Network proxy layer for policy-based application proxies

Information

  • Patent Grant
  • 10230770
  • Patent Number
    10,230,770
  • Date Filed
    Monday, December 2, 2013
    11 years ago
  • Date Issued
    Tuesday, March 12, 2019
    5 years ago
Abstract
A system and method for providing a network proxy layer are disclosed. The network proxy layer may receive a connection establishment event for a client connection of an application session and send the client connection event to an application proxy for the application session, the application proxy being associated with an application of a server. Upon establishment of the client connection, the network proxy layer may receive one or more data packets from the client connection. The network proxy layer may further receive a connection establishment event for a server connection of the application session of the server, and receive one or more data packets from the server connection.
Description
BACKGROUND

Field of the Invention


The present invention relates generally to data networks, and more particularly to policy based data networks.


Description of the Related Art


The approaches described in this section could be pursued but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.


Data networks such as the Internet, enterprise data networks, mobile broadband networks, cloud networks, have become an integral part of our lives. We use applications over data networks to obtain news, gather product information, reserve a table for dinner, submit a payment, purchase a good, read a book, find a map, make or receive phone calls, conduct or join a conferencing event, participate in a meeting, work on a document, approve a promotion, chat with a friend, watch television and videos, book a plane ticket, and do many other things in our normal lifestyle or work style. Corporate computers use applications over data network for business transactions, factory control, corporate voice and telephony services, inventory, fleet management and many other business uses.


Typically a client computer requests a service from a network application being served by a server computer. The communication session between the client computer and the server computer passes through a data network. Often, for security reasons and for load balancing purposes, network applications of certain types of communication sessions are inspected by the data network, for example, using a server load balancer (SLB), an application delivery controller (ADC), a firewall, a hypervisor application server or a media gateway. These communication sessions may include HTTP sessions, TCP sessions, and SIP sessions. In one example, a HTTP application desires to be inspected in the data network. An application proxy for the HTTP application will be deployed in a network device in the data network where the network device intercepts a communication session of the HTTP application between a client and a server serving the HTTP application. The HTTP application proxy receives data packets from the client, examines the client data, performs a TCP/IP layer security control, performs a HTTP protocol layer security control, performs additional security and service processing specific to the HTTP application, and finally sends the client data, perhaps modified based on the above mentioned processing, to the server. On the reverse path, the HTTP application proxy receives data from the server and applies similar processing before sending the server data, modified when necessary, to the client. The HTTP application proxy needs to handle any data buffer management, and any necessary security handling associated with the HTTP application and the underlying protocol layers.


In another example, a network device performs a SIP application proxy for a Voice Over IP (VoIP) and media application, where the network device provides security and traffic policy services to enhance the VoIP and media application.


Typically, each network application proxy behaves similarly in deployment. When the number of network application proxies deployed in a network device increases, there may be redundant effort in the handling of application proxies. Also, the handling of proxies among the different application proxies may be inconsistent, leading sometimes to undesirable behavior of the network device.


Thus, there is a need to provide a common network proxy layer to offer a consistent and efficient mechanism for network application proxies.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


The present disclosure is related to approaches for providing a network proxy layer for policy-based application proxies. In embodiments of the invention, a common network proxy layer may be provided so that one or more network application proxies on that layer process data efficiently, and in the same manner.


In an exemplary method for providing a network proxy layer, the method may comprise receiving a connection establishment event for a client connection of an application session, and sending a client connection event to an application proxy for the application session, the application proxy associated to an application of a server. The method may further comprise receiving one or more data packets from the client connection, receiving a connection establishment event for a server connection of the application session to the server; and receiving one or more data packets from the server connection.


In further example embodiments of the present disclosure, the method steps are stored on a computer-readable medium comprising instructions, which when implemented by one or more processors perform the recited steps. In yet further example embodiments, hardware systems, or devices can be adapted to perform the recited steps. Other features, examples, and embodiments are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 illustrates an exemplary embodiment of a service gateway having a plurality of application proxies using a network proxy layer.



FIG. 2 illustrates components of an exemplary service gateway.



FIG. 3 illustrates an exemplary embodiment of a proxy state machine.



FIG. 4 illustrates an application proxy processing data packets exchanged over an application session in an exemplary embodiment.



FIG. 5 illustrates an exemplary HTTP application proxy using a network proxy layer.



FIG. 6 illustrates an exemplary TCP proxy using a network proxy layer.



FIG. 7 illustrates a plurality of application proxies over an application session in an exemplary embodiment.



FIG. 8 illustrates a diagrammatic representation of a computing device for a machine in the example electronic form of a computer system, within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein can be executed.





DETAILED DESCRIPTION

The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.


Referring now to the drawings, FIG. 1 illustrates a service gateway 300 servicing a plurality of application proxies 701, 702 using network proxy layer 620.


In an example embodiment, service gateway 300 connects to client device 100 over a data network 501. Data network 501 may comprise an Internet Protocol (IP) network, a corporate data network, a regional corporate data network, an Internet service provider network, a residential data network, a wired network such as Ethernet, a wireless network such as a WiFi network, or a cellular network. Data network 501 may reside in a data center, or connect to any other network or a cloud-based network.


In an example embodiment, service gateway 300 connects to server 200 over a data network 503. Data network 503 may comprise an Internet Protocol (IP) network, a corporate data network, a regional corporate data network, an Internet service provider network, a residential data network, a wired network such as Ethernet, a wireless network such as a WiFi network, or a cellular network. Data network 503 may reside in a data center, or connect to any other network or application network cloud. Data network 503 may also be the same as data network 501 in some embodiments.


Client device 100 is typically a computing device with network access capabilities. In example embodiments, client device 100 may be a workstation, a desktop personal computer, a laptop personal computer, a Personal Data Assistant (PDA), a tablet computing device, a smartphone, a cellular phone, a set-top box, an Internet media viewer, an Internet media player, a smart sensor, a smart medical device, a net-top box, a networked television set, a networked DVR, a networked Blu-ray player, a networked handheld gaming device, a media center, a mobile device, or a networked personal computing device.


In other embodiments, client device 100 may also be a residential broadband gateway, a business Internet gateway, a business computing server, a network customer premise device (CPE), or an Internet access gateway.


In exemplary embodiments, client device 100 may include a broadband remote access server (BRAS), a Digital Subscriber Line Access Multiplexer (DSLAM), a Cable Modem Terminating System (CMTS), or a service provider access gateway. Client device 100 may also include a mobile broadband access gateway such as a Gateway GPRS Support Node (GGSN), a Home Agent (HA), or a PDN Gateway (PGW).


In various embodiments, client device 100 may include a server load balancer, an application delivery controller, a traffic manager, a firewall, a VPN server, a remote access server, or an enterprise or datacenter access gateway. In one embodiment, client device 100 may be a device similar to service gateway 300.


In an exemplary method, client device 100 initiates application session 400 towards server 200 via service gateway 300.


Server 200 is a computing device typically coupled to a processor and a computer readable medium which stores computer readable program code. Server 200, with the processor and the computer readable program code, may implement the functionality of a Web server, a file server, a video server, a database server, an application server, a voice system, a conferencing server, a media gateway, a media center, an app server or a network server providing an application service to client device 100 using the application session 400. In one embodiment, server 200 may be a device similar to service gateway 300.


