A person's Sympathetic Nervous System (SNS) can be indirectly assessed with either immobile, wired devices or wrist devices capturing skin conductance, motion, and heart rate—yet these are not validated for SNS activities. Many of these existing tools are battery powered and limited by the battery's operation (e.g., about 6-10 hours).
Pupilometry is a physiological representation of neurological function (e.g. after stroke), physiological stresses, emotional reactions, and attention processes (e.g. that change with development or aging). Pupil diameter is under the control of the sympathetic nervous system (SNS). Systems and methods described herein may provide a non-invasive system capable of measuring high-fidelity SNS activity for the long term, low stress monitoring of animals in research facilities and in studies of animals that model human diseases, in addition to humans. An indirect, but accurate, real-time, SNS activity measurement system may include a portable, non-invasive system comprising a wearable device capable of detecting electroencephalography and a wirelessly-coupled smart contact lens capable of providing simultaneous detection of pupil diameter, light levels, and eye movements.
Embodiments disclosed herein may provide a Neuro-vigilance Integrated Contact Eye (N.I.C.E.) lens and system to measure pupil diameter and eye movement of the person wearing the lens and system.
Embodiments disclosed herein may provide a Neuro-vigilance Integrated Contact Eye (N.I.C.E.) lens in communication with an eye gear, which together may form a system for measuring, processing, and communicating, among other things, pupil diameter and eye movement of the person wearing the lens and eye gear.
Embodiments disclosed herein may also detect, monitor, process and/or communicate electroencephalogram (EEG), electrooculogram (EOG), heart rate, and skin impedance data.
Systems and methods described herein may provide contact lens technology that may perform simultaneous detection of pupil diameter and eye movement. A N.I.C.E. (Neuro-vigilance Integrated Contact Eye) lens may measure pupil diameter and eye movement in a single contact lens. The disclosed lens may allow science and technology to move away from invasive measurements of the Sympathetic Nervous System (SNS), and instead use the N.I.C.E. lens as a non-invasive tool for SNS-related (e.g., sleep) investigations and applications. Together with a comfortable polymer-based “eye gear” providing a power supply, communications, and the detection of electroencephalogram (EEG), electrooculogram (EOG), heart rate and skin impedance data, the disclosed N.I.C.E. lens and its system may allow for more definitive detection of rapid eye movement (REM) sleep and studies of theta power changes during sleep after trauma that track post-traumatic stress disorder (PTSD) in susceptible patients, for example.
In some embodiments, both the N.I.C.E. lens 102 and the eye gear 114 may be based on flexible polymer with embedded components and sensors. The circuit routings, inductor antenna, and electrodes in the eye gear 114 may be made of 0.5-um thick gold sputtered film, for example. The strain sensor may be developed by sputtering carbon onto a 10-um thick parylene C film and etched to define a final size of 0.5 mm×1 mm. Circuits in the N.I.C.E lens 102 may be integrated into an application-specific integrated circuit (ASIC) chip. The ASIC chip, at 3 mm×3 mm, may be back-side etched to obtained a thickness of 30 μm so that it becomes flexible. The thinned ASIC chip and the strain sensor may be integrated and encapsulated in the N.I.C.E lens 102 with connection to the coil 104 for powering and operation.
It should be appreciated that in accordance with the principles disclosed herein, processing can be done at the lens level or cloud level. For example, some embodiments may include an embedded algorithm (e.g., within signal processing and interpretation circuitry 120) that may monitor for an anomaly to look for/diagnose e.g., wrong dilations during REM sleep and then send a signal using wireless communication circuitry 122 to the user's cell phone (e.g., remote system 200) to wake the user because he/she is going to enter the wrong stage of sleep (e.g., for users with PTSD). The disclosed lens system may include wireless communication circuitry 122 (Bluetooth, WiFi, Zigbee, cellular) that sends the lens data to a cloud-based network or system phone (e.g., remote system 200) where it can be processed and analyzed for anomalies, etc.
