The present invention relates generally to limit switches and, more particularly, to a neutral position limit switch that includes a simplified head assembly design with less moving parts therein.
Electrical limit switches comprise a widely employed class of switching apparatus for selectively completing and/or interrupting one or more electrical connections depending upon the position of a displaceable switch-sensing member. Many electrical limit switches include a head assembly that incorporates a rotary actuator that translates rotary motion into a linear motion to actuate the limit switch. A typical head assembly has a crank or other lever for rotating an actuator shaft, and an output member driven by the actuator shaft with linear output movement. The output member engages and drives an element of the displaceable switch-sensing member for selectively completing and/or interrupting one or more electrical connections. In some embodiments, the electrical limit switch may be constructed as a neutral position switch where the actuator shaft of the head assembly is rotatable in both clockwise and counterclockwise directions for effecting movement of the output member and a corresponding translation of the displaceable switch-sensing member from a neutral position to two distinct positions in different modes.
It is recognized, however, that presently constructed head assemblies of the above described design possess certain disadvantages as far as their operating characteristics and construction are concerned. For example, neutral position limit switches where the actuator shaft of the head assembly is rotatable in both clockwise and counterclockwise directions typically require a large degree of pre-travel rotation (e.g., approaching 15-20°) of the actuator shaft before the rotation is translated into linear movement of the output member, which results in an increased switching/tripping time for the limit switch. While it is possible to reduce this large degree of pre-travel rotation, such reduction of the pre-travel rotation angle is commonly achieved by making the head assembly more complex with more moving parts, such as by having separate cam members and provision for mounting these cam members in different orientations with respect to the actuator shaft and output member to obtain the desired operation. It is thus recognized that head assemblies with such a construction include a large number of moving parts, which increases the cost and complexity of the head assembly and may lead to reliability issues in the field.
It would therefore be desirable to provide a head assembly for a neutral position limit switch require a small degree of pre-travel rotation (e.g., approaching 5°) of the actuator shaft before the rotation is translated into linear movement of the output member, in order to provide a quicker switching/tripping time for the limit switch. It would further be desirable for the head assembly to achieve this reduced degree of pre-travel rotation via a simplified head assembly design with a reduced number of moving parts that would require less time and cost for assembly thereof and that would enhance reliability of the limit switch due to the reduction of moving components therein.
In accordance with one aspect of the invention, an operating head for providing actuation in a limit switch includes a housing, a shaft rotatable in clockwise and counter-clockwise directions, a cam member supported on the shaft and that is rotatable in the clockwise and counter-clockwise directions responsive to rotation of the shaft, and a follower actuated by the cam member responsive to rotation of the cam member in the clockwise and counter-clockwise directions, with the follower further including a pivot pin secured to the housing, a lever portion positioned on the pivot pin and pivotable thereabout in opposing directions, and a rolling pin mounted to the lever portion and in contact with the cam member. The operating head also includes an actuator member in contact with the lever portion and that translates linearly in a first direction or a second direction responsive to the pivoting of the lever portion. The rolling pin moves along a profile of the cam member upon rotation of the cam member in the clockwise or counter-clockwise direction so as to cause the lever portion to pivot, with the actuator member linearly translating in the first direction or the second direction responsive to the pivoting of the lever portion.
In accordance with another aspect of the invention, an electrical limit switch includes a switch subassembly having a plurality of fixed electrical terminals and a contact carrier comprising electrical contacts thereon, the contact carrier movable between a plurality of distinct switching positions to selectively shift a location of the electrical contacts to different electrical terminals to make and break different circuits in the switch subassembly. The electrical limit switch also includes an operating head subassembly having a shaft rotatable in clockwise and counter-clockwise directions, a cam member supported on the shaft and that is rotatable in the clockwise and counter-clockwise directions responsive to rotation of the shaft, an actuator member configured to move linearly in a first direction or a second direction responsive to rotation of the cam member in the clockwise or counter-clockwise direction to cause a corresponding movement of the contact carrier, and a follower in contact with each of the cam member and the actuator member to translate rotation of the cam member in the clockwise or counter-clockwise direction into linear movement of the actuator member in the first or second direction, with the follower directly actuating the actuator member.
In accordance with yet another aspect of the invention, an operating head for providing actuation in a limit switch includes a shaft rotatable in clockwise and counter-clockwise directions, a cam member supported on the shaft and that is rotatable in the clockwise and counter-clockwise directions responsive to rotation of the shaft, and an actuator member that moves linearly from a normal position in a first direction or a second direction responsive to rotation of the cam member in the clockwise or counter-clockwise direction, the actuator member movable between a first actuated position and a second actuated position. The operating head also includes a follower in contact with each of the cam member and the actuator member to translate rotation of the cam member in the clockwise or counter-clockwise direction into linear movement of the actuator member in the first or second direction. In operation of the operating head, there is approximately 5° of pre-travel rotation of the shaft to move the actuator member to the first actuated position and the second actuated position.
