This invention relates to methods and apparatus for radio reception, and more particularly, to methods and apparatus for distributing in-band on-channel (IBOC) digital audio broadcasting (DAB) radio signals.
IBOC DAB radio broadcasting technology delivers digital audio and data services to mobile, portable, and fixed receivers from terrestrial transmitters in the existing Medium Frequency (MF) and Very High Frequency (VHF) radio bands. IBOC DAB signals can be transmitted in a hybrid format including an analog modulated carrier in combination with a plurality of digitally modulated carriers or in an all-digital format wherein the analog modulated carrier is not used. Using the hybrid mode, broadcasters may continue to transmit analog AM and FM simultaneously with higher-quality and more robust digital signals, allowing themselves and their listeners to convert from analog to digital radio while maintaining their current frequency allocations.
One feature of digital transmission systems is the inherent ability to simultaneously transmit both digitized audio and data. Thus the technology also allows for wireless data services from AM and FM radio stations. The broadcast signals can include metadata, such as the artist, song title, or station call letters. Special messages about events, traffic, and weather can also be included. For example, traffic information, weather forecasts, news and sports scores, can all be scrolled across a radio receiver's display while the user listens to a radio station.
IBOC DAB technology can provide digital quality audio, superior to existing analog broadcasting formats. Because each IBOC DAB signal is transmitted within the spectral mask of an existing AM or FM channel allocation, it requires no new spectral allocations. IBOC DAB promotes economy of spectrum while enabling broadcasters to supply digital quality audio to the present base of listeners.
Multicasting, the ability to deliver several programs or data streams over one channel in the AM or FM spectrum, enables stations to broadcast multiple streams of data on separate supplemental or sub-channels of the main frequency. For example, multiple streams of data can include alternative music formats, local traffic, weather, news and sports. The supplemental channels can be accessed in the same manner as the traditional station frequency using tuning or seeking functions. For example, if the analog modulated signal is centered at 94.1 MHz, the same broadcast in IBOC DAB can include supplemental channels 94.1-1, 94.1-2, and 94.1-3. Highly specialized programming on supplemental channels can be delivered to tightly targeted audiences, creating more opportunities for advertisers to integrate their brand with program content.
The National Radio Systems Committee, a standard setting organization sponsored by the National Association of Broadcasters and the Consumer Electronics Association, adopted an IBOC standard, designated NRSC-5A, in September 2005. NRSC-5β, the disclosure of which is incorporated herein by reference, sets forth the requirements for broadcasting digital audio and ancillary data over AM and FM broadcast channels. The standard and its reference documents contain detailed explanations of the RF/transmission subsystem and the transport and service multiplex subsystem for the system. Copies of the standard can be obtained from the NRSC at http://www.nrscstandards.org/standards.asp. HD Radio™ technology, developed by iBiquity Digital Corporation, is an implementation of the NRSC-5β IBOC standard. Further information regarding HD Radio™ technology can be found at www.hdradio.com and www.ibiquity.com.
It would be desirable to provide methods and apparatus that can distribute program material and/or information received by an IBOC DAB receiver to a plurality of users having access to a local area network, such as a home or office network. It would further be desirable for a system employing such methods and apparatus to be highly flexible and configurable such that content can be distributed to users that have different devices for receiving the content, such as a computer, television or home theater, cell phone, personal music player, and other hand-held or portable devices. Moreover, different users of a received signal may be interested in different programs or data streams transmitted in a single IBOC DAB channel. It would therefore be desirable to provide methods and apparatus that can allow different users to access different programs and data services transmitted on a single channel.
In a first aspect, the invention provides an apparatus including a network receiver for receiving an over-the-air in-band on-channel broadcast signal and extracting broadcast content from the broadcast signal, and an output for delivering the content by way of a first receiver output signal to one or more network player devices.
The network receiver can include a network receiver interface for formatting the first receiver output signal according to a network access protocol. The network receiver can also include a front end for converting the broadcast signal to a baseband signal, and a processor for processing the baseband signal according to a protocol stack to produce an intermediate signal, wherein the network receiver interface processes the intermediate signal to produce the output signal. The intermediate signal can be encrypted.
The apparatus can further include a network player including a network player interface for receiving the receiver output signal, and a processor for processing the receiver output signal according to a network access protocol to recover the content. The network player can exchange command and status information with the network receiver. A user interface having controls for activating functions of the network receiver can also be included.
