The present invention relates to neural stimulation, and in particular to a method and device configured to deliver a neural stimulus in a manner to give rise to reduced amounts of artefact so as to ease the task of recording a neural response evoked by the neural stimulus.
Electrical neuromodulation is used or envisaged for use to treat a variety of disorders including chronic pain, Parkinson's disease, and migraine, and to restore function such as hearing and motor function. A neuromodulation system applies an electrical pulse to neural tissue in order to generate a therapeutic effect. Such a system typically comprises an implanted electrical pulse generator, and a power source such as a battery that may be rechargeable by transcutaneous inductive transfer. An electrode array is connected to the pulse generator, and is positioned close to the neural pathway(s) of interest. An electrical pulse applied to the neural tissue by an electrode causes the depolarisation of neurons, which generates propagating action potentials whether antidromic, orthodromic, or both, to achieve the therapeutic effect.
When used to relieve chronic pain for example, the electrical pulse is applied to the dorsal column (DC) of the spinal cord and the electrode array is positioned in the dorsal epidural space. The dorsal column fibres being stimulated in this way inhibit the transmission of pain from that segment in the spinal cord to the brain.
In general, the electrical stimulus generated in a neuromodulation system triggers a neural action potential which then has either an inhibitory or excitatory effect. Inhibitory effects can be used to modulate an undesired process such as the transmission of pain, or excitatory effects can be used to cause a desired effect such as the contraction of a muscle or stimulation of the auditory nerve.
The action potentials generated among a large number of fibres sum to form a compound action potential (CAP). The CAP is the sum of responses from a large number of single fibre action potentials. When a CAP is electrically recorded, the measurement comprises the result of a large number of different fibres depolarising. The propagation velocity is determined largely by the fibre diameter and for large myelinated fibres as found in the dorsal root entry zone (DREZ) and nearby dorsal column the velocity can be over 60 ms−1. The CAP generated from the firing of a group of similar fibres is measured as a positive peak P1 in the recorded potential, then a negative peak N1, followed by a second positive peak P2. This is caused by the region of activation passing the recording electrode as the action potentials propagate along the individual fibres, producing the typical three-peaked response profile. Depending on stimulus polarity and the sense electrode configuration, the measured profile of some CAPs may be of reversed polarity, with two negative peaks and one positive peak.
Approaches proposed for obtaining a neural measurement are described by the present applicant in International Patent Publication No. WO 2012/155183, the content of which is incorporated herein by reference.
To better understand the effects of neuromodulation and/or other neural stimuli, and for example to provide a stimulator controlled by neural response feedback, it is desirable to accurately detect and record a CAP resulting from the stimulus. Evoked responses are less difficult to detect when they appear later in time than the artefact, or when the signal-to-noise ratio is sufficiently high. The artefact is often restricted to a time of 1-2 ms after the stimulus and so, provided the neural response is detected after this time window, a response measurement can be more easily obtained. This is the case in surgical monitoring where there are large distances (e.g. more than 12 cm for nerves conducting at 60 ms−1) between the stimulating and recording electrodes so that the propagation time from the stimulus site to the recording electrodes exceeds 2 ms.
However to characterize the responses from the dorsal columns, high stimulation currents and close proximity between electrodes are required. Similarly, any implanted neuromodulation device will necessarily be of compact size, so that for such devices to monitor the effect of applied stimuli the stimulus electrode(s) and recording electrode(s) will necessarily be in close proximity. In such situations the measurement process must overcome artefact directly. However, this can be a difficult task as an observed CAP signal component in the neural measurement will typically have a maximum amplitude in the range of microvolts. In contrast a stimulus applied to evoke the CAP is typically several volts and results in electrode artefact, which manifests in the neural measurement as a decaying output of several millivolts partly or wholly contemporaneously with the CAP signal, presenting a significant obstacle to isolating or even detecting the much smaller CAP signal of interest.
For example, to resolve a 10 μV CAP with 1 μV resolution in the presence of an input 5 V stimulus, for example, requires an amplifier with a dynamic range of 134 dB, which is impractical in implant systems. As the neural response can be contemporaneous with the stimulus and/or the stimulus artefact, CAP measurements present a difficult challenge of measurement amplifier design. In practice, many non-ideal aspects of a circuit lead to artefact, and as these mostly have a decaying exponential appearance that can be of positive or negative polarity, their identification and elimination can be laborious.
The difficulty of this problem is further exacerbated when attempting to implement CAP detection in an implanted device. Typical implants have a power budget which permits a limited number, for example in the hundreds or low thousands, of processor instructions per stimulus, in order to maintain a desired battery lifetime. Accordingly, if a CAP detector for an implanted device is to be used regularly (e.g. once a second), then care must be taken that the detector should consume only a small fraction of the power budget.
Daly (U.S. Pat. No. 8,454,529) suggests application of a stimulus, followed by a compensatory pulse, however Daly's biphasic stimulus and compensatory pulse together are not charge balanced and thus cause a net charge transfer between the device and the tissue.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
In this specification, a statement that an element may be “at least one of” a list of options is to be understood that the element may be any one of the listed options, or may be any combination of two or more of the listed options.
According to a first aspect, the present invention provides a method of evoking and detecting a neural response, the method comprising:
According to a second aspect the present invention provides an implantable device for delivering a neural stimulus, the device comprising:
According to a third aspect the present invention provides a non-transitory computer readable medium for delivering a neural stimulus, comprising instructions which, when executed by one or more processors, causes performance of the following:
The first to third aspects of the invention recognise that suitable adjustments to or selection of the inequality or duty ratio between the first charge and third charge can cause an artefact vector to be non-parallel to, and more preferably substantially orthogonal to, an evoked neural response vector, so that a contribution of artefact to the output of the vector detector passes a zero, thereby considerably improving observation of the evoked neural response.
Some embodiments of the invention may utilise static predefined values for the inequality or duty ratio between the first charge and third charge and for the correlation delay of the vector detector. However, other embodiments may adaptively adjust the stimulus duty ratio and/or correlation delay in order to seek out a zero in the artefact contribution. Such adaptive embodiments provide a means by which to repeatedly or continually optimise the reduction of artefact observed in the recording.
In embodiments where the stimulus components comprise stimulus phases and the stimulus is a triphasic stimulus, the first charge preferably exceeds the third charge. In such embodiments the first charge is preferably between 0.51 and 0.99 times the magnitude of the second charge, more preferably between 0.6 and 0.9 times the magnitude of the second charge, more preferably between 0.65 and 0.8 times the magnitude of the second charge, and most preferably about 0.75 times the magnitude of the second charge.
Embodiments of the first to third aspects may utilise any suitable vector detector. The vector detector may for example utilise a four-lobed or five-lobed matched filter template in accordance with the teachings of the present applicant's International Patent Publication No. WO2015074121, the content of which is incorporated herein by reference. Alternatively, the detector which produces a signed output may utilise an alternative matched filter template such as a two-lobed or three-lobed matched filter template, the lobes being sinusoidal or matched to two or three lobes of a synthesised or actual measured compound action potential profile or otherwise suitably shaped.
Some embodiments of the invention recognise that while adjusting a delay T in the detector correlation permits the evoked response vector to be desirably aligned (as described in relation to
In some embodiments the at least three stimulus components are temporal stimulus phases of a bipolar stimulus delivered by two stimulus electrodes. Additionally or alternatively, the at least three stimulus components may comprise spatial stimulus poles of a biphasic tripolar stimulus delivered by three stimulus electrodes, each stimulus pole defined herein as representing the charge transfer between the respective stimulus electrode and the surrounding tissue.
In some embodiments of the first to third aspects of the invention, the stimulus might not be charge balanced, and the net charge difference can be recovered by alternative means such as passively recovering charge by shorting one or more electrodes to ground at appropriate times.
According to a fourth aspect the present invention provides a method of delivering a neural stimulus, the method comprising:
According to a fifth aspect the present invention provides an implantable device for delivering a neural stimulus, the device comprising:
According to a sixth aspect the present invention provides a non-transitory computer readable medium for delivering a neural stimulus, comprising instructions which, when executed by one or more processors, causes performance of the following:
The first charge may be made unequal to the third charge by causing the first and third stimulus phases to have unequal current amplitude, and/or unequal duration, and/or unequal morphology.
In embodiments of the fourth to sixth aspects of the invention a peak-to-peak detector may be used to process the recording. While a peak-to-peak detector does not go through a zero irrespective of the duty ratio between the first charge and third charge, suitable adjustments of the duty ratio between the first charge and third charge nevertheless permit a minima in the detector output to be sought thus providing a means by which to give rise to reduced artefact in the recording.
In alternative embodiments the described stimulus of the first through sixth aspects may be delivered in the absence of any related ECAP recording, for example in order to preserve desirable electrical tissue conditions until such time as an ECAP measurement might later be desired.
An example of the invention will now be described with reference to the accompanying drawings, in which:
Module controller 116 has an associated memory 118 storing patient settings 120, control programs 122 and the like. Controller 116 controls a pulse generator 124 to generate stimuli in the form of current pulses in accordance with the patient settings 120 and control programs 122. Electrode selection module 126 switches the generated pulses to the appropriate electrode(s) of electrode array 150, for delivery of the current pulse to the tissue surrounding the selected electrode(s). Measurement circuitry 128 is configured to capture measurements of neural responses sensed at sense electrode(s) of the electrode array as selected by electrode selection module 126.
Delivery of an appropriate stimulus to the nerve 180 evokes a neural response comprising a compound action potential which will propagate along the nerve 180 as illustrated, for therapeutic purposes which in the case of a spinal cord stimulator for chronic pain might be to create paraesthesia at a desired location. To this end the stimulus electrodes are used to deliver stimuli at 30 Hz. To fit the device, a clinician applies stimuli which produce a sensation that is experienced by the user as a paraesthesia. When the paraesthesia is in a location and of a size which is congruent with the area of the user's body affected by pain, the clinician nominates that configuration for ongoing use.
The device 100 is further configured to sense the existence and electrical profile of compound action potentials (CAPs) propagating along nerve 180, whether such CAPs are evoked by the stimulus from electrodes 2 and 4, or otherwise evoked. To this end, any electrodes of the array 150 may be selected by the electrode selection module 126 to serve as measurement electrode 6 and measurement reference electrode 8. The stimulator case may also be used as a measurement or reference electrode, or a stimulation electrode. Signals sensed by the measurement electrodes 6 and 8 are passed to measurement circuitry 128, which for example may operate in accordance with the teachings of International Patent Application Publication No. WO2012155183 by the present applicant, the content of which is incorporated herein by reference. The present invention recognises that in circumstances such as shown in
To this end the present embodiment of the present invention provides for delivering such neural stimulation in a manner which gives rise to reduced artefact, the method being based on triphasic and/or tripolar stimulus waveforms.