Service gateway 300, illustrated in FIG. 2, may be operationally coupled to a processor module 310, a memory module 320, a network interface module 330, and a computer readable medium 340. The computer readable medium 340 stores computer readable program code, which when executed by the processor module 310 using the memory module 320, may implement the various embodiments of the present invention as described herein. In some embodiments, service gateway 300 may be implemented as a server load balancer, an application delivery controller, a service delivery platform, a traffic manager, a security gateway, a component of a firewall system, a component of a virtual private network (VPN), a network proxy gateway, a network application server, a load balancer for video servers, a gateway to distribute load to one or more servers, a Web or HTTP server, a network address translation (NAT) gateway, or a TCP server.


Returning to FIG. 1, service gateway 300 may implement the functionality of TCP/IP layer 610, network proxy layer 620, and at least one application proxy, which may include application proxy 701 and/or application proxy 702. In one embodiment, network proxy layer 620 is implemented in network interface module 330 and network interface module 330 may include a network processor or an ASIC/FPGA circuitry capable of processing network proxy layer 620. In one embodiment, network proxy layer 620 is implemented in processor module 310.


Application session 400 may be a TCP session conducted via service gateway 300. In an exemplary embodiment, application proxy 701 processes application session 400. Service gateway 300 receives data packets of application session 400. TCP/IP layer 610 receives and processes the received application session 400 data packets and passes the processed data packets to network proxy layer 620. Network proxy layer 620 provides additional processing to the data packets and sends the processed data packets to application proxy 701. Upon processing the received application session 400 data packets, application proxy 701 may send responses based on the received application session 400 data packet to network proxy layer 620, which in turns processes the responses and sends to the TCP/IP layer 610, which further processes the received responses from network proxy layer 620 and transmits the results to client device 100 via data network 501 or server 200 via data network 503.


Application proxy 701 may relate to an application of server 200 serving application session 400.



FIG. 3 illustrates an exemplary embodiment of network proxy layer 620. In one embodiment, network proxy layer 620 may include a state machine with three states—client connected state 621, server connecting state 623 and server connected state 625. In an example embodiment, network proxy layer 620 receives a client establishment event 612 from TCP/IP layer 610. Client establishment event 612 may be received when TCP/IP layer 610 exchanges or successfully establishes a TCP session connection with client device 100. Upon receiving client establishment event 612, network proxy layer 620 sets to client connected state 621.


In various embodiments, network proxy layer 620 may indicate the client establishment event 612 to application proxy 701. Network proxy layer 620 may send a client connection event 629 to application proxy 701 to indicate receipt of client establishment event 612. Client connection event 629 may include information about client device 100. Client connection event 629 may also include the TCP session connection with client device 100.


In one embodiment, network proxy layer 620 may include a client transmit buffer 622. Client transmit buffer 622 may store client data sent by application proxy 701 towards server 200. Client transmit buffer 622 will be further described below. In an example embodiment, network proxy layer 620 may determine that client transmit buffer 622 is not empty and has data to be transmitted to server 200 while network proxy layer 620 is in client connected state 621. Network proxy layer 620 may then change to server connecting state 623. Network proxy layer 620 may establish a TCP session with server 200. In one embodiment, network proxy layer 620 instructs TCP/IP layer 610 to establish a TCP session with server 200. In one embodiment, application proxy 701 informs network proxy layer 620 the address of server 200 for the TCP session. In one embodiment, the client transmit buffer 622 includes the server 200 address information.


Once TCP/IP layer 610 successfully establishes a TCP session with server 200, TCP/IP layer 610 may send a server establishment event 615 to network proxy layer 620. Upon receiving the server establishment event 615, network proxy layer 620 may change to server connected state 625. At the server connected state 625, service gateway 300 has a TCP session with client device 100 and a TCP session with server 200. Client device 100 and server 200 can exchange data packets for the application session 400 via service gateway 300.



FIG. 4 illustrates an example embodiment of data packets exchanged between client device 100 and server 200 where application proxy 701 processes the exchanged data packets.


In an example embodiment, network proxy layer 620 receives a client data packet 617 from client device 100 via TCP/IP layer 610. Network proxy layer 620 processes client data packet 617, generates client received data 627 using client data packet 617, and sends client received data 627 to application proxy 701. Network proxy layer 620 may also send client received data 627 to application proxy 701 after processing and combining one or more client data packets from client device 100. Furthermore, network proxy layer 620 may also perform one or more security checks or other policy based services on client data packet 617 prior to sending to application proxy 701. Network proxy layer 620 may also include a client connection event in client received data 627.


In one embodiment, application proxy 701 puts data into client transmit buffer 622. Application proxy 701 may also put data derived from client received data 627 into client transmit buffer 622. In one embodiment, application proxy 701 performs a proxy function on behalf of a corresponding application on server 200 serving application session 400. In various embodiments, application proxy 701 may also include information about server 200. In an example embodiment, application proxy 701 selects server 200 based on client received data 627. Application proxy 701 may include information about server 200 as a request to establish a session with server 200. Network proxy layer 620 may detect presence of data in client transmit buffer 622, and send the data in client transmit buffer 622 to server 200, via TCP/IP layer 610 onto the established server TCP session with server 200. The data in client transmit buffer 622 may include information about server 200. Network proxy layer 620 may use the server information to establish the server TCP session with server 200. Network proxy layer 620 may also establish the server TCP session with server 200 if the server TCP session is not present. In one embodiment, network proxy layer 620 establishes the server TCP session with server 200 if the information about server 200 differs from the existing server TCP session.


In an example embodiment, network proxy layer 620 receives a server data packet 618 from server 200 via TCP/IP layer 610. In one embodiment, network proxy layer 620 generates server received data 628 from server data packet 618 and sends server received data 628 to application proxy 701. Network proxy layer 620 may perform additional processing such as security or modification of server data packet 618 prior to generating server received data 628.


In exemplary embodiments, application proxy 701 may put data into server transmit buffer 624. Application proxy 701 may put data derived from server received data 628 into server transmit buffer 624. In one embodiment, application proxy 701 performs a proxy function on behalf of a service application on server 200 serving application session 400.


Network proxy layer 620 may also detect presence of data in server transmit buffer 624, and send the data in server transmit buffer 624 to client device 100, via TCP/IP layer 610 on the established client TCP session with client device 100.



FIG. 5 illustrates an example embodiment of a HTTP application proxy 721. In exemplary embodiments, HTTP application proxy 721 may include a client request state 722 and a server response state 724. HTTP application proxy 721 may receive client received data 627 from network proxy layer 620. HTTP application proxy 721 determines client received data 627 is from client device 100. HTTP application proxy 721 may then set to client request state 722. HTTP application proxy 721 examines client received data 627 and determines client received data 627 includes a HTTP request 726.


In some embodiments, client request state 722 may include a HTTP request protocol parser 725 which determines if client received data 627 satisfies the HTTP request protocol. In an example embodiment, HTTP request protocol parser 725 determines that client received data 627 satisfies the protocol. HTTP request protocol parser 725 may generate a record showing the components of the HTTP request 726. HTTP application proxy 721 may then process HTTP request 726. In some embodiments, HTTP request protocol parser may be included in network proxy layer 620 and network proxy layer 620 processes client received data 627 against HTTP request protocol parser 725 to generate the record for the HTTP request 726. In some embodiments, client received data 627 may include the record for the HTTP request 726.


