Primates are particularly adept at directing their hand to a visual target, even when the target is moving in an uncertain way. Visually guided movement is fundamental to many behaviors, but the nature of cortical coding of this behavior is not understood. The process of using vision for manual tracking engages a collection of cortical areas. Primary motor cortex (Ml) is one important area near the final stages of hand motion control. Single neuron recordings in behaving animals have demonstrated that information about movement direction, velocity, speed, position and acceleration, as well as force can be obtained from the firing rate of single Ml neurons (e.g., see Ashe and Georgopoulos, 1994), suggesting that each of these movement features may be coded in Ml. However, understanding what and how information about hand motion is coded in Ml has been difficult to determine. Firing rates of individual neurons may combine information about multiple kinematic features (Ashe, J. & Georgopoulos, A. Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex 4, 590-600. 1994) that may be specified separately in time (Fu, Q. G., Flament, D., Coltz, J. D. & Ebner, T. J. Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. Journal of Neurophysiology 73, 836-854 1995). Attempts at decoding the information carried in Ml neurons has shown that averaging firing of groups of neurons provides a reasonable estimate of some of these parameters, particularly the direction of intended hand movement, further supporting the view that these features are processed in Ml.
One major difficulty in understanding coding of hand motion in MI is relating behavior to neural activity. Most prior studies treat motor variables not as time-varying signals, but as static quantities. The properties of neurons are often summarized from the average direction of hand motion or the static, over learned location of movement targets, rather than a time varying code for hand motion that is being continuously guided directly by vision. Static tasks present a number of difficulties in addressing the combined spatial and temporal aspects encoded by MI neurons. First, the amount of space sampled for each variable is limited. Studies of direction coding are typically limited to a small subset of possible target directions (eight, in the widely used ‘center-out task’). A second problem with such tasks is that there is limited control over variables—how a hand moves between targets is a function of the animal's strategy, not the experiment's design. Consequently various statistical dependencies can appear in hand motion, including position and velocity and movement speed and initiation. Further, firing rate (which are usually actively sought for their high modulation rate) is often correlated with these multiple variables. Third, highly parametric models of firing are assumed. Typically, firing rates are reduced to a cosine function, thereby removing more complex structure that may be present in a neuron's firing pattern (Sanger T D. Probability density estimation for the interpretation of neural population codes. J Neurophysiol. October ; 764 :2790-3. 1996). Fourth, these tasks introduce non-stationarities in which neural and behavioral signals co-vary in association with various trial based epochs, making it difficult or incorrect to evaluate motion quantitatively. For example, neurons may have fundamentally different firing regimes during hold and movement periods so that it is difficult to dissociate changes in the apparent relationship between neurons and motor variables from epoch-related aspects of neural encoding (Fu et al., 1995; Maynard, E. M., Hatsopoulos, N. G., Ojakangas, C. L., Acuna, B. D., Sanes, J. N., Normann, R. A. & Donoghue, J. P. Neuronal interactions improve cortical population coding of movement direction. Journal of Neuroscience 19, 8083-809. 1999; Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B. & Massey, J. T. Mental rotation of the neuronal populaiton vector. Science 243, 234-236 1989). Fifth, it is difficult to compare the detailed features of neural encoding because neurons are recorded serially under behavior, neural or state conditions which may vary for each neuron.
The present study adopts a new approach to characterize Ml encoding of hand motion. It describes the position and velocity information available in Ml using a systems analysis framework in which we view hand motion as a stimulus and neural activity as the system's response. Continuous tracking provides means to apply this approach. A task was devised in which a randomly moving visual stimulus is continuously tracked by the hand. A novel multielectrode array was used to acquire the activity of multiple Ml neurons simultaneously during this behavior. The stimulus is structured so that its trajectory on each trial is drawn from an experimenter-determined distribution that broadly covers velocity and position space. This design effectively controls hand motion at all times and reduces or removes statistical dependencies among variables across the experiment. The derived relationship between kinematics and firing makes no assumptions about underlying model of firing. In its ideal form, the approach returns an accurate description of the spatial tuning of Ml neurons and also reveals how this tuning evolves over time. The stationarity of the data permits the valid application of information theory so that a neuron's position and velocity information can be quantified and directly compared. Further, cell comparisons of spatiotemporal tuning functions and position and velocity information are possible because multiple neurons are recorded under identical conditions using multielectrode arrays. This approach permits a direct test for the existence of hand trajectory information using signal reconstruction methods. In this study, the spatiotemporal tuning of velocity and position for Ml neurons are described and the information coded within single cells are compared across the population. it is further shown that Ml neurons contain sufficient position and velocity information to reconstruct any new hand trajectory based on information available from the firing of a small number of nearby Ml neurons.
A system which uses a neurological control signal to control a device comprises a sensor which senses electrical activity of many neurons over time, a vector generator which generates a neural control vector, a control filter a controller which applies the neural control vector to the control filter to produce a control variable, and an output device controlled by the control variable. The electrical activity may comprise any of the following: action potentials of neurons; subdural electrocortigram signals; electroencephalogram signals; subthreshold potentials of a neuron; and motor control commands. The electrical activity may be recorded by electrodes implanted into the central nervous system or the sensor may be an array of electrical sensing elements.
The error between the motor output device and an intended output may be minimized by: the control filter providing the least mean square error; a nonlinear weighting of the neural control vector; and/or a neural network of layers, each layer having nodes.
The motor output device can be an animal limb, a prosthetic, a part of the human body, a computer input device, a robotic arm, a neuromuscular stimulator system, an electrode array, a wheelchair, a home appliance, a vehicle or system thereof, a telerobot, an external voice synthesizer, a microchip, and/or a biohyprid neural chip.
The electrical activity may be sensed over many time bins. The time bins may number 1 to 1000, or more and may be 1 to 1000 milliseconds in duration. The sensing array may have 1 to 1000 sensing elements.
The application of the control filter to a neural control vector can be an instantiation of an innerproduct.
A method for controlling a device comprises sensing electrical activity of neurons over time with a sensor; generating a neural control vector from the sensed electrical activity; providing a control filter; calculating an innerproduct between the control vector and the control filter, resulting in a motor control variable; and controlling an output device with the control variable. The method may comprise all of the variations previously described for the system for controlling a device described above.
In addition, the method may further include a calibration by tracking a stimulus moving through a motor workspace in at least one spatial dimension, the calibration possibly being based on a pseudorandom task. The calibration may also incorporate a user acquiring stationary and moving targets and using a neural control signal with previously generated filters and neural and kinematic data concurrent with the target acquisition to build new filters.
