Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
Some aspects of the present invention relates generally to tools used to implant and remove neural interface devices within nervous systems. More particularly, some embodiments of the invention relates to device systems that can be used to insert and retract a range of microscale devices dependent upon the desired research or clinical purpose.
Disclosed herein is a method of inserting a micro-scale device into a target substrate. The method can include, in some embodiments, providing an insertion tool comprising a tether having a proximal end, a distal end, and an elongate body, and an end effector operably connected to the distal end of the tether. The method can also include mechanically coupling the end effector to a portion of the micro-scale device. The method can also include positioning the micro-scale device at a desired location within a target substrate. The method can further include mechanically decoupling the end effector from the micro-scale device. Also, the method can include withdrawing the insertion tool from the target substrate. In some embodiments, positioning the micro-scale device at a desired location includes moving the end effector distally with respect to a housing of the insertion tool. The housing can include, for example, a tubular body that includes a central lumen. The end effector can include a hook on its distal end, and/or a releasable connector. At smaller scales, the end effector can be pushed like a rod and pulled in tension like a cable. The micro-scale device can include, for example, a neural and/or biological interface.
In some embodiments, mechanically coupling the end effector to a portion of the micro-scale device can include positioning the hook through an aperture, hook-like structure, or other complementary element on the micro-scale device. Mechanically decoupling the end effector to a portion of the micro-scale device can include disassociating the hook from an aperture on the micro-scale device. In some embodiments, the target substrate is non-stationary, and can include neural tissue. In some embodiments, mechanically coupling the end effector to a portion of the micro-scale device does not substantially displace the micro-scale device.
The method can also include, in some embodiments, monitoring the motion of the nonstationary target surface. Positioning the micro-scale device can also include adjusting the positioning speed as a function of the monitored motion of the target surface. Positioning can also include manipulating a tab on the end effector. In some embodiments, positioning the micro-scale device comprises actuating a control on the proximal end of the device to move the tether with respect to the elongate body. Actuating a control can also include rotating a control knob in a direction, thereby moving a tracking pin axially distally within a slot oriented substantially parallel to the longitudinal axis of the elongate body. The tether can be elastic or inelastic, and the sidewall of the aperture can be elastic in some embodiments.
In some embodiments, disclosed is a tool configured for inserting and retracting a micro-scale device. The tool can include one or more of a housing, a tether including a proximal end, a distal end, and an elongate body. A portion of the tether can be configured to extend distally from the housing in a first configuration and be retracted within the housing in a second configuration. The tool can also include an end effector operably connected to the distal end of the tether, the end effector configured to reversibly mechanically couple with a portion of the micro-scale device. The tool can be configured such that the mechanical coupling does not substantially displace the micro-scale device. The housing can include a tubular body. The tether is configured to slide within a channel of the housing. The end effector can include, in some cases, a hook, and a pivoting joint connected to the hook. The end effector can also include one, two, or more laterally-extending tabs configured to allow a user to position the micro-scale device within a target location. The end effector can also include an aperture near a proximal end of the end effector. The aperture can be configured to house a portion of the tether therethrough, thereby coupling the end effector and the tether. In some embodiments, the tubular body can include a slot oriented axially with respect to a longitudinal axis of the tubular body. The tool can be configured to insert and retract a neural array. The end effector can also be threaded through an aperture on a micro-scale device. In some embodiments, the proximal end of the housing can include a control knob operably connected to and configured to actuate the tether proximally or distally with respect to the housing. The tool can also include a slot on the housing, and can be oriented substantially parallel to a longitudinal axis of the housing. The tool can also include a pin oriented axially or radially on an inner member, such as an inner tubular member, and configured to slide in a direction, such as axially, with respect to the housing. The pin can be configured to move axially within the slot. The tether can be elastic or inelastic.
