The present invention relates to neuromuscular release (including myofascial trigger point) therapy devices, systems and methods. More particularly, the present invention relates to compact, modular and adjustable neuromuscular release devices, systems and methods.
Neuromuscular release (including myofascial trigger point) (hereinafter generally referred to as “trigger point”) therapy is a method of treating pain that is popular and gaining in popularity; it is commonly used by physical and massage therapists, osteopaths and chiropractors to treat musculoskeletal pain. It comprises the sustained pressure of the hand, finger(s), knee, elbow, foot, or tool on a myofascial trigger point (‘trigger point’), a localized and usually exquisitely tender area in a tendon or muscle that “triggers” the pain felt by the sufferer. The location of the trigger point can coincide with the perceived pain, or can be distant (referred pain). When pressure is applied to the trigger point, the perceived pain usually increases in intensity briefly, and then with continued sustained pressure gradually starts to dissipate until it completely disappears. This process usually takes 20 to 90 seconds and is dependent on the intensity and duration of the pain, the depth and acuity of the pressure applied, as well as the familiarity of the sufferer with this form of treatment and the need to actively relax the area, partially by using deep, relaxing breathing. The effect of the pain relief is usually prolonged by the utilization of stretching exercises performed in the muscle-tendon unit involved immediately after the trigger point release intervention, and postural correction exercises aimed at preventing the recurrence of the pain. Repeating this process on a regular basis helps to prevent pain recurrence until ergonomic and postural corrections take effect.
The pain sufferer will also benefit from more frequent use of such interventions. The pain sufferer would do well to use self-treatment tools on a regular basis (daily or every other day) to maintain musculotendinous units in their normal functioning status, rather than being dependent on frequent and expensive visits to a medical professional for formal interventions of this nature.
Conventionally available to permit individuals to self-treat myofascial trigger points are tools, including canes, balls and rollers, board-mounted probes, and hand-held probes.
Canes are used to apply pressure to a trigger point and most areas of the body are accessible by the user. However, the user must apply pressure to the point with sufficient pressure to “release” the trigger point, but also within comfort levels, while simultaneously relaxing the area being treated. This can be a difficult process, particularly when treating areas in or around the upper extremities which are being used to exert the force. In some cases, a cane can be used as a lever; the user would lie on the tip of the cane and then rotate the handle to apply force at the tip into the trigger point. In this instance, the user still needs to apply exertion to the tool to effect the desired pressure, which can be neurologically confusing, since the user is attempting to relax the area (a process of inhibiting neural activation at the level of the spinal cord) while exerting force (a process of stimulation at the level of the spinal cord). Canes are bulky and unwieldy instruments and are conspicuous in professional or office situations. Only a few of the uses of the cane are intuitive, and the user is reliant on an owner's manual to learn to use the cane to treat difficult-to-reach places. Commercially available canes include the Thera Cane™, The BackKnobber™ and The Body Back Buddy™.
Balls and rollers have a broad contour, which can be sub-optimal in reaching a specific trigger point and it can be difficult to modulate the intensity of the pressure applied to the trigger point. Various balls including tennis, golf, lacrosse and racket balls are used. Commercially available balls include the Trigger Point Massage Ball™ and the Myo-Therapy Ball™. Commercially available bands include the Trigger Point Quadroller™. When desiring to penetrate deeper into the area of a trigger point, the sufferer would look to use a larger ball, which in turn has a larger contour. The dilemma of using a ball therefore results in a decision regarding depth and acuity, and the sufferer cannot have both with this choice.
Hand-held probes are effective in treating pain using the myofascial trigger point release techniques but, for self-treatment, certain areas of the body are difficult or impossible to reach effectively, rendering the user dependent on a helper, or frustrated at being unable to adequately reach an awkward area. In addition, in similar fashion to the cane, self-treatment may require one set of muscles to be activated (to apply the pressure) while the sufferer is simultaneously attempting to relax the affected area. This is particularly difficult when the muscle groups are in close proximity, as described above. This often leaves the user frustrated at the inadequacy of the tool, which is unfortunate since it is rather the circumstances of the tool's use that is inadequate. Some hand-held probes can be used to relieve pain with the user lying on the probe. However, the probe's height and angle and, depending on the design of the tool, the contour are fixed and, as a result, the probe may be too high or low, too large or small, or at an inconvenient angle relative to the trigger point being treated, especially when pressure is applied to the thin muscle overlying the ribs in a lean user, or to the occiput. Commercially available probes include the Hand-L™, the Jackknobber™ and the Knobbler™.
