The following relates to a pyrotechnic actuator, and more particularly, a networked pyrotechnic actuator incorporating high-pressure bellows.
An actuator is a mechanical, pneumatic, hydraulic, or electrical device that moves a body from an initial position to a subsequent position in response to a signal. Actuators are used in numerous applications. For instance, an actuator may be used as a switch that closes a circuit when a conductive body of the actuator moves from an initial position to a subsequent position. An actuator also may be used as a valve that shuts off fluid flow in a channel when a valve body of the actuator moves from an initial position to a subsequent position.
Pyrotechnically powered actuators have been used in missiles, launch vehicles, spacecraft, and many other applications. In this context, actuators can be used for igniting, moving, separating or activating various elements. Generally, pyrotechnic actuators are fired (triggered) by electro-pyrotechnic components in which at least one phase involves the rapid decomposition of pyrotechnic substances at high pressure and temperature. These devices typically use pressure cartridges or explosive charges to provide the high pressure, high temperature gases to move a piston to a desired stroke.
O-ring 704 provides a tight seal around a head 716 of the piston 710 to maintain pressure in housing body 708 between head 716 and cover 720 after initiation. Pressure must be maintained behind head 716 so that high pressure produced by initiation forces head 716 to move piston 710 quickly and with enough force to break shear pin 712. Dotted lines 714 illustrate the stroke provided by piston 710 upon initiation. The movement of piston 710 is confined to the distance head 716 can move within housing body 708.
In addition to o-ring 704, actuator 700 requires close tolerances, allowing only a small difference between maximum and minimum limits of each dimension, so as to create a seal. Tight seals are important because high pressures can cause blow-by, contamination, and leakage, which can cause potentially catastrophic results.
Another type of actuator uses expanding bellows that move from an initial, shorter position to a final, expanded position. Typically, bellows have been made of brass or gilding metal, which tend to rupture under internal or external pressure under 2,000 psi. Conventional bellows tend to deform in multiple directions as a result of high internal pressure, which causes an irregular stroke.
Referring again to
A pyrotechnically powered actuator is disclosed having an integrated body and a bellows coupled thereon that provides a force and stroke upon initiation. An initiator is hermetically sealed within the housing body and includes a pyrotechnic material and a bridge element. The bellows is compact, and lightweight, but is made of a high yield material to withstand high internal and external pressures. The initiator may further include an integrated circuit with a logic device that triggers the pyrotechnic reaction based upon receiving an external digital signal.
An actuator is disclosed that comprises a chamber having an opening, a bellows coupled to the chamber at the opening, and an initiator located within the chamber. The initiator includes circuitry connected to at least one lead extending outside the actuator, a bridge element connected to the circuitry, and a pyrotechnic material connected to the bridge element.
Additionally, an actuator is disclosed that includes a chamber and a bellows coupled to the chamber that includes a threaded boss at an end for coupling to a tool. The actuator includes an initiator located within the chamber that further includes a pyrotechnic material and a bridge element.
An actuator is also disclosed that comprises a housing body having a first end and a second end, wherein the first end has a closure. A bellows is coupled to the first end of the housing body, and a cover coupled to the second end of the housing body. An initiator is located within the housing body, wherein the initiator comprises a receptacle containing an amount of pyrotechnic material and a bridge element. The housing body comprises a compartment having a first end defined by the initiator and a second end defined by the closure.
Additional embodiments will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The following describes a lightweight, highly compact pyrotechnic actuator that can withstand high internal and external pressure. The details included herein are for the purpose of illustration only and should not be understood to limit the scope of the disclosure. Moreover, certain features that are well known in the art are not described in detail to avoid complication of the subject matter described herein.
In an exemplary embodiment, the pyrotechnically powered actuator can include a bellows comprised of a high yield, high tensile strength material capable of withstanding high internal and external pressures. When triggered, the bellows actuates from pyrotechnic material associated with an initiator in an integrated, sealed housing capable of withstanding high pressure without deformation.
In a further embodiment, the initiator sealed within the actuator housing may include an integrated circuit with a logic device for receiving digital commands at low voltage and low current. The integrated circuit can be configured with a unique identifier that may be pre-programmed or assigned when a networked actuator system is powered up. By triggering from an integrated circuit as opposed to a conventional analog system, the system can be powered without a heavy, large power source, without heavy cables, and with a smaller, lighter bridge element.
An actuator that combines high yield, high tensile strength bellows with an integrated circuit-based initiator can be 20% of the weight of a conventional actuator. The compact size and light weight provides a significant advantage in systems that fly and/or travel at rapid speeds, such as satellites or missiles. By incorporating bellows that can withstand high internal and external pressures, the actuator is particularly useful for valve applications.
