The present invention relates to the field of filter diagnostics. More specifically, the present invention relates to the field of remote filter condition indicators using filter condition indicators wirelessly.
Systems for delivering heated air include filtration equipment for removing particles from the air. The systems typically include mechanical filters formed from fibrous materials. The filter material functions to block particulate matter that is in the air. Particulate matter becomes attached to the filter material which, over a period of time, progressively restricts the flow of air through the filter.
The increased restriction reduces the efficiency of the heat delivery system and the effective heating of the building. The partially clogged filter also causes increased back pressure to be applied to the blower or fan which generates the air flow in forced air systems and this back pressure increases the work that must be performed and the energy consumed by the blower or fan unit. The resulting added load increases the wear rate of the moving parts in the heating system and also results in increased operating costs. Ultimately, a heavily clogged filter can cause the system to stop operating completely, create a fire hazard or fail catastrophically “dumping” the captured particles back into the airstream and into the house. Thus, it is important that partially clogged or dirty air filters are replaced promptly.
In order to determine when an air filter needs to be changed, a person typically must gain access to the filter. The filter is then removed and visually inspected. If through the visual inspection it is determined that there is a significant build up of particulate matter on the outside surface of the air filter, it is replaced with a new filter. This procedure has many problems. This procedure requires the air filter to be periodically checked in order to determine when the filter needs to be changed. This often results in dirty filters not being changed on time because people do not remember to check. Also, the mere visual inspection of the air filter does not always result in an accurate determination if the filter should be replaced. The visual inspection of the surface of the filter is not necessarily reliable in determining the condition of the filter because visible surface contamination or the lack of visible surface contamination may not be representative of contamination plugging flow paths inside the filter material.
In light of these drawbacks, many devices have been developed to determine when an air filter is dirty and needs replacement. The devices attempt to provide an indication of the need for replacement of an air filter in a heating system.
Examples of such devices are set forth in U.S. Pat. Nos. 2,753,831 and 4,321,070 which describe a device with a tube which extends through an air filter and incorporates a whistle. In these devices, air flows continuously through a tube and as the air flow through the tube increases as a result of increasing clogging of the surrounding air filter, the whistle generates a sound when the air flow rate is of a sufficient magnitude. These devices have potential problems since contamination and clogging of the tube may occur and may have a negative effect upon the operation of the whistle. Furthermore, indication by sound is not necessarily a preferable means of alerting people; for instance, with people who have difficulty hearing.
U.S. Pat. No. 2,804,839 to Hallinan discloses a device for providing a visual and audible indication of the clogging of an air filter. The device uses a magnet for retaining a pivotable member in place that provides a visual indicator and actuates a structure capable of sounding an audible alarm.
U.S. Pat. No. 6,837,922 to Gorin discloses an air filter sensor kit that includes an air filter sensor with a portion shaped for insertion through the air filter and a portion with an indicator for indicating the condition of the air filter. The kit includes an air filter sensor member for connecting the air filter sensor to an air filter grill and for supporting the air filter sensor. The kit also includes a cutting tool for cutting a hole in an air filter grill to allow the passage of a portion of the air filter sensor member to permit a portion of the air filter sensor to be inserted through the air filter.
U.S. Pat. No. 6,535,838 to Abraham et al. discloses a furnace diagnostic system and method of communicating controls and historical, as well as real-time diagnostic, information between a residential furnace controller and a portable hand held device carried by a service technician. The system includes sensors that monitor various functions of the furnace. The system provides a method of interrogating the furnace while operating, diagnosing the real time information as well as stored historical data on the furnace operations, controlling furnace components and monitoring the resulting response in real-time, and providing knowledge based troubleshooting assistance to the service technician in an expeditious manner. One embodiment of the method provides infrared communication ports on the furnace controller and handheld device to obviate the need to make physical attachments to the furnace.
U.S. Pat. No. 5,124,957 to Owens et al. discloses a programmable timing device for use in combination with an existing thermostat housing. The apparatus implements an audible and visual display to alert an individual to a need in maintenance of an associated furnace air filter. The apparatus may be secured to a wall surface or optionally, adhesively secured to the existing thermostat housing by means of a mounting bracket. A user sets a timing event with the timing mechanism to notify when the filter needs to be replaced.
