Neuro-feedback based stimulus compression device

Information

  • Patent Grant
  • 9886981
  • Patent Number
    9,886,981
  • Date Filed
    Thursday, May 1, 2008
    17 years ago
  • Date Issued
    Tuesday, February 6, 2018
    7 years ago
Abstract
A stimulus compression device determines neuro-feedback significance corresponding to stimulus material and modifies the stimulus material using neuro-feedback significance measures. For example, the stimulus compression device determines portions of a media stream corresponding to low neuro-feedback significance and removes them from the media stream. Compression of stimulus material may involve removal, modification, repetition, bit rate adjustment, resolution adjustment, etc. Transitions can be smoothed or lengthened to further improve processed stimulus material.
Description
TECHNICAL FIELD

The present disclosure relates to compressing materials such as marketing and entertainment materials based on neuro-feedback.


DESCRIPTION OF RELATED ART

Conventional systems for compressing materials such as entertainment and marketing including advertising, text streams, audio clips and other stimuli often rely on survey based evaluations to measure responses to the materials. According to various embodiments, a commercial is shortened by compression by removing portions that are deemed ineffectual by survey participants. In other examples, movie scenes are deleted by manual editing based on producer or director insights. Existing mechanisms compress materials based simply on characteristics of the materials or limited survey based responses.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which illustrate particular example embodiments.



FIG. 1 illustrates one example of a system for performing neuro-feedback based compression.



FIG. 2 illustrates one example of neuro-feedback significance data provided in relation to time.



FIG. 3 illustrates one example of neuro-feedback significance data associated with a media stream.



FIG. 4 illustrates one example of neuro-feedback significance data provided based on location.



FIG. 5 illustrates one example of a media stream compressed using neuro-feedback significance data.



FIG. 6 illustrates one example of a technique for performing neuro-feedback based compression.



FIG. 7 provides one example of a system that can be used to implement one or more mechanisms.





DESCRIPTION OF PARTICULAR EMBODIMENTS

Reference will now be made in detail to some specific examples of the invention including the best modes contemplated by the inventors for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying drawings. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.


For example, the techniques and mechanisms of the present invention will be described in the context of time-based compression of stimuli. However, it should be noted that the techniques and mechanisms of the present invention apply to a variety of different types of compression include spatially-based compression of stimuli including entertainment and marketing such as video and audio streams, media advertising, text, printed advertisements, etc. It should be noted that various mechanisms and techniques can be applied to any type of stimuli. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.


Various techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise. For example, a system uses a processor in a variety of contexts. However, it will be appreciated that a system can use multiple processors while remaining within the scope of the present invention unless otherwise noted. Furthermore, the techniques and mechanisms of the present invention will sometimes describe a connection between two entities. It should be noted that a connection between two entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities may reside between the two entities. For example, a processor may be connected to memory, but it will be appreciated that a variety of bridges and controllers may reside between the processor and memory. Consequently, a connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.


Overview

Consequently, it is desirable to provide improved methods and apparatus for compressing materials based on neuro-feedback.


A stimulus compression device determines neuro-feedback significance corresponding to stimulus material and modifies the stimulus material using neuro-feedback significance measures. For example, the stimulus compression device determines portions of a media stream corresponding to low neuro-feedback significance and removes them from the media stream. Compression of stimulus material may involve removal, modification, repetition, bit rate adjustment, resolution adjustment, etc. Transitions can be smoothed or lengthened to further improve processed stimulus material.


EXAMPLE EMBODIMENTS

Conventional compression mechanisms modify stimulus material such as entertainment and marketing materials using survey based instruments and subjective judgment. In some examples, an editor can shorten a media stream by using survey results and subjective judgment to compress a one minute commercial into a 15-second clip. In other examples, a clip deemed particularly effective may be repeated or emphasized in a media stream. Typically, only the material characteristics of the media stream itself are used to compress or otherwise modify the media stream.


However, survey results often provide only limited information on the effectiveness of stimulus material. For example, survey subjects may be unable or unwilling to express their true thoughts and feelings about a topic, or questions may be phrased with built in bias. Articulate subjects may be given more weight than non-expressive ones. The subjective judgment of an editor can similarly be biased. A variety of semantic, syntactic, metaphorical, cultural, social and interpretive biases and errors prevent accurate and repeatable evaluation.


Consequently, the techniques and mechanisms of the present invention use neurological and neurophysiological measurements to modify stimulus material. Some examples of central nervous system measurement mechanisms include Functional Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG). fMRI measures blood oxygenation in the brain that correlates with increased neural activity. However, current implementations of fMRI have poor temporal resolution of few seconds. EEG measures electrical activity associated with post synaptic currents occurring in the milliseconds range. Subcranial EEG can measure electrical activity with the most accuracy, as the bone and dermal layers weaken transmission of a wide range of frequencies. Nonetheless, surface EEG provides a wealth of electrophysiological information if analyzed properly.


Autonomic nervous system measurement mechanisms include Galvanic Skin Response (GSR), Electrocardiograms (EKG), pupillary dilation, etc. Effector measurement mechanisms include Electrooculography (EOG), eye tracking, facial emotion encoding, reaction time etc.


According to various embodiments, the techniques and mechanisms of the present invention intelligently blend multiple modes and manifestations of precognitive neural signatures with cognitive neural signatures and post cognitive neurophysiological manifestations to more accurately allow compression of stimulus material. In some examples, autonomic nervous system measures are themselves used to validate central nervous system measures. Effector and behavior responses are blended and combined with other measures. According to various embodiments, central nervous system, autonomic nervous system, and effector system measurements are aggregated into a neuro-feedback significance measurement that is associated with stimulus material such as a media stream and used to automatically compress the media stream.


In particular embodiments, portions of the stimulus material that are associated with low neuro-feedback significance are removed to leave only portions that have high neuro-feedback significance. In some examples, portions left in media stream are lengthened to provide less abrupt transitions. In other examples, other portions of stimulus material are repeated to enhance the effectiveness of stimulus material. A variety of stimulus materials such as entertainment and marketing materials, media streams, billboards, print advertisements, text streams, music, performances, sensory experiences, etc. can be compressed. It should be noted that compression can at times include other types of modification such as repetition, conversion, or expansion. In particular examples, neuro-feedback significance can be used to compress a movie into a trailer. In other examples, neuro-feedback significance can be used to identify particularly effective portions of a musical composition and aid a composer in emphasizing or repeating those portions. In still other examples, neuro-feedbacks significance can be used to identify high neuro-feedbacks significance portions of a media stream to allow transmission of those portions at a high bit rate while other portions of lower significance are transmitted at a lower bit rate to conserve bandwidth. The compression can be performed with or without user input.


According to various embodiments, neuro-feedback significance measurements are generated using a neuro-feedback analyzer that performs both intra-modality measurement enhancements and cross-modality measurement enhancements. According to various embodiments, brain activity is measured not just to determine the regions of activity, but to determine interactions and types of interactions between various regions. The techniques and mechanisms of the present invention recognize that interactions between neural regions support orchestrated and organized behavior. Attention, emotion, memory, and other abilities are not merely based on one part of the brain but instead rely on network interactions between brain regions.


The techniques and mechanisms of the present invention further recognize that different frequency bands used for multi-regional communication can be indicative of the effectiveness of stimuli. In particular embodiments, evaluations are calibrated to each subject and synchronized across subjects. In particular embodiments, templates are created for subjects to create a baseline for measuring pre and post stimulus differentials. According to various embodiments, stimulus generators are intelligent, and adaptively modify specific parameters such as exposure length and duration for each subject being analyzed. An intelligent stimulus generation mechanism intelligently adapts output for particular users and purposes. A variety of modalities can be used including EEG, GSR, EKG, pupillary dilation, EOG, eye tracking, facial emotion encoding, reaction time, etc. Individual modalities such as EEG are enhanced by intelligently recognizing neural region communication pathways. Cross modality analysis is enhanced using a synthesis and analytical blending of central nervous system, autonomic nervous system, and effector signatures. Synthesis and analysis by mechanisms such as time and phase shifting, correlating, and validating intra-modal determinations allow generation of a composite output characterizing the significance of various neuro-feedback responses.



FIG. 1 illustrates one example of a system for using neuro-feedback significance measures determined with central nervous system, autonomic nervous system, and effector measures. According to various embodiments, the neuro-feedback based compression system includes a protocol generator and presenter device 101. In particular embodiments, the protocol generator and presenter device 101 is merely a presenter device and merely presents stimulus material to a user. The stimuli may be a media clip, a commercial, pages of text, a brand image, a performance, a magazine advertisement, a movie, an audio presentation, particular tastes, smells, textures and/or sounds. The stimuli can involve a variety of senses and occur with or without human supervision. Continuous and discrete modes are supported. According to various embodiments, the protocol generator and presenter device 101 also has protocol generation capability to allow intelligent customization of stimuli provided to a subject.


According to various embodiments, the subjects are connected to data collection devices 105. The data collection devices 105 may include a variety of neurological and neurophysiological measurement mechanisms such as EEG, EOG, GSR, EKG, pupillary dilation, eye tracking, facial emotion encoding, and reaction time devices, etc. In particular embodiments, the data collection devices 105 include EEG 111, EOG 113, and GSR 115. In some instances, only a single data collection device is used. Data collection may proceed with or without human supervision.


The data collection device 105 collects neuro-physiological data from multiple sources. This includes a combination of devices such as central nervous system sources (EEG), autonomic nervous system sources (GSR, EKG, pupillary dilation), and effector sources (EOG, eye tracking, facial emotion encoding, reaction time). In particular embodiments, data collected is digitally sampled and stored for later analysis. In particular embodiments, the data collected could be analyzed in real-time. According to particular embodiments, the digital sampling rates are adaptively chosen based on the neurophysiological and neurological data being measured.


In one particular embodiment, the neuro-feedback based compression system includes EEG 111 measurements made using scalp level electrodes, EOG 113 measurements made using shielded electrodes to track eye data, GSR 115 measurements performed using a differential measurement system, a facial muscular measurement through shielded electrodes placed at specific locations on the face, and a facial affect graphic and video analyzer adaptively derived for each individual.


In particular embodiments, the data collection devices are clock synchronized with a protocol generator and presenter device 101. The data collection system 105 can collect data from a single individual (1 system), or can be modified to collect synchronized data from multiple individuals (N+1 system). The N+1 system may include multiple individuals synchronously tested in isolation or in a group setting. In particular embodiments, the data collection devices also include a condition evaluation subsystem that provides auto triggers, alerts and status monitoring and visualization components that continuously monitor the status of the subject, data being collected, and the data collection instruments. The condition evaluation subsystem may also present visual alerts and automatically trigger remedial actions.


According to various embodiments, the neuro-feedback based compression system also includes a data cleanser device 121. In particular embodiments, the data cleanser device 121 filters the collected data to remove noise, artifacts, and other irrelevant data using fixed and adaptive filtering, weighted averaging, advanced component extraction (like PCA, ICA), vector and component separation methods, etc. This device cleanses the data by removing both exogenous noise (where the source is outside the physiology of the subject) and endogenous artifacts (where the source could be neurophysiological like muscle movement, eye blinks, etc.).


The artifact removal subsystem includes mechanisms to selectively isolate and review the response data and identify epochs with time domain and/or frequency domain attributes that correspond to artifacts such as line frequency, eye blinks, and muscle movements. The artifact removal subsystem then cleanses the artifacts by either omitting these epochs, or by replacing these epoch data with an estimate based on the other clean data (for example, an EEG nearest neighbor weighted averaging approach).


According to various embodiments, the data cleanser device 121 is implemented using hardware, firmware, and/or software. It should be noted that although a data cleanser device 121 is shown located after a data collection device 105 and before neuro-feedback analyzer 181, the data cleanser device 121 like other components may have a location and functionality that varies based on system implementation. For example, some systems may not use any automated data cleanser device whatsoever. In other systems, data cleanser devices may be integrated into individual data collection devices.


A requirements and response collector 171 customizes and extracts characteristics of the stimulus material provided for compression. According to various embodiments, the requirements and response collector 171 obtains the purpose of the material, parameters associated with the material, and presentations of the stimulus material provided for compression. It also includes a mechanism for optionally collecting survey responses from the subjects. In some examples, the requirements and response collector 171 may only collect parameters and representations of the presentation.


According to various embodiments, the purpose of the stimulus material is obtained to determine objectives for the compressed material. Examples of objectives may include excitement about a product or service or memory retention of a brand name. According to various embodiments, the parameters associated with the material include channel, media type, time span, audience, and target demographic. The purpose and parameters may affect how neuro-feedback significance is determined. According to various embodiments, the neuro-feedback based compression system also collects presentation or view specific attributes such as audio, video, imagery and messages for enhancement and modification. In some examples, merely representations of the presentation are obtained.


