NEUTRALIZING ANTI- SARS-COV-2 ANTIBODIES

Information

  • Patent Application
  • 20220195015
  • Publication Number
    20220195015
  • Date Filed
    November 04, 2021
    2 years ago
  • Date Published
    June 23, 2022
    a year ago
Abstract
This disclosure provides novel broadly neutralizing anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof. The disclosed anti-SARS-CoV-2 antibodies constitute a novel therapeutic strategy in protection against SARS-CoV-2 infections.
Description
REFERENCE TO A SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Nov. 2, 2021, is named 070413_20654_SL.txt and is 3,393,729 bytes in size.


FIELD OF THE INVENTION

The present invention relates to antibodies directed to epitopes of SARS-CoV-2 Coronavirus 2 (“SARS-CoV-2”). The present invention further relates to the preparation and use of broadly neutralizing antibodies directed to the SARS-CoV-2 spike (S) glycoproteins for the prevention and treatment of SARS-CoV-2 infection.


BACKGROUND

SARS-CoV-2 is the virus that causes coronavirus disease 2019 (COVID-19). It contains four structural proteins, including spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Among them, S protein plays the most important role in viral attachment, fusion, and entry, and it serves as a target for development of antibodies, entry inhibitors, and vaccines. The S protein mediates viral entry into host cells by first binding to a host receptor through the receptor-binding domain (RBD) in the 51 subunit and then fusing the viral and host membranes through the S2 subunit. SARS-CoV and MERS-CoV RBDs recognize different receptors. SARS-CoV recognizes angiotensin-converting enzyme 2 (ACE2) as its receptor, whereas MERS-CoV recognizes dipeptidyl peptidase 4 (DPP4) as its receptor. Similar to SARS-CoV, SARS-CoV-2 also recognizes ACE2 as its host receptor binding to viral S protein. SARS-CoV-2 has infected 45 million individuals and is responsible for over 1 million deaths to date. There is a need for agents for treating or preventing SARS-CoV-2 infection.


SUMMARY

This disclosure addresses the need mentioned above in a number of aspects by providing broadly neutralizing anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof.


In one aspect, this disclosure provides an isolated anti-SARS-CoV-2 antibody or antigen-binding fragment thereof that binds specifically to a SARS-CoV-2 antigen. In some embodiments, the SARS-CoV-2 antigen comprises a Spike (S) polypeptide, such as a S polypeptide of a human or an animal SARS-CoV-2. In some embodiments, the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide. In some embodiments, the RBD comprises amino acids 319-541 of the S polypeptide.


In some embodiments, the antibody or antigen-binding fragment thereof is capable of neutralizing a plurality of SARS-CoV-2 strains.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to one selected from those in Table 4A and Table 9 below; or (ii) a light chain variable region having an amino acid sequence with at least 75% identity to one selected from those in Table 4A and Table 9 below.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to one selected from those in Table 4A and Table 9 below; and (ii) a light chain variable region having an amino acid sequence with at least 75% identity to one selected from those in Table 4A and Table 9 below.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having the amino acid sequence of one selected from those in Table 4A and Table 9 below; or (ii) a light chain variable region having the amino acid sequence of one selected from those in Table 4A and Table 9 below.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having the amino acid sequence of one selected from those in Table 4A and Table 9 below; and (ii) a light chain variable region having the amino acid sequence of one selected from those in Table 4A and Table 9 below.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region that comprises the respective amino acid sequences of a sequence pair selected from those in Table 4A and Table 9 below.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: three heavy chain complementarity determining regions (HCDRs) (HCDR1, HCDR2, and HCDR3) of a heavy chain variable region having an amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; and three light chain CDRs (LCDR1, LCDR2, and LCDR3) of a light chain variable region having the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 comprising respective amino acid sequences of (a) SEQ ID NOs: 4600, 4601, 4602, 4603, 4604, and 4605; (b) SEQ ID NOs: 4606, 4607, 4608, 4609, 4610, and 4611; (c) SEQ ID Nos: 4612, 4613, 4614, 4615, 4616, and 4617; (d) SEQ ID NOs: 4618, 4619, 4620, 4621, 4622, and 4623; (e) SEQ ID NOs: 4624, 4625, 4626, 4627, 4628, and 4629; (f) SEQ ID NOs: 4630, 4631, 4632, 4633, 4634, and 4635; (g) SEQ ID NOs: 4636, 4637, 4638, 4639, 4640, and 4641; (h) SEQ ID NOs: 4642, 4643, 4644, 4645, 4646, and 4647; (i) SEQ ID NOs: 4648, 4649, 4650, 4651, 4652, and 4653; (j) SEQ ID NOs: 4654, 4655, 4656, 4657, 4658, and 4659; or (k) SEQ ID NOs: 4660, 4661, 4662, 4663, 4664, and 4665.


