Network migration assistant

Information

  • Patent Grant
  • 11044170
  • Patent Number
    11,044,170
  • Date Filed
    Friday, January 31, 2020
    4 years ago
  • Date Issued
    Tuesday, June 22, 2021
    3 years ago
Abstract
The disclosed technology relates to assisting with the migration of networked entities. A system may be configured to collect operations data for a service from at least one endpoint host in a network, calculate at least one metric for the service based on the operations data, retrieve a migration configuration and platform data for a target platform, generate a predicted cost for the migration configuration based on the migration configuration, the at least one metric, and the platform data, and provide the predicted cost for the migration configuration to a user.
Description
TECHNICAL FIELD

The subject matter of this disclosure relates in general to the field of computer networks, and more specifically for management of networked entities and resources.


BACKGROUND

A network administrator may be responsible for managing a large number of networked entities and resources distributed across one or more networks. These entities may be physical entities or logical entities. For example, the entities may include nodes, endpoints, machines, virtual machines, containers (an instance of container-based virtualization), tenants, endpoint groups, and applications. In addition to being different types, these entities may be grouped in various ways, located in different geographical locations, and/or serve different functions. The networked entities may be configured across one or more networks in many different ways and each configuration may have certain advantages and disadvantages with respect to performance, cost, etc.


In some cases, a network administrator may wish to alter the configuration of the networked entities by, for example, migrating one or more networked entities from one network to another. For example, some service providers provide one or more cloud services platforms that allow a network administrator to migrate networked entities to or from a cloud service platform. However, the decision to migrate networked entities from one network to another is a difficult one. Traditional approaches for managing large networks and determining whether and how to migrate certain entities require comprehensive knowledge on the part of highly specialized human operators because of the complexities of the networks, platforms, entities, and the interrelationships among the entities.





BRIEF DESCRIPTION OF THE FIGURES

In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a conceptual block diagram illustrating an example network migration system, in accordance with various embodiments of the subject technology;



FIG. 2 illustrates an example of a network environment, in accordance with an embodiment;



FIG. 3 illustrates an example of a network environment for migration, in accordance with an embodiment;



FIG. 4 shows an example process for assisting a network migration, in accordance with various embodiments of the subject technology; and



FIGS. 5A and 5B illustrate examples of systems in accordance with some embodiments.





DESCRIPTION OF EXAMPLE EMBODIMENTS

The detailed description set forth below is intended as a description of various configurations of embodiments and is not intended to represent the only configurations in which the subject matter of this disclosure can be practiced. The appended drawings are incorporated herein and constitute a part of the detailed description. The detailed description includes specific details for the purpose of providing a more thorough understanding of the subject matter of this disclosure. However, it will be clear and apparent that the subject matter of this disclosure is not limited to the specific details set forth herein and may be practiced without these details. In some instances, structures and components are shown in block diagram form in order to avoid obscuring the concepts of the subject matter of this disclosure.


Overview

Additional features and advantages of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or can be learned by practice of the herein disclosed principles. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the disclosure will become more fully apparent from the following description and appended claims, or can be learned by the practice of the principles set forth herein.


Various aspects of the subject technology relate to assisting with the migration of networked entities. A system may be configured to collect operations data for a service from at least one endpoint host in a network, calculate at least one metric for the service based on the operations data, retrieve a migration configuration and platform data for a target platform, generate a predicted cost for the migration configuration based on the migration configuration, the at least one metric, and the platform data, and provide the predicted cost for the migration configuration to a user.


According to some embodiments, a system may be configured to store operations data for a first configuration of a first set of networked entities on at least one source platform, wherein the operations data are associated with a service hosted on the networked entities on the at least one source platform. The system may receive a second configuration for migrating the service from the at least one source platform to at least one destination platform, wherein the at least one destination platform is associated with platform data associated with a second set of networked entities. The system may further generate a predicted cost for the second configuration based on the operations data and the platform data for the at least one destination platform and provide the predicted cost for the migration configuration to a user.


EXAMPLE EMBODIMENTS

Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustrative purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without departing from the spirit and scope of the disclosure.


Various embodiments of the subject technology relate to a system configured to assist a network administrator with the possible migration of networked entities from one network to another. The system may provide the network administrator with information, metrics, insights, candidate configurations, or other information that may help the network administrator determine whether to migrate one or more networked entities, how to migrate the one or more entities, predict changes in performance or cost associated with a migration configuration, and/or execute a migration.


A network administrator or a team of network administrators often manage a large number of networked entities. The entities may include applications, endpoint groups, tenants, virtual machines, or containers. Each of these networked entities has their own performance characteristics, resource requirements, and costs, which may all vary over time. There are also many options for hosting the various networked entities managed by the network administrators. For example, one or more networked entities may be hosted on one or more host platforms. These host platforms may include local machines, one or more machines in one or more enterprise networks, or cloud services platforms provided by third parties.


There are various considerations that network administrators should consider when deciding where to host networked entities. However, because of the complexity and lack of information on the various factors, some of the factors are not adequately considered when determining where to host or migrate networked entities. For example, the network administrators need to consider how a networked entity will perform on the host platform, the cost of hosting each networked entity on the host platform, and how the hosting configuration of the other networked entities will affect the networked entity. These considerations are often hard to predict, especially with respect to a large number of networked entities with a complex web of interoperability and interdependence.


Various embodiments of the subject technology address these and other technical problems by assisting network administrators by providing network administrators with guidance and information about various migration configurations and their associated costs. Aspects may relate to collecting operations data for networked entities and calculating various metrics for the networked entities based on the operations data. One or more migration configurations may be retrieved along with platform data for one or more host platforms. Using these inputs, a predicted cost for each migration configuration may be calculated and provided to a user.


Example embodiments described herein with reference to the accompanying figures provide an improvement to one or more aspects of existing methods and systems for optimizing performance of network migration systems and tools. Network migration plays an important role in the technological field of network management, internet/network security, datacenter technology, and other modern network related technologies that are rooted in computer technologies. Modern datacenter and network configurations are increasingly migrating either entirely or partially to cloud providers. Aspects of the subject technology reduce the time and computing resources (e.g., CPU, bandwidth, memory, etc.) needed to identify how a migration configuration affects the cost, performance, and/or computing resources needed by a data center or other network entity.



FIG. 1 is a conceptual block diagram illustrating an example network migration system 100, in accordance with various embodiments of the subject technology. The network migration system 100 can include a configuration manager 102, sensor(s) 104, a collector module 106, a data mover module 108, an analytics engine 110, and a presentation module 112. In FIG. 1, the analytics engine 110 is also shown in communication with out-of-band data sources 114, third party data sources 116, and a network controller 118.


The configuration manager 102 can be used to provision and maintain the sensors 104, including installing sensor software or firmware in various nodes of a network, configuring the sensors 104, updating the sensor software or firmware, among other sensor management tasks. For example, the sensors 104 can be implemented as virtual partition images (e.g., virtual machine (VM) images or container images), and the configuration manager 102 can distribute the images to host machines. In general, a virtual partition can be an instance of a VM, container, sandbox, or other isolated software environment. The software environment can include an operating system and application software. For software running within a virtual partition, the virtual partition can appear to be, for example, one of many servers or one of many operating systems executed on a single physical server. The configuration manager 102 can instantiate a new virtual partition or migrate an existing partition to a different physical server. The configuration manager 102 can also be used to configure the new or migrated sensor.


The configuration manager 102 can monitor the health of the sensors 104. For example, the configuration manager 102 can request for status updates and/or receive heartbeat messages, initiate performance tests, generate health checks, and perform other health monitoring tasks. In some embodiments, the configuration manager 102 can also authenticate the sensors 104. For instance, the sensors 104 can be assigned a unique identifier, such as by using a one-way hash function of a sensor's basic input/out system (BIOS) universally unique identifier (UUID) and a secret key stored by the configuration image manager 102. The UUID can be a large number that can be difficult for a malicious sensor or other device or component to guess. In some embodiments, the configuration manager 102 can keep the sensors 104 up to date by installing the latest versions of sensor software and/or applying patches. The configuration manager 102 can obtain these updates automatically from a local source or the Internet.


The sensors 104 can reside on various nodes of a network, such as a virtual partition (e.g., VM or container); a hypervisor or shared kernel managing one or more virtual partitions and/or physical servers, an application-specific integrated circuit (ASIC) of a switch, router, gateway, or other networking device, or a packet capture (pcap) appliance (e.g., a standalone packet monitor, a device connected to a network devices monitoring port, a device connected in series along a main trunk of a datacenter, or similar device), or other entity in a network. The sensors 104 can monitor network traffic between nodes, and send network traffic data and corresponding data (e.g., host data, process data, user data, etc.) to the collectors 108 for storage. For example, the sensors 104 can sniff packets being sent over its hosts' physical or virtual network interface card (NIC), or individual processes can be configured to report network traffic and corresponding data to the sensors 104. Incorporating the sensors 104 on multiple nodes and within multiple partitions of some nodes of the network can provide for robust capture of network traffic and corresponding data from each hop of data transmission. In some embodiments, each node of the network (e.g., VM, container, or other virtual partition, hypervisor, shared kernel, or physical server, ASIC, pcap, etc.) includes a respective sensor 104. However, it should be understood that various software and hardware configurations can be used to implement the sensor network 104.


As the sensors 104 capture communications and corresponding data, they can continuously send network traffic data to the collectors 108. The network traffic data can include metadata relating to a packet, a collection of packets, a flow, a bidirectional flow, a group of flows, a session, or a network communication of another granularity. That is, the network traffic data can generally include any information describing communication on all layers of the Open Systems Interconnection (OSI) model. For example, the network traffic data can include source/destination MAC address, source/destination IP address, protocol, port number, etc. In some embodiments, the network traffic data can also include summaries of network activity or other network statistics such as number of packets, number of bytes, number of flows, bandwidth usage, response time, latency, packet loss, jitter, and other network statistics.


The sensors 104 can also determine additional data, included as part of gathered network traffic data, for each session, bidirectional flow, flow, packet, or other more granular or less granular network communication. The additional data can include host and/or endpoint information, virtual partition information, sensor information, process information, user information, tenant information, application information, network topology, application dependency mapping, cluster information, or other information corresponding to each flow.


In some embodiments, the sensors 104 can perform some preprocessing of the network traffic and corresponding data before sending the data to the collectors 108. For example, the sensors 104 can remove extraneous or duplicative data or they can create summaries of the data (e.g., latency, number of packets per flow, number of bytes per flow, number of flows, etc.). In some embodiments, the sensors 104 can be configured to only capture certain types of network information and disregard the rest. In some embodiments, the sensors 104 can be configured to capture only a representative sample of packets (e.g., every 1,000th packet or other suitable sample rate) and corresponding data.


Since the sensors 104 can be located throughout the network, network traffic and corresponding data can be collected from multiple vantage points or multiple perspectives in the network to provide a more comprehensive view of network behavior. The capture of network traffic and corresponding data from multiple perspectives rather than just at a single sensor located in the data path or in communication with a component in the data path, allows the data to be correlated from the various data sources, which can be used as additional data points by the analytics engine 110. Further, collecting network traffic and corresponding data from multiple points of view ensures more accurate data is captured. For example, a conventional sensor network can be limited to sensors running on external-facing network devices (e.g., routers, switches, network appliances, etc.) such that east-west traffic, including VM-to-VM or container-to-container traffic on a same host, may not be monitored. In addition, packets that are dropped before traversing a network device or packets containing errors cannot be accurately monitored by the conventional sensor network. The sensor network 104 of various embodiments substantially mitigates or eliminates these issues altogether by locating sensors at multiple points of potential failure. Moreover, the network migration system 100 can verify multiple instances of data for a flow (e.g., source endpoint flow data, network device flow data, and endpoint flow data) against one another.


In some embodiments, the network migration system 100 can assess a degree of accuracy of flow data sets from multiple sensors and utilize a flow data set from a single sensor determined to be the most accurate and/or complete. The degree of accuracy can be based on factors such as network topology (e.g., a sensor closer to the source can be more likely to be more accurate than a sensor closer to the destination), a state of a sensor or a node hosting the sensor (e.g., a compromised sensor/node can have less accurate flow data than an uncompromised sensor/node), or flow data volume (e.g., a sensor capturing a greater number of packets for a flow can be more accurate than a sensor capturing a smaller number of packets).


In some embodiments, the network migration system 100 can assemble the most accurate flow data set and corresponding data from multiple sensors. For instance, a first sensor along a data path can capture data for a first packet of a flow but can be missing data for a second packet of the flow while the situation is reversed for a second sensor along the data path. The network migration system 100 can assemble data for the flow from the first packet captured by the first sensor and the second packet captured by the second sensor.


