1. Field of the Invention
This invention pertains generally to network systems and, more particularly, to such network systems for powering a plurality of network loads through a plurality of power source feeders, one or more generators, and a network bus.
2. Background Information
A network protector is a circuit breaker or other suitable switching device adapted to trip and open a power source, such as a feeder, upon detection of reverse power flow (i.e., power flowing through the power source and out of the network rather than into the network). Typically, overcurrent protection is provided by other devices, such as fuses in series with the network protector. The main function of the network protector is to automatically open upon detecting reverse power flow out of the network, and to close after the power from the respective power source has been restored. The overriding goal of a network system including plural network protectors is to electrically connect as many power sources as possible, thereby improving redundancy and, therefore, the reliability of the power sources.
Distribution networks are a type of electrical power distribution system used by utilities and relatively large industrial users to provide highly reliable power by connecting multiple sources of power supply to a common load. Because of the multiple sources, a malfunction of one or more power sources can often be tolerated without impact on the loads. To manage such multiple-source networks, the provision for safe and fully automatic connection of healthy power sources and disconnection of faulty power sources is necessary. Network protectors provide this provision automatically.
Because of the inherent network characteristic of zero tolerance for any power flowing out of a network, a network is not suited to export any power out of the network. This is the main reason why it has proven very difficult to electrically connect distributed generation to a network power system. Electrically connecting distributed generation to a network power system is desirable from both an improved redundancy/reliability standpoint and a cost of operation standpoint. The cost of operation becomes an issue if the distributed generator can produce electrical energy or power at a lower total cost than the cost to acquire an equivalent amount of electrical energy or power from the grid.
The problem is, however, that should the amount of locally generated electrical energy or power approach or exceed the requirements of the connected load, then undesirable opening of one or more network protectors may occur, thereby negatively impacting the network reliability. In the extreme case, all utility power sources could disconnect, thereby leaving the distributed generator to supply the entire load. This condition is called “islanding” and is a very undesirable condition because it is inevitably associated with network outage due to inability of the islanded network to automatically synchronize with the utility in order to restore its normal operation.
One prior proposal to address this problem consists of monitoring the power flow through individual network protectors and controlling the distributed generation output based upon the proximity of the network system to equilibrium (i.e., zero power flow across a network protector, which is an undesirable situation). This proposal is often called network underpower supervision and requires the connection of additional equipment to monitor for this condition and to control the operation of distributed generation, which is associated with significant costs.
An additional difficulty associated with the conventional voltage (potential) and current sensing circuits available with network protectors is that these circuits require that the wires be brought outside of the protection provided by the network protector enclosure. Since the network protector enclosure is, many times, a submersible vessel, the wiring through that vessel boundary must be a submersible class fitting. Also, since the critical sensing wiring is being taken outside of the confines of the protected enclosure, those wires may be inadvertently opened or shorted. Furthermore, for installations where the associated network protectors are not in the same immediate proximity, this issue becomes even more difficult to man age.
In the case of current sensing wiring, open-circuited wiring will not only break the signal to the network protector relay, thus, causing a malfunction within the network protector, it will also most likely permanently damage the current sensing transformer. Replacing the current transformer requires a major repair operation that takes the network protector out of service for several hours. For voltage sensing wiring, if the wiring is short circuited, then the voltage difference on the wires goes to zero resulting in a malfunction of the voltage sensing system within the network protector. This is a critical problem since a main function of the network protector is to measure network and source voltage, compare them, and determine if it is safe to close the network protector or if the network protector should be opened. Regardless of the case, the faulty sensing will impair the critical network protector functionality, which may escalate the abnormal condition and seriously impact the reliability of the entire installation.
Accordingly, there is room for improvement in network systems.
These needs and others are met by the present invention, which eliminates the concern of bringing current and voltage sensing wiring out of a network protector enclosure. This greatly reduces the installation cost and complexity by reducing the need to bring those wires outside of the network protector enclosure.
In accordance with one aspect of the invention, a network system for powering a plurality of network loads comprises: a network bus structured to power the network loads; a plurality of power source feeders; a communication network; a generator structured to provide forward power flow to the network bus; a generator protector relay cooperating with the generator; a plurality of network protectors corresponding to the power source feeders, the power source feeders being structured to provide forward power flow through corresponding ones of the network protectors to the network bus, each of the network protectors comprising a network protector relay including an interface communicating power flow information to the communication network; and a controller cooperating with the generator protector relay, the controller comprising an interface receiving the power flow information from the communication network and a processor determining whether there is forward power flow through the network protectors to the network bus, enabling the generator protector relay responsive to the forward power flow through the network protectors to the network bus, and reducing output from the generator responsive to the forward power flow through at least one of the network protectors being less than a predetermined amount.