In some embodiments, disclosed herein is a neural interface delivery system, including an insertion and removal tool, and a neural interface and/or biological interface. In some embodiments, the neural microarray can include a flexible baseplate, at least one microelectrode, and a loop on the flexible baseplate configured to reversibly couple with the end effector of the insertion and removal tool.
Also disclosed herein is a method of removing a micro-scale device from a target substrate. The method can include, for example, providing an removal tool comprising a tether having a proximal end, a distal end, and an elongate body, and an end effector operably connected to the distal end of the tether; mechanically coupling the end effector to a portion of the micro-scale device embedded at least partially within the target substrate; and withdrawing the insertion tool and the micro-scale device from the target substrate.
Neural interfaces are implanted within the nervous systems of animals and humans to record, stimulate, and treat neural tissue activity. Typically, this occurs within animal research of a variety of fields (e.g. neurological disorders and basic nervous system function) as well as clinical diagnosis and therapy (e.g., epilepsy).
Neural interfaces are implanted through a variety of methods, and are held during insertion by a variety of means including vacuum, mechanical lock, adhesive, dissolvable adhesive, and momentary impulse contact. The most pervasive form of holding microscale devices for insertion is a stiff engagement of some kind with a separate device such as a micro-positioner. It can be advantageous as it keeps delicate microscale devices stiff during insertion into dynamic tissue and allows a range of insertion speeds. Impulse insertion is also popular for microscale devices with large number of shanks. Impulse inserters are most commonly formed from metal and polymer components and powered using pneumatics. The procedure of impulse insertion positions a cabled microscale device over targeted tissue. The impulse inserter is then placed over the microscale device. The impulse inserter then receives a pneumatic pulse that actuates the insertion mechanism, striking the microscale device at a high rate of speed and sending it into the neural tissue.
Unfortunately, the impulse process requires a high degree of skill to position the microscale device and impulse inserter as well as actuate the inserter at the appropriate time. The average researcher is incapable of using the technique without significant training and often relies on an outsider with special expertise in impulse insertion. Mechanically locked insertion is a poor solution for implanting microscale devices for chronic experiments or periods. Microscale devices meant for chronic implantation often have cables to implanted structures. These cables are both delicate and resilient; they are easy to plastically deform to the point of damage, and if deflected too far during insertion can apply a residual force on the implanted microscale device, resulting in damage to tissue over time. Basic assembly to microscale devices with cables is also challenging during surgeries as the cables leading out of microscale devices terminate in large connectors which are affixed to tissue; the microscale devices are then adjusted with small deflections of the cable until positioned over the target tissue. This process leaves little room for additional deflection of the cable, increasing the requirement for flexibility of the insertion device or insertion technique.
These limitations prevent the implantation of chronic neural interfaces in a wide variety of situations. This reduces the amount of data acquired as well as limiting current and future therapies. Current insertion techniques also limit the visibility of the electrode for the researcher.
Accordingly, in some embodiments, disclosed herein is an insertion and extraction device that manipulates micro-scale devices, and provides unlimited degrees of freedom for placing and removing micro-scale devices. In some embodiments, the insertion and extraction device may have a tensional hook for engaging with micro-scale devices. It can also be advantageous to have a tensional loop. By using a loop, the corresponding hook on an implanted micro-scale device might be easier to extract after a lengthy implantation that encapsulated the device in tissue. In some embodiments, the insertion and/or retraction device may have a spring and dampening system to compensate for deflection of tissue during respiration. In other embodiments, the insertion and/or retraction device is actively positioned to follow the motion of tissue. In some embodiments, the insertion and/or retraction device uses a computer to monitor the motion of the tissue and adjusts the speed and deflection of the mechanical device accordingly within a closed loop feedback system.
An insertion and/or retraction device capable of interfacing with a flexible baseplate (e.g., joining body) can also be advantageous in some embodiments as it allows customization of placement within the nervous system and increased conformity to anatomical variations for research and clinical applications. In some embodiments, the joining body is configured to be flexible enough to bend around the outer curvature of neural tissue (e.g., sulcus surface of cortex, circumference of a nerve, or surface of a plexus). In some embodiments the joining body is configured to be flexible enough to bend with the motion of neural tissue due to respiration or containing body acceleration and deceleration.
