anderson et al. | May 2011 | A1 |
20110145885 | Rivers et al. | Jun 2011 | A1 |
20110153039 | Gvelesiani et al. | Jun 2011 | A1 |
20110153811 | Jeong et al. | Jun 2011 | A1 |
20110158088 | Lofstrand et al. | Jun 2011 | A1 |
20110170860 | Smith et al. | Jul 2011 | A1 |
20110173490 | Narayanaswamy et al. | Jul 2011 | A1 |
20110185423 | Sallam | Jul 2011 | A1 |
20110196957 | Ayachitula et al. | Aug 2011 | A1 |
20110202655 | Sharma et al. | Aug 2011 | A1 |
20110214174 | Herzog et al. | Sep 2011 | A1 |
20110225207 | Subramanian et al. | Sep 2011 | A1 |
20110228696 | Agarwal et al. | Sep 2011 | A1 |
20110238793 | Bedare et al. | Sep 2011 | A1 |
20110246663 | Meisen et al. | Oct 2011 | A1 |
20110277034 | Hanson | Nov 2011 | A1 |
20110283277 | Castillo et al. | Nov 2011 | A1 |
20110302652 | Westerfeld | Dec 2011 | A1 |
20110314148 | Petersen et al. | Dec 2011 | A1 |
20110317982 | Xu et al. | Dec 2011 | A1 |
20120005542 | Petersen et al. | Jan 2012 | A1 |
20120017262 | Kapoor et al. | Jan 2012 | A1 |
20120079592 | Pandrangi | Mar 2012 | A1 |
20120089664 | Igelka | Apr 2012 | A1 |
20120102361 | Sass et al. | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120110188 | Van Biljon et al. | May 2012 | A1 |
20120117226 | Tanaka et al. | May 2012 | A1 |
20120117642 | Lin et al. | May 2012 | A1 |
20120136996 | Seo et al. | May 2012 | A1 |
20120137278 | Draper et al. | May 2012 | A1 |
20120137361 | Yi et al. | May 2012 | A1 |
20120140626 | Anand et al. | Jun 2012 | A1 |
20120195198 | Regan | Aug 2012 | A1 |
20120197856 | Banka et al. | Aug 2012 | A1 |
20120198541 | Reeves | Aug 2012 | A1 |
20120216271 | Cooper et al. | Aug 2012 | A1 |
20120218989 | Tanabe et al. | Aug 2012 | A1 |
20120219004 | Balus et al. | Aug 2012 | A1 |
20120233348 | Winters | Sep 2012 | A1 |
20120233473 | Vasseur et al. | Sep 2012 | A1 |
20120240232 | Azuma | Sep 2012 | A1 |
20120246303 | Petersen et al. | Sep 2012 | A1 |
20120254109 | Shukla et al. | Oct 2012 | A1 |
20120260227 | Shukla et al. | Oct 2012 | A1 |
20120278021 | Lin et al. | Nov 2012 | A1 |
20120281700 | Koganti et al. | Nov 2012 | A1 |
20120300628 | Prescott et al. | Nov 2012 | A1 |
20130003538 | Greenburg et al. | Jan 2013 | A1 |
20130003733 | Venkatesan et al. | Jan 2013 | A1 |
20130006935 | Grisby | Jan 2013 | A1 |
20130007435 | Bayani | Jan 2013 | A1 |
20130038358 | Cook et al. | Feb 2013 | A1 |
20130041934 | Annamalaisami et al. | Feb 2013 | A1 |
20130054682 | Malik et al. | Feb 2013 | A1 |
20130085889 | Fitting et al. | Apr 2013 | A1 |
20130086272 | Chen et al. | Apr 2013 | A1 |
20130103827 | Dunlap et al. | Apr 2013 | A1 |
20130107709 | Campbell et al. | May 2013 | A1 |
20130124807 | Nielsen et al. | May 2013 | A1 |
20130125107 | Bandakka et al. | May 2013 | A1 |
20130145099 | Liu et al. | Jun 2013 | A1 |
20130148663 | Xiong | Jun 2013 | A1 |
20130159999 | Chiueh et al. | Jun 2013 | A1 |
20130173784 | Wang et al. | Jul 2013 | A1 |
20130174256 | Powers | Jul 2013 | A1 |
20130179487 | Lubetzky et al. | Jul 2013 | A1 |
20130179879 | Zhang et al. | Jul 2013 | A1 |
20130198517 | Mazzarella | Aug 2013 | A1 |
20130198839 | Wei et al. | Aug 2013 | A1 |
20130201986 | Sajassi et al. | Aug 2013 | A1 |
20130205293 | Levijarvi et al. | Aug 2013 | A1 |
20130219161 | Fontignie et al. | Aug 2013 | A1 |
20130219500 | Lukas et al. | Aug 2013 | A1 |
20130232498 | Mangtani et al. | Sep 2013 | A1 |
20130242999 | Kamble et al. | Sep 2013 | A1 |
20130246925 | Ahuja et al. | Sep 2013 | A1 |
20130247201 | Alperovitch et al. | Sep 2013 | A1 |
20130254879 | Chesla et al. | Sep 2013 | A1 |
20130268994 | Cooper et al. | Oct 2013 | A1 |
20130275579 | Hernandez et al. | Oct 2013 | A1 |