The method may comprise the sensing of any biological electrical activity in an animal body other than the neural activity.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
A description of preferred embodiments of the invention follows. The description is presented by way of examples.
Methods—Behavioral Task
Three monkeys (one Macaca fasicularis and two M. mulatta) were operantly conditioned to track a randomly moving visual target. Each monkey viewed a computer monitor and gripped a two-link, low-friction manipulandum that constrained hand movement to a horizontal plane. Manipulandum position was sampled at 167 Hz, with an accuracy of 0.25 mm on a digitizing tablet (Wacom Technology Corp., Vancouver, Wash.) and recorded to disk. The task required manually tracking a smoothly and randomly moving target. Hand position was continuously reported on the monitor by a ˜0.2° circle (0.5 cm radius on the tablet) (See
Data Recordings
Details of the basic recording hardware and protocols are available in Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G. & Gaal, G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology 79, 159-173 1998 and Maynard, E. M., Hatsopoulos, N. G., Ojakangas, C. L., Acuna, B. D., Sanes, J. N., Normann, R. A. & Donoghue, J. P. Neuronal interactions improve cortical population coding of movement direction. Journal of Neuroscience 19, 8083-809. 1999. Following task training, a Bionic Technologies LLC (BTL, Salt Lake City, Utah) 100 electrode silicon array was implanted in the arm representation of MI. The array was placed on the pre-central gyrus medial to a line extending from the genu of the arcuate sulcus back to the central sulcus. The BTI arrays consisted of 100 platinized tip silicon probes (200-500 k at 1 kHz; 1 or 1.5 mm in length (Nordhausen, C. T., Maynard, E. M. & Normann, R. A. Single unit recording capabilities of a 100 microelectrode array. Brain Research 726, 129-140 1996), arranged in a square grid (400 μm on center). All procedures were in accordance with Brown University Institutional Animal Care and Use Committee-approved protocols and the Guide for the Care and Use of Laboratory Animals (NIH publication No. 85-23, revised 1985). A diagram of an implantable electrode array system is shown in
Signals were amplified and sampled at 30 kHz/channel using a commercial recording system (Bionic Technologies Inc., Salt Lake City, Utah). All waveforms that crossed a manually set threshold were digitized and stored (from 0.33 msec before to 1.17 msec after threshold crossing); spike sorting to isolate single units was performed offline. Single units with signal-to-noise ratios>2.5 were stored as spike times referenced to the stimulus signal for further analysis. Analysis of spiking was confined to data recorded from one second after tracking began to one second before trial end, to eliminate non-stationarities associated with trial beginning and end.
Data Analysis
Spatio-temporal tuning. Spatio-temporal tuning functions were computed to describe firing patterns across kinematic space and across time, with reference to a specific kinematic parameter. These tuning functions are operationally defined as describing the movement space over which the neurons' firing rate is modulated; tuning functions can be considered as a form of receptive field, although the sense of this term in the motor system is not generally established. The functions N({right arrow over (p)}, τ) and N({right arrow over (v)}, τ) describe firing for position and velocity, respectively, as a function of time lag. Tuning functions were created at all times {ti} when the hand was moving with a particular velocity (or was located at a particular x,y position) (ρ±dρ;θ±dθ) cm/sec, for some ρ, θ in polar coordinates. The bin widths (2d ρ and 2d θ) were chosen to be large enough to achieve, on average, >50 samples per bin. Then, the mean firing rates at {ti+τ} for different time lags, τ, were calculated from the firing rates for each observation of position or velocity. Firing rates at various time lags related to the kinematic reference points are represented by the variable τ, reserving ‘t’ for the time since the beginning of the behavioral trial. Thus, a τ at lag 100 ms would show the firing rate for a neuron 100 ms before a particular hand velocity occurred. These data were displayed as a series of three dimensional plots, with gray scale coding of the firing rate at each location (either speed and direction, or x and y location). The series represented a set of time slices that plotted firing before (positive lag) and after (negative lag) that kinematic variable.
Data are represented in polar rather than rectangular coordinates for three reasons. First, polar coordinates respect the radial symmetry of the properly scaled, observed Gaussian joint distributions of hand position and velocity (See
To summarize the form of tuning functions, the data were fit with sinusoidal or planar functions. The sinusoidal correlation coefficient was measured as
where |.| denotes complex magnitude and N0(θ) is the θ-tuning curve with the baseline firing rate subtracted out (Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. On the relations between the direction of two-dimensional arm movements and cell discharge in primary motor cortex. Journal of Neuroscience 2, 1527-1537 1982). A neuron's preferred direction (PD) is defined by the location of the peak in the θ-tuning curve Np(θ,τ1) or Nv(θ,τ1), with τ1 the lag at which the neuron is maximally sinusoidally tuned, i.e., where ρsin is maximized. Information-theoretic analysis. The form of the data makes it possible to calculate information provided by neural activity about each variable using information theoretic approaches; the strong advantage of this approach is that information content can be directly compared between variables because this measure is independent of the type of information being carried. The mutual information between any two random signals N and S is defined as (Cover, T. & Thomas, J. Elements of Information Theory. John Wiley & Sons, Inc., New York City, N.Y. 1991)
where p(.) and P(.|.) denote marginal and conditional probabilities, respectively, and ∫x is the integral over some space X. Information can be an extremely difficult quantity to compute, because full knowledge of the joint distribution p(N;S) (where N and S are functions of time) is needed. This presents a possibly infinite-dimensional learning problem; in the present experiment one would be required to know firing probability at any velocity (or position). Consequently there is no attempt to estimate the information rate between spike trains (denoted N, for neuron) and the behavioral signal (S), rather, information is computed between the observed neuronal firing rate and the behavioral signal (hand velocity or position, here) at discrete (single) time lags, τ, i.e.,
The inner integral is taken over 2 because the velocity or position at any given time is two-dimensional. N(0) here denotes the activity of the given neuron in the current time bin, and S(τ) denotes the state of the behavioral signal (e.g., the position of the hand) at a time lag r after the present time.