In some embodiments, disclosed herein is an insertion and/or retraction device to manipulate various devices, including but not limited to implantable medical devices. The device to be inserted and/or removed can be a micro-scale device in some embodiments, but is not necessarily limited to devices to be inserted and/or retracted of a particular size. In some embodiments, the devices to be inserted and/or removed with systems and methods as disclosed herein can have a device total volume of about or less than about, for example, 100 mm3, 50 mm3, 25 mm3, 10 mm3, 5 mm3, 2 mm3, 1 mm3, 0.5 mm3, 0.25 mm3, 0.1 mm3, 0.05 mm3, or less. In some embodiments. the device to be inserted and/or removed could be, for example, an implantable neural interface device. In some embodiments, the device to be inserted has dimensions of about 1 mm×1 mm×1 mm or smaller. Neural interface devices as referred to herein could involve brain or spinal cord devices, but also peripheral nerve devices including sympathetic and parasympathetic nerves, as well as devices that monitor and/or treat cardiac and other tissues. The insertion and/or retraction device can interface with various types of micro-scale devices, including but not limited to neural interfaces that act as recording or stimulation electrodes, optical fibers, or as hollow tubes for media, e.g., fluid delivery. In other embodiments, the insertion and/or retraction device can interface with biological sensors or stimulators for placement within organisms. In still other embodiments, the insertion and/or retraction device can interface with sensors or stimulators for placement within organisms. In some embodiments, the insertion and/or retraction device can interface with micro-scale devices for placement within movably positioned sheets, gels, foams, liquids, soil, artificial organisms, organic material, composites, mixtures, and other shapes of substrate. In other embodiments, the body of the insertion and/or retraction device can be shaped into advantageous configurations for manipulation and various treatment modalities including recording, stimulating, magnetic stimulation, magnetic monitoring, fluid delivery, temperature control, optical stimulation, optical monitoring, video monitoring, and chemical irrigation of neural tissue. In some embodiments, the body that includes the tether could also serve as a delivery device for a drug, such as an antithrombotic agent, an antibiotic, an anti-inflammatory, an anti-epileptic, viral vectors, or a chemotherapeutic agent, for example. In some embodiments, the insertion and/or retraction device can place an implantable neural or non-neural interface device within any tissue within the body dependent upon the desired research or clinical result; including nervous, muscle, connective, epithelial, cardiac, lung, renal, gastrointestinal, and bone tissues. In some embodiments, the tissue is a body lumen, such as within a lumen or luminal wall of an artery or vein for example. In some embodiments, the tissue is not within a lumen and/or luminal wall. In some embodiments, an insertion device can also be used as a retraction device, and a retraction device can also be used as an insertion device. However, in some embodiments, a first device can be used for insertion, and a second device can be used for retraction. The first device and the second device can be the same or substantially the same size, shape, etc. as each other, or be different in other embodiments. In some embodiments, the device to be inserted or retracted have a compressed or low-crossing profile configuration for delivery and removal and an expanded configuration when implanted in the body. In some embodiments, the device to be inserted or retracted has the same configuration for both delivery, removal, and when implanted in the body.
In some embodiments, the insertion and/or retraction device can be interfaced with the implantable neural interface device to diagnosis and/or treat epilepsy, a movement disorder (e.g., Parkinson's Disease), a psychiatric disorder (e.g., clinical depression), the result of a stroke, Alzheimer's disease, a cognitive disorder, an anxiety disorder, an eating disorder, an addition or craving, restless leg syndrome, a sleep disorder, Tourette's syndrome, a stress disorder, coma, autism, a hearing disorder, a vision disorder, blindness, retinal degeneration, age related macular degeneration, cortical injury, optic nerve injury, dry eye syndrome, a speech disorder, amblyopia, headaches, temporomandibular joint disorder, pain (e.g., phantom limb pain and chronic pain), urinary incontinence, erectile dysfunction, bone disease, arthritis, tendonitis, the result of ligament or tendon damage, and paralysis (e.g., facial nerve paralysis and spinal paralysis). In some embodiments, the device system can be used to provide control of a prosthetic such as a limb or an external computer.