The web pages, http://www.oxyfilters.com/oxy-filtergage.html, teach an indicator gage that detects reduced air flow and provides a visual indication of the need to replace the dirty air filter that can be mounted in a location up to 10 feet from a sensing location.
A filter condition indicator system is described herein. A pressure differential switch monitors air pressure across a filter, and a transmitter coupled to the pressure differential switch sends a signal to a networked device. If the pressure differential near the filter triggers the switch, then a “dirty” signal is sent to or retrieved by a mobile device which indicates that the filter is dirty and should be replaced. The filter condition indicator is able to be used by bypassing a thermostat and sending an alert to a computer or mobile device wirelessly. Alternatively, the filter condition indicator system described herein is able to be used in conjunction with a previously installed furnace/thermostat system by utilizing the pre-existing thermostat wiring. The filter condition indicator system is able to be used with HVAC systems, air conditioning systems, other heating/cooling systems, or other systems or devices.
The present invention is a furnace filter status indicator that provides a remote indication when a furnace filter or other filter needs to be replaced or cleaned.
In some embodiments, the filter condition indicator system is able to provide filter condition information to a device by wirelessly communicating using a transmitter positioned on or near the filter.
In alternative embodiments, the filter condition indicator system utilizes pre-existing thermostat wiring. The indicator comprises two main components, a differential pressure switch (DPS)/transmitter located at a filter and an indicator/receiver located with a thermostat. The transmitter and receiver communicate through existing thermostat wiring. U.S. Patent No. 8,029,608, issued Oct. 4, 2011, titled FURNACE FILTER INDICATOR, is hereby incorporated by reference in its entirety for all purposes.
The DPS 108 is coupled to the transmitter 110 which transmits the signal determined by the DPS 108. The transmitter 110 is coupled to a receiver 112. In an embodiment, the transmitter 110 is coupled to the receiver 112 via preexisting thermostat wires. The transmitter 110 transmits information from the DPS 108 to the receiver 112 regarding the filter's status. The receiver 112 also includes circuitry (
A reset switch SW1250 with two signal lines is coupled to a line with the voltage source Vcc 238 and ground 224 with a resistor R15252 between the ground 224 and a capacitor C11254. The reset switch SW1250 is coupled to the line between the voltage source Vcc 238 and the resistor R15252 with the capacitor C11254 in between. Also coupled to the line between the capacitor C11254 and the resistor R15252 is a second input 256″ of a Nor gate U2D 256. The output 248′ of the Nor gate U2C 248 is a first input 256′ of the Nor gate U2D 256. The output 256′″ of the Nor gate U2D 256 is a second input 248″ of the Nor gate U2C 248. Thus, the Nor gates U2C 248 and U2D 256 create an S-R flip-flop. At this point the signal output from the Nor gate U2C 248 indicates “clean” when high and “clogged” when low. The signal output from the Nor gate U2D 256 indicates “clean” when low and “clogged” when high. The output 256′″ of the Nor gate U2D 256 is also the input 258′ of a Nor gate U3D 258. The output 258″ of the Nor gate U3D 258 is coupled to a light emitting diode (LED) D2260 which is coupled to the voltage source Vcc 238 with a resistor R7262 between the LED D2260 and the voltage source Vcc 238. When the output 258″ of the Nor gate U3D 258 is low, the LED D2260 is illuminated, indicating a “dirty” filter, and when the output 258″ of the Nor gate U3D 258 is high, the LED D2260 is not illuminated. The output 248′ of the Nor gate U2C 248 is a first input 264′ to a Nor gate U3A 264. The output 264″ of the Nor gate U3A 264 is the input 266′ of a Nor gate U3B 266. The output 266″ of the Nor gate U3B 266 splits and is coupled to a capacitor C10268 and then splits again with a first line coupling to a second input 264″ of the Nor gate U3A 264 after coupling to a resistor R13274. The second line is coupled to the input 266′ of the Nor gate U3B 266 through variable a resistor R14270 and a resistor R12272. The line from the output 266″ of the Nor gate U3B 266 is also coupled to input lines 276′ of a Nor gate U3C 276. The output 276″ of the Nor gate U3C 276 couples to the gate 275′ of an n-channel MOSFET Q1275 after coupling through a resistor R6277.