As discussed, the sensors 104 can send network traffic and corresponding data to the collectors 106. In some embodiments, each sensor can be assigned to a primary collector and a secondary collector as part of a high availability scheme. If the primary collector fails or communications between the sensor and the primary collector are not otherwise possible, a sensor can send its network traffic and corresponding data to the secondary collector. In other embodiments, the sensors 104 are not assigned specific collectors but the network migration system 100 can determine an optimal collector for receiving the network traffic and corresponding data through a discovery process. In such embodiments, a sensor can change where it sends it network traffic and corresponding data if its environments changes, such as if a default collector fails or if the sensor is migrated to a new location and it would be optimal for the sensor to send its data to a different collector. For example, it can be preferable for the sensor to send its network traffic and corresponding data on a particular path and/or to a particular collector based on latency, shortest path, monetary cost (e.g., using private resources versus a public resources provided by a public cloud provider), error rate, or some combination of these factors. In other embodiments, a sensor can send different types of network traffic and corresponding data to different collectors. For example, the sensor can send first network traffic and corresponding data related to one type of process to one collector and second network traffic and corresponding data related to another type of process to another collector.


The collectors 106 can be any type of storage medium that can serve as a repository for the network traffic and corresponding data captured by the sensors 104. In some embodiments, data storage for the collectors 106 is located in an in-memory database, such as dashDB from IBM®, although it should be appreciated that the data storage for the collectors 106 can be any software and/or hardware capable of providing rapid random access speeds typically used for analytics software. In various embodiments, the collectors 106 can utilize solid state drives, disk drives, magnetic tape drives, or a combination of the foregoing according to cost, responsiveness, and size requirements. Further, the collectors 106 can utilize various database structures such as a normalized relational database or a NoSQL database, among others.


In some embodiments, the collectors 106 can only serve as network storage for the network migration system 100. In such embodiments, the network migration system 100 can include a data mover module 108 for retrieving data from the collectors 106 and making the data available to network clients, such as the components of the analytics engine 110. In effect, the data mover module 108 can serve as a gateway for presenting network-attached storage to the network clients. In other embodiments, the collectors 106 can perform additional functions, such as organizing, summarizing, and preprocessing data. For example, the collectors 106 can tabulate how often packets of certain sizes or types are transmitted from different nodes of the network. The collectors 106 can also characterize the traffic flows going to and from various nodes. In some embodiments, the collectors 106 can match packets based on sequence numbers, thus identifying traffic flows and connection links. As it can be inefficient to retain all data indefinitely in certain circumstances, in some embodiments, the collectors 106 can periodically replace detailed network traffic data with consolidated summaries. In this manner, the collectors 106 can retain a complete dataset describing one period (e.g., the past minute or other suitable period of time), with a smaller dataset of another period (e.g., the previous 2-10 minutes or other suitable period of time), and progressively consolidate network traffic and corresponding data of other periods of time (e.g., day, week, month, year, etc.). In some embodiments, network traffic and corresponding data for a set of flows identified as normal or routine can be winnowed at an earlier period of time while a more complete data set can be retained for a lengthier period of time for another set of flows identified as anomalous or as an attack.


The analytics engine 110 can generate analytics using data collected by the sensors 104. Analytics generated by the analytics engine 110 can include applicable analytics of nodes or a cluster of nodes operating in a network. For example, analytics generated by the analytics engine 110 can include one or a combination of information related to flows of data through nodes, detected attacks on a network or nodes of a network, applications at nodes or distributed across the nodes, application dependency mappings for applications at nodes, policies implemented at nodes, and actual policies enforced at nodes.


In some embodiments, the analytics engine 110 can be used to generate various metrics regarding one or more migration configurations for networked entities. The metrics may relate to a monetary cost, performance metrics, etc. For example, a migration configuration may assign a number of networked entities to one or more host platforms. Based on the information contained in the data lake 130, the analytics engine may determine metrics associated with the placement of each of the networked entities in the migration configuration at the assigned host platform.


The analytics engine 110 can include a data lake 130, an application dependency mapping (ADM) module 140, and elastic processing engines 150. The data lake 130 is a large-scale storage repository that provides massive storage for various types of data, enormous processing power, and the ability to handle nearly limitless concurrent tasks or jobs. In some embodiments, the data lake 130 is implemented using the Hadoop® Distributed File System (HDFS™) from Apache® Software Foundation of Forest Hill, Md. HDFS™ is a highly scalable and distributed file system that can scale to thousands of cluster nodes, millions of files, and petabytes of data. HDFS™ is optimized for batch processing where data locations are exposed to allow computations to take place where the data resides. HDFS™ provides a single namespace for an entire cluster to allow for data coherency in a write-once, read-many access model. That is, clients can only append to existing files in the node. In HDFS™, files are separated into blocks, which are typically 64 MB in size and are replicated in multiple data nodes. Clients access data directly from data nodes.


In some embodiments, the data mover 108 receives raw network traffic and corresponding data from the collectors 106 and distributes or pushes the data to the data lake 130. The data lake 130 can also receive and store out-of-band data 114, such as statuses on power levels, network availability, server performance, temperature conditions, cage door positions, and other data from internal sources, and third party data 116, such as platform data for a host platform, security reports (e.g., provided by Cisco® Systems, Inc. of San Jose, Calif., Arbor Networks® of Burlington, Mass., Symantec® Corp. of Sunnyvale, Calif., Sophos® Group plc of Abingdon, England, Microsoft® Corp. of Seattle, Wash., Verizon® Communications, Inc. of New York, N.Y., among others), geolocation data, IP watch lists, Whois data, configuration management database (CMDB) or configuration management system (CMS) as a service, and other data from external sources. In other embodiments, the data lake 130 can instead fetch or pull raw traffic and corresponding data from the collectors 106 and relevant data from the out-of-band data sources 114 and the third party data sources 116. In yet other embodiments, the functionality of the collectors 106, the data mover 108, the out-of-band data sources 114, the third party data sources 116, and the data lake 130 can be combined. Various combinations and configurations are possible as would be known to one of ordinary skill in the art.


Each component of the data lake 130 can perform certain processing of the raw network traffic data and/or other data (e.g., host data, process data, user data, out-of-band data or third party data) to transform the raw data to a form useable by the elastic processing engines 150. In some embodiments, the data lake 130 can include repositories for flow attributes 132, host and/or endpoint attributes 134, process attributes 136, and policy attributes 138. In some embodiments, the data lake 130 can also include repositories for VM or container attributes, application attributes, tenant attributes, network topology, application dependency maps, cluster attributes, etc.


The flow attributes 132 relate to information about flows traversing the network. A flow is generally one or more packets sharing certain attributes that are sent within a network within a specified period of time. The flow attributes 132 can include packet header fields such as a source address (e.g., Internet Protocol (IP) address, Media Access Control (MAC) address, Domain Name System (DNS) name, or other network address), source port, destination address, destination port, protocol type, class of service, among other fields. The source address can correspond to a first endpoint (e.g., network device, physical server, virtual partition, etc.) of the network, and the destination address can correspond to a second endpoint, a multicast group, or a broadcast domain. The flow attributes 132 can also include aggregate packet data such as flow start time, flow end time, number of packets for a flow, number of bytes for a flow, the union of TCP flags for a flow, among other flow data.


The host and/or endpoint attributes 134 describe host and/or endpoint data for each flow, and can include host and/or endpoint name, network address, operating system, CPU usage, network usage, disk space, ports, logged users, scheduled jobs, open files, and information regarding files and/or directories stored on a host and/or endpoint (e.g., presence, absence, or modifications of log files, configuration files, device special files, or protected electronic information). As discussed, in some embodiments, the host and/or endpoints attributes 134 can also include the out-of-band data 114 regarding hosts such as power level, temperature, and physical location (e.g., room, row, rack, cage door position, etc.) or the third party data 116 such as whether a host and/or endpoint is on an IP watch list or otherwise associated with a security threat, Whois data, or geocoordinates. In some embodiments, the out-of-band data 114 and the third party data 116 can be associated by platform, process, user, flow, or other more granular or less granular network element or network communication.


The process attributes 136 relate to process data corresponding to each flow, and can include process name (e.g., bash, httpd, netstat, etc.), ID, parent process ID, path (e.g., /usr2/username/bin/, /usr/local/bin, /usr/bin, etc.), CPU utilization, memory utilization, memory address, scheduling information, nice value, flags, priority, status, start time, terminal type, CPU time taken by the process, the command that started the process, and information regarding a process owner (e.g., user name, ID, user's real name, e-mail address, user's groups, terminal information, login time, expiration date of login, idle time, and information regarding files and/or directories of the user).


The policy attributes 138 contain information relating to network policies. Policies establish whether a particular flow is allowed or denied by the network as well as a specific route by which a packet traverses the network. Policies can also be used to mark packets so that certain kinds of traffic receive differentiated service when used in combination with queuing techniques such as those based on priority, fairness, weighted fairness, token bucket, random early detection, round robin, among others. The policy attributes 138 can include policy statistics such as a number of times a policy was enforced or a number of times a policy was not enforced. The policy attributes 138 can also include associations with network traffic data. F or example, flows found to be non-conformant can be linked or tagged with corresponding policies to assist in the investigation of non-conformance.


The analytics engine 110 can include any number of engines 150, including for example, a flow engine 152 for identifying flows (e.g., flow engine 152) or an attacks engine 154 for identify attacks to the network. In some embodiments, the analytics engine can include a separate distributed denial of service (DDoS) attack engine 155 for specifically detecting DDoS attacks. In other embodiments, a DDoS attack engine can be a component or a sub-engine of a general attacks engine. In some embodiments, the attacks engine 154 and/or the DDoS engine 155 can use machine learning techniques to identify security threats to a network. For example, the attacks engine 154 and/or the DDoS engine 155 can be provided with examples of network states corresponding to an attack and network states corresponding to normal operation. The attacks engine 154 and/or the DDoS engine 155 can then analyze network traffic data to recognize when the network is under attack. In some embodiments, the network can operate within a trusted environment for a time to establish a baseline for normal network operation for the attacks engine 154 and/or the DDoS.


The analytics engine 110 can further include a search engine 156. The search engine 156 can be configured, for example to perform a structured search, an NLP (Natural Language Processing) search, or a visual search. Data can be provided to the engines from one or more processing components.


The analytics engine 110 can also include a policy engine 158 that manages network policy, including creating and/or importing policies, monitoring policy conformance and non-conformance, enforcing policy, simulating changes to policy or network elements affecting policy, among other policy-related tasks.


The ADM module 140 can determine dependencies of applications of the network. That is, particular patterns of traffic can correspond to an application, and the interconnectivity or dependencies of the application can be mapped to generate a graph for the application (i.e., an application dependency mapping). In this context, an application refers to a set of networking components that provides connectivity for a given set of workloads. For example, in a conventional three-tier architecture for a web application, first endpoints of the web tier, second endpoints of the application tier, and third endpoints of the data tier make up the web application. The ADM module 140 can receive input data from various repositories of the data lake 130 (e.g., the flow attributes 132, the host and/or endpoint attributes 134, the process attributes 136, etc.). The ADM module 140 can analyze the input data to determine that there is first traffic flowing between external endpoints on port 80 of the first endpoints corresponding to Hypertext Transfer Protocol (HTTP) requests and responses. The input data can also indicate second traffic between first ports of the first endpoints and second ports of the second endpoints corresponding to application server requests and responses and third traffic flowing between third ports of the second endpoints and fourth ports of the third endpoints corresponding to database requests and responses. The ADM module 140 can define an ADM for the web application as a three-tier application including a first EPG comprising the first endpoints, a second EPG comprising the second endpoints, and a third EPG comprising the third endpoints.


The presentation module 116 can include an application programming interface (API) or command line interface (CLI) 160, a security information and event management (SIEM) interface 162, and a web front-end 164. As the analytics engine 110 processes network traffic and corresponding data and generates analytics data, the analytics data may not be in a human-readable form or it can be too voluminous for a user to navigate. The presentation module 116 can take the analytics data generated by analytics engine 110 and further summarize, filter, and organize the analytics data as well as create intuitive presentations for the analytics data.


In some embodiments, the API or CLI 160 can be implemented using Hadoop® Hive from Apache® for the back end, and Java® Database Connectivity (JDBC) from Oracle® Corporation of Redwood Shores, Calif., as an API layer. Hive is a data warehouse infrastructure that provides data summarization and ad hoc querying. Hive provides a mechanism to query data using a variation of structured query language (SQL) that is called HiveQL. JDBC is an API for the programming language Java®, which defines how a client can access a database.


In some embodiments, the SIEM interface 162 can be implemented using Hadoop® Kafka for the back end, and software provided by Splunk®, Inc. of San Francisco, Calif. as the SIEM platform. Kafka is a distributed messaging system that is partitioned and replicated. Kafka uses the concept of topics. Topics are feeds of messages in specific categories. In some embodiments, Kafka can take raw packet captures and telemetry information from the data mover 108 as input, and output messages to a SIEM platform, such as Splunk®. The Splunk® platform is utilized for searching, monitoring, and analyzing machine-generated data.