In an example embodiment, HTTP application proxy 721 may select server 200 based on HTTP request 726. HTTP application proxy 721 may also select server 200 based on a server selection policy (not shown). In exemplary embodiments, HTTP application proxy 721 may modify HTTP request 726 and put HTTP request 726 or the modified HTTP request into client transmit buffer 622. HTTP application proxy 721 may also inform network proxy layer 620 to establish a session with server 200 for HTTP request 726. As illustrated elsewhere, network proxy layer 620 may establish a TCP session with server 200 and transmit data in client transmit buffer 622 to server 200.


In exemplary embodiments, HTTP application proxy 721 may examine HTTP request 726 based on one or more security policies, such as detection of denial of service, or any other appropriate security policy application to HTTP protocol or the HTTP application associated to HTTP application proxy 721.


In an example embodiment, HTTP application proxy 721 changes state from client request state 722 to server response state 724. During server response state 724, HTTP application proxy 721 may receive server received data 628 from network proxy layer 620. Server response state 724 may continue to receive server received data 628. In server response state 724, HTTP application proxy 721 may inspect server received data 628 against HTTP response format. In server response state 724, it may generate a record showing the components of HTTP response 728. HTTP application proxy 721 may process HTTP response 728 or modify HTTP response 728. In some embodiments HTTP application proxy 721 mat process HTTP response 728 using a service policy. HTTP application proxy 721 may then place processed HTTP response onto server transmit buffer 624 for network proxy layer 620 to send to client device 100.


In embodiments, HTTP application proxy 721 may process HTTP response 728 based on one or more security policies such as detecting a phishing response, a virus or any other appropriate security policies application to HTTP response or the HTTP application associated to HTTP application proxy 721.


HTTP application proxy 721 may also perform load balancing for HTTP request 726, among a plurality of servers which includes server 200. In an exemplary embodiment, HTTP application proxy 721 performs a HTTP firewall function. In another exemplary embodiment, HTTP application proxy 721 performs an access control based on geographic information about client device 100. HTTP application proxy 721 may also perform content caching for server 200.



FIG. 6 illustrates an exemplary embodiment of a TCP application proxy 730. In exemplary embodiments, TCP application proxy 730 receives client received data 627 from network proxy layer 620. TCP application proxy 730 may place client received data 627 into client transmit buffer 622. If TCP application proxy 730 determines client received data 627 indicates a new TCP proxy session from client device 100, TCP application proxy 730 may inform network proxy layer 620 to establish a server session with server 200. TCP application proxy 730 may obtain server 200 information based on client received data 627.


In exemplary embodiments, TCP application proxy 730 receives server received data 628 from network proxy layer 620. TCP application proxy 730 may place server received data 628 into server transmit buffer 624.


In some embodiments, TCP application proxy 730 may process and perhaps modify client received data 627 or server received data 628 prior to placing the data into either client transmit buffer 622 or server transmit buffer 624. In one embodiment, TCP application proxy 730 processes client received data 627 or server received data 628 based on a security policy such as detection of a Denial of Service event (DOS), or other TCP security processing; or based on a service policy such as bandwidth policy, traffic management policy or other configured service policies. In one embodiment, TCP application proxy 730 applies additional session protocol processing such as encryption, decryption, compression, or TCP profiling.



FIG. 7 illustrates an exemplary embodiment of a second application proxy 742 being applied after a first application proxy 741. In one embodiment, application session 400 is processed by two application proxies 741 and 742. In the client to server traffic direction, application proxy 741 may be applied before application proxy 742. In the server to client traffic direction, application proxy 741 may also be applied after application proxy 742. Alternatively, in some embodiments, application proxy 742 may be applied prior to application proxy 741 in the client to server traffic direction, and/or in the server to client traffic direction.


In an exemplary embodiment, application proxy 741 receives client received data 627, processes client received data 627, and generates client data 637 using client received data 627. In one embodiment, application proxy 741 places data 637 into client transmit buffer 622 and network proxy layer 620 sends client data 637 as modified client received data 727 for application proxy 742. In one embodiment, application proxy 741 sends data 637 as modified client received data 727 to application proxy 742. Application proxy 742 may process modified client received data 727 and place processed modified client received data 727 into client transmit buffer 622 such that network proxy layer 620 can send data from client transmit buffer 622 to server 200.


In exemplary embodiments, application proxy 742 may receive server received data 628, process server received data 628, and generates server data 638 using server received data 628. In one embodiment, application proxy 742 places server data 638 into server transmit buffer 624 and network proxy layer 620 places server data 638 from server transmit buffer 624 as modified server received data 728 for application proxy 741. In one embodiment, application proxy 742 sends server data 638 as modified server received data 728 to application proxy 741. Application proxy 741 processes modified server received data 728 and places processed modified server received data into server transmit buffer 624 such that network proxy layer 620 can send data from server transmit buffer 624 to client device 100.



FIG. 8 shows a diagrammatic representation of a machine in the example electronic form of a computer system 800, within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein may be executed. In various example embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine may be a PC, a tablet PC, a set-top box (STB), a cellular telephone, a portable music player (e.g., a portable hard drive audio device such as an Moving Picture Experts Group Audio Layer 3 (MP3) player), a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


The example computer system 800 includes a processor or multiple processors 802 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), or both), a main memory 804 and a static memory 806, which communicate with each other via a bus 808. The computer system 800 may further include a video display unit 810 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The computer system 800 may also include an alphanumeric input device 812 (e.g., a keyboard), a cursor control device 814 (e.g., a mouse), a disk drive unit 816, a signal generation device 818 (e.g., a speaker), and a network interface device 820.


The disk drive unit 816 includes a non-transitory computer-readable medium 822, on which is stored one or more sets of instructions and data structures (e.g., instructions 824) embodying or utilized by any one or more of the methodologies or functions described herein. The instructions 824 may also reside, completely or at least partially, within the main memory 804 and/or within the processors 802 during execution thereof by the computer system 800. The main memory 804 and the processors 802 may also constitute machine-readable media.


The instructions 824 may further be transmitted or received over a network 826 via the network interface device 820 utilizing any one of a number of well-known transfer protocols (e.g., Hyper Text Transfer Protocol (HTTP)).


While the computer-readable medium 822 is shown in an example embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present application, or that is capable of storing, encoding, or carrying data structures utilized by or associated with such a set of instructions. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media, and carrier wave signals. Such media may also include, without limitation, hard disks, floppy disks, flash memory cards, digital video disks, random access memory (RAMs), read only memory (ROMs), and the like.


The example embodiments described herein can be implemented in an operating environment comprising computer-executable instructions (e.g., software) installed on a computer, in hardware, or in a combination of software and hardware. The computer-executable instructions can be written in a computer programming language or can be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interfaces to a variety of operating systems. Although not limited thereto, computer software programs for implementing the present method can be written in any number of suitable programming languages such as, for example, Hypertext Markup Language (HTML), Dynamic HTML, Extensible Markup Language (XML), Extensible Stylesheet Language (XSL), Document Style Semantics and Specification Language (DSSSL), Cascading Style Sheets (CSS), Synchronized Multimedia Integration Language (SMIL), Wireless Markup Language (WML), Java™, Jini™, C, C++, Perl, UNIX Shell, Visual Basic or Visual Basic Script, Virtual Reality Markup Language (VRML), ColdFusion™ or other compilers, assemblers, interpreters or other computer languages or platforms.