Moreover, empirical observations are used to model the conditional distributions of the behavioral signal given an observed spike count per bin, p(S(τ)|N(0)=i), i ε 0,1,2, . . . , as Gaussian, with mean μτ,i and covariance matrix στ,i. Because the prior distributions on S(τ) are near-Gaussian, by construction, they have negligible effect on information calculations. In addition, conditional distributions can validly be modeled as Gaussian, because the mixture of Gaussian distributions with similar means and covariances (the prior expected given Gaussian conditionals) is near-Gaussian. These steps make the information-estimation problem tractable, even with the limited data available here. Thus, instead of equation (2), we calculate
numerically, where G(μ, σ) is the (2-dimensional) Gaussian density with mean μτ,i and covariance στ,i. This analysis can be extended to the case where S(0) is replaced by Ŝ=∫εdτS(τ)*f(τ), where f is an arbitrary smooth function, such as a sinusoid or wavelet, and ε is some small positive real number; this allows a simple local frequency analysis. Here we used ε≈2 seconds and fω(τ)=eiωτ, the usual discrete Fourier basis.
A significance bound was defined as the level above which a significant amount of information was present, as determined by a Monte-Carlo procedure. Under the null hypothesis that the spike trains are a homogeneous Poisson processes, firing rate fluctuations are assumed to be random, have a trivial probabilistic structure, and are independent of the concurrent hand motion. For this analysis, simulated spike trains (homogeneous Poisson processes with rates matched to the observed individual neural firing rates) were generated. Then, mutual information was estimated using these simulated spike trains and real kinematic data (Eq. 3). This procedure produced information values <10−4 bits. A different procedure, in which the neural data was shuffled with respect to the behavioral data, so that neural data from one trial was associated, in a random manner, with the behavioral data from a different trial, led to similar results. The significance bound was therefore defined as I(N(0);S(τ))>10−4 (see
Signal reconstruction The ability to reconstruct aspects of hand motion from multiple, simultaneously recorded spike trains was used as a test of availability of position or velocity information in the recorded population. An approach for signal estimation given neural activity was devised, based upon multiple linear regression methods (see Neter, J., Wasserman, W. & Kutner, M. H. Applied linear statistical models. Irwin, Homewood, Ill. (1985); as well as Warland, D., Reinagel, P. & Meister, M. Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology 78, 2336-2350 (1997) for time domain applications, and Haag, J. & Borst, A. Active membrane properties and signal encoding in graded potential neurons. Journal of Neuroscience 18 7972-7986 1998 for frequency domain). Referring to
where i indexes time,j the cell number, N(i, j) denotes the activity of cell j at time i (or neural control vector), ai,j the corresponding “weight” or filter coefficient 34, C the number of cells, Tpre and Tpost the time before and after the current time t used to estimate the current position, respectively, and dt the width of the time bins used. R(t) serves as the control variable 36 during signal reconstruction. To calculate filter coefficients ai,j neural spike count and kinematic data k were placed into fixed bins. Linear filters were constructed by building a response matrix containing the firing rate history of each neuron for T seconds, and regressing this matrix onto the two columns of kinematic absolute positions using a psuedoinverse technique. This comprises a closed-form solution of the least-squares formulation:
R(t)=N·a=N(NTN)−1NTk
where N is the response matrix, a is the linear filter, k comprises the kinematic values (absolute position), and R is the reconstruction. The response matrix was built in the format outlined by Warland et al. (1997)). Two filters were generated (one each for x(t) and y(t)). The analytical solution to the optimal linear estimation problem in the time domain involves the inversion of a correlation matrix (or vector) that can be fairly large (matrix size=D2, where D=1+C·(Tpre+Tpost)/dt); standard singular value decomposition (Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C. Cambridge University Press, Cambridge, 1992) techniques were used to check the numerical stability of this matrix inversion when D was large. The data showed no evidence of over-fitting such as a decrease in performance as D became large. None of the results shown were smoothed, nor were any relevant parameters subjectively selected (e.g., to select the “best” neurons for analysis). The solution of the linear regression problem is termed the “optimal linear estimator” because it weights terms to provide the optimal fit to the data in an unbiased manner.
Cross validation methods were used to estimate the generality of the linear regression function to decode hand motion from neural population activity. Cross validation tests the ability for a function to reconstruct motion from any subsequent spike train process. Regression functions were created from all but ten trials of a data set. This process was iterated multiple times as successive blocks of a different set of 10 trials were used to test the function. This generated a distribution of reconstruction errors. The measure of error was calculated as,
where R is the reconstructed hand position.
Three types of error measures were used to evaluate the performance of the linear filters: (1) the absolute Euclidean distance (in cm) between the actual and reconstructed positions
(2) the fraction of the variance of the actual position accounted for by that of the reconstruction
and (3) the correlation coefficient between the actual and reconstructed positions
Separate correlation coefficients and fractions of variance were computed each for the absolute horizontal (x) and vertical (y) positions of the manipulandum mapped to the cursor. Reconstruction error of position at a single time bin, t, was also calculated as a function of (1) the total length of time, Tpre, in which spike trains were observed and (2) the number of neurons included in the analysis. The dependence of the estimation error on Tpre was examined by simply recalculating r2 for each value of Tpre (See
where E(.) denotes the sample mean (where the number of samples here is equal to the number of trials, typically ˜100-200 in these experiments), and complex conjugate.
Results
Eleven data sets from three monkeys were used for analysis, some of the data for which are shown in Table 1. Continuous tracking meeting the conditions of the task was recorded for 6-17 minutes (mean 10.9) for 4-21 neurons (see Table 1). In addition, one monkey performed a standard radial task so that behavior and neural activity could be compared to that in the pursuit tracking task (PTT).
Pursuit Tracking Task
The continuous tracking and the direction tasks vary considerably in the extent of parametric space explored, the dependence among variables and stationarity of the kinematic and neural signals.
The “center-out” task.
The direction task, by design, results in movements from a constant location to one of a fixed set of 8 discrete locations. There is no specific trajectory requirement other than the need to end at a specific location within task time constraints. Movements on any given trial are typically reduced to target direction, which is a reasonable approximation because point to point arm movements in primates are nearly straight. However,
By contrast, the PTT covers a large kinematic space and it achieves considerably improved independence of kinematic variables and stationarity of kinematic and neural activity (
Hand speed and neural activity are effectively stationary across the task. Mean hand speed does not vary as a function of time (compare
The joint distributions of hand position and velocity generally approximated a Gaussian distributions with zero covariance (modified Kolmogorov-Smirnov test; p<0.05). The overall smoothness of hand movement during tracking is evident in the autocovariogram of
Neural Activity During Tracking
Across the 11, experiments between 4 and 21 (mean 32 11) well-isolated single units were simultaneously recorded (see Table 1). In all, 125 cells were analyzed.