In a second embodiment, the neural response signals observed by electrodes 6 and 8 are processed by the controller 116 using peak-to-peak detection. A peak-to-peak detector can only produce a positive value for the artefact.
When compared to a biphasic waveform, which has a 0% duty cycle (α=0), extrapolating the graph of
A further particular advantage of some embodiments of the present invention is that the parameter a is orthogonal to other methods of artefact reduction and thus may be used in conjunction with such other methods. These other methods include methods based in linearity, such as alternating phase and subtraction.
The alternating phase method of artefact reduction relies on the equation A(I)=−A(−I), where A(I) is the artefact at current I. Thus A(I)+A(−I)=0, so consecutive neural response measurements obtained in response to a first stimulus of one phase followed by a stimulus which is of opposite phase may reduce artefact by subtracting the consecutively obtained response measurements.
The subtraction method of artefact reduction also relies on linearity. A(I)=2.A(I/2). Thus artefact reduction can also be achieved by obtaining consecutive neural response measurements in response to a first stimulus of one amplitude and a second stimulus of double the amplitude, and A(I)-2A(I/2)=0.
Linearity methods can provide around 20 dB of artefact rejection. In conventional neuromodulation biphasic stimulation is often used to generate evoked responses. It produces artefact having a fixed polarity compared to the stimulus so inverting the polarity of the stimulus inverts the polarity of the artefact. This leads to alternating phase stimulation where averages across successive stimuli lead to cancellation of artefact voltage but not ECAP. This works, but has its own problems e.g. reduction in ECAP size, multiple stimulation sites etc. Or slower effective stimulation rate, meaning higher power consumption per therapeutic stimulus.
The method of the present invention may additionally or alternatively be combined with artefact reduction methods which are based on detection, as described in WO2015074121 and utilised in the embodiment of
The variable triphasic methods described herein when used in combination with such other artefact reduction techniques have been shown to provide a further 13 dB of artefact rejection. It will be noticed that these methods are orthogonal to each other i.e. they can be used in conjunction. It is expected that this will provide 20+16+9 dB=42 dB of artefact rejection. This can reduce a (typical large) artefact of 500uV observed in spinal cord stimulation patients to an ECAP equivalent of 5uV.
In yet another embodiment, the parameter a may be adaptively validated, and adjusted if required, occasionally or substantially continuously over time. In such embodiments, tri-phasic stimulation is delivered at half the therapeutic current, which allows the system to measure the artefact at the detector output in the absence of any evoked ECAP. This allows the system to dynamically adjust the duty cycle to find the null in artefact, optimized for the specific circumstances. This also allows opposite phase triphasic stimuli to be delivered beneath the recruitment threshold, in order to provide the opposite phase signal for cancellation via the linearity technique.
While the embodiment of
Without intending to be limited by theory, as shown in
The conceptualisation of the variable ratio triphasic stimulus shown in
Considering yet another embodiment, shown in
It is to be appreciated that in still other embodiments, the unequal phase amplitude approach of
In still other embodiments, a tripolar stimulus may be applied in the manner shown in
The claimed and described electronic functionality can be implemented by discrete components mounted on a printed circuit board, or by a combination of integrated circuits, or by an application-specific integrated circuit (ASIC).
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. For example, while
Number | Date | Country | Kind |
---|---|---|---|
2016902492 | Jun 2016 | AU | national |
The current application is a continuation of U.S. patent application Ser. No. 16/311,526 filed Dec. 19, 2018, now U.S. Pat. No. 11,179,091, which is a national stage of PCT Application No. PCT/AU2017/050647 filed Jun. 23, 2017, which claims the benefit of Australian Provisional Patent Application No. 2016902492 filed Jun. 24, 2016, the disclosures of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3724467 | Avery et al. | Apr 1973 | A |
3736434 | Darrow | May 1973 | A |
3817254 | Maurer | Jun 1974 | A |
3898472 | Long | Aug 1975 | A |
4158196 | Crawford, Jr. | Jun 1979 | A |
4418695 | Buffet | Dec 1983 | A |
4474186 | Ledley et al. | Oct 1984 | A |
4628934 | Pohndorf et al. | Dec 1986 | A |
4807643 | Rosier | Feb 1989 | A |
4856525 | van den Honert | Aug 1989 | A |
5113859 | Funke | May 1992 | A |
5139020 | Koestner et al. | Aug 1992 | A |
5143081 | Young et al. | Sep 1992 | A |
5156154 | Valenta, Jr. et al. | Oct 1992 | A |
5172690 | Nappholz et al. | Dec 1992 | A |
5184615 | Nappholz et al. | Feb 1993 | A |
5188106 | Nappholz et al. | Feb 1993 | A |
5215100 | Spitz et al. | Jun 1993 | A |
5324311 | Acken | Jun 1994 | A |
5417719 | Hull et al. | May 1995 | A |
5431693 | Schroeppel | Jul 1995 | A |
5458623 | Lu et al. | Oct 1995 | A |
5476486 | Lu et al. | Dec 1995 | A |
5497781 | Chen et al. | Mar 1996 | A |
5601608 | Mouchawar | Feb 1997 | A |
5638825 | Yamazaki et al. | Jun 1997 | A |
5702429 | King et al. | Dec 1997 | A |
5758651 | Nygard et al. | Jun 1998 | A |
5776170 | Macdonald et al. | Jul 1998 | A |
5785651 | Kuhn et al. | Jul 1998 | A |
5792212 | Weijand et al. | Aug 1998 | A |
5814092 | King | Sep 1998 | A |
5895416 | Barreras et al. | Apr 1999 | A |
5913882 | King | Jun 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
6020857 | Podger | Feb 2000 | A |
6027456 | Feler et al. | Feb 2000 | A |
6038480 | Hrdlicka et al. | Mar 2000 | A |
6066163 | John | May 2000 | A |
6114164 | Dennis et al. | Sep 2000 | A |
6144881 | Hemming et al. | Nov 2000 | A |
6157861 | Faltys et al. | Dec 2000 | A |
6212431 | Hahn et al. | Apr 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6381496 | Meadows et al. | Apr 2002 | B1 |
6449512 | Boveja | Sep 2002 | B1 |
6463328 | John | Oct 2002 | B1 |
6473649 | Gryzwa et al. | Oct 2002 | B1 |
6473653 | Schallhorn et al. | Oct 2002 | B1 |
6493576 | Dankwart-Eder | Dec 2002 | B1 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6522932 | Kuzma | Feb 2003 | B1 |
6600955 | Zierhofer et al. | Jul 2003 | B1 |
6658293 | Vonk et al. | Dec 2003 | B2 |
6675046 | Holsheimer | Jan 2004 | B2 |
6782292 | Whitehurst | Aug 2004 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6898582 | Lange et al. | May 2005 | B2 |
6909917 | Woods et al. | Jun 2005 | B2 |
7089059 | Pless | Aug 2006 | B1 |
7171261 | Litvak et al. | Jan 2007 | B1 |
7177675 | Suffin et al. | Feb 2007 | B2 |
7206640 | Overstreet | Apr 2007 | B1 |
7231254 | DiLorenzo et al. | Jun 2007 | B2 |
7286876 | Yonce et al. | Oct 2007 | B2 |
7412287 | Yonce et al. | Aug 2008 | B2 |
7450992 | Cameron | Nov 2008 | B1 |
7634315 | Cholette | Dec 2009 | B2 |
7734340 | De Ridder | Jun 2010 | B2 |
7742810 | Moffitt | Jun 2010 | B2 |
7792584 | Van Oort | Sep 2010 | B2 |
7818052 | Litvak et al. | Oct 2010 | B2 |
7831305 | Gliner | Nov 2010 | B2 |
7835804 | Fridman et al. | Nov 2010 | B2 |
7890182 | Parramon et al. | Feb 2011 | B2 |
7894905 | Pless et al. | Feb 2011 | B2 |
8083685 | Fagin et al. | Dec 2011 | B2 |
8190251 | Molnar et al. | May 2012 | B2 |
8224459 | Pianca et al. | Jul 2012 | B1 |
8239031 | Fried et al. | Aug 2012 | B2 |
8249698 | Mugler et al. | Aug 2012 | B2 |
8332047 | Libbus et al. | Dec 2012 | B2 |
8359102 | Thacker et al. | Jan 2013 | B2 |
8401655 | De Ridder | Mar 2013 | B2 |
8417342 | Abell | Apr 2013 | B1 |
8454529 | Daly et al. | Jun 2013 | B2 |
8494645 | Spitzer et al. | Jul 2013 | B2 |
8515545 | Trier | Aug 2013 | B2 |
8588929 | Davis et al. | Nov 2013 | B2 |
8670830 | Carlson et al. | Mar 2014 | B2 |
8886323 | Wu et al. | Nov 2014 | B2 |
9044155 | Strahl | Jun 2015 | B2 |
9155892 | Parker et al. | Oct 2015 | B2 |
9302112 | Bornzin et al. | Apr 2016 | B2 |
9381356 | Parker et al. | Jul 2016 | B2 |
9386934 | Parker et al. | Jul 2016 | B2 |
9872990 | Parker et al. | Jan 2018 | B2 |
9974455 | Parker et al. | May 2018 | B2 |
10206596 | Single et al. | Feb 2019 | B2 |
10278600 | Parker et al. | May 2019 | B2 |
10368762 | Single | Aug 2019 | B2 |
10426409 | Single | Oct 2019 | B2 |
10500399 | Single | Dec 2019 | B2 |
10568559 | Parker et al. | Feb 2020 | B2 |
10588524 | Single et al. | Mar 2020 | B2 |
10588698 | Parker et al. | Mar 2020 | B2 |
10632307 | Parker | Apr 2020 | B2 |
10842996 | Baru et al. | Nov 2020 | B2 |
10849525 | Parker et al. | Dec 2020 | B2 |
10894158 | Parker | Jan 2021 | B2 |
10918872 | Parker et al. | Feb 2021 | B2 |
11006846 | Parker et al. | May 2021 | B2 |
11006857 | Parker | May 2021 | B2 |
11045129 | Parker et al. | Jun 2021 | B2 |
11110270 | Parker et al. | Sep 2021 | B2 |
11167129 | Parker | Nov 2021 | B2 |
11172864 | Parker et al. | Nov 2021 | B2 |
11179091 | Karantonis et al. | Nov 2021 | B2 |
