The present invention relates generally to footwear, and in particular to footbed systems for footwear.
Humans who are standing or walking have often problems in achieving an active, neutral and stable body position, resulting in biomechanical issues. Conventional footwear are ineffective in providing natural and neutral posture correction for a human being wearing the footwear.
In one embodiment, a footbed system for footwear comprises an insole mechanism, a midsole mechanism, wherein the insole mechanism is positioned on the midsole mechanism, and the outsole mechanism is positioned under the midsole mechanism. The insole mechanism comprises a footbed insole, a heel pad and a forefoot pad. The footbed insole comprises a pad anatomically shaped to correspond to sole of a human foot, wherein the heel pad is positioned in the hindfoot portion of the footbed insole, and the forefoot pad is positioned in the forefoot portion of the footbed insole. The outsole mechanism comprises an opening for exposing a natural gait line groove of the midsole mechanism.
These and other features, aspects and advantages of the present invention will become understood with reference to the following description, appended claims and accompanying figures.
The following description is made for the purpose of illustrating the general principles of the disclosed embodiments of a system, and is not meant to limit the disclosed concepts herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations. Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
Embodiments of a footbed system for footwear providing neutral posture orienting, are disclosed herein. The footbed system enables achieving neutral posture for a wearer while he is standing or walking.
In one embodiment, the footbed system comprises an active insole mechanism and a natural gait line mechanism. The footbed system functions utilizing a dynamic combination of said insole mechanism and said natural gait line mechanism to position the foot into a neutral posture correct position.
Gait is the pattern in which a person walks or runs (i.e., personal step by step “cycle”). In one embodiment, Gait Analysis is employed as a process for examining such “cycles”, and detecting variations and possible abnormalities. The cycles are captured, documented and observed during Computerized Gait Analysis Sessions. The analysis is used in developing a gait line (preferably most ideal gait line) for standing and to start walking.
Embodiments of the footbed system improve (and preferably optimize) the gait in such a way that the human weight distribution in the foot and path of motion is aligned with strong skeleton structures and connective tissue, resulting in well balanced muscular interaction.
In one embodiment, the footbed system further comprises a midsole mechanism and an outsole mechanism, wherein the midsole mechanism may be integrated with the outsole mechanism, and the insole mechanism may be removable. The midsole mechanism and the outsole mechanism include features for implementing the natural gait line mechanism.
The footbed system 10 functions utilizing a dynamic combination of the insole mechanism 14 and a natural gait line mechanism 12 implemented by cooperation of the midsole mechanism 11 (
In one embodiment, the natural gait line mechanism 12 comprises a natural gait line groove 6 (
The footbed system 10 provides active core stability, relieves trigger points under feet, and supports for first metatarsal (first beam) support for stability while standing or walking. An embodiment of the footbed system 10 comprises a molded material for improving comfort, stability, anti-slip or ESD (Electro Static Discharge) material. An example of the molded material is Ethylene-Vinyl Acetate (EVA), but several other materials (e.g., Polyurethane, Expanded Polymer Foam) can be used in the footbed system 10.
The insole mechanism 14 comprises a footbed insole 1, an active core heel pad 2 and an active core forefoot pad 3 including a first metatarsal lift support 4.
In one embodiment, energy damping foam (EDF) material is utilized, wherein EDF material absorbs more of the impact shock energy, primarily through a difference in material hardness and density. The energy dampening foam material can be made from different chemical Polymers such a foamed Polymers including foamed PU (Polyurethane), foamed EVA, PE (Polyethylene foam), etc. In one implementation, forefoot pad 3 and heel pad 2 are made from EDF material. In one embodiment, the footbed insole 1 comprises EVA material or PU (Polyurethane).
An embodiment of the footbed system comprises footwear such as a shoe including said insole mechanism 14 including the first metatarsal (first beam) support 4. The first metatarsal support 4 in the forefoot zone, provides foot stability while standing and walking. The first metatarsal support 4 also provides active core stability in static and dynamic phase.