The board mounted systems comprise a platform and rubber tips covering various lengths of dowel that can be inserted into the board at varying angles. This affords the user the ability to select the number, angle, position and height of the probe(s). The probes have various contours (diameter of the probe). Board devices are cumbersome and conspicuous and the many and varied choices of operation can be daunting and confusing. People who have used these systems have commented favorably about the benefit of being able to lie on the device without exerting force, thereby enhancing the relaxation effects of the tool. Commercially available systems include: the Fenix Rehab System™ and the Recapitulator™.
However, there remains a need for a trigger point therapy device, system and method that allows an individual the ability to self-treat trigger points completely independently in a fashion that fosters complete relaxation, as may be the case when the user is able to lie on or lean against the tool or device, which provides the user simple choices in terms of size and height, and which is easily transported and used in conspicuous areas, such as in an office.
An objective of the present invention is to provide a trigger point therapy device, system, kit and method. In one embodiment, the trigger point therapy system comprises a tool. The tool comprises a body, wherein the body includes an outer surface, an inner surface, a tip defined at the upper-most portion of the body, a base, a stop surface defined in the body outer surface, a pocket defined by the inner surface and extending from the base upwards in the direction of the tip, and a recessed groove defined in the inner surface and extending upwards from the base and having a groove diameter and depth. The body can be generally bell-shaped with the base having a larger diameter than the tip. The system can further include a riser, either disk or wedge shaped, and a rocker base. The system components are configured to stack and nest into a compact assembly for easy carrying as a kit.
The detailed technology and preferred embodiments implemented for the subject invention are described in the following paragraphs accompanying the appended drawings for people skilled in this field to well appreciate the features of the claimed invention. It is understood that the features mentioned hereinbefore and those to be commented on hereinafter may be used not only in the specified combinations, but also in other combinations or in isolation, without departing from the scope of the present invention.
In the following descriptions, the present invention will be explained with reference to example embodiments thereof. However, these example embodiments are not intended to limit the present invention to any specific example, embodiment, environment, applications or particular implementations described in these example embodiments. Therefore, description of these embodiments is only for purpose of illustration rather than to limit the present invention. It should be appreciated that, in the following embodiments and the attached drawings, elements unrelated to the present invention are omitted from depiction; and dimensional relationships among individual elements in the attached drawings are illustrated only for ease of understanding, but not to limit the actual scale.
Referring first to
Adjacent the base is a groove or stop surface 108 that circumscribes the outer surface. The stop surface 108 functions as an engaging surface for additional components of a system or kit as will be described later in this specification. The stop surface 108 may be flat or horizontal plane. However other orientations and shapes can be used that accomplish the function as will be described later herein.
The tool 100 further comprises an inner surface 110. The inner surface 110 is recessed upwards form the plane of the base 106 to form a pocket 112. The pocket provides clearance for stacking multiple components as will be described later. The recess also reduces the volume of material needed to form the tool 100. By doing so, the weight and cost of the tool 100 are reduced.
The inner surface 110 further can include a recessed groove 114. The recessed groove circumscribes the inner surface 110 and is shaped and sized complimentary to the stop surface 108 to facilitate stable stacking of various system components.
Tools can be marked with an indication of the penetration force, e.g. Regular, Strong and Extra Strong, or color coded to aid the patient in selecting the correct tool or differentiating more easily between tools of differing strengths.
Referring now to
Referring to
The outer surface can be provided with a registration indicator 140 to provide an indication to the user of the relative orientation of system components. The inner surface is recessed to form a pocket 142 of sufficient depth and diameter to receive the flange or raised surface 138 of another base 128 or flange 122 of a rocker base component 116.