11191966 | Wah | Dec 2021 | B2 |
20020055688 | Katims | May 2002 | A1 |
20020099419 | Ayal et al. | Jul 2002 | A1 |
20020193670 | Garfield et al. | Dec 2002 | A1 |
20030032889 | Wells | Feb 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030135247 | Zierhofer | Jul 2003 | A1 |
20030139781 | Bradley et al. | Jul 2003 | A1 |
20030153959 | Thacker et al. | Aug 2003 | A1 |
20030195580 | Bradley et al. | Oct 2003 | A1 |
20040088017 | Sharma et al. | May 2004 | A1 |
20040116978 | Bradley | Jun 2004 | A1 |
20040122482 | Tung et al. | Jun 2004 | A1 |
20040158298 | Gliner | Aug 2004 | A1 |
20040225211 | Gozani et al. | Nov 2004 | A1 |
20040254494 | Spokoyny | Dec 2004 | A1 |
20050010265 | Baru Fassio et al. | Jan 2005 | A1 |
20050017190 | Eversmann et al. | Jan 2005 | A1 |
20050021104 | DiLorenzo | Jan 2005 | A1 |
20050065427 | Magill et al. | Mar 2005 | A1 |
20050070982 | Heruth et al. | Mar 2005 | A1 |
20050075683 | Miesel et al. | Apr 2005 | A1 |
20050101878 | Daly | May 2005 | A1 |
20050107674 | Parthasarathy et al. | May 2005 | A1 |
20050113877 | Giardiello et al. | May 2005 | A1 |
20050137670 | Christopherson et al. | Jun 2005 | A1 |
20050149154 | Cohen | Jul 2005 | A1 |
20050192567 | Katims | Sep 2005 | A1 |
20050203600 | Wallace | Sep 2005 | A1 |
20050209655 | Bradley et al. | Sep 2005 | A1 |
20050216064 | Heruth et al. | Sep 2005 | A1 |
20050282149 | Kovacs et al. | Dec 2005 | A1 |
20060009820 | Royle et al. | Jan 2006 | A1 |
20060020291 | Gozani et al. | Jan 2006 | A1 |
20060129205 | Boveja et al. | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060195159 | Bradley et al. | Aug 2006 | A1 |
20060212089 | Tass | Sep 2006 | A1 |
20060217782 | Boveja et al. | Sep 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060276722 | Litvak et al. | Dec 2006 | A1 |
20060287609 | Litvak et al. | Dec 2006 | A1 |
20070021800 | Bradley et al. | Jan 2007 | A1 |
20070073354 | Knudson et al. | Mar 2007 | A1 |
20070100378 | Maschino | May 2007 | A1 |
20070178579 | Ross et al. | Aug 2007 | A1 |
20070185409 | Wu et al. | Aug 2007 | A1 |
20070208394 | King et al. | Sep 2007 | A1 |
20070225765 | King | Sep 2007 | A1 |
20070225767 | Daly et al. | Sep 2007 | A1 |
20070244410 | Fridman et al. | Oct 2007 | A1 |
20070250120 | Flach et al. | Oct 2007 | A1 |
20070255372 | Metzler et al. | Nov 2007 | A1 |
20070265489 | Borgerding et al. | Nov 2007 | A1 |
20070282217 | McGinnis et al. | Dec 2007 | A1 |
20070287931 | Dilorenzo | Dec 2007 | A1 |
20080021292 | Stypulkowski | Jan 2008 | A1 |
20080051647 | Wu et al. | Feb 2008 | A1 |
20080064947 | Heruth et al. | Mar 2008 | A1 |
20080077191 | Morrell | Mar 2008 | A1 |
20080097529 | Parramon et al. | Apr 2008 | A1 |
20080132964 | Cohen et al. | Jun 2008 | A1 |
20080147155 | Swoyer et al. | Jun 2008 | A1 |
20080183076 | Witte et al. | Jul 2008 | A1 |
20080208304 | Zdravkovic et al. | Aug 2008 | A1 |
20080234780 | Smith et al. | Sep 2008 | A1 |
20080275527 | Greenberg et al. | Nov 2008 | A1 |
20080294221 | Kilgore et al. | Nov 2008 | A1 |
20080300655 | Cholette | Dec 2008 | A1 |
20080319508 | Botros et al. | Dec 2008 | A1 |
20090030337 | Gozani et al. | Jan 2009 | A1 |
20090033486 | Costantino | Feb 2009 | A1 |
20090058635 | Lalonde et al. | Mar 2009 | A1 |
20090082691 | Denison et al. | Mar 2009 | A1 |
20090149912 | Dacey, Jr. et al. | Jun 2009 | A1 |
20090157155 | Bradley | Jun 2009 | A1 |
20090270957 | Pianca | Oct 2009 | A1 |
20090281594 | Wacnik et al. | Nov 2009 | A1 |
20090287277 | Conn et al. | Nov 2009 | A1 |
20090299214 | Wu et al. | Dec 2009 | A1 |
20090306491 | Haggers | Dec 2009 | A1 |
20090306533 | Rousche et al. | Dec 2009 | A1 |
20100010388 | Panken et al. | Jan 2010 | A1 |
20100057159 | Lozano | Mar 2010 | A1 |
20100058126 | Chang et al. | Mar 2010 | A1 |
20100069835 | Parker | Mar 2010 | A1 |
20100069996 | Strahl | Mar 2010 | A1 |
20100070007 | Parker | Mar 2010 | A1 |
20100070008 | Parker | Mar 2010 | A1 |
20100100153 | Carlson et al. | Apr 2010 | A1 |
20100106231 | Torgerson | Apr 2010 | A1 |
20100114237 | Giftakis et al. | May 2010 | A1 |
20100114258 | Donofrio et al. | May 2010 | A1 |
20100125313 | Lee et al. | May 2010 | A1 |
20100125314 | Bradley et al. | May 2010 | A1 |
20100145222 | Brunnett et al. | Jun 2010 | A1 |
20100152808 | Boggs, II | Jun 2010 | A1 |
20100179626 | Pilarski | Jul 2010 | A1 |
20100191307 | Fang et al. | Jul 2010 | A1 |
20100204748 | Lozano et al. | Aug 2010 | A1 |
20100222844 | Troosters et al. | Sep 2010 | A1 |
20100222858 | Meloy | Sep 2010 | A1 |
20100249643 | Gozani et al. | Sep 2010 | A1 |
20100249867 | Wanasek | Sep 2010 | A1 |
20100258342 | Parker | Oct 2010 | A1 |
20100262208 | Parker | Oct 2010 | A1 |
20100262214 | Robinson | Oct 2010 | A1 |
20100280570 | Sturm et al. | Nov 2010 | A1 |
20100286748 | Midani et al. | Nov 2010 | A1 |
20100331604 | Okamoto et al. | Dec 2010 | A1 |
20100331926 | Lee et al. | Dec 2010 | A1 |
20110004207 | Wallace et al. | Jan 2011 | A1 |
20110021943 | Lacour et al. | Jan 2011 | A1 |
20110028859 | Chian | Feb 2011 | A1 |
20110040546 | Gerber et al. | Feb 2011 | A1 |
20110077712 | Killian | Mar 2011 | A1 |
20110087085 | Tsampazis et al. | Apr 2011 | A1 |
20110093042 | Torgerson et al. | Apr 2011 | A1 |
20110106100 | Bischoff | May 2011 | A1 |
20110130802 | Libbus et al. | Jun 2011 | A1 |
20110184488 | De Ridder et al. | Jul 2011 | A1 |
20110204811 | Pollmann-retsch | Aug 2011 | A1 |
20110224665 | Crosby et al. | Sep 2011 | A1 |
20110224749 | Ben-David et al. | Sep 2011 | A1 |
20110264165 | Molnar et al. | Oct 2011 | A1 |
20110270343 | Buschman et al. | Nov 2011 | A1 |
20110288391 | Rao et al. | Nov 2011 | A1 |
20110307030 | John | Dec 2011 | A1 |
20110313310 | Tomita | Dec 2011 | A1 |
20110313483 | Hincapie et al. | Dec 2011 | A1 |
20120029377 | Polak | Feb 2012 | A1 |
20120059275 | Fagin et al. | Mar 2012 | A1 |
20120101552 | Lazarewicz et al. | Apr 2012 | A1 |
20120101826 | Visser et al. | Apr 2012 | A1 |
20120109004 | Cadwell | May 2012 | A1 |
20120109236 | Jacobson et al. | May 2012 | A1 |
20120155183 | Aritome | Jun 2012 | A1 |
20120185020 | Simon et al. | Jul 2012 | A1 |
20120245481 | Blanco et al. | Sep 2012 | A1 |
20120253423 | Youn et al. | Oct 2012 | A1 |
20120277621 | Gerber et al. | Nov 2012 | A1 |
20120277823 | Gerber et al. | Nov 2012 | A1 |
20120310301 | Bennett et al. | Dec 2012 | A1 |
20130041449 | Cela et al. | Feb 2013 | A1 |
20130053722 | Carlson et al. | Feb 2013 | A1 |
20130060302 | Polefko et al. | Mar 2013 | A1 |
20130172774 | Crowder et al. | Jul 2013 | A1 |
20130289661 | Griffith et al. | Oct 2013 | A1 |
20130289683 | Parker et al. | Oct 2013 | A1 |
20140046407 | Ben-ezra et al. | Feb 2014 | A1 |
20140066803 | Choi | Mar 2014 | A1 |
20140142447 | Takahashi et al. | May 2014 | A1 |
20140194771 | Parker et al. | Jul 2014 | A1 |
20140194772 | Single et al. | Jul 2014 | A1 |
20140236042 | Parker et al. | Aug 2014 | A1 |
20140236257 | Parker et al. | Aug 2014 | A1 |
20140243926 | Carcieri | Aug 2014 | A1 |
20140243931 | Parker et al. | Aug 2014 | A1 |
20140249396 | Shacham-diamand et al. | Sep 2014 | A1 |
20140276195 | Papay et al. | Sep 2014 | A1 |
20140277250 | Su et al. | Sep 2014 | A1 |
20140277267 | Vansickle et al. | Sep 2014 | A1 |
20140288551 | Bharmi et al. | Sep 2014 | A1 |
20140288577 | Robinson et al. | Sep 2014 | A1 |
20140296737 | Parker et al. | Oct 2014 | A1 |
20140324118 | Simon et al. | Oct 2014 | A1 |
20140350634 | Grill et al. | Nov 2014 | A1 |
20140358024 | Nelson et al. | Dec 2014 | A1 |
20150018699 | Zeng et al. | Jan 2015 | A1 |
20150025597 | Surth | Jan 2015 | A1 |
20150032181 | Baynham et al. | Jan 2015 | A1 |
20150051637 | Osorio | Feb 2015 | A1 |
20150126839 | Li et al. | May 2015 | A1 |
20150148869 | Dorvall, II et al. | May 2015 | A1 |
20150164354 | Parker et al. | Jun 2015 | A1 |
20150174396 | Fisher et al. | Jun 2015 | A1 |
20150238104 | Tass | Aug 2015 | A1 |
20150238304 | Lamraoui | Aug 2015 | A1 |
20150282725 | Single | Oct 2015 | A1 |
20150313487 | Single | Nov 2015 | A1 |
20150360031 | Bornzin et al. | Dec 2015 | A1 |
20150374999 | Parker | Dec 2015 | A1 |
20160082265 | Moffitt et al. | Mar 2016 | A1 |
20160082268 | Hershey et al. | Mar 2016 | A1 |
20160101289 | Stolen et al. | Apr 2016 | A1 |
20160106980 | Sürth et al. | Apr 2016 | A1 |
20160121124 | Johanek et al. | May 2016 | A1 |
20160129272 | Hou et al. | May 2016 | A1 |
20160144189 | Bakker et al. | May 2016 | A1 |
20160166164 | Obradovic et al. | Jun 2016 | A1 |
20160175594 | Min et al. | Jun 2016 | A1 |
20160287126 | Parker et al. | Oct 2016 | A1 |
20160287182 | Single | Oct 2016 | A1 |
20160367808 | Simon et al. | Dec 2016 | A9 |
20170001017 | Parker et al. | Jan 2017 | A9 |
20170049345 | Single | Feb 2017 | A1 |
20170071490 | Parker et al. | Mar 2017 | A1 |
20170135624 | Parker | May 2017 | A1 |
20170157410 | Moffitt et al. | Jun 2017 | A1 |
20170173326 | Bloch et al. | Jun 2017 | A1 |
20170173335 | Min et al. | Jun 2017 | A1 |
20170173341 | Johanek et al. | Jun 2017 | A1 |
20170216587 | Parker | Aug 2017 | A1 |
20170361101 | Single | Dec 2017 | A1 |
20180071513 | Weiss et al. | Mar 2018 | A1 |
20180104493 | Doan et al. | Apr 2018 | A1 |
20180110987 | Parker | Apr 2018 | A1 |