Spatio-Temporal Tuning
Given these properties of the data it is possible to define MI spatiotemporal tuning functions—that is, the time varying tuning of the cell with respect to a particular kinematic variable as described in the methods section above. Spatial and temporal features of tuning for single MI neurons were examined for velocity and position (denoted N({right arrow over (v)},τ) and N({right arrow over (p)},τ), respectively). These functions summarize a neuron's instantaneous firing rate-dependence on hand velocity {right arrow over (v)} or position {right arrow over (p)}, as well as the time varying features of tuning (τ), the time difference between hand motion and the observed firing rate sample. A lag (+τ) is the amount of time the neuron was firing in advance of that kinematic measure; a (−τ)represents a lead. Thus, these functions summarize a neuron's firing rate dependence on hand velocity v or position p at times before the hand moved at a given velocity or was located at the given position.
In
Analogous tuning functions for hand position can also be derived, as shown for a different neuron in
If ρ scales linearly, this putative coding dimension could be interpreted as a gain function of θ which would best fit a planar model. A better fit to a Gaussian model would reject planar tuning structure. A planar model significantly fits MI tuning functions for both velocity and position for 65 neurons. The more general mutual information test (discussed below) identified the same proportion of cells, indicating that all cells with significant position and velocity tuning have planar tuning functions. Two-dimensional Gaussian functions never provided a better fit (despite the fact that the Gaussian function had three extra free parameters). In all cases the Gaussian was near-planar (i.e. flat) and peaked outside the observed workspace edge. Thus, the simple model in equation (6), above, captures the two-dimensional tuning for both position and velocity.
The data in
Nv(ρ,θ)≈a0+a1(τ)ρcos(θ−θPD) (7)
where a1(τ) is a smooth, nonnegative function of τ, with a maximum at 100 ms, such that a1(τ)≈0 for |τ|>1 second. The cell shown in
Position tuning also showed a spatiotemporal structure that appeared to be directly related to velocity tuning for some neurons, but independent for others. The position tuning N({right arrow over (p)},τ) of the neuron in
In contrast to
Information-Theoretic Analysis
Information theoretic analysis can be used to provide a direct measure of the amount of position and velocity information in these neurons; further, the tracking task provides a format to describe the temporal evolution of this information in MI neurons. The results of
These probability distributions can be used to derive quantitatively and objectively temporal tuning properties of individual neurons. For this analysis the mutual information between the cell's firing rate and the kinematics of the hand is computed as a function of τ, I(N(0); S(τ)) (see the Methods section above). Here N(0) represents the cell's activity in a given short time interval (here, 5 ms) and S(τ) denotes the value of position or velocity some time τ before or after the current time, t=0. This information statistic is an objective measure of how well these neurons are tuned for these behavioral variables; the more tuned a given cell is at a given value of τ, the more highly separated are the probability distributions corresponding to those shown in
Temporal tuning curves are heterogeneous, especially in the position domain; examples of simultaneously recorded neurons in three experiments are shown in
Signal Reconstruction
The analyses above suggest that populations of MI neurons carry information about hand position and velocity. A test of the presence of this information is to attempt to reconstruct hand position using populations of neurons; this is made possible by simultaneous recording of MI neurons and a reconstruction method introduced here. Hand position reconstruction at any given time t was estimated using a weighted linear-combination of the neural activity from all observed cells, some time Tpre before and Tpos after time t (Paninski, L., Fellows, M., Hatsopoulos, N. & Donoghue, J. Coding dynamic variables in populations of motor cortex. Society for Neuroscience Abstracts 6. 1999, Neter, J., Wasserman, W. & Kutner, M. H. Applied linear statistical models. Irwin, Homewood, Ill. 1985). This linear correlation approach returned a moderately good reconstruction of the hand trajectory with no a priori assumptions (i.e, model) of the tuning process other than what was obtained from the data.
The linear reconstruction technique can be used to quantitatively evaluate which aspects of the tracking are contained in MI activity. The analysis, shown in
Discussion
A novel, visually-guided, continuous tracking task was devised and used to describe the spatiotemporal tuning of MI neurons for hand position and velocity and to show that hand motion can be reconstructed from MI activity. This task enabled the identification of three novel features of the relationship between motor cortical activity and hand movement during visually guided tracking. First, the spatial features of MI tuning were described in the context of its temporal evolution. Second, the statistical features of the task permitted quantification of the amount of position and velocity information and identification of their lead-lag relationships. Coupled with multielectrode recording, spatiotemporal tuning functions could be compared for sets of cells recorded under identical behavioral conditions. Finally, the ability to decode hand trajectory using simultaneous, single trial firing rates could be tested with a method derived from linear regression. The results demonstrate that MI has a continuous contribution to visually guided tracking hand motion. This information is provided by a heterogeneous population of neurons that carry position and velocity information. Velocity typically peaks within a narrow temporal window. In contrast, peak position specification is more broadly distributed in time, consistent with feedforward and feedback encoding. In addition they show that MI specifically contains information about low-frequency components of the hand motion during continuous hand motions that are guided by vision. Trajectory information is broadly distributed and small for single cells. However, the information from the firing patterns of small numbers of regionally associated MI neuron populations is sufficient to predict any future hand trajectory.
Continuous Tracking Task
The continuous tracking task (CTT) devised here advances the ability to measure the spatiotemporal tuning of MI neurons and the information they carry about hand motion. It extends knowledge of MI activity to include hand motions that are continuously guided by a visual stimulus with uncertain motion, as might occur in many natural behaviors. The task is novel in that behavior is not drawn from a broad sample of motions rather than a limited, overtrained set. Statistically speaking, the standard center out direction task, has high certainty and considerable planning is possible. Movements are drawn from one of 8 possibilities, always with the same origin and a familiar target. In the CTT only the movement boundaries are constrained; within that world, the upcoming actions are close to random. The fact that directional tuning emerged from the results demonstrates that this feature is not a feature of training, but is generally present in the tuning of MI neurons in a wide range of tasks under a variety of conditions.