In some embodiments, The antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to the amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; or having the amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; and (ii) a light chain variable region having an amino acid sequence with at least 75% identity to the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322; or having the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22, 23-24, 25-26, 27-28, 29-30, 31-32, 33-34, 35-36, 37-38, 39-40, 41-42, 43-44, 45-46, 47-48, 49-50, 51-52, 53-54, 55-56, 57-58, 59-60, 61-62, 63-64, 65-66, 67-68, 69-70, 71-72, 73-74, 75-76, 77-78, 79-80, 81-82, 83-84, 85-86, 87-88, 89-90, 91-92, 93-94, 95-96, 97-98, 99-100, 101-102, 103-104, 105-106, 107-108, 109-110, 111-112, 113-114, 115-116, 117-118, 119-120, 121-122, 123-124, 125-126, 127-128, 129-130, 131-132, 133-134, 135-136, 137-138, 139-140, 141-142, 143-144, 145-146, 147-148, 149-150, 151-152, 153-154, 155-156, 157-158, 159-160, 161-162, 163-164, 165-166, 167-168, 169-170, 171-172, 173-174, 175-176, 177-178, 179-180, 181-182, 183-184, 185-186, 187-188, 189-190, 191-192, 193-194, 195-196, 197-198, 199-200, 201-202, 203-204, 205-206, 207-208, 209-210, 211-212, 213-214, 215-216, 217-218, 219-220, 221-222, 223-224, 225-226, 227-228, 229-230, 231-232, 233-234, 235-236, 237-238, 239-240, 241-242, 243-244, 245-246, 247-248, 249-250, 251-252, 253-254, 255-256, 257-258, 259-260, 261-262, 263-264, 265-266, 267-268, 269-270, 271-272, 273-274, 275-276, 277-278, 279-280, 281-282, 283-284, 285-286, 287-288, 289-290, 291-292, 293-294, 295-296, 297-298, 299-300, 301-302, 303-304, 305-306, 307-308, 309-310, 311-312, 313-314, 315-316, 317-318, 319-320, or 321-322.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 3-4, 11-12, 141-142, 143-144, 189-190, 311-312, 313-314, 315-316, 317-318, 319-320, or 321-322.


In some embodiments, the antibody or antigen-binding fragment thereof is a multivalent antibody that comprises (a) a first target binding site that specifically binds to an epitope within the S polypeptide, and (b) a second target binding site that binds to a different epitope on the S polypeptide or a different molecule. In some embodiments, the multivalent antibody is a bivalent or bispecific antibody.


In some embodiments, the antibody or the antigen-binding fragment thereof further comprises a variant Fc constant region. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a chimeric antibody, a humanized antibody, or a humanized monoclonal antibody. In some embodiments, the antibody is a single-chain antibody, Fab or Fab2 fragment.


In some embodiments, the antibody or antigen-binding fragment thereof is detectably labeled or conjugated to a toxin, a therapeutic agent, a polymer, a receptor, an enzyme or a receptor ligand. In some embodiments, the polymer is polyethylene glycol (PEG).


For example, an antibody of the invention may be coupled to a toxin. Such antibodies may be used to treat animals, including humans, that are infected with the virus that is etiologically linked to SARS-CoV-2. For example, an antibody that binds to the spike protein of the coronavirus that is etiologically linked to SARS-CoV-2 may be coupled to a tetanus toxin and administered to an animal suffering from infection by the aforementioned virus. The toxin-coupled antibody is thought to bind to a portion of a spike protein presented on an infected cell, and then kill the infected cell.


An antibody of the invention may be coupled to a detectable tag. Such antibodies may be used within diagnostic assays to determine if an animal, such as a human, is infected with SARS-CoV-2. Examples of detectable tags include fluorescent proteins (i.e., green fluorescent protein, red fluorescent protein, yellow fluorescent protein), fluorescent markers (i.e., fluorescein isothiocyanate, rhodamine, texas red), radiolabels (i.e., 3H, 32P, 125I), enzymes (i.e., β-galactosidase, horseradish peroxidase, β-glucuronidase, alkaline phosphatase), or an affinity tag (i.e., avidin, biotin, streptavidin).


In another aspect, this disclosure provides a pharmaceutical composition comprising: the antibody or antigen-binding fragment thereof of any one of the preceding claims and optionally a pharmaceutically acceptable carrier or excipient.


In some embodiments, the pharmaceutical comprises two or more of the antibody or antigen-binding fragment thereof described above, such as any combinations of the antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain that comprise the respective amino acid sequences of one selected from those in Table 4A and Table 9.


In some embodiments, the two or more of the antibody or antigen-binding fragment thereof comprise: (1) a first antibody set comprising: (i) a first antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of a first antibody selected from those in Table 4A and Table 9; and (ii) a second antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of a second antibody selected from those in Table 4; or (2) a second antibody set comprising: (a) a third antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of antibody selected from those in Table 4A and Table 9; and (b) a fourth antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of an antibody selected from those in Table 4A and Table 9, wherein the third antibody different from the fourth antibody.


In some embodiments, the pharmaceutical composition further comprises a second therapeutic agent. In some embodiments, the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound. In some embodiments, the antiviral compound comprises: a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase. In some embodiments, the antiviral compound may include: acyclovir, gancyclovir, vidarabine, foscarnet, cidofovir, amantadine, ribavirin, trifluorothymidine, zidovudine, didanosine, zalcitabine, or an interferon. In some embodiments, the interferon is an interferon-α or an interferon-β.


Also within the scope of this disclosure is use of the pharmaceutical composition, as described above, in the preparation of a medicament for the diagnosis, prophylaxis, treatment, or combination thereof of a condition resulting from a SARS-CoV-2.


In another aspect, this disclosure also provides (i) a nucleic acid molecule encoding a polypeptide chain of the antibody or antigen-binding fragment thereof described above; (ii) a vector comprising the nucleic acid molecule as described; and (iii) a cultured host cell comprising the vector as described. Also provided is a method for producing a polypeptide, comprising: (a) obtaining the cultured host cell as described; (b) culturing the cultured host cell in a medium under conditions permitting expression of a polypeptide encoded by the vector and assembling of an antibody or fragment thereof and (c) purifying the antibody or fragment from the cultured cell or the medium of the cell.