20180117335 | Parker et al. | May 2018 | A1 |
20180132747 | Parker et al. | May 2018 | A1 |
20180132760 | Parker | May 2018 | A1 |
20180133459 | Parker et al. | May 2018 | A1 |
20180228391 | Parker et al. | Aug 2018 | A1 |
20180228547 | Parker | Aug 2018 | A1 |
20180229046 | Parker et al. | Aug 2018 | A1 |
20180256052 | Parker et al. | Sep 2018 | A1 |
20190001139 | Mishra et al. | Jan 2019 | A1 |
20190030339 | Baru et al. | Jan 2019 | A1 |
20190125269 | Markovic et al. | May 2019 | A1 |
20190168000 | Laird-wah | Jun 2019 | A1 |
20190216343 | Single et al. | Jul 2019 | A1 |
20190239768 | Karantonis et al. | Aug 2019 | A1 |
20190307341 | Parker et al. | Oct 2019 | A1 |
20190357788 | Single | Nov 2019 | A1 |
20200029914 | Single | Jan 2020 | A1 |
20200129108 | Parker et al. | Apr 2020 | A1 |
20200155240 | Parker et al. | May 2020 | A1 |
20200215331 | Single | Jul 2020 | A1 |
20200282208 | Parker | Sep 2020 | A1 |
20210001133 | Williams et al. | Jan 2021 | A1 |
20210008373 | Single et al. | Jan 2021 | A1 |
20210016091 | Parker et al. | Jan 2021 | A1 |
20210121696 | Parker et al. | Apr 2021 | A1 |
20210162214 | Parker | Jun 2021 | A1 |
20210267518 | Parker et al. | Sep 2021 | A1 |
20210308449 | Parker | Oct 2021 | A1 |
20210315502 | Parker et al. | Oct 2021 | A1 |
20210379386 | Parker et al. | Dec 2021 | A1 |
20210387005 | Parker et al. | Dec 2021 | A1 |
20210387008 | Single | Dec 2021 | A1 |
20210393964 | Single et al. | Dec 2021 | A1 |
20220007987 | Huang et al. | Jan 2022 | A1 |
20220039724 | Parker et al. | Feb 2022 | A1 |
20220151535 | Parker et al. | May 2022 | A1 |
20220168574 | Wah | Jun 2022 | A1 |
20220249009 | Parker et al. | Aug 2022 | A1 |
20220287620 | Parker | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
2013277009 | Jan 2016 | AU |
103648583 | Mar 2014 | CN |
103654762 | Mar 2014 | CN |
103842022 | Jun 2014 | CN |
104411360 | Mar 2015 | CN |
0219084 | Apr 1987 | EP |
1244496 | Oct 2002 | EP |
0998958 | Aug 2005 | EP |
2019716 | Nov 2007 | EP |
2243510 | Oct 2010 | EP |
2443995 | Apr 2012 | EP |
2520327 | Nov 2012 | EP |
2707095 | Mar 2014 | EP |
3229893 | Oct 2017 | EP |
2006504494 | Feb 2006 | JP |
2009512505 | Mar 2009 | JP |
2012524629 | Oct 2012 | JP |
2013500779 | Jan 2013 | JP |
2013527784 | Jul 2013 | JP |
2013536044 | Sep 2013 | JP |
2014522261 | Sep 2014 | JP |
2014523261 | Sep 2014 | JP |
1983003191 | Sep 1983 | WO |
1993001863 | Feb 1993 | WO |
1996012383 | Apr 1996 | WO |
2000002623 | Jan 2000 | WO |
2002036003 | Nov 2001 | WO |
2002038031 | May 2002 | WO |
2002049500 | Jun 2002 | WO |
2002082982 | Oct 2002 | WO |
2003028521 | Apr 2003 | WO |
2003043690 | May 2003 | WO |
2003103484 | Dec 2003 | WO |
2004021885 | Mar 2004 | WO |
2004103455 | Dec 2004 | WO |
2005032656 | Apr 2005 | WO |
2005105202 | Nov 2005 | WO |
2005122887 | Dec 2005 | WO |
2006091636 | Aug 2006 | WO |
2007050657 | May 2007 | WO |
2007064936 | Jun 2007 | WO |
2007127926 | Nov 2007 | WO |
2007130170 | Nov 2007 | WO |
2008004204 | Jan 2008 | WO |
2008049199 | May 2008 | WO |
2009002072 | Dec 2008 | WO |
2009002579 | Dec 2008 | WO |
2009010870 | Jan 2009 | WO |
2009130515 | Oct 2009 | WO |
2009146427 | Dec 2009 | WO |
2010013170 | Feb 2010 | WO |
2010044989 | Apr 2010 | WO |
2010051392 | May 2010 | WO |
2010051406 | May 2010 | WO |
2010057046 | May 2010 | WO |
2010124139 | Oct 2010 | WO |
2010138915 | Dec 2010 | WO |
2011011327 | Jan 2011 | WO |
2011014570 | Feb 2011 | WO |
2011017778 | Feb 2011 | WO |
2011066477 | Jun 2011 | WO |
2011066478 | Jun 2011 | WO |
2011112843 | Sep 2011 | WO |
2011119251 | Sep 2011 | WO |
2011159545 | Dec 2011 | WO |
2012016138 | Feb 2012 | WO |
2012027252 | Mar 2012 | WO |
2012027791 | Mar 2012 | WO |
2012155183 | Nov 2012 | WO |
2012155184 | Nov 2012 | WO |
2012155185 | Nov 2012 | WO |
2012155187 | Nov 2012 | WO |
2012155188 | Nov 2012 | WO |
2012155189 | Nov 2012 | WO |
2012155190 | Nov 2012 | WO |
2012162349 | Nov 2012 | WO |
2013063111 | May 2013 | WO |
2013075171 | May 2013 | WO |
2013116161 | Aug 2013 | WO |
2014071445 | May 2014 | WO |
2014071446 | May 2014 | WO |
2014143577 | Sep 2014 | WO |
2014150001 | Sep 2014 | WO |
2015070281 | May 2015 | WO |
2015074121 | May 2015 | WO |
2015109239 | Jul 2015 | WO |
2015143509 | Oct 2015 | WO |
2015168735 | Nov 2015 | WO |
2016011512 | Jan 2016 | WO |
2016048974 | Mar 2016 | WO |
2016059556 | Apr 2016 | WO |
2016077882 | May 2016 | WO |
2016090420 | Jun 2016 | WO |
2016090436 | Jun 2016 | WO |
2016115596 | Jul 2016 | WO |
2016161484 | Oct 2016 | WO |
2016168798 | Oct 2016 | WO |
2016191807 | Dec 2016 | WO |
2016191808 | Dec 2016 | WO |
2016191815 | Dec 2016 | WO |
2017053504 | Mar 2017 | WO |
2017142948 | Aug 2017 | WO |
2017173493 | Oct 2017 | WO |
2017210352 | Dec 2017 | WO |
2017219096 | Dec 2017 | WO |
2018080753 | May 2018 | WO |
2018119220 | Jun 2018 | WO |
2018160992 | Sep 2018 | WO |
2018170141 | Sep 2018 | WO |
2019178634 | Sep 2019 | WO |
2019204884 | Oct 2019 | WO |
2019210371 | Nov 2019 | WO |
2019231796 | Dec 2019 | WO |
2020082118 | Apr 2020 | WO |
2020082126 | Apr 2020 | WO |
2020082128 | Apr 2020 | WO |
2020087123 | May 2020 | WO |
2020087135 | May 2020 | WO |
2020124135 | Jun 2020 | WO |
2021007615 | Jan 2021 | WO |
2021146778 | Jul 2021 | WO |
2022040757 | Mar 2022 | WO |
2022170388 | Aug 2022 | WO |
Entry |
---|
Australian Examination Report for Application No. 2019283936, dated Apr. 1, 2021, 7 pages. |
Extended European Search Report for EP Application 12785483.4 completed Sep. 16, 2014, 7 pgs. |
Extended European Search Report for European Application 12785619.3 Search Completed Oct. 13, 2014, dated Oct. 23, 2014, 7 pgs. |
Extended European Search Report for European Application 12785669.8 Search Completed Sep. 22, 2014, dated Sep. 29, 2014, 5 pgs. |
Extended European Search Report for European Application No. 13852669.4, Search completed Jun. 8, 2016, dated Jun. 22, 2016, 09 Pgs. |
Extended European Search Report for European Application No. 14861553.7, Search completed Jun. 8, 2017, dated Jun. 19, 2017, 8 Pgs. |
Extended European Search Report for European Application No. 14863597.2, Search completed Jun. 6, 2017, dated Jun. 13, 2017, 9 Pgs. |
Extended European Search Report for European Application No. 15768956.3, Search completed Oct. 3, 2017, dated Oct. 10, 2017, 8 Pgs. |
Extended European Search Report for European Application No. 15789515.2, Search completed Dec. 4, 2017, dated Jan. 30, 2018, 7 Pgs. |
Extended European Search Report for European Application No. 15861444.6, Search completed Jul. 13, 2018, dated Jul. 23, 2018, 8 pgs. |
Extended European Search Report for European Application No. 16739680.3, Search completed Jun. 1, 2018, dated Jun. 12, 2018, 9 Pgs. |
Extended European Search Report for European Application No. 16802237.4, Search completed Dec. 11, 2018, dated Dec. 19, 2018, 9 Pgs. |
Extended European Search Report for European Application No. 16802238.2, Search completed Oct. 17, 2018, dated Oct. 24, 2018, 8 Pgs. |
Extended European Search Report for European Application No. 17778477.4, report completed Nov. 12, 2019, dated Nov. 20, 2019, 7 pgs. |
Extended European Search Report for European Application No. 17814341.8, report completed Dec. 12, 2019, report dated Jan. 2, 2020, 8 pgs. |
Extended European Search Report for European Application No. 13853514.1, Search completed Jun. 8, 2016, dated Jun. 15, 2016, 07 Pgs. |
International Preliminary Report for International Application No. PCT/AU2017/050296, dated Oct. 9, 2018, 7 Pgs. |
International Preliminary Report for International Application No. PCT/AU2017/050647, dated Dec. 25, 2018, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2011/001127, Report dated Mar. 5, 2013, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000511, Report dated Nov. 19, 2013, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000512, Report dated Nov. 19, 2013, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000513, Report dated Nov. 19, 2013, 11 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000515, Report dated Nov. 19, 2013, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000516, Report dated Nov. 19, 2013, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000517, Report dated Nov. 19, 2013, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000518, Report dated Nov. 19, 2013, 11 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2012/001441, Report dated May 27, 2014, 10 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2013/001279, Report dated May 12, 2015, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2013/001280, Report dated May 12, 2015, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2014/001049, Report dated May 17, 2016, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2014/050369, Report dated May 24, 2016, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050135, Report dated Oct. 4, 2016, 13 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050215, Report dated Nov. 8, 2016, 4 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050422, Report dated Jan. 31, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050724, Report dated May 23, 2017, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050753, Report dated Jun. 13, 2017, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050787, Report dated Jun. 13, 2017, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2016/050019, Report dated Jul. 25, 2017, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2016/050263, Report dated Oct. 10, 2017, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050278, dated Sep. 29, 2020, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/AU2019/050384, dated Oct. 27, 2020, 8 pgs. |