Thus, methods and systems for providing a network proxy layer are disclosed. Although embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A method for providing a network proxy layer, comprising: receiving, by a service gateway, a connection establishment event for a client connection of an application session, the connection establishment event indicating that the client connection is established between the service gateway and a client, the client connection being established based on a request received from the client;sending, by the service gateway, a client connection event to an application proxy for the application session upon receiving the connection establishment event for the client connection associated with the client, the application proxy being associated with an application of one or more of a plurality of servers, the client connection event including at least client data associated with the client, the application proxy storing the client data to a client transmit buffer based on the client connection event;receiving, by the application proxy, one or more data packets from the client connection;based on the client data the one or more data packets received from the client connection, and a server selection policy, selecting, by the application proxy, a server from the plurality of servers, the server being associated with server data;storing, by the application proxy, the one or more data packets and the server data of the server selected by the application proxy to the client transmit buffer;determining, by the service gateway, a presence of the one or more data packets in the client transmit buffer;based on the determining, initiating, by the service gateway, establishing a server connection of the application session with the server based on the server data stored in the client transmit buffer;receiving, by the service gateway, a server establishment event for the server connection of the application session to the server, the server establishment event indicating that the server connection is established between the service gateway and the server;upon receiving the server establishment event, sending, by the service gateway, the one or more data packets to the server based on the server data stored in the client transmit buffer; andreceiving, by the application proxy, one or more data packets from the server connection.
  • 2. The method of claim 1, wherein the receiving one or more data packets from the client connection further comprises: sending a client data to the application proxy, the client data derived from the one or more data packets from the client connection.
  • 3. The method of claim 1, wherein the receiving one or more data packets from the client connection further comprises: processing the one or more data packets from the client connection based on a security or service policy.
  • 4. The method of claim 1, wherein the receiving one or more data packets from the client connection further comprises: processing the one or more data packets from the client connection based on a protocol format associated to the application proxy.
  • 5. The method of claim 1, wherein the receiving the server establishment event for the server connection of the application session to the server comprises: receiving a request for the server connection; andestablishing the server connection with the server upon receiving the request for the server connection.
  • 6. The method of claim 5, wherein the receiving a request for the server connection comprises an address of the server.
  • 7. The method of claim 6, wherein the establishing the server connection with the server upon receiving the request for the server connection is based on the address of the server.
  • 8. The method of claim 1, wherein the receiving one or more data packets from the server connection further comprises: sending a server data to the application proxy wherein the server data is derived from the one or more data packets from the server connection.
  • 9. The method of claim 1, wherein the receiving one or more data packets from the server connection further comprises: processing the one or more data packets from the server connection based on a security or service policy.
  • 10. The method of claim 1, wherein the receiving one or more data packets from the server connection further comprises: processing the one or more data packets from the server connection based on a protocol format associated to the application proxy.
  • 11. The method of claim 1, further comprising: receiving client transmit data from the application proxy; and sending the client transmit data to the server connection.
  • 12. The method of claim 11, wherein the client transmit data is sent to the server connection as one or more data packets.
  • 13. The method of claim 1, further comprising: receiving server transmit data from the application proxy; and sending the server transmit data to the client connection.
  • 14. The method of claim 13, wherein the server transmit data is sent to the client connection as one or more data packets.
  • 15. The method of claim 1, wherein the client connection or the server connection is an TCP connection.
  • 16. The method of claim 1, wherein the application is one of a TCP application, a secure TCP application, a HTTP application, a secure HTTP application, a SIP application, or a secure SIP application.