The task design permitted the use of a systems analysis approach to define the relationship between movement and neural activity, much as it has been applied to sensory systems. However, generating a broad, unstructured stimulus set (in this case, movements) in the ideal application of this method is a particular challenge for motor systems. The stimuli were largely unpredictable within the constraints of task but were limited by plausible hand motions. Monkeys were able to track the visual stimulus in a generally smooth and continuous manner with minimal lag, consistent with attentive, continuous tracking. This movement is viewed as a collection of time-varying signals where each trajectory forms a novel, time-varying “stimulus” for the motor system; neural firing rate is the dependent variable, or observed response of the system, even though MI activity is widely assumed to generate movement. Despite this false stimulus response reversal, the method has provided a useful construct to study encoding. First, sampling a large portion of the relevant position and velocity space at several different, RMS hand-speed regimes provides a broader sample of the system's behavior under many different, experimenter-controlled conditions. Second, by varying velocity and position independently, the contribution of each of these parameters to MI firing can be examined as separate variables devoid of underlying correlations present in other tasks. Third, the task creates reasonable stationarity in the data. Therefore each spike and movement can be treated as samples uniformly drawn from a stochastic process. Tasks in which trials are divided into epochs for statistical comparisons can violate stationarity because firing rates can show rapid changes (see
MI Tuning Functions
Most neurons showed spatial and temporal structure for both velocity, N({right arrow over (v)},τ), and position, N({right arrow over (p)},τ). This spatiotemporal tuning was quite heterogeneous; tuning properties varied along a spectrum and did not form into discrete classes, but formed a continuum. The majority of the velocity tuned neurons showed a directional dependence fit by a cosine, consistent with many previous reports using a directional task (Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B. & Massey, J. T. Mental rotation of the neuronal populaiton vector. Science 243, 234-236 1989; Maynard, E. M., Hatsopoulos, N. G., Ojakangas, C. L., Acuna, B. D., Sanes, J. N., Normann, R. A. & Donoghue, J. P. Neuronal interactions improve cortical population coding of movement direction. Journal of Neuroscience 19, 8083-809. 1999). These neurons also showed a linear dependence on speed also in agreement with other studies (Moran, D. W. & Schwartz, A. B. Motor cortical representation of speed and direction during reaching. Journal of Neurophysiology 82, 2676-2692 1999; indirectly shown in Fu, Q. G., Flament, D., Coltz, J. D. & Ebner, T. J. Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. Journal of Neurophysiology 73, 836-854 1995). These results show that these features persist in MI despite marked differences in the nature of the tasks performed. Our results also show that speed scales the directional tuning curve without affecting its shape and that firing can be positively or negatively related to speed. Velocity and position encoding neurons are commingled even within the small volume of cortex we examined. In the temporal domain, the phase of directional tuning largely is preserved throughout time, indicating that directional tuning is stably encoded for individual neurons.
Position was best fit by a linear (planar) function suggesting that they act like a gain field (Salinas E, Abbott L F. Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Prog Brain Res. 2001;130:175-90), but some appeared to have additional structure. Georgopoulos et al. (1984) showed similar planar tuning curves when the position of the hand was held statically in eight target locations arranged radially about the center of the workspace. The results presented herein complement those findings by showing that planar fields apply during hand motion and they provide more local detail about the tuning structure because the space is much more densely sampled than in prior studies. In both cases, the planar model may have fit data because position space has been rather sparsely sampled. Mathematically, a plane will provide a good fit to any two variables on a sufficiently local scale (Taylor's theorem), but planar models of position tuning may not hold on a more global scale. These results imply that single MI neurons do not encode a particular hand position the way that hippocampal neurons encode the spatial location. (Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C. & Wilson, M. A. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience 18, 7411-7425 1998). Instead, as with velocity, there is a preferred direction along which the position maximally scales the firing rate of the neuron. Position planes are heterogeneous in their form and direction. Position space appears to be fully covered by neurons within a small patch of cortex. The completeness of representation is essential to reconstruct position accurately from a limited sample of neurons. Whether some non-planar structure exists may be better revealed if a larger space was sampled and if larger data sets are attained to reduce noise. In other systems, gain fields can become nonlinear when saturated. The role of a position gain field is not known, but the gain structure has been shown in modeling studies to facilitate responses to the strongest among multiple inputs (Salinas and Abbott, 2001). In a polar system, the shape of the tuning functions for position were similar to those for velocity; for example, many cells of both types are sinusoidally tuned for θ and linearly tuned for ρ. A simple model (equation 6) was proposed to describe this shape. Georgopoulos et al. (1984) fit a planar model equivalent to equation (6) to the tuning surfaces for position in a static hold task. However, the tracking task provides a more even and densely sampled distribution of kinematic data than prior tasks in a dynamic situation. These results argue that similar position information is both available in the stationary limb and during tracking motions.
Most noteworthy are the cells in which position and velocity appeared to be independently coded variables. For some velocity tuned cells, position tuning could be explained solely as a consequence of these cells' strong velocity tuning. However, for other cells, the position tuning was not an obvious function of velocity, suggesting that these variables are independently encoded, in some cases by separate populations of neurons. Position cells invariant to velocity would seem to be useful to provide a movement independent representation of hand location in space, even while the hand is in motion. Such invariance related computations may require large numbers of neurons. (Salinas and Abbott, 2001), but the ease with which hand motion related neurons were detected suggests that very large populations are engaged during tracking. Whether these neurons encode position uniquely, or combine other inputs (e.g. acceleration, amplitude) not measured in the data presented herein has not been established.
Salinas and Abbott (2001) suggest heterogeneous mixes of cells with these sorts of encodings, which is suited to translation invariant representations. In the motor cortex, this could mean that ensembles of neurons could represent particular kinds of movements irrespective of their particular location in space. Such a network might also account for motor equivalence were the same action is produced, with greater structural similarity, from multiple effectors. Interestingly, formation of these kinds of networks seems to require Hebbian like learning; the horizontal connections of motor cortex show exactly this type of synaptic strength change when new motor tasks are learned (Rioult-Pedotti M S, Friedman D, Hess G, Donoghue J P. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci. July, 1998;1 (3):230-4). Distributed, multiple representation with gain fields is also thought to be well-suited to provide signals that can be readily decoded by their target structures (Salinas and Abbott, 2001). In other regions of cortex, attention or gaze angle act as gain modulators, while in MI position and speed both appear to engage this mechanism; more indirect evidence suggest that gaze may also influence MI neurons (Baker J T, Donoghue J P, Sanes J N. Gaze direction modulates finger movement activation patterns in human cerebral cortex. J Neurosci. Nov. 15, 1999;19(22):10044-52). Thus, MI may be involved in the coordinate transform similar to that modeled by Zipser and Anderson (Zipser D, Andersen R A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature. Feb. 5, 1988;331(6158):679-84) ranging from abstract plans of hand trajectory to the more direct command of the effector. The observation that hand trajectory can be so well recovered from MI, also suggests that it lies at an interface of planning and performance of visually guided tracking movements.
Thus, MI tuning functions are heterogeneous in position and velocity encoding; the evidence presented herein does not support the idea that position and velocity neurons form separate classes, but rather we suggest that encoding of these variables is represented across a continuum in which one or the other is differently weighted. These results show that these cells are intermingled within a small volume of cortex (the ˜2×2 mm region we record) and that this diverse population is active during tracking motions.