The source 275″ of the transistor Q1275 is coupled to ground 224 through a resistor R6278. A capacitor C6279 couples between the gate 275′ of the transistor Q1275 and the resistor R6277 to an input of a transformer T1280. One side of the secondary winding of the transformer T1280 is grounded at 224. The drain 275′″ of the transistor Q1275 splits with a line coupling to the transformer T1280. A second line from the drain 275′″ is coupled through a capacitor C5281 and then splits to the transformer 280 and to resistor R4294 in parallel. Resistor R4294 is split between one side of capacitor C4283, +12V 238 and the OUT pin of voltage regulator 284. The regulator GND connection is connected to ground 224. The cathode of diode D1285 is connected to both the IN side of the voltage regulator 284 and capacitor C3286 in parallel. The other side of C3286 is connected to ground at 224. The anode of diode D1285 is connected to a set of resistors R1295, R2296, R3297 in parallel. The other side of R1, R2 and R3 is connected to the furnace transformer connection at connector J1287 in parallel. The un-grounded secondary of transformer T1280 is coupled to a red wire 288 through a pair of capacitors C2290 and C12293 to the red wire 288. Capacitors C2290 and C12293 are connected in parallel. The white wire 289 at the connector J1287 is connected to ground at 224. The white wire 289 at the connector J2299 is connected to ground. The red wire 288 connection from the furnace connector 287 is connected to a carrier blocking filter with capacitor C1291 and inductor L1292 in parallel. The other side of this filter is connected to the red wire 288 connection at the thermostat connector 299.
The components within the box 308 are the components for the receiver. A line extends from the red wire 288 to a first input 310′ of the transformer T1310 through a capacitor C2312. A line extends from the white wire 289 to a second input 310″ of the transformer T1310 also. A first output 310″″ of the transformer 310 is grounded. The line coupling from the second output 310′″ of the transformer T1310 splits to ground 316 through a capacitor C5318, then is coupled to a capacitor C4320, splits again to ground 316 through a diode D3338 and splits again to Vcc 332 through a diode D2342. The line continues through resistor R2340, a split to the input of an inverter U2A 344 and to the line of the output of the inverter U2A 344 with a resistor R4346 in between, in addition to a split to the output of an inverter U2B 348 through resistor R6356. The inverter U2A 344 utilizes a capacitor C3345 coupled between Vcc 332 and ground 316 to store excess energy from the 175 KHz carrier above the voltage level of the battery to extend the batter life of the receiver. The output of the inverter U2A 344 is coupled to the input of the inverter U2B 348. The output of the inverter U2B 348 is coupled to the capacitor C6350 and then splits to ground 316 with diode D6352 in between. The line also is coupled to diode D4354, then splits to ground 316 coupling through capacitor C7358, splits to ground passing through resistor R5360 and then reaches the input of an inverter U2C 362. The output of the inverter U2C 362 splits with a line coupling to a first input 364′ of a Nor gate U1A 364. The second line is coupled to the input of an inverter U2D 366. The output of the inverter U2D 366 is coupled to the input 368′ of a Nor gate U1B 368. Coupled to the second inputs 364″ and 368″of the Nor gates U1A 364 and U1B 368 is a line from another section of the circuit.
Within this section of the circuit is an inverter U2E 370 whose output is the line to the second inputs 364″ and 368″ of the Nor gates U1A 364 and U1B 368. The output of the inverter U2E 370 also is coupled to the input of an inverter U2F 372. The output of the inverter U2F 372 is coupled to a capacitor C8374, then splits to the input of the inverter U2F 372 through a resistor R8376, and splits to the output of the inverter U2E 370 through a resistor R9378 and a diode D7380, and also splits to a resistor R7382 coupled to the input of the inverter U2E 370. The output 364′ of the Nor gate U1A 364 controls an LED 384 to signal “dirty.” The output 368′ of the Nor gate U1B 368 controls the LED 386 that signals “clean.” The Nor gate U1A 364 is coupled to the LED D1384 through a resistor R1388. The Nor gate U1B 368 is coupled to the LED D5384 through a resistor R4390. LED D1386 illuminates red if the filter is dirty, and LED D5384 illuminates green if the filter is clean.
A power strap is shown also. The power strap includes a connector 394 with a line going to Vcc 332 and a second line going to ground through a battery BT1396.