  • 17. A non-transitory computer-readable storage medium having instructions stored thereon, the instructions being executable by one or more processors to perform a method for providing a network proxy layer, the method comprising: receiving, by a service gateway, a connection establishment event for a client connection of an application session, the connection establishment event indicating that the client connection is established between the service gateway and a client, the client connection being established based on a request received from the client;sending, by the service gateway, a client connection event to an application proxy for the application session upon receiving the connection establishment event for the client connection associated with the client, the application proxy being associated with an application of one or more of a plurality of servers, the client connection event including at least client data associated with the client, the application proxy storing the client data to a client transmit buffer based on the client connection event;receiving, by the application proxy, one or more data packets from the client connection;based on the client data, the one or more data packets received from the client connection, and a server selection policy, selecting, by the application proxy, a server from the plurality of servers, the server being associated with server data;storing, by the application proxy, the one or more data packets and the server data of the server selected by the application proxy to the client transmit buffer;determining, by the service gateway, a presence of the one or more data packets in the client transmit buffer;based on the determining, initiating, by the service gateway, establishing a server connection of the application session with the server based on the server data stored in the client transmit buffer;receiving, by the service gateway, a server establishment event for the server connection of the application session to the server, the server establishment event indicating that the server connection is established between the service gateway and the server;upon receiving the server establishment event, sending, by the service gateway, the one or more data packets to the server based on the server data stored in the client transmit buffer; and receiving, by the application proxy, one or more data packets from the server connection.
  • 18. The non-transitory computer-readable storage medium of claim 17, wherein the receiving one or more data packets from the client connection further comprises: sending a client data to the application proxy, the client data derived from the one or more data packets from the client connection.
  • 19. The non-transitory computer-readable storage medium of claim 17, wherein the receiving one or more data packets from the client connection further comprises: processing the one or more data packets from the client connection based on a security or service policy.
  • 20. The non-transitory computer-readable storage medium of claim 17, wherein the receiving one or more data packets from the client connection further comprises: processing the one or more data packets from the client connection based on a protocol format associated to the application proxy.
  • 21. The non-transitory computer-readable storage medium of claim 17, wherein the receiving the server establishment event for the server connection of the application session to the server comprises: receiving a request for the server connection; andestablishing the server connection with the server upon receiving the request for the server connection.
  • 22. The non-transitory computer-readable storage medium of claim 21, wherein the receiving a request for the server connection comprises an address of the server.
  • 23. The non-transitory computer-readable storage medium of claim 22, wherein the establishing the server connection with the server upon receiving the request for the server connection is based on the address of the server.
  • 24. The non-transitory computer-readable storage medium of claim 17, wherein the receiving one or more data packets from the server connection further comprises: sending a server data to the application proxy wherein the server data is derived from the one or more data packets from the server connection.
  • 25. The non-transitory computer-readable storage medium of claim 17, wherein the receiving one or more data packets from the server connection further comprises: processing the one or more data packets from the server connection based on a security or service policy.
  • 26. The non-transitory computer-readable storage medium of claim 17, wherein the receiving one or more data packets from the server connection further comprises: processing the one or more data packets from the server connection based on a protocol format associated to the application proxy.
  • 27. The non-transitory computer-readable storage medium of claim 17, further comprising: receiving client transmit data from the application proxy; and sending the client transmit data to the server connection.
  • 28. The non-transitory computer-readable storage medium of claim 27, wherein the client transmit data is sent to the server connection as one or more data packets.
  • 29. The non-transitory computer-readable storage medium of claim 17, further comprising: receiving server transmit data from the application proxy; and sending the server transmit data to the client connection.
  • 30. The non-transitory computer-readable storage medium of claim 29, wherein the server transmit data is sent to the client connection as one or more data packets.
  • 31. The non-transitory computer-readable storage medium of claim 17, wherein the client connection or the server connection is an TCP connection.
  • 32. The non-transitory computer-readable storage medium of claim 17, wherein the application is one of a TCP application, a secure TCP application, a HTTP application, a secure HTTP application, a SIP application, or a secure SIP application.
US Referenced Citations (434)
Number Name Date Kind
5218602 Grant et al. Jun 1993 A
5774660 Brendel et al. Jun 1998 A
5862339 Bonnaure et al. Jan 1999 A
5875185 Wang et al. Feb 1999 A
5935207 Logue et al. Aug 1999 A
5941988 Bhagwat Aug 1999 A
5958053 Denker Sep 1999 A
5995981 Wikstrom Nov 1999 A
6003069 Cavill Dec 1999 A
6014700 Bainbridge Jan 2000 A
6047268 Bartoli et al. Apr 2000 A
6075783 Voit Jun 2000 A
6131163 Wiegel Oct 2000 A
6219706 Fan et al. Apr 2001 B1
6259705 Takahashi et al. Jul 2001 B1
6321338 Porras et al. Nov 2001 B1
6374300 Masters Apr 2002 B2
6456617 Oda et al. Sep 2002 B1
6459682 Ellesson et al. Oct 2002 B1
6483600 Schuster et al. Nov 2002 B1
6535516 Leu et al. Mar 2003 B1
6578066 Logan et al. Jun 2003 B1
6587866 Modi et al. Jul 2003 B1
6600738 Alperovich et al. Jul 2003 B1
6658114 Farn et al. Dec 2003 B1
6748414 Bournas Jun 2004 B1
6772205 Lavian et al. Aug 2004 B1
6772334 Glawitsch Aug 2004 B1
6779017 Lamberton et al. Aug 2004 B1
6779033 Watson et al. Aug 2004 B1
6804224 Schuster et al. Oct 2004 B1
6877036 Smith Apr 2005 B1
