The present disclosure relates generally to a neural monitoring device that may be capable of detecting the proximity of a nerve from an invasive stimulator, and monitoring for potential nerve injury during a surgical procedure. Traditional surgical practices emphasize the importance of recognizing or verifying the location of nerves to avoid injuring them. Advances in surgical techniques include development of techniques including ever smaller exposures, such as minimally invasive surgical procedures, and the insertion of ever more complex medical devices. With these advances in surgical techniques, there is a corresponding need for improvements in methods of detecting and/or avoiding nerves.
A neural monitoring system for detecting an induced response of a muscle to a stimulus provided within an intracorporeal treatment area of a human subject includes a mechanical sensor configured to be placed in mechanical communication with the muscle and to generate a mechanomyography output signal corresponding to a sensed mechanical movement of the muscle, and a receiver in communication with the mechanical sensor.
The receiver is configured to: receive the mechanomyography output signal from the mechanical sensor; compute a time derivative of the sensed muscle movement from the mechanomyography output signal; compare the computed time derivative to a first threshold; and indicate that the sensed mechanical movement of the muscle was induced by the provided intracorporeal stimulus if the computed time derivative exceeds the first threshold.
The system may further include a stimulator configured to extend within the intracorporeal treatment area and to provide the stimulus therein. In one configuration, the stimulus may be an electrical stimulus. The receiver may be further configured to: receive an indication of a magnitude of the provided intracorporeal stimulus; determine a magnitude of acceleration of the muscle from the mechanomyography output signal; and determine a proximity between the stimulator and the nerve from the magnitude of the provided intracorporeal stimulus and the magnitude of acceleration of the muscle. Additionally, the receiver may be further configured to compare the determined proximity to a second threshold; and provide an alert if the determined proximity is less than the second threshold and the computed time derivative exceeds the first threshold.
Additionally, a method of detecting an induced response of a muscle to a stimulus provided within an intracorporeal treatment area of a human subject may include: receiving a mechanomyography output signal from a mechanical sensor in mechanical communication with the muscle, the mechanomyography output signal corresponding to a mechanical movement of the muscle sensed by the mechanical sensor; computing a time derivative of the sensed movement of the muscle from the mechanomyography output signal; comparing the computed time derivative to a first threshold; and indicating that the sensed mechanical movement of the muscle was induced by the provided intracorporeal stimulus if the computed time derivative exceeds the first threshold.
Referring to the drawings, wherein like reference numerals are used to identify like or identical components in the various views,
As shown in
As generally illustrated in
By way of example, and not limitation, during a discectomy of the lumbar spine, a surgeon may know that the nerves exiting the L2, L3 and L4 foramen are potentially located in the treatment region 36. As illustrated in
As illustrated in
As illustrated in
In an embodiment where the sensing device 32 includes both a mechanical sensor and a plurality of electrodes, it may be beneficial to locate the mechanical sensor as close to the center of the device as possible. While not strictly necessary, such a configuration, as generally illustrated in
The sensing device 32 may further be configured for stand-alone use, as generally shown in
In an embodiment, the local receiver module 94 may include all of the functionality and event detection capabilities of a more centralized receiver (such as the receiver 12 illustrated in
In an embodiment, the mechanical sensor 100 may be configured to detect a mechanical response of the muscle or group of muscles that are in communication with the sensing device 32. The mechanical response may include, for example, muscle motion, acceleration, displacement, vibration, etc. In one exemplary approach, the mechanical sensor 100 may be an accelerometer configured to detect acceleration in at least one axis (e.g., in the direction normal to the surface of the skin, as represented by the z-axis in
The electrical sensor 102 may be configured to detect an electrical response of the muscle or group of muscles that are in communication with the sensing device 32. The electrical sensor 102 may include a plurality of electrodes that are configured to be placed in communication with the muscle of the subject 30, either through the surface of the skin, or by extending through the skin and making direct contact with the muscle itself. The plurality of electrodes may include a first, “positive” electrode 108, and a second, “negative” electrode 110. Additionally, in an embodiment, the electrical sensor may include a reference electrode 112. The positive and negative electrodes 108, 110 may each monitor a polarity of a portion of the muscle that it is in communication with. The monitored polarity may be viewed with respect to a common reference electrode, such as electrode 112, which may be included with the sensing device 32 or may be separate from the device. In an embodiment, one single reference electrode may be used for a plurality of sensing devices, and may be included with the system as a distinct patch electrode, such as ground patch 18, illustrated in
As illustrated in
In an embodiment, as shown in
The power circuit 130 may, for example, include a capacitive switch that selectively provides power when a capacitance between the electrodes is at or below a certain threshold. Alternatively, the power circuit 130 may energize the sensor components when a threshold background or baseline electric field is detected. Alternatively, the power circuit 130 may energize the sensor components when a threshold background or baseline electrical signal is detected. The presence of such a background electrical activity (such as free-running EMG activity) may indicate that the sensor is in contact with the subject, as it does not exist apart from the subject. If such electrical activity is detected, the power circuit may act as a high impedance relay and provide power to the various components.