In some embodiments, the web front-end 164 can be implemented using software provided by MongoDB®, Inc. of New York, N.Y. and Hadoop® ElasticSearch from Apache® for the back-end, and Ruby on Rails™ as the web application framework. MongoDB® is a document-oriented NoSQL database based on documents in the form of JavaScript® Object Notation (JSON) with dynamic schemas. ElasticSearch is a scalable and real-time search and analytics engine that provides domain-specific language (DSL) full querying based on JSON. Ruby on Rails™ is model-view-controller (MVC) framework that provides default structures for a database, a web service, and web pages. Ruby on Rails™ relies on web standards such as JSON or extensible markup language (XML) for data transfer, and hypertext markup language (HTML), cascading style sheets, (CSS), and JavaScript® for display and user interfacing.


Although FIG. 1 illustrates an example configuration of the various components of a network migration system, those of skill in the art will understand that the components of the network migration system 100 or any system described herein can be configured in a number of different ways and can include any other type and number of components. For example, the sensors 104, the collectors 106, the data mover 108, and the data lake 130 can belong to one hardware and/or software module or multiple separate modules. Other modules can also be combined into fewer components and/or further divided into more components.



FIG. 2 illustrates an example of a network environment 200, in accordance with an embodiment. In some embodiments, a network migration system, such as the network migration system 100 of FIG. 1, can be implemented in the network environment 200. It should be understood that, for the network environment 200 and any environment discussed herein, there can be additional or fewer nodes, devices, links, networks, or components in similar or alternative configurations. Embodiments with different numbers and/or types of clients, networks, nodes, cloud components, servers, software components, devices, virtual or physical resources, configurations, topologies, services, appliances, deployments, or network devices are also contemplated herein. Further, the network environment 200 can include any number or type of resources, which can be accessed and utilized by clients or tenants. The illustrations and examples provided herein are for clarity and simplicity.


The network environment 200 can include a network fabric 202, a Layer 2 (L2) network 204, a Layer 3 (L3) network 206, and servers 208a, 208b, 208c, 208d, and 208e (collectively, 208). The network fabric 202 can include spine switches 210a, 210b, 210c, and 210d (collectively, “210”) and leaf switches 212a, 212b, 212c, 212d, and 212e (collectively, “212”). The spine switches 210 can connect to the leaf switches 212 in the network fabric 202. The leaf switches 212 can include access ports (or non-fabric ports) and fabric ports. The fabric ports can provide uplinks to the spine switches 210, while the access ports can provide connectivity to endpoints (e.g., the servers 208), internal networks (e.g., the L2 network 204), or external networks (e.g., the L3 network 206).


The leaf switches 212 can reside at the edge of the network fabric 202, and can thus represent the physical network edge. For instance, in some embodiments, the leaf switches 212d and 212e operate as border leaf switches in communication with edge devices 214 located in the external network 206. The border leaf switches 212d and 212e can be used to connect any type of external network device, service (e.g., firewall, deep packet inspector, traffic monitor, load balancer, etc.), or network (e.g., the L3 network 206) to the fabric 202.


Although the network fabric 202 is illustrated and described herein as an example leaf-spine architecture, one of ordinary skill in the art will readily recognize that various embodiments can be implemented based on any network topology, including any datacenter or cloud network fabric. Indeed, other architectures, designs, infrastructures, and variations are contemplated herein. For example, the principles disclosed herein are applicable to topologies including three-tier (including core, aggregation, and access levels), fat tree, mesh, bus, hub and spoke, etc. Thus, in some embodiments, the leaf switches 212 can be top-of-rack switches configured according to a top-of-rack architecture. In other embodiments, the leaf switches 212 can be aggregation switches in any particular topology, such as end-of-row or middle-of-row topologies. In some embodiments, the leaf switches 212 can also be implemented using aggregation switches.


Moreover, the topology illustrated in FIG. 2 and described herein is readily scalable and can accommodate a large number of components, as well as more complicated arrangements and configurations. For example, the network can include any number of fabrics 202, which can be geographically dispersed or located in the same geographic area. Thus, network nodes can be used in any suitable network topology, which can include any number of servers, virtual machines or containers, switches, routers, appliances, controllers, gateways, or other nodes interconnected to form a large and complex network. Nodes can be coupled to other nodes or networks through one or more interfaces employing any suitable wired or wireless connection, which provides a viable pathway for electronic communications.


Network communications in the network fabric 202 can flow through the leaf switches 212. In some embodiments, the leaf switches 212 can provide endpoints (e.g., the servers 208), internal networks (e.g., the L2 network 204), or external networks (e.g., the L3 network 206) access to the network fabric 202, and can connect the leaf switches 212 to each other. In some embodiments, the leaf switches 212 can connect endpoint groups (EPGs) to the network fabric 202, internal networks (e.g., the L2 network 204), and/or any external networks (e.g., the L3 network 206). EPGs are groupings of applications, or application components, and tiers for implementing forwarding and policy logic. EPGs can allow for separation of network policy, security, and forwarding from addressing by using logical application boundaries. EPGs can be used in the network environment 200 for mapping applications in the network. For example, EPGs can comprise a grouping of endpoints in the network indicating connectivity and policy for applications.


As discussed, the servers 208 can connect to the network fabric 202 via the leaf switches 212. For example, the servers 208a and 208b can connect directly to the leaf switches 212a and 212b, which can connect the servers 208a and 208b to the network fabric 202 and/or any of the other leaf switches. The servers 208c and 208d can connect to the leaf switches 212b and 212c via the L2 network 204. The servers 208c and 208d and the L2 network 204 make up a local area network (LAN). LANs can connect nodes over dedicated private communications links located in the same general physical location, such as a building or campus.


The WAN 206 can connect to the leaf switches 212d or 212e via the L3 network 206. WANs can connect geographically dispersed nodes over long-distance communications links, such as common carrier telephone lines, optical light paths, synchronous optical networks (SONET), or synchronous digital hierarchy (SDH) links. LANs and WANs can include L2 and/or L3 networks and endpoints.


The Internet is an example of a WAN that connects disparate networks throughout the world, providing global communication between nodes on various networks. The nodes typically communicate over the network by exchanging discrete frames or packets of data according to predefined protocols, such as the Transmission Control Protocol/Internet Protocol (TCP/IP). In this context, a protocol can refer to a set of rules defining how the nodes interact with each other. Computer networks can be further interconnected by an intermediate network node, such as a router, to extend the effective size of each network. The endpoints 208 can include any communication device or component, such as a computer, server, blade, hypervisor, virtual machine, container, process (e.g., running on a virtual machine), switch, router, gateway, host, device, external network, etc.


In some embodiments, the network environment 200 also includes a network controller running on the host 208a. The network controller is implemented using the Application Policy Infrastructure Controller (APIC™) from Cisco®. The APIC™ provides a centralized point of automation and management, policy programming, application deployment, and health monitoring for the fabric 202. In some embodiments, the APIC™ is operated as a replicated synchronized clustered controller. In other embodiments, other configurations or software-defined networking (SDN) platforms can be utilized for managing the fabric 202.


In some embodiments, a physical server 208 can have instantiated thereon a hypervisor 216 for creating and running one or more virtual switches (not shown) and one or more virtual machines 218, as shown for the host 208b. In other embodiments, physical servers can run a shared kernel for hosting containers. In yet other embodiments, the physical server 208 can run other software for supporting other virtual partitioning approaches. Networks in accordance with various embodiments can include any number of physical servers hosting any number of virtual machines, containers, or other virtual partitions. Hosts can also comprise blade/physical servers without virtual machines, containers, or other virtual partitions, such as the servers 208a, 208c, 208d, and 208e.


The network environment 200 can also integrate a network migration system, such as the network migration system 100 shown in FIG. 1. For example, the network migration system of FIG. 2 includes sensors 220a, 220b, 220c, and 220d (collectively, “220”), collectors 222, and an analytics engine, such as the analytics engine 110 of FIG. 1, executing on the server 208e. The analytics engine 208e can receive and process network traffic data collected by the collectors 222 and detected by the sensors 220 placed on nodes located throughout the network environment 200. Although the analytics engine 208e is shown to be a standalone network appliance in FIG. 2, it will be appreciated that the analytics engine 208e can also be implemented as a virtual partition (e.g., VM or container) that can be distributed onto a host or cluster of hosts, software as a service (SaaS), or other suitable method of distribution. In some embodiments, the sensors 220 run on the leaf switches 212 (e.g., the sensor 220a), the hosts 208 (e.g., the sensor 220b), the hypervisor 216 (e.g., the sensor 220c), and the VMs 218 (e.g., the sensor 220d). In other embodiments, the sensors 220 can also run on the spine switches 210, virtual switches, service appliances (e.g., firewall, deep packet inspector, traffic monitor, load balancer, etc.) and in between network elements. In some embodiments, sensors 220 can be located at each (or nearly every) network component to capture granular packet statistics and data at each hop of data transmission. In other embodiments, the sensors 220 may not be installed in all components or portions of the network (e.g., shared hosting environment in which customers have exclusive control of some virtual machines).


As shown in FIG. 2, a host can include multiple sensors 220 running on the host (e.g., the host sensor 220b) and various components of the host (e.g., the hypervisor sensor 220c and the VM sensor 220d) so that all (or substantially all) packets traversing the network environment 200 can be monitored. For example, if one of the VMs 218 running on the host 208b receives a first packet from the WAN 206, the first packet can pass through the border leaf switch 212d, the spine switch 210b, the leaf switch 212b, the host 208b, the hypervisor 216, and the VM. Since all or nearly all of these components contain a respective sensor, the first packet will likely be identified and reported to one of the collectors 222. As another example, if a second packet is transmitted from one of the VMs 218 running on the host 208b to the host 208d, sensors installed along the data path, such as at the VM 218, the hypervisor 216, the host 208b, the leaf switch 212b, and the host 208d will likely result in capture of metadata from the second packet.


The network migration system 100 shown in FIG. 1 can be used to gather network traffic data and generate analytics for networked entities. Specifically, the network migration system 100 can gather network traffic data and generate analytics for networked entities within one or more networks or host platforms. Although FIG. 2 illustrates one network environment 200, in some embodiments, a network migration system may communicate with multiple network environments (e.g., other host platforms) and/or multiple network fabrics.


In some cases, a network administrator may wish to migrate applications, services, or other networked entities from one host platform to another. Migration may allow for reduce costs, increased performance, improved scalability, or other advantages.



FIG. 3 illustrates an example of a network environment 300 for migration, in accordance with an embodiment. The network environment 300 includes a first host platform 302 and a second host platform 304 for illustrative purposes with the understanding that additional host platforms are also contemplated. The first host platform 302 may be, for example, an enterprise network while the second host platform 304 may be a cloud services platform provided by a third party.


The network administrator may contemplate a migration configuration for migrating application 314, currently hosted on one or more machines 312 or virtual machines (VMs) of the first host platform 302, to one or more machines 320 or host machines of the second host platform 304. Although FIG. 3 illustrates application 314 being hosted by a single machine 312 or virtual machine, in some cases, the application may be hosted by multiple machines or VMs on a source host platform and can be migrated to multiple machines or VMs on a destination host platform. Furthermore, the machines/VMs on the source host platform may have different specifications and capabilities from the machines/VMs on the destination host platform.


According to various embodiments of the subject technology, the migration of the application 314 from the source host platform to the destination host platform is not a mere cloning of a machine on the source host platform onto a machine on the destination host platform. In many cases, each machine (or VM) may host multiple applications or services or parts of multiple applications or services.


As a result of the complexities of the various factors associated with migrating applications or services from one host platform to another host platform, network administrators are often unaware of the impact of a migration configuration with regards to cost and performance. Even in cases where an estimate for the cost and performance is provided, the estimates are often highly inaccurate and misleading. Embodiments of the subject technology leverage the network migration system 100 shown in FIG. 1 to provide more accurate estimates of the costs and performance associated with a migration configuration.



FIG. 4 shows an example process 400 for assisting a network migration, in accordance with various embodiments of the subject technology. It should be understood that, for any process discussed herein, there can be additional, fewer, or alternative steps performed in similar or alternative orders, or in parallel, within the scope of the various embodiments unless otherwise stated. The process 400 can be performed by a network migration system or similar system.


At operation 405, the system collects operations data for a service from at one or more sensors. The sensors may be deployed on endpoints or other nodes in one or more networks and eventually provided to an analytics engine for processing (e.g., via collectors and a data mover as illustrated in FIG. 1). A service may be any logical construct configured to serve a function in the networking environment. In some cases more than one service may operate on a single physical machine in the networking environment. The service may be in the form of, for example, an application or portion of an application hosted on one or more endpoints managed by a network administrator, an endpoint group configured to serve a function, etc. In some embodiments, the sensors can perform some preprocessing of the network traffic and corresponding data before sending the data to the collectors. In other embodiments, the data may be processed at the collectors, data mover, and/or the analytics engine.


The collected operations data associated with one or more services in a network environment may include data flows (e.g., network traffic) between services, an amount of processor time needed by each service, an amount of memory needed for each service, an amount of storage/disk space needed for each service, a number (or listing) of host entities that the service runs on, identifiers or specifications for each host entity that the service runs on, or other computing resources needed for each service. The data flow information may be for one or more periods of time and include an amount of data transferred by a service, an amount of data received by the service, an amount of data transferred from the service to another specified service. The collected operations data may be stored in a database in one or more records keyed to an identifier (e.g., a name or ID) for each service.