6952728 Alles et al. Oct 2005 B1
7010605 Dharmarajan Mar 2006 B1
7013482 Krumel Mar 2006 B1
7058718 Fontes et al. Jun 2006 B2
7069438 Balabine et al. Jun 2006 B2
7076555 Orman et al. Jul 2006 B1
7143087 Fairweather Nov 2006 B2
7167927 Philbrick et al. Jan 2007 B2
7181524 Lele Feb 2007 B1
7218722 Turner et al. May 2007 B1
7228359 Monteiro Jun 2007 B1
7234161 Maufer et al. Jun 2007 B1
7236457 Joe Jun 2007 B2
7254133 Govindarajan et al. Aug 2007 B2
7269850 Govindarajan et al. Sep 2007 B2
7277963 Dolson et al. Oct 2007 B2
7293099 Kalajan Nov 2007 B1
7301899 Goldstone Nov 2007 B2
7308499 Chavez Dec 2007 B2
7310686 Uysal Dec 2007 B2
7328267 Bashyam et al. Feb 2008 B1
7334232 Jacobs et al. Feb 2008 B2
7337241 Boucher et al. Feb 2008 B2
7343399 Hayball et al. Mar 2008 B2
7349970 Clement et al. Mar 2008 B2
7370353 Yang May 2008 B2
7373500 Ramelson et al. May 2008 B2
7391725 Huitema et al. Jun 2008 B2
7398317 Chen et al. Jul 2008 B2
7423977 Joshi Sep 2008 B1
7430755 Hughes et al. Sep 2008 B1
7463648 Eppstein et al. Dec 2008 B1
7467202 Savchuk Dec 2008 B2
7472190 Robinson Dec 2008 B2
7492766 Cabeca et al. Feb 2009 B2
7506360 Wilkinson et al. Mar 2009 B1
7509369 Tormasov Mar 2009 B1
7512980 Copeland et al. Mar 2009 B2
7533409 Keane et al. May 2009 B2
7552323 Shay Jun 2009 B2
7584262 Wang et al. Sep 2009 B1
7584301 Joshi Sep 2009 B1
7590736 Hydrie et al. Sep 2009 B2
7610622 Touitou et al. Oct 2009 B2
7613193 Swami et al. Nov 2009 B2
7613822 Joy et al. Nov 2009 B2
7673072 Boucher et al. Mar 2010 B2
7675854 Chen et al. Mar 2010 B2
7703102 Eppstein et al. Apr 2010 B1
7707295 Szeto et al. Apr 2010 B1
7711790 Barrett et al. May 2010 B1
7733866 Mishra et al. Jun 2010 B2
7747748 Allen Jun 2010 B2
7765328 Bryers et al. Jul 2010 B2
7792113 Foschiano et al. Sep 2010 B1
7808994 Vinokour et al. Oct 2010 B1
7826487 Mukerji et al. Nov 2010 B1
7881215 Daigle et al. Feb 2011 B1
7948952 Hurtta et al. May 2011 B2
7965727 Sakata et al. Jun 2011 B2
7970934 Patel Jun 2011 B1
7979694 Touitou et al. Jul 2011 B2
7983258 Ruben et al. Jul 2011 B1
7990847 Leroy et al. Aug 2011 B1
7991859 Miller et al. Aug 2011 B1
7992201 Aldridge et al. Aug 2011 B2
8019870 Eppstein et al. Sep 2011 B1
8032634 Eppstein et al. Oct 2011 B1
8081640 Ozawa et al. Dec 2011 B2
8090866 Bashyam et al. Jan 2012 B1
8099492 Dahlin et al. Jan 2012 B2
8116312 Riddoch et al. Feb 2012 B2
8122116 Matsunaga et al. Feb 2012 B2
8151019 Le et al. Apr 2012 B1
8179809 Eppstein et al. May 2012 B1
8185651 Moran et al. May 2012 B2
8191106 Choyi et al. May 2012 B2
8224971 Miller et al. Jul 2012 B1
8261339 Aldridge et al. Sep 2012 B2
8296434 Miller et al. Oct 2012 B1
8312507 Chen et al. Nov 2012 B2
8379515 Mukerji Feb 2013 B1
8499093 Grosser et al. Jul 2013 B2
8539075 Bali et al. Sep 2013 B2
8554929 Szeto et al. Oct 2013 B1
8559437 Mishra et al. Oct 2013 B2
8560693 Wang et al. Oct 2013 B1
8584199 Chen et al. Nov 2013 B1
8595791 Chen et al. Nov 2013 B1
RE44701 Chen et al. Jan 2014 E
8675488 Sidebottom et al. Mar 2014 B1
8681610 Mukerji Mar 2014 B1
8750164 Casado et al. Jun 2014 B2
8782221 Han Jul 2014 B2
8813180 Chen et al. Aug 2014 B1
8826372 Chen et al. Sep 2014 B1
8879427 Krumel Nov 2014 B2
8885463 Medved et al. Nov 2014 B1
8897154 Jalan et al. Nov 2014 B2
8965957 Barros Feb 2015 B2
8977749 Han Mar 2015 B1
8990262 Chen et al. Mar 2015 B2
9094364 Jalan et al. Jul 2015 B2
9106561 Jalan et al. Aug 2015 B2
9154584 Han Oct 2015 B1
9215275 Kannan et al. Dec 2015 B2
9219751 Chen et al. Dec 2015 B1
9253152 Chen et al. Feb 2016 B1
9270705 Chen et al. Feb 2016 B1
9270774 Jalan et al. Feb 2016 B2
9338225 Jalan et al. May 2016 B2
9350744 Chen et al. May 2016 B2
9356910 Chen et al. May 2016 B2
9386088 Zheng et al. Jul 2016 B2
20010042200 Lamberton et al. Nov 2001 A1
20010049741 Skene et al. Dec 2001 A1
20020026515 Michielsens et al. Feb 2002 A1
20020032777 Kawata et al. Mar 2002 A1
20020032799 Wiedeman et al. Mar 2002 A1
20020078164 Reinschmidt Jun 2002 A1
20020091844 Craft et al. Jul 2002 A1
20020103916 Chen et al. Aug 2002 A1
20020133491 Sim et al. Sep 2002 A1
20020138618 Szabo Sep 2002 A1
20020141386 Minert et al. Oct 2002 A1
20020143991 Chow et al. Oct 2002 A1
20020152307 Doyle Oct 2002 A1
20020178259 Doyle et al. Nov 2002 A1
20020188678 Edecker et al. Dec 2002 A1
20020191575 Kalavade et al. Dec 2002 A1
20020194335 Maynard Dec 2002 A1
20020194350 Lu et al. Dec 2002 A1
20030009591 Hayball et al. Jan 2003 A1
20030014544 Pettey Jan 2003 A1
20030023711 Parmar et al. Jan 2003 A1
20030023873 Ben-Itzhak Jan 2003 A1
20030035409 Wang et al. Feb 2003 A1
20030035420 Niu Feb 2003 A1
20030061506 Cooper et al. Mar 2003 A1
20030091028 Chang et al. May 2003 A1
20030131245 Linderman Jul 2003 A1
20030135625 Fontes et al. Jul 2003 A1
20030195962 Kikuchi et al. Oct 2003 A1
20040010545 Pandya Jan 2004 A1
20040062246 Boucher et al. Apr 2004 A1
20040073703 Boucher et al. Apr 2004 A1
20040078419 Ferrari et al. Apr 2004 A1
20040078480 Boucher et al. Apr 2004 A1
20040103315 Cooper et al. May 2004 A1
20040111516 Cain Jun 2004 A1
20040128312 Shalabi et al. Jul 2004 A1
20040139057 Hirata et al. Jul 2004 A1
20040139108 Tang et al. Jul 2004 A1
20040141005 Banatwala et al. Jul 2004 A1
20040143599 Shalabi et al. Jul 2004 A1
20040187032 Gels et al. Sep 2004 A1
20040199616 Karhu Oct 2004 A1
20040199646 Susai et al. Oct 2004 A1
20040202182 Lund et al. Oct 2004 A1
20040210623 Hydrie et al. Oct 2004 A1
20040210663 Phillips et al. Oct 2004 A1
20040213158 Collett et al. Oct 2004 A1
20040250059 Ramelson et al. Dec 2004 A1
20050005207 Herneque Jan 2005 A1
20050009520 Herrero et al. Jan 2005 A1
20050021848 Jorgenson Jan 2005 A1
20050027862 Nguyen et al. Feb 2005 A1
20050036501 Chung et al. Feb 2005 A1
20050036511 Baratakke et al. Feb 2005 A1
20050039033 Meyers et al. Feb 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050074013 Hershey et al. Apr 2005 A1
20050080890 Yang et al. Apr 2005 A1
20050102400 Nakahara et al. May 2005 A1
20050125276 Rusu Jun 2005 A1
20050163073 Heller et al. Jul 2005 A1
20050198335 Brown et al. Sep 2005 A1
20050213586 Cyganski et al. Sep 2005 A1
20050240989 Kim et al. Oct 2005 A1
20050249225 Singhal Nov 2005 A1
20050259586 Hatid et al. Nov 2005 A1
20050281190 McGee et al. Dec 2005 A1
20060023721 Miyake et al. Feb 2006 A1
20060036610 Wang Feb 2006 A1
20060036733 Fujimoto et al. Feb 2006 A1