International Search Report & Written Opinion for International Application No. PCT/AU2013/001280, Search Completed Jan. 16, 2014, dated Jan. 16, 2014, 8 Pgs. |
International Search Report & Written Opinion for International Application PCT/AU2013/001279, Search Completed Jan. 9, 2014, dated Jan. 9, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2011/001127, date completed Nov. 11, 2011, dated Nov. 15, 2011, 13 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2012/001441, International Filing Date Nov. 23, 2012, Search Completed Feb. 26, 2013, dated Feb. 26, 2013, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2014/001049, Search completed Feb. 10, 2015, dated Feb. 10, 2015, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2014/050369, Search completed Feb. 20, 2015, dated Feb. 20, 2015, 14 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050135, Search completed Jun. 30, 2015, dated Jun. 30, 2015, 26 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050422, Search completed Oct. 14, 2015, dated Oct. 14, 2015, 17 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050724, Search completed May 9, 2016, dated May 9, 2016, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050753, Search completed Feb. 10, 2016, dated Feb. 10, 2016, 10 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050787, Search completed Mar. 16, 2016, dated Mar. 16, 2016, 10 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050019, Search completed May 4, 2016, dated May 4, 2016, 16 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050263, Search completed Nov. 16, 2016, dated Nov. 16, 2016, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050430, Search completed Aug. 16, 2016, dated Aug. 16, 2016, 10 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050431, Search completed Aug. 16, 2016, dated Aug. 16, 2016, 11 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2016/050439, Search completed Jul. 15, 2016, dated Jul. 15, 2016, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050296, Search completed Jul. 28, 2017, dated Jul. 28, 2017, 10 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050647, Search completed Sep. 29, 2017, dated Sep. 29, 2017, 13 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2018/050278, Search completed Jun. 18, 2018, dated Jun. 18, 2018, 12 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2019/050384, Search completed Jun. 25, 2019, dated Jun. 25, 2019, 15 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2019/051385, Search completed Mar. 24, 2020, dated Mar. 24, 2020, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2015/050215, Search completed Jul. 30, 2015, dated Jul. 30, 2015, 8 Pgs. |
International Search Report for Australian Application 2011901829, Search Completed Feb. 6, 2012, dated Feb. 7, 2012, 3pgs. |
International Search Report for International Application No. PCT/AU2012/000511, International Filing Date May 11, 2012, Search Completed May 17, 2012, dated May 18, 2012, 4 pgs. |
International Search Report for International Application No. PCT/AU2012/000512, International Filing Date May 11, 2012, Search Completed Jul. 10, 2012, dated Jul. 11, 2012, 4 pgs. |
International Search Report for International Application No. PCT/AU2012/000513, International Filing Date May 11, 2012, Search Completed May 29, 2012, dated May 30, 2012, 5 pgs. |
International Search Report for International Application No. PCT/AU2012/000515, International Filing Date May 11, 2012, Search Completed May 21, 2012, dated Jun. 4, 2012, 5 pgs. |
International Search Report for International Application No. PCT/AU2012/000516, International Filing Date May 11, 2012, Search Completed Jul. 11, 2012, dated Jul. 12, 2012, 8 pgs. |
International Search Report for International Application No. PCT/AU2012/000517, International Filing Date May 11, 2012, Search Completed Jun. 4, 2012, dated Jun. 6, 2012, 3 pgs. |
International Search Report for International Application No. PCT/AU2012/000518, International Filing Date May 11, 2012, Search Completed Jun. 8, 2012, dated Jun. 12, 2012, 4 pgs. |
International Search Report for International Application No. PCT/AU2019/051151, International Filing Date Oct. 22, 2019, Search Completed Feb. 24, 2020, dated Feb. 24, 2020, 9 pgs. |
International Search Report for International Application No. PCT/AU2019/051160, International Filing Date Oct. 23, 2019, Search Completed Jan. 28, 2020, dated Jan. 28, 2020, 13 pgs. |
International Search Report for International Application No. PCT/AU2019/051163, International Filing Date Oct. 23, 2019, Search Completed Jan. 21, 2020, dated Jan. 31, 2020, 8 pgs. |
International Search Report for International Application No. PCT/AU2019/051197, International Filing Date Oct. 30, 2019, Search Completed Jan. 21, 2020, dated Jan. 21, 2020, 15 pgs. |
International Search Report for International Application No. PCT/AU2019/051210, International Filing Date Nov. 2, 2019, Search Completed Feb. 4, 2020, dated Feb. 4, 2020, 10 pgs. |
International Type Search Report for International Application No. AU 2015902393, Search completed May 16, 2016, dated May 16, 2016, 8 Pgs. |
Japanese Office Action for Application No. 2017-546830, dated Feb. 20, 2020, 5 pages with English translation. |
Japanese Office Action for Application No. 2017-553090, dated Mar. 16, 2020, 12 pages with English translation. |
Japanese Office Action for Application No. 2018-552138, dated Mar. 1, 2021, 7 pages with English translation. |
Japanese Office Action for Application No. 2018-513699, dated Jun. 8, 2020, 7 pages with English translation. |
Massachusetts Institute of Technology, The Compound Action Potential of the Frog Sciatic Nerve, Quantitative Physiology: Cells and Tissues. Fall, 1999, Retrieved from http://umech.mit.edu/freeman/6.021J/2001/lab.pdf on May 22, 2012. |
Medtronic, Spinal Cord Stimulation, RestoreSensor Neurostimulator, Features and Specification: Specification, Printed Jun. 16, 2014, 2 pgs. |
Medtronic, Spinal Cord Stimulation, RestoreSensor Neurostimulator, Features and Specification: Summary Printed Jun. 16, 2014, 1 pg. |
Office Action for Chinese Patent Application No. 201680020725.4, dated Mar. 16, 2020, 8 pgs. |
Partial European Search Report for European Application No. 16775966.1, Search completed Oct. 26, 2018, dated Nov. 6, 2018, 11 Pgs. |
Supplementary European Search Report for European Application No. 11820923.8, report completed Dec. 9, 2013, report dated Dec. 17, 2013, 6 pgs. |
Written Opinion for International Application No. PCT/AU2012/000511, International Filing Date May 11, 2012, Search Completed May 17, 2012, dated May 18, 2012, 5 pgs. |
Written Opinion for International Application No. PCT/AU2012/000512, International Filing Date May 11, 2012, Search Completed Jul. 10, 2012, dated Jul. 11, 2012, 7 pgs. |
Written Opinion for International Application No. PCT/AU2012/000513, International Filing Date May 11, 2012, Search Completed May 29, 2012, dated May 30, 2012, 10 pgs. |
Written Opinion for International Application No. PCT/AU2012/000515, International Filing Date May 11, 2012, Search Completed May 21, 2012, dated Jun. 4, 2012, 4 pgs. |
Written Opinion for International Application No. PCT/AU2012/000516, International Filing Date May 11, 2012, Search Completed Jul. 11, 2012, dated Jul. 12, 2012, 8 pgs. |
Written Opinion for International Application No. PCT/AU2012/000517, International Filing Date May 11, 2012, Search Completed Jun. 4, 2012, dated Jun. 6, 2012, 5 pgs. |
Written Opinion for International Application No. PCT/AU2012/000518, International Filing Date May 11, 2012, Search Completed Jun. 8, 2012, dated Jun. 12, 2012, 10 pgs. |
Medtronic, RestoreSensor Neurostimulator, Retrieved from: http://web.archive.org/web/20150328092923/http://professional.medtronic.com:80/pt/neuro/scs/prod/restore-sensor/features-specifications/index.htm,, Capture Date Jul. 9, 2012, Printed on May 11, 2017. |
“Advanced Pain Therapy using Neurostimulation for Chronic Pain”, Medtronic RestoreSensor clinical trial paper, Clinical summary, Nov. 2011, pp. 32. |
“Battelle Neurotechnology—Moving Beyond The Limits In Neurotechnology”, Battelle, www.battelle.org, May 2014, pp. 1-2. |
“Evoke 12C Percutaneous Leads”, Saluda Medical, specifications available in the “Evoke Surgical Guide”, version 6, http://www.saludamedical.com/manuals/, retrieved May 2017. |
“Haptic technology”, Wikipedia, Retrieved from: http://en.wikipedia.org/wiki/Haptic_technology, Last modified on Sep. 15, 2014, Printed on Sep. 15, 2014, 5 pgs. |
“Implants for surgery, Cardiac pacemakers”, IS-1 standard ISO 5841-3-2000, Oct. 15, 2000. |
“Neural Bypass Technology Enables Movement in Paralyzed Patient”, Posted on Jul. 29, 2014, 6 a.m. in Brain chips/computer interface, pp. 1-2. |