The requirements and response collector 171 can obtain data with or without human intervention and can be implemented using hardware, firmware, and/or software. The data cleanser device 121 and the requirements and response collector 171 pass data to the neuro-feedback analyzer 181. The neuro-feedback analyzer 181 uses a variety of mechanisms to analyze underlying data in the system to determine neuro-feedback significance measures for the stimulus material. According to various embodiments, the neuro-feedback analyzer customizes and extracts the independent neurological and neuro-physiological parameters for each individual in each modality, and blends the estimates within a modality as well as across modalities to elicit an enhanced response to the presented stimulus material. In particular embodiments, the neuro-feedback analyzer 181 aggregates the response measures across subjects in a dataset.


According to various embodiments, neurological and neuro-physiological signatures are measured using time domain analyses and frequency domain analyses. Such analyses use parameters that are common across individuals as well as parameters that are unique to each individual. The analyses could also include statistical parameter extraction and fuzzy logic based attribute estimation from both the time and frequency components of the synthesized response.


In some examples, statistical parameters used in a blended neuro-feedback significance estimate include evaluations of skew, peaks, first and second moments, population distribution, as well as fuzzy estimates of attention, emotional engagement and memory retention responses. The analyses could also include assessing neuro-feedback significance measures for identifying segments of the stimulus material for compression.


According to various embodiments, the neuro-feedback analyzer 181 may include an intra-modality response synthesizer and a cross-modality response synthesizer. In particular embodiments, the intra-modality response synthesizer is configured to customize and extract the independent neurological and neurophysiological parameters for each individual in each modality and blend the estimates within a modality analytically to elicit an enhanced response to the presented stimuli. In particular embodiments, the intra-modality response synthesizer also aggregates data from different subjects in a dataset.


According to various embodiments, the cross-modality response synthesizer or fusion device blends different intra-modality responses, including raw signals and signals output. The combination of signals enhances the measures of effectiveness within a modality. The cross-modality response fusion device can also aggregate data from different subjects in a dataset.


According to various embodiments, the neuro-feedback analyzer 181 also includes a composite enhanced effectiveness estimator (CEEE) that combines the enhanced responses and estimates from each modality to provide a blended estimate of the neuro-feedback significance.


According to various embodiments, the neuro-feedback analyzer 181 provides neuro-feedback significance measurements to a compressor device 191. Compressor device 191 a tool that uses the requirements and the neuro-feedback significance measurements to perform the actual compression of the stimulus material. It should be noted that compression can be performed along a variety of dimensions. In particular embodiments, compression entails removing time segments of a media stream. In other examples, compression entails removing areas of printed materials. In still other examples, compression involves removing both areas as well as time sequences. It should be noted that compression can also include expansion, repetition, conversion, bit rate and resolution modification, etc. The compressor device 191 can also use conventional video and audio encoding and decoding mechanisms to further enhance a media stream.


The compressor device 191 could also use the elicited neurological and physiological significance measures for identifying attributes and segments of the advertisement and other audio/visual material that need to be retained in conversion, and attributes and segments of the material that could be modified, added, and/or deleted. The compressor device 191, like many components in a neuro-feedback based compression system can be implemented using software, firmware, and/or hardware and may be used with or without user input.



FIG. 2 illustrates one example of neuro-feedback significance data 201 provided in relation to time 203. According to various embodiments, neuro-feedback significance data 201 is generated using a neuro-feedback analyzer. In particular embodiments, the neuro-feedback analyzer processes underlying data in the system to determine neuro-feedback significance measures for the stimulus material. According to various embodiments, the neuro-feedback analyzer customizes and extracts the independent neurological and neuro-physiological parameters for each individual in each modality, and blends the estimates within a modality as well as across modalities to elicit an enhanced response to the presented stimulus material. In particular embodiments, the neuro-feedback analyzer aggregates the response measures across subjects in a dataset.


According to various embodiments, the neuro-feedback significance data 201 is processed to identify portions 211 and 213 having high neuro-feedback significance. In some examples, threshold values may be used to determine high neuro-feedback significance portions. In other examples, a particular number of portions having above average significance in relation to other portions are identified. A variety of mechanisms can be used to identify high neuro-feedback significance portions.



FIG. 3 illustrates one example of neuro-feedback significance data association with a media stream. According to various embodiments, a neuro-feedback significance graph is generated using combined, shifted, and aligned neurological and neurophysiological measures. In some examples, other data such as survey data can also be combined into a significance graph. The significance data 301 is graphed with respect to time 303 and portions 311 and 313 have high neuro-feedback significance are identified. It should be noted that other portions such as widely varying significance or low significance may also be identified in some examples. Stimulus material such as media stream 351 is associated with the neuro-feedback significance graph to identify portions 311 and 313 in the media stream graphed with respect to time 353.


These portions may be emphasized when a movie is compressed into a movie trailer, a media stream is compressed for transmission on limited bandwidth networks, or a laser light show is evaluated for editing. In particular embodiments, if portions identified are too small, the portions are lengthened slightly to include material that may not have as high a neuro-feedback significance rating. Transitions in the media stream 351 may be smoothed to improve user viewing experience.



FIG. 4 illustrates one example of neuro-feedback significance data associated with an image. According to various embodiments, EOG and eye tracking benefits from grouping objects of interest into temporally and spatially defined entities using micro and macro saccade patterns. Gaze, dwell, return of eye movements to primarily center around the defined entities of interest and inhibition of return to novel regions of the material being evaluated are measured to determine the degree of engagement and attention evoked by the stimulus material 401. In particular embodiments, portions of the image are associated with neuro-feedback significance values to identify portions that may be compressed. In some examples, areas having low neuro-feedback significance are identified as portions that may be overwritten with text. In other instances, areas having low neuro-feedback significance may be removed to automatically or semi-automatically generate a small print advertisement from a billboard.



FIG. 5 illustrates one example of stimulus material compression. According to various embodiments, portions of stimulus material corresponding to high neuro-feedback significance 511 and 513 are used to generate compressed stimulus material. In one example, a media stream 551 is associated with neuro-feedback significance 501 mapped with respect to time 553 and 503. The media stream 551 is generated to include portions that have high neuro-feedback significance.


A variety of mechanisms can be used to develop neuro-feedback significance measures. In particular embodiments, EEG response data is synthesized to provide an enhanced assessment of neuro-feedback significance. According to various embodiments, EEG measures electrical activity resulting from thousands of simultaneous neural processes associated with different portions of the brain. EEG data can be classified in various bands. According to various embodiments, brainwave frequencies include delta, theta, alpha, beta, and gamma frequency ranges. Delta waves are classified as those less than 4 Hz and are prominent during deep sleep. Theta waves have frequencies between 3.5 to 7.5 Hz and are associated with memories, attention, emotions, and sensations. Theta waves are typically prominent during states of internal focus.


Alpha frequencies reside between 7.5 and 13 Hz and typically peak around 10 Hz. Alpha waves are prominent during states of relaxation. Beta waves have a frequency range between 14 and 30 Hz. Beta waves are prominent during states of motor control, long range synchronization between brain areas, analytical problem solving, judgment, and decision making. Gamma waves occur between 30 and 60 Hz and are involved in binding of different populations of neurons together into a network for the purpose of carrying out a certain cognitive or motor function, as well as in attention and memory. Because the skull and dermal layers attenuate waves in this frequency range, brain waves above 75-80 Hz are difficult to detect and are often not used for stimuli response assessment.


However, the techniques and mechanisms of the present invention recognize that analyzing high gamma band (kappa-band: Above 60 Hz) measurements, in addition to theta, alpha, beta, and low gamma band measurements, enhances neurological attention, emotional engagement and retention component estimates. In particular embodiments, EEG measurements including difficult to detect high gamma or kappa band measurements are obtained, enhanced, and evaluated. Subject and task specific signature sub-bands in the theta, alpha, beta, gamma and kappa bands are identified to provide enhanced response estimates. According to various embodiments, high gamma waves (kappa-band) above 80 Hz (typically detectable with sub-cranial EEG and/or magnetoencephalography) can be used in inverse model-based enhancement of the frequency responses to the stimuli.


Various embodiments of the present invention recognize that particular sub-bands within each frequency range have particular prominence during certain activities. A subset of the frequencies in a particular band is referred to herein as a sub-band. For example, a sub-band may include the 40-45 Hz range within the gamma band. In particular embodiments, multiple sub-bands within the different bands are selected while remaining frequencies are band pass filtered. In particular embodiments, multiple sub-band responses may be enhanced, while the remaining frequency responses may be attenuated.


An information theory based band-weighting model is used for adaptive extraction of selective dataset specific, subject specific, task specific bands to enhance the neuro-feedback significance measure. Adaptive extraction may be performed using fuzzy scaling. Stimuli can be presented and enhanced measurements determined multiple times to determine the variation or habituation profiles across multiple presentations. Determining the variation and/or habituation profiles provides an enhanced assessment of the primary responses as well as the longevity (wear-out) of the marketing and entertainment stimuli. The synchronous response of multiple individuals to stimuli presented in concert is measured to determine an enhanced across subject synchrony measure of effectiveness. According to various embodiments, the synchronous response may be determined for multiple subjects residing in separate locations or for multiple subjects residing in the same location.


Although a variety of synthesis mechanisms are described, it should be recognized that any number of mechanisms can be applied—in sequence or in parallel with or without interaction between the mechanisms. In some examples, processes 321 and 323 can be applied to any modality.


Although intra-modality synthesis mechanisms provide enhanced significance data, additional cross-modality synthesis mechanisms can also be applied. A variety of mechanisms such as EEG, Eye Tracking, GSR, EOG, and facial emotion encoding are connected to a cross-modality synthesis mechanism. Other mechanisms as well as variations and enhancements on existing mechanisms may also be included. According to various embodiments, data from a specific modality can be enhanced using data from one or more other modalities. In particular embodiments, EEG typically makes frequency measurements in different bands like alpha, beta and gamma to provide estimates of significance. However, the techniques of the present invention recognize that significance measures can be enhanced further using information from other modalities.


For example, facial emotion encoding measures can be used to enhance the valence of the EEG emotional engagement measure. EOG and eye tracking saccadic measures of object entities can be used to enhance the EEG estimates of significance including but not limited to attention, emotional engagement, and memory retention. According to various embodiments, a cross-modality synthesis mechanism performs time and phase shifting of data to allow data from different modalities to align. In some examples, it is recognized that an EEG response will often occur hundreds of milliseconds before a facial emotion measurement changes. Correlations can be drawn and time and phase shifts made on an individual as well as a group basis. In other examples, saccadic eye movements may be determined as occurring before and after particular EEG responses. According to various embodiments, time corrected GSR measures are used to scale and enhance the EEG estimates of significance including attention, emotional engagement and memory retention measures.


Evidence of the occurrence or non-occurrence of specific time domain difference event-related potential components (like the DERP) in specific regions correlates with subject responsiveness to specific stimulus. According to various embodiments, ERP measures are enhanced using EEG time-frequency measures (ERPSP) in response to the presentation of the marketing and entertainment stimuli. Specific portions are extracted and isolated to identify ERP, DERP and ERPSP analyses to perform. In particular embodiments, an EEG frequency estimation of attention, emotion and memory retention (ERPSP) is used as a co-factor in enhancing the ERP, DERP and time-domain response analysis.


EOG measures saccades to determine the presence of attention to specific objects of stimulus. Eye tracking measures the subject's gaze path, location and dwell on specific objects of stimulus. According to various embodiments, EOG and eye tracking is enhanced by measuring the presence of lambda waves (a neurophysiological index of saccade effectiveness) in the ongoing EEG in the occipital and extra striate regions, triggered by the slope of saccade-onset to estimate the significance of the EOG and eye tracking measures. In particular embodiments, specific EEG signatures of activity such as slow potential shifts and measures of coherence in time-frequency responses at the Frontal Eye Field (FEF) regions that preceded saccade-onset are measured to enhance the effectiveness of the saccadic activity data.


GSR typically measures the change in general arousal in response to stimulus presented. According to various embodiments, GSR is enhanced by correlating EEG/ERP responses and the GSR measurement to get an enhanced estimate of subject engagement. The GSR latency baselines are used in constructing a time-corrected GSR response to the stimulus. The time-corrected GSR response is co-factored with the EEG measures to enhance GSR significance measures.


According to various embodiments, facial emotion encoding uses templates generated by measuring facial muscle positions and movements of individuals expressing various emotions prior to the testing session. These individual specific facial emotion encoding templates are matched with the individual responses to identify subject emotional response. In particular embodiments, these facial emotion encoding measurements are enhanced by evaluating inter-hemispherical asymmetries in EEG responses in specific frequency bands and measuring frequency band interactions. The techniques of the present invention recognize that not only are particular frequency bands significant in EEG responses, but particular frequency bands used for communication between particular areas of the brain are significant. Consequently, these EEG responses enhance the EMG, graphic and video based facial emotion identification.



FIG. 6 is a flow process diagram showing a technique for compressing stimulus material using neuro-feedback significance information. At 601, a protocol is generated and stimulus material is provided to one or more subjects. According to various embodiments, stimulus includes streaming video, media clips, printed materials, presentations, performances, games, etc. The protocol determines the parameters surrounding the presentation of stimulus, such as the number of times shown, the duration of the exposure, sequence of exposure, segments of the stimulus to be shown, etc. Subjects may be isolated during exposure or may be presented materials in a group environment with or without supervision. At 603, subject responses are collected using a variety of modalities, such as EEG, ERP, EOG, GSR, etc. In some examples, verbal and written responses can also be collected and correlated with neurological and neurophysiological responses. At 605, data is passed through a data cleanser to remove noise and artifacts that may make data more difficult to interpret. According to various embodiments, the data cleanser removes EEG electrical activity associated with blinking and other endogenous/exogenous artifacts.