20060041745 Parnes Feb 2006 A1
20060064478 Sirkin Mar 2006 A1
20060069774 Chen et al. Mar 2006 A1
20060069804 Miyake et al. Mar 2006 A1
20060077926 Rune Apr 2006 A1
20060092950 Arregoces et al. May 2006 A1
20060098645 Walkin May 2006 A1
20060112170 Sirkin May 2006 A1
20060164978 Werner et al. Jul 2006 A1
20060168319 Trossen Jul 2006 A1
20060187901 Cortes et al. Aug 2006 A1
20060190997 Mahajani et al. Aug 2006 A1
20060209789 Gupta et al. Sep 2006 A1
20060230129 Swami et al. Oct 2006 A1
20060233100 Luft et al. Oct 2006 A1
20060251057 Kwon et al. Nov 2006 A1
20060277303 Hegde et al. Dec 2006 A1
20060280121 Matoba Dec 2006 A1
20070019543 Wei et al. Jan 2007 A1
20070022479 Sikdar et al. Jan 2007 A1
20070076653 Park et al. Apr 2007 A1
20070086382 Narayanan et al. Apr 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070118881 Mitchell et al. May 2007 A1
20070124502 Li May 2007 A1
20070156919 Potti et al. Jul 2007 A1
20070165622 O'Rourke et al. Jul 2007 A1
20070180119 Khivesara et al. Aug 2007 A1
20070185998 Touitou et al. Aug 2007 A1
20070195792 Chen et al. Aug 2007 A1
20070230337 Igarashi et al. Oct 2007 A1
20070242738 Park et al. Oct 2007 A1
20070243879 Park et al. Oct 2007 A1
20070245090 King Oct 2007 A1
20070248009 Petersen Oct 2007 A1
20070259673 Willars et al. Nov 2007 A1
20070283429 Chen et al. Dec 2007 A1
20070286077 Wu Dec 2007 A1
20070288247 Mackay Dec 2007 A1
20070294209 Strub et al. Dec 2007 A1
20080016161 Tsirtsis et al. Jan 2008 A1
20080031263 Ervin et al. Feb 2008 A1
20080076432 Senarath et al. Mar 2008 A1
20080101396 Miyata May 2008 A1
20080109452 Patterson May 2008 A1
20080109554 Jing May 2008 A1
20080109870 Sherlock et al. May 2008 A1
20080120129 Seubert et al. May 2008 A1
20080134332 Keohane et al. Jun 2008 A1
20080162679 Maher et al. Jul 2008 A1
20080225722 Khemani et al. Sep 2008 A1
20080228781 Chen et al. Sep 2008 A1
20080250099 Shen et al. Oct 2008 A1
20080253390 Das et al. Oct 2008 A1
20080263209 Pisharody et al. Oct 2008 A1
20080271130 Ramamoorthy Oct 2008 A1
20080282254 Blander et al. Nov 2008 A1
20080291911 Lee et al. Nov 2008 A1
20080298303 Tsirtsis Dec 2008 A1
20090024722 Sethuraman et al. Jan 2009 A1
20090031415 Aldridge et al. Jan 2009 A1
20090049198 Blinn et al. Feb 2009 A1
20090070470 Bauman et al. Mar 2009 A1
20090077651 Poeluev Mar 2009 A1
20090092124 Singhal et al. Apr 2009 A1
20090106830 Maher Apr 2009 A1
20090138606 Moran et al. May 2009 A1
20090138945 Savchuk May 2009 A1
20090141634 Rothstein et al. Jun 2009 A1
20090164614 Christian et al. Jun 2009 A1
20090172093 Matsubara Jul 2009 A1
20090213858 Dolganow et al. Aug 2009 A1
20090222583 Josefsberg et al. Sep 2009 A1
20090227228 Hu et al. Sep 2009 A1
20090228547 Miyaoka et al. Sep 2009 A1
20090262741 Jungck et al. Oct 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090285196 Lee et al. Nov 2009 A1
20090313379 Rydnell et al. Dec 2009 A1
20100008229 Bi et al. Jan 2010 A1
20100023621 Ezolt et al. Jan 2010 A1
20100036952 Hazlewood et al. Feb 2010 A1
20100054139 Chun et al. Mar 2010 A1
20100061319 Aso et al. Mar 2010 A1
20100064008 Yan et al. Mar 2010 A1
20100082787 Kommula et al. Apr 2010 A1
20100083076 Ushiyama Apr 2010 A1
20100094985 Abu-Samaha et al. Apr 2010 A1
20100095018 Khemani et al. Apr 2010 A1
20100098417 Tse-Au Apr 2010 A1
20100106833 Banerjee et al. Apr 2010 A1
20100106854 Kim et al. Apr 2010 A1
20100128606 Patel et al. May 2010 A1
20100162378 Jayawardena et al. Jun 2010 A1
20100205310 Altshuler et al. Aug 2010 A1
20100210265 Borzsei et al. Aug 2010 A1
20100217793 Preiss Aug 2010 A1
20100217819 Chen et al. Aug 2010 A1
20100223630 Degenkolb et al. Sep 2010 A1
20100228819 Wei Sep 2010 A1
20100235507 Szeto et al. Sep 2010 A1
20100235522 Chen et al. Sep 2010 A1
20100235880 Chen et al. Sep 2010 A1
20100238828 Russell Sep 2010 A1
20100265824 Chao et al. Oct 2010 A1
20100268814 Cross et al. Oct 2010 A1
20100293296 Hsu et al. Nov 2010 A1
20100312740 Clemm et al. Dec 2010 A1
20100318631 Shukla Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100330971 Selitser et al. Dec 2010 A1
20100333101 Pope et al. Dec 2010 A1
20110007652 Bai Jan 2011 A1
20110019550 Bryers et al. Jan 2011 A1
20110023071 Li et al. Jan 2011 A1
20110029599 Pulleyn et al. Feb 2011 A1
20110032941 Quach et al. Feb 2011 A1
20110040826 Chadzelek et al. Feb 2011 A1
20110047294 Singh et al. Feb 2011 A1
20110060831 Ishii et al. Mar 2011 A1
20110083174 Aldridge et al. Apr 2011 A1
20110093522 Chen et al. Apr 2011 A1
20110099403 Miyata et al. Apr 2011 A1
20110099623 Garrard et al. Apr 2011 A1
20110110294 Valluri et al. May 2011 A1
20110145324 Reinart et al. Jun 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110153834 Bharrat Jun 2011 A1
20110178985 San Martin Arribas et al. Jul 2011 A1
20110185073 Jagadeeswaran et al. Jul 2011 A1
20110191773 Pavel et al. Aug 2011 A1
20110196971 Reguraman et al. Aug 2011 A1
20110276695 Maldaner Nov 2011 A1
20110276982 Nakayama et al. Nov 2011 A1
20110289496 Steer Nov 2011 A1
20110292939 Subramaian et al. Dec 2011 A1
20110302256 Sureshehandra et al. Dec 2011 A1
20110307541 Walsh et al. Dec 2011 A1
20120008495 Shen et al. Jan 2012 A1
20120023231 Ueno Jan 2012 A1
20120026897 Guichard et al. Feb 2012 A1
20120030341 Jensen et al. Feb 2012 A1
20120066371 Patel et al. Mar 2012 A1
20120084419 Kannan et al. Apr 2012 A1
20120084460 McGinnity et al. Apr 2012 A1
20120106355 Ludwig May 2012 A1
20120117382 Larson et al. May 2012 A1
20120117571 Davis et al. May 2012 A1
20120144014 Natham et al. Jun 2012 A1
20120144015 Jalan et al. Jun 2012 A1
20120151353 Joanny Jun 2012 A1
20120170548 Rajagopalan et al. Jul 2012 A1
20120173759 Agarwal et al. Jul 2012 A1
20120191839 Maynard Jul 2012 A1
20120215910 Wada Aug 2012 A1
20120239792 Banerjee et al. Sep 2012 A1
20120240185 Kapoor et al. Sep 2012 A1
20120290727 Tivig Nov 2012 A1
20120297046 Raja et al. Nov 2012 A1
20130046876 Narayana et al. Feb 2013 A1
20130058335 Koponen et al. Mar 2013 A1
20130074177 Varadhan et al. Mar 2013 A1
20130083725 Mallya et al. Apr 2013 A1
20130100958 Jalan et al. Apr 2013 A1
20130124713 Feinberg et al. May 2013 A1
20130135996 Torres et al. May 2013 A1
20130136139 Zheng et al. May 2013 A1
20130148500 Sonoda et al. Jun 2013 A1
20130166762 Jalan et al. Jun 2013 A1
20130173795 McPherson Jul 2013 A1
20130176854 Chisu et al. Jul 2013 A1