20130283374 | Zisapel et al. | Oct 2013 | A1 |
20130290521 | Labovitz | Oct 2013 | A1 |
20130297771 | Osterloh et al. | Nov 2013 | A1 |
20130301472 | Allan | Nov 2013 | A1 |
20130304900 | Trabelsi et al. | Nov 2013 | A1 |
20130305369 | Karta et al. | Nov 2013 | A1 |
20130318357 | Abraham et al. | Nov 2013 | A1 |
20130326623 | Kruglick | Dec 2013 | A1 |
20130333029 | Chesla et al. | Dec 2013 | A1 |
20130336164 | Yang et al. | Dec 2013 | A1 |
20130346736 | Cook et al. | Dec 2013 | A1 |
20130347103 | Veteikis et al. | Dec 2013 | A1 |
20140006610 | Formby et al. | Jan 2014 | A1 |
20140006871 | Lakshmanan et al. | Jan 2014 | A1 |
20140012814 | Bercovici et al. | Jan 2014 | A1 |
20140019972 | Yahalom et al. | Jan 2014 | A1 |
20140031005 | Sumcad et al. | Jan 2014 | A1 |
20140033193 | Palaniappan | Jan 2014 | A1 |
20140036688 | Stassinopoulos et al. | Feb 2014 | A1 |
20140040343 | Nickolov et al. | Feb 2014 | A1 |
20140047185 | Peterson et al. | Feb 2014 | A1 |
20140047372 | Gnezdov et al. | Feb 2014 | A1 |
20140056318 | Hansson et al. | Feb 2014 | A1 |
20140059200 | Nguyen et al. | Feb 2014 | A1 |
20140074946 | Dirstine et al. | Mar 2014 | A1 |
20140089494 | Dasari et al. | Mar 2014 | A1 |
20140092884 | Murphy et al. | Apr 2014 | A1 |
20140096058 | Molesky et al. | Apr 2014 | A1 |
20140105029 | Jain et al. | Apr 2014 | A1 |
20140115219 | Ajanovic et al. | Apr 2014 | A1 |
20140129942 | Rathod | May 2014 | A1 |
20140137109 | Sharma et al. | May 2014 | A1 |
20140140244 | Kapadia et al. | May 2014 | A1 |
20140143825 | Behrendt et al. | May 2014 | A1 |
20140149490 | Luxenberg et al. | May 2014 | A1 |
20140156814 | Barabash et al. | Jun 2014 | A1 |
20140156861 | Cruz-Aguilar et al. | Jun 2014 | A1 |
20140164607 | Bai et al. | Jun 2014 | A1 |
20140165200 | Singla | Jun 2014 | A1 |
20140165207 | Engel et al. | Jun 2014 | A1 |
20140173623 | Chang et al. | Jun 2014 | A1 |
20140192639 | Smirnov | Jul 2014 | A1 |
20140201717 | Mascaro et al. | Jul 2014 | A1 |
20140215573 | Cepuran | Jul 2014 | A1 |
20140215621 | Xaypanya et al. | Jul 2014 | A1 |
20140224784 | Kohler | Aug 2014 | A1 |
20140225603 | Auguste et al. | Aug 2014 | A1 |
20140233387 | Zheng et al. | Aug 2014 | A1 |
20140269777 | Rothstein et al. | Sep 2014 | A1 |
20140280499 | Basavaiah et al. | Sep 2014 | A1 |
20140281030 | Cui et al. | Sep 2014 | A1 |
20140286354 | Van De Poel et al. | Sep 2014 | A1 |
20140289854 | Mahvi | Sep 2014 | A1 |
20140298461 | Hohndel et al. | Oct 2014 | A1 |
20140307686 | Su et al. | Oct 2014 | A1 |
20140317278 | Kersch et al. | Oct 2014 | A1 |
20140317737 | Shin et al. | Oct 2014 | A1 |
20140330616 | Lyras | Nov 2014 | A1 |
20140331048 | Casas-Sanchez et al. | Nov 2014 | A1 |
20140331276 | Frascadore et al. | Nov 2014 | A1 |
20140331280 | Porras et al. | Nov 2014 | A1 |
20140331304 | Wong | Nov 2014 | A1 |
20140348182 | Chandra et al. | Nov 2014 | A1 |
20140351203 | Kunnatur et al. | Nov 2014 | A1 |
20140351415 | Harrigan et al. | Nov 2014 | A1 |
20140359695 | Chari et al. | Dec 2014 | A1 |
20150006689 | Szilagyi et al. | Jan 2015 | A1 |
20150006714 | Jain | Jan 2015 | A1 |
20150009840 | Pruthi et al. | Jan 2015 | A1 |
20150026809 | Altman et al. | Jan 2015 | A1 |
20150033305 | Shear et al. | Jan 2015 | A1 |
20150036480 | Huang et al. | Feb 2015 | A1 |
20150036533 | Sodhi et al. | Feb 2015 | A1 |
20150039751 | Harrigan et al. | Feb 2015 | A1 |
20150046882 | Menyhart et al. | Feb 2015 | A1 |
20150047032 | Hannis et al. | Feb 2015 | A1 |
20150052441 | Degioanni | Feb 2015 | A1 |
20150058976 | Carney et al. | Feb 2015 | A1 |
20150067143 | Babakhan et al. | Mar 2015 | A1 |
20150067786 | Fiske | Mar 2015 | A1 |