In one implementation, the neutral footbed insole 1 comprises a molded footbed member anatomically and bio-mechanically engineered generally in the shape of the sole of a human foot, to provide structural support to the foot for a natural and neutral position aiding in better posture and comfort. The footbed insole 1 is flexible and comprises a forefoot portion 1B (
The midsole mechanism 11 comprises a flexible elongated bed (pad) anatomically shaped to correspond to the sole of a human foot, generally similar in shape to the footbed insole 1, and has hindfoot, midfoot and forefoot portions. The outsole mechanism 15 comprises a flexible elongated bed anatomically shaped to correspond to the sole of a human foot, generally similar in shape to the midsole mechanism 11, and has hindfoot, midfoot and forefoot portions.
The active core insole mechanism 14 further comprises said active core heel pad 2, wherein when the wearer's weight is load borne through the foot, the pressure on the Calcaneus is absorbed in the active core heel pad 2. In one implementation, the active core heel pad 2 comprises a molded energy damping foam engineered in the natural shape of the Calcaneus.
In one embodiment, the footbed system 10 utilizes active core stability material for the insole mechanism 14 such as the heel pad 2, wherein the central hardness of said material is softer than typical material (EVA/Foam). The heel of the wearer depresses the softer material of the heel pad 2 which provides lateral and medial pressure (indicated by arrows), and stability as shown in
The shape and angle of the active core heel pad 2 relieves pressure and adds comfort to the Plantar Fascia. Additionally, the active core heel pad 2 places the foot in a neutral position and aids in controlling over-pronation and supination. This is achieved because the active core heel pad 2 allows the Cancaneus to press downwards in the softer over a natural gait line groove 6 in the outsole 15, wherein harder foam of the footbed insole 1 is positioned around the heel pad 2.
As such, soft tissues of the foot follow the path of least resistance and move down into the softer foam of the heel pad 2 over the natural gait line groove 6, bringing the bone structure inside the foot soft tissues toward the preferred gait line 6. This results in automatic pressure at the lateral and medial sides of the heel and creates stability and a neutral position.
The active core insole mechanism 14 further comprises said active core forefoot pad 3 which cushions and supports the forefoot (metatarsals and metatarsal heads). In one implementation, the active core forefoot pad 3 comprises a molded energy damping foam engineered in the natural shape of the Metatarsals, and distributes the force/pressure under the forefoot sidewardly, in an essentially horizontal surface, and provides improved pressure distribution. The shape of the active core forefoot pad 3 allows pressure relief and adds comfort to the Plantar Fascia. The forefoot pad 3 can be of similar material as the heel pad 2.
The active core insole mechanism 14 further comprises said first metatarsal lift support 4 extending from the forefoot pad 3, comprising a molded energy damping foam engineered in the natural shape of the first metatarsal head bone of the human foot (i.e., first beam, big toe). The shape of the first metatarsal lift support 4 creates additional support and assists in stabilizing the foot position. The first metatarsal lift support 4 can be of similar material as the forefoot pad 3.
The active core insole mechanism 14 functions in conjunction with said natural gait line mechanism 12 to position the foot in an anatomically neutral position while the wearer is standing on the footbed system 10, which is beneficial for good posture. As shown in
In one embodiment, the footbed insole 1 comprises an elongated bed (pad) in the longitudinal direction, having said opening 1A for exposing the forefoot pad 3 therethrough. The opening 1A is generally in the shape of the forefoot pad 3.
In one embodiment, the forefoot pad 3 and heel pad 2 are integrated into the footbed insole 1, rather than separate elements, and the forefoot pad 3 does not have an opening 1A.
In one embodiment, footbed insole 1 ranges in hardness from about 40±3 Asker C hardness, the active core pads (i.e., heel pad 2 and forefoot pad 3) are about 25 to 30 Asker C hardness. In one embodiment, the midsole mechanism 11 comprises EVA material with a hardness range from about 40 to 55 Asker C hardness.
In one example, the midsole 11 comprises EVA material with a hardness ranging from about 40 to 55 Asker C hardness, and the natural gait line groove 6 is a groove in the midsole EVA exposed by similarly shaped opening 15A (
In one embodiment, the outsole 15 comprises a rubber or rubber-like polymer with a hardness ranging from about 65 to 70 Shore A hardness. In one embodiment, the active core stabilizers 5 may be integrated into the outsole mechanism 15 (
In one embodiment, the active gait line supports 5 comprise generally planar and rectangular structures molded from polymers. The active gait line supports 5 are selectively positioned between the midsole 11 and the footbed insole 1, and provide a change in density under the foam used for the midsole 11. The gait line supports 5 can also be placed between the midsole 11 and the outsole 15. The support pads 5 (e.g., support pads S1, S2, S3) on the midsole 11 function as gait line supports that comprise raised rubber outsole rails/guides that align the foot inward toward a natural gait line 6.