At 607, requirements and responses are collected. According to various embodiments, requirements for the stimulus material are collected to determine the purpose of the materials. Parameters and views for the material for compression is also collected.


At 609, neuro-feedback analysis is performed. Neuro-feedback analysis may include intra-modality response synthesis and cross-modality response synthesis to enhance significance measures. It should be noted that in some particular instances, one type of synthesis may be performed without performing the other type of synthesis. For example, cross-modality response synthesis may be performed with or without intra-modality synthesis. At 611, neuro-feedback significance is associated with stimulus materials. At 613, stimulus materials are compressed using neuro-feedback significance information. Compression may include general modification.


According to various embodiments, various mechanisms such as the data collection mechanisms, the intra-modality synthesis mechanisms, cross-modality synthesis mechanisms, etc. are implemented on multiple devices. However, it is also possible that the various mechanisms be implemented in hardware, firmware, and/or software in a single system. FIG. 7 provides one example of a system that can be used to implement one or more mechanisms. For example, the system shown in FIG. 7 may be used to implement a data cleanser device or a cross-modality responses synthesis device.


According to particular example embodiments, a system 700 suitable for implementing particular embodiments of the present invention includes a processor 701, a memory 703, an interface 711, and a bus 715 (e.g., a PCI bus). When acting under the control of appropriate software or firmware, the processor 701 is responsible for such tasks such as pattern generation. Various specially configured devices can also be used in place of a processor 701 or in addition to processor 701. The complete implementation can also be done in custom hardware. The interface 711 is typically configured to send and receive data packets or data segments over a network. Particular examples of interfaces the device supports include host bus adapter (HBA) interfaces, Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like.


In addition, various very high-speed interfaces may be provided such as fast Ethernet interfaces, Gigabit Ethernet interfaces, ATM interfaces, HSSI interfaces, POS interfaces, FDDI interfaces and the like. Generally, these interfaces may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile RAM. The independent processors may control such communications intensive tasks as data synthesis.


According to particular example embodiments, the system 700 uses memory 703 to store data, algorithms and program instructions. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store received data and process received data.


Because such information and program instructions may be employed to implement the systems/methods described herein, the present invention relates to tangible, machine readable media that include program instructions, state information, etc. for performing various operations described herein. Examples of machine-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks and DVDs; magneto-optical media such as optical disks; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM) and random access memory (RAM). Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.


Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Therefore, the present embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims
  • 1. A system, comprising: a data collector to collect first neuro-response data with a first modality and second neuro-response data with a second modality from a subject exposed to an advertisement or entertainment;a cross-modality response synthesizer to: align the first neuro-response data and the second neuro-response data by at least one of time shifting or phase shifting at least one of the first neuro-response data or the second neuro-response data; andcombine the first neuro-response data with the second neuro-response data to determine a neuro-feedback significance; anda compressor to associate the neuro-feedback significance with the advertisement or entertainment and to compress a portion of the advertisement or entertainment based on the neuro-feedback significance.
  • 2. The system of claim 1, wherein the neuro-feedback significance is determined using a combination of neurological and neurophysiological measurements representative of one or more of attention, emotion, or memory retention.
  • 3. The system of claim 1, wherein the neuro-response data includes neurological and neurophysiological response data.
  • 4. The system of claim 1, wherein the advertisement or entertainment is an advertisement stream.
  • 5. The system of claim 4, wherein the compressor is to compress the portion by removing the portion of the advertisement stream corresponding to a low neuro-feedback significance to shorten the advertisement stream.
  • 6. The system of claim 1, wherein the advertisement or entertainment is a motion picture.
  • 7. The system of claim 6, wherein the compressor is to compress the portion by removing the portion of the motion picture corresponding to a low neuro-feedback significance to generate a movie trailer.
  • 8. The system of claim 1, wherein the advertisement or entertainment is a print advertisement.
  • 9. The system of claim 8, wherein the compressor is to compress the portion by removing the portion of the print advertisement corresponding to a low neuro-feedback significance to reduce an area consumed by the print advertisement.
  • 10. The system of claim 1, wherein the advertisement or entertainment is marketing material.
  • 11. The system of claim 1, wherein the compressor is to compress the portion by modifying the portion of the advertisement or entertainment corresponding to a high neuro-feedback significance to highlight an effective portion.
  • 12. The system of claim 1, wherein the cross-modality response synthesizer is to determine the neuro-feedback significance using survey responses.
  • 13. The system of claim 1, wherein the compressor is to compress the portion by removing the portion of the advertisement or entertainment corresponding to a low neuro-feedback significance.
  • 14. The system of claim 1, wherein the compressor is to compress the portion of the advertisement or entertainment using at least one of bit rate or resolution adjustment.
  • 15. The system of claim 1, wherein the compressor is to compress the portion of the advertisement or entertainment using at least one of modification, expansion, or repetition.
  • 16. A method, comprising: accessing, with a processor, neuro-response data from a subject exposed to an advertisement or entertainment, the neuro-response data including: (1) first neuro-response data received from a first data collection modality during a first portion of the advertisement or entertainment, and (2) second neuro-response data received from a second data collection modality during the first portion of the advertisement or entertainment;aligning, with the processor, the first neuro-response data with the second neuro-response data by at least one of time shifting or phase shifting at least one of the first neuro-response data or the second neuro-response data;determining, with the processor, a first neuro-feedback significance associated with the first portion of the advertisement or entertainment based on the aligned neuro-response data;identifying, with the processor, if the first neuro-feedback significance is low; andremoving the first portion of the advertisement or entertainment if the first neuro-feedback significance is low.
  • 17. The method of claim 16, wherein the first neuro-feedback significance is determined using one or more of neurological measurements or neurophysiological measurements representative of one or more of attention, emotion, or memory retention.
  • 18. The method of claim 16, wherein the first neuro-response data includes neurological and neurophysiological response data.
  • 19. A system, comprising: means for aligning neuro-response data from a first modality with neuro-response data from a second modality to determine neuro-feedback significance associated with a first portion of an advertisement or entertainment and a second portion of the advertisement or entertainment;means for identifying the first portion as having low neuro-feedback significance and the second portion as having high neuro-feedback significance; andmeans for transmitting the first portion of the advertisement or entertainment at a first bit rate and the second portion of the advertisement or entertainment at a second bit rate based on the identification.
  • 20. The system of claim 1, wherein one or more of the first modality or the second modality includes at least one of electroencephalography, electrooculography or galvanic skin response.
  • 21. The system of claim 1, wherein the first neuro-response data includes data from at least one of a central nervous system, an autonomic nervous system or an effector measurement.
  • 22. The method of claim 16 further comprising generating a movie trailer from the advertisement or entertainment.
  • 23. A tangible storage device or storage disc having machine readable instructions stored thereon which, when executed, cause a machine to at least: determine neuro-feedback significances associated with a plurality of portions of an advertisement or entertainment based on neuro-response data obtained from a subject exposed to the advertisement or entertainment using a plurality of modalities;repeat a first portion of the portions of the advertisement or entertainment having a high neuro-response feedback significance;remove a second portion of the portions of the advertisement or entertainment, the second portion corresponding to a low neuro-feedback significance; andlengthen the first portion or a third portion of the advertisement or entertainment.
  • 24. The system of claim 1, wherein the first and second neuro-response data are gathered during a first portion of the advertisement or entertainment and the compressor is to modify a second portion of the advertisement or entertainment based on the neuro-feedback significance associated with the first portion of the advertisement or entertainment.
  • 25. The method of claim 16 further comprising: determining a second neuro-feedback significance associated with a second portion of the advertisement or entertainment;identifying the second neuro-feedback significance as high; andlengthening the second portion.
  • 26. The method of 19 further comprising: determining a second neuro-feedback significance associated with a second portion of the advertisement or entertainment;identifying the second neuro-feedback significance as high; andrepeating the second portion of the advertisement or entertainment.
  • 27. The system of claim 19, wherein the second bit rate is higher than the first bit rate.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to Provisional Patent Application 60/915,228 titled Neuro-Feedback Based Stimulus Compression Device, by Anantha Pradeep, Robert T. Knight, and Ramachandran Gurumoorthy, and filed on May 1, 2007.