20150082151 | Liang et al. | Mar 2015 | A1 |
20150082430 | Sridhara et al. | Mar 2015 | A1 |
20150085665 | Kompella et al. | Mar 2015 | A1 |
20150095332 | Beisiegel et al. | Apr 2015 | A1 |
20150112933 | Satapathy | Apr 2015 | A1 |
20150113133 | Srinivas et al. | Apr 2015 | A1 |
20150124608 | Agarwal et al. | May 2015 | A1 |
20150124652 | Dhamapurikar et al. | May 2015 | A1 |
20150128133 | Pohlmann | May 2015 | A1 |
20150128205 | Mahaffey et al. | May 2015 | A1 |
20150128246 | Feghali et al. | May 2015 | A1 |
20150138993 | Forster et al. | May 2015 | A1 |
20150142962 | Srinivas et al. | May 2015 | A1 |
20150195291 | Zuk et al. | Jul 2015 | A1 |
20150222939 | Gallant et al. | Aug 2015 | A1 |
20150244739 | Ben-Shalom et al. | Aug 2015 | A1 |
20150249622 | Phillips et al. | Sep 2015 | A1 |
20150256555 | Choi et al. | Sep 2015 | A1 |
20150261842 | Huang et al. | Sep 2015 | A1 |
20150261886 | Wu et al. | Sep 2015 | A1 |
20150271008 | Jain et al. | Sep 2015 | A1 |
20150271255 | Mackay et al. | Sep 2015 | A1 |
20150295945 | Canzanese, Jr. et al. | Oct 2015 | A1 |
20150312233 | Graham, III et al. | Oct 2015 | A1 |
20150356297 | Yang et al. | Oct 2015 | A1 |
20150347554 | Vasantham et al. | Dec 2015 | A1 |
20150358352 | Chasin et al. | Dec 2015 | A1 |
20160006753 | McDaid et al. | Jan 2016 | A1 |
20160019030 | Shukla et al. | Jan 2016 | A1 |
20160020959 | Rahaman | Jan 2016 | A1 |
20160021131 | Heilig | Jan 2016 | A1 |
20160026552 | Holden et al. | Jan 2016 | A1 |
20160036636 | Erickson et al. | Feb 2016 | A1 |
20160036837 | Jain et al. | Feb 2016 | A1 |
20160050132 | Zhang et al. | Feb 2016 | A1 |
20160072815 | Rieke et al. | Mar 2016 | A1 |
20160080414 | Kolton et al. | Mar 2016 | A1 |
20160087861 | Kuan et al. | Mar 2016 | A1 |
20160094394 | Sharma et al. | Mar 2016 | A1 |
20160094529 | Mityagin | Mar 2016 | A1 |
20160103692 | Guntaka et al. | Apr 2016 | A1 |
20160105350 | Greifeneder et al. | Apr 2016 | A1 |
20160112270 | Danait et al. | Apr 2016 | A1 |
20160112284 | Pon et al. | Apr 2016 | A1 |
20160119234 | Valencia Lopez et al. | Apr 2016 | A1 |
20160127395 | Underwood et al. | May 2016 | A1 |
20160147585 | Konig et al. | May 2016 | A1 |
20160162308 | Chen et al. | Jun 2016 | A1 |
20160162312 | Doherty et al. | Jun 2016 | A1 |
20160173446 | Nantel | Jun 2016 | A1 |
20160173535 | Barabash et al. | Jun 2016 | A1 |
20160183093 | Vaughn et al. | Jun 2016 | A1 |
20160191476 | Schutz et al. | Jun 2016 | A1 |
20160205002 | Rieke et al. | Jul 2016 | A1 |
20160216994 | Sefidcon et al. | Jul 2016 | A1 |
20160217022 | Velipasaoglu et al. | Jul 2016 | A1 |
20160255082 | Rathod | Sep 2016 | A1 |
20160269424 | Chandola et al. | Sep 2016 | A1 |
20160269442 | Shieh | Sep 2016 | A1 |
20160269482 | Jamjoom et al. | Sep 2016 | A1 |
20160294691 | Joshi | Oct 2016 | A1 |
20160308908 | Kirby et al. | Oct 2016 | A1 |
20160337204 | Dubey et al. | Nov 2016 | A1 |
20160357424 | Pang et al. | Dec 2016 | A1 |
20160357546 | Chang et al. | Dec 2016 | A1 |
20160357587 | Yadav et al. | Dec 2016 | A1 |
20160357957 | Deen et al. | Dec 2016 | A1 |
20160359592 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359628 | Singh et al. | Dec 2016 | A1 |
20160359658 | Yadav et al. | Dec 2016 | A1 |
20160359673 | Gupta et al. | Dec 2016 | A1 |
20160359677 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359678 | Madani et al. | Dec 2016 | A1 |
20160359679 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359680 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359686 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359695 | Yadav et al. | Dec 2016 | A1 |
20160359696 | Yadav et al. | Dec 2016 | A1 |