In additional exemplary embodiments, the actuator housing body includes a flange and a threaded portion for incorporating the actuator into another structure. Optionally, the actuator may also include a tool or a threaded boss at an end of the bellows, so that the actuator may function in a variety of systems. For instance, the actuator may be used as a valve actuator, cutter, or puncturing device. The end of the bellows may not require a tool to function in certain systems. For instance, the end of the bellows may be flat when the actuator is used as a switch actuator or thruster.
Bellows 116 may be a rigid, corrugated, hollow cylinder made of a high yield, high tensile strength material. As an example, the bellows may be comprised of stainless steel, or a substance containing stainless steel. The bellows may be designed of a material having a yield strength as high as 60,000 psi or more, and an ultimate tensile strength as high as 80,000 psi or more. As a further example, the bellows may be comprised of INCONEL 718, having a yield strength range of 150,000-160,000 psi and an ultimate tensile strength range of 180,000-200,000 psi. The high yield strength and high ultimate tensile strength of bellows 116 allows it to withstand at least 3,000 psi, and possibly 10,000 psi or more of internal or external pressure without rupturing or having irregular deformation. Bellows 116 expands along its cylindrical axis, providing a stroke, when enough internal pressure is applied. The higher the internal pressure, the more bellows 116 expands. Since bellows 116 can withstand high internal pressures, it may be expanded 100% such that the folds of bellows 116 are straightened. The material of bellows 116 allows it to be completely expanded along its longitudinal axis without rupturing. When an external pressure at least 10,000 psi is applied to bellows 116, it does not rupture or deform, which is a valuable property in applications in which bellows 116 must hold its shape after it has expanded. For instance, when actuator assembly 100 is used as a valve, after bellows 116 is extended into a conduit to stop fluid flow, bellows 116 is not deformed by external fluid pressure as high as 10,000 psi acting upon bellows 116. The ability of bellows 116 to withstand high external pressure is also beneficial when actuator assembly 100 is used in a vacuum.
Actuator assembly 100 may have an integrated circuit chip initiator 124, which can include a plate 118 having a printed circuit board on one side 108 and a bridge element 122 and a receptacle 120 on the other side 106. Additional detail concerning an integrated circuit initiator 124 can be found in U.S. patent application Ser. No. 09/656,325, entitled “Networked Electronic Ordnance System,” the disclosure therein is hereby incorporated by reference.
Referring to
Each logic device 600 may have a unique identifier. A unique identifier may be a code stored as a data object within the logic device. The identifier can be permanently stored within the device 600 or may be assigned by the bus controller 506, possibly upon power up. The unique identifier may be digitally encoded using any addressing scheme desired. By way of example and not limitation, the unique identifier may be defined as a single bit within a data word having at least as many bits as the number of actuator assemblies 100 in the networked electronic ordnance system 500, where all bits in the word are set low, except for one bit set high. In this manner, the position of the high bit within the word serves to uniquely identify a single logic device 600. Other unique identifiers may be used, if desired, such as but not limited to numerical codes or alphanumeric strings.
A digital command signal may be transmitted from the bus controller 506 to a specific logic device 600 by including an address field, frame or other signifier in the command signal identifying the specific logic device 600 to be addressed. By way of example and not limitation, referring back to example above of a unique identifier, a command signal may include an address frame having the same number of bits as the identifier word. All bits in the address frame are set low, except for one bit set high. The position of the high bit within the address frame corresponds to the unique identifier of a single actuator assembly 100. Therefore, this exemplary command would be recognized by the logic device having the corresponding unique identifier. As with the unique identifier, other addressing schemes may be used, if desired, as long as the addressing scheme chosen is compatible with the unique identifiers used.
The addressing scheme preferably may be extended to allow the bus controller 506 to address a group of pyrotechnic devices 602 at once, where that group ranges from two pyrotechnic devices 602 to all of the pyrotechnic devices 602. By way of example and not limitation, by setting more than one bit to high in the address frame, a group of actuator assemblies 100 may be triggered, where the logic device 600 in each actuator assembly 100 in that group has a unique identifier corresponding to a bit set to high in the address frame. As another example, an address frame having all bits set low and no bits set to high may constitute an “all trigger” signifier, where each and every logic device 600 is programmed to recognize a command associated with all-fire signifier and fire its associated actuator assembly 100. Other group triggering schemes and all trigger signals may be used if desired.