The active gait line supports 5 guide the foot back to the natural gait line groove 6. The natural gait line groove 6 comprises a channel that provides a change in density of the midsole 11 which guides the foot back to the natural gait line 6.
Using harder material for the outsole 15 than the material of the midsole 11, in the area of the natural gait line groove 6 where there is no outsole material and the midsole 11 is exposed, the density of the midsole 11 is less where the outsole 15 is not layered to the midsole 11.
The gait line groove 6 is an example of selective layering of outsole 15 on the midsole 11, according to embodiments of the footbed system 10. Such material and geometry of the midsole mechanism 11 and outsole mechanism 15 are selected to have varying density of foam when weight bearing.
In assembly, the support pads 5 are placed on top of the midsole 11, and the forefoot pad 3 and first metatarsal support 4 are also placed on the midsole 11, wherein the forefoot pad 3 covers at least a portion of two of the supports pads 5 (e.g., support pads S1 and S2) that are positioned along the edges 3A and 3B of the forefoot pad 3. The third support pad 5 (e.g., support pad S3) is placed proximate a side of the heel pad 2. The support pads 5 can also be placed on the outsole 15.
The footbed insole 1 is then placed on the forefoot pad 3, the first metatarsal support 4, and the supports pads 5, wherein the forefoot pad 3 is exposed through the opening 1A of the footbed insole 1. The first metatarsal support 4 and the support pads 5 are covered by the footbed insole 1. The heel pad 2 is then placed on the heel area of the footbed insole 1.
The footbed insole 1, along with forefoot pad 3 and heel pad 2, and supports 5, implemented in footwear improve human biomechanics and reduce the discomfort in standing and moving. The relationship of heel pad 2 with the midsole 11, and relationship of heel pad 2 to the forefront pad 3, provides a “bridge” for the foot over the midsole 11. The outsole 15 has selective lamination to the midsole 11 (due to the groove 6), and in one example the supports 5 are built into the outsole 15 instead of the midsole 11.
Foams about Shore A hardness 30 in density deform under a humans weight. The footbed system comprises different density foams not only to provide pressure deflection and absorption but by using different densities in particular relationship to one another to make the foot move to a desired position by means of least resistance, rather than by standard forces to conform into the shape of the shoe.
The subtalar joint neutral position (when the foot is not pronated nor supinated, and the middle diagram above) is recognized by foot professionals as the neutral position of most stability. As mentioned, if the foot operates outside of this neutral position, dysfunction in the foot, leg, pelvis and back may occur and create a negative position. The footbed system 10 promotes a neutral foot position as in
In an over-pronation foot position, there is too much pronation wherein the foot rolls inward excessively. There is an angle between the heel bone and the Achilles tendon and much pressure on the ball of the foot. Low arches are at increased risk of over-pronation. Individuals with over-pronation have increased risk of walking discomforts such as knee, Achilles or shin, leg, pelvis, back complaints.
Pronation of the foot is a normal process that occurs when the foot makes contact with the ground. More specifically, the ankle and foot will normally pronate 6 to 8 degrees during mid-stance. More than 8 to 12 degrees is called over-pronation. Mild pronation can be defined by the foot rolling inward 4 to 6 degrees, moderate pronation 6 to 10 degrees and severe over-pronation of 10 to 15 degrees. The footbed system 10 including a footbed insole 14 corrects over-pronation automatically.
In a supinated foot position, there is a shortage of pronation. The settlement takes place on the outside of the foot. High arches (holvoeten) have an increased risk of supination (underpronation). The footbed system 10 including a footbed insole 14 corrects over-pronation automatically.
As noted, one of the most ideal normals pronation settlement because the body is in balance as shown in
The neutral position provided by the footbed system 10 supports the foot. The materials/shapes used in the footbed system 10 promote the neutral position from the ankle relative to the lower leg toward an essentially 180 degreestraight line.