20160359697 | Scheib et al. | Dec 2016 | A1 |
20160359698 | Deen et al. | Dec 2016 | A1 |
20160359699 | Gandham et al. | Dec 2016 | A1 |
20160359700 | Pang et al. | Dec 2016 | A1 |
20160359701 | Pang et al. | Dec 2016 | A1 |
20160359703 | Gandham et al. | Dec 2016 | A1 |
20160359704 | Gandham et al. | Dec 2016 | A1 |
20160359705 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359708 | Gandham et al. | Dec 2016 | A1 |
20160359709 | Deen et al. | Dec 2016 | A1 |
20160359711 | Deen et al. | Dec 2016 | A1 |
20160359712 | Alizadeh Attar et al. | Dec 2016 | A1 |
20160359740 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359759 | Singh et al. | Dec 2016 | A1 |
20160359872 | Yadav et al. | Dec 2016 | A1 |
20160359877 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359878 | Prasad et al. | Dec 2016 | A1 |
20160359879 | Deen et al. | Dec 2016 | A1 |
20160359880 | Pang et al. | Dec 2016 | A1 |
20160359881 | Yadav et al. | Dec 2016 | A1 |
20160359888 | Gupta et al. | Dec 2016 | A1 |
20160359889 | Yadav et al. | Dec 2016 | A1 |
20160359890 | Deen et al. | Dec 2016 | A1 |
20160359891 | Pang et al. | Dec 2016 | A1 |
20160359897 | Yadav et al. | Dec 2016 | A1 |
20160359905 | Touboul et al. | Dec 2016 | A1 |
20160359912 | Gupta et al. | Dec 2016 | A1 |
20160359913 | Gupta et al. | Dec 2016 | A1 |
20160359914 | Deen et al. | Dec 2016 | A1 |
20160359915 | Gupta et al. | Dec 2016 | A1 |
20160359917 | Rao et al. | Dec 2016 | A1 |
20160373481 | Sultan et al. | Dec 2016 | A1 |
20160380865 | Dubai et al. | Dec 2016 | A1 |
20170006141 | Bhadra | Jan 2017 | A1 |
20170024453 | Raja et al. | Jan 2017 | A1 |
20170032310 | Mimnaugh | Feb 2017 | A1 |
20170034018 | Parasdehgheibi et al. | Feb 2017 | A1 |
20170048121 | Hobbs et al. | Feb 2017 | A1 |
20170070582 | Desai et al. | Mar 2017 | A1 |
20170085483 | Mihaly et al. | Mar 2017 | A1 |
20170093910 | Gukal et al. | Mar 2017 | A1 |
20170208487 | Ratakonda et al. | Jul 2017 | A1 |
20170214708 | Gukal et al. | Jul 2017 | A1 |
20170223052 | Stutz | Aug 2017 | A1 |
20170250880 | Akens et al. | Aug 2017 | A1 |
20170250951 | Wang et al. | Aug 2017 | A1 |
20170289067 | Lu et al. | Oct 2017 | A1 |
20170295141 | Thubert et al. | Oct 2017 | A1 |
20170302691 | Singh et al. | Oct 2017 | A1 |
20170331747 | Singh et al. | Nov 2017 | A1 |
20170346736 | Chander et al. | Nov 2017 | A1 |
20170364380 | Frye, Jr. et al. | Dec 2017 | A1 |
20180006911 | Dickey | Jan 2018 | A1 |
20180007115 | Nedeltchev et al. | Jan 2018 | A1 |
20180013670 | Kapadia et al. | Jan 2018 | A1 |
20180145906 | Yadav et al. | May 2018 | A1 |
20190089723 | Valgenti | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
101093452 | Dec 2007 | CN |
101770551 | Jul 2010 | CN |
102521537 | Jun 2012 | CN |
103023970 | Apr 2013 | CN |
103716137 | Apr 2014 | CN |
104065518 | Sep 2014 | CN |
107196807 | Sep 2017 | CN |
0811942 | Dec 1997 | EP |
1076848 | Jul 2002 | EP |
1383261 | Jan 2004 | EP |
1450511 | Aug 2004 | EP |
2045974 | Apr 2008 | EP |
2043320 | Apr 2009 | EP |
2860912 | Apr 2015 | EP |
2887595 | Jun 2015 | EP |
2009-016906 | Jan 2009 | JP |
1394338 | May 2014 | KR |
WO 2007014314 | Feb 2007 | WO |
WO 2007070711 | Jun 2007 | WO |
WO 2008069439 | Jun 2008 | WO |
WO 2013030830 | Mar 2013 | WO |
WO 2015042171 | Mar 2015 | WO |
WO 2015099778 | Jul 2015 | WO |
WO 2016004075 | Jan 2016 | WO |
WO 2016019523 | Feb 2016 | WO |
Entry |
---|
“Attivo Networks® ThreatMatrix™ Deception and Response Platform Intergration with McAfee® ePolicy Orchestrator®,” Attivo Networks, 2017, 2 pages. |
Arista Networks, Inc., “Application Visibility and Network Telemtry using Splunk,” Arista White Paper, Nov. 2013, 11 pages. |