Chip initiator 124 provides built-in-test capability, which is a self test feature that monitors, isolates, and identifies system problems automatically. In a preferred embodiment the bus controller 506 periodically queries each actuator assembly 100 to determine if the firing bridge in each actuator assembly 100 is intact. The frequency of such periodic queries depends upon the specific application in which the networked electronic ordnance system 500 is used. For example, the bus controller 506 may query each actuator assembly 100 every few milliseconds in a missile application where the missile is en route to a target, or every hour in a missile application where the missile is attached to the wing of an aircraft. Preferably, the bus controller 506 performs this query by transmitting a device test command to each actuator assembly 100. In a preferred embodiment, the device test is as described above, and allows a device test command to be transmitted to one or more specific actuator assemblies 100. Thus, each logic device 600 to which the test signal is addressed receives the test signal, recognizes the address frame and test command, and performs the request test. After the test is performed in an actuator assembly 100, the logic device 600 in that actuator assembly 100 preferably responds to the bus controller 506 by transmitting test results over the network 504. The bus controller 506 may then report test results in turn to a central vehicle control processor (not shown) or may simply record that data internally or display it in some manner to an operator or user of the networked electronic ordnance system 500.
Preferably, one test that is performed is a test of the integrity of the firing element within each chip initiator 124. The firing element is bridge element 122. Determining whether the firing element is intact in each chip initiator 124 is important to verifying the continuing operability of the networked electronic ordnance system 500. Further, repair of actuator assemblies 100 having chip initiators 124 with damaged firing elements is facilitated by determining which specific firing element or elements have failed. The bus controller 506 issues a test signal to one or more specific actuator assemblies 100, where that test signal instructs each receiving actuator assembly 100 to test the integrity of the firing element. The logic device 600 within each actuator assembly 100 to which the test signal is addressed receives the test signal, recognizes the address frame and test command, and tests the integrity of the firing element. In a preferred embodiment, the integrity of the firing element is tested by passing a small controlled current through it. After the test is performed in an actuator assembly 100, the logic device 600 in that actuator assembly 100 responds to the bus controller 506 by transmitting test results over the network 504. In a preferred embodiment, the possible outcomes of the test are: resistance too high, resistance too low, and resistance range. If the resistance is too high, the bus controller 506 infers that the firing element is broken such that current will not flow through it easily, if at all. If the resistance is too low, the bus controller 506 infers that the firing element has shorted out. If the resistance is in range, the bus controller 506 infers that the firing element is intact. The bus controller 506 may the report test results in turn to a central vehicle control processor (not shown) or may simply record that data internally or display it in some manner to an operator or user of the networked electronic ordnance system 500.
Another built-in test function, which is preferably performed by the bus controller 506 is determination of the status of the network 504. In a preferred embodiment, network status is determined by sending a signal over the network 504 to one or more of the pyrotechnic devices 502, which then echo the command back to the bus controller 506 or transmit a response back to the bus controller 506. That is, the bus controller 506 may ping one or more of the pyrotechnic devices 502. If the bus controller 506 receives the expected response within the expected time, it may be inferred that the network 504 is operational and that normal conditions exist across the network 504. If such response is not received, it may be inferred that either the pyrotechnic device 502 which was pinged is not functioning properly or that abnormal conditions exist on the network 504. The bus controller 506 may also sense current drawn by the bus, or bus voltage, to determine if bus integrity has been compromised. Other methods of testing the status of the network 504 are known to those skilled in the art.
In a preferred embodiment, electric power transmission and signal transmission can preferably occur over the same cable, or bus, in the network, thereby eliminating any need to provide separate power and signal cables. The cable network can be built from twisted shielded pair cable, as small as 28 gauge, or the cable may be a flat ribbon cable or any other wiring capable of carrying low voltage and current power and signals.
Bridge element 122 only requires milliamps of power for less than 10 milliseconds to function. Conventional initiators typically require a minimum of 3.5 amps of power for 10 milliseconds for initiation. The weight of the actuator is 20% of the weight of a conventional actuator. The weight of the controller and power source for chip initiator 124 is 10% of the weight of a controller and power source for a conventional initiator. When a plurality of actuators act in a sequence, conventional initiators require a large power supply, such as multiple automotive batteries, while the chip initiator only requires a small power supply, such as AA batteries. The circuit board includes a capacitor discharge circuit that can be charged (armed) or discharged (safed), which results in low power for initiation.