A network router for receiving the receiver output signal and distributing the content to one or more network players can also be included. Additional network receivers can be used to receive additional over-the-air in-band on-channel broadcast signals, extract broadcast content from the additional broadcast signals, and deliver the additional content by way of a second receiver output signal to one or more network player devices.
In another aspect, the invention provides a method including: receiving an over-the-air in-band on-channel broadcast signal and extracting broadcast content from the broadcast signal, and delivering the content by way of a first receiver output signal to one or more network player devices.
The method can further include: converting the broadcast signal to a baseband signal, processing the baseband signal according to a protocol stack to produce an intermediate signal, and processing the intermediate signal to produce the output signal. The intermediate signal can be encrypted. The content can include multiple programs and/or data received in a single broadcast channel.
In another aspect, the invention provides a network player comprising an interface for receiving a signal derived from an in-band on-channel broadcast, the signal including a plurality of protocol data units, and a processor for processing the protocol data units according to a logical protocol stack to recover content. The interface can exchange command and status information with a network receiver. A user interface having controls for activating functions of a network receiver can also be included. The network player can further include a storage device for storing the protocol data units.
a and 10b are diagrams of an IBOC DAB logical protocol stack.
Referring to the drawings,
At the studio site, the studio automation equipment supplies main program service (MPS) audio 42 to the EASU, MPS data 40 to the exporter, supplemental program service (SPS) audio 38 to the importer, and SPS data 36 to the importer. MPS audio serves as the main audio programming source. In hybrid modes, it preserves the existing analog radio programming formats in both the analog and digital transmissions. MPS data, also known as program service data (PSD), includes information such as music title, artist, album name, etc. Supplemental program service can include supplementary audio content as well as program associated data.
The importer contains hardware and software for supplying advanced application services (AAS). A “service” is content that is delivered to users via an IBOC DAB broadcast, and AAS can include any type of data that is not classified as MPS or SPS. Examples of AAS data include real-time traffic and weather information, navigation map updates or other images, electronic program guides, multicast programming, multimedia programming, other audio services, and other content. The content for AAS can be supplied by service providers 44, which provide service data 46 to the importer via an application program interface (API). The service providers may be a broadcaster located at the studio site or externally sourced, and the importer can establish session connections between multiple service providers. The importer encodes and multiplexes service data 46, SPS audio 38, and SPS data 36 to produce exporter link data 24, which is output to the exporter via a data link.
The exporter 20 contains the hardware and software necessary to supply the main program service and station information service (SIS) for broadcasting. SIS provides station information, such as call sign, absolute time, position correlated to GPS, etc. The exporter accepts digital MPS audio 26 over an audio interface and compresses the audio. The exporter also multiplexes MPS data 40, exporter link data 24, and the compressed digital MPS audio to produce exciter link data 52. In addition, the exporter accepts analog MPS audio 28 over its audio interface and applies a pre-programmed delay to it to produce a delayed analog MPS audio signal 30. This analog audio can be broadcast as a backup channel for hybrid IBOC DAB broadcasts. The delay compensates for the system delay of the digital MPS audio, allowing receivers to blend between the digital and analog program without a shift in time. In an AM transmission system, the delayed MPS audio signal 30 is converted by the exporter to a mono signal and sent directly to the STL as part of the exciter link data 52.
The EASU 22 accepts MPS audio 42 from the studio automation equipment, rate converts it to the proper system clock, and outputs two copies of the signal, one digital (26) and one analog (28). The EASU includes a GPS receiver that is connected to an antenna 25. The GPS receiver allows the EASU to derive a master clock signal, which is synchronized to the exciter's clock by use of GPS units. The EASU provides the master system clock used by the exporter. The EASU is also used to bypass (or redirect) the analog MPS audio from being passed through the exporter in the event the exporter has a catastrophic fault and is no longer operational. The bypassed audio 32 can be fed directly into the STL transmitter, eliminating a dead-air event.
STL transmitter 48 receives delayed analog MPS audio 50 and exciter link data 52. It outputs exciter link data and delayed analog MPS audio over STL link 14, which may be either unidirectional or bidirectional. The STL link may be a digital microwave or Ethernet link, for example, and may use the standard User Datagram Protocol or the standard TCP/IP.