In an embodiment, the power circuit 130 may create an alert condition if contact with the subject 30 is lost. The alert condition may include the transmission (or lack thereof) of a separate contact signal to the receiver 12, or may include the absence of a mechanical output signal. For example, if the electrodes become decoupled from the subject 30, the baseline electrical activity or impedance sensed by the power circuit may disappear. Upon this drop-out, the power circuit 130 may switch off the supply power to the mechanical sensor 100 and cause the sensor 100 to stop transmitting a mechanical output signal 104. The receiver 12 may interpret the break in transmission as a loss of sensor contact, which may be conveyed to the user through an appropriate alert.
As described above, the sensing device 32 may provide an output signal (e.g. mechanical output signal 104 and/or electrical output signal 106) to a receiver 12 for processing.
In an embodiment, the signal conditioning circuitry 202, 204 may include a band-pass filter that may filter out the DC component of the signals, along with any unwanted higher frequency components. In an exemplary embodiment, and without limitation, the filter may have a high-pass cutoff frequency in the range of 0.1-0.5 Hz, and may have a low-pass cutoff frequency in the range of 75-125 Hz.
The event processor 206 may analyze the filtered signals to, for example, detect the occurrence of an electrical event 220, detect the occurrence of a mechanical event 222, determine if a detected event corresponds to an applied stimulus 224, determine the proximity of a nerve from an applied stimulus 226, determine if a sensor has become disconnected from the subject 228, and/or determine if the surgeon should be provided with an alert 230.
In an embodiment, as shown in
In practice, traditional systems may have difficulty differentiating the M-Wave 252 from the stimulus artefact 250 due to the duration and magnitude of the artefact and the close timing of the two events. To create a more robust detection system, the receiver 12 may analyze the mechanical sensor output 104 for the existence of mechanical events 222 and/or attempt to correlate the mechanical events with the electrical events. Because mechanical events are generally not susceptible to the stimulus artefact 250, they may be used to enhance the sensitivity and/or specificity of a purely electrical detection system.
In an exemplary embodiment, mechanical sensor 100 may comprise an accelerometer. As illustrated in
Jerk and/or acceleration thresholds may be separately provided for each sensor at the discretion of the physician. In an embodiment where a local receiver 94 is included with each sensor device 32, such as illustrated in
In an embodiment incorporating electrical stimulation, the system may further detect whether an electrical stimulus was transmitted immediately prior to a sensed response. This correlation may allow the system to further relate a sensed muscle response to the physician's actions. The system may use the stimulus correlation to alert the physician of a potentially applied manual stimulus (i.e., if a muscle response was detected in the absence of an electrical stimulus, the response may indicate a physical contact with, or manipulation of the nerve that innervates the responding muscle). In other embodiments, other sensed or derived parameters may be used for the purpose of identifying stimulator-induced muscle response, as well as for testing the magnitude of the induced response.