Prior to inserting initiator into housing body 124, end 110 of bellows 116 is coupled to housing body 114 at end 102. This attachment may be achieved by laser welding, but any other method of attachment that provides a strong, hermetic seal may be used. End 110 is open and end 112 is closed by a cover, which may be coupled to bellows 115 by welding or any other method of attachment that provides a strong, hermetic seal.
After bellows 116 is attached to housing body 124, receptacle 120 is loaded with pyrotechnic material and the leads 132 are attached to side 108, as illustrated in
Housing body 114 and cover 130 may be made from the same material as bellows 116. Since the material of bellows 116 is capable of withstanding at least 3,000 psi of pressure without rupturing, and possibly up to 10,000 psi, all of actuator 100 is capable of withstanding at least 3,000 psi when housing body 114 and cover 130 are made of the same material as bellows 116. The hermetic sealing between bellows 116, housing body 114, and cover 130 and the low number of parts contribute to actuator 100 being successful in maintaining pressure without rupturing. Due to the hermetic sealing between bellows 116, housing body 114, and cover 130, there is no post trigger leakage, contamination, or outgassing.
In operation, when initiator receives a signal, it ignites the pyrotechnic material. The ignition causes gas inside bellows 116 to rapidly expand. The high pressure resulting from the expansion of the gas overcomes the elastic strength of bellows 116 and deforms bellows 116 such that it expands along its cylindrical axis, providing a stroke. Depending upon the application of the actuator, the end configuration of bellows 116 performs a function upon expansion. For instance, when the end configuration is a blade, bellows 116 cuts something upon expansion. As stated above, bellows can withstand at least 3,000 psi of pressure. The initiator is consumed in the propellant burning process.
Housing body 314 includes flange 336 and threaded portion 338. These two features facilitate including actuator assembly 300 into another structure. A user may screw actuator assembly 300 into a threaded hole of the structure (not shown) in which the user is utilizing actuator assembly 300. Threaded portion 338 is the portion that would be screwed into the threaded hole. Flange 336 is the portion upon which a wrench or other tool could grip housing body 314 to rotate housing body 314 when screwing housing body 314 into a threaded hole of a structure (not shown). Flange 336 may be shaped as a hex nut or any other shape around which a corresponding tool may fit. Threaded portion 338 and flange 336 provide a simple, inexpensive way to include actuator assembly 300 in structures without having to add parts to actuator assembly 300.
Housing body 314 does not need to include flange 336 and threaded portion 338 in applications in which the user is not attaching actuator assembly 300 into the structure. If housing body 314 does not include flange 336 and threaded portion 338, the outer surface of housing body 314 could be a smooth cylindrical surface having a continuous diameter. The outer surface of housing body 314 could be any shape required by the structure in which it is being used.
Housing body 114 of
End 112 of bellows 116 may contain a variety of tools, depending upon the environment in which actuator assembly is to be used.
Other embodiments, extensions, and modifications of the ideas presented above are comprehended and should be within the reach of one versed in the art upon reviewing the present disclosure. Accordingly, the scope of the present invention in its various aspects should not be limited by the examples presented above. The individual aspects of the present invention and the entirety of the invention should be regarded so as to allow for such design modifications and future developments within the scope of the present disclosure.
This application is a divisional of U.S. patent application Ser. No. 11/657,723 filed Jan. 25, 2007, which claims priority to and incorporates by reference in its entirety U.S. Provisional Application No. 60/882,856 filed Dec. 29, 2006, titled “NETWORKED PYROTECHNIC ACTUATOR INCORPORATING HIGH-PRESSURE BELLOWS”.
Number | Name | Date | Kind |
---|---|---|---|
3672303 | Brawn | Jun 1972 | A |
3851587 | Alchorn et al. | Dec 1974 | A |
4148257 | Orrill et al. | Apr 1979 | A |
4669354 | Lucy | Jun 1987 | A |
5431015 | Hein et al. | Jul 1995 | A |
5585596 | Richards et al. | Dec 1996 | A |
6220165 | Sullivan | Apr 2001 | B1 |
6283227 | Lerche et al. | Sep 2001 | B1 |
6584907 | Boucher et al. | Jul 2003 | B2 |
7063019 | Parks et al. | Jun 2006 | B2 |
7188558 | Brede et al. | Mar 2007 | B2 |
7419184 | Green et al. | Sep 2008 | B2 |
7762189 | Ritchie et al. | Jul 2010 | B2 |
20040007123 | Ritchie et al. | Jan 2004 | A1 |
20050188875 | Matsuda et al. | Sep 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20100288148 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
60882856 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11657723 | Jan 2007 | US |
Child | 12844214 | US |