The upper surface 130 can also be horizontal or parallel to the plane of the bottom surface 132. In such configuration, the wedge forms a riser disk component.
Referring to
Referring now to
The therapy tools, stacking components and bases described herein can be used to treat trigger points in as many body areas as can be feasibly reached in a reclined (supine, prone, side-lying, or variations of the above), seated or standing positions. It can also be placed between the user and a chair, wall or other firm surface, affording the user the ability to lean against the tool to apply pressure to the trigger point. Adding flat disks (or wedge disks with complimentary registration) increases the height of the probe and acuity of the treatment, adding a sloped disk or disks changes the angle at which the probe can address the area of treatment, which can be varied when two sloped disks are stacked and rotated relative to one-another. It is to be understood that the system and treatment method described herein is not restricted to only the described exemplary uses and methods.
Referring to
The user, optionally with the help of a therapist, selects the tool tip size (usually commencing with a largest size), stack height and angle to best apply pressure to the trigger point. The user places the tool (or stacked components) on a flat, firm, stable surface. The user or the therapist locates the first trigger point to be treated. The user lies on the tool bringing the probe in contact with the trigger point. The user then allows body weight to settle onto the point, while concentrating on relaxation and the sensation of the trigger point being treated. A feeling of decreased pain and/or tension in the area of the trigger point indicates successful “release” of the trigger point and the user can then seek out another trigger point in the same area. This process can be repeated several times in the same area, though not on the same trigger point. The user may need to adjust the probe size, stack height and probe angle, or add probes as desired depending on the success of the original choice of probe, and comfort level.
A recommended, though not limiting, sequence of decisions regarding probe size and height for first time users is as follows:
1. Select the largest-tipped probe and use the probe alone (no stacking).
2. Bring the probe into contact with the trigger point.
3. Stack the probe on one disk and then another as needed, based on the desire to penetrate deeper into the muscular and/or tendinous tissue, and within reasonable comfort levels. Utilize the wedge components in a stack as desired.
4. Utilize more than one tool to treat more than one trigger point simultaneously as desired. For example, the paraspinal muscles on each side of the spine, or at the occiput (muscular attachments at the base of the skull). Angled probe orientations for the vertical would be preferable in this instance. The probes may be rotated on the wedge bases, or on another sloped disk, to change the angle of the force application.
5. Select a smaller-tipped probe as dictated by the need to penetrate deeper into the muscular and/or tendinous tissue to effect suitable trigger point pressure within reasonable comfort levels. Larger probes should be used for trigger points that are more superficial, tender, or where there is less adipose tissue to penetrate. They should also be used where significant body weight may engage the probe, such as the back or buttocks. Smaller-tipped probes are preferably used for smaller muscle groups and/or lighter pressure, such as the hands or feet.
Additional features can be provided to the system that enhances its therapeutic effects. For example, a vibrating element can be disposed inside of the tool, or a vibrating tool can be provided. Similarly a heating or a cooling element can be provided to the tool, or the tool can be heated or cooled. The tips of the probes may also be configured to deliver various waveforms of direct current (DC) therapeutic electric stimulation to the user.
An optional strap attachment allows users to reach and treat trigger points in additional relaxed ways. Also, the strap can be used to generate leverage using the power muscles of the leg and torso to increase the force exerted on certain trigger points. Such use is not reliant on the strength of the user and enables the user to focus on relaxed breathing. The strap attachment comprises a length of flexible strap with an attachment feature that is configured to secure the tool to the strap.
Referring to
Referring to
There are many features and advantages of certain embodiments of the trigger point therapy system 150. The system combines the reach and leverage of shepherd's crook-based devices with the simplicity of a hand-held device. The system does not rely for efficacy on a user's strength, reach, agility or flexibility. The system can be used without a partner; it is designed to be lain, leant, sat on, or used with a strap or roller attachment. The system is compact, discrete, lightweight and multi-purpose. The system allows users to apply acute, accurate and finely calibrated pressure to soft-tissue without making extreme demands on their strength, endurance, agility or stamina. The pressure applied to soft tissue can be increased without losing acuity. This is in contrast to balls and rollers: using a larger ball or roller to increase pressure results in a loss of acuity due to the increased radius of the ball or roller. The bell curve shape allows the tip or point of the probe to be placed in close proximity to bone. By contrast balls and rollers are convex, making it impossible to reach some areas of soft tissue with these other devices.