In some embodiments, the device system may wirelessly communicate with a system that is connected to a network or cloud of data. In other embodiments, the device system is connected to a biological interface to monitor tissue. In some other embodiments, the device system is connected to a biological interface to modulate tissue. In still other embodiments, the device system is connected to a biological interface to monitor and modulate tissue. In other embodiments, the biological interface can include an implantable camera.
In other embodiments, the device system can insert and/or retract a biological interface to study, diagnose, and/or treat cardiovascular conditions such as heart failure, rheumatic heart disease, hypertensive heart disease, ischemic heart disease, angina, coronary artery disease, cerebral vascular disease, stroke, atherosclerosis, cerebrovascular disease, cardiomyopathy, pericardial disease, valvular heart disease, inflammatory heart disease, congenital heart disease, and peripheral arterial disease.
In still other embodiments, the device system can insert and/or retract a biological interface to study, diagnose, and/or treat cancers, including leukemia, lymphoma, myeloma, bladder cancer, lung cancer, brain cancer, melanoma, breast cancer, non-Hodgkin lymphoma, cervical cancer, and ovarian cancer.
In other embodiments, the device system can insert and/or retract a biological interface to study, diagnose, and/or treat type 1 and type 2 diabetes. In some embodiments, the device system can include a biological interface to study, diagnose, and/or treat orthopedic conditions, including osteoarthritis, rheumatoid arthritis, bone fractures, lower back pain, neck pain, and a herniated disk.
In other embodiments, the device system can insert and/or retract a biological interface to study, diagnose, and/or treat eye conditions, including glaucoma, cataracts, age-related macular degeneration, amblyopia, diabetic retinopathy, retinal detachment, retinal tearing, and dry eye syndrome.
In still other embodiments, the device system can insert and/or retract a biological interface to study, diagnose, and/or treat hearing conditions, including hearing loss, Meniere's disease, malformation of the inner ear, autoimmune inner ear disease, tinnitus, and vertigo.
In other embodiments, the device system can insert and/or retract a biological interface to study, diagnose, and/or treat tactile disorders, including impaired sensitivity to pressure applied to the skin, elevated two-point discrimination thresholds (i.e. impaired spatial acuity), loss of vibratory sense, and deficits in proprioception.
In other embodiments, the device system can insert and/or retract biological interface to study, diagnose, and/or treat taste, taste impairing conditions, smell, and smell impairing conditions.
In still other embodiments, the device system can be movably engaged within one, two, or more body tissues, regions, or organ systems including but not limited to the scalp, skin, muscle, bone, neural tissue, heart, lungs, trachea, bronchi, diaphragm, liver, pancreas, kidneys, bladder, urethra, spleen, esophagus, stomach, intestine, penis, testes, uterus, or ovary. In some embodiments, the insertion or removal tool need not necessarily be located within a body lumen, and can be used, for example, outside of a blood vessel such as an artery or the vein. In some embodiments, about or at least about 50%, 60%, 70%, 80%, 90%, or more of a length of the insertion and/or removal tool is outside of the body or a body lumen such as a blood vessel during the insertion or removal process.