The thresholds used in steps 302 and 304 for detecting an event may be varied based on the type or timing of the detected sensor response. For example, in an embodiment, as generally shown in
The above described system may be used to aid a physician in avoiding contact with a nerve. As described above, this may be accomplished by alerting the physician when he/she brings the stimulator within a certain proximity of a nerve. In another embodiment, the above described system may be used to aid a physician in locating a particular nerve, such as during a pain management procedure. As known in the art, certain pain management procedures require injecting a local anesthetic at, or in proximity of, a sensory nerve. By locating the motor nerve through the proximity detection methods described above, the physician may more accurately identify an injection site for the anesthetic.
To further aid in neural proximity detection the receiver 12 may be configured to determine the proximity of a nerve from an applied stimulus 226 based on the electrical current of the applied stimulus and the measured mechanical sensor signal output. As generally shown in
In an exemplary approach, a physician may dictate the current level that is being applied to the stimulator, if the stimulator is close enough to a nerve to induce a muscle response, the sensing device 32 (such as illustrated in
As generally shown in the correlation graph of
In an exemplary procedure, a physician may begin by setting a constant sensor threshold, and by setting the stimulator current near an upper end of a range. For example, as shown in
As further illustrated in the receiver 32 diagram of
The event processor 206 may additionally generate alerts 230 that may correspond to sensed events, to stimulator proximity within a given threshold of a nerve, or to the loss of contact between a sensing device 32 and the subject 30. In an embodiment, the alerts may be visual in nature, and may be provided to a display processor 210 for display to a user. In an embodiment, the alerts may indicate to the user the location, magnitude, and/or nature of a detected event. In an embodiment, the display processor 210 may be integrated with the event processor 206 in a single general purpose processor or PC (for example as with computer 22 illustrated in
During operation, the system 10 may be configured to provide a safe or “GO” signal if all sensing devices 32 are attached to the subject 30, the ground patch 18 is electrically coupled with the subject 30, and no muscle responses are detected. If the system detects that a sensing device 32 or ground patch 18 has lost contact with the subject 30, the system may be configured to alert the physician through an audible alert, or a visual alert such as a stop sign or “NO GO” warning. Such contact notification may similarly occur on the sensor itself, such as by illuminating a light with a color that corresponds with a loss of contact. In another embodiment, the sensor may provide an audible indication that it has lost contact with the subject. This warning may be used to convey that the neural monitoring system 10 is non-operational. Likewise, the receiver 12 may provide an indication to the user that may identify which sensor has lost contact. As described above, the system may also be configured to alert the physician if the entire system is operational and connected and a muscle response exceeds a threshold.
Therefore, a “GO” signal may represent a fully functioning system where a nerve is not proximate to the stimulator 16, while appropriate alternate warnings or alerts may further indicate that either the system is either non-operational and must be re-connected, or that a nerve is in proximity to the stimulator 16.
The stimulator handle 410 may be connected to an electrical cable 440 for transmitting signals between the receiver 12 and the stimulator 16. Handle 410 may include one or more buttons 450, selector devices, wheels 460, or LEDs. In an embodiment, a button, such as button 450, may be configured to selectively transmit an electrical stimulus 34 through stimulator probe 420. In an embodiment, rotation of wheel 460 may be configured to cycle through options on a display associated with the system, and the depression of wheel 460 may be configured to select an option on such a display. In an embodiment, rotation of wheel 460 may be configured to selectively vary the current intensity of the stimulus 34 transmitted through probe 38 and electrode 430. Additionally, visual indicators, such as LEDs may be incorporated into handle to convey information to the physician, such as, for example, detection of a muscle response or proximate nerve, a GO/NO-GO indicator, or may simply provide feedback to the physician that the stimulator is transmitting an electrical stimulus.
In an embodiment, stimulator 16 may be integrated with a medical device, such as scalpel 470 shown in
As generally illustrated in
In another exemplary use, a transdermal stimulator 500 may be positioned on an extremity of a subject, and a sensing device may be positioned on the subject's scalp. Stimulating the extremity may evoke a somatosensory potential (SSEP) in the scalp that may be detected through an electrical sensor 102, and used to further evaluate the integrity of the subject's neural pathways. If a somatosensory potential is not sensed by a sensing device 32 after the generation of the stimulus, the receiver 12 may be configured to provide an alert to the user.