“Percutaneous Lead Kit”, St. Jude Medical Clinician's Manual, Models 3143, 3146, 3149, 3153, 3156, 3159, 3183, 3186, 3189, published Sep. 2016, 24 pages. |
“Spinal Cord Stimulation, About Spinal Cord Stimulation”, Medtronic, Retrieved from: http://professional.medtronic.com/pt/neuro/scs/edu/about/index.htm, Printed on Jun. 16, 2014, 2 pgs. |
“Wide bandwidth BioAmplifier”, http://www.psylab.com/html/default_bioamp.htm, Printed Jan. 30, 2014, 1-3 pages. |
Abrard et al., “A time-frequency blindsignal separation methodapplicable to underdetermined mixtures of dependent sources”, Signal Processing 85 (2005) 1389-1403. |
Alam et al., “Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats”, Journal of Neuroscience Methods, Mar. 2015, 28 pgs. |
Al-Ani et al., “Automatic removal of high-amplitude stimulus artefact from neuronal signal recorded in the subthalamic nucleus”, Journal of Neuroscience Methods, vol. 198, Issue 1, 2011, pp. 135-146. |
Andreassen et al., “Muscle Fibre Conduction Velocity in Motor Units of the Human Anterior Tibial Muscle: a New Size Principle Parameter”, J. Physiol, (1987), 391, pp. 561-571. |
Andy, “Parafascicular-Center Median Nuclei Stimulation for Intractable Pain and Dyskinesia (Painful-Dyskinesia)”, Stereotactic and Functional Neurosurgery, Appl. Neurophysiol., 43, No. 3-5, 1980, pp. 133-144. |
Bahmer et al., “Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: I. Amplitude growth functions”, Journal of Neuroscience Methods, Clinical Neuroscience, 2012, vol. 205, pp. 202-211. |
Bahmer et al., “Effects of electrical pulse polarity shape on intra cochlear neural responses in humans: Triphasic pulses with cathodic second phase”, Hearing Research, 2013, vol. 306, pp. 123-130. |
Balzer et al., “Localization of cervical and cervicomedullary stimulation leads for pain treatment using median nerve somatosensay evoked potential collision testing”, Journal of Neurosurgery, Jan. 2011, vol. 114, No. 1, pp. 200-205. |
Blum, A. R. “An Electronic System for Extracellular Neural Stimulation and Recording”, Dissertation, Georgia Institute of Technology, Aug. 2007, Retrieved from http://smartech.gatech.edu/handle/1853/16192 on Jan. 30, 2012. |
Borg et al., “Conduction velocity and refractory period of single motor nerve fibres in antecedent poliomyelitis”, Journal of Neurology, Neurosurgery, and Psychiatry, vol. 50, 1987, pp. 443-446. |
Bratta et al., “Orderly Stimulation of Skeletal Muscle Motor Units with Tripolar Nerve Cuff Electrode”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 8, 1989, pp. 836-843. |
Brown et al., “Impact of Deep Brain Stimulation on Upper Limb Askinesia in Parkinson's Disease”, Annals of Neurology, 45, No. 4, 1999, pp. 473-488. |
Budagavi et al., “Modelling of compound nerve action potentials health and disease”, Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE. vol. 6. IEEE, 1992. pp. 2600-2601. |
Casey et al., “Separation of Mixed Audio Sources by Independent Subspace Analysis”, Mitsubishi Electric Research Laboratories (2001), 8 pgs. |
Celestin et al., “Pretreatment Psychosocial Variables as Predictors of Outcomes Following Lumbar Surgery and Spinal Cord Stimulation: A Systematic Review and Literature Synthesis”, American Academy of Pain Medicine, 2009, vol. 10, No. 4, pp. 639-653, doi:10.1111/j.1526-4637.2009.00632.X. |
Cong et al., “A 32-channel modular bi-directional neural interface system with embedded DSP for closed-loop operation”, 40th European Solid State Circuits Conference (ESSCIRC), 2014, pp. 99-102. |
Connolly et al., “Towards a platform for prototyping control systems for optimization of neuromodulation therapies”, IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015, pp. 1-4. |
Coquery et al., “Backward and forward masking in the perception of cutaneous stimuli”, Perception & Psychophysics, 1973, vol. 13.No. 2, pp. 161-163. |
Dawson, G. D. “The relative excitability and conduction velocity of sensory and motor nerve fibres in man”, Journal of Physiology, 1956, vol. 131(2), pp. 436-451. |
De Ridder et al., “Burst Spinal Cord Stimulation toward Paresthesia-Free Pain Suppression”, Nuerosurgery-online.com, May 2010, vol. 66, No. 8, pp. 986-990. |
Delgado et al., “Measurement and interpretation of electrokinetic phenomena”, Pure Appl. Chem., 2005, vol. 77, No. 10, pp. 1753-1805. |
Devergnas et al., A “Cortical potentials evoked by deep brain stimulation in the subthalamic area”, Frontiers in System Neuroscience, May 13, 2011, vol. 5, Article 30, 2011, doi:10.3389/fnsys.2011.00030. |
Dijkstra, E. A. “Ultrasonic Distance Detection for a Closed-Loop Spinal Cord Stimulation System”, Proceedings—19th International Conference—IEEE/EMBS Oct. 30-Nov. 2, 1997, Chicago, IL., 4 pgs. |
Dillier, N et al., “Measurement of the electrically evoked compound action potential via a neural response telemetry system”, Ann. Otol. Rhinol. Laryngol., vol. 111, No. 5, May 2002, pp. 407-414. |
Doiron et al., “Persistent Na+ Current Modifies Burst Discharge by Regulating Conditional Backpropagation of Dendritic Spikes”, Journal of Neurophysiology 89, No. 1 (Jan. 1, 2003): 324-337, doi:10.1152/jn.00729.2002. |
England et al., “Increased Nos. of Sodium Channels Form Along Demyelinated Axons”, Brain Research 548, No. 1-2 (May 10, 1991): 334-337. |
Fagius, J. et al. “Sympathetic Reflex Latencies and Conduction Velocities in Normal Man”, Journal of Neurological Sciences, 1980. vol. 47, pp. 433-448. |
Falowski et al., “Spinal Cord Stimulation: an update”, Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 5, No. 1, Jan. 2008, pp. 86-99. |
Fisher, “F-Waves—Physiology and Clinical Uses”, TheScientificWorldJournal, (2007) 7, pp. 144-160. |
Fitzpatrick et al., “A Nerve Cuff Design for the Selective Activation and Blocking of Myelinated Nerve Fibers”, IEEE Engineering in Medicine and Biology Society, vol. 13, No. 2, 1991, pp. 906-907. |
Franke et al., FELIX “An Online Spike Detection and Spike Classification Algorithm Capable of Instantaneous Resolution of Overlapping Spikes”, Journal of Computational Neuroscience, 2010, vol. 29, No. 1-2, pp. 127-148. |
French et al., “Information transmission at 500 bits/s by action potentials in a mechanosensory neuron of the cockroach”, Neuroscience Letters, vol. 243, No. 1-3, Feb. 1, 1998, pp. 113-116. |
Fuentes et al., “Spinal Cord Stimulation Restores Locomotion in Animal Models of Parkinson's Disease”, Science, vol. 323, No. 5921, Mar. 20, 2009, pp. 1578-1582. |
Gad et al., “Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats”, Journal of NeuroEngineering and Rehabilitation 2013, 10:2, 18 pgs., http://www.jneuroengrehab.com/content/10/1/2. |
George et al., “Vagus nerve stimulation: a new tool for brain research and therapy”, Biological Psychiatry 47, No. 4, Feb. 15, 2000, pp. 287-295. |
Gnadt et al., “Spectral Cancellation of Microstimulation Artifact for Simultaneous Neural Recording In Situ”, IEEE Transactions on Biomedical Engineering, Oct. 2003, Date of Publication: Sep. 23, 2003, vol. 50, No. 10, pp. 1129-1135, DOI: 10.1109/TBME.2003.816077. |
Goodall et al., “Modeling Study of Activation and Propagation delays During Stimulation of Peripheral Nerve Fibres with a Tripolar Cuff Electrode”, IEEE Transactions on Rehabilitation Engineering, Sep. 1995, vol. 3, No. 3, pp. 272-282. |
Gorman et al., “ECAP Mapping of the Spinal Cord: Influence of Electrode Position on Aβ Recruitment”, (2012)., In 16th Annual Meeting. Presented at the North American Neuromodulation Society, Las Vegas, NV, 2 pgs. |
Gorman et al., “Neural Recordings for Feedback Control of Spinal Cord Stimulation: Reduction of Paresthesia Variability.”, 2013, In International Neuromodulation Society 11th World Congress, presented at the International Neuromodulation Society 11th World Congress, Berlin, Germany, 2 pgs. |
Hallstrom et al, “Distribution of lumbar spinal evoked potentials and their correlation with stimulation-induced paresthesiae”, Electroencephalography and Clinical Neurophysiology, Mar.-Apr. 1991, vol. 80, No. 2, pp. 126-139, doi:10.1016/0168-5597(91)90150-V. |
Harper et al., “Conduction Velocity is Related to Morphological Cell Type in Rat Dorsal Root Ganglion Neurones”, J. Physiol, (1985), vol. 359, pp. 31-46. |
He et al., “Perception threshold and electrode position for spinal cord stimulation”, Pain, vol. 59, (1994), pp. 55-63. |
Herreras, “Local Field Potentials: Myths and Misunderstandings”, Frontiers in Neural Circuits, Dec. 15, 2016, vol. 10, Article 1101, 16 pgs., doi:10.3389/fncir.2016.00101. |
Holsheimer et al., “Optimum Electrode Geometry for Spinal Cord Stimulation: the Narrow Bipole and Tripole”, Medical and Biological Engineering and Computing, 1997, vol. 35, No. 5, pp. 493-497. |
Holsheimer et al., “Significance of the Spinal Cord Position in Spinal Cord Stimulation”, Acta Neurochir (1995) [Suppl] 64, pp. 119-124. |
Holsheimer et al., “Spinal Geometry and Paresthesia Coverage in Spinal Cord Stimulation”, Neuromodulation, 1998, vol. 1, No. 3, pp. 129-136. |
Howell et al., “Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation”, PLOS One, DOI:10.1371/journal.pone.0114938, Dec. 23, 2014. |