Al-Fuqaha, Ala, et al., “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communication Surveys & Tutorials. Vol. 17, No. 4, Nov. 18, 2015, pp. 2347-2376. |
Australian Government Department of Defence, Intelligence and Security, “Top 4 Strategies to Mitigate Targeted Cyber Intrusions,” Cyber Security Operations Centre Jul. 2013, http://www.asd.gov.au/infosec/top-mitigations/top-4-strategies-explained.htm. |
Author Unknown, “Blacklists & Dynamic Reputation: Understanding Why the Evolving Threat Eludes Blacklists,” www.dambala.com, 9 pages, Dambala, Atlanta, GA, USA. |
Aydin, Galip, et al., “Architecture and Implementation of a Scalable Sensor Data Storage and Analysis Using Cloud Computing and Big Data Technologies,” Journal of Sensors, vol. 2015, Article ID 834217, Feb. 2015, 11 pages. |
Backes, Michael, et al., “Data Lineage in Malicious Environments,” IEEE 2015, pp. 1-13. |
Baek, Kwang-Hyun, et al., “Preventing Theft of Quality of Service on Open Platforms,” 2005 Workshop of the 1st International Conference on Security and Privacy for Emerging Areas in Communication Networks, 2005, 12 pages. |
Bauch, Petr, “Reader's Report of Master's Thesis, Analysis and Testing of Distributed NoSQL Datastore Riak,” May 28, 2015, Brno. 2 pages. |
Bayati, Mohsen, et al., “Message-Passing Algorithms for Sparse Network Alignment,” Mar. 2013, 31 pages. |
Berezinski, Przemyslaw, et al., “An Entropy-Based Network Anomaly Detection Method,” Entropy, 2015, vol. 17, www.mdpi.com/joumal/entropy, pp. 2367-2408. |
Berthier, Robin, et al. “Nfsight: Netflow-based Network Awareness Tool,” 2010, 16 pages. |
Bhuyan, Dhiraj, “Fighting Bots and Botnets,” 2006, pp. 23-28. |
Blair, Dana, et al., U.S. Appl. No. 62/106,006, tiled Jan. 21, 2015, entitled “Monitoring Network Policy Compliance.” |
Bosch, Greg, “Virtualization,” 2010, 33 pages. |
Breen, Christopher, “MAC 911, How to dismiss Mac App Store Notifications,” Macworld.com, Mar. 24, 2014, 3 pages. |
Brocade Communications Systems, Inc., “Chapter 5 — Configuring Virtual LANs (VLANs),” Jun. 2009, 38 pages. |
Chandran, Midhun, et al., “Monitoring in a Virtualized Environment,” GSTF International Journal on Computing, vol. 1, No. 1, Aug. 2010. |
Chari, Suresh, et al., “Ensuring continuous compliance through reconciling policy with usage,” Proceedings of the 18th ACM symposium on Access control models and technologies (SACMAT '13). ACM, New York, NY, USA, 49-60. |
Chen, Xu, et al., “Automating network application dependency discovery: experiences, limitations, and new solutions,” 8th USENIX conference on Operating systems design and implementation (OSDI'08), USENIX Association, Berkeley, CA, USA, 117-130. |
Chou, C.W., et al., “Optical Clocks and Relativity,” Science vol. 329, Sep. 24, 2010, pp. 1630-1633. |
Cisco Systems, “Cisco Network Analysis Modules (NAM) Tutorial,” Cisco Systems, Inc., Version 3.5. |
Cisco Systems, Inc. “Cisco, Nexus 3000 Series NX-OS Release Notes, Release 5.0(3)U3(1),” Feb. 29, 2012, Part No. OL-26631-01, 16 pages. |
Cisco Systems, Inc., “Addressing Compliance from One Infrastructure: Cisco Unified Compliance Solution Framework,” 2014. |
Cisco Systems, Inc., “Cisco—VPN Client User Guide for Windows,” Release 4.6, Aug. 2004, 148 pages. |
Cisco Systems, Inc., “Cisco 4710 Application Control Engine Appliance Hardware Installation Guide,” Nov. 2007, 66 pages. |
Cisco Systems, Inc., “Cisco Application Dependency Mapping Service,” 2009. |
Cisco Systems, Inc., “Cisco Data Center Network Architecture and Solutions Overview,” Feb. 2006, 19 pages. |