In another aspect, this disclosure provides a kit comprising a pharmaceutically acceptable dose unit of the antibody or antigen-binding fragment thereof of or the pharmaceutical composition as described above. Also within the scope of this disclosure is a kit for the diagnosis, prognosis, or monitoring the treatment of SARS-CoV-2 in a subject, comprising: the antibody or antigen-binding fragment thereof as described; and a least one detection reagent that binds specifically to the antibody or antigen-binding fragment thereof.


In yet another aspect, this disclosure further provides a method of neutralizing SARS-CoV-2 in a subject, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof or a therapeutically effective amount of the pharmaceutical composition, as described above.


In yet another aspect, this disclosure additionally provides a method of preventing or treating a SARS-CoV-2 infection. The method comprises administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof or a therapeutically effective amount of the pharmaceutical composition, as described above.


In some embodiments, the method of neutralizing SARS-CoV-2 in a subject comprises administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of the antibody or antigen-binding fragment, as described above, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity or a therapeutically effective amount of the pharmaceutical composition described above.


In some embodiments, the method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of the antibody or antigen-binding fragment, as described above, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity or a therapeutically effective amount of the pharmaceutical composition described above. In some embodiments, the first antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second antibody or antigen-binding fragment thereof.


In some embodiments, the first antibody or antigen-binding fragment thereof and the second antibody or antigen-binding fragment thereof can be any combinations of the antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain that comprise the respective amino acid sequences of an antibody selected from those in Table 4A and Table 9.


In some embodiments, the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound. In some embodiments, the antiviral compound comprises a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase. In some embodiments, the antiviral compound may include: acyclovir, gancyclovir, vidarabine, foscarnet, cidofovir, amantadine, ribavirin, trifluorothymidine, zidovudine, didanosine, zalcitabine, or an interferon. In some embodiments, the interferon is an interferon-α or an interferon-β.


In some embodiments, the antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second therapeutic agent or therapy. In some embodiments, the antibody or antigen-binding fragment thereof is administered to the subject intravenously, subcutaneously, or intraperitoneally. In some embodiments, the antibody or antigen-binding fragment thereof is administered prophylactically or therapeutically.


In another aspect, this disclosure further provides a method for detecting the presence of SARS CoV-2 in a sample comprising the steps of: (i) contacting a sample with the antibody or antigen-binding fragment thereof described above; and (ii) determining binding of the antibody or antigen-binding fragment to one or more SARS CoV-2 antigens, wherein binding of the antibody to the one or more SARS CoV-2 antigens is indicative of the presence of SARS CoV-2 in the sample. In some embodiments, the sample is a blood sample.


In some embodiments, the SARS-CoV-2 antigen comprises a S polypeptide, such as a S polypeptide of a human or an animal SARS-CoV-2. In some embodiments, the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide. In some embodiments, the RBD comprises amino acids 319-541 of the S polypeptide.


In some embodiments, the antibody or antigen-binding fragment thereof is conjugated to a label. In some embodiments, the step of detecting comprises contacting a secondary antibody with the antibody or antigen-binding fragment thereof and wherein the secondary antibody comprises a label. In some embodiments, the label includes a fluorescent label, a chemiluminescent label, a radiolabel, and an enzyme.


In some embodiments, the step of detecting comprises detecting fluorescence or chemiluminescence. In some embodiments, the step of detecting comprises a competitive binding assay or ELISA.


In some embodiments, the method further comprises binding the sample to a solid support. In some embodiments, the solid support includes microparticles, microbeads, magnetic beads, and an affinity purification column.


The foregoing summary is not intended to define every aspect of the disclosure, and additional aspects are described in other sections, such as the following detailed description. The entire document is intended to be related as a unified disclosure, and it should be understood that all combinations of features described herein are contemplated, even if the combination of features are not found together in the same sentence, or paragraph, or section of this document. Other features and advantages of the invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the disclosure, are given by way of illustration only, because various changes and modifications within the spirit and scope of the disclosure will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, and 1l are a set of diagrams showing plasma antibody dynamics against SARS-CoV-2. FIGS. 1a-d show the results of serological assays measuring plasma reactivity to RBD (FIGS. 1a, 1b, and 1c) and N protein (FIG. 1d) at the initial 1.3- and 6.2-month follow-up visit, respectively. FIG. 1a shows the result of the anti-RBD IgM. FIG. 1b shows the result of the anti-RBD IgG. FIG. 1c shows the result of the anti-RBD IgA FIG. 1d shows the result of the anti-N total antibodies. The normalized area under the curve (AUC) values for 87 individuals and Cut-off Index (COI) values for 80 individuals are shown in FIGS. 1a-c and FIG. 1d for both time points, respectively. Positive and negative controls were included for validation (Robbiani, D. F. et al. Nature 584, 437-442). FIG. 1e shows a relative change in plasma antibody levels between 1.3 and 6.2 months for anti-RBD IgM, IgG, IgA, and anti-N total Ig, respectively. FIGS. 1f-I show a relative change in antibody levels between 1.3 and 6.2 months plotted against the corresponding antibody levels at 1.3 months. FIG. 1f shows the result of the anti-RBD IgM. r=−0.83, p<0.0001. FIG. 1g shows the result of the anti-RBD IgG. r=−0.76, p<0.0001. FIG. 1h shows the result of the anti-RBD IgA. r=−0.67, p<0.0001. FIG. 1i shows the result of the anti-N total antibodies. r=−0.23, p=0.039. FIG. 1j shows a ranked average half-maximal inhibitory plasma neutralizing titer (NT50) at 1.3 months and 6.2 months for the 87 individuals studied. FIG. 1k is a graph showing NT50 for plasma collected at 1.3 and 6.2 months p<0.0001. FIG. 1l shows a relative change in plasma neutralizing titers between 1.3 and 6.2 months plotted against the corresponding titers at 1.3 months. For FIGS. 1a-e and 1k show plotted values, and horizontal bars indicate geometric mean. Statistical significance was determined using the Wilcoxon matched-pairs signed rank test in FIGS. 1a-d and k show Friedman with Dunn's multiple comparison test in FIG. 1e. The r and p values in FIGS. 1f-I and l were determined by two-tailed Spearman's correlations.