US Referenced Citations (477)
Number Name Date Kind
2549836 McIntyre et al. Apr 1951 A
3490439 Rolston Jan 1970 A
3572322 Wade Mar 1971 A
3735753 Pisarski May 1973 A
3880144 Coursin et al. Apr 1975 A
3901215 John Aug 1975 A
3998213 Price Dec 1976 A
4075657 Weinblatt Feb 1978 A
4145122 Rinard et al. Mar 1979 A
4149716 Scudder Apr 1979 A
4201224 John May 1980 A
4279258 John Jul 1981 A
4411273 John Oct 1983 A
4417592 John Nov 1983 A
4537198 Corbett Aug 1985 A
4557270 John Dec 1985 A
4610259 Cohen et al. Sep 1986 A
4613951 Chu Sep 1986 A
4626904 Lurie Dec 1986 A
4632122 Johansson et al. Dec 1986 A
4683892 Johansson et al. Aug 1987 A
4686999 Snyder et al. Aug 1987 A
4695879 Weinblatt Sep 1987 A
4736751 Gevins et al. Apr 1988 A
4800888 Itil et al. Jan 1989 A
4802484 Friedman et al. Feb 1989 A
4846190 John Jul 1989 A
4885687 Carey Dec 1989 A
4894777 Negishi et al. Jan 1990 A
4913160 John Apr 1990 A
4967038 Gevins et al. Oct 1990 A
4955388 Silberstein Nov 1990 A
4973149 Hutchinson Nov 1990 A
4987903 Keppel et al. Jan 1991 A
5003986 Finitzo et al. Apr 1991 A
5010891 Chamoun Apr 1991 A
5038782 Gevins et al. Aug 1991 A
5052401 Sherwin Oct 1991 A
5083571 Prichep Jan 1992 A
RE34015 Duffy Aug 1992 E
5137027 Rosenfeld Aug 1992 A
5213338 Brotz May 1993 A
5226177 Nickerson Jul 1993 A
5243517 Schmidt et al. Sep 1993 A
5273037 Itil et al. Dec 1993 A
5291888 Tucker Mar 1994 A
5293867 Oommen Mar 1994 A
5295491 Gevins Mar 1994 A
5331544 Lu et al. Jul 1994 A
5339826 Schmidt et al. Aug 1994 A
5345281 Taboada et al. Sep 1994 A
5357957 Itil et al. Oct 1994 A
5363858 Farwell Nov 1994 A
5392788 Hudspeth Feb 1995 A
5406956 Farwell Apr 1995 A
5410609 Kado et al. Apr 1995 A
5447166 Gevins Sep 1995 A
5450855 Rosenfeld Sep 1995 A
5474082 Junker Dec 1995 A
5479934 Imran Jan 1996 A
5513649 Gevins et al. May 1996 A
5518007 Becker May 1996 A
5537618 Boulton et al. Jul 1996 A
5550928 Lu et al. Aug 1996 A
5617855 Waletzky et al. Apr 1997 A
5655534 Ilmoniemi Aug 1997 A
5676138 Zawilinski Oct 1997 A
5687322 Deaton et al. Nov 1997 A
5720619 Fisslinger Feb 1998 A
5724987 Gevins et al. Mar 1998 A
5726701 Needham Mar 1998 A
5729205 Kwon Mar 1998 A
5736986 Sever, Jr. Apr 1998 A
5740035 Cohen et al. Apr 1998 A
5762611 Lewis et al. Jun 1998 A
5771897 Zufrin Jun 1998 A
5774591 Black et al. Jun 1998 A
5787187 Bouchard et al. Jul 1998 A
5800351 Mann Sep 1998 A
5802208 Podilchuk et al. Sep 1998 A
5802220 Black et al. Sep 1998 A
5812642 Leroy Sep 1998 A
5817029 Gevins et al. Oct 1998 A
5848399 Burke Dec 1998 A
5892566 Bullwinkel Apr 1999 A
5945863 Coy Aug 1999 A
5961332 Joao Oct 1999 A
5983129 Cowan et al. Nov 1999 A
5995868 Dorfmeister et al. Nov 1999 A
6001065 DeVito Dec 1999 A
6021346 Ryu et al. Feb 2000 A
6032129 Greef et al. Feb 2000 A
6052619 John Apr 2000 A
6088040 Oda et al. Jul 2000 A
6099319 Zaltman Aug 2000 A
6120440 Goknar Sep 2000 A
6128521 Marro et al. Oct 2000 A
6154669 Hunter et al. Nov 2000 A
6155927 Levasseur et al. Dec 2000 A
6161030 Levendowski et al. Dec 2000 A
6170018 Voll et al. Jan 2001 B1
6171239 Humphrey Jan 2001 B1
6173260 Slaney Jan 2001 B1
6175753 Menkes et al. Jan 2001 B1
6212502 Ball et al. Apr 2001 B1
6228038 Claessens May 2001 B1
6236885 Hunter et al. May 2001 B1
6254536 DeVito Jul 2001 B1
6280198 Calhoun et al. Aug 2001 B1
6286005 Cannon Sep 2001 B1
6289234 Mueller Sep 2001 B1
6292688 Patton Sep 2001 B1
6299308 Voronka et al. Oct 2001 B1
6301493 Marro et al. Oct 2001 B1
6315569 Zaltman Nov 2001 B1
6330470 Tucker et al. Dec 2001 B1
6334778 Brown Jan 2002 B1
6374143 Berrang et al. Apr 2002 B1
6381481 Levendowski et al. Apr 2002 B1
6398643 Knowles et al. Jun 2002 B1
6422999 Hill Jul 2002 B1
6434419 Gevins et al. Aug 2002 B1
6435878 Reynolds et al. Aug 2002 B1
6453194 Hill Sep 2002 B1
6487444 Mimura Nov 2002 B2
6488617 Katz Dec 2002 B1
6510340 Jordan Jan 2003 B1
6520905 Surve et al. Feb 2003 B1
6545685 Dorbie Apr 2003 B1
6575902 Burton Jun 2003 B1
6577329 Flickner et al. Jun 2003 B1
6585521 Obrador Jul 2003 B1
6594521 Tucker Jul 2003 B2
6598006 Honda et al. Jul 2003 B1
6609024 Ryu et al. Aug 2003 B1
6648822 Hamamoto et al. Nov 2003 B2
6652283 Van Schaack et al. Nov 2003 B1
6654626 Devlin et al. Nov 2003 B2
6662052 Sarwal et al. Dec 2003 B1
6665560 Becker et al. Dec 2003 B2
6688890 von Buegner Feb 2004 B2
6708051 Durousseau Mar 2004 B1
6712468 Edwards Mar 2004 B1
6754524 Johnson, Jr. Jun 2004 B2
6757556 Gopenathan et al. Jun 2004 B2
6788882 Geer et al. Sep 2004 B1
6792304 Silberstein Sep 2004 B1
6842877 Robarts et al. Jan 2005 B2
6904408 McCarthy et al. Jun 2005 B1
6950698 Sarkela et al. Sep 2005 B2
6958710 Zhang et al. Oct 2005 B2
6973342 Swanson Dec 2005 B1
6993380 Modarres Jan 2006 B1
7043056 Edwards et al. May 2006 B2
7047550 Yasukawa et al. May 2006 B1
7113916 Hill Sep 2006 B1
7120880 Dryer et al. Oct 2006 B1
7130673 Tolvanen-Laakso et al. Oct 2006 B2
7150715 Collura et al. Dec 2006 B2
7164967 Etienne-Cummings et al. Jan 2007 B2
7177675 Suffin et al. Feb 2007 B2
7222071 Neuhauser et al. May 2007 B2
7246081 Hill Jul 2007 B2
7272982 Neuhauser et al. Sep 2007 B2
7286871 Cohen Oct 2007 B2
7340060 Tomkins et al. Mar 2008 B2
7391835 Gross et al. Jun 2008 B1
7408460 Crystal et al. Aug 2008 B2
7420464 Fitzgerald et al. Sep 2008 B2
7443292 Jensen et al. Oct 2008 B2
7460827 Schuster et al. Dec 2008 B2
7463143 Forr et al. Dec 2008 B2
7463144 Crystal et al. Dec 2008 B2
7471987 Crystal et al. Dec 2008 B2
7483835 Neuhauser et al. Jan 2009 B2
7483844 Takakura et al. Jan 2009 B2
7496400 Hoskonen et al. Feb 2009 B2
7548774 Kurtz et al. Jun 2009 B2
7551952 Gevins et al. Jun 2009 B2
7592908 Zhang et al. Sep 2009 B2
7614066 Urdang et al. Nov 2009 B2
7623823 Zito et al. Nov 2009 B2
7630757 Dorfmeister et al. Dec 2009 B2
7636456 Collins et al. Dec 2009 B2
7650793 Jensen et al. Jan 2010 B2
7658327 Tuchman et al. Feb 2010 B2
7689272 Farwell Mar 2010 B2
7697979 Martinerie et al. Apr 2010 B2
7698238 Barletta et al. Apr 2010 B2
7720351 Levitan May 2010 B2
7729755 Laken May 2010 B2
7809420 Hannula et al. Oct 2010 B2
7840248 Fuchs et al. Nov 2010 B2
7840250 Tucker Nov 2010 B2
7865394 Calloway Jan 2011 B1
7892764 Xiong et al. Feb 2011 B2
7895625 Bryan et al. Feb 2011 B1
7908133 Neuhauser Mar 2011 B2
7917366 Levanon et al. Mar 2011 B1
7930199 Hill Apr 2011 B1
7962315 Jensen et al. Jun 2011 B2
7988557 Soderland Aug 2011 B2
8014847 Shastri et al. Sep 2011 B2
8098152 Zhang et al. Jan 2012 B2
8135606 Dupree Mar 2012 B2
8151298 Begeja et al. Apr 2012 B2
8165916 Hoffberg et al. Apr 2012 B2
8196168 Bryan et al. Jun 2012 B1
8209224 Pradeep et al. Jun 2012 B2
8229469 Zhang et al. Jul 2012 B2
8235725 Hill Aug 2012 B1
8239030 Hagedorn et al. Aug 2012 B1
8270814 Pradeep et al. Sep 2012 B2
8300526 Saito et al. Oct 2012 B2
8335715 Pradeep et al. Dec 2012 B2
8381244 King et al. Feb 2013 B2
8386312 Pradeep et al. Feb 2013 B2
8386313 Pradeep et al. Feb 2013 B2
8392250 Pradeep et al. Mar 2013 B2
8392251 Pradeep et al. Mar 2013 B2
8392253 Pradeep et al. Mar 2013 B2
8392254 Pradeep et al. Mar 2013 B2
8392255 Pradeep et al. Mar 2013 B2
8396744 Pradeep et al. Mar 2013 B2
8473345 Pradeep et al. Jun 2013 B2
8484801 Pradeep et al. Jul 2013 B2
8494610 Pradeep et al. Jul 2013 B2
8494905 Pradeep et al. Jul 2013 B2
8533042 Pradeep et al. Sep 2013 B2
8548852 Pradeep et al. Oct 2013 B2
8635105 Pradeep et al. Jan 2014 B2
8655428 Pradeep et al. Feb 2014 B2
8655437 Pradeep et al. Feb 2014 B2
8788372 Kettner et al. Jul 2014 B2
8793715 Weitzenfeld et al. Jul 2014 B1
9336535 Pradeep et al. May 2016 B2
9560984 Pradeep et al. Feb 2017 B2
20010020236 Cannon Sep 2001 A1
20010029468 Yamaguchi et al. Oct 2001 A1
20010032140 Hoffman Oct 2001 A1
20010056225 DeVito Dec 2001 A1
20020056087 Berezowski et al. May 2002 A1
20020056124 Hay May 2002 A1
20020065826 Bell et al. May 2002 A1
20020072952 Hamzey et al. Jun 2002 A1
20020077534 DuRousseau Jun 2002 A1
20020103429 deCharms Aug 2002 A1
20020111796 Nemoto Aug 2002 A1
20020143627 Barsade et al. Oct 2002 A1
20020155878 Lert, Jr. et al. Oct 2002 A1
20020156842 Signes et al. Oct 2002 A1
20020188216 Kayyali et al. Dec 2002 A1
20020188217 Farwell Dec 2002 A1
20020193670 Garfield et al. Dec 2002 A1
20030013981 Gevins et al. Jan 2003 A1
20030036955 Tanaka et al. Feb 2003 A1
20030037333 Ghashghai et al. Feb 2003 A1
20030059750 Bindler et al. Mar 2003 A1
20030065524 Giacchetti et al. Apr 2003 A1
20030073921 Sohmer et al. Apr 2003 A1
20030081834 Philomin et al. May 2003 A1
20030100998 Brunner et al. May 2003 A2
20030104865 Itkis et al. Jun 2003 A1
20030131351 Shapira Jul 2003 A1
20030165270 Endrikhovski et al. Sep 2003 A1
20030177488 Smith et al. Sep 2003 A1
20030208754 Sridhar et al. Nov 2003 A1
20030233278 Marshall Dec 2003 A1
20040001616 Gutta et al. Jan 2004 A1
20040005143 Tsuru et al. Jan 2004 A1
20040013398 Miura et al. Jan 2004 A1
20040015608 Ellis et al. Jan 2004 A1
20040073129 Caldwell et al. Apr 2004 A1
20040092809 DeCharms May 2004 A1
20040098298 Yin May 2004 A1
20040101212 Fedorovskaya et al. May 2004 A1
20040187167 Maguire et al. Sep 2004 A1
20040193068 Burton et al. Sep 2004 A1
20040210159 Kibar et al. Oct 2004 A1
20040220483 Yeo et al. Nov 2004 A1
20040236623 Gopalakrishnan Nov 2004 A1
20050010475 Perkowski et al. Jan 2005 A1
20050043646 Viirre et al. Feb 2005 A1
20050076359 Pierson et al. Apr 2005 A1
20050079474 Lowe Apr 2005 A1
20050097594 O'Donnell et al. May 2005 A1
20050107716 Eaton et al. May 2005 A1
20050132401 Boccon-Gibod et al. Jun 2005 A1
20050143629 Farwell Jun 2005 A1
20050149964 Thomas et al. Jul 2005 A1
20050154290 Langleben Jul 2005 A1
20050165766 Szabo Jul 2005 A1
20050177058 Sobell Aug 2005 A1
20050197590 Osorio et al. Sep 2005 A1
20050203798 Jensen et al. Sep 2005 A1
20050216071 Devlin et al. Sep 2005 A1
20050216243 Graham et al. Sep 2005 A1
20050223237 Baretta et al. Oct 2005 A1
20050227233 Buxton et al. Oct 2005 A1
20050240956 Smith et al. Oct 2005 A1
20050261980 Hadi Nov 2005 A1
20050272017 Neuhauser et al. Dec 2005 A1
20050273017 Gordon Dec 2005 A1
20050273802 Crystal et al. Dec 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20050289582 Tavares et al. Dec 2005 A1
20060003732 Neuhauser et al. Jan 2006 A1
20060010470 Kurosaki Jan 2006 A1
20060035707 Nguyen et al. Feb 2006 A1
20060053110 McDonald et al. Mar 2006 A1
20060093998 Vertegaal May 2006 A1
20060111044 Keller May 2006 A1
20060111644 Guttag et al. May 2006 A1
20060129458 Maggio Jun 2006 A1
20060167376 Viirre et al. Jul 2006 A1
20060168613 Wood et al. Jul 2006 A1
20060168630 Davies Jul 2006 A1
20060176289 Horn Aug 2006 A1
20060218046 Carfi et al. Sep 2006 A1
20060256133 Rosenberg Nov 2006 A1
20060257834 Lee et al. Nov 2006 A1
20060259360 Flinn et al. Nov 2006 A1
20060293921 McCarthy et al. Dec 2006 A1
20070016096 McNabb Jan 2007 A1
20070048707 Caamano et al. Mar 2007 A1
20070050256 Walker et al. Mar 2007 A1
20070055169 Lee et al. Mar 2007 A1
20070060830 Le et al. Mar 2007 A1
20070060831 Le et al. Mar 2007 A1
20070066874 Cook Mar 2007 A1
20070066915 Frei et al. Mar 2007 A1
20070066916 Lemos Mar 2007 A1
20070067007 Schulman et al. Mar 2007 A1
20070067305 Ives Mar 2007 A1
20070078706 Datta et al. Apr 2007 A1
20070079331 Datta et al. Apr 2007 A1
20070101360 Gutta et al. May 2007 A1
20070106170 Dunseath, Jr. et al. May 2007 A1
20070112460 Kiselik May 2007 A1
20070135727 Virtanen et al. Jun 2007 A1
20070135728 Snyder et al. Jun 2007 A1
20070136753 Bovenschulte et al. Jun 2007 A1
20070150916 Begole et al. Jun 2007 A1
20070214471 Rosenberg Sep 2007 A1
20070225585 Washbon et al. Sep 2007 A1
20070225674 Molnar et al. Sep 2007 A1
20070226760 Neuhauser et al. Sep 2007 A1
20070235716 Delic et al. Oct 2007 A1
20070238945 Delic et al. Oct 2007 A1
20070244977 Atkins Oct 2007 A1
20070250846 Swix et al. Oct 2007 A1
20070265507 de Lemos Nov 2007 A1
20070282566 Whitlow et al. Dec 2007 A1
20070294132 Zhang et al. Dec 2007 A1
20070294705 Gopalakrishnan Dec 2007 A1
20070294706 Neuhauser et al. Dec 2007 A1
20080001600 deCharms Jan 2008 A1
20080010110 Neuhauser et al. Jan 2008 A1
20080024725 Todd Jan 2008 A1
20080027345 Kumada et al. Jan 2008 A1
20080040740 Plotnick et al. Feb 2008 A1
20080059997 Plotnick et al. Mar 2008 A1
20080065468 Berg et al. Mar 2008 A1
20080065721 Cragun Mar 2008 A1
20080081961 Westbrook et al. Apr 2008 A1
20080082019 Ludving et al. Apr 2008 A1
20080086356 Glassman et al. Apr 2008 A1
20080091512 Marci et al. Apr 2008 A1
20080097854 Young Apr 2008 A1
20080109840 Walter et al. May 2008 A1
20080125110 Ritter May 2008 A1
20080147448 Tunick et al. Jun 2008 A1
20080152300 Knee et al. Jun 2008 A1
20080162182 Cazares et al. Jul 2008 A1
20080195471 Dube Aug 2008 A1
20080204273 Crystal et al. Aug 2008 A1
20080208072 Fadem et al. Aug 2008 A1
20080214902 Lee et al. Sep 2008 A1
20080218472 Breen et al. Sep 2008 A1
20080221400 Lee et al. Sep 2008 A1
20080221472 Lee et al. Sep 2008 A1
20080221969 Lee et al. Sep 2008 A1
20080222670 Lee et al. Sep 2008 A1
20080222671 Lee et al. Sep 2008 A1
20080228077 Wilk et al. Sep 2008 A1
20080255949 Genco et al. Oct 2008 A1
20080295126 Lee et al. Nov 2008 A1
20090024049 Pradeep et al. Jan 2009 A1
20090024447 Pradeep et al. Jan 2009 A1
20090024448 Pradeep et al. Jan 2009 A1
20090024449 Pradeep et al. Jan 2009 A1
20090025023 Pradeep et al. Jan 2009 A1
20090030287 Pradeep et al. Jan 2009 A1
20090030303 Pradeep et al. Jan 2009 A1
20090030717 Pradeep et al. Jan 2009 A1
20090030930 Pradeep et al. Jan 2009 A1
20090036755 Pradeep et al. Feb 2009 A1
20090036756 Pradeep et al. Feb 2009 A1
20090037575 Crystal et al. Feb 2009 A1
20090062629 Pradeep et al. Mar 2009 A1
20090062680 Sandford Mar 2009 A1
20090062681 Pradeep et al. Mar 2009 A1
20090063255 Pradeep et al. Mar 2009 A1
20090063256 Pradeep et al. Mar 2009 A1
20090070798 Lee et al. Mar 2009 A1
20090082643 Pradeep et al. Mar 2009 A1
20090082689 Guttag et al. Mar 2009 A1
20090083129 Pradeep et al. Mar 2009 A1
20090088610 Lee et al. Apr 2009 A1
20090112077 Nguyen et al. Apr 2009 A1
20090132441 Muller et al. May 2009 A1
20090153328 Otani et al. Jun 2009 A1
20090221928 Einav et al. Sep 2009 A1
20090248496 Hueter et al. Oct 2009 A1