The interfaces of the network protector relays may be associated with corresponding addresses; and the processor of the controller may comprise a polling table and an auto-learning routine, which auto-learns at least some of the interfaces of the network protector relays on the communication network, and which adds the corresponding addresses of the interfaces of the network protector relays to the polling table.
The controller may further comprise an output relay controlling the generator protector relay. The processor may de-energize the output relay responsive to the forward power flow through at least one of the network protectors being less than a predetermined setpoint, in order to shut down the generator.
The processor may de-energize the output relay responsive to loss of communication on the communication network, in order to shut down the generator.
The processor may repetitively poll the communication network to receive the power flow information from the communication network. The processor may re-energize the output relay responsive to the forward power flow being greater than the predetermined setpoint, in order to restart the generator.
The predetermined setpoint may be a first setpoint. The processor may comprise a second setpoint, which is greater than the first setpoint, and a predetermined period of time. The processor may re-energize the output relay responsive to the forward power flow being greater than the second setpoint for the predetermined period of time.
The generator may be at least one distributed generator including an input structured to adjust the forward power flow to the network bus. The processor may comprise an output having a bias signal structured to continuously, periodically or repetitively adjust the input of the at least one distributed generator.
The at least one distributed generator may be a plurality of distributed generators. The processor may further comprise a lower setpoint and an upper setpoint relative to an instantaneous value of the forward power flow between the lower and upper setpoints. The processor may adjust the bias signal of the output thereof to adjust the input of the distributed generators, or may select and adjust one of the distributed generators.
The processor may be structured to adjust power output from or trip at least one of the distributed generators based upon a predetermined count of the network protectors having the forward power flow through the network protectors to the network bus being less than a predetermined setpoint.
The processor may be structured to trip the at least one of the distributed generators based upon the predetermined count being less than the predetermined setpoint. The processor may be structured to reset the at least one of the distributed generators based upon the predetermined count being greater than the predetermined setpoint.
The generator may comprise a plurality of non-adjustable distributed generators. The controller may further comprise a plurality of shedding contacts to provide staged distributed generation shedding.
The controller may further comprise an output relay controlling the generator protector relay. The processor may energize the output relay responsive to the forward power flow through the network protectors to the network bus being greater than a predetermined setpoint.
A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
As employed herein, the term “communication network” shall expressly exclude discrete current sensing conductor(s) and discrete voltage sensing conductor(s), and shall expressly include, but not be limited by, an INCOM network, a twisted pair daisy chain network, any local area network (LAN), a wide area network (WAN), a power line carrier network, a low-rate wireless personal area network (LR-WPAN), other types of wireless sensor networks, intranet, extranet, global communication network and/or the Internet.
The present invention is described in association with a network system including one or more distributed generators and power source feeders, although the invention is applicable to a wide range of network systems for network busses.
Referring to
The example communication network 42 includes a twisted pair, daisy chain among the interfaces 44,46 of the network protector relays 68,70 and the interface 72 of the controller 40.
The communication network 42 may be an INCOM network between the interfaces 44,46 of the network protector relays 68,70 and the interface 72 of the controller 40. Examples of the INCOM network and protocol are disclosed in U.S. Pat. Nos. 4,644,547; 4,644,566; 4,653,073; 5,315,531; 5,548,523; 5,627,716; 5,815,364; and 6,055,145, which are incorporated by reference herein. The network 42 or the controller 40 may include an uplink port (not shown) or communication port (not shown) to allow a supervisory system (not shown) to monitor the state of the various networked devices.
The interfaces 44,46 of the network protector relays 68,70 are associated with corresponding addresses. The controller processor 74 of
As one example application, the controller 40 provides an “ON-OFF” mode. As long as the forward power flow is above a predetermined lower setpoint, such as 80, the distributed generation controller 40 keeps an output relay 84 (
An engine typically includes built-in control logic that supports functions, such as, for example, speed control (also called a governor), voltage control (also called a voltage regulator), and various alarms and shutdowns, such as, for example, high temperatures and high and low pressures. Engine control logic systems typically include a place for a remote kill switch (e.g., a mushroom head pushbutton). One option is to wire the controller 40 to this circuit as well as to the protector relay 66, although it could be wired to just one or the other. If the output relay 84 de-energizes, then the relay contact 86 changes state. This is interpreted by the distributed generator 64 as a signal to shut down and lock out. The same occurs if the integrity of the interconnection wiring is accidentally violated.
In this example, the output relay 84 controls the generator protector relay 66. The controller processor 74 de-energizes the output relay 84 responsive to the forward power flow through at least one of the network protectors 48,50 being less than the predetermined setpoint 80, in order to shut down the generator 64. The controller processor 74 re-energizes the output relay 84 responsive to the forward power flow through the network protectors 48,50 to the network bus 56 being greater than the predetermined setpoint 80, in order to restart the generator 64.