Huff, Terry B. et al., “Real-Time CARS Imaging Reveals a Calpain-Dependent Pathway for Paranodal Myelin Retraction during High-Frequency Stimulation”, PLoS One, vol. 6, Issue 3 (Mar. 3, 2011): e17176, 11 pgs., doi:10.1371/journal.pone.0017176. |
Jang et al, “Single Channel Signal Separation Using Time-Domain Basis Functions”, IEEE Signal Processing Letters, Jun. 2003, vol. 10, No. 6, 13 pgs. |
Jang et al., “A Maximum Likelihood Approach to Single-channel Source Separation”, Journal of Machine Learning Research, Dec. 2003, vol. 4, pp. 1365-1392. |
Jeffrey et al., “A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain”, BMC Neuroscience. Biomed Central. London, GB. vol. 14. No. 1, Aug. 6, 2013 (Aug. 6, 2013), pp. 1-8. |
Jones et al., “Scaling of Electrode-Electrolyte Interface Model Parameters in Phosphate Buffered Saline”, IEEE Transactions on Biomedical Circuits and Systems, 2015, vol. 9, No. 3, pp. 441-448, DOI:10.1109/TBCAS.2014.4223759. |
Kent, “Characterization of Evoked Potentials During Deep Brain Stimulation in the Thalamus”, 2013, Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8195. https://dukespace.lib.duke.edu/dspace/handle/10161/8195. |
Kent et al., “Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation”, Conf. Proc. IEEE Eng. Med Biol. Sol, Aug. 2012, pp. 6777-6780, doi:10.1109/IEMBS.20113.6091671. |
Kent et al., AR “Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact”, J Neural Eng., Jun. 2012, vol. 9, No. 3, 036004, doi: 10.1088/1741-2560/9/3/036004. |
Kim et al., “A Wavelet-Based Method for Action Potential Detection From Extracellular Neural Signal Recording With Low Signal-to-Noise Ratio”, IEEE Transactions on Biomedical Engineering, Aug. 2003, vol. 50. No. 8, pp. 999-1011. |
Kim et al., “Cell Type-specific Changes of the Membrane Properties of Peripherally-axotomized Dorsal Root Ganglion Neurons in a Rat Model of Neuropathic Pain”, Neuroscience, vol. 86, No. 1, May 21, 1998, pp. 301-309, doi:10.1016/S0306-4522(98)00022-0. |
Kopelman et al., “Attempted Reversible Sympathetic Ganglion Block by an Implantable Neurostimulator”, Interactive CardioVascular and Thoracic Surgery, Feb. 7, 2012, vol. 14, Issue 5, pp. 605-609, doi:10.1093/icvts/ivr137. |
Krames et al., “Neuromodulation”, 1st Edition, Academic Press, 2009, pp. 540-541. |
Krarup, Christian “Compound sensory action potential in normal and pathological human nerves”, Muscle & Nerve, Apr. 2004, vol. 29, No. 4, pp. 465-483. |
Krishnan et al., “Excitability Differences in Lower-Limb Motor Axons During and After Ischemia”, Muscle & nerve, vol. 31, No. 2 (2005), pp. 205-213. |
Kumar et al., “Deep Brain Stimulation for Intractable Pain: a 15-year Experience”, Neurosurgery, Issue 40, No. 4, Apr. 1997, pp. 736-747. |
Kumar et al., “Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease”, by the American Academy of Neurology, 51, No. 3, Sep. 1, 1998, pp. 850-855. |
Kumar et al., “Globus Pallidus Deep Brain Stimulation for Generalized Dystonia: Clinical and PET Investigation”, Sep. 11, 1999, vol. 53, No. 4, pp. 871-874, doi:10.1212/WNL.53.4.871. |
Laird et al., “A Model of Evoked Potentials in Spinal Cord Stimulation”, IEEE Engineering in Medicine & Biology Society, 35th Annual Conference. Osaka, Japan: Jul. 3-7, 2013, pp. 6555-6558. |
Laird-Wah, “Improving Spinal Cord Stimulation: Model-Based Approaches to Evoked Response Telemetry”, UNSW Thesis, Aug. 2015, 279 pgs. |
Lempka, Scott “The Electrode-Tissue Interface During Recording and Stimulation In The Central Nervous System”, Thesis, 155 pgs., published May 2010. |
Levy et al., “Incidence and Avoidance of Neurologic Complications with Paddle Type Spinal Cord Stimulation Leads”, Neuromodulation, Sep. 2011, vol. 14, No. 15, pp. 412-422, https://doi.org/10.1111/j.1525-1403.2011.00395.x. |
Li, S. et al., “Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation”, J Neurophysiol. Dec. 2007; 98(6): 3525-37. First published Oct. 10, 2007. doi:10.1152/jn.00808.2007. |
Ma et al., “Similar Electrophysiological Changes in Axotomized and Neighboring Intact Dorsal Root Ganglion Neurons”, Journal of Neurophysiology 89, No. 3 (Mar. 1, 2003), pp. 1588-1602, doi:10.1152/jn.00855.2002. |
Macefield, “Spontaneous and Evoked Ectopic Discharges Recorded from Single Human Axons”, Muscle & Nerve 21, No. 4, Apr. 1998, pp. 461-468. |
Mahnam et al., “Measurement of the current-distance relationship using a novel refractory interaction technique”, J. Neural Eng. 6(2): 036005, published May 20, 2009, 22 pgs. |
Mannan et al., “Identification and Removal of Physiological Artifacts From Electroencephalogram Signals: A Review”, IEEE Access, May 31, 2018, vol. 6, pp. 30630-30652, https://doi.org/10.1109/ACCESS.2018.2842082. |
Markandey, Vishal “ECG Implementation on the TMS320C5515 DSP Medical Development Kit (MDK)”, Texas Instruments Application Report Jun. 2010, 35 pgs. |
Matzner et al., “Na+ Conductance and the Threshold for Repetitive Neuronal Firing”, Brain Research 597, No. 1 (Nov. 27, 1992): 92-98, doi:10.1016/0006-8993(92)91509-D. |
McGill, Kevin et al., “On the Nature and Elimination of Stimulus Artifact in Nerve Signals Evoked and Recorded Using Surface Electrodes”, IEEE Transactions on Biomedical Engineering, vol. BME-29, No. 2, Feb. 1982, pp. 129-137. |
Melzack et al., “Pain mechanisms: a new theory”, Science, New York, New York, vol. 150, No. 3699, Nov. 19, 1965, pp. 971-979. |
Miles et al., “An Electrode for Prolonged Stimulation of the Brain”, Proc. 8th Meeting World Soc. Stereotactic and Functional Neurosurgery, Part III, Zurich, 1981, Appl. Neurophysiol, 45, 1982, pp. 449-445. |
Misawa et al., “Neuropathic Pain is Associated with Increased Nodal Persistent Na(+) Currents in Human Diabetic Neuropathy”, Journal of the Peripheral Nervous System: JPNS, 14, No. 4 (Dec. 2009): 279-284. |
Niazy et al., “Removal of FMRI environment artifacts from EEG data using optimal basis sets”, NeuroImage, 2005, vol. 28, pp. 720-737, available online Sep. 16, 2005, doi:10.1016/j.neuroimage.2005.06.0607. |
Nordin et al., “Ectopic Sensory Discharges and Paresthesiae in Patients with Disorders of Peripheral Nerves, Dorsal Roots and Dorsal Columns”, Pain 20, No. 3 (Nov. 1984): 231-245, doi:10.1016/0304-3959(84)90013-7. |
North et al., “Prognostic value of psychological testing in patients undergoing spinal cord stimulation: a prospective study”, Neurosurgery, Aug. 1, 1996, vol. 39, Issue 2, pp. 301-311. https://doi.org/10.1097/00006123-199608000-00013. |
Oakley et al., “Spinal Cord Stimulation: Mechanisms of Action”, Spine 27, No. 22, Nov. 15, 2002, pp. 2574-2583. |
Oakley et al., “Transverse Tripolar Spinal Cord Stimulation: Results of an International Multicenter Study”, Neuromodulation, vol. 9, No. 3, 2006, pp. 192-203. |
Obradovic et al., “Effect of pressure on the spinal cord during spinal cord stimulation in an animal model”, Poster, 18th Annual Meeting of the North American Neuromodulation Society, Dec. 11-14, 2014, Las Vegas. |
Oh et al., “Long-term hardware-related complications of deep brain stimulation”, Neurosurgery, vol. 50, No. 6, Jun. 2002, pp. 1268-1274, discussion pp. 1274-1276. |
Olin et al., “Postural Changes in Spinal Cord Stimulation Perceptual Thresholds”, Neuromodulation, vol. 1 , No. 4, 1998, pp. 171-175. |
Opsommer, E. et al. “Determination of Nerve Conduction Velocity of C-fibres in Humans from Thermal Thresholds to Contact Heat (Thermode) and from Evoked Brain Potentials to Radiant Heat (CO2 Laser)”, Neurophysiologie Clinique 1999, vol. 29, pp. 411-422. |
Orstavik et al., “Pathological C-fibres in patients with a chronic painful condition”, Brain (2003), 126, 567-578. |
Ouyang et al., “Compression Induces Acute Demyelination and Potassium Channel Exposure in Spinal Cord”, Journal of Neurotrauma 27, No. 6, Jun. 2010, 1109-1120, doi:10.1089/neu.2010.1271. |
Parker et al., “Closing the Loop in Neuromodulation Therapies: Spinal Cord Evoked Compound Action Potentials During Stimulation for Pain Management (230).”, 2011, In 15th Annual Meeting, North American Neuromodulation Society (p. 48). Presented at the North American Neuromodulation Society, Las Vegas. |
Parker et al., “Compound Action Potentials Recorded in the Human Spinal Cord During Neurostimulation for Pain Relief”, Pain, vol. 153, 2012, pp. 593-601. |
Parker et al., “Electrically Evoked Compound Action Potentials Recorded From the Sheep Spinal Cord”, Neuromodulation, vol. 16, 2013, pp. 295-303. |
Penar et al., “Cortical Evoked Potentials Used for Placement of a Laminotomy Lead Array: A Case Report”, Neuromodulation: Technology at the Neural Interface, accessed Apr. 19, 2011, doi:10.1111/j.1525-1403.2011.00352.x. |
Peterson et al., “Stimulation artifact rejection in closed-loop, distributed neural interfaces”, ESSCIRC, 42nd European Solid-State Circuits Conference, Lausanne, 2016, pp. 233-235. |
Rattay, “Analysis of Models for External Stimulation of Axons”, IEEE Transactions on Biomedical Engineering, vol. BME-33, No. 10, Oct. 1986, pp. 974-977. |
Richter et al., “EMG and SSEP Monitoring During Cervical Spinal Cord Stimulation”, Journal of Neurosurgical Review 2011, Southern Academic Press, 1(S1), 2011, pp. 61-63. |
Ridder et al., “Burst Spinal Cord Stimulation for Limb and Back Pain”, World Neurosurgery, 2013, 9 pgs. |