FIGS. 2a, 2b, 2c, 2d, and 2e are a set of diagrams showing anti-SARS-CoV-2 RBD monoclonal antibodies. FIG. 2a shows representative flow cytometry plots showing dual AlexaFluor-647-RBD- and PE-RBD-binding B cells for six study individuals (gating strategy is in FIG. 6). Percentage of antigen-specific B cells is indicated. FIG. 2b, as in FIG. 2a, shows a graph summarizing % RBD binding memory B cells in samples obtained at 1.3 and 6.2 months from 21 randomly selected individuals. The horizontal bars indicate geometric mean values. Statistical significance was determined using Wilcoxon matched-pairs signed rank test. FIG. 2c shows number of somatic nucleotide mutations in the IGVH (top) and IGVL (bottom) in antibodies obtained after 1.3 or 6.2 months from the indicated individual or all donors (right). FIG. 2d shows pie charts depicting the distribution of antibody sequences from 6 individuals after 1.3 (upper panel) or 6.2 months (lower panel). The number in the inner circle indicates the number of sequences analyzed for the individual denoted above the circle. Pie slice size is proportional to the number of clonally related sequences. The black outline indicates the frequency of clonally expanded sequences detected in each patient. Colored slices indicate persisting clones (same IGHV and IGLV genes and highly similar CDR3s) found at both timepoints in the same patient. Grey slices indicate clones unique to the timepoint. White slices indicate singlets found at both timepoints, while the remaining white area indicates sequences isolated once. FIG. 2e is a graph showing relative clonality at both time points timepoints. The horizontal bars indicate mean values. Statistical significance was determined using two-tailed Mann-Whitney U-tests or paired t-test.



FIGS. 3a, 3b, 3c, 3d, and 3e are a set of diagrams showing anti-SARS-CoV-2 RBD antibody reactivity. FIG. 3a shows graphs that illustrate anti-SARS-CoV-2 RBD antibody reactivity. ELISA EC50 values for all antibodies measured at 1.3 and 122 selected monoclonal antibodies at 6.2 months. Horizontal bars indicate the geometric mean. Statistical significance was determined using Mann-Whitney U-tests. FIG. 3b shows EC50 values for all antibodies that appear at 1.3 and 6.2 months. Average of two or more experiments. Horizontal bars indicate a geometric mean. Statistical significance was determined using the Wilcoxon matched-pairs signed rank test. FIG. 3c shows a surface representation of the RBD with the ACE-2 binding footprint indicated as a dotted line and selected residues found in circulating strains (grey) and residues that mediate resistance to class 2 (C144) and 3 (C135) antibodies highlighted as sticks. FIG. 3d shows graphs depicting ELISA binding curves for C144 (black dashed line) and its clonal relatives obtained after 6.2 months (C050-54, solid lines) binding to wild type, Q493R, R346S, and E484K mutant RBDs. FIG. 3e is a heat map showing log 10 relative fold change in EC50 against the indicated RBD mutants for antibody clonal pairs obtained at 1.3 and 6.2 months. The participant origin for each antibody pair is indicated above. All experiments were performed at least twice.



FIGS. 4a, 4b, 4c, 4d, and 4e are a set of diagrams showing anti-SARS-CoV-2 RBD antibody neutralizing activity. FIG. 4a shows the results of a SARS-CoV-2 pseudovirus neutralization assay. IC50 values for all antibodies measured at 1.3 months and 122 selected antibodies at 6.2 months. Antibodies with IC50 values above 1 μg/ml were plotted at 1 μg/ml. Mean of 2 independent experiments. The bar indicates the geometric mean. Statistical significance was determined using Mann-Whitney U-test. FIG. 4b shows IC50 values for antibodies appearing at 1.3 and 6.2 months. The bar indicates the geometric mean. Statistical significance was determined using the Wilcoxon matched-pairs signed rank test. FIG. 4c shows IC50 values for 5 different pairs of mAb clonal relatives obtained after 1.3 or 6.2 months for neutralization of wild type and mutant SARS-CoV-2 pseudovirus. Antibody IDs of the 1.3 months/6.2 months mAb pairs as indicated. FIG. 4d is a graph showing the normalized relative luminescence values for cell lysates of 293TACE2 cells 48 hpi with SARS-CoV-2 pseudovirus harboring wt RBD or mutant RBDs in the presence of increasing concentrations of mAbs C144 (1.3 months, dashed lines) or C051 (6.2 months, solid lines). FIG. 4e shows a surface representation of two adjacent “down” RBDs (RBDA and RBDB) on a spike trimer with the C144 epitope on the RBDs highlighted in cyan and positions of amino acid mutations that accumulated in C051 compared to the parent antibody C144 highlighted as stick side chains on a Cα atom representation C051 VHVL binding to adjacent RBDs. The C051 interaction with two RBDs was modeled based on a cryo-EM structure of C144 Fab bound to spike trimer.



