(1) Field of the Invention
The present invention relates to neuromedin U receptor agonists for use in the treatment of metabolic disorders such as obesity. In particular, the present invention relates to neuromedin U receptor agonists that comprise neuromedin S (NMS).
(2) Description of Related Art
Neuromedin U (NMU) was originally isolated from porcine spinal cord based upon its ability to contract rat uterine smooth muscle and has since been implicated in a variety of other physiological processes, including stress, nociception, inflammation, cardiovascular function and energy homeostasis. Characterization of NMU has identified three peptides with similar bioactivity, full length NMU, (a 25-mer (NMU-25)) in humans, pigs, and dogs, a 23-mer (NMU-23) in rats and mice, and an 8-mer (NMU-8). NMU-8 is derived from cleavage of full-length NMU and shares an identical C-terminus with the full-length precursor. NMU-8 is highly conserved among vertebrates, containing seven C-terminal residues that are identical across all species that have been examined; these residues are critical for bioactivity (Brighton et al., Pharmacol. Rev. 56: 231-248 (2004)).
NMU's role in the regulation of energy homeostasis is supported by both pharmacologic and genetic data. Properties of NMU include inhibition of food intake and increase in energy expenditure seen when the substance is administered centrally (Howard et al., Nature 406: 70-74 (2000); Nakazato et al., Biochem. Biophys. Res. Comm. 277: 191-194 (2000); Ivanov et al., Endocrinol. 143: 3813-3821 (2002); and Wren et al., Endocrinol., 143: 4227-4234 (2002)). NMU-deficient mice develop obesity characterized by hyperphagia and reduced energy expenditure (Hanada et al., Nat. Med., 10: 1067-1073 (2004)), and transgenic mice overexpressing NMU are lean and hypophagic (Kowalski et al., J. Endocrinol. 185: 151-164 (2005)). The internal energy status of an animal affects expression and release of NMU as well (Wren et al., ibid.).
Mori et al. (EMBO J. 24: 325-335 (2005)) recently identified a 36-residue neuropeptide neuromedin S (NMS), which was purified from rat brain extracts. The restricted expression of NMS in the SCN core and the ability of NMS to shift the phase of the circadian rhythm demonstrated that NMS is important for the regulation of circadian rhythm. NMS is a candidate for a nonphotic entrainment factor of circadian rhythm. Ida et al. (Endocrinol. 146: 4217-4223 (2005)) provided evidence suggesting NMS is an anorexigenic hormone. Intracerebroventricular (icy) injection of NMS decreased 12 hour food intake during the dark period in rats. This anorexigenic effect was more potent and persistent than that observed with the same dose of NMU. NMS has also been disclosed in International applications WO2006/086769, WO2007/0221123, and WO2007/075439.
Two high affinity NMU and NMS receptors, NMUR1 (Intl. Patent Appl. No. PCT/US99/15941) and NMUR2 (U.S. Pat. No. 7,163,799), have been identified. NMUR1 is predominantly expressed in the periphery, whereas NMUR2 is primarily expressed in the brain. Pharmacologic experiments have served to better define NMU's short- and long-term effects on energy homeostasis and to identify which NMU receptor(s) are involved in mediating these actions. It has been shown that acute administrations of NMU either centrally or peripherally reduce food intake in mice in a dose-dependent fashion. The anorectic actions of centrally administered NMU are absent in NMUR2-deficient (Nmur2−/−) mice but are present in NMUR1-deficient (Nmur1−/−) mice. In contrast, the anorectic actions of peripherally administered NMU are absent in Nmur1−/− mice and present in Nmur2−/− mice. Additionally, acute peripheral administration of NMU dose-dependently increases core body temperature in mice, suggesting that NMUR1−/− may also modulate energy expenditure. Chronic administration of NMU either centrally or peripherally reduces food intake, body weight and adiposity in mice, again in a dose-dependent fashion. In Nmur2−/− transgenic mice, body weight, body composition, body temperature and food intake are largely unaffected by chronic central administration of rat NMU-23. In Nmur1−/− transgenic mice, body weight, body composition and food intake are largely unaffected by chronic peripheral administration of rat NMU-23.
In light of the above, neuromedin U receptor agonists comprising analogs or derivatives of NMS might be useful in the treatment of metabolic disorders.
The present invention provides neuromedin U receptor agonists, which comprise derivatives and analogs of neuromedin S (NMS). The neuromedin U receptor agonists can be used therapeutically and as research tools.
Therapeutic applications of the neuromedin U receptor agonists include administering the neuromedin U receptor agonists to an individual to treat a metabolic disorder afflicting the individual. Such disorders include, but are not limited to, obesity, metabolic syndrome or syndrome X, and type II diabetes. Complications of diabetes such as retinopathy may be positively affected thereby as well. Obesity is a comorbidity of and may well contribute to such disease states as diabetes, hypertension, dyslipidemias, cardiovascular disease, gallstones, osteoarthritis and certain forms of cancers. Administration of one or more of the neuromedin U receptor agonists disclosed herein to effect weight loss in an individual may also be useful in preventing such diseases and as part of therapy for any one of the above-recited conditions, as well as others. In other embodiments, there is provided a method for treating a metabolic disease in an individual comprising administering to the individual one or more of the neuromedin U receptor agonists described above. The metabolic disease may be selected from the group consisting of diabetes, metabolic syndrome, hyperglycemia, and obesity and may be administered via a route peripheral to the brain, such as an oral, mucosal, buccal, sublingual, nasal, rectal, subcutaneous, transdermal, intravenous, intramuscular, or intraperitoneal route. Finally, the neuromedin U receptor agonists can be administered to an individual to effect a reduction in food intake by the individual, to effect an increase in energy expenditure by the individual, to effect a reduction in weight gain in the individual, to prevent weight gain in the individual, to effect weight loss in the individual, and/or to prevent weight regain in the individual.
Accordingly, the present invention provides an isolated neuromedin U receptor agonist, which has the formula (I)
Z1-peptide-Z2
In further aspects of the above neuromedin U receptor agonists, the N-terminal amino acid is covalently joined to one or more molecules selected from the group consisting of PEG, cholesterol, N-ethylmaleimidyl, and palmitoyl. In further still aspects of the neuromedin U receptor agonist, the peptide further includes a cysteine residue at the N-terminus of the peptide to which is optionally present a protecting group that, if present, is joined to the N-terminal amino group of the cysteine residue. In particular aspects of the neuromedin U receptor agonist, the thiol group of the cysteine residue at the N-terminus is covalently joined to one or more molecules selected from the group consisting of PEG, cholesterol, N-ethylmaleimidyl, and palmitoyl. In a further embodiment, the neuromedin U receptor agonists has the amino acid of SEQ ID NO:2, which further includes a cysteine residue at the N-terminus of the peptide to which is present a protecting group joined to the N-terminal amino group of the cysteine residue and a PEG molecule joined to the thiol group.
The neuromedin U receptor agonist can further include a linker group having a distal end and a proximal end. The linker group is covalently joined at its distal end to the N-terminus of the peptide, and is covalently linked at the proximal end to the carboxyl terminus of a cysteine residue, onto which is optionally present a protecting group that, if present, is joined to the N-terminal amino group of the cysteine residue. In particular aspects, wherein the thiol group of the cysteine residue is covalently joined to one or more molecules selected from the group consisting of PEG, cholesterol, N-ethylmaleimidyl, and palmitoyl.
The present invention further provides for the use of any one or more of the embodiments and aspects of the neuromedin U receptor agonist in the manufacture of a medicament for treatment of a metabolic disorder. Disorders include, but are not limited to, obesity, metabolic syndrome or syndrome X, and type II diabetes. Complications of diabetes such as retinopathy may be positively affected thereby as well. Obesity is a comorbidity of and may well contribute to such disease states as diabetes, hypertension, dyslipidemias, cardiovascular disease, gallstones, osteoarthritis and certain forms of cancers. Thus, the present invention provides a pharmaceutical composition comprising one or more of any of the above neuromedin U receptor agonists and a pharmaceutically acceptable carrier.
The present invention further provides a method for producing a neuromedin U receptor agonist
In further aspects of the above method, the N-terminal amino acid is covalently joined to one or more molecules selected from the group consisting of PEG, cholesterol, N-ethylmaleimidyl, and palmitoyl. In further still aspects of the neuromedin U receptor agonist, the peptide further includes a cysteine residue at the N-terminus of the peptide to which is optionally present a protecting group that, if present, is joined to the N-terminal amino group of the cysteine residue. In particular aspects of the method, the thiol group of the cysteine residue at the N-terminus is covalently joined to one or more molecules selected from the group consisting of PEG, cholesterol, N-ethylmaleimidyl, and palmitoyl. In a further embodiment, the neuromedin U receptor agonists has the amino acid of SEQ ID NO:1, which further includes a cysteine residue at the N-terminus of the peptide to which is present a protecting group joined to the N-terminal amino group of the cysteine residue and a PEG molecule joined to the thiol group.
The neuromedin U receptor agonist can further include a linker group having a distal end and a proximal end is covalently joined at its distal end to the N-terminus of the peptide and the proximal end of the linker group is covalently linked to the carboxyl terminus of a cysteine residue to which is optionally present a protecting group that, if present, is joined to the N-terminal amino group of the cysteine residue. In particular aspects, wherein the thiol group of the cysteine residue is covalently joined to one or more molecules selected from the group consisting of PEG, cholesterol, N-ethylmaleimidyl, and palmitoyl. In a further embodiment of the method, neuromedin U receptor agonist has the formula Ac—C2-peptide-CONH2 wherein Ac is an acetyl group, C2 is Cys(PEG)240kDa and the peptide has the amino acid sequence shown in SEQ ID NO:1.
The present invention provides neuromedin U receptor agonists, which comprise derivatives and analogs of neuromedin S (NMS). The neuromedin U receptor agonist described herein act at NMU receptors, bind the NMU receptors, and stimulate NMU receptor activity.
One or more of the neuromedin U receptor agonists can be administered to an individual to treat a metabolic disorder afflicting the individual. Such disorders include, but are not limited to, obesity, metabolic syndrome or syndrome X, and type II diabetes. Complications of diabetes such as retinopathy may be positively affected thereby as well. Obesity is a comorbidity of and may well contribute to such disease states as diabetes, hypertension, dyslipidemias, cardiovascular disease, gallstones, osteoarthritis and certain forms of cancers. Administration of one or more of the neuromedin U receptor agonists disclosed herein to effect weight loss in an individual may also be useful in preventing such diseases and as part of therapy for any one of the above-recited conditions, as well as others. In other embodiments, there is provided a method for treating a metabolic disease in an individual comprising administering to the individual a one or more of the neuromedin U receptor agonists described above. The metabolic disease may be selected from the group consisting of diabetes, metabolic syndrome, hyperglycemia, and obesity and may be administered via a route peripheral to the brain, such as an oral, mucosal, buccal, sublingual, nasal, rectal, subcutaneous, transdermal, intravenous, intramuscular, or intraperitoneal route. In particular embodiments, the neuromedin U receptor agonists can be used to treat multiple disorders in an individual. As will be apparent to one of ordinary skill in the art in view of the disclosure herein, the neuromedin U receptor agonists can be administered to an individual to effect a reduction in food intake by the individual, to effect and increase in energy expenditure by the individual, to effect a reduction in weight gain in the individual, to prevent weight gain in the individual, to effect weight loss in the individual, and/or to prevent weight regain in the individual.