At operation 410, one or more metrics for the service is calculated based on the collected operations data. The metrics may include average values, max/min values, trends, or other metrics for collected operations data. The metrics may be based on the operation data for a service running on a particular host (e.g., an endpoint machine) and/or the service running across all hosts in the network environment.


At operations 415, the system may also retrieve a migration configuration and platform data for a target platform. The platform data may be retrieved from a third party via the network (e.g. a system associated with the target platform) and may include data associated with the target platform. For example, the platform data may include one or more physical locations where the target platform is located, pricing information for the target platform, target platform features and options, hardware and/or software specifications for host entities (e.g., endpoint machines, virtual machines, containers, etc.), or platform options. The pricing information may include flat fees, fees based on usage, fees based on features used, or a combination of various fees.


The migration configuration may be received from a network administrator. For example, the system may provide a user interface accessible via the network for a network administrator to alter a current configuration of networked entities and/or generate a migration configuration for the networked entities and submit the migration configuration to the system. According to other embodiments, the system may generate the migration configuration based on the collected operations data, metrics generated based on the operations data, the platform data, or other information. For example, the network administrator may provide additional preferences or constraints based on which one or more migration configurations may be generated.


At operation 420, the system generates a predicted cost for the migration configuration based on the migration configuration, the at least one generated metric, and the platform data. For example, the migration configuration may specify that a service (e.g., a web application) is to be migrated from a source platform (e.g., an enterprise network) to a destination platform (e.g., a cloud provider platform). The system may calculate, based on the operations data and the migration configuration, the amount of resourced needed at on the destination platform and determine, based on the platform data (e.g., hardware and/or software specifications for the destination platform) for the destination platform, how to effectively provision those resources on the destination platform.


Based on the provisioning and the pricing information for the destination platform, the system may calculate a predicted cost for the migration configuration. The predicted cost may include the cost of migrating the service from the source platform to the destination platform as well as operational costs of hosting the service on the destination platform over time. For example, the metrics calculated based on the received operations data may include an average amount of data transmitted to and from the service to be migrated for a billing period. Based on this information (and other such information), the system may calculate a predicted cost for the service to be migrated to the destination platform. According to some embodiments, the cost may also include a cost of power, compute/network resources, or other factors of an on-premise data-center.


In conventional systems, an accurate calculation of the cost of a migration is difficult to calculate because there was no access to this type of operations data. According to various embodiments of the subject technology, a more accurate calculation of the cost of migration can be obtained because the system is able to collect information regarding how much data is transmitted to and from a service. Because multiple services may reside on a single host entity, conventional systems were not able to accurately detect and collect this information. For example, embodiments of the subject technology are able to track data transmitted to and from one service (e.g., a web application) on a host entity to another service (e.g., a backend database application) residing on the same host entity. This data flow would not occur in the network and thus would not be visible to some implementations. However, the sensors discussed with respect to the embodiments of the subject technology are able to detect and monitor data flows such as these.


At operation 425, the system may provide the predicted cost for the migration configuration to the network administrator. For example, the system may provide a user interface accessible via the network for the network administrator view the predicted cost and other information relating to the migration configuration. For example, the system may also calculate a cost for a second configuration, generate a comparison between the cost of the first configuration and the second configuration, and provide the comparison to the user. The second configuration can be, for example, a current or existing configuration on the source platform or another configuration option. In some embodiments, the actual cost of operation of the current or existing configuration may be compared to the predicted cost for the migration configuration. The system may also provide a recommended configuration for a migration based on the predicted costs and comparisons of the costs.


In some cases, the migration of one or more services from an initial configuration to a second configuration may affect the performance of the services in ways that can be hard to predict. For example, moving services that may be collocated on the same host machine or in the same geographical location to another location of a destination host platform may introduce latency into the operations of the services. This increased latency may further cause additional operational effects (e.g., increased timeout events, etc.). In other cases, performance may be improved based on, for example, increased capabilities of the destination platform and/or moving services closer to other services that interact with the migrated services in order to reduce latency.


According to some embodiments, the system may further calculate one or more performance metrics based on the operations data, generated metrics, and the platform data. The performance metrics for the source platform and/or the existing configuration may be compared to the performance metrics for the destination platform and/or the migration configuration. The performance metrics and/or the comparison may be provided to a network administrator. Furthermore, the performance metrics and/or the comparison may be used to select a recommended migration configuration. This information may be valuable for resource planning and setting performance expectations.



FIG. 5A and FIG. 5B illustrate systems in accordance with various embodiments. The more appropriate system will be apparent to those of ordinary skill in the art when practicing the various embodiments. Persons of ordinary skill in the art will also readily appreciate that other systems are possible.



FIG. 5A illustrates an example architecture for a conventional bus computing system 500 wherein the components of the system are in electrical communication with each other using a bus 505. The computing system 500 can include a processing unit (CPU or processor) 510 and a system bus 505 that may couple various system components including the system memory 515, such as read only memory (ROM) in a storage device 520 and random access memory (RAM) 525, to the processor 510. The computing system 500 can include a cache 512 of high-speed memory connected directly with, in close proximity to, or integrated as part of the processor 510. The computing system 500 can copy data from the memory 515 and/or the storage device 530 to the cache 512 for quick access by the processor 510. In this way, the cache 512 can provide a performance boost that avoids processor delays while waiting for data. These and other modules can control or be configured to control the processor 510 to perform various actions. Other system memory 515 may be available for use as well. The memory 515 can include multiple different types of memory with different performance characteristics. The processor 510 can include any general purpose processor and a hardware module or software module, such as module 1532, module 2534, and module 3536 stored in storage device 530, configured to control the processor 510 as well as a special-purpose processor where software instructions are incorporated into the actual processor design. The processor 510 may essentially be a completely self-contained computing system, containing multiple cores or processors, a bus, memory controller, cache, etc. A multi-core processor may be symmetric or asymmetric.


To enable user interaction with the computing system 500, an input device 545 can represent any number of input mechanisms, such as a microphone for speech, a touch-protected screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 535 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems can enable a user to provide multiple types of input to communicate with the computing system 500. The communications interface 540 can govern and manage the user input and system output. There may be no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.


Storage device 530 can be a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 525, read only memory (ROM) 520, and hybrids thereof.


The storage device 530 can include software modules 532, 534, 536 for controlling the processor 510. Other hardware or software modules are contemplated. The storage device 530 can be connected to the system bus 505. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as the processor 510, bus 505, output device 535, and so forth, to carry out the function.



FIG. 5B illustrates an example architecture for a conventional chipset computing system 550 that can be used in accordance with an embodiment. The computing system 550 can include a processor 555, representative of any number of physically and/or logically distinct resources capable of executing software, firmware, and hardware configured to perform identified computations. The processor 555 can communicate with a chipset 560 that can control input to and output from the processor 555. In this example, the chipset 560 can output information to an output device 565, such as a display, and can read and write information to storage device 570, which can include magnetic media, and solid state media, for example. The chipset 560 can also read data from and write data to RAM 575. A bridge 580 for interfacing with a variety of user interface components 585 can be provided for interfacing with the chipset 560. The user interface components 585 can include a keyboard, a microphone, touch detection and processing circuitry, a pointing device, such as a mouse, and so on. Inputs to the computing system 550 can come from any of a variety of sources, machine generated and/or human generated.


The chipset 560 can also interface with one or more communication interfaces 590 that can have different physical interfaces. The communication interfaces 590 can include interfaces for wired and wireless LANs, for broadband wireless networks, as well as personal area networks. Some applications of the methods for generating, displaying, and using the GUI disclosed herein can include receiving ordered datasets over the physical interface or be generated by the machine itself by processor 555 analyzing data stored in the storage device 570 or the RAM 575. Further, the computing system 500 can receive inputs from a user via the user interface components 585 and execute appropriate functions, such as browsing functions by interpreting these inputs using the processor 555.


It will be appreciated that computing systems 500 and 550 can have more than one processor 510 and 555, respectively, or be part of a group or cluster of computing devices networked together to provide greater processing capability.


For clarity of explanation, in some instances the various embodiments may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.


In some embodiments the computer-readable storage devices, mediums, and memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.


Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.


Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, rackmount devices, standalone devices, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.


The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.


Although a variety of examples and other information was used to explain aspects within the scope of the appended claims, no limitation of the claims should be implied based on particular features or arrangements in such examples, as one of ordinary skill would be able to use these examples to derive a wide variety of implementations. Further and although some subject matter may have been described in language specific to examples of structural features and/or method steps, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to these described features or acts. For example, such functionality can be distributed differently or performed in components other than those identified herein. Rather, the described features and steps are disclosed as examples of components of systems and methods within the scope of the appended claims.

Claims
  • 1. A method comprising: collecting operations data for a service from at least one endpoint host executing the service in a network, the operations data comprising data flow information associated with the service from the at least one endpoint host;calculating at least one metric for the service based on the operations data, the at least one metric comprising trends of the data flow information;retrieving a migration configuration and platform data for a target platform;calculating a latency metric for the migration configuration based on the data flow information of the operations data, the at least one metric including the trends of the data flow information, and the platform data; andproviding the latency metric for the migration configuration to a user.
  • 2. The method of claim 1, further comprising: calculating a current performance of a current configuration;generating a comparison between the current performance of the current configuration and the latency metric for the migration configuration; andproviding the comparison to the user.
  • 3. The method of claim 1, wherein the migration configuration is received from a network administrator.
  • 4. The method of claim 1, wherein the operations data further comprises at least one of an amount of data transferred by the service, an amount of data received by the service, an amount of processor time needed by the service, an amount of memory needed for the service, an amount of storage needed for the service, a number of endpoint hosts on which the service runs, or specifications of the endpoint hosts on which the service runs.
  • 5. The method of claim 1, wherein the platform data comprises at least one of location, pricing information, features, specifications for endpoint hosts, or platform options.
  • 6. The method of claim 1, further comprising providing a recommended configuration for a migration based on the latency metric for the migration configuration.
  • 7. The method of claim 6, wherein the recommended configuration is the migration configuration.
  • 8. The method of claim 1, further comprising: calculating a predicted cost for the migration configuration based on the operations data and the platform data; andproviding the predicted cost for the migration configuration to the user.
  • 9. The method of claim 1, wherein the operations data is generated by sensors at the at least one endpoint host.
  • 10. The method of claim 1, wherein the endpoint host is one of a virtual machine, a container, a computing device.
  • 11. A non-transitory computer-readable medium comprising instructions, the instructions, when executed by a computing system, cause the computing system to: collect operations data for a service from at least one endpoint host executing the service in a network, the operations data comprising data flow information associated with the service from the at least one endpoint host;calculate at least one metric for the service based on the operations data, the at least one metric comprising trends of the data flow information;retrieve a migration configuration and platform data for a target platform;calculate a latency metric for the migration configuration based on the data flow information of the operations data, the at least one metric including the trends of the data flow information, and the platform data; andprovide the latency metric for the migration configuration to a user.
  • 12. The non-transitory computer-readable medium of claim 11, wherein the instructions further cause the computing system to: calculate a current performance of a current configuration;generate a comparison between the current performance of the current configuration and the latency metric for the migration configuration; andprovide the comparison to the user.
  • 13. The non-transitory computer-readable medium of claim 11, wherein the operations data further comprises at least one of an amount of data transferred by the service, an amount of data received by the service, an amount of processor time needed by the service, an amount of memory needed for the service, an amount of storage needed for the service, a number of endpoint hosts on which the service runs, or specifications of the endpoint hosts on which the service runs.
  • 14. A system comprising: a processor; anda non-transitory computer-readable medium storing instructions that, when executed by the system, cause the system to: collect operations data for a service from at least one endpoint host executing the service in a network, the operations data comprising data flow information associated with the service from the at least one endpoint host;calculate at least one metric for the service based on the operations data, the at least one metric comprising trends of the data flow information;retrieve a migration configuration and platform data for a target platform;calculate a latency metric for the migration configuration based on the data flow information of the operations data, the at least one metric including the trends of the data flow information, and the platform data; andprovide the latency metric for the migration configuration to a user.
  • 15. The system of claim 14, wherein the instructions further cause the system to: calculate a current performance of a current configuration;generate a comparison between the current performance of the current configuration and the latency metric for the migration configuration; andprovide the comparison to the user.
  • 16. The system of claim 14, wherein the migration configuration is received from a network administrator.
  • 17. The system of claim 14, wherein the instructions further cause the system to generate the migration configuration based on at least the operations data and the platform data.
  • 18. The system of claim 14, wherein the instructions further cause the system to: calculate a predicted cost for the migration configuration based on the operations data and the platform data; andprovide the predicted cost for the migration configuration to the user.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Continuation of, and claims priority to, U.S. Non-Provisional patent application Ser. No. 15/790,412, filed Oct. 23, 2017, which is incorporated herein by reference in its entirety.