FIGS. 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i, and 5j are a set of photographs showing immunofluorescence and electron microscopy imaging of intestinal biopsies. FIG. 5a shows immunofluorescence images of human enterocytes stained for EPCAM, DAPI, and either ACE2 (FIG. 5a and FIG. 5c) or SARS-CoV-2 N (FIG. 5b and FIG. 5d) in intestinal biopsies taken 92 days after COVID-19 symptom onset in the terminal ileum (FIGS. 5a-b) or duodenum (FIGS. 5c-d). Arrows indicate enterocytes with detectable SARS-CoV-2 antigen. The white scale bar corresponds to 100 μm. FIGS. 5e-h show SARS-CoV-2 virions within terminal ileum of CGI-088 (identified as described in methods). FIG. 5e shows a montaged 2D overview of a region of apical epithelium. FIG. 5f shows a tomographic slice (1.5 nm) of a 3D reconstruction of the area of epithelial cell cytoplasm indicated by the white square in FIG. 5e. Two coronavirus-filled exit compartments (center) are surrounded by other membranous compartments with dissimilar contents. FIG. 5g shows the tomographic detail of the two exit compartments, indicated by the white rectangle in FIG. 5f. Each compartment contains ˜20 presumptive SARS-CoV-2 virions. FIG. 5h shows the detail of a single virion (indicated by the white arrow in FIG. 5g), showing densities for the membrane bilayer (black arrowhead), punctate core structures (*), and surface spikes (dots). FIGS. 5i-j show SARS-CoV-2 within duodenum of CGI-088 (identified as described in methods). FIG. 5i shows a montaged 2D overview of a region of the duodenal apical epithelium. FIG. 5j shows a tomographic slice (1.5 nm) of a 3D reconstruction of the area of epithelial cell cytoplasm indicated by the white square in FIG. 5i. SARS-CoV-2 virions are localized to two smooth-walled exit compartments (white arrows). Inset in FIG. 5j shows the detail of three presumptive SARS-CoV-2 virions from the compartment in the upper left of FIG. 5j. Surface spikes are indicated by dots. M, Mitochondrion.



FIGS. 6a and 6b show flow cytometry. FIG. 6a shows the gating strategy used for cell sorting. Gating was on singlets that were CD20+ and CD3−CD8−CD16−Ova−. Sorted cells were RBD−PE+ and RBD−AF647+. FIG. 6b shows flow cytometry depicting the percentage of RBD-double positive memory B cells from month 1.3 or month 6 post-infection in 21 randomly selected patients.



FIGS. 7a and 7b show frequency distributions of human V genes. FIG. 7a shows a comparison of the frequency distributions of human V genes of anti-SARS-CoV-2 antibodies from donors at 7 week to 6 months (Robbiani et al.). FIG. 7b shows a comparison of the frequency distributions of human V genes of anti-SARS-CoV-2 antibodies from this study to sequences previously obtained.



FIGS. 8a, 8b, 8c, and 8d show circo plots and IgG positive RBD specific B cells. FIG. 8 shows sequences from all six individuals with clonal relationships depicted as in FIG. 2d. Interconnecting lines indicate the relationship between antibodies that share V and J gene segment sequences at both IGH and IGL. Purple, the lines connect related clones, clones and singles, and singles to each other, respectively. FIG. 8b shows the number of IgG heavy chain sequences (black) analyzed from six individuals at month 1.3 (left panel) or month 6.2 post-infection (right panel) for each patient. The number in the inner circle indicates the number of cells that were sorted for each individual denoted above the circle. FIG. 8c, the same as FIG. 8b, but shows the combined data of all 6 patients. FIG. 8d shows a comparison of the percentage of IgG positive B cells from six individuals at month 1.3 or month 6.2 post-infection. The horizontal bars indicate the mean. Statistical significance was determined using paired t-test.



FIGS. 9a, 9b, 9c, 9d, 9e, and 9f show analysis of antibody somatic hypermutation of persisting clones. Number of somatic nucleotide mutations in both the IGVH and IGVL of persisting clones found at month 1.3 (solid circles) and month 6.2 time points (open circles) in patients (FIG. 9a) COV21, (FIG. 9b) COV47, (FIG. 9c) COV57, (FIG. 9d) COV72, (FIG. 9e) COV96, and (FIG. 9f) COV107. The VH and VL gene usage of each clonal expansion is indicated above the graphs, or are indicated as “Singlets” if the persisting sequence was isolated only once at both time points. The connecting line indicates the SHM of the clonal pairs that were expressed as a recombinant mAbs.



FIGS. 10a and 10b show the analysis of CDR3 length and hydrophobicity. FIG. 10a shows the number of the amino acid length of the CDR3s at the IGVH and IGVL for each individual. The horizontal bars indicate the mean. The number of antibody sequences (IGVH and IGVL) evaluated for each participant are n=90 (COV21), n=78 (COV47), n=53 (COV57), n=87 (COV72), n=104 (COV96), n=120 (COV107). Right panel show all antibodies combined (n=532 for both IGVH and IGVL). FIG. 10b shows distribution of the hydrophobicity GRAVY scores at the IGH CDR3 in antibody sequences from this study compared to a public database (see Methods for statistical analysis). The box limits are at the lower and upper quartiles, the center line indicates the median, the whiskers are 1.5× interquartile range, and the dots represent outliers.