Motor spatiotemporal receptive fields can be compared to spatio-temporal visual receptive (DeAngelis, G. C., Ghose, G. M., Ohzawa, I. & Freeman, R. D. Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. Journal of Neuroscience 19, 4046-4064. 1999), or spectro-temporal auditory fields(Kowalski, N., Depireux, D. A. & Shamma, S. A. Analysis of dynamic spectra in ferret primary auditory cortex. Journal of Neurophysiology 76 350. 1996) that have been described using a similar systems approach. Tuning function is meant to be a more neutral term because what is actually encoded by the neuron has not been established (see below). These analyses have revealed a similar diversity in tuning functions when considered across the temporal and spatial domain (Deangelis et al., 1999). However, the motor functions describe herein are much broader than sensory fields, but this comparison is complicated by the much longer auto correlation times of movement ‘stimuli’, making them appear to change much more slowly than sensory fields. There is no obvious way to rescale these differences, so that temporal comparisons between sensory motor fields, except for their peak time, must be cautiously applied.
Temporal Information About Position and Velocity
Tracking temporal tuning profiles revealed that MI neurons nearly continuously provided information about position and velocity. While the amount of information was similar the time course of each differed. Further, our parallel recordings show that these temporal differences are part of the natural course of firing during an evolving movement and cannot be attributed to trial-to-trial or animal-to-animal differences that occur with serial recording. The method presented herein lacks linear assumptions of multiple linear regression models which have demonstrated that single MI neurons carry information about average hand direction, velocity, position and acceleration (Ashe, J. & Georgopoulos, A. Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex 4, 590-600. 1994; Fu et al. 1995) Nevertheless these results are consistent with those found here, these results extend these findings to show that relatively detailed position and velocity information occurs throughout tracking, not just in the average across trials. All studies appear to agree that velocity tuning is a dominant feature of MI neurons. Ashe and Georgopoulos (1994) regression analysis demonstrated that 27% of cells predominantly tuned to velocity as opposed to 17% of cells that were primarily position tuned. We find a mix of velocity and position information across cells. The quantitative analysis presented herein reveals, however, that MI cells on average carried 10% more information about velocity than position. Thus, the amount of information available about position and velocity is roughly equal, contrary to what might be expected from emphasis on directional tuning of MI neurons. Information values for instantaneous position or velocity measured during performance of this tracking task were small compared to those previously computed for static target direction TD in the center-out task (Hatsopoulos, N. H., Ojakangas C. L., Paninski L. & Donoghue J. P. Information about movement direction obtained from synchronous activity of motor cortical neurons. Proceedings of the National Academy of Sciences U.S.A. 95, 15706-15711 1998). Information rates derived from
Firing rate appears to vary smoothly as a function of these parameters, and the conditional distributions of the signal given spike count depend only weakly on the spike count (
The data presented herein suggest that position and velocity information is specified over quite different time scales. Velocity is tightly peaked with a lead of about ˜100 ms. Using serial, single cell recordings, Ashe and Georgopoulos (1994) found that their linear model could account for the largest percentage of the variance when the firing rate led the kinematics by. 90 ms and Fu et al. (1995) found that target direction on average accounted for the firing rate ˜115 ms prior to movement onset using an analysis of variance. Together, these data suggest that MI firing specifies velocity just before it is achieved. Unlike velocity, we showed that position information is temporally dispersed, with peaks occurring both before and after Tau. The pattern generated by a group of simultaneously recorded neurons demonstrates that position information is continuously available to MI neurons; both after movements are executed as well as when they are being prepared.
The time course of velocity and position tuning of these temporal tuning curves varied considerably and these differences cannot be explained in terms of kinematic or motivational differences between experiments, which could have explained heterogeneity observed in earlier work (Kakei, S., Hoffmnan, D. S. & Strick, P. L. Muscle and movement representations in the primary motor cortex. Science 285, 2136-2139 1999; Porter, R. & Lemon, R. Corticospinal function and voluntary movement. Clarendon Press, Oxford 1993). Information tuning curves were heterogeneous not just in their shape but also in their amplitude (
Neurons in MI fire at low rates during visually guided tracking and firing rate modulations typical of step tracking tasks are not readily evident. Information theoretic analysis provided a quantitative and comparative measure of position and velocity information encoded. Across the population, MI encodes similar amounts of position and velocity information, with each ranging over two orders of magnitude. The information values observed here, which peak at 0.01 bits are substantially smaller than 0.33 bits (calculated in 50 ms bins) related to static target direction in the center-out task, even when corrected for differences in the bin size used to calculate information (Hatsopoulos et al., '98). The velocity and position information content per neuron is broadly dispersed and only weakly correlated (
Signal Reconstruction
A linear regression method that was able to recover hand trajectory from the firing of MI neurons was developed. This decoding verifies that useful position and velocity information, described by spatiotemporal tuning functions, exists in a usable form. The results presented herein demonstrate that a simple linear decoding algorithm, given the firing patterns of small, randomly chosen set of neurons and their prior firing patterns over time, can reconstruct any future hand trajectory through two-dimensional space (
Previous attempts to infer motor behavior from neural population activity include the “population vector” approach pioneered by Georgopoulos and adopted by many others (Georgopoulos et al., '82, Moran and Schwartz, '99; Kalaska et al.). There are several essential differences between the population vector approach and linear reconstruction as applied here. First, the PV method estimates only the average direction of motion of the hand, to one of eight radially located targets, denoted TD (see
The PV approach also successfully reconstructs the spatial aspects of the hand path in various drawing tasks (Schwartz, A. Motor cortical activity during drawing movements: population representation during sinusoid tracing. Journal of Neurophysiology 70:28-36. 1993; Moran, D. W. & Schwartz, A. B. Motor cortical activity during drawing movements: population representation during spiral tracing. Journal of Neurophysiology 82, 2693-270 1999). These reconstructions are based on using these “center-out” PD's to reconstruct a curve (e.g., a sinusoid in Schwartz, '93, or a spiral in Moran and Schwartz, '99) that a monkey had traced out on a touch screen. However, the temporal details were obscured by averaging over trials, so that only spatial, not temporal, information about the path is recovered from a population of selected neurons (need for uniform distribution, etc). By contrast, it is shown here that observation of ˜20 min of neural firing can produce a set of temporal filters sufficient to reconstruct future hand trajectories based on the firing of that population. This reaffirms that considerable information about the time varying path of the hand is available from linear combinations of firing of simultaneously active MI neurons.