US Referenced Citations (665)
Number Name Date Kind
5086385 Launey et al. Feb 1992 A
5319754 Meinecke et al. Jun 1994 A
5400246 Wilson et al. Mar 1995 A
5436909 Dev et al. Jul 1995 A
5555416 Owens et al. Sep 1996 A
5726644 Jednacz et al. Mar 1998 A
5742829 Davis et al. Apr 1998 A
5822731 Schultz Oct 1998 A
5831848 Rielly et al. Nov 1998 A
5903545 Sabourin et al. May 1999 A
6012096 Link et al. Jan 2000 A
6141595 Gloudeman et al. Oct 2000 A
6144962 Weinberg et al. Nov 2000 A
6239699 Ronnen May 2001 B1
6247058 Miller et al. Jun 2001 B1
6249241 Jordan et al. Jun 2001 B1
6330562 Boden et al. Dec 2001 B1
6353775 Nichols Mar 2002 B1
6525658 Streetman et al. Feb 2003 B2
6546420 Lemler et al. Apr 2003 B1
6597663 Rekhter Jul 2003 B1
6611896 Mason, Jr. et al. Aug 2003 B1
6654750 Adams et al. Nov 2003 B1
6728779 Griffin et al. Apr 2004 B1
6801878 Hintz et al. Oct 2004 B1
6816461 Scrandis et al. Nov 2004 B1
6847993 Novaes et al. Jan 2005 B1
6848106 Hipp Jan 2005 B1
6925490 Novaes et al. Aug 2005 B1
6958998 Shorey Oct 2005 B2
6983323 Cantrell et al. Jan 2006 B2
6996817 Birum et al. Feb 2006 B2
6999452 Drummond-Murray et al. Feb 2006 B1
7002464 Bruemmer et al. Feb 2006 B2
7024468 Meyer et al. Apr 2006 B1
7096368 Kouznetsov et al. Aug 2006 B2
7111055 Falkner Sep 2006 B2
7120934 Ishikawa Oct 2006 B2
7133923 MeLampy et al. Nov 2006 B2
7162643 Sankaran et al. Jan 2007 B1
7181769 Keanini et al. Feb 2007 B1
7185103 Jain Feb 2007 B1
7203740 Putzolu et al. Apr 2007 B1
7302487 Ylonen et al. Nov 2007 B2
7337206 Wen et al. Feb 2008 B1
7349761 Cruse Mar 2008 B1
7353511 Ziese Apr 2008 B1
7356679 Le et al. Apr 2008 B1
7360072 Soltis et al. Apr 2008 B1
7370092 Aderton et al. May 2008 B2
7395195 Suenbuel et al. Jul 2008 B2
7444404 Wetherall et al. Oct 2008 B2
7466681 Ashwood-Smith et al. Dec 2008 B2
7467205 Dempster et al. Dec 2008 B1
7496040 Seo Feb 2009 B2
7496575 Buccella et al. Feb 2009 B2
7530105 Gilbert et al. May 2009 B2
7539770 Meier May 2009 B2
7568107 Rathi et al. Jul 2009 B1
7610330 Quinn et al. Oct 2009 B1
7633942 Bearden et al. Dec 2009 B2
7644438 Dash et al. Jan 2010 B1
7676570 Levy et al. Mar 2010 B2
7681131 Quarterman et al. Mar 2010 B1
7693947 Judge et al. Apr 2010 B2
7743242 Oberhaus et al. Jun 2010 B2
7752307 Takara Jul 2010 B2
7774498 Kraemer et al. Aug 2010 B1
7783457 Cunningham Aug 2010 B2
7787480 Mehta et al. Aug 2010 B1
7788477 Huang et al. Aug 2010 B1
7808897 Mehta et al. Oct 2010 B1
7813822 Hoffberg Oct 2010 B1
7844696 Labovitz et al. Nov 2010 B2
7844744 Abercrombie et al. Nov 2010 B2
7864707 Dimitropoulos et al. Jan 2011 B2
7873025 Patel et al. Jan 2011 B2
7873074 Boland Jan 2011 B1
7874001 Beck et al. Jan 2011 B2
7885197 Metzler Feb 2011 B2
7895649 Brook et al. Feb 2011 B1
7904420 Ianni Mar 2011 B2
7930752 Hertzog et al. Apr 2011 B2
7934248 Yehuda et al. Apr 2011 B1
7957934 Greifeneder Jun 2011 B2
7961637 McBeath Jun 2011 B2
7970946 Djabarov et al. Jun 2011 B1
7975035 Popescu et al. Jul 2011 B2
8001610 Chickering et al. Aug 2011 B1
8005935 Pradhan et al. Aug 2011 B2
8040232 Oh et al. Oct 2011 B2
8040822 Proulx et al. Oct 2011 B2
8056134 Ogilvie Nov 2011 B1
8115617 Thubert et al. Feb 2012 B2
8135657 Kapoor et al. Mar 2012 B2
8156430 Newman Apr 2012 B2
8160063 Maltz et al. Apr 2012 B2
8179809 Eppstein et al. May 2012 B1
8181248 Oh et al. May 2012 B2
8185824 Mitchell et al. May 2012 B1
8239365 Salman Aug 2012 B2
8239915 Satish et al. Aug 2012 B1
8250657 Nachenberg et al. Aug 2012 B1
8255972 Azagury et al. Aug 2012 B2
8266697 Coffman Sep 2012 B2
8272875 Jurmain Sep 2012 B1
8281397 Vaidyanathan et al. Oct 2012 B2
8291495 Burns et al. Oct 2012 B1
8296847 Mendonca et al. Oct 2012 B2
8311973 Zadeh Nov 2012 B1
8365286 Poston Jan 2013 B2
8370407 Devarajan et al. Feb 2013 B1
8381289 Pereira et al. Feb 2013 B1
8391270 Van Der Stok et al. Mar 2013 B2
8407164 Malik et al. Mar 2013 B2
8407798 Lotem et al. Mar 2013 B1
8413235 Chen et al. Apr 2013 B1
8442073 Skubacz et al. May 2013 B2
8451731 Lee et al. May 2013 B1
8462212 Kundu et al. Jun 2013 B1
8489765 Vasseur et al. Jul 2013 B2
8499348 Rubin Jul 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8527977 Cheng et al. Sep 2013 B1
8549635 Muttik et al. Oct 2013 B2
8570861 Brandwine et al. Oct 2013 B1
8572600 Chung et al. Oct 2013 B2
8572734 McConnell et al. Oct 2013 B2
8572735 Ghosh et al. Oct 2013 B2
8572739 Cruz et al. Oct 2013 B1
8588081 Salam et al. Nov 2013 B2
8600726 Varshney et al. Dec 2013 B1
8613084 Dalcher Dec 2013 B2
8615803 Dacier et al. Dec 2013 B2
8630316 Haba Jan 2014 B2
8631464 Belakhdar et al. Jan 2014 B2
8640086 Bonev et al. Jan 2014 B2
8656493 Capalik Feb 2014 B2
8661544 Yen et al. Feb 2014 B2
8677487 Balupari et al. Mar 2014 B2
8683389 Bar-Yam et al. Mar 2014 B1
8706914 Duchesneau Apr 2014 B2
8713676 Pandrangi et al. Apr 2014 B2
8719452 Ding et al. May 2014 B1
8719835 Kanso et al. May 2014 B2
8750287 Bui et al. Jun 2014 B2
8752042 Ratica Jun 2014 B2
8752179 Zaitsev Jun 2014 B2
8755396 Sindhu et al. Jun 2014 B2
8762951 Kosche et al. Jun 2014 B1
8769084 Westerfeld et al. Jul 2014 B2
8775577 Alford et al. Jul 2014 B1
8776180 Kumar et al. Jul 2014 B2
8812448 Anderson et al. Aug 2014 B1
8812725 Kulkarni Aug 2014 B2
8813236 Saha et al. Aug 2014 B1
8825848 Dotan et al. Sep 2014 B1
8832013 Adams et al. Sep 2014 B1
8832461 Saroiu et al. Sep 2014 B2
8849926 Marzencki et al. Sep 2014 B2
8881258 Paul et al. Nov 2014 B2
8887238 Howard et al. Nov 2014 B2
8904520 Nachenberg et al. Dec 2014 B1
8908685 Patel et al. Dec 2014 B2
8914497 Xiao et al. Dec 2014 B1
8931043 Cooper et al. Jan 2015 B2
8954610 Berke et al. Feb 2015 B2
8955124 Kim et al. Feb 2015 B2
8966021 Allen Feb 2015 B1
8966625 Zuk et al. Feb 2015 B1
8973147 Pearcy et al. Mar 2015 B2
8984331 Quinn Mar 2015 B2
8990386 He et al. Mar 2015 B2
8996695 Anderson et al. Mar 2015 B2
8997227 Mhatre et al. Mar 2015 B1
9014047 Alcala et al. Apr 2015 B2
9015716 Fletcher et al. Apr 2015 B2
9071575 Lemaster et al. Jun 2015 B2
9088598 Zhang et al. Jul 2015 B1
9092250 Hyser Jul 2015 B1
9110905 Polley et al. Aug 2015 B2
9117075 Yeh Aug 2015 B1
9130836 Kapadia et al. Sep 2015 B2
9152789 Natarajan et al. Oct 2015 B2
9160764 Stiansen et al. Oct 2015 B2
9170917 Kumar et al. Oct 2015 B2
9178906 Chen et al. Nov 2015 B1
9185127 Neou et al. Nov 2015 B2
9191400 Ptasinski et al. Nov 2015 B1
9191402 Yan Nov 2015 B2
9197654 Ben-Shalom et al. Nov 2015 B2
9225793 Dutta et al. Dec 2015 B2
9237111 Banavalikar et al. Jan 2016 B2
9246702 Sharma et al. Jan 2016 B1
9246773 Degioanni Jan 2016 B2
9253042 Lumezanu et al. Feb 2016 B2
9253206 Fleischman Feb 2016 B1
9258217 Duffield et al. Feb 2016 B2
9281940 Matsuda et al. Mar 2016 B2
9286047 Avramov et al. Mar 2016 B1
9294486 Chiang et al. Mar 2016 B1
9317574 Brisebois et al. Apr 2016 B1
9319384 Yan et al. Apr 2016 B2
9369435 Short et al. Jun 2016 B2
9369479 Lin Jun 2016 B2
9378068 Anantharam et al. Jun 2016 B2
9396327 Shimomura et al. Jun 2016 B2
9405903 Xie et al. Aug 2016 B1
9417985 Baars et al. Aug 2016 B2
9418222 Rivera et al. Aug 2016 B1
9426068 Dunbar et al. Aug 2016 B2
9454324 Madhavapeddi Sep 2016 B1
9462013 Boss et al. Oct 2016 B1
9465696 McNeil et al. Oct 2016 B2
9501744 Brisebois et al. Nov 2016 B1
9531589 Clemm et al. Dec 2016 B2
9563517 Natanzon et al. Feb 2017 B1
9621413 Lee Apr 2017 B1
9634915 Bley Apr 2017 B2
9645892 Patwardhan May 2017 B1
9684453 Holt et al. Jun 2017 B2
9697033 Koponen et al. Jul 2017 B2
9733973 Prasad et al. Aug 2017 B2
9749145 Banavalikar et al. Aug 2017 B2
9800608 Korsunsky et al. Oct 2017 B2
9904584 Konig et al. Feb 2018 B2
9916538 Zadeh et al. Mar 2018 B2
9935851 Gandham et al. Apr 2018 B2
10009240 Rao et al. Jun 2018 B2
10554501 Parandehgheibi Feb 2020 B2
20010028646 Arts et al. Oct 2001 A1
20020053033 Cooper et al. May 2002 A1
20020097687 Meiri et al. Jul 2002 A1
20020103793 Koller et al. Aug 2002 A1
20020107857 Teraslinna Aug 2002 A1
20020141343 Bays Oct 2002 A1
20020184393 Leddy et al. Dec 2002 A1
20030023601 Fortier, Jr. et al. Jan 2003 A1
20030065986 Fraenkel et al. Apr 2003 A1
20030097439 Strayer et al. May 2003 A1
20030126242 Chang Jul 2003 A1
20030145232 Poletto et al. Jul 2003 A1
20030151513 Herrmann et al. Aug 2003 A1
20030154399 Zuk et al. Aug 2003 A1
20030177208 Harvey, IV Sep 2003 A1
20040019676 Iwatsuki et al. Jan 2004 A1
20040030776 Cantrell et al. Feb 2004 A1
20040213221 Civanlar et al. Oct 2004 A1
20040220984 Dudfield et al. Nov 2004 A1
20040243533 Dempster et al. Dec 2004 A1
20040255050 Takehiro et al. Dec 2004 A1
20040268149 Aaron Dec 2004 A1
20050028154 Smith et al. Feb 2005 A1
20050039104 Shah et al. Feb 2005 A1
20050063377 Bryant et al. Mar 2005 A1
20050083933 Fine et al. Apr 2005 A1
20050108331 Osterman May 2005 A1
20050122325 Twait Jun 2005 A1
20050138157 Jung et al. Jun 2005 A1
20050166066 Ahuja et al. Jul 2005 A1
20050177829 Vishwanath Aug 2005 A1
20050182681 Bruskotter et al. Aug 2005 A1
20050185621 Sivakumar et al. Aug 2005 A1
20050198247 Perry et al. Sep 2005 A1
20050198371 Smith et al. Sep 2005 A1
20050198629 Vishwanath Sep 2005 A1
20050207376 Ashwood-Smith et al. Sep 2005 A1
20050257244 Joly et al. Nov 2005 A1
20050289244 Sahu et al. Dec 2005 A1
20060048218 Lingafelt et al. Mar 2006 A1
20060077909 Saleh et al. Apr 2006 A1
20060080733 Khosmood et al. Apr 2006 A1
20060089985 Poletto Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060143432 Rothman et al. Jun 2006 A1
20060156408 Himberger et al. Jul 2006 A1
20060159032 Ukrainetz et al. Jul 2006 A1
20060173912 Lindvall et al. Aug 2006 A1
20060195448 Newport Aug 2006 A1
20060272018 Fouant Nov 2006 A1
20060274659 Ouderkirk Dec 2006 A1
20060280179 Meier Dec 2006 A1
20060294219 Ogawa et al. Dec 2006 A1
20070014275 Bettink et al. Jan 2007 A1
20070025306 Cox et al. Feb 2007 A1
20070044147 Choi et al. Feb 2007 A1
20070097976 Wood et al. May 2007 A1