FIGS. 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i, and 11j show ELISA of wt/mutant RBD for mAbs. FIG. 11a shows EC50 values of shared singlets and shared clones of mAbs obtained at the initial 1.3 and 6.2 months follow-up visit, divided by patient. Lines connect shared singlets/clones. mAbs with improved EC50 at 6.2 months follow-up visit are highlighted; remaining mAbs are shown in black. Statistical significance was determined using the Wilcoxon matched-pairs signed rank test. FIGS. 11b-j are graphs showing ELISA binding curves for different antibodies obtained at 1.3 months (dashed lines) and their clonal relatives obtained after 6.2 months (solid lines) binding to wild type, R346S, E484K, Q493R, N439K, N440K, A475V, S477N, V483A and V367F RBDs (colors as indicated). Antibody IDs of pairs as indicated on top of panels (1.3 m/6.2 m).



FIGS. 12a, 12b, 12c, 12d, 12e, and 12f show neutralization of wt/mutant RBD pseudotypes by mAbs. FIG. 12a shows IC50 values of shared singlets and shared clones of mAbs obtained at the initial 1.3 and 6.2 months follow-up visit, divided by patient. Lines connect shared singlets/clones. mAbs with undetectable IC50 at 1.3 months are plotted at 10 μg/ml and are highlighted, mAbs with improved IC50 at 6.2 months follow-up visit are highlighted, remaining mAbs are shown in black. Statistical significance was determined using the Wilcoxon matched-pairs signed rank test. FIGS. 12b-f show the normalized relative luminescence values for cell lysates of 293TAce2 cells 48 hpi with SARS-CoV-2 pseudovirus harboring wt RBD or RBD-mutants in the presence of increasing concentrations of mAbs obtained at the 1.3 months initial visit (1.3 m, dashed lines) and their shared clones/singlets at the 6.2 follow-up visit (6.2 m, continuous lines). Antibody IDs as indicated.



FIGS. 13a, 13b, 13c, 13d, and 13e show sequence alignment and binding projection. SEQ ID NOs for the aligned sequences are provided as follows: C144 (SEQ ID NOs: 317 (VH)/318(VL)); C051 (SEQ ID NOs: 3 (VH)/4 (VL)); C052 (SEQ ID NOs: 5 (VH)/6(VL)); C053 (SEQ ID NOs: 7(VH)/8 (VL)); and C054 (SEQ ID NOs: 9 (VH)/10(VL)).



FIGS. 14a, 14b, 14c, 14d, and 14e are a set of diagrams showing SARS-CoV-2 antigen in human enterocytes along the gastrointestinal tract 3 months post COVID-19 Immunofluorescence (IF) images of human gut tissue are shown. Staining is for EPCAM, DAPI, and SARS-CoV-2 nucleocapsid. Samples are derived from intestinal biopsies along the gastrointestinal tract as indicated (FIGS. 14a-e). FIGS. 14a-d are biopsies from one individual taken 92 days post COVID-19 symptom onset. FIG. 14e is a biopsy 27 months prior to COVID symptom onset from the same individual. Arrows indicate enterocytes with detectable SARS-CoV-2 antigen. Isotype and no primary controls for each tissue are shown in the last two columns. The scale bar corresponds to 100 μm.



FIGS. 15a and 15b show that SARS-CoV-2 antigen is detectable in different intestinal segments in multiple COVID-19 convalescent individuals. FIG. 15a shows immunofluorescence (IF) images of biopsy samples along the gastrointestinal tract in different individuals are shown. Staining is for EPCAM, DAPI, and SARS-CoV-2 nucleocapsid. Samples are derived from intestinal biopsies from 3 patients (CGI089, CGI092, COVID OSH) taken at least 3 months after COVID-19 infection. Arrows indicate enterocytes with detectable SARS-CoV-2 antigen. The scale bar corresponds to 100 μm. FIG. 15b shows quantification of SARS-CoV-2 positive cells by immunofluorescence (IF). The number of cells staining positive for the nucleocapsid protein (N) of SARS-CoV-2 per mm2 of intestinal epithelium is shown. FIGS. 15a-b show biopsy samples from the indicated individuals of the duodenum and terminal ileum, respectively. Black dots represent the number of available biopsy specimens for each individual from the respective intestinal segment. Boxes represent median values and whiskers the 95% CI.



FIG. 16 shows that COVID-19 negative individuals show no detectable SARS-CoV-2 antigen by immunofluorescence (IF) images of biopsy samples along the gastrointestinal tract obtained from 10 different individuals with no history of COVID-19 are shown. Staining is for EPCAM, DAPI, and SARS-CoV-2 nucleocapsid.





DETAILED DESCRIPTION OF THE INVENTION

SARS-CoV-2 represents a serious public health concern. Methods to diagnose and treat persons who are infected with SARS-CoV-2 provide the opportunity to either prevent or control further spread of infection by SARS-CoV-2. These methods are especially important due to the ability of SARS-CoV-2 to infect persons through an airborne route.


This invention is based, at least in part, on unexpected broadly neutralizing activities of the disclosed anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof. These antibodies and antigen-binding fragments constitute a novel therapeutic strategy in protection against SARS-CoV-2 infections.


Broadly Neutralizing Anti-SARS-COV-2 Antibodies

Antibodies


The invention disclosed herein involves broadly neutralizing anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof. These antibodies refer to a class of neutralizing antibodies that neutralize multiple SARS-CoV-2 virus strains. The antibodies are able to protect a subject prophylactically and therapeutically against a lethal challenge with a SARS-CoV-2 virus.