In some embodiments, systems and methods as disclosed herein can modulate neural tissue, and have a stimulatory or inhibitory effect. Neural tissue is specialized for the conduction of electrical impulses that convey information or instructions from one region of the body to another. About 98% of neural tissue is concentrated in the brain and spinal cord, which are the control centers for the nervous system. Neurons transmit signals as electrical charges which affect their cell membranes. A neuron has a cell body (soma) that contains a nucleus. The stimulus that results in the production of an electrical impulse usually affects the cell membrane of one of the dendrites, which then eventually travels along the length of an axon, which can be a meter long. Axons are often called nerve fibers with each ending at a synaptic terminal. Neuroglia are cells of the CNS (central nervous system) and PNS (peripheral nervous system) that support and protect the neurons. They provide the physical support for neural tissue by forming myelin sheaths, as well as maintaining the chemical composition of the tissue fluids and defending the tissue from infection. Schwann cells are specialized PNS cells that form myelin sheaths around neurons. Neurons (nerve cell) include a cell body that contains the nucleus and regulates the functioning of the neuron. Neurons also include axons that are cellular process (extension) that carry impulses away from the cell body. Neurons also include dendrites that are cellular process (extension) that carry impulses toward the cell body. A synapse is a space between axon of one neuron and the dendrite or cell body of the next neuron—transmits impulses from one neuron to the others. Neurotransmitters are chemicals released by axons and transmit impulses across synapses.
In some embodiments, provided is a closed loop control system for stimulating and monitoring neural activity. To meet this objective, microfilaments are embedded in various body configurations with six degrees of freedom to provide many system options for interacting with neural tissue. As an example, this would enable the data collected from a first recording microfilament (or external source) to help guide the output of a second stimulating microfilament.
The approximate diameter of circular microfilaments for conducting electrical current is between 1 μm and 250 μm, such as no more than about 25 μm, 50 μm, or 75 μm. For electrical stimulation, larger sites up to 50 μm would be advantageous to achieve surface areas that meet useful stimulation current requirements without a coating. The approximate diameter of circular microfilaments for conducting or monitoring light is between is 0.1 μm to 250 μm, such as no more than about 25 μm, 50 μm, or 75 μm. The approximate diameter of circular microfilament tubes for delivering or circulating gases, fluids, and mixtures in some embodiments is between 1 μm to 100 μm, or no more than about 50 μm, 75 μm, 100 μm, or 150 μm. Microfilaments can also be placed within a packed geometry that allows for a tapering of the penetrating area cross sections to reduce the cross sectional area and thus long term adverse neural tissue response. In some embodiments, the microfilaments can extend outward from the body's surface; these sites can be formed (e.g., bent or flattened) to provide desired functional characteristics.
The array body can take multiple forms including penetrating structures with microfilament sites and joining sections to optimize placement within the nervous system. An approximate cross sectional area of a penetrating array body in some embodiments is 1 μm2 to 0.2 mm2, preferably up to approximately 7850 μm2. For large area coverage as in electrocorticography, larger body areas up to approximately 100 cm2 or more would be advantageous to collect more data from the outer surface of a neural tissue section. In some embodiments, insertion and/or retraction devices can be used to insert or remove neural interface devices such as those disclosed in U.S. Pat. No. 9,095,267 to Halpern et al., which is hereby incorporated by reference in its entirety.
The array body can also take on non-linear shapes, which allow novel insertion techniques into difficult areas to access within surgery. A curved shape can be rotated into position where a linear angle of attack is unavailable. The array body can also have a curve located at different positions (e.g., proximal, midportion, or distal) to aid in anchoring to neural tissue or bone, while there may be a linear segment distal to, and/or proximal to the curved segment.
One advantage of the insertion and/or retraction device in some embodiments is the wide range of materials and components available to improve insertion conditions and long term performance of a microscale device within a nervous system. The components of the device can be formed from, for example, one, two, or more of gold, platinum, platinum iridium, carbon, stainless steel, steel, titanium, niobium, aluminum, conductive polymers, polymers, ceramics, organic materials or any other material depending on the desired clinical result.