In an embodiment, the transdermal stimulator 500 may be a stand-alone stimulator patch, or may alternatively be integrated with the sensing device 32 to provide a stimulus through electrodes 108, 110 (as generally illustrated in
The preceding description has been presented only to illustrate and describe exemplary embodiments of the methods and systems of the present invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. It will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. The invention may be practiced otherwise than is specifically explained and illustrated without departing from its spirit or scope. The scope of the invention is limited solely by the following claims.
This application is a continuation of and claims the benefit of priority from U.S. application Ser. No. 13/676,816, filed Nov. 14, 2012 (“the '816 application”), which is a continuation of and claims the benefit of priority from U.S. Pat. No. 8,343,079, filed Aug. 16, 2010 (“the '079 patent”), which is a continuation-in-part of and claims the benefit of priority from U.S. application Ser. No. 12/818,319, filed Jun. 18, 2010 (“the '319 application”), which is a continuation-in-part and claims the benefit of priority of U.S. application Ser. No. 12/605,020, filed Oct. 23, 2009 (“the '020 application”), which is a continuation-in-part and claims the benefit of priority of U.S. application Ser. No. 12/040,515 (“the '515 application”), filed Feb. 29, 2008, which claims the benefit of priority to U.S. Provisional Application No. 60/980,996 (“the '996 application”), filed Oct. 18, 2007. The '020 application further claims the benefit of priority from U.S. Provisional Application Nos. 61/108,214 (“the '214 application”), filed Oct. 24, 2008 and 61/229,530 (“the '530 application”), filed Jul. 29, 2009. The entire disclosures of the '816 application, the '079 patent, the '319 application, the '020 application, the '515 application, the '996 application, the '214 application, and the '530 application are hereby incorporated by reference as though fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3200814 | Taylor et al. | Aug 1965 | A |
3565080 | Ide et al. | Feb 1971 | A |
3797010 | Adler et al. | Mar 1974 | A |
4817628 | Zealear et al. | Apr 1989 | A |
5284153 | Raymond et al. | Feb 1994 | A |
5284154 | Raymond et al. | Feb 1994 | A |
5775331 | Raymond et al. | Jul 1998 | A |
6324432 | Rigaux et al. | Nov 2001 | B1 |
6361508 | Johnson et al. | Mar 2002 | B1 |
6466817 | Kaula et al. | Oct 2002 | B1 |
6500128 | Marino | Dec 2002 | B2 |
6564078 | Marino et al. | May 2003 | B1 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6807438 | Brun Del Re et al. | Oct 2004 | B1 |
6972199 | Lebouitz et al. | Dec 2005 | B2 |
6984208 | Zheng | Jan 2006 | B2 |
7050848 | Hoey et al. | May 2006 | B2 |
7079883 | Marino et al. | Jul 2006 | B2 |
7177677 | Kaula et al. | Feb 2007 | B2 |
7207949 | Miles et al. | Apr 2007 | B2 |
7216001 | Hacker et al. | May 2007 | B2 |
7236832 | Hemmerling et al. | Jun 2007 | B2 |
7470236 | Kelleher et al. | Dec 2008 | B1 |
7522953 | Kaula et al. | Apr 2009 | B2 |
7578819 | Bleich et al. | Aug 2009 | B2 |
7582058 | Miles et al. | Sep 2009 | B1 |
7657308 | Miles et al. | Feb 2010 | B2 |