Various other features and advantages of the present invention will be made apparent from the following detailed description and the drawings.
The drawings illustrate preferred embodiments presently contemplated for carrying out the invention.
In the drawings:
Embodiments of the present invention provide a neutral position limit switch having a simplified head assembly with a reduced number of moving parts and that improves reliability. The head assembly is constructed to have an actuator shaft that, upon rotation thereof, causes rotation of a single cam and a corresponding pivoting of a follower based on an interface between the cam and a rolling pin of the follower. Only a small degree of pre-travel rotation (e.g., approaching 5°) of the actuator shaft is required before the cam is sufficiently rotated to cause it to interact with the rolling pin and translate the rotation into linear movement of an output member, thereby causing actuation of the limit switch.
Referring to
Embodiments of the present invention relate particularly to the mechanisms contained within the operating head 12, and thus
The shaft 20 is constructed as a generally round cylindrical member and has a half-round portion with a flat drive surface 38 in the area thereof where shaft 20 is seated within cam member 24, such that rotation of shaft 20 imparts rotation to cam member 24. The shaft 20 also includes a notch 40 formed therein to receive stopper 28, with the stopper 28 being seating on a flat surface in notch 40 such that the stopper 28 may be oriented/arranged flush to the shaft 20. The stopper 28 is centered on shaft 20 and is mounted relative thereto via a pair of guide pins 41. The stopper 28 is aligned on guide pins 41 via openings included in stopper 28 on opposing ends thereof, with the stopper 28 linearly translating along guide pins 41 responsive to rotation of shaft 20. Coil spring 30 is positioned adjacent stopper 28 and within notch 40, with one end of coil spring 30 being mounted to an interior surface of housing 16 and the opposite end of coil spring 30 contacting stopper 28. The coil spring 30 functions to bias the stopper 28 and shaft 20 into a neutral position when no rotational force/torque is being applied to shaft 20, as will be explained in greater detail below.
As best shown in
As also best shown in
Following from the rotation of cam member 24 in a clockwise or counter-clockwise direction and the corresponding upward or downward movement of the lever portion 42 of follower 26, the actuator member 22 in contact with lever portion 42 is also caused to move from a normal or unbiased position. That is, the actuator member 22 may slide inwardly or outwardly along a linear path based on the movement of follower 26—with the actuator member 22 being movable between fully actuated positioned that can generally be termed as a first actuated position and a second actuated position that each cause a tripping of the limit switch 10. According to an exemplary embodiment, the actuator member 22 is positioned so as to be adjacent end of lever portion 42 and so as to be aligned off-of-axis about which follower member 26 is rotated (i.e., off of the central axis of force rotation of shaft 20). This positioning of actuator member 22 off of the central axis of force rotation lowers the level of torque required to be applied to rotate shaft 20 and reduces forces transmitted between the cam member 24 and the rolling pin 46.
As actuator member 22 is moved by follower 26, the actuator member 22 slides along/within an opening 60 in cap 18 to provide linear actuation to components of switch subassembly 14, with the cap 18 providing a guide for the actuator member 22. As shown in
Referring still to
Referring to
Referring to
With regard to movement of the actuator member 22 caused by follower 26 upon rotation of cam member 24 past the designated pre-travel amount, positioning of the actuator member 22 will remain at its actuated position for another 85°-90° of post-travel of the cam member 24 in the same direction or until torque/rotational force on the shaft 20 and cam member 24 is terminated and the cam member 24 and follower 26 are returned to their normal/neutral position. For returning the cam member 24 and follower 26 to their normal/neutral position, the coil spring 30 of operating head 12 exerts a force on stopper 28 and causes stopper 28 to slide on guide pins 41 and exert force on shaft 20, which in turn urges shaft 20 back toward its normal, non-rotated position—with the cam member 24 and follower 26 also thus returning to their normal/neutral position. The returning of cam member 24 and follower 26 to their normal/neutral position thus also returns actuator member 22 to its at rest, normal/neutral position, such that the contact carrier 66 of switch subassembly 14 is at its unbiased position. This completes a cycle of operation for the limit switch 10.