Research tool uses may involve the use of a neuromedin U receptor agonist and the presence of an NMU receptor or fragment thereof. Examples of research tool uses include screening for compounds active at NMU receptors, determining the presence of NMU receptors in a sample or preparation, and examining the role or effect of NMU. Additionally, the neuromedin U receptor agonists can be used to screen for NMU binding compounds (agonists or antagonists) by using a neuromedin U receptor agonist in a competition experiment with test compounds.
The neuromedin U receptor agonists of the present invention comprise the general formula (I)
Z1-peptide-Z2
wherein the peptide has the NMS amino acid sequence ILQRG SGTAA VDFTK KDHTA TWGRP FFLFR PRN (SEQ ID NO:1), wherein the peptide can have one or more insertions or substitutions of the amino acid sequence with an alternative amino acid and wherein the peptide can have one or more deletions of the amino acid sequence; Z1 is an optionally present protecting group that, if present, is joined to the N-terminal amino group; and Z2 is NH2 or an optionally present protecting group that, if present, is joined to the C-terminal carboxy group; and pharmaceutically acceptable salts thereof.
The phrase “alternative amino acid” as used herein and in the claims encompasses alternative amino acids that are the result of both conservative and non-conservative substitutions. Conservative substitutions are the replacement of an amino acid residue by another similar residue in a polypeptide. Typical but not limiting conservative substitutions are the replacements, for one another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of Ser and Thr containing hydroxy residues, interchange of the acidic residues Asp and GIu, interchange between the amide-containing residues Asn and Gln, interchange of the basic residues Lys and Arg, interchange of the aromatic residues Phe and Tyr, and interchange of the small-sized amino acids Ala, Ser, Thr, Met, and Gly. Non-conservative substitutions are the replacement, in a polypeptide, of an amino acid residue by another residue which is not biologically similar. For example, the replacement of an amino acid residue with another residue that has a substantially different charge, a substantially different hydrophobicity, or a substantially different spatial configuration.
The phrase “alternative amino acid” further includes isomeric forms of the amino acid, for example, the phrase encompasses both D and L forms of amino acids.
The phrase “alternative amino acid” further includes in addition to the twenty commonly occurring amino acids that are typically found in naturally occurring polypeptides, rare amino acids, for example, canavanine, ornithine, methyl-alanine, methionine sulfoxide, and 5-hydroxytryptophane, and artificial amino acids, that is to say amino acids not normally found in vivo, for example t-butylglycine. Any chiral form of an amino acid may be used.
The phrase “alternative amino acid” further includes amino acids that are chemically modified at its amino side group. Chemical modification includes adding chemical moieties, creating new bonds, and removing chemical moieties. Modifications at amino side groups include, but are not limited to, acylation of lysine e-amino groups, N-alkylation of arginine, histidine, or lysine, alkylation of glutamic or aspartic acids carboxylic groups, and deamination of glutamine or asparagine. Modifications of the terminal amino acid include, but are not limited to, the des-amino, N-lower alkyl, N-di-lower alkyl, and N-acyl modifications. Modifications of the terminal carboxy group include, but are not limited to, the amide, lower alkyl amide, dialyl amide, and lower alkyl ester modifications. A lower alkyl is a C3-C4 alkyl. Further more, one or more side groups, or terminal groups, may be protected by protective groups known to the ordinary chemist. The alpha carbon of an amino acid may be mono- or di-methylated.
In particular aspects, the neuromedin U receptor agonist optionally includes a protecting group covalently joined to the N-terminal amino group. A protecting group covalently joined to the N-terminal amino group of the neuromedin U receptor agonists reduces the reactivity of the amino terminus under in vivo conditions. Amino protecting groups include —C1-10 alkyl, —C1-10 substituted alkyl, —C2-10 alkenyl, —C2-10 substituted alkenyl, aryl, —C1-6 alkyl aryl, —C(O)—(CH2)1-6—COOH, —C(O)—C1-6 alkyl, —C(O)-aryl, —C(O)—O—C1-6 alkyl, or —C(O)—O-aryl. In particular embodiments, the amino terminus protecting group is selected from the group consisting of acetyl, propyl, succinyl, benzyl, benzyloxycarbonyl, and t-butyloxycarbonyl. Deamination of the N-terminal amino acid is another modification that is contemplated for reducing the reactivity of the amino terminus under in vivo conditions.
Chemically modified compositions of the neuromedin U receptor agonists wherein the neuromedin U receptor agonist derivatives are linked to a polymer are also included within the scope of the present invention. The polymer selected is usually modified to have a single reactive group, such as an active ester for acylation or an aldehyde for alkylation, so that the degree of polymerization may be controlled as provided for in the present methods. Included within the scope of polymers is a mixture of polymers. Preferably, for therapeutic use of the end-product preparation, the polymer will be pharmaceutically acceptable.
The polymer or mixture thereof may be selected from the group consisting of; for example, polyethylene glycol (PEG), monomethoxy-polyethylene glycol, dextran, cellulose, or other carbohydrate based polymers, poly-(N-vinyl pyrrolidone) polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-polymer, polyoxyethylated polyols (for example, glycerol), and polyvinyl alcohol.
In further still embodiments, the neuromedin U receptor agonists are modified by PEGylation, cholesterylation, or palmitoylation. The modification can be to any amino acid residue in the neuromedin U receptor agonist, however, in currently embodiments, the modification is to the N-terminal amino acid of the neuromedin U receptor agonist, either directly to the N-terminal amino acid or by way coupling to the thiol group of a cysteine residue added to the N-terminus or a linker added to the N-terminus such as Ttds. In further embodiments, the N-terminus of the neuromedin U receptor agonist comprises a cysteine residue to which a protecting group is coupled to the N-terminal amino group of the cysteine residue and the cysteine thiolate group is derivatized with N-ethylmaleimide, PEG group, cholesterol group, or palmitoyl group. In further still embodiments, an acetylated cysteine residue is added to the N-terminus of the neuromedin U receptor agonists, and the thiol group of the cysteine is derivatized with N-ethylmaleimide, PEG group, cholesterol group, or palmitoyl group.
It is well known that the properties of certain proteins can be modulated by attachment of polyethylene glycol (PEG) polymers, which increases the hydrodynamic volume of the protein and thereby slows its clearance by kidney filtration. (See, for example, Clark et al., J. Biol. Chem. 271: 21969-21977 (1996)). Therefore, it is envisioned that the core peptide residues can be PEGylated to provide enhanced therapeutic benefits such as, for example, increased efficacy by extending half-life in vivo. Thus, PEGylating the neuromedin U receptor agonists will improve the pharmacokinetics and pharmacodynamics of the neuromedin U receptor agonists.
Peptide PEGylation methods are well known in the literature and described in the following references, each of which is incorporated herein by reference: Lu et al., Int. J. Pept. Protein Res.43: 127-38 (1994); Lu et al., Pept. Res. 6: 140-6 (1993); Felix et al., Int. J. Pept. Protein Res. 46: 253-64 (1995); Gaertner et al., Bioconjug. Chem. 7: 38-44 (1996); Tsutsumi et al., Thromb. Haemost. 77: 168-73 (1997); Francis et al., hit. J. Hematol. 68: 1-18 (1998); Roberts et al., J. Pharm. Sci. 87: 1440-45 (1998); and Tan et al., Protein Expr. Purif. 12: 45-52 (1998). Polyethylene glycol or PEG is meant to encompass any of the forms of PEG that have been used to derivatize other proteins, including, but not limited to, mono-(C1-10) alkoxy or aryloxy-polyethylene glycol. Suitable PEG moieties include, for example, 40 kDa methoxy poly(ethylene glycol) propionaldehyde (Dow, Midland, Mich.); 60 kDa methoxy poly(ethylene glycol) propionaldehyde (Dow, Midland, Mich.); 40 kDa methoxy poly(ethylene glycol) maleimido-propionamide (Dow, Midland, Mich.); 31 kDa alpha-methyl-w-(3-oxopropoxy), polyoxyethylene (NOF Corporation, Tokyo); mPEG2-NHS-40k (Nektar); mPEG2-MAL-40k (Nektar), SUNBRIGHT GL2-400MA ((PEG)240kDa) (NOF Corporation, Tokyo), SUNBRIGHT ME-200MA (PEG20kDa) (NOF Corporation, Tokyo). The PEG groups are generally attached to the neuromedin U receptor agonists via acylation or alkylation through a reactive group on the PEG moiety (for example, a maleimide, an aldehyde, amino, thiol, or ester group) to a reactive group on the neuromedin U receptor agonist (for example, an aldehyde, amino, thiol, a maleimide, or ester group).
The PEG molecule(s) may be covalently attached to any Lys, Cys, or K(CO(CH2)2SH) residues at any position in the neuromedin U receptor agonist. The neuromedin U receptor agonists described herein can be PEGylated directly to any amino acid at the N-terminus by way of the N-terminal amino group. A “linker arm” may be added to the neuromedin U receptor agonist to facilitate PEGylation. PEGylation at the thiol side-chain of cysteine has been widely reported (See, e.g., Caliceti & Veronese, Adv. Drug Deliv. Rev. 55: 1261-77 (2003)). If there is no cysteine residue in the peptide, a cysteine residue can be introduced through substitution or by adding a cysteine to the N-terminal amino acid. Those neuromedin U receptor agonists, which have been PEGylated, have been PEGylated through the side chains of a cysteine residue added to the N-terminal amino acid.
In some aspects, the PEG molecule(s) may be covalently attached to an amide group in the C-terminus of the neuromedin U receptor agonist. In general, there is at least one PEG molecule covalently attached to the neuromedin U receptor agonist. In particular aspects, the PEG molecule is branched while in other aspects, the PEG molecule may be linear. In particular aspects, the PEG molecule is between 1 kDa and 100 kDa in molecular weight. In further aspects, the PEG molecule is selected from 10, 20, 30, 40, 50, 60, and 80 kDa. In further still aspects, it is selected from 20, 40, or 60 kDa. Where there are two PEG molecules covalently attached to the neuromedin U receptor agonist of the present invention, each is 1 to 40 kDa and in particular aspects, they have molecular weights of 20 and 20 kDa, 10 and 30 kDa, 30 and 30 kDa, 20 and 40 kDa, or 40 and 40 kDa. In particular aspects, the neuromedin U receptor agonists contain mPEG-cysteine. The mPEG in mPEG-cysteine can have various molecular weights. The range of the molecular weight is preferably 5 kDa to 200 kDa, more preferably 5 kDa to 100 kDa, and further preferably 20 kDa to 60 kDA. The mPEG can be linear or branched.