20070118654 Jamkhedkar et al. May 2007 A1
20070127491 Verzijp et al. Jun 2007 A1
20070162420 Ou et al. Jul 2007 A1
20070169179 Narad Jul 2007 A1
20070195729 Li et al. Aug 2007 A1
20070195794 Fujita et al. Aug 2007 A1
20070195797 Patel et al. Aug 2007 A1
20070201474 Isobe Aug 2007 A1
20070211637 Mitchell Sep 2007 A1
20070214348 Danielsen Sep 2007 A1
20070230415 Malik Oct 2007 A1
20070232265 Park et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070300061 Kim et al. Dec 2007 A1
20080002697 Anantharamaiah et al. Jan 2008 A1
20080022385 Crowell et al. Jan 2008 A1
20080028389 Genty et al. Jan 2008 A1
20080046708 Fitzgerald et al. Feb 2008 A1
20080049633 Edwards et al. Feb 2008 A1
20080056124 Nanda et al. Mar 2008 A1
20080082662 Danliker et al. Apr 2008 A1
20080101234 Nakil et al. May 2008 A1
20080120350 Grabowski et al. May 2008 A1
20080126534 Mueller et al. May 2008 A1
20080141246 Kuck et al. Jun 2008 A1
20080155245 Lipscombe et al. Jun 2008 A1
20080250122 Zsigmond et al. Oct 2008 A1
20080270199 Chess et al. Oct 2008 A1
20080282347 Dadhia et al. Nov 2008 A1
20080295163 Kang Nov 2008 A1
20080301765 Nicol et al. Dec 2008 A1
20090059934 Aggarwal et al. Mar 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090109849 Wood et al. Apr 2009 A1
20090133126 Jang et al. May 2009 A1
20090138590 Lee et al. May 2009 A1
20090180393 Nakamura Jul 2009 A1
20090241170 Kumar et al. Sep 2009 A1
20090292795 Ford et al. Nov 2009 A1
20090296593 Prescott Dec 2009 A1
20090300180 Dehaan et al. Dec 2009 A1
20090307753 Dupont et al. Dec 2009 A1
20090313373 Hanna et al. Dec 2009 A1
20090313698 Wahl Dec 2009 A1
20090319912 Serr et al. Dec 2009 A1
20090323543 Shimakura Dec 2009 A1
20090328219 Narayanaswamy Dec 2009 A1
20100005288 Rao et al. Jan 2010 A1
20100049839 Parker et al. Feb 2010 A1
20100054241 Shah et al. Mar 2010 A1
20100077445 Schneider et al. Mar 2010 A1
20100095293 O'Neill et al. Apr 2010 A1
20100095367 Narayanaswamy Apr 2010 A1
20100095377 Krywaniuk Apr 2010 A1
20100138526 DeHaan et al. Jun 2010 A1
20100138810 Komatsu et al. Jun 2010 A1
20100148940 Gelvin et al. Jun 2010 A1
20100153316 Duffield et al. Jun 2010 A1
20100153696 Beachem et al. Jun 2010 A1
20100180016 Bugwadia et al. Jul 2010 A1
20100194741 Finocchio Aug 2010 A1
20100220584 DeHaan et al. Sep 2010 A1
20100235514 Beachem Sep 2010 A1
20100235879 Burnside et al. Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100287266 Asati et al. Nov 2010 A1
20100303240 Beachem Dec 2010 A1
20100306180 Johnson et al. Dec 2010 A1
20100317420 Hoffberg Dec 2010 A1
20100319060 Aiken et al. Dec 2010 A1
20110004935 Moffie et al. Jan 2011 A1
20110010585 Bugenhagen et al. Jan 2011 A1
20110022641 Werth et al. Jan 2011 A1
20110055381 Narasimhan, Sr. et al. Mar 2011 A1
20110055388 Yumerefendi et al. Mar 2011 A1
20110066719 Miryanov et al. Mar 2011 A1
20110069685 Tofighbakhsh Mar 2011 A1
20110072119 Bronstein et al. Mar 2011 A1
20110083125 Komatsu et al. Apr 2011 A1
20110085556 Breslin et al. Apr 2011 A1
20110103259 Aybay et al. May 2011 A1
20110107074 Chan et al. May 2011 A1
20110107331 Evans et al. May 2011 A1
20110126136 Abella et al. May 2011 A1
20110126275 Anderson et al. May 2011 A1
20110145885 Rivers et al. Jun 2011 A1
20110153039 Gvelesiani et al. Jun 2011 A1
20110153811 Jeong et al. Jun 2011 A1
20110158088 Lofstrand et al. Jun 2011 A1
20110170860 Smith et al. Jul 2011 A1
20110173490 Narayanaswamy et al. Jul 2011 A1
20110185423 Sallam Jul 2011 A1
20110196957 Ayachitula et al. Aug 2011 A1
20110202655 Sharma et al. Aug 2011 A1
20110214174 Herzog et al. Sep 2011 A1
20110225207 Subramanian et al. Sep 2011 A1
20110228696 Agarwal et al. Sep 2011 A1
20110238793 Bedare et al. Sep 2011 A1
20110246663 Melsen et al. Oct 2011 A1
20110277034 Hanson Nov 2011 A1
20110283277 Castillo et al. Nov 2011 A1
20110302652 Westerfeld Dec 2011 A1
20110314148 Petersen et al. Dec 2011 A1
20110317982 Xu et al. Dec 2011 A1
20120005542 Petersen et al. Jan 2012 A1
20120079592 Pandrangi Mar 2012 A1
20120089664 Igelka Apr 2012 A1
20120102361 Sass et al. Apr 2012 A1
20120102543 Kohli et al. Apr 2012 A1
20120110188 Van Biljon et al. May 2012 A1
20120117226 Tanaka et al. May 2012 A1
20120117642 Lin et al. May 2012 A1
20120136996 Seo et al. May 2012 A1
20120137278 Draper et al. May 2012 A1
20120137361 Yi et al. May 2012 A1
20120140626 Anand et al. Jun 2012 A1
20120195198 Regan Aug 2012 A1
20120197856 Banka et al. Aug 2012 A1
20120198541 Reeves Aug 2012 A1
20120216271 Cooper et al. Aug 2012 A1
20120218989 Tanabe et al. Aug 2012 A1
20120219004 Balus et al. Aug 2012 A1
20120233348 Winters Sep 2012 A1
20120233473 Vasseur et al. Sep 2012 A1
20120240232 Azuma Sep 2012 A1
20120246303 Petersen et al. Sep 2012 A1
20120254109 Shukla et al. Oct 2012 A1
20120260227 Shukla et al. Oct 2012 A1
20120278021 Lin et al. Nov 2012 A1
20120281700 Koganti et al. Nov 2012 A1
20120300628 Prescott et al. Nov 2012 A1
20130003538 Greenburg et al. Jan 2013 A1
20130003733 Venkatesan et al. Jan 2013 A1
20130006935 Grisby Jan 2013 A1
20130007435 Bayani Jan 2013 A1
20130038358 Cook et al. Feb 2013 A1
20130041934 Annamalaisami et al. Feb 2013 A1
20130054682 Malik et al. Feb 2013 A1
20130085889 Fitting et al. Apr 2013 A1
20130086272 Chen et al. Apr 2013 A1
20130103827 Dunlap et al. Apr 2013 A1
20130107709 Campbell et al. May 2013 A1
20130124807 Nielsen et al. May 2013 A1
20130125107 Bandakka et al. May 2013 A1
20130145099 Liu et al. Jun 2013 A1
20130148663 Xiong Jun 2013 A1
20130159999 Chiueh et al. Jun 2013 A1
20130173784 Wang et al. Jul 2013 A1
20130174256 Powers Jul 2013 A1
20130179487 Lubetzky et al. Jul 2013 A1
20130179879 Zhang et al. Jul 2013 A1
20130198517 Mazzarella Aug 2013 A1
20130198839 Wei et al. Aug 2013 A1
20130201986 Sajassi et al. Aug 2013 A1
20130205293 Levijarvi et al. Aug 2013 A1
20130219161 Fontignie et al. Aug 2013 A1
20130219500 Lukas et al. Aug 2013 A1
20130232498 Mangtani et al. Sep 2013 A1
20130242999 Kamble et al. Sep 2013 A1
20130246925 Ahuja et al. Sep 2013 A1
20130247201 Alperovitch et al. Sep 2013 A1
20130254879 Chesla et al. Sep 2013 A1
20130268994 Cooper et al. Oct 2013 A1
20130275579 Hernandez et al. Oct 2013 A1
20130283374 Zisapel et al. Oct 2013 A1
20130290521 Labovitz Oct 2013 A1
20130297771 Osterloh et al. Nov 2013 A1
20130301472 Allan Nov 2013 A1
20130304900 Trabelsi et al. Nov 2013 A1
20130304903 Mick Nov 2013 A1
20130305369 Karta et al. Nov 2013 A1
20130318357 Abraham et al. Nov 2013 A1
20130326623 Kruglick Dec 2013 A1
20130333029 Chesla et al. Dec 2013 A1
20130336164 Yang et al. Dec 2013 A1
20130346736 Cook et al. Dec 2013 A1
20130347103 Veteikis et al. Dec 2013 A1
20140006610 Formby et al. Jan 2014 A1
20140006871 Lakshmanan et al. Jan 2014 A1
20140012814 Bercovici et al. Jan 2014 A1
20140019972 Yahalom et al. Jan 2014 A1
20140031005 Sumcad et al. Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140036688 Stassinopoulos et al. Feb 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140047185 Peterson et al. Feb 2014 A1
20140047372 Gnezdov et al. Feb 2014 A1
20140056318 Hansson et al. Feb 2014 A1
20140059200 Nguyen et al. Feb 2014 A1
20140074946 Dirstine et al. Mar 2014 A1
20140089494 Dasari et al. Mar 2014 A1
20140092884 Murphy et al. Apr 2014 A1
20140096058 Molesky et al. Apr 2014 A1
20140105029 Jain et al. Apr 2014 A1
20140115219 Ajanovic et al. Apr 2014 A1
20140129942 Rathod May 2014 A1
20140137109 Sharma et al. May 2014 A1
20140140244 Kapadia et al. May 2014 A1
20140143825 Behrendt et al. May 2014 A1
20140149490 Luxenberg et al. May 2014 A1
20140156813 Zheng et al. Jun 2014 A1
20140156814 Barabash et al. Jun 2014 A1
20140156861 Cruz-Aguilar et al. Jun 2014 A1
20140164607 Bai et al. Jun 2014 A1
20140165200 Singla Jun 2014 A1
20140165207 Engel et al. Jun 2014 A1
20140173623 Chang et al. Jun 2014 A1
20140192639 Smirnov Jul 2014 A1
20140201717 Mascaro et al. Jul 2014 A1
20140215573 Cepuran Jul 2014 A1
20140215621 Xaypanya et al. Jul 2014 A1
20140224784 Kohler Aug 2014 A1
20140225603 Auguste et al. Aug 2014 A1
20140233387 Zheng et al. Aug 2014 A1
20140269777 Rothstein et al. Sep 2014 A1
20140279201 Iyoob et al. Sep 2014 A1
20140280499 Basavaiah et al. Sep 2014 A1
20140281030 Cui et al. Sep 2014 A1
20140286354 Van De Poel et al. Sep 2014 A1
20140289854 Mahvi Sep 2014 A1
20140298461 Hohndel et al. Oct 2014 A1
20140307686 Su et al. Oct 2014 A1
20140317278 Kersch et al. Oct 2014 A1
20140317737 Shin et al. Oct 2014 A1
20140330616 Lyras Nov 2014 A1
20140331048 Casas-Sanchez et al. Nov 2014 A1
20140331276 Frascadore et al. Nov 2014 A1
20140331280 Porras et al. Nov 2014 A1
20140331304 Wong Nov 2014 A1
20140348182 Chandra et al. Nov 2014 A1
20140351203 Kunnatur et al. Nov 2014 A1
20140351415 Harrigan et al. Nov 2014 A1
20140359695 Chari et al. Dec 2014 A1
20150006689 Szilagyi et al. Jan 2015 A1
20150006714 Jain Jan 2015 A1
20150009840 Pruthi et al. Jan 2015 A1
20150026809 Altman et al. Jan 2015 A1
20150033305 Shear et al. Jan 2015 A1
20150036480 Huang et al. Feb 2015 A1
20150036533 Sodhi et al. Feb 2015 A1
20150039751 Harrigan et al. Feb 2015 A1
20150046882 Menyhart et al. Feb 2015 A1
20150052441 Degioanni Feb 2015 A1
20150058976 Carney et al. Feb 2015 A1
20150067143 Babakhan et al. Mar 2015 A1
20150067786 Fiske Mar 2015 A1
20150082151 Liang et al. Mar 2015 A1
20150082430 Sridhara et al. Mar 2015 A1
20150085665 Kompella et al. Mar 2015 A1
20150095332 Beisiegel et al. Apr 2015 A1
20150112933 Satapathy Apr 2015 A1
20150113133 Srinivas et al. Apr 2015 A1
20150124608 Agarwal et al. May 2015 A1
20150124652 Dhamapurikar et al. May 2015 A1
20150128133 Pohlmann May 2015 A1
20150128205 Mahaffey et al. May 2015 A1
20150138993 Forster et al. May 2015 A1
20150142962 Srinivas et al. May 2015 A1
20150195291 Zuk et al. Jul 2015 A1
20150222939 Gallant et al. Aug 2015 A1