The construction of operating head 12 and the arrangement of the components therein provides for a number of benefits in the present design. First, the positioning of rolling pin 46 at a half-point on the sloped protrusion 54 of cam member 24 when in a neutral position provides a limit switch 10 with only a small amount of pre-travel rotation (e.g., approximately 5°) of the actuator shaft 20 required before the cam member 24 is sufficiently rotated to cause tripping of the limit switch 10, with interaction of the cam member 24 and rolling pin 46 of follower 26 (and linear movement of the actuator member 22) occurring across this pre-travel range (i.e., from) 0°-5°. This small amount of required pre-travel allows for a quicker switching/tripping of the switch subassembly 14 in the limit switch 10. Additionally, the use of rolling pin 46 in follower 26—and its interaction with cam member 24—reduces friction forces between the follower 26 and the cam member 24 when the cam member 24 is rotated. This reduction of friction forces—along with the shape and pivoting nature of follower 26 in general—allows for greater leeway in the range of the cam pressure angle (e.g., between 30° and 45°) that may be acceptable for interaction between the follower 26 and the cam member 24. Still further, positioning of the actuator member 22 so as to be aligned off-of-axis about which follower member 26 is rotated (i.e., off of the central axis of force rotation) lowers the level of torque required to be applied to rotate shaft 20 and reduces forces transmitted between the cam member 24 and the rolling pin 46. The reduced level of torque necessary to rotate cam member 24 is desirable for reducing forces in the operating head 12 and increasing longevity of the operating head 12.
Beneficially, embodiments of the invention thus provide a neutral position limit switch with an operating head subassembly having a simplified design with a reduced number of moving parts that requires less time and cost for assembly thereof and that enhances reliability of the limit switch due to the reduction of moving components therein. The operating head subassembly requires only a small degree of pre-travel rotation (e.g., approaching 5°) of the actuator shaft before the rotation is sufficient to linearly translate the output member to a fully actuated position, in order to provide a quicker switching/tripping time for the limit switch. Additionally, the construction of the operating head subassembly provides for required functioning thereof in a confined, small space, i.e., a compact operating head subassembly. Thus, the benefit of a simplified design with a reduced number of moving parts that enhances reliability of the limit switch is achieved without having to increase the outer boundary/size of the operating head subassembly.
Therefore, according to one embodiment of the present invention, an operating head for providing actuation in a limit switch includes a housing, a shaft rotatable in clockwise and counter-clockwise directions, a cam member supported on the shaft and that is rotatable in the clockwise and counter-clockwise directions responsive to rotation of the shaft, and a follower actuated by the cam member responsive to rotation of the cam member in the clockwise and counter-clockwise directions, with the follower further including a pivot pin secured to the housing, a lever portion positioned on the pivot pin and pivotable thereabout in opposing directions, and a rolling pin mounted to the lever portion and in contact with the cam member. The operating head also includes an actuator member in contact with the lever portion and that translates linearly in a first direction or a second direction responsive to the pivoting of the lever portion. The rolling pin moves along a profile of the cam member upon rotation of the cam member in the clockwise or counter-clockwise direction so as to cause the lever portion to pivot, with the actuator member linearly translating in the first direction or the second direction responsive to the pivoting of the lever portion.
According to another embodiment of the present invention, an electrical limit switch includes a switch subassembly having a plurality of fixed electrical terminals and a contact carrier comprising electrical contacts thereon, the contact carrier movable between a plurality of distinct switching positions to selectively shift a location of the electrical contacts to different electrical terminals to make and break different circuits in the switch subassembly. The electrical limit switch also includes an operating head subassembly having a shaft rotatable in clockwise and counter-clockwise directions, a cam member supported on the shaft and that is rotatable in the clockwise and counter-clockwise directions responsive to rotation of the shaft, an actuator member configured to move linearly in a first direction or a second direction responsive to rotation of the cam member in the clockwise or counter-clockwise direction to cause a corresponding movement of the contact carrier, and a follower in contact with each of the cam member and the actuator member to translate rotation of the cam member in the clockwise or counter-clockwise direction into linear movement of the actuator member in the first or second direction, with the follower directly actuating the actuator member.
According to yet another embodiment of the present invention, an operating head for providing actuation in a limit switch includes a shaft rotatable in clockwise and counter-clockwise directions, a cam member supported on the shaft and that is rotatable in the clockwise and counter-clockwise directions responsive to rotation of the shaft, and an actuator member that moves linearly from a normal position in a first direction or a second direction responsive to rotation of the cam member in the clockwise or counter-clockwise direction, the actuator member movable between a first actuated position and a second actuated position. The operating head also includes a follower in contact with each of the cam member and the actuator member to translate rotation of the cam member in the clockwise or counter-clockwise direction into linear movement of the actuator member in the first or second direction. In operation of the operating head, there is approximately 5° of pre-travel rotation of the shaft to move the actuator member to the first actuated position and the second actuated position.
The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
The present invention claims priority to U.S. Provisional Patent Application Ser. No. 62/703,624, filed Jul. 26, 2018, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62703624 | Jul 2018 | US |