Currently, it is preferable that the neuromedin U receptor agonists are PEGylated through the side chains of a cysteine added to the N-terminal amino acid. Currently, the agonists preferably contain mPEG-cysteine. The mPEG in mPEG-cysteine can have various molecular weights. The range of the molecular weight is preferably 5 kDa to 200 kDa, more preferably 5 kDa to 100 kDa, and further preferably 20 kDa to 60 kDA. The mPEG can be linear or branched.
A useful strategy for the PEGylation of synthetic neuromedin U receptor agonists consists of combining, through forming a conjugate linkage in solution, a peptide, and a PEG moiety, each bearing a special functionality that is mutually reactive toward the other. The neuromedin U receptor agonists can be easily prepared with conventional solid phase synthesis. The neuromedin U receptor agonist is “preactivated” with an appropriate functional group at a specific site. The precursors are purified and fully characterized prior to reacting with the PEG moiety. Conjugation of the peptide with PEG usually takes place in aqueous phase and can be easily monitored by reverse phase analytical HPLC. The PEGylated neuromedin U receptor agonist can be easily purified by cation exchange chromatography or preparative HPLC and characterized by analytical HPLC, amino acid analysis and laser desorption mass spectrometry.
The neuromedin U receptor agonist can comprise other non-sequence modifications, for example, glycosylation, lipidation, acetylation, phosphorylation, carboxylation, methylation, or any other manipulation or modification, such as conjugation with a labeling component. While, in particular aspects, the neuromedin U receptor agonist herein utilize naturally-occurring amino acids or D isoforms of naturally occurring amino acids, substitutions with non-naturally occurring amino acids (for example., methionine sulfoxide, methionine methylsulfonium, norleucine, epsilon-aminocaproic acid, 4-aminobutanoic acid, tetrahydroisoquinoline-3-carboxylic acid, 8-aminocaprylic acid, 4 aminobutyric acid, Lys(N(epsilon)-trifluoroacetyl) or synthetic analogs, for example, o-aminoisobutyric acid, p or y-amino acids, and cyclic analogs. In further still aspects, the neuromedin U receptor agonists comprise a fusion protein that having a first moiety, which is a neuromedin U receptor agonist, and a second moiety, which is a heterologous peptide.
The neuromedin U receptor agonist may be modified by a variety of chemical techniques to produce derivatives having essentially the same activity as the unmodified neuromedin U receptor agonist and/or having other desirable properties. A protecting group covalently joined to the C-terminal carboxy group reduces the reactivity of the carboxy terminus under in vivo conditions. For example, carboxylic acid groups of the peptide, whether carboxyl-terminal or side chain, may be provided in the form of a salt of a pharmacologically-acceptable cation or esterified to form a C1-6 ester, or converted to an amide of formula NRR2 wherein R and R2 are each independently H or C1-6 alkyl, or combined to form a heterocyclic ring, such as a 5- or 6-membered ring. The carboxy terminus protecting group is preferably attached to the α-carbonyl group of the last amino acid. Carboxy terminus protecting groups include, but are not limited to, amide, methylamide, and ethylamide. Amino groups of the peptide, whether N-terminal or side chain, may be in the form of a pharmacologically-acceptable acid addition salt, such as the HCl, HBr, acetic, benzoic, toluene sulfonic, maleic, tartaric, and other organic salts, or may be modified to C1-6 alkyl or dialkyl amino or further converted to an amide.
Hydroxyl groups of the neuromedin U receptor agonist side chain may be converted to C1-6 alkoxy or to a C1-6 ester using well-recognized techniques. Phenyl and phenolic rings of the peptide side chain may be substituted with one or more halogen atoms, such as fluorine, chlorine, bromine or iodine, or with C1-6 alkyl, C1-6 alkoxy, carboxylic acids and esters thereof, or amides of such carboxylic acids. Methylene groups of the neuromedin U receptor agonist side chains can be extended to homologous C2-4 alkylenes. Thiols can be protected with any one of a number of well-recognized protecting groups, such as acetamide groups. Those skilled in the art will also recognize methods for introducing cyclic structures into the peptides of this invention to select and provide conformational constraints to the structure that result in enhanced stability. For example, a carboxyl-terminal or amino-terminal cysteine residue can be added to the peptide, so that when oxidized the peptide will contain a disulfide bond, thereby generating a cyclic peptide. Other peptide cyclizing methods include the formation of thioethers and carboxyl- and amino-terminal amides and esters. Another method to provide conformational constraints to the structure that result in enhanced stability relies on the substitution of one or more amino acids with N-alkyl-amino acids.
Polysaccharide polymers are another type of water soluble polymer that may be used for protein modification. Dextrans are polysaccharide polymers comprised of individual subunits of glucose predominantly linked by α1-6 linkages. The dextran itself is available in many molecular weight ranges, and is readily available in molecular weights from about 1 kDa to about 70 kDa. Dextran is a suitable water soluble polymer for use as a vehicle by itself or in combination with another vehicle (See, for example, WO96/11953 and WO96/05309). The use of dextran conjugated to therapeutic or diagnostic immunoglobulins has been reported; see, for example, European Patent Publication No. 0 315 456. Dextran of about 1 kDa to about 20 kDa is preferred when dextran is used as a vehicle in accordance with the present invention.
As described above, the presence of a “linker” group is optional. When present, its chemical structure is not critical, since it serves primarily as a spacer. However, in certain embodiments, the linker may itself provide improved properties to the compositions of the present invention. The linker is preferably made up of amino acids linked together by peptide bonds. Thus, in particular embodiments, the linker is made up of from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. Some of these amino acids may be glycosylated, as is well understood by those in the art. In a further embodiment, the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine. Even more preferably, a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine. Thus, linkers include are polyglycines (particularly (Gly)4, (Gly)5), poly(Gly-Ala), and polyalanines. Other specific examples of linkers are (Gly)3Lys(Gly)4; (Gly)3AsnGlySer(Gly)2; (Gly)3Cys(Gly)4; and GlyProAsnGlyGly.
Non-peptide linkers can also be used. For example, alkyl linkers such as-NH—(CH2)s—C(O)—, wherein s=2-20 could be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (for example, C1-6) lower acyl, halogen (for example, Cl, Br), CN, NH2, phenyl, and the like. An exemplary non-peptide linker is a PEG linker, wherein n is such that the linker has a molecular weight of 100 to 5000 kD, preferably 100 to 500 kD. The peptide linkers may be altered to form derivatives in the same manner as described above. Other linkers include Ttds (N-(13-amino-4,7,10-trioxa-tridecayl)-succinamic acid).
The present invention includes diastereomers as well as their racemic and resolved enantiomerically pure forms. The neuromedin U receptor agonists can contain D-amino acids, L-amino acids, or a combination thereof. In general, the amino acids are in the L-form with particular amino acids in D-form. As is known in the art, individual amino acids can be represented as follows: A=Ala=Alanine; C=Cys=Cysteine; D=Asp=Aspartic Acid; E=Glu=Glutamic Acid; F=Phe=Phenylalanine; G=Gly=Glycine; H=His=Histidine; I=Ile=Isoleucine; K=Lys=Lysine; L=Leu=Leucine; M=Met=Methionine; N=Asn=Asparagine; P=Pro=Proline; Q=Gln=Glutamine; R=Arg=Arginine; S=Ser=Serine; T=Thr=Threonine; V=Val=Valine; W=Trp=Tryptophan; and Y=Tyr=Tyrosine.
The neuromedinU receptor agonists can be linked, conjugated, or fused to a carrier molecule such as albumin, transferrrin, or an antibody or antibody fragment such as the Fab or Fc fragment. For example, the neuromedin U receptor agonists can be linked via a linker moiety to a catalytic antibody such as disclosed in U.S. Pub. Application Nos. US20030175921, US200301960676, and US20030129188, which describes linking of various peptides to the catalytic site of an aldolase catalytic antibody. The neuromedin U receptor agonists can be conjugated to an Fc fragment via linker moiety or fused to the Fc fragment of an antibody in the form of a fusion protein such as disclosed for the GLP-1-Fc fusion proteins in International Applications WO2002/046227 and WO2005/007809. The neuromedin U receptor agonist can be linked via a linker moiety to serum albumin, similar to the linking of GLP-1 to albumin as disclosed in International application WO2000/069911 or U.S. Pub application US20070093417. The neuromedin U receptor agonist can fused to a carrier molecule such as transferrin, for example similar to the transferrin-GLP-1 fusion proteins disclosed in U.S. Pat. No. 7,176,278 or albumin-GLP-1 fusion proteins described in U.S. Pat. No. 7,141,547.
Examples of neuromedin U receptor agonists of the present invention comprising the amino acid sequence ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN (SEQ ID NO:1) are shown in Table 1. The neuromedin U receptor agonists are protected at the C-terminus with an amino group and at the N-terminus with an acetyl group (except for neuromedin U receptor agonist NMS). With the exception of neuromedin U receptor agonist NMS and NMS5, the neuromedin U receptor agonists further include a cysteine residue at the N-terminus to which an acetyl group is covalently linked to the amino group of the cysteine residue. As shown in the table, for many of the neuromedin U receptor agonists, the thiol group of the cysteine residue is reacted with a second group. For example, for neuromedin U receptor agonists in the table shown with a C1 at the N-terminus, the neuromedin U receptor agonist has an N-acetylated cysteine residue at the N-terminus of the neuromedin U receptor agonist linked by way of its thiol group to N-ethylmaleimidyl; for neuromedin U receptor agonists in the table shown with a C2 at the N-terminus, the neuromedin U receptor agonist has an N-acetylated cysteine residue at the N-terminus of the neuromedin U receptor agonist linked by way of its thiol group to a branched (PEG)240kDa; for neuromedin U receptor agonists shown with a C4 at the N-terminus of the neuromedin U receptor agonist, the neuromedin U receptor agonist has an N-acetylated cysteine residue at the N-terminus of the neuromedin U receptor agonist linked by way of its thiol group to a linear (PEG)40kDa; for neuromedin U receptor agonists shown with a C3 at the N-terminus of the neuromedin U receptor agonist, the neuromedin U receptor agonist has an N-acetylated cysteine residue at the N-terminus of the neuromedin U receptor agonist linked by way of its thiol group to Cholesterol.
Ac-CILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN-CONH2
Ac-C1ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN-CONH2
Ac-C2ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN-CONH2
Ac-C3ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN-CONH2
Ac-C4ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN-CONH2
Pam-ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN-CONH2
C = cysteine; C1 = Cys(N-ethylmaleimidyl), C2 = Cys(PEG)240 kDa, C4 = Cys(PEG)40 kDa; each corresponding to a cysteine residue PEGylated via the side-chain thiol with a branched PEG [(PEG)2] or a linear PEG of the indicated MW; C3 = Cys(Cholesteroyl), corresponding to a cysteine residue linked to cholesterol via the side-chain thiol; Ac = acetyl; Pam =
The Neuromedin U receptor agonists shown in Table 1 were designed starting from the native human Neuromedin S peptide (SEQ ID NO:1, NMS) and adding an acetylated cysteine residue at the N-terminus to make the analog, NMS′. The cysteine thiolated group of NMS′ was derivatized with (a) N-ethylmaleimide to obtain the analog, NMS3, that is a control peptide; (b) (PEG)240kDa-maleimide to obtain the analog, NMS1, this PEGylated analog was designed to improve the pharmacological profile in vivo; (c) a bromo-cholesterol group to obtain NMS2, this lipidated analog was designed to improve the pharmacological profile; or (d) (PEG)40kDa-maleimide to obtain analog, NMS4, this PEGylated analog was designed to improve the pharmacological profile in vivo.