20150249622 Phillips et al. Sep 2015 A1
20150256555 Choi et al. Sep 2015 A1
20150261842 Huang et al. Sep 2015 A1
20150261886 Wu et al. Sep 2015 A1
20150271008 Jain et al. Sep 2015 A1
20150271255 Mackay et al. Sep 2015 A1
20150295945 Canzanese, Jr. et al. Oct 2015 A1
20150312233 Graham, III et al. Oct 2015 A1
20150356297 Yang et al. Oct 2015 A1
20150347554 Vasantham et al. Dec 2015 A1
20150358352 Chasin et al. Dec 2015 A1
20160006753 McDaid et al. Jan 2016 A1
20160019030 Shukla et al. Jan 2016 A1
20160020959 Rahaman Jan 2016 A1
20160021131 Heilig Jan 2016 A1
20160026552 Holden et al. Jan 2016 A1
20160036636 Erickson et al. Feb 2016 A1
20160036837 Jain et al. Feb 2016 A1
20160050132 Zhang et al. Feb 2016 A1
20160072815 Rieke et al. Mar 2016 A1
20160080414 Kolton et al. Mar 2016 A1
20160087861 Kuan et al. Mar 2016 A1
20160094394 Sharma et al. Mar 2016 A1
20160094529 Mityagin Mar 2016 A1
20160103692 Guntaka et al. Apr 2016 A1
20160105350 Greifeneder et al. Apr 2016 A1
20160112270 Danait et al. Apr 2016 A1
20160112284 Pon et al. Apr 2016 A1
20160119234 Valencia Lopez et al. Apr 2016 A1
20160127395 Underwood et al. May 2016 A1
20160147585 Konig et al. May 2016 A1
20160162308 Chen et al. Jun 2016 A1
20160162312 Doherty et al. Jun 2016 A1
20160173446 Nantel Jun 2016 A1
20160173535 Barabash et al. Jun 2016 A1
20160183093 Vaughn et al. Jun 2016 A1
20160191476 Schutz et al. Jun 2016 A1
20160205002 Rieke et al. Jul 2016 A1
20160216994 Sefidcon et al. Jul 2016 A1
20160217022 Velipasaoglu et al. Jul 2016 A1
20160255082 Rathod Sep 2016 A1
20160269424 Chandola et al. Sep 2016 A1
20160269442 Shieh Sep 2016 A1
20160269482 Jamjoom et al. Sep 2016 A1
20160294691 Joshi Oct 2016 A1
20160308908 Kirby et al. Oct 2016 A1
20160337204 Dubey et al. Nov 2016 A1
20160357424 Pang et al. Dec 2016 A1
20160357546 Chang et al. Dec 2016 A1
20160357587 Yadav et al. Dec 2016 A1
20160357957 Deen et al. Dec 2016 A1
20160359592 Kulshreshtha et al. Dec 2016 A1
20160359628 Singh et al. Dec 2016 A1
20160359658 Yadav et al. Dec 2016 A1
20160359673 Gupta et al. Dec 2016 A1
20160359677 Kulshreshtha et al. Dec 2016 A1
20160359678 Madani et al. Dec 2016 A1
20160359679 Parasdehgheibi et al. Dec 2016 A1
20160359680 Parasdehgheibi et al. Dec 2016 A1
20160359686 Parasdehgheibi et al. Dec 2016 A1
20160359695 Yadav et al. Dec 2016 A1
20160359696 Yadav et al. Dec 2016 A1
20160359697 Scheib et al. Dec 2016 A1
20160359698 Deen et al. Dec 2016 A1
20160359699 Gandham et al. Dec 2016 A1
20160359700 Pang et al. Dec 2016 A1
20160359701 Pang et al. Dec 2016 A1
20160359703 Gandham et al. Dec 2016 A1
20160359704 Gandham et al. Dec 2016 A1
20160359705 Parasdehgheibi et al. Dec 2016 A1
20160359708 Gandham et al. Dec 2016 A1
20160359709 Deen et al. Dec 2016 A1
20160359711 Deen et al. Dec 2016 A1
20160359712 Alizadeh Attar et al. Dec 2016 A1
20160359740 Parasdehgheibi et al. Dec 2016 A1
20160359759 Singh et al. Dec 2016 A1
20160359872 Yadav et al. Dec 2016 A1
20160359877 Kulshreshtha et al. Dec 2016 A1
20160359878 Prasad et al. Dec 2016 A1
20160359879 Deen et al. Dec 2016 A1
20160359880 Pang et al. Dec 2016 A1
20160359881 Yadav et al. Dec 2016 A1
20160359888 Gupta et al. Dec 2016 A1
20160359889 Yadav et al. Dec 2016 A1
20160359890 Deen et al. Dec 2016 A1
20160359891 Pang et al. Dec 2016 A1
20160359897 Yadav et al. Dec 2016 A1
20160359905 Touboul et al. Dec 2016 A1
20160359912 Gupta et al. Dec 2016 A1
20160359913 Gupta et al. Dec 2016 A1
20160359914 Deen et al. Dec 2016 A1
20160359915 Gupta et al. Dec 2016 A1
20160359917 Rao et al. Dec 2016 A1
20160373481 Sultan et al. Dec 2016 A1
20160380865 Dubai et al. Dec 2016 A1
20170006141 Bhadra Jan 2017 A1
20170024453 Raja et al. Jan 2017 A1
20170032310 Mimnaugh Feb 2017 A1
20170034018 Parasdehgheibi et al. Feb 2017 A1
20170048121 Hobbs et al. Feb 2017 A1
20170070582 Desai et al. Mar 2017 A1
20170085483 Mihaly et al. Mar 2017 A1
20170149875 Iyengar et al. May 2017 A1
20170208487 Ratakonda et al. Jul 2017 A1
20170250880 Akens et al. Aug 2017 A1
20170250951 Wang et al. Aug 2017 A1
20170289067 Lu et al. Oct 2017 A1
20170295141 Thubert et al. Oct 2017 A1
20170302691 Singh et al. Oct 2017 A1
20170331747 Singh et al. Nov 2017 A1
20170346736 Chander et al. Nov 2017 A1
20170364380 Frye, Jr. et al. Dec 2017 A1
20180006911 Dickey Jan 2018 A1
20180007115 Nedeltchev et al. Jan 2018 A1
20180013670 Kapadia et al. Jan 2018 A1
20180084034 Stelmar Netto Mar 2018 A1
20180145906 Yadav May 2018 A1
20190026105 Swaminathan Jan 2019 A1
Foreign Referenced Citations (25)
Number Date Country
101093452 Dec 2007 CN
101770551 Jul 2010 CN
102521537 Jun 2012 CN
103023970 Apr 2013 CN
103716137 Apr 2014 CN
104065518 Sep 2014 CN
107196807 Sep 2017 CN
0811942 Dec 1997 EP
1076848 Jul 2002 EP
1383261 Jan 2004 EP
1450511 Aug 2004 EP
2045974 Apr 2008 EP
2043320 Apr 2009 EP
2860912 Apr 2015 EP
2887595 Jun 2015 EP
2009-016906 Jan 2009 JP
1394338 May 2014 KR
WO 2007014314 Feb 2007 WO
WO 2007070711 Jun 2007 WO
WO 2008069439 Jun 2008 WO
WO 2013030830 Mar 2013 WO
WO 2015042171 Mar 2015 WO
WO 2015099778 Jul 2015 WO
WO 2016004075 Jan 2016 WO
WO 2016019523 Feb 2016 WO
Non-Patent Literature Citations (100)
Entry
Al-Fuqaha, Ala, et al., “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communication Surveys & Tutorials. vol. 17, No. 4, Nov. 18, 2015, pp. 2347-2376.
Arista Networks, Inc., “Application Visibility and Network Telemtry using Splunk,” Arista White Paper, Nov. 2013, 11 pages.
Australian Government Department of Defence, Intelligence and Security, “Top 4 Strategies to Mitigate Targeted Cyber Intrusions,” Cyber Security Operations Centre Jul. 2013, http://www.asd.gov.au/infosec/top-rnitigations/top-4-strategies-explained.htm.
Author Unknown, “Blacklists & Dynamic Reputation: Understanding Why the Evolving Threat Eludes Blacklists,” www.dambala.com, 9 pages, Dambala, Atlanta, GA, USA.
Aydin, Galip, et al., “Architecture and Implementation of a Scalable Sensor Data Storage and Analysis Using Cloud Computing and Big Data Technologies,” Journal of Sensors, vol. 2015, Article ID 834217, Feb. 2015, 11 pages.
Backes, Michael, et al., “Data Lineage in Malicious Environments,” IEEE 2015, pp. 1-13.
Baek, Kwang-Hyun, et al., “Preventing Theft of Quality of Service on Open Platforms,” 2005 Workshop of the 1st International Conference on Security and Privacy for Emerging Areas in Communication Networks, 2005, 12 pages.
Bauch, Petr, “Reader's Report of Master's Thesis, Analysis and Testing of Distributed NoSQL Datastore Riak,” May 28, 2015, Brno. 2 pages.
Bayati, Mohsen, et al., “Message-Passing Algorithms for Sparse Network Alignment,” Mar. 2013, 31 pages.
Berezinski, Przemyslaw, et al., “An Entropy-Based Network Anomaly Detection Method,” Entropy, 2015, vol. 17, www.mdpi.com/joumal/entropy, pp. 2367-2408.
Berthier, Robin, et al. “Nfsight: Netflow-based Network Awareness Tool,” 2010, 16 pages.
Bhuyan, Dhiraj, “Fighting Bots and Botnets,” 2006, pp. 23-28.
Blair, Dana, et al., U.S. Appl. No. 62/106,006, tiled Jan. 21, 2015, entitled “Monitoring Network Policy Compliance.”.
Bosch, Greg, “Virtualization,” 2010, 33 pages.
Breen, Christopher, “MAC 911, How to dismiss Mac App Store Notifications,” Macworld.com, Mar. 24, 2014, 3 pages.
Brocade Communications Systems, Inc., “Chapter 5—Configuring Virtual LANs (VLANs),” Jun. 2009, 38 pages.
Chandran, Midhun, et al., “Monitoring in a Virtualized Environment,” GSTF International Journal on Computing, vol. 1, No. 1, Aug. 2010.
Chari, Suresh, et al., “Ensuring continuous compliance through reconciling policy with usage,” Proceedings of the 18th ACM symposium on Access control models and technologies (SACMAT '13). ACM, New York, NY, USA, 49-60.
Chen, Xu, et al., “Automating network application dependency discovery: experiences, limitations, and new solutions,” 8th USENIX conference on Operating systems design and implementation (OSDI'08), USENIX Association, Berkeley, CA, USA, 117-130.
Chou, C.W., et al., “Optical Clocks and Relativity,” Science vol. 329, Sep. 24, 2010, pp. 1630-1633.
Cisco Systems, “Cisco Network Analysis Modules (NAM) Tutorial,” Cisco Systems, Inc., Version 3.5.
Cisco Systems, Inc. “Cisco, Nexus 3000 Series NX-OS Release Notes, Release 5.0(3)U3(1),” Feb. 29, 2012, Part No. OL-26631-01, 16 pages.
Cisco Systems, Inc., “Addressing Compliance from One Infrastructure: Cisco Unified Compliance Solution Framework,” 2014.
Cisco Systems, Inc., “Cisco—VPN Client User Guide for Windows,” Release 4.6, Aug. 2004, 148 pages.
Cisco Systems, Inc., “Cisco 4710 Application Control Engine Appliance Hardware Installation Guide,” Nov. 2007, 66 pages.
Cisco Systems, Inc., “Cisco Application Dependency Mapping Service,” 2009.
Cisco Systems, Inc., “Cisco Data Center Network Architecture and Solutions Overview,” Feb. 2006, 19 pages.
Cisco Systems, Inc., “Cisco IOS Configuration Fundamentals Configuration Guide: Using Autoinstall and Setup,” Release 12.2, first published Apr. 2001, last updated Sep. 2003, 32 pages.
Cisco Systems, Inc., “Cisco VN-Link: Virtualization-Aware Networking,” White Paper, Mar. 2009, 10 pages.
Cisco Systems, Inc., “Cisco, Nexus 5000 Series and Cisco Nexus 2000 Series Release Notes, Cisco NX-OS Release 5.1(3)N2(1b), NX-OS Release 5.1(3)N2(1a) and NX-OS Release 5.1(3)N2(1),” Sep. 5, 2012, Part No. OL-26652-03 CO, 24 pages.
Cisco Systems, Inc., “Nexus 3000 Series NX-OS Fundamentals Configuration Guide, Release 5.0(3)U3(1): Using PowerOn Auto Provisioning,” Feb. 29, 2012, Part No. OL-26544-01, 10 pages.
Cisco Systems, Inc., “Quick Start Guide, Cisco ACE 4700 Series Application Control Engine Appliance,” Software Ve740rsion A5(1.0), Sep. 2011, 138 pages.
Cisco Systems, Inc., “Routing and Bridging Guide, Cisco ACE Application Control Engine,” Software Version A5(1.0), Sep. 2011, 248 pages.