In certain embodiments, the system has three degrees of freedom: the force, acuity and angle of inclination of the pressure applied to the soft tissue can all be varied independent of one another. Force is configured via the nesting facility, the stacking disks, the rocker bottom and the strap and roller attachments. Force can be increased or reduced without a change in effort on the part of the user, unlike conventional trigger-point therapy devices. The acuity of the pressure can be varied by selecting different tip sized probes. Acuity thus can be adjusted without affecting force or inclination. The angle of inclination between the probe and the soft tissue can be varied by rotating two stacker wedge disks relative to one another, or by using the rocker bottom. Thus inclination can be varied without affecting force or acuity.
The tool and components can be leant, lain, or sat on or used with a strap or roller attachment to allow users to relax and concentrate on their breathing, two key ingredients to successful neuromuscular release, rather than focus on applying pressure to the tool. This is in contrast with many other tools, such as balls and rollers, for example, which require a degree of physical strength on the part of the user.
The accuracy with which force can be applied and the high degree of user control allows users to confidently treat soft tissue that they might feel uncomfortable treating with a less subtle tool or the intervention of a therapist, for example the pelvic floor muscles.
The modular system facilitates the incremental addition of features and components without necessitating the user to replace their existing system.
The system permits the user to vary pressure (force per unit area) to soft tissue. “Force” can be adjusted by varying position (lying down, sitting, standing) and height, and “unit area” could be adjusted by selecting different sizes of probe (or probe tip sizes).
The system can also be used to apply pressure to length and tension sensors buried within muscles and tendons known as muscle spindles and Golgi tendon organs respectively. These neuromuscular structures continuously relay information to the spinal cord to effect changes in muscle activation, thereby impacting muscular performance in terms of speed, power and length of muscle.
The system only requires a minimal set-up time. It is easy to keep clean. It is intuitive and easy to use. Moreover, the system is robust. For example, conical and bell-shaped probes or tools are inherently strong and demonstrate a high degree of stability when lain, sat or leant on.
The various components can be formed using conventional materials and manufacturing methods. For example, various plastics, rubber, rubberized metal, ceramics, composites or other suitable materials that resist deformation can be employed. The components can be formed, for example, using conventional processes, such as injection molding. Those skilled in the art will recognize that other materials and processes can be employed without departing from the scope of the invention.
The above disclosure is related to the detailed technical contents and inventive features thereof. People skilled in this field may proceed with a variety of modifications and replacements based on the disclosures and suggestions of the invention as described without departing from the characteristics thereof. Nevertheless, although such modifications and replacements are not fully disclosed in the above descriptions, they have substantially been covered in the following claims as appended.
This application claims priority to U.S. Provisional Patent Application No. 61/379,924, filed Sep. 3, 2010, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4126129 | Rainbow | Nov 1978 | A |
4210134 | Okazaki et al. | Jul 1980 | A |
4479495 | Isaacson | Oct 1984 | A |
5284272 | Wei | Feb 1994 | A |
5695520 | Bruckner et al. | Dec 1997 | A |
5820573 | Ramos | Oct 1998 | A |
6013042 | Sakai | Jan 2000 | A |
6126085 | Wanzenbock | Oct 2000 | A |
6821260 | Fors | Nov 2004 | B2 |
6921372 | Shin | Jul 2005 | B2 |
7320668 | Warder | Jan 2008 | B1 |
D586470 | Warder | Feb 2009 | S |
20010041851 | Peyton et al. | Nov 2001 | A1 |
20020049469 | Chang | Apr 2002 | A1 |
20020068888 | Wang et al. | Jun 2002 | A1 |
20080086066 | Munday | Apr 2008 | A1 |
20100145244 | Schwartz et al. | Jun 2010 | A1 |
20100252564 | Martinez et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
0 181 676 | May 2010 | EP |
Number | Date | Country | |
---|---|---|---|
20120059405 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61379924 | Sep 2010 | US |