The analog, NMS5, was based on the native human Neuromedin S in which the N-terminal amino group was capped with palmitic acid. It was designed to study the effect of N-terminal palmitoylation on efficacy, or more generally, the effect of acylation with a fatty acid chain on efficacy.
The sites of PEGylation on the Neuromedin U receptor agonists shown in Table 1 were chosen taking into account the structure of NMS and its interactions with its receptors. Hence, the PEGylation is preferably site-specific. PEGylation at the thiol side-chain of cysteine has been widely reported (See, e.g., Caliceti & Veronese, Adv. Drug Deliv. Rev. 55: 1261-77 (2003)). If there is no cysteine residue in the peptide, a cysteine residue can be introduced through substitution or by adding a cysteine to the N-terminal amino acid. Those neuromedin U receptor agonists, which have been PEGylated, have been PEGylated through the side chains of a cysteine residue added to the N-terminal amino acid. As discussed supra, the PEG in Cys(PEG)teine can have various molecular weights. The range of the molecular weight is preferably 5 kDa to 200 kDa, more preferably 5 kDa to 100 kDa, and further preferably 20 kDa to 40 kDA. The PEG can be linear or branched.
Further provided are pharmaceutical compositions comprising a therapeutically effective amount of one or more of the neuromedin U receptor agonists disclosed herein for the treatment of a metabolic disorder in an individual. Such disorders include, but are not limited to, obesity, metabolic syndrome or syndrome X, type II diabetes, complications of diabetes such as retinopathy, hypertension, dyslipidemias, cardiovascular disease, gallstones, osteoarthritis, and certain forms of cancers. The obesity-related disorders herein are associated with, caused by, or result from obesity.
“Obesity” is a condition in which there is an excess of body fat. The operational definition of obesity is based on the Body Mass Index (BMI), calculated as body weight per height in meters squared (kg/m2). “Obesity” refers to a condition whereby an otherwise healthy subject has a Body Mass Index (BMI) greater than or equal to 30 kg/m2, or a condition whereby a subject with at least one co-morbidity has a BMI greater than or equal to 27 kg/m2. An “obese subject” is an otherwise healthy subject with a Body Mass Index (BMI) greater than or equal to 30 kg/m2 or a subject with at least one co-morbidity with a BMI greater than or equal to 27 kg/m2. A “subject at risk for obesity” is an otherwise healthy subject with a BMI of 25 kg/m2 to less than 30 kg/m2 or a subject with at least one co-morbidity with a BMI of 25 kg/m2 to less than 27 kg/m2.
The increased risks associated with obesity occur at a lower Body Mass Index (BMI) in Asians. In Asian countries, including Japan, “obesity” refers to a condition whereby a subject with at least one obesity-induced or obesity-related co-morbidity that requires weight reduction or that would be improved by weight reduction, has a BMI greater than or equal to 25 kg/m2. In Asian countries, including Japan, an “obese subject” refers to a subject with at least one obesity-induced or obesity-related co-morbidity that requires weight reduction or that would be improved by weight reduction, with a BMI greater than or equal to 25 kg/m2. In Asian countries, a “subject at risk of obesity” is a subject with a BMI of greater than 23 kg/m2 to less than 25 kg/m2.
As used herein, the term “obesity” is meant to encompass all of the above definitions of obesity.
Obesity-induced or obesity-related co-morbidities include, but are not limited to, diabetes, non-insulin dependent diabetes mellitus—type 2, impaired glucose tolerance, impaired fasting glucose, insulin resistance syndrome, dyslipidemia, hypertension, hyperuricacidemia, gout, coronary artery disease, myocardial infarction, angina pectoris, sleep apnea syndrome, Pickwickian syndrome, fatty liver; cerebral infarction, cerebral thrombosis, transient ischemic attack, orthopedic disorders, arthritis deformans, lumbodynia, emmeniopathy, and infertility. In particular, co-morbidities include: hypertension, hyperlipidemia, dyslipidemia, glucose intolerance, cardiovascular disease, sleep apnea, diabetes mellitus, and other obesity-related conditions.
“Treatment” (of obesity and obesity-related disorders) refers to the administration of the compounds of the present invention to reduce or maintain the body weight of an obese subject. One outcome of treatment may be reducing the body weight of an obese subject relative to that subject's body weight immediately before the administration of the compounds of the present invention. Another outcome of treatment may be preventing body weight regain of body weight previously lost as a result of diet, exercise, or pharmacotherapy. Another outcome of treatment may be decreasing the occurrence of and/or the severity of obesity-related diseases. The treatment may suitably result in a reduction in food or calorie intake by the subject, including a reduction in total food intake, or a reduction of intake of specific components of the diet such as carbohydrates or fats; and/or the inhibition of nutrient absorption; and/or the inhibition of the reduction of metabolic rate; and in weight reduction in patients in need thereof. The treatment may also result in an alteration of metabolic rate, such as an increase in metabolic rate, rather than or in addition to an inhibition of the reduction of metabolic rate; and/or in minimization of the metabolic resistance that normally results from weight loss.
“Prevention” (of obesity and obesity-related disorders) refers to the administration of the compounds of the present invention to reduce or maintain the body weight of a subject at risk of obesity. One outcome of prevention may be reducing the body weight of a subject at risk of obesity relative to that subject's body weight immediately before the administration of the compounds of the present invention. Another outcome of prevention may be preventing body weight regain of body weight previously lost as a result of diet, exercise, or pharmacotherapy. Another outcome of prevention may be preventing obesity from occurring if the treatment is administered prior to the onset of obesity in a subject at risk of obesity. Another outcome of prevention may be decreasing the occurrence and/or severity of obesity-related disorders if the treatment is administered prior to the onset of obesity in a subject at risk of obesity. Moreover, if treatment is commenced in already obese subjects, such treatment may prevent the occurrence, progression or severity of obesity-related disorders, such as, but not limited to, arteriosclerosis, Type II diabetes, polycystic ovarian disease, cardiovascular diseases, osteoarthritis, dermatological disorders, hypertension, insulin resistance, hypercholesterolemia, hypertriglyceridemia, and cholelithiasis.
The obesity-related disorders herein are associated with, caused by, or result from obesity. Examples of obesity-related disorders include overeating and bulimia, hypertension, diabetes, elevated plasma insulin concentrations and insulin resistance, dyslipidemias, hyperlipidemia, endometrial, breast, prostate and colon cancer, osteoarthritis, obstructive sleep apnea, cholelithiasis, gallstones, heart disease, abnormal heart rhythms and arrythmias, myocardial infarction, congestive heart failure, coronary heart disease, sudden death, stroke, polycystic ovarian disease, craniopharyngioma, the Prader-Willi Syndrome, Frohlich's syndrome, GH-deficient subjects, normal variant short stature, Turner's syndrome, and other pathological conditions showing reduced metabolic activity or a decrease in resting energy expenditure as a percentage of total fat-free mass, e.g., children with acute lymphoblastic leukemia. Further examples of obesity-related disorders are metabolic syndrome, also known as syndrome X, insulin resistance syndrome, sexual and reproductive dysfunction, such as infertility, hypogonadism in males and hirsutism in females, gastrointestinal motility disorders, such as obesity-related gastro-esophageal reflux, respiratory disorders, such as obesity-hypoventilation syndrome (Pickwickian syndrome), cardiovascular disorders, inflammation, such as systemic inflammation of the vasculature, arteriosclerosis, hypercholesterolemia, hyperuricaemia, lower back pain, gallbladder disease, gout, and kidney cancer. The compounds of the present invention are also useful for reducing the risk of secondary outcomes of obesity, such as reducing the risk of left ventricular hypertrophy.
The term “diabetes,” as used herein, includes both insulin-dependent diabetes mellitus (IDDM, also known as type I diabetes) and non-insulin-dependent diabetes mellitus (NIDDM, also known as Type II diabetes). Type I diabetes, or insulin-dependent diabetes, is the result of an absolute deficiency of insulin, the hormone which regulates glucose utilization. Type II diabetes, or insulin-independent diabetes (i.e., non-insulin-dependent diabetes mellitus), often occurs in the face of normal, or even elevated levels of insulin and appears to be the result of the inability of tissues to respond appropriately to insulin. Most of the Type II diabetics are also obese. The compounds of the present invention are useful for treating both Type I and Type II diabetes. The compounds are especially effective for treating Type II diabetes. The compounds of the present invention are also useful for treating and/or preventing gestational diabetes mellitus.
The neuromedin U receptor agonists disclosed herein may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier. Such compositions comprise a therapeutically-effective amount of the neuromedin U receptor agonist and a pharmaceutically acceptable carrier. Such a composition may also be comprised of (in addition to neuromedin U receptor agonist and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. Compositions comprising the neuromedin U receptor agonists can be administered, if desired, in the form of salts provided the salts are pharmaceutically acceptable. Salts may be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry.
The term “individual” is meant to include humans and companion or domesticated animals such as dogs, cats, horses, and the like. Therefore, the compositions comprising formula I are also useful for treating or preventing obesity and obesity-related disorders in cats and dogs. As such, the term “mammal” includes companion animals such as cats and dogs.
The term “pharmaceutically acceptable salts” refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like. The term “pharmaceutically acceptable salt” further includes all acceptable salts such as acetate, lactobionate, benzenesulfonate, laurate, benzoate, malate, bicarbonate, maleate, bisulfate, mandelate, bitartrate, mesylate, borate, methylbromide, bromide, methylnitrate, calcium edetate, methylsulfate, camsylate, mucate, carbonate, napsylate, chloride, nitrate, clavulanate, N-methylglucamine, citrate, ammonium salt, dihydrochloride, oleate, edetate, oxalate, edisylate, pamoate (embonate), estolate, palmitate, esylate, pantothenate, fumarate, phosphate/diphosphate, gluceptate, polygalacturonate, gluconate, salicylate, glutamate, stearate, glycollylarsanilate, sulfate, hexylresorcinate, subacetate, hydrabamine, succinate, hydrobromide, tannate, hydrochloride, tartrate, hydroxpiaphthoate, teoclate, iodide, tosylate, isothionate, triethiodide, lactate, panoate, valerate, and the like which can be used as a dosage form for modifying the solubility or hydrolysis characteristics or can be used in sustained release or pro-drug formulations. It will be understood that, as used herein, references to the neuromedin U receptor agonists of the general formula (I) are meant to also include the pharmaceutically acceptable salts.