Cisco Systems, Inc., “VMWare and Cisco Virtualization Solution: Scale Virtual Machine Networking,” Jul. 2009, 4 pages.
Cisco Systems, Inc., “White Paper—New Cisco Technologies Help Customers Achieve Regulatory Compliance,” 1992-2008.
Cisco Systems, Inc., “A Cisco Guide to Defending Against Distributed Denial of Service Attacks,” May 3, 2016, 34 pages.
Cisco Systems, Inc., “Cisco Application Visibility and Control,” Oct. 2011, 2 pages.
Cisco Systems, Inc., “Cisco Remote Integrated Service Engine for Citrix NetScaler Appliances and Cisco Nexus 7000 Series Switches Configuration Guide,” Last modified Apr. 29, 2014, 78 pages.
Cisco Systems, Inc., “Cisco Tetration Platform Data Sheet”, Updated Mar. 5, 2018, 21 pages.
Cisco Technology, Inc., “Cisco IOS Software Release 12.4T Features and Hardware Support,” Feb. 2009, 174 pages.
Cisco Technology, Inc., “Cisco Lock-and-Key:Dynamic Access Lists,” http://www/cisco.com/c/en/us/support/docs/security-vpn/lock-key/7604-13.html; Updated Jul. 12, 2006, 16 pages.
Cisco Systems, Inc., “Cisco Application Control Engine (ACE) Troubleshooting Guide—Understanding the ACE Module Architecture and Traffic Flow,” Mar. 11, 2011, 6 page.
Costa, Raul, et al., “An Intelligent Alarm Management System for Large-Scale Telecommunication Companies,” In Portuguese Conference on Artificial Intelligence, Oct. 2009, 14 pages.
De Carvalho, Tiago Filipe Rodrigues, “Root Cause Analysis in Large and Complex Networks,” Dec. 2008, Repositorio.ul.pt, pp. 1-55.
Di Lorenzo, Guisy, et al., “EXSED: An Intelligent Tool for Exploration of Social Events Dynamics from Augmented Trajectories,” Mobile Data Management (MDM), pp. 323-330, Jun. 3-6, 2013.
Duan, Yiheng, et al., Detective: Automatically Identify and Analyze Malware Processes in Forensic Scenarios via DLLs, IEEE ICC 2015—Next Generation Networking Symposium, pp. 5691-5696.
Feinstein, Laura, et al., “Statistical Approaches to DDoS Attack Detection and Response,” Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX '03), Apr. 2003, 12 pages.
Foundation for Intelligent Physical Agents, “FIPA Agent Message Transport Service Specification,” Dec. 3, 2002, http://www.fipa.org; 15 pages.
George, Ashley, et al., “NetPal: A Dynamic Network Administration Knowledge Base,” 2008, pp. 1-14.
Gia, Tuan Nguyen, et al., “Fog Computing in Healthcare Internet of Things: A Case Study on ECG Feature Extraction,” 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Oct. 26, 2015, pp. 356-363.
Goldsteen, Abigail, et al., “A Tool for Monitoring and Maintaining System Trustworthiness at Run Time,” REFSQ (2015), pp. 142-147.
Hamadi, S., et al., “Fast Path Acceleration for Open vSwitch in Overlay Networks,” Global Information Infrastructure and Networking Symposium (GIIS), Montreal, QC, pp. 1-5, Sep. 15-19, 2014.
Heckman, Sarah, et al., “On Establishing a Benchmark for Evaluating Static Analysis Alert Prioritization and Classification Techniques,” IEEE, 2008; 10 pages.
Hewlett-Packard, “Effective use of reputation intelligence in a security operations center,” Jul. 2013, 6 pages.
Hideshima, Yusuke, et al., “STARMINE: A Visualization System for Cyber Attacks,” https://www.researchgate.net/publication/221536306, Feb. 2006, 9 pages.
Huang, Hing-Jie, et al., “Clock Skew Based Node Identification in Wireless Sensor Networks,” IEEE, 2008, 5 pages.
InternetPerils, Inc., “Control Your Internet Business Risk,” 2003-2015 https://www.internetperils.com.
Ives, Herbert, E., et al., “An Experimental Study of the Rate of a Moving Atomic Clock,” Journal of the Optical Society of America, vol. 28, No. 7, Jul. 1938, pp. 215-226.
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 1 of 2, 350 pages.
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 2 of 2, 588 pages.
Joseph, Dilip, et al., “Modeling Middleboxes,” IEEE Network, Sep./Oct. 2008, pp. 20-25.
Kent, S., et al. “Security Architecture for the Internet Protocol,” Network Working Group, Nov. 1998, 67 pages.
Kerrison, Adam, et al., “Four Steps to Faster, Better Application Dependency Mapping—Laying the Foundation for Effective Business Service Models,” BMCSoftware, 2011.
Kim, Myung-Sup, et al. “A Flow-based Method for Abnormal Network Traffic Detection,” IEEE, 2004, pp. 599-612.
Kraemer, Brian, “Get to know your data center with CMDB,” TechTarget, Apr. 5, 2006, http://searchdatacenter.techtarget.com/news/118820/Get-to-know-your-data-center-with-CMDB.
Lab Sku, “VMware Hands-on Labs—HOL-SDC-1301” Version: 20140321-160709, 2013; http://docs.hol.vmware.com/HOL-2013/holsdc-1301 html en/ (part 1 of 2).
Lab Sku, “VMware Hands-on Labs—HOL-SDC-1301” Version: 20140321-160709, 2013; http://docs.hol.vmware.com/HOL-2013/holsdc-1301 html en/ (part 2 of 2).
Lachance, Michael, “Dirty Little Secrets of Application Dependency Mapping,” Dec. 26, 2007.
Landman, Yoav, et al., “Dependency Analyzer,” Feb. 14, 2008, http://ifrog.com/confluence/display/DA/Home.
Lee, Sihyung, “Reducing Complexity of Large-Scale Network Configuration Management,” Ph.D. Dissertation, Carniege Mellon University, 2010.
Li, Ang, et al., “Fast Anomaly Detection for Large Data Centers,” Global Telecommunications Conference (GLOBECOM 2010, Dec. 2010, 6 pages.
Li, Bingbong, et al, “A Supervised Machine Learning Approach to Classify Host Roles on Line Using sFlow,” in Proceedings of the first edition workshop on High performance and programmable networking, 2013, ACM, New York, NY, USA, 53-60.
Liu, Ting, et al., “Impala: A Middleware System for Managing Autonomic, Parallel Sensor Systems,” In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming(PPoPP '03), ACM, New York, NY, USA, Jun. 11-13, 2003, pp. 107-118.
Lu, Zhonghai, et al., “Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks on Chip,” Design and Diagnostics of Electronic Circuits and Systems, pp. 1, 6, 16-18, Apr. 2008.
Matteson, Ryan, “Depmap: Dependency Mapping of Applications Using Operating System Events: a Thesis,” Master's Thesis, California Polytechnic State University, Dec. 2010.
Natarajan, Arun, et al., “NSDMiner: Automated Discovery of Network Service Dependencies,” Institute of Electrical and Electronics Engineers INFOCOM, Feb. 2012, 9 pages.
Navaz, A.S. Syed, et al., “Entropy based Anomaly Detection System to Prevent DDoS Attacks in Cloud,” International Journal of computer Applications (0975-8887), vol. 62, No. 15, Jan. 2013, pp. 42-47.
Neverfail, “Neverfail IT Continuity Architect,” 2015, https://web.archive.org/web/20150908090456/http://www.neverfailgroup.com/products/it-continuity-architect.
Nilsson, Dennis K., et al., “Key Management and Secure Software Updates in Wireless Process Control Environments,” In Proceedings of the First ACM Conference on Wireless Network Security (WiSec '08), ACM, New York, NY, USA, Mar. 31-Apr. 2, 2008, pp. 100-108.
Nunnally, Troy, et al., “P3D: A Parallel 3D Coordinate Visualization for Advanced Network Scans,” IEEE 2013, Jun. Sep. 13, 2013, 6 pages.
O'Donnell, Glenn, et al., “The CMDB Imperative: How to Realize the Dream and Avoid the Nightmares,” Prentice Hall, Feb. 19, 2009.
Ohta, Kohei, et al., “Detection, Defense, and Tracking of Internet-Wide Illegal Access in a Distributed Manner,” 2000, pp. 1-16.
Online Collins English Dictionary, 1 page (Year: 2018).
Pathway Systems International Inc., “How Blueprints does Integration,” Apr. 15, 2014, 9 pages, http://pathwaysystems.com/company-blog/.
Pathway Systems International Inc., “What is Blueprints?” 2010-2016, http://pathwaysystems.com/blueprints-about/.
Popa, Lucian, et al., “Macroscope: End-Point Approach to Networked Application Dependency Discovery,” CoNEXT'09, Dec. 1-4, 2009, Rome, Italy, 12 pages.
Prasad, K. Munivara, et al., “An Efficient Detection of Flooding Attacks to Internet Threat Monitors (ITM) using Entropy Variations under Low Traffic,” Computing Communication & Networking Technologies (ICCCNT '12), Jul. 26-28, 2012, 11 pages.
Sachan, Mrinmaya, et al., “Solving Electrical Networks to incorporate Supervision in Random Walks,” May 13-17, 2013, pp. 109-110.
Sammarco, Matteo, et al., “Trace Selection for Improved WLAN Monitoring,” Aug. 16, 2013, pp. 9-14.
Shneiderman, Ben, et al., “Network Visualization by Semantic Substrates,” Visualization and Computer Graphics, vol. 12, No. 5, pp. 733,740, Sep.-Oct. 2006.
Theodorakopoulos, George, et al., “On Trust Models and Trust Evaluation Metrics for Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications. vol. 24, Issue 2, Feb. 2006, pp. 318-328.
Thomas, R., “Bogon Dotted Decimal List,” Version 7.0, Team Cymru NOC, Apr. 27, 2012, 5 pages.
Voris, Jonathan, et al., “Bait and Snitch: Defending Computer Systems with Decoys,” Columbia University Libraries, Department of Computer Science, 2013, pp. 1-25.
Wang, Ru, et al., “Learning directed acyclic graphs via bootstarp aggregating,” 2014, 47 pages, http://arxiv.org/abs/1406.2098.
Wang, Yongjun, et al., “A Network Gene-Based Framework for Detecting Advanced Persistent Threats,” Nov. 2014, 7 pages.
Witze, Alexandra, “Special relativity aces time trial, ‘Time dilation’ predicted by Einstein confirmed by lithium ion experiment,” Nature, Sep. 19, 2014, 3 pages.
Woodberg, Brad, “Snippet from Juniper SRX Series” Jun. 17, 2013, 1 page, O'Reilly Media, Inc.
Zatrochova, Zuzana, “Analysis and Testing of Distributed NoSQL Datastore Riak,” Spring, 2015, 76 pages.
Zeng, Sai, et al., “Managing Risk in Multi-node Automation of Endpoint Management,” 2014 IEEE Network Operations and Management Symposium (NOMS), 2014, 6 pages.
Zhang, Yue, et al., “CANTINA: A Content-Based Approach to Detecting Phishing Web Sites,” May 8-12, 2007, pp. 639-648.
Related Publications (1)
Number Date Country
20200169470 A1 May 2020 US
Continuations (1)
Number Date Country
Parent 15790412 Oct 2017 US
Child 16778515 US