A three-dimensional view of an example of an insertion and/or retraction device 50 is shown in
In other embodiments, a flap 140 can have a shape that is easier to grab by tweezers or other implements. In some other embodiments, the end effector 130 can have an automated mechanism to grab a microscale device. In still other embodiments, near the distal end of the continuous body 105 can be shaped to engage with microscale devices of different shapes. In some other embodiments, the width of the end effector can be between about 1 μm and 50 μm, or no more than about 100 μm, 500 μm, 1000 μm, 1500 μm, 2000 μm, 2500 μm, 3000 μm, or 5000 μm. In still other embodiments, the width of the opening of the end effector can be between about 1 μm and 50 μm, or no more than about 100 μm, 500 μm, 1000 μm, 1500 μm, 2000 μm, 2500 μm, 3000 μm, or 5,000 μm. In other embodiments, the width of an automated end effector can be between about 1 μm and 50 μm, or no more than about 100 μm, 500 μm, 1000 μm, 1500 μm, 2000 μm, 2500 μm, 3000 μm, or 5000 μm. In still other embodiments, the continuous body can be shaped to encourage the sliding of the tether 120 when it is movably displaced. In some other embodiments, the cross-section of tether 120 can have a shape that prevents some rotations within the continuous body 105. In other embodiments, the end effector can be any desired shape, including a shape that is threaded through an aperture on a micro-scale device. In still other embodiments, the tether can be elastic or inelastic. In some other embodiments, the aperture of the microscale device can be elastic or inelastic. In some embodiments, the tether has sufficient column strength to push the device to be inserted or removed distally. In other embodiments, an automated or non-automated end effector can operably engage and disengage with movable jaws, a movable clamp, a movable multi-headed hook, a movable anchor, a vacuum, a movable air nozzle, a movable cable, a movable loop, a movable net, a movable cup, a movable collet, a movable snake (e.g., an articulating flexible member, akin to a flexible endoscope or device used to unclog pipes), a movable coil, a movable barb, a movable snap-fit arm, a movable prong, a movable sheet, a movable strap, a movable threaded rod, a movable threaded hole, a movable anchor, a movable rod, a movable magnet, and a movable nozzle that dispenses dissolvable material.
Although certain embodiments of the disclosure have been described in detail, certain variations and modifications will be apparent to those skilled in the art, including embodiments that do not provide all the features and benefits described herein. It will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative or additional embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while a number of variations have been shown and described in varying detail, other modifications, which are within the scope of the present disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the present disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the present disclosure. Thus, it is intended that the scope of the present disclosure herein disclosed should not be limited by the particular disclosed embodiments described above. For all of the embodiments described above, the steps of any methods need not be performed sequentially. The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