The data sent to the cloud based network or system could be used by a physician/nurse who can diagnose an anomaly and call the patient if there is bad pupil dilation. In addition, or alternatively, the cloud based network or system could send an action to the user's home which e.g., triggers a light switch (via the “Internet of Things”—IoTs) to wake up the user and to avoid bad REM sleep. These are just some example uses of the lens and system data disclosed herein.
The N.I.C.E. lens and system can be used in both animal studies and human subject studies. For example, an animal study may include simultaneously measuring multiple peripheral sympathetic nervous system (SNS) activity metrics and central norephinephrine (NE) activity. This could be an exploratory study to see which peripheral metrics best correlate with central NE activity in the locus coeruleus (LC). Moreover, the disclosed lens and system can be used to determine, among other things, (1) which peripheral metrics best correlate with central NE activity in the locus coeruleus (LC), (2) which peripheral measures best correlate with central NE activity in the LC, (3) which peripheral activation metrics best correlate with the hyperarousal and intrusive symptoms in those with PTSD, (4) which behavioral and medical (e.g. drug) interventions best lower SNS activity in those with prolonged SNS hyperactivity after trauma, (5) if SNS-lowering interventions are put in place or sleep is prevented until SNS hyperactivity is reversed, does that protect against developing the symptoms of PTSD, and (6) if sleep is allowed, but only REM sleep and TR sleep is prevented when the SNS is too high (e.g. the storms of SNS activity during sleep are exaggerated) is that enough to prevent PTSD from developing.
An example beneficiary from the disclosed N.I.C.E. lens system will be warfighters and veterans facing PTSD or TBI. The disclosed principles can measure pupil diameter and eye movement to help resolve SNS activity, especially during REM sleep. The disclosed system can provide a “green light” to users whose sympathetic readouts indicate that they are ready for adaptive sleep. However, if they are not yet ready, yet are driven to sleep, the disclosed sensor could provide an alarm-type awakening signal when it senses that the user is going into REM sleep and it would do this for the purpose of preventing maladaptive REM. Another impact is that patients who are not yet in the sleep safe zone can indicate SNS calming task that uses the disclosed metrics to indicate when they have succeeded in calming their SNS. The EEG signal helps detect REM and possible hemisphere asymmetries.
Moreover, the disclosed system provides a way to detect REM sleep and study theta power changes during sleep after trauma that track PTSD in susceptible people and help explore EEG frequency cross-coupling differences in those exposed to trauma. Another outcome from the disclosed N.I.C.E. lens system is that the military warfighter can use the tool as a device to determine mission readiness. The disclosed N.I.C.E. lens system can advance the field of sleep medicine by offering the first device to measure REM sleep and circadian rhythms. Furthermore, the disclosed lens will remove the need for many obtrusive, wired sensors used in sleep studies. Psychologists can better assess patients and their emotions with the N.I.C.E. lens system.
While various embodiments have been described above, it should be understood that they have been presented by way of example and not limitation. It will be apparent to persons skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope. In fact, after reading the above description, it will be apparent to one skilled in the relevant art(s) how to implement alternative embodiments.
In addition, it should be understood that any figures which highlight the functionality and advantages are presented for example purposes only. The disclosed methodology and system are each sufficiently flexible and configurable such that they may be utilized in ways other than that shown.
Although the term “at least one” may often be used in the specification, claims and drawings, the terms “a”, “an”, “the”, “said”, etc. also signify “at least one” or “the at least one” in the specification, claims and drawings.
Finally, it is the applicant's intent that only claims that include the express language “means for” or “step for” be interpreted under 35 U.S.C. 112(f). Claims that do not expressly include the phrase “means for” or “step for” are not to be interpreted under 35 U.S.C. 112(f).
This application claims priority from U.S. Provisional Application No. 62/207,553, filed Aug. 20, 2015, the entirety of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62207553 | Aug 2015 | US |