Humphrey et al. (Humphrey, D. R., Schmidt, E. M. & Thompson, W. D. Predicting measures of motor performance from multiple cortical spike trains. Science 170, 758-762 1970) and Wessberg et al. (Wessberg et al., 2000) in motor cortex and (Brown et al., 1998) for hippocampal place cells have employed similar reconstruction methods. Humphrey et al. recorded simultaneously from up to eight MI neurons and used time-domain linear regression techniques similar to those described here to estimate various single joint-related behavioral parameters; this method also works well for multijoint movements. More recently, Wessberg et al. (Wessberg et al., 2000) obtained similar results, using one task in which the hand was constrained to move along a one-dimensional track and another in which the monkey reached repetitively for a piece of food. Our work is the first in which random multidimensional movements were reconstructed. These linear methods are weak in several regards There is a great deal of variability across experiments (Table 1), some of which can be at least partially accounted for by differences in the time the cells were observed and in the total number of cells observed (see
Neural activity during tracking was qualitatively different from that found in previous studies in step tracking tasks. In the continuous tracking task, MI neurons showed low mean firing rates and few rapid rate modulations. This was not a feature of the cells selected. Rate modulations typical of MI neurons were evident in the same cells when these monkeys performed interleaved step tracking trials. Thus, these results show that MI contributes to motions of the hand directed under visual guidance, and, under these conditions they operate in a low firing rate regime. Our linear reconstruction and information theoretic analyses unequivocally demonstrate that in this regime neurons are fully capable of encoding hand trajectory and that this coding is unrelated to global variations in behavior. Further, the amount of information encoded is not related to the mean firing rate, so that similar amounts of information about hand motion may be encoded in the modulations of cells with low and high firing rates. The present task may be compared to the closed loop oculomotor pursuit system. Unlike that system the same sets of cortical neurons seem to be engaged in both ballistic and continuous tracking movements, although this dichotomy may be artificial in the skeletomotor system. These data suggest that the information encoded is an intrinsic feature of the firing rate process in MI neurons. Our data also show that neurons are broadly tuned for position and velocity because firing rate varies slowly as a function of these variables, as can be seen in the tuning function plots of
What is Coded in MI?
The results presented herein demonstrate that information about hand trajectory exists in the firing rate of MI neurons, but it does not demonstrate that these neurons actually encode this variable, nor does it mean that downstream structures decode this information. Hand trajectory is correlated with other variables, including joint angles, torques, (Todorov, E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nature Neuroscience 3, 391-39. 2000; Fetz, E. E. & Finocchio, D. V. Operant conditioning of specific patterns of neural and muscular activity. Science 174, 431 1980; Mussa-Ivaldi, F. A. Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neuroscience Letters 91, 106-11. 1988; Todorov, 2000). It would be ideal to uncouple each of these variables to determine which is best coded. The tracking task makes it possible to derive information curves for these other behavioral signals, so that both the quantity and time course can be measured with a unit that can be directly compared across variables. Nevertheless, our quantitative findings place strong constraints on the variables that are encoded in Ml firing (Pugh, M., Ringach, D., Shapley, R. & Shelley, M. Computational Modeling of Orientation Tuning Dynamics in Monkey Primary Visual Cortex. Journal of Computational Neuroscience 8, 143-15. 2000). These signal reconstruction methods show that trajectory information can be recovered from Ml firing and that this information is improved when longer times or more neurons are considered, but does not address any readout mechanism. However, it is shown that during tracking there is a continual flow of information that is undoubtedly passed to large numbers of neurons which are capable of integrating across populations. Finally, these results speak to the issue of functional organization of Ml. These results show that a small group of randomly selected neurons within a 2×2 mm cortical region, which represents approximately 4% of the 10×10 mm Ml arm area, contain nearly a full representation of all velocities and positions. This argues for a highly distributed representation of information within Ml, any part of which appears capable of computing hand trajectory.
Immediate, Real-Time Use of a Neurally-Based Control Signal for Movement
An example of an application of the neurological signal decoding methods described above is the use of these signals to drive an artificial device. The activity of motor cortex (MI) neurons predicts movement intent-sufficiently well to be used as a control signal to drive simple movements in artificial devices. However, use of this signal has required significant training and achieves a limited movement repertoire. Here it was demonstrated how activity from a small numbers of MI neurons can be decoded into a signal that a monkey can immediately use to move a computer cursor to any new position in its workspace. These results, based upon recordings made by an electrode array suitable for human use, suggest that neurally based control is feasible in paralyzed humans.
Recordings of multiple MI neurons were obtained from three Macaca mulatta monkeys implanted with an Utah Intracortical Multielectrode Array. Monkeys used their hand to move a manipulandum that controlled the position of a cursor on a video monitor to reach visually displayed targets. Monkeys tracked a continuously moving target that followed a psuedorandom trajectory. A linear filter method was used to test whether we could reliably reconstruct hand trajectory from neural activity obtained on subsequent trials. Reconstructions accurately reflected hand trajectory, they accounted for over 60% of the variance present in actual hand motion (r2>0.6).
One of these monkeys then performed a closed-loop version of the experiment, in which reconstructions were computed continuously online in real-time. Here, an average of 1 minute of tracking and recording was used to build a preliminary linear filter model. Once this model was constructed, the task was switched to require movement to stationary targets. In this case the cursor movement was driven by the filtered neural data. For an additional average period of 2 minutes, new filters were constructed.
The monkey immediately used this neural-activity based signal, without any further training, to acquire stationary targets (0.18 degrees visual angle) displayed one at a time at random locations on the monitor. The time required to acquire targets using this signal was only slightly greater than using actual hand position (
Neuroprosthetic systems may comprise two learning systems: a mathematical algorithm, and the subject's brain. The primary role of the former is to transform neural activity into a control signal that exists in a functionally usable regime. Visual and other feedback coupled with a subject's dynamic learning can compensate for inaccuracies in the model to provide an easily and voluntarily controlled signal. Our results demonstrate that a simple mathematical approach, coupled with a biological system, provides effective decoding necessary for useful brain machine interfaces that can aid neurologically impaired humans.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This is a continuation of application Ser. No. 09/991,498, filed Nov. 14, 2001, now abandoned which is incorporated herein by reference.