The controller processor 74 repetitively polls the communication network 42 to receive the power flow information therefrom. If the distributed generation controller 40 determines that the forward power flow is above the predetermined upper (or reset) setpoint 82, then the distributed generation controller 40 re-energizes the output relay 84 that controls the distributed generator 64. The distributed generator 64, in turn, interprets this as a permission to start.
The upper (or reset) setpoint 82 is greater than the lower setpoint 80 by a suitable safety margin, which is selected to prevent control hunting for a suitable predetermined period of time 88. For example, hunting (or cycling) in this context is a repetitive and frequent insertion and removal of the distributed generator 64, whereas the controller 40 reacts to the change of the flow through the network protector, which is caused by insertion or removal of the distributed generator 64 itself, and reacts in the opposite direction. This phenomenon could otherwise add mechanical stresses to the network system 52 and should be prevented by a deliberate setting in the controller 40 chosen not to react to its own actions.
For example, a connect setpoint may define that if the lowest power through any network protector (NWP) is above 150 kW, then the controller 40 is permitted to start the generator, but if that lowest NWP power drops below 50 kW, then it must shut off the generator. Further assuming that two NWPs and the sources are exactly balanced (i.e., one-half of the load requirements is sourced from each NWP, if a 200 kW generator is added to the network bus 56, then that will reduce each NWP load by 100 kW. Further assuming 151 kW forward power on each NWP when starting the generator, this drops the power flow for each NWP by 100 kW, meaning there is 51 kW left flowing through each NWP. That is only 1 kW away from causing a generator shut down in this example. As a further assumption, if an elevator descended and regenerated power of, for example, 10 kW, then that would reduce the building to 41 kW and cause the generator to shut down. Then, after the generator is off and the elevator has stopped, the power jumps back up to 151 kW on each circuit where it was before and the generator would restart. This hunting back and forth cycle would than be repeated. The solution is to make the difference between when the generator starts and when it stops much greater than the generator rating divided by the number of closed NWPs. For an example deadband of 100 kW (=150 kW-50 kW), with two NWPs closed and one 200 kW generator (200 kW/2=100 kW), those two values of deadband and generator-power-shared are too close to each other. Hence, in this example, the deadband would need to be significantly greater than 100 kW (e.g., 200 kW).
In order to ensure the integrity of the communication network 42, two “watchdog timers” 90,92 are preferably employed. The first watchdog timer 90 monitors loss of communications with a previously communicating node. The second watchdog timer 92 monitors the health of the distributed generation controller 40.
The distributed generation controller 40 preferably performs various internal health checks including, for example, verification of checksums of memory 94 (e.g., volatile; non-volatile) and verification of the integrity of communications on the communication network 42. If any of these health checks fail, then the distributed generation controller 40 de-energizes the output relay 84 (e.g., which drives an example form C relay contact 86) that, otherwise, permits the distributed generator 64 to start and run. For example, such self-checking ensures the integrity of the network system 52. A failed integrity check shuts down and prohibits restart of the distributed generator 64 as a precaution. A separate “fault” relay 96 on the distributed generation controller 40 is also preferably energized to annunciate the fault, while a status display (not shown) preferably indicates a corresponding fault code.
As shown in
For example, the controller 40 should preferably always “know” which is the NWP with the minimum loading, although a user-selectable “reference” NWP can be of benefit in some fixed spot network applications. This is preferred for a network with constantly changing configurations, such as the reduced configuration after the lowest loaded NWP does trip, in which case the next lowest loaded NWP becomes a reference.
The goal is to ensure that forward power flow through any NWP never drops to such a low level that a load reduction causes the NWP to open. NWPs share power inversely proportional to their circuit impedances (i.e., higher impedances supply less power) and proportional to the difference between their source voltage and the network voltage (i.e., higher voltage differences supply more power). Since one cannot get precisely matched impedances or voltages between NWPs sourcing the network, by definition one NWP will supply the least amount of power. That NWP is the important NWP to monitor since low forward power flow is a problem and the first NWP to trip will be that one.
For example, since the controller 40 monitors each NWP, it knows which NWP has the lowest forward power flow of the group. Alternatively, the reference may be entered as a setpoint, since there are systems where the impedance and voltage differences between NWPs remain constant over the life of the installation, so the NWP with the lowest forward power flow will remain the NWP with the lowest power for as long as the network configuration (i.e., which NWPs are closed, which are open, which substation breakers are closed, and which are open, all of which can change the upstream impedance and voltage to a particular NWP) remains the same. One benefit of monitoring only one NWP within a group of NWPs, if employed, is that the network update speed for the one NWP can be quite fast.