The transmitter site includes an STL receiver 54, an exciter 56 and an analog exciter 60. The STL receiver 54 receives exciter link data, including audio and data signals as well as command and control messages, over the STL link 14. The exciter link data is passed to the exciter 56, which produces the IBOC DAB waveform. The exciter includes a host processor, digital up-converter, RF up-converter, and exgine subsystem 58. The exgine accepts exciter link data and modulates the digital portion of the IBOC DAB waveform. The digital up-converter of exciter 56 converts from digital-to-analog the baseband portion of the exgine output. The digital-to-analog conversion is based on a GPS clock, common to that of the exporter's GPS-based clock derived from the EASU. Thus, the exciter 56 includes a GPS unit and antenna 57. An alternative method for synchronizing the exporter and exciter clocks can be found in U.S. patent application Ser. No. 11/081,267 (Publication No. 2006/0209941 A1), the disclosure of which is hereby incorporated by reference. The RF up-converter of the exciter up-converts the analog signal to the proper in-band channel frequency. The up-converted signal is then passed to the high power amplifier 62 and antenna 64 for broadcast. In an AM transmission system, the exgine subsystem coherently adds the backup analog MPS audio to the digital waveform in the hybrid mode; thus, the AM transmission system does not include the analog exciter 60. In addition, the exciter 56 produces phase and magnitude information and the analog signal is output directly to the high power amplifier.
IBOC DAB signals can be transmitted in both AM and FM radio bands, using a variety of waveforms. The waveforms include an FM hybrid EBOC DAB waveform, an FM all-digital IBOC DAB waveform, an AM hybrid IBOC DAB waveform, and an AM all-digital IBOC DAB waveform.
The hybrid waveform includes an analog FM-modulated signal, plus digitally modulated primary main subcarriers. The subcarriers are located at evenly spaced frequency locations. The subcarrier locations are numbered from −546 to +546. In the waveform of
The upper primary extended sidebands include subcarriers 337 through 355 (one frequency partition), 318 through 355 (two frequency partitions), or 280 through 355 (four frequency partitions). The lower primary extended sidebands include subcarriers −337 through −355 (one frequency partition), −318 through −355 (two frequency partitions), or −280 through −355 (four frequency partitions). The amplitude of each subcarrier can be scaled by an amplitude scale factor.
In addition to the ten main frequency partitions, all four extended frequency partitions are present in each primary sideband of the all-digital waveform. Each secondary sideband also has ten secondary main (SM) and four secondary extended (SX) frequency partitions. Unlike the primary sidebands, however, the secondary main frequency partitions are mapped nearer to the channel center with the extended frequency partitions farther from the center.
Each secondary sideband also supports a small secondary protected (SP) region 110, 112 including 12 OFDM subcarriers and reference subcarriers 279 and −279. The sidebands are referred to as “protected” because they are located in the area of spectrum least likely to be affected by analog or digital interference. An additional reference subcarrier is placed at the center of the channel (0). Frequency partition ordering of the SP region does not apply since the SP region does not contain frequency partitions.
Each secondary main sideband spans subcarriers 1 through 190 or −1 through −190. The upper secondary extended sideband includes subcarriers 191 through 266, and the upper secondary protected sideband includes subcarriers 267 through 278, plus additional reference subcarrier 279. The lower secondary extended sideband includes subcarriers −191 through −266, and the lower secondary protected sideband includes subcarriers −267 through −278, plus additional reference subcarrier −279. The total frequency span of the entire all-digital spectrum is 396,803 Hz. The amplitude of each subcarrier can be scaled by an amplitude scale factor. The secondary sideband amplitude scale factors can be user selectable. Any one of the four may be selected for application to the secondary sidebands.
In each of the waveforms, the digital signal is modulated using orthogonal frequency division multiplexing (OFDM). OFDM is a parallel modulation scheme in which the data stream modulates a large number of orthogonal subcarriers, which are transmitted simultaneously. OFDM is inherently flexible, readily allowing the mapping of logical channels to different groups of subcarriers.
In the hybrid waveform, the digital signal is transmitted in primary main (PM) sidebands on either side of the analog FM signal in the hybrid waveform. The power level of each sideband is appreciably below the total power in the analog FM signal. The analog signal may be monophonic or stereo, and may include subsidiary communications authorization (SCA) channels.
In the extended hybrid waveform, the bandwidth of the hybrid sidebands can be extended toward the analog FM signal to increase digital capacity. This additional spectrum, allocated to the inner edge of each primary main sideband, is termed the primary extended (PX) sideband.
In the all-digital waveform, the analog signal is removed and the bandwidth of the primary digital sidebands is fully extended as in the extended hybrid waveform. In addition, this waveform allows lower-power digital secondary sidebands to be transmitted in the spectrum vacated by the analog FM signal.