The invention was supported, in whole or in part, by a grant NINDS NS25074, NINDS contract NS9-2322 from NIH and DARPA grant number MDA 972-00-1-0026. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3837339 | Aisenberg et al. | Sep 1974 | A |
3850161 | Liss | Nov 1974 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4146029 | Ellinwood, Jr. | Mar 1979 | A |
4294245 | Bussey | Oct 1981 | A |
4360031 | White | Nov 1982 | A |
4461304 | Kuperstein | Jul 1984 | A |
4633889 | Talalla et al. | Jan 1987 | A |
4690142 | Ross et al. | Sep 1987 | A |
4837049 | Byers et al. | Jun 1989 | A |
4865048 | Eckerson | Sep 1989 | A |
4878913 | Aebischer et al. | Nov 1989 | A |
4883666 | Sabel et al. | Nov 1989 | A |
4969468 | Byers et al. | Nov 1990 | A |
5037376 | Richmond et al. | Aug 1991 | A |
5081990 | Deletis | Jan 1992 | A |
5119832 | Xavier | Jun 1992 | A |
5156844 | Aebischer et al. | Oct 1992 | A |
5215088 | Normann et al. | Jun 1993 | A |
5325865 | Beckman et al. | Jul 1994 | A |
5361760 | Normann et al. | Nov 1994 | A |
5423877 | Mackey | Jun 1995 | A |
5445608 | Chen et al. | Aug 1995 | A |
5458631 | Xavier | Oct 1995 | A |
5474547 | Aebischer et al. | Dec 1995 | A |
5617871 | Burrows | Apr 1997 | A |
5638826 | Wolpaw et al. | Jun 1997 | A |
5687291 | Smyth | Nov 1997 | A |
5692517 | Junker | Dec 1997 | A |
5697951 | Harpstead et al. | Dec 1997 | A |
5702432 | Chen et al. | Dec 1997 | A |
5713923 | Ward et al. | Feb 1998 | A |
5735885 | Howard, III et al. | Apr 1998 | A |
5758651 | Nygard et al. | Jun 1998 | A |
5797898 | Santini, Jr. et al. | Aug 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5843093 | Howard, III | Dec 1998 | A |
5843142 | Sultan | Dec 1998 | A |
5855801 | Lin et al. | Jan 1999 | A |
5873840 | Neff | Feb 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5938688 | Schiff | Aug 1999 | A |
5938689 | Fischell et al. | Aug 1999 | A |
5938690 | Law et al. | Aug 1999 | A |
6001065 | DeVito | Dec 1999 | A |
6006124 | Fischell et al. | Dec 1999 | A |
6016449 | Fischell et al. | Jan 2000 | A |
6024700 | Nemirovski et al. | Feb 2000 | A |
6024702 | Iversen | Feb 2000 | A |
6027456 | Feler et al. | Feb 2000 | A |
6038477 | Kayyali | Mar 2000 | A |
6061593 | Fischell et al. | May 2000 | A |
6086582 | Altman et al. | Jul 2000 | A |
6091015 | del Valle et al. | Jul 2000 | A |
6092058 | Smyth | Jul 2000 | A |
6094598 | Elsberry et al. | Jul 2000 | A |
6113553 | Chubbuck | Sep 2000 | A |
6125300 | Weijand et al. | Sep 2000 | A |
6128527 | Howard et al. | Oct 2000 | A |
6128538 | Fischell et al. | Oct 2000 | A |
6134474 | Fischell et al. | Oct 2000 | A |
6154678 | Lauro | Nov 2000 | A |
6161045 | Fischell et al. | Dec 2000 | A |
6163725 | Peckham et al. | Dec 2000 | A |
6169981 | Werbos | Jan 2001 | B1 |
6171239 | Humphrey | Jan 2001 | B1 |
6175762 | Kirkup et al. | Jan 2001 | B1 |
6181965 | Loeb et al. | Jan 2001 | B1 |
6185455 | Loeb et al. | Feb 2001 | B1 |
6216045 | Black et al. | Apr 2001 | B1 |
6224549 | Drongelen | May 2001 | B1 |
6240315 | Mo et al. | May 2001 | B1 |
6254536 | DeVito | Jul 2001 | B1 |
6263237 | Rise | Jul 2001 | B1 |
6280394 | Maloney et al. | Aug 2001 | B1 |
6309410 | Kuzma et al. | Oct 2001 | B1 |
6313093 | Frey, II | Nov 2001 | B1 |
6319241 | King et al. | Nov 2001 | B1 |
6353754 | Fischell et al. | Mar 2002 | B1 |
6354299 | Fischell et al. | Mar 2002 | B1 |
6356784 | Lozano et al. | Mar 2002 | B1 |
6358202 | Arent | Mar 2002 | B1 |
6360122 | Fischell et al. | Mar 2002 | B1 |
6366813 | Di Lorenzo | Apr 2002 | B1 |
6427086 | Fischell et al. | Jul 2002 | B1 |
6436708 | Leone et al. | Aug 2002 | B1 |
6459936 | Fischell et al. | Oct 2002 | B2 |
6466822 | Pless | Oct 2002 | B1 |
6473639 | Fischell et al. | Oct 2002 | B1 |
6480743 | Kirkpatrick et al. | Nov 2002 | B1 |
6577893 | Besson et al. | Jun 2003 | B1 |
6620415 | Donovan | Sep 2003 | B2 |
20010023368 | Black et al. | Sep 2001 | A1 |
20010027336 | Gielen et al. | Oct 2001 | A1 |
20010029391 | Gluckman et al. | Oct 2001 | A1 |
20010051819 | Fischell et al. | Dec 2001 | A1 |
20010056290 | Fischell et al. | Dec 2001 | A1 |
20020002390 | Fischell et al. | Jan 2002 | A1 |
20020013612 | Whitehurst | Jan 2002 | A1 |
20020016638 | Mitra et al. | Feb 2002 | A1 |
20020077620 | Sweeney et al. | Jun 2002 | A1 |
20020099412 | Fischell et al. | Jul 2002 | A1 |
20020169485 | Pless et al. | Nov 2002 | A1 |
20030004428 | Pless et al. | Jan 2003 | A1 |
20030082507 | Stypulkowski | May 2003 | A1 |
20030083716 | Nicolelis et al. | May 2003 | A1 |
20030083724 | Jog et al. | May 2003 | A1 |
20030093129 | Nicolelis et al. | May 2003 | A1 |
Number | Date | Country |
---|---|---|
WO 0143635 | Jun 2001 | WO |
WO 0160445 | Aug 2001 | WO |
WO 0193756 | Dec 2001 | WO |
WO 02093312 | Nov 2002 | WO |
WO 02100267 | Dec 2002 | WO |
WO 03035165 | May 2003 | WO |
WO 03037231 | May 2003 | WO |
WO 03061465 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070046486 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09991498 | Nov 2001 | US |
Child | 11376122 | US |