Six criteria for normalcy are:
The footbed system 10 automatically promotes said criteria of normalcy. In one embodiment, the footbed system 10 comprises footwear such as shoes that allow proper foot positioning, and footwear including gait line control and steering mechanisms. As shown in
The materials/shapes used in the footbed system promotes the neutral position, wherein the shape of the insole mechanism 14 provides a lower pressure under the heel. Further, the side of the insole mechanism 14 is in the shape of the heel of a human foot. And, the material utilized in the insole mechanism 14 provides sideways pressure to the foot when the heel is receding downward into the insole heel pad 2, to stabilize the foot and correct the pronation or supination. Upper body weight pushes down on the heel bone which in turn compresses foams in the heel pad 2 and forefoot pad 3.
Different element sizes may be used relative to foot size. Embodiments of the invention further provide other footwear such as sandals including the insole, midsole and outsole mechanisms described herein, utilizing the natural gait line mechanism.
Embodiments of the invention provide improvements in shoes allowing improvements in human comfort with standing, walking and moving while wearing a shoe according to an embodiment of the invention.
The shoe/insole technique provides the guide for a responsible start to move without thinking how to move. The footbed system improves human biomechanics and reduces the discomfort in standing and moving.
In the description above, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. For example, well-known equivalent components and elements may be substituted in place of those described herein, and similarly, well-known equivalent techniques may be substituted in place of the particular techniques disclosed. In other instances, well-known structures and techniques have not been shown in detail to avoid obscuring the understanding of this description.
Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments. The various appearances of “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments. If the specification states a component, feature, structure, or characteristic “may”, “might”, or “could” be included, that particular component, feature, structure, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, that does not mean there is only one of the element. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
This application claims the priority benefit of U.S. Provisional Patent Application Ser. No. 61/800,719, filed Mar. 15, 2013, incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/026788 | 3/13/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/151995 | 9/25/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2423622 | Samblanet | Jul 1947 | A |
2502774 | Alianiello | Apr 1950 | A |
2863231 | Jones | Dec 1958 | A |
2884719 | Compton | May 1959 | A |
4364188 | Turner | Dec 1982 | A |
4506460 | Rudy | Mar 1985 | A |
4667423 | Autry | May 1987 | A |
4759136 | Stewart | Jul 1988 | A |
4794707 | Franklin | Jan 1989 | A |
4813159 | Weiss | Mar 1989 | A |
5435078 | Pyle | Jul 1995 | A |
5572805 | Giese | Nov 1996 | A |
5704137 | Dean | Jan 1998 | A |
6038790 | Pyle | Mar 2000 | A |
6065230 | James | May 2000 | A |
6182380 | Liley | Feb 2001 | B1 |
6253466 | Harmon-Weiss et al. | Jul 2001 | B1 |
6453578 | Yung | Sep 2002 | B1 |
D474877 | Belley | May 2003 | S |
6938363 | Clough | Sep 2005 | B1 |
7484319 | Cheskin | Feb 2009 | B2 |
7634861 | Kilgore | Dec 2009 | B2 |
7849610 | Clough | Dec 2010 | B2 |
7941941 | Hazenberg | May 2011 | B2 |
7946058 | Johnson | May 2011 | B2 |
8127468 | Morgan | Mar 2012 | B2 |
8250784 | Cheskin | Aug 2012 | B2 |
8661709 | Campbell | Mar 2014 | B2 |
8726542 | Kim | May 2014 | B2 |
8752307 | Cooper | Jun 2014 | B2 |
20030150131 | McManus et al. | Aug 2003 | A1 |
20040181970 | Covatch | Sep 2004 | A1 |
20050262739 | McDonald | Dec 2005 | A1 |
20060059726 | Song | Mar 2006 | A1 |
20070033834 | Cheskin | Feb 2007 | A1 |
20070193071 | Gilmore | Aug 2007 | A1 |
20090013559 | Chan et al. | Jan 2009 | A1 |
20110131835 | Cheskin et al. | Jun 2011 | A1 |
20140041261 | Walker | Feb 2014 | A1 |
20140047740 | Tucker | Feb 2014 | A1 |
20160021972 | Grelle | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
WO-2013028073 | Feb 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2014/026788, dated Jul. 29, 2014. |
Third Party Observation and comments for PCT/US2014/026788, submitted Mar. 20, 2015. |
Search Report and Written Opinion for EP Application No. 14768692.7 dated Dec. 8, 2016. |
Number | Date | Country | |
---|---|---|---|
20160021972 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61800719 | Mar 2013 | US |