In one aspect, this disclosure provides an isolated anti-SARS-CoV-2 antibody or antigen-binding fragment thereof that binds specifically to a SARS-CoV-2 antigen. In some embodiments, the SARS-CoV-2 antigen comprises a portion of a Spike (S) polypeptide, such as a S polypeptide of a human or an animal SARS-CoV-2. In some embodiments, the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide. In some embodiments, the RBD comprises amino acids 319-541 of the S polypeptide. In some embodiments, the antibody or antigen-binding fragment thereof is capable of neutralizing a plurality of SARS-CoV-2 strains.


In some embodiments, the antibody or antigen-binding fragment thereof is capable of neutralizing a SARS-CoV-2 virus at an IC50 concentration of less than 50 μg/ml.


The spike protein is important because it is present on the outside of intact SARS-CoV-2. Thus, it presents a target that can be used to inhibit or eliminate an intact virus before the virus has an opportunity to infect a cell. A representative amino acid sequence is provided below:









(Accession ID: NC_045512.2)


(SEQ ID NO: 4599)


MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLH





STQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKS





NIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHK





NNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKN





IDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH





RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALD





PLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFN





ATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF





TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL





DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYF





PLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCV





NFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDIT





PCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYS





TGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARS





VASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTS





VDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQ





VKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGF





IKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTI





TSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAI





GKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDI





LSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKM





SECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTA





PAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCD





VVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASV





VNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLI





AIVMVTIMLCCMTSCCSCLKGCCScGSCCKFDEDDSEPVLKGVKLHYT






Listed in Table 4A and Table 9 amino acid sequences of the heavy chain (HC) variable regions and light chain (LC) variable regions of exemplary antibodies.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to one selected from Table 4A and Table 9; or (ii) a light chain variable region having an amino acid sequence with at least 75% identity to one selected from the table.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to one selected from Table 4A and Table 9; and (ii) a light chain variable region having an amino acid sequence with at least 75% identity to one selected from Table 4A and Table 9.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having the amino acid sequence of one selected from Table 4A and Table 9; or (ii) a light chain variable region having the amino acid sequence of one selected from Table 4A and Table 9.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having the amino acid sequence of one selected from Table 4A and Table 9; and (ii) a light chain variable region having the amino acid sequence of one selected from Table 4A and Table 9.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region, and a light chain variable region comprises the respective amino acid sequences of one pair selected from Table 4A and Table 9.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: three heavy chain complementarity determining regions (HCDRs) (HCDR1, HCDR2, and HCDR3) of a heavy chain variable region having an amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; and three light chain CDRs (LCDR1, LCDR2, and LCDR3) of a light chain variable region having the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 comprising respective amino acid sequences of (a) SEQ ID NOs: 4600, 4601, 4602, 4603, 4604, and 4605; (b) SEQ ID NOs: 4606, 4607, 4608, 4609, 4610, and 4611; (c) SEQ ID Nos: 4612, 4613, 4614, 4615, 4616, and 4617; (d) SEQ ID NOs: 4618, 4619, 4620, 4621, 4622, and 4623; (e) SEQ ID NOs: 4624, 4625, 4626, 4627, 4628, and 4629; (f) SEQ ID NOs: 4630, 4631, 4632, 4633, 4634, and 4635; (g) SEQ ID NOs: 4636, 4637, 4638, 4639, 4640, and 4641; (h) SEQ ID NOs: 4642, 4643, 4644, 4645, 4646, and 4647; (i) SEQ ID NOs: 4648, 4649, 4650, 4651, 4652, and 4653; (j) SEQ ID NOs: 4654, 4655, 4656, 4657, 4658, and 4659; or (k) SEQ ID NOs: 4660, 4661, 4662, 4663, 4664, and 4665.


In some embodiments, The antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to the amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; or having the amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; and (ii) a light chain variable region having an amino acid sequence with at least 75% identity to the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322; or having the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22, 23-24, 25-26, 27-28, 29-30, 31-32, 33-34, 35-36, 37-38, 39-40, 41-42, 43-44, 45-46, 47-48, 49-50, 51-52, 53-54, 55-56, 57-58, 59-60, 61-62, 63-64, 65-66, 67-68, 69-70, 71-72, 73-74, 75-76, 77-78, 79-80, 81-82, 83-84, 85-86, 87-88, 89-90, 91-92, 93-94, 95-96, 97-98, 99-100, 101-102, 103-104, 105-106, 107-108, 109-110, 111-112, 113-114, 115-116, 117-118, 119-120, 121-122, 123-124, 125-126, 127-128, 129-130, 131-132, 133-134, 135-136, 137-138, 139-140, 141-142, 143-144, 145-146, 147-148, 149-150, 151-152, 153-154, 155-156, 157-158, 159-160, 161-162, 163-164, 165-166, 167-168, 169-170, 171-172, 173-174, 175-176, 177-178, 179-180, 181-182, 183-184, 185-186, 187-188, 189-190, 191-192, 193-194, 195-196, 197-198, 199-200, 201-202, 203-204, 205-206, 207-208, 209-210, 211-212, 213-214, 215-216, 217-218, 219-220, 221-222, 223-224, 225-226, 227-228, 229-230, 231-232, 233-234, 235-236, 237-238, 239-240, 241-242, 243-244, 245-246, 247-248, 249-250, 251-252, 253-254, 255-256, 257-258, 259-260, 261-262, 263-264, 265-266, 267-268, 269-270, 271-272, 273-274, 275-276, 277-278, 279-280, 281-282, 283-284, 285-286, 287-288, 289-290, 291-292, 293-294, 295-296, 297-298, 299-300, 301-302, 303-304, 305-306, 307-308, 309-310, 311-312, 313-314, 315-316, 317-318, 319-320, or 321-322.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 3-4, 11-12, 141-142, 143-144, 189-190, 311-312, 313-314, 315-316, 317-318, 319-320, or 321-322.