20090253996 Lee et al. Oct 2009 A1
20090271294 Hadi Oct 2009 A1
20090300672 Van Gulik Dec 2009 A1
20090327068 Pradeep et al. Dec 2009 A1
20090328089 Pradeep et al. Dec 2009 A1
20100004977 Marci et al. Jan 2010 A1
20100022821 Dubi et al. Jan 2010 A1
20100060300 Mueller et al. Mar 2010 A1
20100094702 Silberstein Apr 2010 A1
20100125219 Harris et al. May 2010 A1
20100145215 Pradeep et al. Jun 2010 A1
20100180029 Fourman Jul 2010 A1
20100183279 Pradeep et al. Jul 2010 A1
20100186031 Pradeep et al. Jul 2010 A1
20100186032 Pradeep et al. Jul 2010 A1
20100215289 Pradeep et al. Jul 2010 A1
20100198042 Popescu et al. Aug 2010 A1
20100214318 Pradeep et al. Aug 2010 A1
20100218208 Holden Aug 2010 A1
20100249538 Pradeep et al. Sep 2010 A1
20100249636 Pradeep et al. Sep 2010 A1
20100250325 Pradeep et al. Sep 2010 A1
20100257052 Zito et al. Oct 2010 A1
20100325660 Holden Dec 2010 A1
20110046473 Pradeep et al. Feb 2011 A1
20110046502 Pradeep et al. Feb 2011 A1
20110046503 Pradeep et al. Feb 2011 A1
20110046504 Pradeep et al. Feb 2011 A1
20110047121 Pradeep et al. Feb 2011 A1
20110059422 Masaoka Mar 2011 A1
20110105937 Pradeep et al. May 2011 A1
20110106621 Pradeep et al. May 2011 A1
20110106750 Pradeep et al. May 2011 A1
20110119124 Pradeep et al. May 2011 A1
20110119129 Pradeep et al. May 2011 A1
20110208515 Neuhauser Aug 2011 A1
20110237971 Pradeep et al. Sep 2011 A1
20110248729 Mueller et al. Oct 2011 A2
20110270620 Pradeep et al. Nov 2011 A1
20110276504 Pradeep et al. Nov 2011 A1
20110282231 Pradeep et al. Nov 2011 A1
20110282232 Pradeep et al. Nov 2011 A1
20110282749 Pradeep et al. Nov 2011 A1
20120036004 Pradeep et al. Feb 2012 A1
20120036005 Pradeep et al. Feb 2012 A1
20120046993 Hill Feb 2012 A1
20120054018 Pradeep et al. Mar 2012 A1
20120072289 Pradeep et al. Mar 2012 A1
20120108995 Pradeep et al. May 2012 A1
20120114305 Holden May 2012 A1
20120130800 Pradeep et al. May 2012 A1
20120245978 Crystal et al. Sep 2012 A1
20130024272 Pradeep et al. Jan 2013 A1
20130124365 Pradeep May 2013 A1
20130152506 Pradeep Jun 2013 A1
20130166373 Pradeep et al. Jun 2013 A1
20130185140 Pradeep et al. Jul 2013 A1
20130185141 Pradeep et al. Jul 2013 A1
20130185142 Pradeep et al. Jul 2013 A1
20130185144 Pradeep et al. Jul 2013 A1
20130185145 Pradeep et al. Jul 2013 A1
20130304540 Pradeep et al. Nov 2013 A1
20130332259 Pradeep et al. Dec 2013 A1
Foreign Referenced Citations (20)
Number Date Country
1374658 Nov 1974 GB
2221759 Feb 1990 GB
2005-160805 Dec 2003 JP
2006-305334 Mar 2006 JP
200422399 Jul 2006 KR
95-018565 Jul 1995 WO
1997017774 May 1997 WO
1997040745 Nov 1997 WO
1997041673 Nov 1997 WO
02-100241 Dec 2002 WO
02-102238 Dec 2002 WO
2004049225 Jun 2004 WO
2008-064431 Jun 2008 WO
2008121651 Oct 2008 WO
2008137579 Nov 2008 WO
2008-137581 Nov 2008 WO
2008-141340 Nov 2008 WO
2008154410 Dec 2008 WO
2009018374 Feb 2009 WO
2009052833 Apr 2009 WO
Non-Patent Literature Citations (465)
Entry
PCT International Search Report and the Written Opinion of the International Searching Authority for Application No. PCT/US 08/62275 dated Sep. 22, 2008.
Sutherland, Max, “Neuromarketing: What's It All About?” From Max Sutherland's Weblog at www.sutherlandsurvey.com, Feb. 2007, p. 1-5.
Barcelo, Francisco, et al., “Prefrontal Modulation of Visual Processing in Humans,” Nature Neuroscience, vol. 3, No. 4, Apr. 2000, pp. 399-403.
Canolty, R.T., et al., “High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex,” Science, vol. 313, Sep. 15, 2006, pp. 1626-1628.
Engel, Andreas, et al., “Dynamic Predictions: Oscillations and Synchrony in Top-Down Processing,” Macmillan Magazines Ltd, vol. 2, Oct. 2001, pp. 704-716.
Fries, Pascal, “A Mechanism for Cognitive Dynamics: Neuronal Communication Through Neuronal Coherence,” Trends in Cognitive Sciences, vol. 9, No. 10, Oct. 2005, p. 474-480.
Gazzalcy, Adam, et al., “Top-down Enhancement and Suppression of the Magnitude and Speed of Neural Activity,” Journal of Cognitive Neuroscience, vol. 17, No. 3, pp. 507-517.
Hartikainen, Kaisa, et al., “Emotionally Arousing Stimuli Compete with Attention to Left Hemispace,” Editorial Manager(tm) for NeuroReport, Manuscipt Draft, Manuscript No. NR-D-07-5935R1, submitted Sep. 8, 2007, 26 pages.
Knight, Robert T., “Contribution of Human Hippocampal Region to Novelty Detection,” Nature, vol. 383, Sep. 19, 1996, p. 256-259.
Knight Robert T., “Decreased Response to Novel Stimuli After Prefrontal Lesions in Man,” Electroencephalography and Clinical Neurophysiology, vol. 59, 1984, pp. 9-20.
Miltner, Woflgang H.R., et al., “Coherence of Gamma-band EEG Activity as a Basis For Associative Learning,” Nature, vol. 397, Feb. 4, 1999, pp. 434-436.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Apr. 25, 2013, 34 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/444,149, dated May 2, 2013, 27 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated May 8, 2013, 4 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated May 8, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated May 8, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated May 8, 2013, 7 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/569,711, dated May 14, 2013, 6 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,874, dated May 17, 2013, 6 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/778,828, dated May 23, 2013, 25 pages.
Office Communication to Applicant, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,388, dated May 24, 2013, 2 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated May 28, 2013, 12 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated May 31, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated Jun. 3, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Jun. 3, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Jun. 11, 2013, 7 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/545,455, dated Jun. 11, 2013, 9 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated Jun. 13, 2013, 5 pages.
Office Communication to Applicant, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,388, dated Jun. 13, 2013, 2 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated Jun. 21, 2013, 5 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/105,774, dated Jun. 26, 2013, 10 pages.
English Translation of Office Action, issued by the Israeli Patent Office in connection with Patent Application No. 203176, dated Apr. 23, 2013, 1 page.
English Translation of Notice Prior to Allowance, issued by the Israeli Patent Office in connection with Patent Application No. 203176, dated Jun. 30, 2013, 1 page.
Merriam-Webster Online Dictionary, Definition for “Resonance,” available at http://www.merriam-webster.com/dictionary/resonance, 4 pages.
Enghoff, Sigurd, Thesis: “Moving ICA and Time-Frequency Analysis in Event-Related EEG Studies of Selective Attention,” Technical University of Denmark, (Dec. 1999), 54 pages.
Zhang, P., “Will You Use Animation on Your Web Pages?” Doing Business on the Internet: Opportunities and Pitfalls, C. Romm and F. Sudweeks (eds.), Spring-Verlag (1999), 17 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,557, dated Jan. 29, 2013, 17 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/853,197, dated Jan. 29, 2013, 11 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated Jan. 31, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/113,863, dated Jan. 31, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated Jan. 31, 2013, 10 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,583, dated Feb. 1, 2013, 11 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/200,813, dated Feb. 1, 2013, 5pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated Feb. 4, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,262, dated Feb. 5, 2013, 15 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/868,531, dated Feb. 5, 2013, 8 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/853,213, dated Feb. 5, 2013, 10 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated Feb. 14, 2013, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,388, dated Feb. 15, 2013, 9 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,874, dated Apr. 16, 2013, 10 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,874, dated Apr. 22, 2013, 11 pages.
Notification to Grant Patent Right for Invention, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880104982.1, dated Jan. 14, 2013, 4 pages.
Extended European Search Report, issued by the European Patent Office in connection with European Application No. 08770372.4-1265/2152155, dated Feb. 6, 2013, 7 pages.
English Translation of Third Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880017883.X, dated Mar. 18, 2013, 8 pages.
Notification to Grant Patent Right for Invention, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880101500.7, dated Apr. 3, 2013, 2 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,660, dated Dec. 7, 2011, 8 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/113,863, dated Dec. 22, 2011, 17 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,262, dated Dec. 22, 2011, 17 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated Dec. 22, 2011, 16 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,557, dated Dec. 22, 2011, 17 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Dec. 22, 2011, 15 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/200,813, dated Dec. 22, 2011, 18 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,583, dated Dec. 29, 2011, 18 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,372, dated Jan. 3, 2012, 10 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/413,297, dated Jan. 4, 2012, 10 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/544,921, dated Jan. 9, 2012, 13 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/357,302, dated Jan. 17, 2012, 11 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,225, dated Jan. 20, 2012, 12 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,066, dated Jan. 24, 2012, 12 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Feb. 1, 2012, 17 pages.
Restriction Requirement, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/544,958, dated Feb. 10, 2012, 6 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,069, dated Feb. 14, 2012, 35 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/357,322, dated Feb. 14, 2012, 14 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated Feb. 16, 2012, 15 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated Feb. 17, 2012, 22 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,253, dated Feb. 17, 2012, 20 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,874, dated Feb. 17, 2012, 15 pages.
First Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880017883.X, on Nov. 30, 2011, 16 pages.
Meriam-Webster Online Dictionary definition for “tangible,” available at http://www.meriam-webster.com/dictionary/tangible, 1 page.
Mosby's Dictionary of Medicine, Nursing, & Health Professions, 2009, Mosby, Inc., Definition of Alpha Wave, 1 page.
Mosby's Dictionary of Medicine, Nursing, & Health Professions, 2009, Mosby, Inc., Definition of Beta Wave, 1 page.
U.S. Appl. No. 13/249,512, filed Sep. 30, 2011, (unpublished).
U.S. Appl. No. 13/249,525, filed Sep. 30, 2011, (unpublished).
U.S. Appl. No. 13/288,504, filed Nov. 3, 2011, (unpublished).
U.S. Appl. No. 13/288,571, filed Nov. 3, 2011, (unpublished).
U.S. Appl. No. 12/304,234, filed Nov. 3, 2011, (unpublished).
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,372, dated May 23, 2012, 11 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,388, dated Aug. 28, 2012, 3 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,380, dated Jun. 8, 2012, 12 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,372, dated Aug. 3, 2012, 8 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/545,455, dated Aug. 29, 2012, 11 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,685, dated Jul. 30, 2012, 15 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/778,810, dated Aug. 31, 2012, 12 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/778,828, dated Aug. 30, 2012, 9 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated Sep. 17, 2012, 11 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,262, dated Sep. 17, 2012, 11 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,253, dated Sep. 17, 2012, 17 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/413,297, dated Sep. 18, 2012, 18 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Sep. 18, 2012, 17 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated Sep. 19, 2012, 10 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated Sep. 19, 2012, 10 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/200,813, dated Sep. 20, 2012, 11 pages.
Second Office Action, issued by the State Intellectual Property Office of China in connection with Chinese Patent Application No. 200880017883.X, dated Aug. 10, 2012 (9 pages).
Oberman et al., “EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots,” Elsevier, Neurocomputing vol. 70 (2007), Jan. 2, 2007 (10 pages).
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,066, dated Sep. 29, 2011, 37 pages.
Restriction Requirement, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,225, dated Oct. 3, 2011, 6 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,388, dated Oct. 12, 2011, 27 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,372, dated Oct. 13, 2011, 22 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,380, dated Oct. 19, 2011, 21 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/357,315, dated Oct. 26, 2011, 41 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,240, dated Oct. 27, 2011, 39 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,221, dated Nov. 28, 2011, 44 pages.
Decision of Rejection, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880104982.1, dated Sep. 23, 2011, 10 pages.
Extended European Search Report, issued by the European Patent Office in connection with European Application No. 11006934.1-2221, dated Oct. 25, 2011, 5 pages.