20130191486 Someya et al. Jul 2013 A1
20130198385 Han et al. Aug 2013 A1
20130250765 Ehsan et al. Sep 2013 A1
20130258846 Damola Oct 2013 A1
20130282791 Kruglick Oct 2013 A1
20140012972 Han Jan 2014 A1
20140089500 Sankar et al. Mar 2014 A1
20140164617 Jalan et al. Jun 2014 A1
20140169168 Jalan et al. Jun 2014 A1
20140207845 Han et al. Jul 2014 A1
20140258465 Li Sep 2014 A1
20140258536 Chiong Sep 2014 A1
20140269728 Jalan et al. Sep 2014 A1
20140286313 Fu et al. Sep 2014 A1
20140298091 Carlen et al. Oct 2014 A1
20140330982 Jalan et al. Nov 2014 A1
20140334485 Jain et al. Nov 2014 A1
20140359052 Joachimpillai Dec 2014 A1
20150039671 Jalan et al. Feb 2015 A1
20150215436 Kancherla Jul 2015 A1
20150237173 Virkki et al. Aug 2015 A1
20150244566 Puimedon Aug 2015 A1
20150281087 Jalan et al. Oct 2015 A1
20150281104 Golshan et al. Oct 2015 A1
20150296058 Jalan et al. Oct 2015 A1
20150312092 Golshan et al. Oct 2015 A1
20150312268 Ray Oct 2015 A1
20150333988 Jalan et al. Nov 2015 A1
20150334086 Zhao Nov 2015 A1
20150350048 Sampat et al. Dec 2015 A1
20150350379 Jalan et al. Dec 2015 A1
20160014052 Han Jan 2016 A1
20160014126 Jalan et al. Jan 2016 A1
20160036778 Chen et al. Feb 2016 A1
20160042014 Jalan et al. Feb 2016 A1
20160043901 Sankar et al. Feb 2016 A1
20160044095 Sankar et al. Feb 2016 A1
20160050233 Chen et al. Feb 2016 A1
20160088074 Kannan et al. Mar 2016 A1
20160105395 Chen et al. Apr 2016 A1
20160105446 Chen et al. Apr 2016 A1
20160119287 Khazan Apr 2016 A1
20160119382 Chen et al. Apr 2016 A1
20160139910 Ramanathan et al. May 2016 A1
20160156708 Jalan et al. Jun 2016 A1
20160173579 Jalan et al. Jun 2016 A1
Foreign Referenced Citations (86)
Number Date Country
1372662 Oct 2002 CN
1408089 Apr 2003 CN
1449618 Oct 2003 CN
1473300 Feb 2004 CN
1529460 Sep 2004 CN
1575582 Feb 2005 CN
1714545 Dec 2005 CN
1725702 Jan 2006 CN
1910869 Feb 2007 CN
101004740 Jul 2007 CN
101094225 Dec 2007 CN
101163336 Apr 2008 CN
101169785 Apr 2008 CN
101189598 May 2008 CN
101247349 Aug 2008 CN
101261644 Sep 2008 CN
101442425 May 2009 CN
0N101682532 Mar 2010 CN
101946493 Jan 2011 CN
0N102123156 Jul 2011 CN
102238226 Nov 2011 CN
102546590 Jul 2012 CN
102918801 Feb 2013 CN
103533018 Jan 2014 CN
103944954 Jul 2014 CN
104796396 Jul 2015 CN
102577252 Mar 2016 CN
102918801 May 2016 CN
102571742 Jul 2016 CN
1209876 May 2002 EP
1770915 Apr 2007 EP
1885096 Feb 2008 EP
02296313 Mar 2011 EP
2577910 Apr 2013 EP
2760170 Jul 2014 EP
2772026 Sep 2014 EP
2760170 Dec 2015 EP
261CHE2014 Jul 2016 IN
H09-097233 Apr 1997 JP
1999096128 Apr 1999 JP
H11-338836 Oct 1999 JP
2000276432 Oct 2000 JP
2000307634 Nov 2000 JP
2001051859 Feb 2001 JP
2001298449 Oct 2001 JP
2002091936 Mar 2002 JP
2003141068 May 2003 JP
2003186776 Jul 2003 JP
2005141441 Jun 2005 JP
2006332825 Dec 2006 JP
2008040718 Feb 2008 JP
2013528330 May 2011 JP
5855663 Dec 2015 JP
5906263 Apr 2016 JP
5946189 Jun 2016 JP
10-0830413 May 2008 KR
1020120117461 Aug 2013 KR
101576585 Dec 2015 KR
101632187 Jun 2016 KR
269763 Feb 1996 TW
425821 Mar 2001 TW
444478 Jul 2001 TW
0113228 Feb 2001 WO
2001014990 Mar 2001 WO
WO2001045349 Jun 2001 WO
2003103237 Dec 2003 WO
WO2004084085 Sep 2004 WO
WO2006098033 Sep 2006 WO
2008053954 May 2008 WO
WO2008078593 Jul 2008 WO
2011049770 Apr 2011 WO
WO2011079381 Jul 2011 WO
2012050747 Apr 2012 WO
2012075237 Jun 2012 WO
2013081952 Jun 2013 WO
2013096019 Jun 2013 WO
2013112492 Aug 2013 WO
WO2014031046 Feb 2014 WO
2014052099 Apr 2014 WO
2014088741 Jun 2014 WO
2014093829 Jun 2014 WO
WO2014138483 Sep 2014 WO
WO2014144837 Sep 2014 WO
WO2014179753 Nov 2014 WO
WO2015153020 Oct 2015 WO
WO2015164026 Oct 2015 WO
Non-Patent Literature Citations (17)
Entry
Cardellini et al., “Dynamic Load Balancing on Web-server Systems”, IEEE Internet Computing, vol. 3, No. 3, pp. 28-39, May-Jun. 1999.
Hunt et al. NetDispatcher: A TCP Connection Router, IBM Research Report RC 20853 May 19, 1997.
Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000.
Kjaer et al. “Resource allocation and disturbance rejection in web servers using SLAs and virtualized servers”, IEEE on Transactions on Network and Service Management, IEEE, US, vol. 6, No. 4, Dec. 1, 2009.
Sharifian et al. “An approximation-based load-balancing algorithm with admission control for cluster web servers with dynamic workloads”, The Journal of Supercomputing, Kluwer Academic Publishers, BO, vol. 53, No. 3, Jul. 3, 2009.
Koike et al., “Transport Middleware for Network-Based Control,” IEICE Technical Report, Jun. 22, 2000, vol. 100, No. 53, pp. 13-18.
Yamamoto et al., “Performance Evaluation of Window Size in Proxy-based TCP for Multi-hop Wireless Networks,” IPSJ SIG Technical Reports, May 15, 2008, vol. 2008, No. 44, pp. 109-114.
Abe et al., “Adaptive Split Connection Schemes in Advanced Relay Nodes,” IEICE Technical Report, Feb. 22, 2010, vol. 109, No. 438, pp. 25-30.
Gite, Vivek, “Linux Tune Network Stack (Buffers Size) to Increase Networking Performance,” nixCraft [online], Jul. 8, 2009 [retreived on Apr. 13, 2016], Retreived from the Internt: <URL:http://www.cyberciti.biz/faq/linux-tcp-tuning/>.
FreeBSD, “tcp—TCP Protocol,” Linux Programmer's Manual [online], Nov. 25, 2007 [retreived on Apr. 13, 2016], Retreived from the Internet: <URL:https://www.freebsd.org/cgi/man.cgi?query=tcp&apropos=0&sektion=7&manpath=SuSE+Linux%2Fi386+11.0&format=asci>.
“Enhanced Interior Gateway Routing Protocol”, Cisco, Document ID 16406, Sep. 9, 2005 update, 43 pages.
Crotti, Manuel et al., “Detecting HTTP Tunnels with Statistical Mechanisms”, IEEE International Conference on Communications, Jun. 24-28, 2007, pp. 6162-6168.
Haruyama, Takahiro et al., “Dial-to-Connect VPN System for Remote DLNA Communication”, IEEE Consumer Communications and Networking Conference, CCNC 2008. 5th IEEE, Jan. 10-12, 2008, pp. 1224-1225.
Chen, Jianhua et al., “SSL/TLS-based Secure Tunnel Gateway System Design and Implementation”, IEEE International Workshop on Anti-counterfeiting, Security, Identification, Apr. 16-18, 2007, pp. 258-261.
“EIGRP MPLS VPN PE-CE Site of Origin (SoO)”, Cisco Systems, Feb. 28, 2006, 14 pages.
Search Report dated Jul. 5, 2017 for Chinese Application No. 2014107207243.
Office Action dated Dec. 8, 2017 for Chinese Application No. 201410720724.3.
Related Publications (1)
Number Date Country
20150156223 A1 Jun 2015 US