7664544 | Miles et al. | Feb 2010 | B2 |
7668588 | Kovacs | Feb 2010 | B2 |
7691057 | Miles et al. | Apr 2010 | B2 |
7892173 | Miles et al. | Feb 2011 | B2 |
7905840 | Pimenta et al. | Mar 2011 | B2 |
7942826 | Scholl et al. | May 2011 | B1 |
7959577 | Schmitz et al. | Jun 2011 | B2 |
7962191 | Marino et al. | Jun 2011 | B2 |
7981058 | Akay | Jul 2011 | B2 |
7991463 | Kelleher et al. | Aug 2011 | B2 |
8000782 | Gharib et al. | Aug 2011 | B2 |
8016776 | Bourget et al. | Sep 2011 | B2 |
8027716 | Gharib et al. | Sep 2011 | B2 |
8055349 | Gharib et al. | Nov 2011 | B2 |
8068912 | Kaula et al. | Nov 2011 | B2 |
8075499 | Nathan et al. | Dec 2011 | B2 |
8090436 | Hoey et al. | Jan 2012 | B2 |
8133173 | Miles et al. | Mar 2012 | B2 |
8137284 | Miles et al. | Mar 2012 | B2 |
8147421 | Farquhar et al. | Apr 2012 | B2 |
8165653 | Marino et al. | Apr 2012 | B2 |
8343065 | Bartol et al. | Jan 2013 | B2 |
8343079 | Bartol et al. | Jan 2013 | B2 |
8517954 | Bartol et al. | Aug 2013 | B2 |
20010031916 | Bennett et al. | Oct 2001 | A1 |
20020038092 | Stanaland et al. | Mar 2002 | A1 |
20020165590 | Crowe et al. | Nov 2002 | A1 |
20030074037 | Moore et al. | Apr 2003 | A1 |
20040077969 | Onda et al. | Apr 2004 | A1 |
20040122341 | Walsh et al. | Jun 2004 | A1 |
20040186535 | Knowlton | Sep 2004 | A1 |
20040230138 | Inoue et al. | Nov 2004 | A1 |
20040243018 | Organ et al. | Dec 2004 | A1 |
20050075578 | Gharib et al. | Apr 2005 | A1 |
20050085741 | Hoskonen et al. | Apr 2005 | A1 |
20050102007 | Ayal et al. | May 2005 | A1 |
20050240086 | Akay | Oct 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20050280531 | Fadem et al. | Dec 2005 | A1 |
20050283204 | Buhlmann et al. | Dec 2005 | A1 |
20060020177 | Seo et al. | Jan 2006 | A1 |
20060020218 | Freeman et al. | Jan 2006 | A1 |
20060052726 | Weisz et al. | Mar 2006 | A1 |
20060135888 | Mimnagh-Kelleher et al. | Jun 2006 | A1 |
20060270949 | Mathie et al. | Nov 2006 | A1 |
20070038155 | Kelly, Jr. et al. | Feb 2007 | A1 |
20070265675 | Lund et al. | Nov 2007 | A1 |
20070276270 | Tran | Nov 2007 | A1 |
20080051643 | Park et al. | Feb 2008 | A1 |
20080058656 | Costello et al. | Mar 2008 | A1 |
20080167695 | Tehrani et al. | Jul 2008 | A1 |
20080234767 | Salmon et al. | Sep 2008 | A1 |
20080287761 | Hayter et al. | Nov 2008 | A1 |
20080306363 | Chaiken et al. | Dec 2008 | A1 |
20080306397 | Bonmassar et al. | Dec 2008 | A1 |
20080312560 | Jamsen et al. | Dec 2008 | A1 |
20080312709 | Volpe et al. | Dec 2008 | A1 |
20090036747 | Hayter et al. | Feb 2009 | A1 |
20090062696 | Nathan et al. | Mar 2009 | A1 |
20090069709 | Schmitz et al. | Mar 2009 | A1 |
20090069722 | Flaction et al. | Mar 2009 | A1 |
20090076336 | Mazar et al. | Mar 2009 | A1 |
20090171381 | Schmitz et al. | Jul 2009 | A1 |
20090192416 | Ernst et al. | Jul 2009 | A1 |
20090228068 | Buhlmann et al. | Sep 2009 | A1 |
20090247910 | Klapper | Oct 2009 | A1 |
20090306741 | Hogle et al. | Dec 2009 | A1 |
20090318779 | Tran | Dec 2009 | A1 |
20100010367 | Foley et al. | Jan 2010 | A1 |
20100094143 | Mahapatra et al. | Apr 2010 | A1 |
20100137748 | Sone et al. | Jun 2010 | A1 |
20100152619 | Kalpaxis et al. | Jun 2010 | A1 |
20100152622 | Teulings | Jun 2010 | A1 |