Ambler et al., “Ads on the Brain; A Neuro-Imaging Comparison of Cognitive and Affective Advertising Stimuli,” London Business School, Centre for Marketing Working Paper, No. 00-902, (Mar. 2000), 23 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/868,531, dated Mar. 1, 2012, 6 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,851, dated Mar. 12, 2012, 14 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,685, dated Mar. 29, 2012, 17 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/846,242, dated Mar. 29, 2012, 15 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,388, dated Apr. 6, 2012, 6 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/357,315, dated Apr. 9, 2012, 17 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/544,958, dated May 2, 2012, 14 pages.
English Translation of Office Action, issued by the Israel Patent Office in connection with Patent Application No. 203176, dated Feb. 21, 2012, 2 pages.
English Translation of Office Action, issued by the Israel Patent Office in connection with Patent Application No. 203177, dated Mar. 1, 2012, 2 pages.
Second Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880101500.7, dated Apr. 5, 2012, 5 pages.
Padgett et al., “Categorical Perception in Facial Emotion Classification,” In Proceedings of the 18th Annual Conference of the Cognitive Science Society, pp. 249-253 (1996), 5 pages.
de Gelder et al., “Categorical Perception of Facial Expressions: Categories and their Internal Structure,” Cognition and Emotion, vol. 11(1), pp. 1-23 (1997), 23 pages.
Bimler et al., “Categorical perception of facial expressions of emotion: Evidence from multidimensional scaling,” Cognition and Emotion, vol. 15(5), pp. 633-658 (Sep. 2001), 26 pages.
Newell et al., “Categorical perception of familiar objects,” Cognition, vol. 85, Issue 2, pp. 113-143 (Sep. 2002), 31 pages.
Meriam Webster Online Dictionary, Definition of Virtual Reality, available at http://www.meriam-webster.com/dictionary/virtual%20reality, 2 page.
Griss et al., “Characterization of micromachined spiked biopotential electrodes,” Biomedical Engineering, IEEE Transactions (Jun. 2002), 8 pages.
“User monitoring,” Sapien Systems, available at http://web.archive.org/web/20030818043339/http:/www.sapiensystems.com/eyetracking.html, (Aug. 18, 2003), 1 page.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/357,302, dated May 7, 2012, 16 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/868,531, dated May 8, 2012, 16 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,696, dated May 15, 2012, 16 pages.
Restriction Requirement, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/545,455, dated Jun. 13, 2012, 5 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,225, dated Jun. 15, 2012, 9 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/544,934, dated Jun. 18, 2012, 11 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,066, dated Jun. 21, 2012, 9 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,660, dated Jul. 10, 2012, 13 pages.
Second Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880019166.0, dated Jun. 5, 2012, 8 pages.
Second Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880104982.1, dated Jun. 29, 2012, 5 pages.
Barreto et al., “Physiologic Instrumentation for Real-time Monitoring of Affective State of Computer Users,” WSEAS International Conference on Instrumentation, Measurement, Control, Circuits and Systems (IMCCAS), (2004), 6 pages.
Jung et al., “Analysis and Visualization of Single-Trial Event-Related Potentials,” Human Brain Mapping vol. 14, 166-185 (2001), 20 pages.
Krugman, “Brain Wave Measures of Media Involvement,” Journal of Advertising Research vol. 11, 3-9 (Feb. 1971), 7 pages.
The Mathworks, Inc., “MATLAB Data Analysis: Version 7,” p. 4-19 (2005), 3 pages.
Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance a review and analysis,” Brain Research Reviews, vol. 29, 169-195, (1999), 27 pages.
Krakow et al., “Methodology: EEG-correlated fMRI,” Functional Imaging in the Epilepsies, (Lippincott Williams & Wilkins, 2000), 17 pages.
Allen et al., “A Method of Removing Imaging Artifact from Continuous EEG Recorded during Functional MRI,” Neuroimage, vol. 12, 230-239, (Aug. 2000).
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/853,213, dated Sep. 7, 2012, 9 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,583, dated Sep. 26, 2012, 14 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Sep. 27, 2012, 14 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,557, dated Sep. 28, 2012, 12 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/113,863, dated Oct. 1, 2012, 12 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/444,149, dated Oct. 4, 2012, 9 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,851, dated Oct. 4, 2012, 14 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,388, dated Oct. 5, 2012, 6 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/853,197, dated Oct. 16, 2012, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/868,531, dated Oct. 22, 2012, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/200,813, dated Oct. 30, 2012, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated Nov. 2, 2012, 5 pages.
Restriction Requirement, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,225, dated Nov. 2, 2012, 5 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,066, dated Nov. 13, 2012, 9 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/113,863, dated Nov. 16, 2012, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated Nov. 21, 2012, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/868,531, dated Nov. 23, 2012, 5 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/846,242, dated Nov. 29, 2012, 14 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/913,102, dated Dec. 7, 2012, 7 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/544,958, dated Dec. 10, 2012, 16 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/853,197, dated Dec. 20, 2012, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated Dec. 21, 2012, 14 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated Dec. 21, 2012, 10 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,262, dated Dec. 21, 2012, 19 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated Dec. 21, 2012, 12 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,557, dated Dec. 21, 2012, 14 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Dec. 21, 2012, 17 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/200,813, dated Dec. 21, 2012, 9 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/853,213, dated Dec. 21, 2012, 10 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/868,531, dated Dec. 26, 2012, 2 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/113,863, dated Dec. 31, 2012, 5 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,583, dated Dec. 31, 2012, 10 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,874, dated Jan. 4, 2013, 17 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,583, dated Jan. 11, 2013, 11 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,225, dated Jan. 11, 2013, 11 pages.
Recertified IDS and Interview Summary, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/853,197, dated Jan. 16, 2013, 6 pages.
English Translation of Office Action, issued by the Israel Patent Office in connection with Patent Application No. 203176, dated Sep. 27, 2012, 1 pages.
English Translation of Office Action, issued by the Israel Patent Office in connection with Patent Application No. 203177, dated Sep. 27, 2012, 1 pages.
Office Action, issued by the Japanese Patent Office in connection with Patent Application No. 2010-501190, dated Oct. 5, 2012, 5 pages.
English Translation of Office Action, issued by the Japanese Patent Office in connection with Patent Application No. 2010-506646, dated Oct. 23, 2012, 3 pages.
English Translation of Office Action, issued by the Israeli Patent Office in connection with Patent Application No. 201187, dated Nov. 27, 2012, 2 pages.
English Translation of Third Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880101500.7, dated Nov. 21 2012, 5 pages.
Extended European Search Report, issued by the European Patent Office in connection with European Application No. 08796890.5-2319/2170161, dated Dec. 7, 2012, 9 pages.
Clemons, “Resonance Marketing in the Age of the Truly Informed Consumer: Creating Profits through Differentiation and Delight,” Wharton Information Strategy & Economics Blog 2, available at http://opim.wharton.upenn.edu/˜clemons/blogs/resonanceblog.pdf, (Mar. 28, 2007), 8 pages.
Palva et al., “Phase Synchrony Among Neuronal Oscillations in the Human Cortex,” Journal of Neuroscience 25 (2005), 3962-3972, 11 pages.
Lachaux et al., “Measuring Phase Synchrony in Brain Signals,” Human Brain Mapping 8 (1999), 194-208, 15 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated Jul. 8, 2011, 16 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,211, dated Jan. 7, 2011, 19 pages.
Office Action issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,221, dated Apr. 15, 2011, 24 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/113,863, dated Jun. 9, 2011, 12 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/113,863, dated Dec. 27, 2010, 15 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,240, dated Jun. 10, 2011, 12 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,262, dated May 26, 2011, 15 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,262, dated Dec. 9, 2010, 13 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,066, dated Jan. 21, 2011, 16 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,066, dated Oct. 28, 2010, 14 pages.
Notice of Panel Decision from Pre-Appeal Brief Review, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,066, dated May 31, 2011, 2 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated Dec. 23, 2010, 14 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,074, dated Jun. 9, 2011, 10 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,874, dated Jul. 7, 2011, 14 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,874, dated Dec. 27, 2010, 17 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,557, dated Dec. 27, 2010, 14 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,557, dated Jun. 9, 2011, 12 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,583, dated Jun. 21, 2011, 14 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,583, dated Dec. 27, 2010, 17 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Jun. 14, 2011, 13 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Dec. 27, 2010, 17 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/200,813, dated Jul. 6, 2011, 13 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/200,813, dated Dec. 27, 2010, 14 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,372, dated Jun. 7, 2011, 10 pages.
Final Rejection, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,069, dated Feb. 17, 2011, 32 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,069, dated Oct. 29, 2010, 21 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/357,315, dated May 4, 2011, 9 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,380, dated Jun. 7, 2011, 9 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/413,297, dated Jul. 18, 2011, 9 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,685, dated Jul. 12, 2011, 15 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/056,190, dated Aug. 10, 2011, 28 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/357,322, dated Aug. 23, 2011, 12 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/135,069, dated Aug. 26, 2011, 33 pages.
Restriction Requirement, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,253, dated Sep. 2, 2011, 7 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,372, dated Sep. 12, 2011, 12 pages.
Restriction Requirement, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,851, dated Sep. 12, 2011, 7 pages.
International Preliminary Report on Patentability, issued by the International Bureau of WIPO in connection with International Application No. PCT/US08/058264, dated Sep. 29, 2009, 1 page.
International Search Report, issued by the International Searching Authority in connection with International Application No. PCT/US08/058264, dated Aug. 1, 2008, 2 pages.
Written Opinion, issued by the International Searching Authority in connection with International Application No. PCT/US08/058264, dated Aug. 1, 2008, 5 pages.
International Preliminary Report on Patentability, issued by the International Bureau of WIPO in connection with International Application No. PCT/US08/062273, dated Nov. 3, 2009, 1 page.
International Search Report, issued by the International Searching Authority in connection with International Application No. PCT/US08/062273, dated Sep. 5, 2008, 2 pages.
Written Opinion, issued by the International Searching Authority in connection with International Application No. PCT/US08/062273, dated Sep. 5, 2008, 4 pages.
International Preliminary Report on Patentability, issued by the International Bureau of WIPO in connection with International Application No. PCT/US08/062275, dated Nov. 3, 2009, 1 page.
International Preliminary Report on Patentability, issued by the International Bureau of WIPO in connection with International Application No. PCT/US08/063984, dated Nov. 17, 2009, 1 page.
International Search Report, issued by the International Bureau in connection with International Application No. PCT/US08/063984, dated Sep. 29, 2008, 3 pages.
Written Opinion, issued by the International Bureau in connection with International Application No. PCT/US08/063984, dated Sep. 29, 2008, 4 pages.
International Preliminary Report on Patentability, issued by the International Bureau of WIPO in connection with International Application No. PCT/US08/063989, dated Nov. 17, 2009, 1 page.