The AM hybrid IBOC DAB signal format in one example comprises the analog modulated carrier signal 134 plus OFDM subcarrier locations spanning the upper and lower bands. Coded digital information representative of the audio or data signals to be transmitted (program material), is transmitted on the subcarriers. The symbol rate is less than the subcarrier spacing due to a guard time between symbols.
As shown in
The power of subcarriers in the digital sidebands is significantly below the total power in the analog AM signal. The level of each OFDM subcarrier within a given primary or secondary section is fixed at a constant value. Primary or secondary sections may be scaled relative to each other. In addition, status and control information is transmitted on reference subcarriers located on either side of the main carrier. A separate logical channel, such as an IBOC Data Service (IDS) channel can be transmitted in individual subcarriers just above and below the frequency edges of the upper and lower secondary sidebands. The power level of each primary OFDM subcarrier is fixed relative to the unmodulated main analog carrier. However, the power level of the secondary subcarriers, logical channel subcarriers, and tertiary subcarriers is adjustable.
Using the modulation format of
In practice, many of the signal processing functions shown in the receivers of
a and 10b are diagrams of an IBOC DAB logical protocol stack from the transmitter perspective. From the receiver perspective, the logical stack will be traversed in the opposite direction. Most of the data being passed between the various entities within the protocol stack are in the form of protocol data units (PDUs). A PDU is a structured data block that is produced by a specific layer (or process within a layer) of the protocol stack. The PDUs of a given layer may encapsulate PDUs from the next higher layer of the stack and/or include content data and protocol control information originating in the layer (or process) itself. The PDUs generated by each layer (or process) in the transmitter protocol stack are inputs to a corresponding layer (or process) in the receiver protocol stack.
As shown in
Any suitable network access protocol may be used. For example, the network interface may format the signal for transmission to a router over a wired Ethernet connection or a wired USB connection. The network interface may also format the signal for wireless transmission such as according to the IEEE 802.11 (“Wi-Fi”), IEEE 801.16 (“WiMAX”), IEEE 802.20 (“WMBA”) specifications, or Bluetooth for example. The network interface may also output a signal for direct connection, either wired or wireless, to a network player. A directly wired connection may use digital differential connectivity such as LVDS or a specialty protocol such as those used by high end home audio systems, whereas a wireless connection may use any of the protocols described above. A user may select between a direct connection to a network player and a networked connection via a router by flipping a switch, or pressing a button, on the exterior of the network receiver. Command and status information 354 and 355 is also passed between the network receiver and network player. Command information can include commands such as changing the frequency that is being received by the network receiver, for example. The network receiver includes the necessary hardware, such as Ethernet or USB connection points and antenna(s), for effectuating the transmission protocols implemented by the network interface.
In the example of
A single network receiver may provide content to any number of network players. For example, a network receiver may be located at a sports stadium. The attendees of a sports event such as a baseball game may desire to hear a sportscaster's commentary about the game, along with other related audio or data content. This content can be generated by a radio station or other source and then broadcast. The network receiver receives this broadcast and then routes the content to any network player in the stadium that is capable of receiving the signal. The network players can further include one or more televisions (using a wired or wireless connection), with an adapter that can be hidden away in a small box.
In the above described embodiments, the network receiver and network player together perform the necessary processing of a received signal pursuant to the logical protocol stack to produce an audio output and data output and provide the function of a user interface. For example, the network receiver may process the signal through layer L2 of the protocol stack and then route L2 PDUs to a network player to complete the processing. As another example, the network receiver may process the signal through layer L4 of the protocol stack and then route L4 PDUs to a network player to complete the processing. As a still further alternative, the network receiver may produce a fully decoded PCM signal for routing to the network player. In addition, the network receiver may route PDUs from a particular layer of the protocol stack to a storage device. The PDUs then may be later retrieved by a network player or other device to complete processing. The stored PDUs may also be distributed via a wide area network, such as the Internet, to another location where processing can be completed.
Where multiple users desire to listen to multiple stations, multiple network receivers can be used in the same local network.
The devices described above can be operated to perform a method including: receiving an over-the-air in-band on-channel broadcast signal and extracting broadcast content from the broadcast signal, and delivering the content by way of a first receiver output signal to a plurality of network player devices. The method can further include: converting the broadcast signal to a baseband signal, processing the baseband signal according to a protocol stack to produce an intermediate signal, and processing the intermediate signal to produce the output signal. The intermediate signal can be encrypted. The content can include multiple programs and/or data received in a single broadcast channel.
While the invention has been described in terms of several embodiments, it will be apparent to those skilled in the art that various changes can be made to the described embodiments without departing from the scope of the invention as set forth in the following claims.