As utilized herein, the term “pharmaceutically acceptable” means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s), approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in animals and, more particularly, in humans. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered and includes, but is not limited to such sterile liquids as water and oils. The characteristics of the carrier will depend on the route of administration. The neuromedin U receptor agonist may be in multimers (for example, heterodimers or homodimers) or complexes with itself or other peptides. As a result, pharmaceutical compositions of the invention may comprise one or more neuromedin U receptor agonists in such multimeric or complexed form.
As used herein, the term “therapeutically effective amount” means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially, or simultaneously.
The pharmacological composition can comprise one or more neuromedin U receptor agonists; one or more neuromedin U receptor agonists and one or more other agents for treating a metabolic disorder; or the pharmacological composition comprising the one or more neuromedin U receptor agonists can be used concurrently with a pharmacological composition comprising an agent for treating a metabolic disorder. Such disorders include, but are not limited to, obesity, metabolic syndrome or syndrome X, type II diabetes, complications of diabetes, hypertension, dyslipidemias, cardiovascular disease, gallstones, osteoarthritis, and certain forms of cancers.
When the pharmacological composition comprises another agent for treating a metabolic disorder or the treatment includes a second pharmacological composition comprising an agent for treating a metabolic disorder, the agent includes, but are not limited to, cannabinoid (CB1) receptor antagonists, glucagon like peptide 1 (GLP-1) receptor agonists, lipase inhibitors, leptin, tetrahydrolipstatin, 2-4-dinitrophenol, acarbose, sibutramine, phentamine, fat absorption blockers, simvastatin, mevastatin, ezetimibe, atorvastatin, sitagliptin, metformin, orlistat, Qnexa, topiramate, naltrexone, bupriopion, phentermine, losartan, losartan with hydrochlorothiazide, and the like.
Suitable agents of use in combination with a compound of the present invention, include, but are not limited to:
(a) NMU derivative and analogs disclosed in commonly owned International Application No. PCT/US2007/006635 and comprising the general formula (II)
Z1-peptide-Z2
wherein the peptide has the amino acid sequence X1—X2—X3—X4—X5—X6—X7—X8—X9—X10—X11—X12—X13—X14—X15—X16—X17—X18—X19—X20—X21—X22—X23—X24—X25 (SEQ ID NO:4) wherein amino acids 1 to 17 can be any amino acid or absent, wherein amino acid X18 is absent, Y, W, F, a des-amino acid or an acyl group; amino acid X19 is A, W, Y, F or an aliphatic amino acid; amino acid X20 is absent, L, G, sarcosine (Sar), D-Leu, NMe-Leu, D-Ala or A; amino acid X21 is F, NMe-Phe, an aliphatic amino acid, an aromatic amino acid, A or W; X22 is R, K, A or L; amino acid X23 is P, Sar, A or L; amino acid X24 is R, Harg or K; and amino acid X25 is N, any D- or L-amino acid, Nle or D-Nle, A; and Z1 is an optionally present protecting group that, if present, is joined to the N-terminal amino group; and Z2 is NH2 or an optionally present protecting group that, if present, is joined to the C-terminal carboxy group, and pharmaceutically acceptable salts thereof.
In particular embodiments, the peptide comprises the amino acid sequence X1—X2—X3—X4—X5—X6—X7—X8—X9—X10—X11—X12—X13—X14—X15—X16—X17—X18—F-L-F—R—P—R—N (SEQ ID NO:5) wherein amino acids 1 to 17 can be any amino acid or absent.
In further embodiments, the peptide comprises the amino acid sequence F—R—V-D-E-E-F-Q-S—P—F-A-S-Q-S—R-G-X18—X19—X20—X21—X22—X23—X24—X25 (SEQ ID NO:6) wherein amino acid X18 is absent, Y, W, F, a des-amino acid or an acyl group; amino acid X19 is A, W, Y, F or an aliphatic amino acid; amino acid X20 is absent, G, sarcosine (Sar), D-Leu, NMe-Leu, D-Ala or A; amino acid X21 is NMe-Phe, an aliphatic amino acid, an aromatic amino acid, A or W; amino acid X22 is K, A or L; amino acid X23 is Sar, A or L; amino acid X24 is Harg or K; and amino acid X25 is any D- or L-amino acid, Nle or D-Nle, or A.
In yet another embodiment, the peptide comprises the amino acid sequence X1—X2—X3—X4—X5—X6—X7—X8 (SEQ ID NO:7) wherein amino acid X1 is absent, Y, W, F, a des-amino acid or an acyl group; amino acid X2 is A, W, Y, F or an aliphatic amino acid; amino acid X3 is absent, G, sarcosine (Sar), D-Leu, NMe-Leu, D-Ala or A; amino acid X4 is NMe-Phe, an aliphatic amino acid, an aromatic amino acid, A or W; amino acid X5 is K, A or L; amino acid X6 is Sar, A or L; amino acid X7 is Harg or K; and amino acid X8 is any D- or L-amino acid, Nle or D-Nle, or A.
Specific compounds that can be used in combination with the neuromedin U receptor agonists include specific CB1 antagonists/inverse agonists include those described in WO03/077847, including: N-[3-(4-chlorophenyl)-2(S)-phenyl-1(S)-methylpropyl]-2-(4-trifluoromethyl-2-pyrimidyloxy)-2-methylpropanamide, N-[3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-(5-trifluoromethyl-2-pyridyloxy)-2-methylpropanamide, N-[3-(4-chlorophenyl)-2-(5-chloro-3-pyridyl)-1-methylpropyl]-2-(5-trifluoromethyl-2-pyridyloxy)-2-methylpropanamide, and pharmaceutically acceptable salts thereof; as well as those in WO05/000809, which includes the following: 3-{1-[bis(4-chlorophenyl)methyl]azetidin-3-ylidene)-3-(3,5-difluorophenyl)-2,2-dimethylpropanenitrile, 1-(1-[1-(4-chlorophenyl)pentyl]azetidin-3-yl}-1-(3,5-difluorophenyl)-2-methylpropan-2-ol. 3-((S)-(4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-hydroxy-2-methylpropyl]azetidin-1-yl}methyl)benzonitrile, 3-((S)-(4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}methyl)benzonitrile, 3-[(4-chlorophenyl){3-[1-(3,5-difluorophenyl)-2,2-dimethylpropyl]azetidin-1-yl}methyl)benzonitrile, 3-((1S)-1-{1-[(S)-(3-cyanophenyl)(4-cyanophenyl)methyl]azetidin-3-yl}-2-fluoro-2-methylpropyl)-5-fluorobenzonitrile, 3-[(S)-(4-chlorophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(4H-1,2,4-triazol-4-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, and 5-((4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}methyl)thiophene-3-carbonitrile, and pharmaceutically acceptable salts thereof; as well as: 3-[(S)-(4-chlorophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(S)-(4-chlorophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(1,3,4-oxadiazol-2-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(S)-(3-{(1S)-1-[3-(5-amino-1,3,4-oxadiazol-2-yl)-5-fluorophenyl]-2-fluoro-2-methylpropyl}azetidin-1-yl)(4-chlorophenyl)methyl]benzonitrile, 3-[(S)-(4-cyanophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl}benzonitrile, 3-[(S)-(3-{(1S)-1,3-(5-amino-1,3,4-oxadiazol-2-yl)-5-fluorophenyl]-2-fluoro-2-methylpropyl}azetidin-1-yl)(4-cyanophenyl)methyl]benzonitrile, 3-[(S)-(4-cyanophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(1,3,4-oxadiazol-2-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(S)-(4-chlorophenyl)(3-{(1S)-2-fluoro-1-[3-fluoro-5-(1,2,4-oxadiazol-3-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(1S)-1-(1-{(S)-(4-cyanophenyl)[3-(1,2,4-oxadiazol-3-yl)phenyl]-methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 5-(3-{1-[1-(diphenylmethyl)azetidin-3-yl]-2-fluoro-2-methylpropyl}-5-fluorophenyl)-1H-tetrazole, 5-(3-{1-[1-(diphenylmethyl)azetidin-3-yl]-2-fluoro-2-methylpropyl}-5-fluorophenyl)-1-methyl-1H-tetrazole, 5-(3-{1-[1-(diphenylmethyl)azetidin-3-yl]-2-fluoro-2-methylpropyl}-5-fluorophenyl)-2-methyl-2H-tetrazole, 3-[(4-chlorophenyl)(3-[2-fluoro-1,3-fluoro-5-(2-methyl-2H-tetrazol-5-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(4-chlorophenyl)(3-{2-fluoro-1-[3-fluoro-5-(1-methyl-1H-tetrazol-5-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(4-cyanophenyl)(3-{2-fluoro-1-[3-fluoro-5-(1-methyl-1H-tetrazol-5-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 3-[(4-cyanophenyl)(3-{2-fluoro-1-[3-fluoro-5-(2-methyl-2H-tetrazol-5-yl)phenyl]-2-methylpropyl}azetidin-1-yl)methyl]benzonitrile, 5-{3-[(S)-{3-[(1S)-1-(3-bromo-5-fluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}(4-chlorophenyl)methyl]phenyl}-1,3,4-oxadiazol-2(3H)-one, 3-[(1S)-1-(1-{(S)-(4-chlorophenyl)[3-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 3-[(1S)-1-(1{(S)-(4-cyanophenyl)[3-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-cyanophenyl)[3-(1,3,4-oxadiazol-2-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl)-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-chlorophenyl) [3-(1,3,4-oxadiazol-2-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 3-((1S)-1-{1-[(S)-[3-(5-amino-1,3,4-oxadiazol-2-yl)phenyl](4-chlorophenyl)methyl]azetidin-3-yl}-2-fluoro-2-methylpropyl)-5-fluorobenzonitrile, 3-((1S)-1-{1-[(S)-[3-(5-amino-1,3,4-oxadiazol-2-yl)phenyl](4-cyanophenyl)methyl]azetidin-3-yl}-2-fluoro-2-methylpropyl)-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-cyanophenyl)[3-(1,2,4-oxadiazol-3-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 3-[(1S)-1-(1-{(S)-(4-chlorophenyl)[3-(1,2,4-oxadiazol-3-yl)phenyl]methyl}azetidin-3-yl)-2-fluoro-2-methylpropyl]-5-fluorobenzonitrile, 5-[3-((S)-(4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}methyl)phenyl]-1,3,4-oxadiazol-2(3H)-one, 5-[3-((S)-4-chlorophenyl){3-[(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}methyl)phenyl]-1,3,4-oxadiazol-2(3H)-one, 4-{(S)-{3-(1S)-1-(3,5-difluorophenyl)-2-fluoro-2-methylpropyl]azetidin-1-yl}[3-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phenyl]methyl}-benzonitrile, ACOMPLIA (rimonabant, N-(1-piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide, SR141716A), 3-(4-chlorophenyl-N′-(4-chlorophenyl)sulfonyl-N-methyl-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (SLV-319), taranabant, N-[(1S,2S)-3-(4-Chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-[[5-(trifluoromethyl)-2-pyridinyl]oxy]propanamide, and pharmaceutically acceptable salts thereof.