International Search Report, issued by the International Bureau in connection with International Application No. PCT/US08/063989, dated Jul. 17, 2008, 2 pages.
Written Opinion, issued by the International Bureau in connection with International Application No. PCT/US08/063989, dated Jul. 17, 2008, 4 pages.
International Search Report and Written Opinion, issued by the International Bureau in connection with International Application No. PCT/US08/066166, dated Aug. 25, 2008, 8 pages.
International Preliminary Report on Patentability, issued by the International Bureau of WIPO in connection with International Application No. PCT/US08/066166, dated Dec. 7, 2009, 1 page.
International Preliminary Report on Patentability, issued by the International Bureau of WIPO in connection with International Application No. PCT/US08/071639, dated Feb. 2, 2010, 1 page.
International Search Report, issued by the International Bureau in connection with International Application No. PCT/US08/071639, dated Oct. 22, 2008, 3 pages.
Written Opinion, issued by the International Bureau in connection with International Application No. PCT/US08/071639, dated Oct. 22, 2008, 4 pages.
International Preliminary Report on Patentability, issued by the International Bureau of WIPO in connection with International Application No. PCT/US08/074467, dated Mar. 2, 2010, 1 page.
International Search Report, issued by the International Bureau in connection with International Application No. PCT/US08/074467, dated Nov. 17, 2008, 2 pages.
Written Opinion, issued by the International Bureau in connection with International Application No. PCT/US08/074467, dated Nov. 17, 2008, 4 pages.
International Preliminary Report of Patentability, issued by the International Bureau in connection with International Application No. PCT/US10/021535, dated Jul. 26, 2011, 1 page.
International Search Report, issued by the International Bureau in connection with International Application No. PCT/US10/021535, dated Mar. 23, 2010, 3 pages.
Written Opinion, issued by the International Bureau in connection with International Application No. PCT/US10/021535, dated Mar. 23, 2010, 4 pages.
International Preliminary Report of Patentability, issued by the International Bureau in connection with International Application No. PCT/US09/065368, dated Jun. 23, 2011, 2 pages.
International Search Report, issued by the International Bureau in connection with International Application No. PCT/US09/065368, dated Jan. 21, 2010, 3 pages.
Written Opinion, issued by the International Bureau in connection with International Application No. PCT/US09/065368, dated Jan. 21, 2010, 7 pages.
Extended European Search Report, issued by the European Patent Office in connection with European Application No. 08744383.4-2221/2130146, dated Jul. 27, 2011, 6 pages.
Extended European Search Report, issued by the European Patent Office in connection with European Application No. 10173095.0-2221, dated Dec. 17, 2010, 3 pages.
Extended European Search Report, issued by the European Patent Office in connection with European Application No. 10189294.1-2221, dated Mar. 21, 2011, 7 pages.
First Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880104982.1, dated Jan. 25, 2011, 15 pages.
First Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 2008801015007, dated May 25, 2011, 8 pages.
First Office Action, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880019166.0, dated Jul. 22, 2011, 16 pages.
Edgar, et al., “Digital Filters in ERP Research,” in Event-Related Potentials: A Methods Handbook pp. 85-113, (Todd C. Handy, ed., 2005), 15 pages.
Simon-Thomas, et al, “Behavioral and Electrophysiological Evidence of a Right Hemisphere Bias for the Influence of Negative Emotion on Higher Cognition,” Journal of Cognitive Neuroscience, pp. 518-529, Massachusetts Institute of Technology (2005), 12 pages.
Friedman, et al., “Event-Related Potential (ERP) Studies of Memory Encoding and Retrieval: A Selective Review,” Microscopy Research and Technique 51:6-26, Wiley-Less, Inc. (2000), 23 pages.
Gaillard, “Problems and Paradigms in ERP Research,” Biological Psychology, Elsevier Science Publisher B.V. (1988), 10 pages.
Hopf, et al., “Neural Sources of Focused Attention in Visual Search,” Cerebral Cortex, 10:1233-1241, Oxford University Press, (Dec. 2000), 9 pages.
Swick, et al., “Contributions of Prefrontal Cortex to Recognition Memory: Electrophysiological and Behavioral Evidence,” Neuropsychology, vol. 13, No. 2, pp. 155-170, American Psychological Association, Inc. (1999), 16 pages.
Luck, et al., “The sped of visual attention in schizophrenia: Electrophysiological and behavioral evidence,” Schizophrenia Research, pp. 174-195, Elsevier B.V. www.sciencedirect.com, (2006), 22 pages.
Makeig, et al., “Mining event-related brain dynamics,” Trends in Cognitive Sciences, vol. 8, No. 5, (May 2004), www.sciencedirect.com, 7 pages.
Herrmann, et al., “Mechanisms of human attention: event-related potentials and oscillations,” Neuroscience and Biobehavioral Reviews, pp. 465-476, Elsevier Science Ltd., www.elsvevier.com/locate/neubiorev, (2001), 12 pages.
Picton, et al., “Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria,” Psychophysiology, pp. 127-152, Society for Psychophysiological Research, (2000), 26 pages.
Yamaguchi, et al., “Rapid-Prefrontal-Hippocampal Habituation to Novel Events,” The Journal of Neuroscience, pp. 5356-5363, Society for Neuroscience, (Apr. 29, 2004), 8 pages.
Rugg, et al., “The ERP and cognitive psychology: conceptual issues,” (Sep. 1996), 7 pages.
Spencer, “Averaging, Detection, and Classification of Single-Trial ERPs,” in Event-Related Potentials: A Methods Handbook, pp. 209-227, (Todd C. Handy, ed., 2005), 10 pages.
Srinivasan, “High-Resolution EEG: Theory and Practice,” in Event-Related Potentials: A Methods Handbook, pp. 167-188, (Todd C. Handy, ed., 2005), 12 pages.
Taheri, et al., “A dry electrode for EEG recording,” Electroencephalography and clinical Neurophysiology, pp. 376-383, Elsevier Science Ireland Ltd. (1994), 8 pages.
Talsma, et al., “Methods for the Estimation and Removal of Artifacts and Overlap in ERP Waveforms,” in Event-Related Potentials: A Methods Handbook, pp. 115-148, (Todd C. Handy, ed., 2005), 22 pages.
Davidson, et al., “The functional neuroanatomy of emotion and affective style,” Trends in Cognitive Sciences, vol. 3, No. 1, (Jan. 1999), 11 pages.
Vogel, et al., “Electrophysiological Evidence for a Postperceptual Locus of Suppression During the Attentional Blink,” Journal of Experimental Psychology: Human Perception and Performance, vol. 24, No. 6, pp. 1656-1674, (1998), 19 pages.
Rizzolatti et al., “The Mirror-Neuron System,” Annu. Rev. Neurosci., vol. 27, pp. 169-192, (Mar. 5, 2004), 30 pages.
Woldorf, “Distortion of ERP averages due to overlap from temporally adjacent ERPs: Analysis and correction,” Psychophysiology, Society for Psychophysiological Research, Cambridge University Press (1993), 22 pages.
Woodman, et al., “Serial Deployment of Attention During Visual Search,” Journal of Experimental Psychology: Human Perception and Performance, vol. 29, No. 1, pp. 121-138, American Physiological Association (2003), 18 pages.
Knight, et al., “Prefrontal cortex regulates inhibition and excitation in distributed neural networks,” Acta Psychologica vol. 101, pp. 159-178, Elsevier (1999), 20 pages.
Buschman, et al., “Top-Down versus Bottom-Up Control of Attention in the Prefrontal and posterior Parietal Cortices,” Science, vol. 315, www.sciencemag.org/cgi/content/full/315/5820/1860, American Association for the Advancement of Science, (2007), 4 pages.
D'Esposito, “From cognitive to neural models of working memory,” Phil. Trans. R. Soc. B, doi: 10.1098/rstb.2007.2086, (Mar. 30, 2007), 12 pages.
Dien, et al., “Application of Repeated Measures ANOVA to High-Dens Dataset: A Review and Tutorial,” in Event-Related Potentials: A Methods Handbook pp. 57-82, (Todd C. Handy, ed., 2005), 14 pages.
Ambler, “Salience and Choice: Neural Correlates of Shopping Decisions,” Psychology & Marketing, vol. 21, No. 4, p. 247-261, Wiley Periodicals, Inc., doi: 10.1002/mar20004, (Apr. 2004), 16 pages.
Hazlett, et al., “Emotional Response to Television Commercials: Facial EMG vs. Self-Report,” Journal of Advertising Research, (Apr. 1999), 17 pages.
Makeig, et al., “Dynamic Brain Sources of Visual Evoked Responses,” Science, vol. 295, www.sciencemag.org, (Jan. 25, 2002), 5 pages.
Lewis et al., “Market Researchers make Increasing use of Brain Imaging,” ACNR, vol. 5, No. 3, pp. 36-37, (Jul./Aug. 2005), 2 pages.
Haq, “This Is Your Brain on Advertising,” BusinessWeek, Market Research, (Oct. 8, 2007), 3 pages.
EEG Protocols, “Protocols for EEG Recording,” retrieved from the Internet on Aug. 23, 2011, http://www.q-metrx.com/EEGrecordingProtocols.pdf, (Nov. 13, 2007), 3 pages.
Aaker et al., “Warmth in Advertising: Measurement, Impact, and Sequence Effects,” Journal of Consumer Research, vol. 12, No. 4, pp. 365-381, (Mar. 1986), 17 pages.
Belch et al., “Psychophysiological and cognitive Response to Sex in Advertising,” Advances in Consumer Research, vol. 9, pp. 424-427, (1982), 6 pages.
Ruchkin et al., “Modality-specific processing streams in verbal working memory: evidence from spatio-temporal patterns of brain activity,” Cognitive Brain Research, vol. 6, pp. 95-113, Elsevier, (1997), 19 pages.
Page et al., “Cognitive Neuroscience, Marketing and Research,” Congress 2006—Foresight—The Predictive Power of Research Conference Papers, ESOMAR Publications, (Sep. 17, 2006), 25 pages.
Braeutigam, “Neuroeconomics—From neural systems to economic behavior,” Brain Research Bulletin, vol. 67, pp. 355-360, Elsevier, (2005), 6 pages.
Lee et al., “What is ‘neuromarketing’? A discussion and agenda for future research,” International Journal of Psychophysiology, vol. 63, pp. 199-204, Elsevier (2006), 6 pages.
Crawford et al., “Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: laterality and regional EEG activity differences,” International Journal of Psychophysiology, vol. 24, pp. 239-266, (Dec. 1996), 28 pages.
Desmet, “Measuring Emotion: Development and Application of an Instrument to Measure Emotional Responses to Products,” to be published in Funology: From Usability to Enjoyment, pp. 111-123, Kluwer Academic Publishers, (Blythe et al., eds., 2004), 13 pages.
Bagozzi et al., “The Role of Emotions in Marketing,” Journal of the Academy of Marketing Science, vol. 27, No. 2, pp. 184-206, Academy of Marketing Science (1999), 23 pages.
Blakeslee, “If You Have a ‘Buy Button’ in Your Brain, What Pushes It?” The New York Times, www.nytimes.com, (Oct. 19, 2004), 3 pages.
Osborne, “Embedded Watermarking for image Verification in Telemedicine,” Thesis submitted for the degree of Doctor of Philosophy, Electrical and Electronic Engineering, University of Adelaide (2005), 219 pages.
Nielsen, “Neuroinformatics in Functional Neurimaging,” Informatics and Mathematical Modelling, Technical University of Denmark, (Aug. 30, 2002), 241 pages.
Arousal in Sport, in Encyclopedia of Applied Psychology, vol. 1, p. 159, retrieved from Google Books, (Spielberger, ed., Elsevier Academic Press, 2004), 1 page.
Ziegenfuss, “Neuromarketing: Advertising Ethical & Medical Technology,” The Brownstone Journal, vol. XII, Boston University, pp. 69-73, (May 2005), 5 pages.
Lekakos, “Personalized Advertising Services Through Hybrid Recommendation Methods: The Case of Digital Interactive Television,” Department of Informatics, Cyprus University, (2004), 11 pages.
U.S. Appl. No. 12/731,868, filed Mar. 25, 2010, (unpublished).
U.S. Appl. No. 13/045,457, filed Mar. 10, 2011, (unpublished).
U.S. Appl. No. 12/778,810, filed May 12, 2010, (unpublished).
U.S. Appl. No. 12/778,828, filed May 12, 2010, (unpublished).
U.S. Appl. No. 13/104,821, filed May 10, 2011, (unpublished).
U.S. Appl. No. 13/104,840, filed May 10, 2011, (unpublished).
U.S. Appl. No. 12/853,197, filed Aug. 9, 2010, (unpublished).
U.S. Appl. No. 12/884,034, filed Sep. 16, 2010, (unpublished).
U.S. Appl. No. 12/868,531, filed Aug. 25, 2010, (unpublished).
U.S. Appl. No. 12/913,102, filed Oct. 27, 2010, (unpublished).
U.S. Appl. No. 12/853,213, filed Aug. 9, 2010, (unpublished).
U.S. Appl. No. 13/105,774, filed May 11, 2011, (unpublished).
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/182,874, dated Jul. 29, 2013, 6 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Sep. 12, 2013, 13 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Sep. 13, 2013, 7 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/778,828, dated Oct. 8, 2013, 11 pages.
English Translation of Office Action, issued by the Japanese Patent Office in connection with Patent Application No. 2010-523112, dated Jul. 30, 2013, 2 pages.
English Translation of Decision on Rejection, issued by the Chinese Patent Office in connection with Patent Application No. 200880017883.X, dated Aug. 5, 2013, 13 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Nov. 6, 2013, 7 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated Oct. 23, 2013, 17 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/444,149, dated Nov. 19, 2013, 11 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,253, dated Dec. 3, 2013, 16 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/199,596, dated Dec. 23, 2013, 7 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/105,774, dated Jan. 16, 2014, 11 pages.
English Translation of Office Action, issued by the Japanese Patent Office in connection with Patent Application No. 2010-520159, dated Oct. 1, 2013, 2 pages.
Extended European Search Report, issued by the European Patent Office in connection with European Application No. 08798799.6-1657/2180825, dated Nov. 4, 2013, 9 pages.
Coan et al., “Voluntary Facial Expression and Hemispheric Asymmetry Over the Frontal Cortex,” Psycophysiology (Nov. 2001), 912-924, 14 pages.
Duchowski, “A Breadth-First Survey of Eye-tracking Applications,” Beahavior Research Methods, Instruments, and Computers (Nov. 2002), 455-470, 16 pages.