This invention was made with government support under NIH Grant/Federal Identifier Number R43NS081837 awarded by the National Institutes of Health of the United States of America. The government may have certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4151365 | Fischell et al. | Feb 1979 | A |
4154228 | Feldstein et al. | May 1979 | A |
4207903 | O'Neill | Jun 1980 | A |
4213465 | Renheim | Jul 1980 | A |
4441498 | Nordling | Apr 1984 | A |
4461304 | Kuperstein | Jul 1984 | A |
4573481 | Bullara | Mar 1986 | A |
4640983 | Comte | Feb 1987 | A |
4920979 | Bullara | May 1990 | A |
4964414 | Handa et al. | Oct 1990 | A |
5215088 | Normann et al. | Jun 1993 | A |
5361760 | Normann et al. | Nov 1994 | A |
5645586 | Meltzer | Jul 1997 | A |
5843093 | Howard, III | Dec 1998 | A |
5938689 | Fischell et al. | Aug 1999 | A |
6002957 | Finneran | Dec 1999 | A |
6009350 | Renken | Dec 1999 | A |
6135968 | Brounstein | Oct 2000 | A |
6215454 | Tran | Apr 2001 | B1 |
6304785 | McCreery et al. | Oct 2001 | B1 |
6447530 | Ostrovsky et al. | Sep 2002 | B1 |
6456256 | Amundson et al. | Sep 2002 | B1 |
6560479 | van Drongelen | May 2003 | B2 |
6705900 | Sommer et al. | Mar 2004 | B2 |
6719582 | Swanson | Apr 2004 | B1 |
6748260 | Au et al. | Jun 2004 | B2 |
6829498 | Kipke et al. | Dec 2004 | B2 |
6921295 | Sommer et al. | Jul 2005 | B2 |
6924773 | Paratte | Aug 2005 | B1 |
6965794 | Brody | Nov 2005 | B2 |
7006859 | Osorio et al. | Feb 2006 | B1 |
7010356 | Jog et al. | Mar 2006 | B2 |
7149578 | Edvardsson | Dec 2006 | B2 |
7162310 | Doan | Jan 2007 | B2 |
7203548 | Whitehurst et al. | Apr 2007 | B2 |
7212851 | Donoghue et al. | May 2007 | B2 |
7299089 | Wolf et al. | Nov 2007 | B2 |
7343205 | Pianca et al. | Mar 2008 | B1 |
7460904 | Deadwyler et al. | Dec 2008 | B2 |
7548775 | Kipke et al. | Jun 2009 | B2 |
7551951 | Osorio et al. | Jun 2009 | B1 |
7729758 | Haller et al. | Jun 2010 | B2 |
7751877 | Flaherty et al. | Jul 2010 | B2 |
7805175 | Lin et al. | Sep 2010 | B2 |
7991475 | Tang et al. | Aug 2011 | B1 |
8024022 | Schulman et al. | Sep 2011 | B2 |
8027735 | Tzivskos et al. | Sep 2011 | B1 |
8086322 | Schouenborg | Dec 2011 | B2 |
8090448 | Greenberg et al. | Jan 2012 | B2 |
8112160 | Foster | Feb 2012 | B2 |
8160696 | Bendett et al. | Apr 2012 | B2 |
8224459 | Pianca et al. | Jul 2012 | B1 |
8255061 | Perlin et al. | Aug 2012 | B2 |
8498694 | McGuire, Jr. et al. | Jul 2013 | B2 |
8774937 | Mercanzini et al. | Jul 2014 | B2 |
8958868 | Ghovanloo et al. | Feb 2015 | B2 |
9095267 | Halpern et al. | Aug 2015 | B2 |
9240630 | Joshi | Jan 2016 | B2 |
10086192 | Halpern et al. | Oct 2018 | B2 |
10368761 | Halpern et al. | Aug 2019 | B2 |
10674914 | Halpern et al. | Jun 2020 | B1 |
10874847 | Halpern | Dec 2020 | B2 |
11065439 | Halpern et al. | Jul 2021 | B1 |
20040082875 | Donoghue et al. | Apr 2004 | A1 |
20040199235 | Younis | Oct 2004 | A1 |
20050021117 | He et al. | Jan 2005 | A1 |
20060089669 | Schreiner et al. | Apr 2006 | A1 |
20060173263 | He et al. | Aug 2006 | A1 |
20060178655 | Santini, Jr. et al. | Aug 2006 | A1 |
20060276882 | Case et al. | Dec 2006 | A1 |
20070191906 | Iyer et al. | Aug 2007 | A1 |
20070228273 | Sun et al. | Oct 2007 | A1 |
20070228276 | Makino et al. | Oct 2007 | A1 |
20080044449 | McKay | Feb 2008 | A1 |
20080177364 | Bolea et al. | Jul 2008 | A1 |