Specific NPY5 antagonists that can be used in combination with the neuromedin U receptor agonists include: 3-oxo-N-(5-phenyl-2-pyrazinyl)-spiro[isobenzofuran-1(3H), 4′-piperidine]-1′-carboxamide, 3-oxo-N-(7-trifluoromethylpyrido[3,2-b]pyridin-2-yl)spiro-[isobenzofuran-1(3H), 4′-piperidine]-1′-carboxamide, N-[5-(3-fluorophenyl)-2-pyrimidinyl]-3-oxospiro-[isobenzofuran-1(3H), 4′-piperidine)-1′-carboxamide, trans-3′-oxo-N-(5-phenyl-2-pyrimidinyl)spiro[cyclohexane-1,1′(3′H)-isobenzofuran]-4-carboxamide, trans-3′-oxo-N-[1-(3-quinolyl)-4-imidazolyl]spiro[cyclohexane-1,1′(3′H)-isobenzofuran]-4-carboxamide, trans-3-oxo-N-(5-phenyl-2-pyrazinyl)spiro[4-azaiso-benzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-N-[5-(3-fluorophenyl)-2-pyrimidinyl]-3-oxospiro[5-azaisobenzofuran-1(3H), 1′-cyclohexane]-4′-carboxamide, trans-N-[5-(2-fluorophenyl)-2-pyrimidinyl]-3-oxospiro[5-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-N-[1-(3,5-difluorophenyl)-4-imidazolyl]-3-oxospiro[7-azaisobenzofuran-1(3H), 1′-cyclohexane]-4′-carboxamide, trans-3-oxo-N-(1-phenyl-4-pyrazolyl)spiro[4-azaisobenzofuran-1(3H), 1′-cyclohexane]-4′-carboxamide, trans-N-[1-(2-fluorophenyl)-3-pyrazolyl]-3-oxospiro[6-azaisobenzofuran-1(3H), 1′-cyclohexane]-4′-carboxamide, trans-3-oxo-N-(1-phenyl-3-pyrazolyl)spiro[6-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, trans-3-oxo-N-(2-phenyl-1,2,3-triazol-4-yl)spiro[6-azaisobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide, and pharmaceutically acceptable salts and esters thereof.
Specific ACC-1/2 inhibitors that can be used in combination with the neuromedin U receptor agonists include: 1′-[(4,8-dimethoxyquinolin-2-yl)carbonyl]-6-(1H-tetrazol-5-yl)spiro[chroman-2,4′-piperidin]-4-one; (5-{1′-[(4,8-dimethoxyquinolin-2-yl)carbonyl]-4-oxospiro[chroman-2,4′-piperidin]-6-yl}-2H-tetrazol-2-yl)methyl pivalate; 5-{1′-[(8-cyclopropyl-4-methoxyquinolin-2-yl)carbonyl]-4-oxospiro[chroman-2,4′-piperidin]-6-yl}nicotinic acid; 1′-(8-methoxy-4-morpholin-4-yl-2-naphthoyl)-6-(1H-tetrazol-5-yl)spiro[chroman-2,4′-piperidin]-4-one; and 1′-[(4-ethoxy-8-ethylquinolin-2-yl)carbonyl]-6-(1H-tetrazol-5-yl)spiro[chroman-2,4′-piperidin]-4-one; and pharmaceutically acceptable salts and esters thereof.
Specific MCH1R antagonist compounds that can be used in combination with the neuromedin U receptor agonists include: 1-{4-[(1-ethylazetidin-3-yl)oxy]phenyl}-4-[(4-fluorobenzyl)oxy]pyridin-2(1H)-one, 4-[(4-fluorobenzyl)oxy]-1-{4-[(1-isopropylazetidin-3-yl)oxy]phenyl}pyridin-2(1H)-one, 1-[4-(azetidin-3-yloxy)phenyl]-4-[(5-chloropyridin-2-yl)methoxy]pyridin-2(1H)-one, 4-[(5-chloropyridin-2-yl)methoxy]-1-{4-[(1-ethylazetidin-3-yl)oxy]phenyl}pyridin-2(1H)-one, 4-[(5-chloropyridin-2-yl)methoxy]-1-{4-[(1-propylazetidin-3-yl)oxy]phenyl}pyridin-2(1H)-one, and 4-[(5-chloropyridin-2-yl)methoxy]-1-(4-{[(2S)-1-ethylazetidin-2-yl]methoxy}phenyl)pyridin-2(1H)-one, or a pharmaceutically acceptable salt thereof.
A specific DPP-IV inhibitor that can be used in combination with the neuromedin U receptor agonists is 7-[(3R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(trifluoromethyl)-5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazine, or a pharmaceutically acceptable salt thereof.
Specific H3 (histamine H3) antagonists/inverse agonists that can be used in combination with the neuromedin U receptor agonists include: those described in WO05/077905, including: 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2-ethylpyrido[2,3-d]-pyrimidin-4(3H)-one, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2-methylpyrido[4,3-d]pyrimidin-4(3H)-one, 2-ethyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)pyrido[2,3-d]pyrimidin-4(3H)-one 2-methyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)pyrido[4,3-d]pyrimidin-4(3H)-one, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2,5-dimethyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2-methyl-5-trifluoromethyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-5-methoxy-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-5-fluoro-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-7-fluoro-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-6-methoxy-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-6-fluoro-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-8-fluoro-2-methyl-4(3H)-quinazolinone, 3-{4-[(1-cyclopentyl-4-piperidinyl)oxy]phenyl}-2-methylpyrido[4,3-d]pyrimidin-4(3H)-one, 3-{4-[(1-cyclobutylpiperidin-4-yl)oxy]phenyl}-6-fluoro-2-methylpyrido[3,4-d]pyrimidin-4(3H)-one, 3-{4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl}-2-ethylpyrido[4,3-d]pyrimidin-4(3H)-one, 6-methoxy-2-methyl-3-{4-[3-(1-piperidinyl)propoxy]phenyl}pyrido[3,4-d]pyrimidin-4(3H)-one, 6-methoxy-2-methyl-3-{4-[3-(1-pyrrolidinyl)propoxy]phenyl}pyrido[3,4-d]pyrimidin-4(3H)-one, 2,5-dimethyl-3-{4-[3-(1-pyrrolidinyl)propoxy]phenyl}-4(3H)-quinazolinone, 2-methyl-3-{4-[3-(1-pyrrolidinyl)propoxy]phenyl}-5-trifluoromethyl-4(3H)-quinazolinone, 5-fluoro-2-methyl-3-{4-[3-(1-piperidinyl)propoxy]phenyl}-4(3H)-quinazolinone, 6-methoxy-2-methyl-3-{4-[3-(1-piperidinyl)propoxy]phenyl}-4(3H)-quinazolinone, 5-methoxy-2-methyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, 7-methoxy-2-methyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, 2-methyl-3-(4-{3-[(3S)-3-methylpiperidin-1-yl]propoxy}phenyl)pyrido[2,3-d]pyrimidin-4(3H)-one, 5-fluoro-2-methyl-3-(4-{3-[(2R)-2-methylpyrrolidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, 2-methyl-3-(4-{3-[(2R)-2-methylpyrrolidin-1-yl]propoxy}phenyl)pyrido[4,3-d]pyrimidin-4(3H)-one, 6-methoxy-2-methyl-3-(4-{3-[(2R)-2-methylpyrrolidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, 6-methoxy-2-methyl-3-(4-{3-[(2S)-2-methylpyrrolidin-1-yl]propoxy}phenyl)-4(3H)-quinazolinone, and pharmaceutically acceptable salts thereof.
Specific CCK1R agonists of use in combination with the neuromedin U receptor agonists include: 3-(4-{[1-(3-ethoxyphenyl)-2-(4-methylphenyl)-1H-imidazol-4-yl]carbonyl}-1-piperazinyl)-1-naphthoic acid; 3-(4-{[1-(3-ethoxyphenyl)-2-(2-fluoro-4-methylphenyl)-1H-imidazol-4-yl]carbonyl}-1-piperazinyl)-1-naphthoic acid; 3-(4-{[1-(3-ethoxyphenyl)-2-(4-fluorophenyl)-1H-imidazol-4-yl]carbonyl}-1-piperazinyl)-1-naphthoic acid; 3-(4-[1-(3-ethoxyphenyl)-2-(2,4-difluorophenyl)-1H-imidazol-4-yl]carbonyl)-1-piperazinyl)-1-naphthoic acid; and 3-(4-{[1-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-(4-fluorophenyl)-1H-imidazol-4-yl]carbonyl}-1-piperazinyl)-1-naphthoic acid; and pharmaceutically acceptable salts thereof.
Specific MC4R agonists of use in combination with the neuromedin U receptor agonists include: 1) (5S)-1′-[(3R,4R)-1-tert-butyl-3-(2,3,4-trifluorophenyl)piperidin-4-yl]carbonyl}-3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl)-5H-Spiro[furo[3,4-b]pyridine-7,4′-piperidine]; 2) (5R)-1′-{[(3R,4R)-1-tert-butyl-3-(2,3,4-trifluorophenyl)-piperidin-4-yl]carbonyl}-3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidine]; 3) 2-(1′-{[(3S,4R)-1-tert-butyl-4-(2,4-difluorophenyl)pyrrolidin-3-yl]carbonyl}-3-chloro-2-methyl-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidin]-5-yl)-2-methylpropanenitrile; 4) 1′-{[(3S,4R)-1-tert-butyl-4-(2,4-difluorophenyl)pyrrolidin-3-yl]carbonyl}-3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidine]; 5) N-[(3R,4R)-3-({3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-1′H,5H-spiro[furo-[3,4-b]pyridine-7,4′-piperidin]-1′-yl}carbonyl)-4-(2,4-difluorophenyl)-cyclopentyl]-N-methyltetrahydro-2H-pyran-4-amine; 6) 2-[3-chloro-1′-({(1R,2R)-2-(2,4-difluorophenyl)-4-[methyl(tetrahydro-2H-pyran-4-yl)amino]-cyclopentyl}-carbonyl)-2-methyl-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidin]-5-yl]-2-methyl-propane-nitrile; and pharmaceutically acceptable salts thereof.
Additionally, other peptide analogs and mimetics of the incretin hormone glucagon-like peptide 1(GLP-1), may also be of use in combination with the neuromedin U receptor agonists.
Methods of administrating the pharmacological compositions comprising the one or more neuromedin U receptor agonists to an individual include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compositions can be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (for example, oral mucosa, rectal and intestinal mucosa, and the like), ocular, and the like and can be administered together with other biologically-active agents. Administration can be systemic or local. In addition, it may be advantageous to administer the composition into the central nervous system by any suitable route, including intraventricular and intrathecal injection. Intraventricular injection may be facilitated by an intraventricular catheter attached to a reservoir (for example, an Ommaya reservoir). Pulmonary administration may also be employed by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. It may also be desirable to administer the one or more neuromedin U receptor agonists locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, by injection, by means of a catheter, by means of a suppository, or by means of an implant.