Cisco Systems, Inc., “Cisco IOS Configuration Fundamentals Configuration Guide: Using Autoinstall and Setup,”Release 12.2, first published Apr. 2001, last updated Sep. 2003, 32 pages. |
Cisco Systems, Inc., “Cisco VN-Link: Virtualization-Aware Networking,” White Paper, Mar. 2009, 10 pages. |
Cisco Systems, Inc., “Cisco, Nexus 5000 Series and Cisco Nexus 2000 Series Release Notes, Cisco NX-OS Release 5.1(3)N2(1b), NX-OS Release 5.1(3)N2(1a) and NX-OS Release 5.1(3)N2(1),” Sep. 5, 2012, Part No. OL-26652-03 CO, 24 pages. |
Cisco Systems, Inc., “Nexus 3000 Series NX-OS Fundamentals Configuration Guide, Release 5.0(3)U3(1): Using PowerOn Auto Provisioning,” Feb. 29, 2012, Part No. OL-26544-01, 10 pages. |
Cisco Systems, Inc., “Quick Start Guide, Cisco ACE 4700 Series Application Control Engine Appliance,” Software Ve740rsion A5(1.0), Sep. 2011, 138 pages. |
Cisco Systems, Inc., “Routing and Bridging Guide, Cisco ACE Application Control Engine,” Software Version A5(1.0), Sep. 2011, 248 pages. |
Cisco Systems, Inc., “VMWare and Cisco Virtualization Solution: Scale Virtual Machine Networking,” Jul. 2009, 4 pages. |
Cisco Systems, Inc., “White Paper—New Cisco Technologies Help Customers Achieve Regulatory Compliance,” 1992-2008. |
Cisco Systems, Inc., “A Cisco Guide to Defending Against Distributed Denial of Service Attacks,” May 3, 2016, 34 pages. |
Cisco Systems, Inc., “Cisco Application Visibility and Control,” Oct. 2011, 2 pages. |
Cisco Systems, Inc., “Cisco Remote Integrated Service Engine for Citrix NetScaler Appliances and Cisco Nexus 7000 Series Switches Configuration Guide,” Last modified Apr. 29, 2014, 78 pages. |
Cisco Systems, Inc., “Cisco Tetration Platform Data Sheet”, Updated Mar. 5, 2018, 21 pages. |
Cisco Technology, Inc., “Cisco IOS Software Release 12.4T Features and Hardware Support,” http://www.cisco.com/c/en/us/products/collateralhos-nx-os-softwarehos-software-releases-12-4-t/product_bulletin_c25-409474.html: Feb. 2009, 174 pages. |
Cisco Technology, Inc., “Cisco Lock-and-Key:Dynamic Access Lists,” http://www/cisco.com/c/en/us/support/docs/security-vpn/lock-key/7604-13.html; Updated Jul. 12, 2006, 16 pages. |
Cisco Systems, Inc.,“Cisco Application Control Engine (ACE) Troubleshooting Guide—Understanding the ACE Module Architecture and Traffic Flow,” Mar. 11, 2011, 6 pages. |
Costa, Raul, et al., “An Intelligent Alarm Management System for Large-Scale Telecommunication Companies,” In Portuguese Conference on Artificial Intelligence, Oct. 2009, 14 pages. |
De Carvalho, Tiago Filipe Rodrigues, “Root Cause Analysis in Large and Complex Networks,” Dec. 2008, Repositorio.ul.pt, pp. 1-55. |
Di Lorenzo, Guisy, et al., “EXSED: An Intelligent Tool for Exploration of Social Events Dynamics from Augmented Trajectories,” Mobile Data Management (MDM), pp. 323-330, Jun. 3-6, 2013. |
Duan, Yiheng, et al., Detective: Automatically Identify and Analyze Malware Processes in Forensic Scenarios via DLLs, IEEE ICC 2015—Next Generation Networking Symposium, pp. 5691-5696. |
Feinstein, Laura, et al., “Statistical Approaches to DDoS Attack Detection and Response,” Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX '03), Apr. 2003, 12 pages. |
Foundation for Intelligent Physical Agents,“FIPA Agent Message Transport Service Specification,” Dec. 3, 2002, http://www.fipa.org: 15 pages. |
George, Ashley, et al., “NetPal: A Dynamic Network Administration Knowledge Base,” 2008, pp. 1-14. |
Gia, Tuan Nguyen, et al., “Fog Computing in Healthcare Internet of Things: A Case Study on ECG Feature Extraction,” 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Oct. 26, 2015, pp. 356-363. |
Goldsteen, Abigail, et al., “A Tool for Monitoring and Maintaining System Trustworthiness at Run Time,” REFSQ (2015), pp. 142-147. |