20080249443 | Avitable et al. | Oct 2008 | A1 |
20090099441 | Giszter et al. | Apr 2009 | A1 |
20090112278 | Wingeier et al. | Apr 2009 | A1 |
20090157141 | Chiao et al. | Jun 2009 | A1 |
20090177144 | Masmanidis et al. | Jul 2009 | A1 |
20100023021 | Flaherty | Jan 2010 | A1 |
20100036379 | Prakash et al. | Feb 2010 | A1 |
20100036458 | Duftner et al. | Feb 2010 | A1 |
20100178810 | Aarts et al. | Jul 2010 | A2 |
20100198281 | Chang et al. | Aug 2010 | A1 |
20100292759 | Hahn et al. | Nov 2010 | A1 |
20110144467 | Yao et al. | Jun 2011 | A1 |
20110144639 | Govari | Jun 2011 | A1 |
20110288619 | Pianca | Nov 2011 | A1 |
20120083719 | Mishelevich | Apr 2012 | A1 |
20120123289 | Sorenson et al. | May 2012 | A1 |
20120203129 | Rennaker | Aug 2012 | A1 |
20120277834 | Mercanzini et al. | Nov 2012 | A1 |
20120302856 | Chang et al. | Nov 2012 | A1 |
20130002519 | Camacho et al. | Jan 2013 | A1 |
20130172717 | Halpern et al. | Jul 2013 | A1 |
20130204317 | Sauter-Starace et al. | Aug 2013 | A1 |
20140094674 | Nurmikko et al. | Apr 2014 | A1 |
20140213891 | Gilgunn et al. | Jul 2014 | A1 |
20150335883 | Halpern et al. | Nov 2015 | A1 |
20150360030 | Cartledge et al. | Dec 2015 | A1 |
20180008819 | Halpern et al. | Jan 2018 | A1 |
20180296845 | Baumgartner et al. | Oct 2018 | A1 |
20190240478 | Halpern et al. | Aug 2019 | A1 |
20200163565 | Halpern et al. | May 2020 | A1 |
20200375460 | Halpern et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
1985579 | Oct 2008 | EP |
WO 2010138228 | Dec 2010 | WO |
WO 2013096873 | Jun 2013 | WO |
Entry |
---|
U.S. Appl. No. 16/216,797 filed Dec. 11, 2018, Halpern et al. |
Barna, James S., et al., “A New Multielectrode Array for the Simultaneous Recording of Field Potentials and Unit Activity”, Electroencephalography and Clinical Neurophysiology 1981, 52: pp. 494-496. |
International Search Report dated Apr. 4, 2013 for PCT App. No. PCT/US2012/071429 in 8 pages. |
Jellema et al. “A slim needle-shaped multiwire microelectrode for intracerebral recording.” J. Neurosci. Methods, 40 (1991) 203-209. |
Karmos, George, et al., “A New Multielectrode for Chronic Recording of Intracortical Field Potentials in Cats”, Physiology & Behavior, 1982, vol. 29, pp. 567-570. |
Nicolelis, Miguel A.L., “Methods for Neural Ensemble Recordings”, CRC Press LLC, 1999, pp. 5-12 in 10 pages. |
Plexon Neurotechnology Research Systems, V-Probe Technical Guide 8, 16, 24 and 32 Channels (2013) in 14 pages. |
Ulbert, Dr. Istvan, “Investigation of the evoked and spontaneous intracortical electrical activity with multielectrodes in humans”, Semmelweis University Doctoral School, Neurosciences, Budapest, 2001, in 101 pages. |
Ulbert, Istvan, “Multiple channel microelectrode system for human epilepsy research”, IEEE, 2006, pp. 222-225. |
Ulbert, Istvan, et al., “In vivo laminar electrophysiology co-registered with histology in the hippocampus of patients with temporal lobe epilepsy”, Experimental Neurology, 187 (2004), pp. 310-318. |
Ulbert, Istvan, et al., “Multiple microelectrode-recording system for human intracortical applications”, Journal of Neuroscience Methods, 106 (2001) 69-79. |
Number | Date | Country | |
---|---|---|---|
20210146124 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16148226 | Oct 2018 | US |
Child | 17101718 | US | |
Parent | 15204935 | Jul 2016 | US |
Child | 16148226 | US |