Various delivery systems are known and can be used to administer the neuromedin U receptor agonists including, but not limited to, encapsulation in liposomes, microparticles, microcapsules; minicells; polymers; capsules; tablets; and the like. In one embodiment, the neuromedin U receptor agonist may be delivered in a vesicle, in particular a liposome. In a liposome, the neuromedin U receptor agonist is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Pat. No. 4,837,028 and U.S. Pat. No. 4,737,323. In yet another embodiment, the neuromedin U receptor agonist can be delivered in a controlled release system including, but not limited to: a delivery pump (See, for example, Saudek, et al., New Engl. J. Med. 321: 574 (1989) and a semi-permeable polymeric material (See, for example, Howard, et al., J. Neurosurg. 71: 105 (1989)). Additionally, the controlled release system can be placed in proximity of the therapeutic target (for example, the brain), thus requiring only a fraction of the systemic dose. See, for example, Goodson, In: Medical Applications of Controlled Release, 1984. (CRC Press, Bocca Raton, Fla.).
The amount of the compositions comprising the neuromedin U receptor agonist which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and may be determined by standard clinical techniques by those of average skill within the art. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the overall seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Ultimately, the attending physician will decide the amount of the composition with which to treat each individual patient. Initially, the attending physician will administer low doses of the composition and observe the patient's response. Larger doses of the composition may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. In general, the daily dose range lie within the range of from about 0.001 mg to about 100 mg per kg body weight of a mammal, preferably 0.01 mg to about 50 mg per kg, and most preferably 0.1 to 10 mg per kg, in single or divided doses. On the other hand, it may be necessary to use dosages outside these limits in some cases. However, suitable dosage ranges for intravenous administration of the compositions comprising the neuromedin U receptor agonist are generally about 5-500 micrograms (μg) of active compound per kilogram (Kg) body weight. Suitable dosage ranges for intranasal administration are generally about 0.01 pg/kg body weight to 1 mg/kg body weight. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. Suppositories generally contain active ingredient in the range of 0.5% to 10% by weight; oral formulations preferably contain 10% to 95% active ingredient. Ultimately the attending physician will decide on the appropriate duration of therapy using compositions comprising the neuromedin U receptor agonist of the present invention. Dosage will also vary according to the age, weight and response of the individual patient.
Further provided is a pharmaceutical pack or kit, comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions and neuromedin U receptor agonists. Optionally associated with such container(s) may be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
The following examples are intended to promote a further understanding of the present invention.
Synthesis of neuromedin U receptor agonists was as follows.
The peptide comprising the neuromedin u receptor agonists (See Table 1) were synthesized by solid phase using Fmoc/tBu chemistry on a peptide synthesizer ABI433A (Applied Biosystems). For each peptide, 0.75 g of a resin Fmoc-Linker AM-Champion, 1% cross-linked (Biosearch Technologies, Inc.) and a PEG-PS based resin derivatized with a modified Rink linker p-[(R,S)-α-[9H-Fluoren-9-yl-methoxyformamido]-2,4-dimethoxybenzyl]-phenoxyacetic acid (Rink, 1987, Tetrahedron Lett. 28:3787-3789; Bematowicz et al., 1989, Tetrahedron Lett. 30: 4645-4667) was used. The acylation reactions were performed for 60 minutes with four-fold excess of activated amino acid over the resin free amino groups. The amino acids were activated with equimolar amounts of HBTU (2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) and a 2-fold molar excess of DIEA (N,N-diisopropylethylamine) in DMF.
The side chain protecting groups were: tert-butyl for Asp, Ser, and Thr; trityl for Asn, Cys, His, and Gln; tert-butoxy-carbonyl for Lys and Tip; and, 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl for Arg. The N-terminal acetylation reaction was performed at the end of the peptide assembly by reaction with a 10-fold excess of acetic anhydride in DMF. The N-terminal palmitoylation reaction (NMS5) was performed at the end of the peptide assembly by reaction for 2 hours with a four-fold excess of activated palmitic acid over the resin free amino groups. The palmitic acid was activated with equimolar amounts of DIPC (1,3-Diisopropylcarbodiimide) and HOBt (Hydroxybenzotriazole) in DMF.
At the end of the synthesis, the dry peptide-resins were individually treated with 20 mL of the cleavage mixture, 88% TFA, 5% phenol, 2% triisopropylsilane and 5% water (Sole and Barany, 1992, J. Org. Chem. 57:5399-5403) for 1.5 hours at room temperature. Each resin was filtered and the solution was added to cold methyl-t-butyl ether in order to precipitate the peptide. After centrifugation, the peptide pellets were washed with fresh cold methyl-t-butyl ether to remove the organic scavengers. The process was repeated twice. Final pellets were dried, resuspended in H2O, 20% acetonitrile, and lyophilized.
The crude peptides were purified by reverse-phase HPLC using semi-preparative Waters RCM Delta-Pak™ C4 cartridges (40×200 mm, 15 μm) (Waters Corp., Milford, Mass.) and using as eluents (A) 0.1% TFA in water and (B) 0.1% TFA in acetonitrile, flow rate 80 mL/min. Analytical HPLC was performed on a Phenomenex™ Jupiter™ C4 column (150×4.6 mm, 5 μm) or ReproSil-Pur® 300 C4 column (150×4.6 mm, 5 μm) (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany), flow rate 1 mL/min. The purified peptides were characterized by electrospray mass spectrometry on a Micromass LCZ platform (Micromass, Manchester, England).
The synthesis of peptide NMS3 was performed by dissolving the thiol containing NMS peptide precursor (NMS′) in sodium phosphate 0.2M pH 6.5, EDTA 4 mM. A 1.2 molar excess of N-ethylmaleimide was added. After 1 hour incubation, the peptide was purified by HPLC.
PEGylation of neuromedin U receptor agonists was as follows.
PEGylation reactions were run under conditions permitting thioether bond formation. The PEGylated NMS peptides were then isolated using cation exchange chromatography (DCC) and size exclusion chromatography (SEC). Cation exchange chromatography (DCC) was carried out on TSK SP-5PW (Tosoh) column (16×100 mm) with a linear gradient of NaCl (0-0.6 M) in 3.5 column volumes in formic acid 0.05%, flow rate loading 1 mL/min, gradient elution 2 mL/min. Size exclusion chromatography (SEC) was carried out on TSK-HW50 (Tosoh) column (21×700 mm) in acetic acid 0.1% (w/v), 30% acetonitrile, flow rate 1 mL/min. PEGylated neuromedin U agonists were characterized using RP-HPLC, HPLC-SEC and MALDI-TOF Mass Spectrometry.
10 mg of peptide precursor (NMS′) (2.5 μmoles) were dissolved in 1 mL of sodium phosphate 0.15 M pH 6.6, urea 4 M, EDTA 4 mM. 110 mg of SUNBRIGHT GL2-400MA (NOF Corp.) (2.5 μmoles) dissolved in 2 mL water (1:1 mole/mole ratio of peptide to PEG) was added to this solution. After 1 hour incubation, the PEGylated peptide solution was acidified to pH 3 with formic acid and purified by cation exchange chromatography (IXC). The IXC purified PEGylated-peptide was further purified by SEC and characterized by RP-HPLC and MALDI-TOF.
7 mg of peptide precursor (NMS′) (1.7 μmoles) were dissolved in 1 mL of sodium phosphate 0.15 M pH 6.6, urea 8 M, EDTA 4 mM. 80 mg of 40 kDa methoxy poly(ethylene glycol) maleimido-propionamide (Chirotech Technology Ltd.) (2.0 moles) dissolved in 1 mL water (1:1.2 mole/mole ratio of peptide to PEG) was added to this solution. After 1 hour incubation, the PEGylated peptide solution was acidified to pH 3 with formic acid and purified by cation exchange chromatography (IXC). The DCC purified PEGylated-peptide was further purified by SEC and characterized by RP-HPLC and MALDI-TOF.
Cholesteroylation of neuromedin U receptor agonists was as follows.
Derivatization with cholesterol was run under conditions permitting thioether bond formation. The cholesteroylated NMS peptide was then purified by RP-HPLC and characterized by electrospray mass spectrometry.
12 mg of peptide precursors (NMS′) (3.0 μmoles) were dissolved in 0.62 mL DMSO. 1.5 mg of cholesteryl bromoacetate (3.0 μmoles), dissolved in 50 μL THF (1:1 mole/mole ratio of peptide to cholesteryl bromoacetate), and 3.4 μl of DIEA (N,N-diisopropylethylamine) were added to this solution. After 1 hour incubation, the cholesteroylated peptide was purified by RP-HPLC and characterized by electrospray mass spectrometry.
Generation of human or rodent NMUR1- or NMUR2-expressing cell lines was as follows.
Human, mouse or rat cDNAs encoding NMUR1 or NMUR2 (as described in Howard et al. Nature 406: 70-74 (2000) were subcloned in pcDNA5 (Invitrogen) and transfected into FLP-In CHO cells and HEK-293 FLP-In cells purchased from Invitrogen (Carlsbad, Calif.) using lipofectamine (Invitrogen). The Flp-In system allows integration and expression of a particular gene of interest at a specific genomic location utilizing the Flp recombinase from yeast. The transfected cells were selected by growth in medium containing 200 μg/mL hygromycin (Invitrogen). Populations were frozen at early passage numbers, and these stocks were used for further studies. Stable clones that expressed the mRNAs were identified functionally by FLIPR as well as by RT-PCR. Based on public genomic databases, the rodent NMUR1 receptors do not appear to have the traditional methionine (ATG) as the start codon for translation but contain an alternate start codon (TTG for rat and CTG for mouse). Two different rodent NMUR1 cell lines were thus generated: one with the codon as predicted from the genomic databases and another cell line with an engineered methionine (ATG) as the start codon. The dog NMU receptors were also cloned from intestine RNA (NMUR1) and brain (NMUR2) and stable cell lines were generated as used for the human and rodent cell lines. The dog NMUR1 receptor also does not appear to have the traditional ATG (methionine) as the start codon but rather a CTG. To ensure high levels of expression in a heterologous system, a dog NMUR1 cell line was generated that contains an ATG as the start codon. Additionally, stable cell lines expressing the human receptors were generated in HEK-293/aeq 17 cells which stably express the aequorin gene under the CMV promoter. The human NMUR2 cDNA was cloned into pcDNA3.1 and human NMUR1 was subcloned into pIRES-puro (Clontech, Mountain View, Calif.), after transfection cells were selected in media containing G418 and either hygromycin (NMUR2) or puromycin (NMUR1).
The NMU receptors signal primarily through Gαq/11 proteins; therefore calcium mobilization assays can be utilized for functional activity.