Rijkhoff et al., “Acute Animal Studies on the Use of Anodal Block to Reduce Urethral Resistance in Sacral Root Stimulation”, IEEE Transactions on Rehabilitation Engineering, 1994, vol. 2, No. 2, pp. 92-99. |
Rijkhoff et al., “Orderly Recruitment of Motoneurons in an Acute Rabbit Model”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, vol. 20, No. 5, pp. 2564-2565. |
Ross et al., “Improving Patient Experience with Spinal Cord Stimulation: Implications of Position-Related Changes in Neurostimulation”, Neuromodulation 2011; e-pub ahead of print. DOI: 10.1111/j.1525-1403.2011.00407.x, 6 pages. |
Roy et al., “Effects of Electrode Location on Myoelectric Conduction Velocity and Median Frequency Estimates”, J. Appl. Physiol. 61 (4), 1986, pp. 1510-1517. |
Sayenko et al., “Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals”, Journal of Neurophysiology, vol. 111, No. 5, 2014, pp. 1088-1099, First published Dec. 11, 2013. |
Schmidt et al., “Gating of tactile input from the hand”, Exp Brain Res, 1990, 79, pp. 97-102. |
Scott et al., “Compact Nonlinear Model of an Implantable Electrode Array for Spinal Cord Stimulation (SCS)”, IEEE Transactions on Biomedical Circuits and Systems, 2014, vol. 8, No. 3, pp. 382-390. |
Siegfried et al., “Bilateral Chronic Electrostimulation of Ventroposterolateral Pallidum: A New Therapeutic Approach for Alleviating all Parkinsonian Symptoms”, Neurosurgery, 35, No. 6, Dec. 1994, pp. 1126-1130. |
Siegfried et al., “Bilateral Chronic Electrostimulation of Ventroposterolateral Pallidum: A New Therapeutic Approach for Alleviating All Parkinsonian Symptoms”, Issue: vol. 35(6), Dec. 1994, p. 1126-1130; Copyright: Copyright © by the Congress of Neurological Surgeons; Publication Type: [Technique and Application, ISSN: 0148-396X; Accession: 00006123-199412000-00016; Keywords: Chronic deep brain stimulation, Pallidum, Parkinson's disease, Stereotactic operation. |
Siegfried et al., “Intracerebral Electrode Implantation System”, Journal of Neurosurgery, vol. 59, No. 2, Aug. 1983, pp. 356-359. |
Srinivasan, S “Electrode/Electrolyte Interfaces: Structure and Kinetics of Charge Transfer”, Fuel Cells, 2006, Chapter 2, 67 Pages. |
Stanslaski et al., “Design and Validation of a Fully Implantable, Chronic, Closed-Loop Neuromodulation Device With Concurrent Sensing and Stimulation”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Jul. 2012, Date of Publication: Jan. 23, 2012, vol. 20, No. 4, pp. 410-421, DOI: 10.1109/TNSRE.2012.2183617. |
Struijk, “The Extracellular Potential of a Myelinated Nerve Fiber in an Unbounded Medium and in Nerve Cuff Models”, Biophysical Journal vol. 72 Jun. 1997 2457-2469. |
Struijk et al, “Paresthesia Thresholds in Spinal Cord Stimulation: A Comparison of Theoretical Results with Clinical Data”, IEEE Transactions on Rehabilitation Engineering, vol. 1, No. 2, Jun. 1993, pp. 101-108. |
Struijk et al., “Excitation of Dorsal Root Fibers in Spinal Cord Stimulation: a Theoretical Study”, IEEE Transactions on Biomedical Engineering, Jul. 1993, vol. 40, No. 7, pp. 632-639. |
Sufka et al., “Gate Control Theory Reconsidered”, Brain and Mind, 3, No. 2, 2002, pp. 277-290. |
Takahashi et al, “Classification of neuronal activities from tetrode recordings using independent component analysis”, Neurocomputing, (2002), vol. 49, Issues 1-4, pp. 289-298. |
Tamura et al., “Increased Nodal Persistent Na+ Currents in Human Neuropathy and Motor Neuron Disease Estimated by Latent Addition”, Clinical Neurophysiology 117, No. 11 (Nov. 2006): 2451-2458, doi: 10.1016/j.clinph.2006.07.309. |
Tasker, “Deep Brain Stimulation is Preferable to Thalamotomy for Tremor Suppression”, Surgical Neurology, 49, No. 2, 1998, pp. 145-153. |
Taylor et al., “Spinal Cord Stimulation for Chronic Back and Leg Pain and Failed Back Surgery Syndrome: A Systematic Review and Analysis of Prognostic Factors”, Spine, vol. 30, No. 1, 2004, pp. 152-160. |
Texas Instruments, “Precision, Low Power Instrumentation Amplifiers”, Texas Instruments SBOS051B Oct. 1995, Revised Feb. 2005, 20 pgs. |
Tomas et al., “Dorsal Root Entry Zone (DREZ) Localization Using Direct Spinal Cord Stimulation Can Improve Results of the DREZ Thermocoagulation Procedure for Intractable Pain Relief”, Pain, 2005, vol. 116, pp. 159-163. |
Tronnier et al., “Magnetic Resonance Imaging with Implanted Neurostimulators: An In Vitro and In VIvo Study”, Jan. 1999, Neurosurgery, vol. 44(1), p. 118-125 (Year: 1999). |
Tscherter et al., “Spatiotemporal Characterization of Rhythmic Activity in Rat Spinal Cord Slice Cultures”, European Journal of Neuroscience 14, No. 2 (2001), pp. 179-190. |
Van Den Berg et al., “Nerve fiber size-related block of action currents by phenytoin in mammalian nerve”, Epilepsia, Nov. 1994, 35(6), pp. 1279-1288. |
Villavicencio, Alan T. “Laminectomy versus Percutaneous Electrode Placement for Spinal Cord Stimulation,” Neurosurgery, vol. 46 (2), Feb. 2000, pp. 399-405. |
Vleggeert et al., LANKAMP “Electrophysiology and morphometry of the Aalpha- and Abeta-fiber populations in the normal and regenerating rat sciatic nerve”, Experimental Neurology, vol. 187, No. 2, Jun. 1, 2004, Available online Apr. 2, 2004, pp. 337-349. |
Woessner, “Blocking Out the Pain, Electric Nerve Block Treatments for Sciatic Neuritis”, Retrieved from: http://www.practicalpainmanagement.com/pain/spine/radiculopathy/blocking-out-pain, Last updated Jan. 10, 2012. |
Wolter et al., “Effects of sub-perception threshold spinal cord stimulation in neuropathic pain: A randomized controlled double-blind crossover study”, European Federation of International Association for the Study of Pain Chapters, 2012, pp. 648-655. |
Wu et al., “Changes in Aβ Non-nociceptive Primary Sensory Neurons in a Rat Model of Osteoarthritis Pain”, Molecular Pain 6, No. 1 (Jul. 1, 2010): 37, doi:10.1186/1744-8069-6-37. |
Xie et al., “Functional Changes in Dorsal Root Ganglion Cells after Chronic Nerve Constriction in the Rat”, Journal of Neurophysiology 73, No. 5 (May 1, 1995): 1811-1820. |
Xie et al., “Sinusoidal Time-Frequency Wavelet Family and its Application in Electrograstrographic Signal Analysis”, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 3, Oct. 29, 1998, pp. 1450-1453. |
Yamada et al., “Extraction and Analysis of the Single Motor Unit F-Wave of the Median Nerve”, EMG Methods for Evaluating Muscle and Nerve Function, InTech, 2012, 15 pgs. |
Yearwood, T. L. “Pulse Width Programming in Spinal Cord Stimulation: a Clinical Study”, Pain Physician. 2010. vol. 13, pp. 321-335. |
Yingling et al., “Use of Antidromic Evoked Potentials in Placement of Dorsal Cord Disc Electrodes”, Applied Neurophysiology, 1986, vol. 49, pp. 36-41. |
Yuan, S. et al. “Recording monophasic action potentials using a platinum-electrode ablation catheter”, Europace. Oct. 2000; 2(4):312-319. |
Zhang et al., “Automatic Artifact Removal from Electroencephalogram Data Based on a Priori Artifact Information”, BioMed Research International, Aug. 25, 2015, Article ID 720450, 8 pgs., DOI: https://doi.org/10.1155/2015/720450. |
Zhou et al., “A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring”, IEEE Transactions on Biomedical Circuits and Systems, 2016, vol. 10, No. 6, pp. 1079-1086. |
Communication Pursuant to Article 94(3) EPC, for European Patent Application No. 14861553.7, dated Nov. 4, 2022, 8 Pgs. |
Extended European Search Report for European Application 18910394.8 Search Completed Oct. 7, 2021, dated Oct. 15, 2021, 8 pgs. |
Extended European Search Report for European Application 19876581.0 Search Completed Jun. 7, 2022, dated Jun. 15, 2022, 7 pgs. |
Extended European Search Report for European Application No. 19793420.1, Search completed Dec. 6, 2021, dated Dec. 17, 2021, 9 Pgs. |
Extended European Search Report for European Application No. 19875139.8, Search completed Jun. 7, 2022, dated Jun. 15, 2022, 8 Pgs. |
Extended European Search Report for European Application No. 19899138.2, Search completed Jul. 26, 2022, dated Aug. 3, 2022, 09 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2020/050725, Search completed Oct. 19, 2020, dated Oct. 19, 2020, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/AU2021/050043, Search completed Mar. 29, 2021, dated Mar. 29, 2021, 11 Pgs. |
Abraira et al., “The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn”, Cell 168, Jan. 12, 2017, 295-310. |
Islam et al., “Methods for artifact detection and removal from scalp EEG: A review”, Neurophysiologie Clinique—Clinical Neurophysiology, vol. 46, No. 4, pp. 287-305, XP029804850, ISSN: 0987-7053, DOI: 10.1016/J.NEUCLI.2016.07.002, 2016. |
Li et al., “Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex”, Neuron, vol. 76, No. 5 , pp. 1030-1041, XP0289601 09, ISSN: 0896-6273, 001: 10.1 016/J.NEURON.2012.09.032, 2012. |
Parker et al., “Electrically evoked compound action potential recording in peripheral nerves”, Bioeletron. Med., vol. 1, No. 1, 2018, pp. 71-83, ISSN 2059-1500. |
Shepherd et al., “Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties”, Hearing Research, 1999, 130, 171-188. |
Number | Date | Country | |
---|---|---|---|
20220151536 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16311526 | US | |
Child | 17510264 | US |