Heo et al., “Wait! Why is it Not Moving? Attractive and Distractive Ocular Responses to Web Ads,” Paper presented to AEJMC, (Aug. 2001) Washington, DC, available at http://www.psu.edu/dept/medialab/researchpage/newabstracts/wait.html, 3 pages.
Rothschild et al., “Predicting Memory for Components of TV Commercials from EEG,” Journal of Consumer Research (Mar. 1990), p. 472-478, 8 pages.
Beaver, John D., et al., “Individual Differences in Reward Drive Predict Neural Responses to Images of Food”, J. of Neuroscience, (May 10, 2006), 5160-5166, 7 pages.
Tapert, Susan F., et al., “Neural Response to Alcohol Stimuli in Adolescents With Alcohol Use Disorder”, Arch Gen Psychiatry (Jul. 2003), 727-735, 9 pages.
Shandlen, Michael N. et al., “A Computational Analysis of the Relationship between Neuronal and Behavioral Responses to Visual Motion”, The Journal of Neuroscience, (Feb. 15, 1996) 1486-1510, 25 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,511, dated Jan. 30, 2014, 6 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,541, dated Jan. 30, 2014, 12 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,550, dated Jan. 31, 2014, 5 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/965,805, dated Feb. 3, 2014, 15 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/444,149, dated Feb. 3, 2014, 5 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Feb. 6, 2014, 17 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,564, dated Feb. 10, 2014, 14 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 112/884,034, dated Feb. 10, 2014, 18 pages.
Mehta, A. et al., “Reconsidering Recall and Emotion in Advertising”, Journal of Advertising Research, (Mar. 2006), 49-56, 8 pages.
Cheung, Kwok-Wai, et al., “Mining Customer Product Ratings for Personalized Marketing,” Decision Support Systems 35 (2003) 231-243, 13 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,253, dated Aug. 4, 2015, 30 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 14/177,698, dated Aug. 19, 2015, 12 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Sep. 11, 2015, 7 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,550, dated Sep. 2, 2015, 5 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,380, dated Sep. 10, 2015, 15 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated Sep. 16, 2015, 3 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,525, dated Sep. 30, 2015, 12 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/965,805, dated Sep. 30, 2015, 7 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,541, dated Jul. 23, 2014, 13 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/965,805, dated Aug. 6, 2014, 18 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,511, dated Aug. 13, 2014, 4 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,550, dated Aug. 14, 2014, 4 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,564, dated Aug. 15, 2014, 15 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated Aug. 21, 2014, 20 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,685, dated Sep. 4, 2014, 16 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/105774, dated Sep. 18, 2014, 15 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Sep. 24, 2014, 21 pages.
Decision to Grant Patent, issued by the Korean Patent Office in connection with Patent Application No. 10-2009-7022551, dated Aug. 13, 2014, 3 pages.
Ekman, P., Friesen, W., Measuring Facial Movement, Environmental Psychology and Nonverbal Behavior, 1 (1) (Fall 1976), pp. 56-75, 20 pages.
Ekman, P., Friesen, W.V., Facial Action Coding System: A Technique for Measurement of Facial Movement, Consulting Psychologists Press, Palo Alto, Calif. (1978).
Ekman, P., Friesen, W., Unmasking the Face—A Guide to Recognizing Emotions from Facial Clues, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1979).
Ekman, P., Friesen, W., Ancoli, S., Facial Signs of Emotional Experience, J. Personality & Social Psychology, 39(6) (Dec. 1980), pp. 1125-1134, 10 pages.
Izard, C. E., The Maximally Discriminative Facial Movement Coding System, (Rev. ed.), Instructional Resources Center, University of Delaware, Newark, Del. (1983).
Izard, C., Dougherty, L., Hembree, E., A System for Identifying Affect Expressions by Holistic Judgments (AFFEX), Instructional Resources Center, University of Delaware, Newark, Del. (1983).
Jia, X., Nixon, M.S., Extending the Feature Set for Automatic Face Recognition, International Conference on Image Processing and Its Applications (Apr. 7-9, 1992), 6 pages.
Lisetti, C., Nasoz, F., Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals, EURASIP J. Applied Signal Processing, 11 (Sep. 2004), pp. 1672-1687, 16 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/945,357, dated Nov. 1, 2016, 22 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,372, dated Nov. 7, 2016, 3 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,372, dated Nov. 14, 2016, 18 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,685, dated Nov. 14, 2016, 10 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated Nov. 29, 2016, 27 pages.
First Examination Report, issued by the European Patent Office in connection with European Application No. 08796890.5, dated Sep. 29, 2016, 4 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,550, dated May 27, 2014, 8 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,511, dated May 29, 2014, 8 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,660, dated Jun. 2, 2014, 13 pages.
Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,253, dated Jun. 5, 2014, 25 pages.
Decision to Grant Patent, issued by the Japanese Patent Office in connection with Patent Application No. 2010-523112, dated Apr. 8, 2014, 4 pages.
English Translation of Office Action, issued by the Israel Patent Office in connection with Patent Application No. 201187, dated Apr. 23, 2014, 2 pages.
Darrow, Chester, “Psychological and psychophysiological significance of the electroencephalogram,” Psychological Review (May 1947) 157-168, 12 pages.
Stamm, John, “On the Relationship between Reaction Time to Light and Latency of Blocking the Alpha Rhythm,” Electroencephalography and Clinical Neurophysiology (Feb. 1952), 61-68, 8 pages.
Mizuki, Yashushi, et al., “Periodic Appearance of the Theta Rhythm in the Frontal Midline Area During Performance of a Mental Task,:” Electroencephalography and Clinical Neurophysiology (Aug. 1980), 345-351, 7 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,380, dated Jun. 17, 2016, 20 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,660, dated Jul. 29, 2016, 67 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,550, dated Jul. 27, 2016, 20 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,372, dated Aug. 8, 2016, 3 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/413,297, dated Aug. 16, 2016, 5 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,372, dated Aug. 25, 2016, 61 pages.
English Translation of Notification of Provisional Rejection, issued by the Korean Patent Office in connection with Patent Application No. 10-2010-7001406, dated Jul. 27, 2016, 4 pages.
Decision on Appeal, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/122,253, dated Mar. 31, 2017, 37 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,525, dated Apr. 27, 2017, 45 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,372, dated May 25, 2017, 2017, 9 pages.
Decision on Appeal, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Jun. 5, 2017, 39 pages.
Communication Pursuant to Article 94(3), issued by the European Patent Office in connection with European Application No. 08744383.4-1958, dated Apr. 19, 2017, 6 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,380, dated Dec. 15, 2016, 31 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,344, dated Jan. 26, 2017, 52 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/965,805, dated Jan. 31, 2017, 25 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/413,297, dated Feb. 9, 2017, 7 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated Mar. 2, 2017, 14 pages.
English Translation of Notice Prior to Allowance, issued by the Israeli Patent Office in connection with Patent Application No. 201187, dated Feb. 14, 2017, 1 page.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,380, dated Mar. 22, 2016, 27 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,685, dated Mar. 30, 2016, 23 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,525, dated Apr. 6, 2016, 3 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,564, dated Apr. 8, 2016, 7 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/965,805, dated Apr. 21, 2016, 33 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/234,372, dated May 12, 2016, 61 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated May 20, 2016, 69 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/945,357, dated May 20, 2016, 22 pages.
M. Corbetta et al., “Control of Goal-Directed and Stimulus-Driven Attention in the Brain,” Nature Reviews Neuroscience, vol. 3, pp. 201-215 (Mar. 2002), 15 pages.
Becker, “A Study of Web Usability for Older Adults Seeking Online Health Resources,” ACM Transactions on Computer-Human Interaction, vol. 11, No. 4, pp. 387-406 (Dec. 2004), 20 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,541, dated Dec. 18, 2015, 7 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,685, dated Dec. 17, 2015, 14 pages.
Notice of Allowance, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 14/177,698, dated Jan. 14, 2016, 35 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,660, dated Jan. 22, 2016, 38 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,525, dated Feb. 3, 2016, 23 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,511, dated Feb. 18, 2016, 5 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,372, dated Feb. 23, 2016, 24 pages.
English Translation of Notification of Provisional Rejection, issued by the Korean Patent Office in connection with Patent Application No. 10-2010-7001406, dated Jan. 26, 2016, 1 page.
English Translation of Notification to Grant Patent Right for Invention, issued by the State Intellectual Property Office of P.R. China in connection with Patent Application No. 200880017883.X, dated Feb. 3, 2016, 2 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,344, dated Nov. 20, 2015, 28 pages.
Translation of Reexamination Decision, issued by the Chinese Patent Office in connection with Patent Application No. 200880017883.X, dated Nov. 13, 2015, 1 page.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,541, dated Feb. 12, 2015, 6 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,550, dated Feb. 20, 2015, 5 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,660, dated Feb. 20, 2015, 18 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/965,805, dated Mar. 6, 2015, 18 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,344, dated Apr. 9, 2015, 12 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 14/177,698, dated Oct. 24, 2014, 13 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Dec. 22, 2014, 3 pages.
English Translation of Notification of Provisional Rejection, issued by the Korean Patent Office in connection with Patent Application No. 10-2010-7001406, dated Oct. 21, 2014, 1 page.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 14/177,698, dated Apr. 24, 2015, 13 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/608,685, dated May 5, 2015, 7 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,511, dated May 6, 2015, 5 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/105,774, dated May 14, 2015, 15 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated May 14, 2015, 22 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,564, dated May 22, 2015, 6 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/249,512, dated Jun. 30, 2015, 36 pages.
English Translation of Office Action, issued by the Israeli Patent Office in connection with Patent Application No. 201187, dated Jun. 22, 2015, 4 pages.
Notification of Provisional Rejection, issued by the Korean Patent Office in connection with Patent Application No. 10-2010-7001406, dated Jun. 24, 2015 (with partial translation), 9 pages.
McClure, Samuel, et al., “Neural Correlates of Behavioral Preference for Culturally Familiar Drinks,” Neuron (Oct. 14, 2004), 379-387, 9 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,344, dated Jun. 29, 2017, 38 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/945,357, dated Jul. 6, 2017, 17 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,525, dated Aug. 14, 2017, 38 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/410,380, dated Aug. 18, 2017, 2017, 11 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/546,586, dated Sep. 19, 2017, 43 pages.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC, issued by the European Patent Office in connection with European Patent Application No. 08796890.5, dated Jul. 3, 2017, 3 pages.
English Translation of First Examination Report, issued by the Indian Patent Office in connection with Indian Patent Application No. 6145/CHENP/2009, dated Aug. 16, 2017, 6 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,344, dated Oct. 2, 2017, 5 pages.
Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/945,357, dated Oct. 20, 2017, 16 pages.
Advisory Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/708,525, dated Oct. 26, 2017, 4 pages.
Examiner's Answer, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/413,297, dated Oct. 31, 2017, 2017, 68 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 15/299,752, dated Nov. 3, 2017, 131 pages.
Non-Final Office Action, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 12/884,034, dated Nov. 15, 2017, 49 pages.
Decision on Appeal, issued by the United States Patent and Trademark Office in connection with U.S. Appl. No. 13/730,541, dated Dec. 6, 2017, 14 pages.
Related Publications (1)
Number Date Country
20090024475 A1 Jan 2009 US
Provisional Applications (1)
Number Date Country
60915228 May 2007 US