Stable cell lines expressing human and or rodent NMUR1 or human NMUR2 receptors are plated at a density of 12,000 cells per well overnight on poly-lysine coated 384-well black-walled plates. The following day, the media is removed from the plates and the cells were subsequently loaded with Fluo-3 (Molecular Probes), a calcium sensitive dye, diluted in FLIPR buffer (1× Hank's buffered saline containing 20 mM HEPES, 0.1% BSA, 2.5 mM probenecid (Sigma) and 1.6 mM TR40). All reagents are from Invitrogen unless otherwise noted. Peptide stocks are resuspended in DMSO at a stock concentration of 2 mM and diluted in FLIPR buffer on the day of the experiment to a 4 μM working stock solution.
After a 90 minute incubation at room-temperature, cell plates are loaded onto a FLIPR (Molecular Devices) to monitor cellular fluorescence (excitation=488 nM; emission=540 nM) before and after compound/peptide addition. Eight to twelve point dose responses are tested on NMUR-expressing cell lines using FLIPR with 1 μM peptide as the highest dose. The response after peptide addition is taken as the maximum fluorescence units minus the fluorescence immediately prior to stimulation for each well. EC50 values are calculated using GraphPad Prism (San Diego, Calif.) software.
In addition to FLIPR, NMU receptor function can also be evaluated using an aequorin assay. Stable cell lines expressing the aequorin jelly fish gene can be used to report the activation of GPCRs by monitoring intracellular calcium mobilization. The objective is to identify compounds which specifically stimulate aequorin bioluminescence. Calcium-dependent luminescence is generated by the treatment of cells with the coelenterate luciferin, coelenterazine. Briefly, confluent monolayers of HEK-293/aeq 17 cells expressing hNMUR1 or hNMUR2 are “charged” with coelenterazine (Molecular Probes, Carlsbad, Calif.). Confluent T75 flasks are rinsed with media containing 300 μM glutathione and 0.1% FBS. Cells are incubated at 37° C. for one hour in 8 mL media, 0.1% FBS, 300 μM glutathione, and 20 μM coelenterazine. T75 flasks are subsequently rinsed with 6 mL ECB buffer (140 mM NaCl, 20 mM KCl, 20 mM HEPES, 5 mM glucose, 1 mM MgCl, 1 mM CaCl2, 0.1 mg/mL BSA, PH 7.3-7.4). Cells are removed from the flask in ECB buffer, pelleted, and resuspended at a density of 2×105 cells/mL. Agonists are added to the cells and activity is determined using a luminometer.
In addition to direct measurements of calcium, NMU receptor activity can be determined by measurements of myo-inositol 1 phosphate (IP1), one of the major products of the phosphatidyl inositol cascade, which tightly correlates with Gq-coupled activity. An assay kit (IPOne) from Cisbio (Bedford, Mass.) is available that uses HTRF (homogeneous time resolved fluorescence) to measure IP1 levels. The assay follows the manufacturer's directions. Briefly, the cells are plated overnight at a density of 30,000 cells per well in 384-well white walled plates. The next day media is removed from the cells, and 10 uL agonist is added which is diluted in stimulation buffer (10 mM HEPES, 1 mM CaCl2, 0.5 mM MgCl2, 4.2 mM KCL, 146 mM NaCl, 5.5 mM glucose, 50 mM L1Cl, pH 7.4). Cells are incubated for 1 hour at 37° C. with agonist. Detection molecules are added, IP1-d2 conjugate and anti-IP1 cryptate (prepared per manufacturer's protocol), and cells are incubated at 1 hour at room temperature. Fluorescence is measured on an Envision machine and the results are calculated from the fluorescence ratios from the instrument readout.
Additional data suggest that NMU receptor signaling can occur via Gai-coupled activity. Activation of either hNMUR1 or hNMUR2 has shown to result in the inhibition of forskolin (10 uM)-stimulated cAMP accumulation. To measure Gi-coupled signaling, the inhibition of forskolin induced cAMP can be measured. Briefly, cells are plated 24 hours prior to running the experiment. Neuromedin U receptor agonist is added to the cells and incubated for 10 minutes, followed by an addition of 10 uM forskolin. After a 10 minute incubation, the cAMP is extracted from the cells and measured by a radioreceptor assay. Basal levels of cAMP and forskolin stimulated levels of cAMP are measured with and without agonist treatment.
A summary of functional and binding data for NMUR1 subtype selective neuromedin U receptor agonists specific for NMUR1 across species is shown in Tables 6 and 7. Calculated percent activity is relative to native hNMU responses.
Binding Assays were performed as follows.
Confluent cell monolayers expressing NMU receptors (the HEK cells described above) were harvested with phosphate buffered saline, collected by centrifugation and resuspended in membrane buffer (50 mM Tris HCl pH 7.4, 5 mM MgCl2, 1× Protease Inhibitor Cocktail, 10 μM phosphoramidon). After the cell pellet was homogenized, the solution was centrifuged at 18,000 rpm for 20 minute at 4° C. The pellet was resuspended in membrane buffer to yield a final concentration of 0.5-5 μg/μl of membrane and stored at −80° C. Experiments were performed in assay buffer (25 mM Tris HCl, pH 7.4, 10 mM MgCl2, 2 mM EDTA, 1× Protease Inhibitor Cocktail, 100 μg/ml Bacitricin, 10 μM phosphoramidon) in 200 μl volumes in a 96-well format using 2-5 μg of membrane and 0.1 nM 125I-hNMU-25 (about 12,000 cpm/well). For non-specific binding, 1 μM hNMU-25 was added. About 5 μl of peptides were added to measure antagonist activity, and the entire reaction was incubated at room temperature with shaking for 80 minutes. The reaction was terminated by rapid filtration through 0.3% poly-ethylenimine presoaked Millipore 96-well filter plates and washed with ice-cold buffer (5 mM Tris HCl pH 7.4, 10 mM MgCl2, 2.5 mM EDTA, 0.04% Triton X-100). Plates were air-dried overnight at room temperature and recovered radioactivity was determined by standard scintillation counting. IC50 values were determined using GraphPad Prism software. Concentration-response curves and radioligand-binding data were fitted using Prism (GraphPad Software).
Feeding study with NMU and NMS and analogs thereof was performed as follows.
Ad libitum fed male diet-induced obese mice obtained from Taconic Farms were weighed and dosed either i.p. or s.c. with NMS or NMU at about 30 minutes prior to the onset of the dark phase of the light cycle and provided with a pre-weighed aliquot of high fat diet (D12492: 60% kcal from fat: Research Diets, Inc.), which was then weighed two and 18 hours after the onset of the initial dark phase. Mice were weighed at the 18 hour (overnight) time point. Data show the outcome of the feeding study (all values are reported as mean±SEM and data was analyzed using a two-tailed unpaired Student's t test; p values ≦0.05 were reported as significant and are denoted with an asterisk). The results are shown in
Chronic administration of peptide was evaluated using micro-osmotic pumps designed to deliver 0.5 μl/h (Alza Co.). Pumps were filled with peptide or vehicle and implanted subcutaneously in the intrascapular space in diet-induced obese animals. Mice were fed ad libitum and food intake and body weight were measured daily for two weeks. The results are shown in
NMUR1 knockout (Nmur1−/−) mice were generated using standard homologous recombination techniques. Nmur1 mice were subsequently transferred to Taconic Farms where they were either maintained on a 75% C57BL/6×25% 129S6/SvEv mixed genetic background or backcrossed 6 generations to C57BL/6. NMUR2 knockout (Nmur2−/−) mice were licensed from Deltagen Inc., San Mateo, Calif. and subsequently transferred to Taconic Farms were they were either maintained on a 75% C57BL/6×25% 129/OlaHsd mixed genetic background or backcrossed for 7 generations to C57BL/6. NMUR1 and NMUR2 double knockout (Nmur1&2−/−) mice were generated by crossing N6 Nmur1−/− mice to N7 Nmur2−/− mice. Mice were individually housed in Tecniplast cages in a conventional SPF facility. Mice were initially maintained on a regular chow diet and then early in their life were switched to a high fat diet (D12492) with ad libitum access to water in a 12-h light/12-h dark cycle.
The results are shown in
Intraperitoneal glucose tolerance test (IPGTT) of NMS was performed as follows.
Fourteen male C57BL/6 diet-induced obese mice (˜30 wk age) were used. Five hours before the experiment, food was removed, and clean cages were provided. Saline with or without NMS at one and three mpk were injected 30 minutes before the IPGTT and a blood sample was taken. Then glucose (2 g/kg) was injected intraperitoneally. Blood samples were taken after 15, 30, 60, 90, and 120 minutes and glucose levels were determined with the glucose oxidase method.
The results are shown in
Pharmacokinetic analysis of NMU, NMS, and various NMS analogs using the bioassay was performed as follows.
Peptide exposure levels in dosed animals were measured using the bioassay. Animals were dosed subcutaneously and plasma was collected at various time points post-dose. The bioassay is a FLIPR-based assay that measures the concentration of peptide in plasma from animals dosed with hNMU-25 or NMS. The assay is run essentially as described above (Example 2) with the following modifications: sample preparation prior to the assay is performed on ice to minimize degradation of plasma samples. The assay was run with 4% plasma as the final concentration. A three-point titration was done with the dosed plasma and tested on human NMUR1-expressing cell lines using FLIPR. The response after sample addition was taken as the maximum fluorescence units minus the fluorescence immediately prior to stimulation for each well. In addition to a three-point titration of dosed plasma samples, a 16-point titration of the peptide (hNMU-25 or NMS) was run in 4% plasma (naive plasma) to serve as the standard. The concentration of the peptide in plasma was calculated based on extrapolations from the appropriate standard using the GraphPad Prism software.
The pharmacokinetic properties of NMU and NMS in mice are shown in
In vitro responses of NMS and NMS analogs (NMS1-NMS5) in the FLIPR assay for human, mouse, and dog are shown in Table 1. Percent activity refers to the maximum response at 1 μM compared to the human NMU-25 response at the same concentration.
The efficacy of various PEGylated NMS analogs were evaluated using the aforementioned assays. The PEGylated NMS analogs evaluated were NMS1 and NMS4 (See Table 1).
NMS1, NMS3, and NMS4 were administered subcutaneously and daily food intake was measured over a four-day period. The results are shown in
The anorectic effects of the PEGylated NMS analogs were comparable in potency to PEGylated NMU.
The anorectic effects of NMS1 were mediated by both the NMUR1 and NMUR2 receptors. Administering NMS1 to the Nmur1/Nmur2 double knockout mice described in Example 7, showed that the anorectic effects of NMS1 are mediated by the NMUR1 and NMUR2 receptors. While acute administration of NMS1 was highly efficacious in wild-type animals, it appeared to have no effect on food intake (
In this Example, the effect of the lipidated NMS analogs, NMS2 and NMS5, on food intake and body weight were compared to NMS1. The results shown in
Homo sapiens
While the present invention is described herein with reference to illustrated embodiments, it should be understood that the invention is not limited hereto. Those having ordinary skill in the art and access to the teachings herein will recognize additional modifications and embodiments within the scope thereof. Therefore, the present invention is limited only by the claims attached herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/10819 | 9/17/2008 | WO | 00 | 2/22/2010 |
Number | Date | Country | |
---|---|---|---|
60994714 | Sep 2007 | US |