Hamadi, S., et al., “Fast Path Acceleration for Open vSwitch in Overlay Networks,” Global Information Infrastructure and Networking Symposium (GIIS), Montreal, QC, pp. 1-5, Sep. 15-19, 2014. |
Heckman, Sarah, et al., “On Establishing a Benchmark for Evaluating Static Analysis Alert Prioritization and Classification Techniques,” IEEE, 2008; 10 pages. |
Hewlett-Packard, “Effective use of reputation intelligence in a security operations center,” Jul. 2013, 6 pages. |
Hideshima, Yusuke, et al., “Starmine: A Visualization System for Cyber Attacks,” https://www.researchgate.net/publication/221536306, Feb. 2006, 9 pages. |
Huang, Hing-Jie, et al., “Clock Skew Based Node Identification in Wireless Sensor Networks,” IEEE, 2008, 5 pages. |
InternetPerils, Inc., “Control Your Internet Business Risk,” 2003-2015, https://www.internetperils.com. |
Ives, Herbert, E., et al., “An Experimental Study of the Rate of a Moving Atomic Clock,” Journal of the Optical Society of America, vol. 28, No. 7, Jul. 1938, pp. 215-226. |
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 1 of 2, 350 pages. |
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 2 of 2, 588 pages. |
Joseph, Dilip, et al., “Modeling Middleboxes,” IEEE Network, Sep./Oct. 2008, pp. 20-25. |
Kent, S., et al. “Security Architecture for the Internet Protocol,” Network Working Group, Nov. 1998, 67 pages. |
Kerrison, Adam, et al., “Four Steps to Faster, Better Application Dependency Mapping—Laying the Foundation for Effective Business Service Models,” BMCSoftware, 2011. |
Kim, Myung-Sup, et al. “A Flow-based Method for Abnormal Network Traffic Detection, ” IEEE, 2004, pp. 599-612. |
Kraemer, Brian, “Get to know your data centerwith CMDB,” TechTarget, Apr. 5, 2006, http://searchdatacenter.techtarget.com/news/118820/Get-to-know-your-data-center-with-CMDB. |
Lab SKU, “VMware Hands-on Labs—HOL-SDC-1301” Version: 20140321-160709, 2013; http://docs.hol.vmware.com/HOL-2013/holsdc-1301_html_en/ (part 1 of 2). |
Lab SKU, “VMware Hands-on Labs—HOL-SDC-1301” Version: 20140321-160709, 2013; http://docs.hol.vmware.com/HOL-2013/holsdc-1301_html_en/ (part 2 of 2). |
Lachance, Michael, “Dirty Little Secrets of Application Dependency Mapping,” Dec. 26, 2007. |
Landman, Yoav, et al., “Dependency Analyzer,” Feb. 14, 2008, http://jfrog.com/confluence/display/DA/Home. |
Lee, Sihyung, “Reducing Complexity of Large-Scale Network Configuration Management,” Ph.D. Dissertation, Carniege Mellon University, 2010. |
Li, Ang, et al., “Fast Anomaly Detection for Large Data Centers,” Global Telecommunications Conference (GLOBECOM 2010, Dec. 2010, 6 pages. |
Li, Bingbong, et al., “A Supervised Machine Learning Approach to Classify Host Roles on Line Using sFlow,” in Proceedings of the first edition workshop on High performance and programmable networking, 2013, ACM, New York, NY, USA, 53-60. |
Liu, Ting, et al., “Impala: A Middleware System for Managing Autonomic, Parallel Sensor Systems,” In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming(PPoPP '03), ACM, New York, NY, USA, Jun. 11-13, 2003, pp. 107-118. |
Lu, Zhonghai, et al., “Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks on Chip,” Design and Diagnostics of Electronic Circuits and Systems, pp. 1, 6, 16-18, Apr. 2008. |
Matteson, Ryan, “Depmap: Dependency Mapping of Applications Using Operating System Events: a Thesis,” Master's Thesis, California Polytechnic State University, Dec. 2010. |
Natarajan, Arun, et al., “NSDMiner: Automated Discovery of Network Service Dependencies,” Institute of Electrical and Electronics Engineers INFOCOM, Feb. 2012, 9 pages. |