The generator 64 may be a plurality of distributed generators, such as DG 64,64′ of
The distributed generation controller 40 may operate its bias signal 100 and output relay 84 as a function of the real-time power flowing through and the status of each of the network protectors 48,50. For example, a user-selectable logic function 102 selected through a suitable user interface 104 of
The controller processor 74 may be structured through one of the user-selectable logic functions 102,106 to adjust power output from or trip at least one of the distributed generators 64 based upon a predetermined count or percentage of the closed network protectors 48,50 to the network bus 56 being less than a predetermined setpoint (e.g., without limitation, any suitable rule; if there are three NWPs, the rule may be that unless at least 50% of the NWPs are energized, the controller 40 cannot start the generator, or that two of the three NWPs must be closed).
The controller processor 74 may trip the one or more distributed generators 64 based upon the predetermined count being less than the predetermined setpoint. The controller processor 74 may reset the one or more distributed generators 64 based upon the predetermined count being greater than the predetermined setpoint.
As an alternative to Example 13, if one or more non-adjustable distributed generators 108 are employed, then, as shown in
The power setpoints (e.g., thresholds) 80,82 of
The setpoints 80,82 are user-selectable by the user interface 104 (e.g., without limitation, a suitable switch, such as a DIP switch or rotary switch) on the distributed generation controller 40. The user interface 104 is preferably structured to select, enter or adjust the first and second setpoints 80,82 and the predetermined period of time 88.
The setpoints 80,82 are values (e.g., without limitation, register values) stored in distributed generation controller memory 94 (e.g., without limitation, non-volatile memory) and programmed through the user interface 104 (e.g., without limitation, a computer; a hand-held computer; another suitable interface).
The upper (reset) setpoint 82 and the suitable predetermined period of time 88 of Example 7 may be set by any suitable method, such as, for example, the methods discussed above in connection with Examples 15 and 16 for the power setpoints (e.g., thresholds) 80,82.
Where there are plural distributed generation sources 64 or a number (i.e., one or more) of distributed generation sources having an adjustable output, the network system 52 may significantly improve distributed generation asset utilization.
For example, since a power system has paid for the generator, whether used or not, the money spent on this generator will have a better payback if the system can use it rather than it just being idle. The premise is that during some portion of the time it makes financial sense to run the generator because the generator can produce power at relatively less expense than purchasing it from the utility. In that case, the system seeks to supply as much power from the generator as possible. However, if the control interconnection between the controller 40 and the generator is only an ON-OFF choice, then there may be a situation where the generator output may be so large that connecting it to the network bus would result in reverse power flow from the network. In that case, the system needs a smaller generator. To “make” a smaller generator out of a larger one, the system connects a bias signal from the controller to the governor external speed trim input. When the controller 40 throttles back, the generator output decreases. In this manner, the system can run the generator and provide the lower cost power, but without supplying so much power that it trips the NWP(s).
Where generators with adjustable output cannot be applied, a bank of smaller generators individually connected may be employed instead.
Preferably, the example communication network 42 prevents an external system (not shown) from adversely affecting the throughput or timing of the communications, while providing access to data from the network protectors 48,50.
The example network system 52 preferably employs a fail-safe design. For example, if the communication network 42 fails in any way, then the individual network protectors 48,50 are not affected, although the distributed generator 64 is shut down as a safety precaution. The communication network 42 may include a pair of conductors. The controller processor 74 may de-energize the output relay 84 responsive to a broken or shorted one of the conductors, or other loss of network communication, in order to shut down the generator 64.
The example network system 52 eliminates the need for bringing current sensing and voltage sensing wiring out of a network protector enclosure (e.g., submersible vessel) (not shown), and does not require or employ additional current and/or voltage transformers or electrical connections to such existing transformers. As a result, this greatly reduces the installation complexity and cost and, also, improves reliability.
The network system 52 does not require separate underpower relays or separate timers (not shown, but part of the underpower relays 8 and 10 of
The example network system 52 also saves space and significantly reduces the cost of installation, since less equipment and labor time are needed. For example, compared to the system 1 (
A significant enhancement of functionality is also realized since the example network system 52 allows continuous or regular adjustment of the distributed generation output as opposed to mere ON/OFF functionality, thereby resulting in better distributed generation asset utilization. The functionality improvement comes from the ability of the controller 40 to provide continuous or regular generation shedding or generation output adjustment as opposed to only a discrete output (relay contact 86). This capability may be important when the distributed generator output is adjustable or when several units operate in parallel at the same network bus.
The reliability gains come from the elimination of the additional current sensing and voltage sensing wiring outside the network protector enclosure as well as the elimination of a potential breach of the enclosure. This, further, eliminates the potential of externally caused network protector malfunctions. Another distinct benefit of this approach is that the network system 52 is readily extensible in both the count of network protectors and the physical distances therebetween.
Although the controller 40 and processor 74 are disclosed, it will be appreciated that a combination of one or more of analog, digital and/or processor-based circuits may be employed.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.