20100152623 | Williams | Jun 2010 | A1 |
20100168559 | Tegg et al. | Jul 2010 | A1 |
20100292617 | Lei et al. | Nov 2010 | A1 |
20110004207 | Wallace et al. | Jan 2011 | A1 |
20110237974 | Bartol et al. | Sep 2011 | A1 |
20120053491 | Nathan et al. | Mar 2012 | A1 |
20130072811 | Bartol et al. | Mar 2013 | A1 |
20130123659 | Bartol et al. | May 2013 | A1 |
20130253533 | Bartol et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1575010 | Sep 2005 | EP |
2920087 | Feb 2009 | FR |
0078209 | Dec 2000 | WO |
2007024147 | Mar 2007 | WO |
Entry |
---|
Bartol, Stephen MD, and Laschuk, Maria MD, “Arthroscopic Microscopic Discectomy in Awake Patients: The Effectiveness of Local/Neurolept Anaesthetic”, Canadian Spine Society Meeting, Vernon, BC, Canada, Mar. 2002. |
Bartol, Stephen MD, and Laschuk, Maria MD, “Use of Nerve Stimulator to Localize the Spinal Nerve Root During Arthroscopic Discectomy Procedures”, Canadian Spine Society Meeting, Vernon, BC, Canada, Mar. 2002. |
Begg et al. “Computational Intelligence for Movement Sciences: Neural Networks and Other Emerging Techniques” 2006. |
Bourke et al. “A Threshold-Based Fall-Detection Algorithm Using a Bi-Axial Gyroscope Sensor” Medical Engineering and Physics 30 (2008) 84-90. |
Fee Jr., James W.; Miller, Freeman; Lennon, Nancy; “EMG Reaction in Muscles About the Knee to Passive Velocity, Acceleration, and Jerk Manipulations”; Alfred I. duPont Hospital for Children, Gait Laboratory, 1600 Rockland Road, Wilmington, DE 19899, United States Journal of Electromyography and Kinesiology 19 (2009) 467-475. |
Koceja, D.M., Bernacki, R.H. And Kamen, G., “Methodology for the Quantitative Assessment of Human Crossed-Spinal Reflex Pathways,” Medical & Biological Engineering & Computing, Nov. 1991, pp. 603-606, No. 6, US. |
Tarata, M.; Spaepen, A.; Puers, R.; “The Accelerometer MMG Measurement Approach, in Monitoring the Muscular Fatigue”; Measurement Science Review; 2001; vol. 1, No. 1. |
Murphy, Chris; Campbell, Niall; Caulfield, Brian; Ward, Tomas and Deegan, Catherine; “Micro Electro Mechanical Systems Based Sensor for Mechanomyography”, 19th international conference Biosignal 2008, Brno, Czech Republic. |
Nijsen, Tamara M.E.; Aarts, Ronald M.; Arends, Johan B.A.M.; Cluitmans, Pierre J.M.; “Model for Arm Movements During Myoclonic Seizures”; Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite Internationale, Lyon, France Aug. 23-26, 2007. |
Ohta, Yoichi; Shima, Norihiro; Yabe, Kyonosuke; “Superimposed Mechanomyographic Response at Different Contraction Intensity in Medial Gastrocnemius and Soleus Muscles”; International Journal of Sport and Health Science, vol. 5, 63-70, 2007. |
Number | Date | Country | |
---|---|---|---|
20130253364 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
60980996 | Oct 2007 | US | |
61229530 | Jul 2009 | US | |
61108214 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13676816 | Nov 2012 | US |
Child | 13901676 | US | |
Parent | 12856970 | Aug 2010 | US |
Child | 13676816 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12818319 | Jun 2010 | US |
Child | 12856970 | US | |
Parent | 12605020 | Oct 2009 | US |
Child | 12818319 | US | |
Parent | 12040515 | Feb 2008 | US |
Child | 12605020 | US |