To utilize the present invention a pressure activated switch or pressure indicating sensor, transmitter, receiver and indicator are installed onto a preexisting or new furnace and new thermostat system. The existing wires of the furnace and thermostat are used to allow for easier and less complicated installation. Furthermore, by using the preexisting wires, older systems are able to be upgraded to provide a powerful filter monitor without having to completely remodel the entire system. Once installation of the proper components is complete, the differential pressure switch monitors the pressure near the filter. When specified conditions are met, such as the pressure differential being a certain amount, the switch triggers circuitry in the transmitter which then sends the signal to the receiver which utilizes an indicator to indicate the filter is dirty.
Installation of the present invention onto a preexisting furnace/thermostat system is accomplished in a few steps. The pressure sensor switch is installed near the filter and is coupled to the transmitter. The transmitter couples to the thermostat wiring at the furnace coupling the furnace to the thermostat. The receiver with indicator comes pre-installed on/within the thermostat. Essentially the same coupling exists as for the original furnace/thermostat except with added components, the transmitter and receiver, in between the furnace and thermostat.
Also shown in
In some embodiments, the transmitter has an LED which is able to be flashing to indicate the status of the furnace filter. In an alternative embodiment, the reset switch and the latching logic is able to be located at the receiver/thermostat.
In some embodiments where a sensor is used, additional information is indicated. For example, in addition to “clean” and “dirty,” the indicator indicates “slightly dirty” so that a user knows the filter will need to be replaced soon and is able to prepare by purchasing a replacement filter in advance.
In all embodiments, the DPS may be replaced by a sensor, yielding a variable “analog” signal which the transmitter/receiver circuitry may use to determine the status of the filter. When a DP Sensor is used, based on the pressure around the filter 100, the DP Sensor determines the status of the filter as shown in Table 2.
As shown in Table 2, when the pressure differential rises above a high threshold level, the “replace” or “dirty” indicator is turned ON to indicate the filter is dirty. In some embodiments, when the pressure differential is in a middle range, the “clean” indicator is turned ON to indicate the filter is clean. When the pressure differential falls below the low threshold level, the indicator state does not change. Thus if the indicator indicates “replace” already, it will remain on or if the indicator indicates “clean” that will remain on. In some embodiments, a user is able to designate the upper and lower threshold levels.
Table 3 indicates some of the potential embodiments of the present invention beginning with an embodiment and alternative embodiments following. The embodiments are configured by including either a Differential Pressure Switch or Sensor. The pressure differential is measured either near the fan inlet and the room or across the filter. Furthermore, the signal is either carried on the thermostat wiring or using a wireless system. Thus, the appropriate configuration is able to be utilized as needed.
The DPS 108 is coupled to the transmitter 110 which transmits the signal determined by the DPS 108. In some embodiments, the transmitter 110 includes a chipset 120 containing firmware capable of storing the filter state. The filter state includes a clean/dirty status of the filter 100 as well as other logging and device information. The chipset 120 is network enabled, communicating over a local wireless (WIFI) network via IP protocol or any other networking scheme. Once the transmitter 110 is installed and configured with a local WIFI router, the filter status will be visible to networked devices such as personal computers/laptops, smart phones, smart televisions, tablets, wearable smart technology (e.g., smart watches), and/or any other networkable computing devices. When a ‘dirty’ state is detected, the chipset 120 receives an interrupt, and the new state is stored on the chipset 120. In some embodiments, the transmitter 110 is also coupled to a receiver 112. In an embodiment, the transmitter 110 is coupled to the receiver 112 via preexisting thermostat wires. The transmitter 110 transmits information from the DPS 108 to the receiver 112 regarding the filter's status. The receiver 112 also includes circuitry (
The DPS 108 is coupled to the transmitter 110 which transmits the signal determined by the DPS 108. In some embodiments, the transmitter 110 includes a chipset 120 containing firmware capable of storing the filter state. The filter state includes a clean/dirty status of the filter 100 as well as other logging and device information. The chipset 120 is network enabled, communicating over a local wireless (WIFI) network via IP protocol or any other networking scheme. Once the transmitter 110 is installed and configured with a local WIFI router, the filter status will be visible to networked devices such as personal computers/laptops, smart phones, smart televisions, tablets, wearable smart technology (e.g., smart watches), and/or any other networkable computing devices. When a ‘dirty’ state is detected, the chipset 120 receives an interrupt, and the new state is stored on the chipset 120.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.
Number | Date | Country | |
---|---|---|---|
Parent | 14697219 | Apr 2015 | US |
Child | 15377890 | US |