Navaz, A.S. Syed, et al., “Entropy based Anomaly Detection System to Prevent DDoS Attacks in Cloud,” International Journal of computer Applications (0975-8887), vol. 62, No. 15, Jan. 2013, pp. 42-47. |
Neverfail, “Neverfail IT Continuity Architect,” 2015, https://web.archive.org/web/20150908090456/http://www.neverfailgroup.com/products/it-continuity-architect. |
Nilsson, Dennis K., et al., “Key Management and Secure Software Updates in Wireless Process Control Environments,” In Proceedings of the First ACM Conference on Wireless Network Security (WSec '08), ACM, New York, NY, USA, Mar. 31-Apr. 2, 2008, pp. 100-108. |
Nunnally, Troy, et al., “P3D: A Parallel 3D Coordinate Visualization for Advanced Network Scans,” IEEE 2013, Jun. 9-13, 2013, 6 pages. |
O'Donnell, Glenn, et al., “The CMDB Imperative: How to Realize the Dream and Avoid the Nightmares,” Prentice Hall, Feb. 19, 2009. |
Ohta, Kohei, et al., “Detection, Defense, and Tracking of Internet-Wide Illegal Access in a Distributed Manner,” 2000, pp. 1-16. |
Online Collins English Dictionary, 1 page (Year: 2018). |
Pathway Systems International Inc., “How Blueprints does Integration,” Apr. 15, 2014, 9 pages, http://pathwaysystems.com/company-blog/. |
Pathway Systems International Inc., “What is Blueprints?” 2010-2016, http://pathwaysystems.com/blueprints-about/. |
Popa, Lucian, et al., “Macroscope: End-Point Approach to Networked Application Dependency Discovery,” CoNEXT'09, Dec. 1-4, 2009, Rome, Italy, 12 pages. |
Prasad, K. Munivara, et al., “An Efficient Detection of Flooding Attacks to Internet Threat Monitors (ITM) using Entropy Variations under Low Traffic,” Computing Communication & Networking Technologies (ICCCNT '12), Jul. 26-28, 2012, 11 pages. |
Sachan, Mrinmaya, et al., “Solving Electrical Networks to incorporate Supervision in Random Walks,” May 13-17, 2013, pp. 109-110. |
Sammarco, Matteo, et al., “Trace Selection for Improved WLAN Monitoring,” Aug. 16, 2013, pp. 9-14. |
Shneiderman, Ben, et al., “Network Visualization by Semantic Substrates,” Visualization and Computer Graphics, vol. 12, No. 5, pp. 733,740, Sep.-Oct. 2006. |
Theodorakopoulos, George, et al., “On Trust Models and Trust Evaluation Metrics for Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications. Vol. 24, Issue 2, Feb. 2006, pp. 318-328. |
Thomas, R., “Bogon Dotted Decimal List,” Version 7.0, Team Cymru NOC, Apr. 27, 2012, 5 pages. |
Voris, Jonathan, et al., “Bait and Snitch: Defending Computer Systems with Decoys,” Columbia University Libraries, Department of Computer Science, 2013, pp. 1-25. |
Wang, Ru, et al., “Learning directed acyclic graphs via bootstarp aggregating,” 2014, 47 pages, http://arxiv.org/abs/1406.2098. |
Wang, Yongjun, et al., “A Network Gene-Based Framework for Detecting Advanced Persistent Threats,” Nov. 2014, 7 pages. |
Witze, Alexandra, “Special relativity aces time trial, ‘Time dilation’ predicted by Einstein confirmed by lithium ion experiment,” Nature, Sep. 19, 2014, 3 pages. |
Woodberg, Brad, “Snippet from Juniper SRX Series” Jun. 17, 2013, 1 page, O'Reilly Media, Inc. |
Zatrochova, Zuzana, “Analysis and Testing of Distributed NoSQL Datastore Riak,” Spring, 2015, 76 pages. |
Zeng, Sai, et al., “Managing Risk in Multi-node Automation of Endpoint Management,” 2014 IEEE Network Operations and Management Symposium (NOMS), 2014, 6 pages. |
Zhang, Yue, et al., “CANTINA: A Content-Based Approach to Detecting Phishing Web Sites,” May 8-12, 2007, pp. 639-648. |
Number | Date | Country | |
---|---|---|---|
20220116421 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15862363 | Jan 2018 | US |
Child | 17556673 | US |