In some embodiments, the antibody or antigen-binding fragment thereof comprises (a) a first target binding site that specifically binds to an epitope within the S polypeptide, and (b) a second target binding site that binds to a different epitope on the S polypeptide or on a different molecule. In some embodiments, the multivalent antibody is a bivalent or bispecific antibody.


In some embodiments, the antibody or the antigen-binding fragment thereof further comprises a variant Fc constant region. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a chimeric antibody, a humanized antibody, or a humanized monoclonal antibody. In some embodiments, the antibody is a single-chain antibody, Fab or Fab2 fragment.


In some embodiments, the antibody or the antigen-binding fragment thereof further comprises a variant Fc constant region. The antibody can be a monoclonal antibody. In some embodiments, the antibody can be a chimeric antibody, a humanized antibody, or a humanized monoclonal antibody. In some embodiments, the antibody can be a single-chain antibody, Fab or Fab2 fragment.


In some embodiments, the antibody or antigen-binding fragment thereof can be detectably labeled or conjugated to a toxin, a therapeutic agent, a polymer (e.g., polyethylene glycol (PEG)), a receptor, an enzyme or a receptor ligand. For example, an antibody of the present invention may be coupled to a toxin (e.g., a tetanus toxin). Such antibodies may be used to treat animals, including humans, that are infected with the virus that is etiologically linked to SARS-CoV-2. The toxin-coupled antibody is thought to bind to a portion of a spike protein presented on an infected cell, and then kill the infected cell.


In another example, an antibody of the present invention may be coupled to a detectable tag. Such antibodies may be used within diagnostic assays to determine if an animal, such as a human, is infected with SARS-CoV-2. Examples of detectable tags include: fluorescent proteins (i.e., green fluorescent protein, red fluorescent protein, yellow fluorescent protein), fluorescent markers (i.e., fluorescein isothiocyanate, rhodamine, texas red), radiolabels (i.e., 3H, 32P, 125I), enzymes (i.e., β-galactosidase, horseradish peroxidase, β-glucuronidase, alkaline phosphatase), or an affinity tag (i.e., avidin, biotin, streptavidin). Methods to couple antibodies to a detectable tag are known in the art. Harlow et al., Antibodies: A Laboratory Manual, page 319 (Cold Spring Harbor Pub. 1988).


Fragment


In some embodiments, an antibody provided herein is an antibody fragment. Antibody fragments include, but are not limited to, Fab, Fab′, Fab′-SH, F(ab′)2, Fv, and single-chain Fv (scFv) fragments, and other fragments described below, e.g., diabodies, triabodies tetrabodies, and single-domain antibodies. For a review of certain antibody fragments, see Hudson et al., Nat. Med. 9:129-134 (2003). For a review of scFv fragments, see, e.g., Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., (Springer-Verlag, New York), pp. 269-315 (1994); see also WO 93/16185; and U.S. Pat. Nos. 5,571,894 and 5,587,458. For discussion of Fab and F(ab′)2 fragments comprising salvage receptor binding epitope residues and having increased in vivo half-life, see U.S. Pat. No. 5,869,046.


Diabodies are antibody fragments with two antigen-binding sites that may be bivalent or bispecific. See, for example, EP 404,097; WO 1993/01161; Hudson et al., Nat. Med. 9:129-134 (2003); and Hollinger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993). Triabodies and tetrabodies are also described in Hudson et al., Nat. Med. 9:129-134 (2003).


Single-domain antibodies are antibody fragments comprising all or a portion of the heavy chain variable domain or all or a portion of the light chain variable domain of an antibody. In some embodiments, a single-domain antibody is a human single-domain antibody (DOMANTIS, Inc., Waltham, Mass.; see, e.g., U.S. Pat. No. 6,248,516).


Antibody fragments can be made by various techniques, including but not limited to proteolytic digestion of an intact antibody as well as production by recombinant host cells (e.g., E. coli or phage), as described herein.


Chimeric and Humanized Antibodies


In some embodiments, an antibody provided herein is a chimeric antibody. Certain chimeric antibodies are described, e.g., in U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). In one example, a chimeric antibody comprises a non-human variable region (e.g., a variable region derived from a mouse, rat, hamster, rabbit, or non-human primate, such as a monkey) and a human constant region. In a further example, a chimeric antibody is a “class switched” antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.


In some embodiments, a chimeric antibody is a humanized antibody. Typically, a non-human antibody is humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody. Generally, a humanized antibody comprises one or more variable domains in which HVRs, e.g., CDRs, (or portions thereof) are derived from a non-human antibody, and FRs (or portions thereof) are derived from human antibody sequences. A humanized antibody optionally will also comprise at least a portion of a human constant region. In some embodiments, some FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody (e.g., the antibody from which the HVR residues are derived), e.g., to restore or improve antibody specificity or affinity.


Humanized antibodies and methods of making them are reviewed, e.g., in Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008), and are further described, e.g., in Riechmann et al., Nature 332:323-329 (1988); Queen et al., Proc. Nat'l Acad. Sci. USA 86:10029-10033 (1989); U.S. Pat. Nos. 5,821,337, 7,527,791, 6,982,321, and 7,087,409; Kashmiri et al., Methods 36:25-34 (2005) (describing specificity determining region (SDR) grafting); Padlan, Mol. Immunol. 28:489-498 (1991) (describing “resurfacing”); Dall'Acqua et al., Methods 36:43-60 (2005) (describing “FR shuffling”); and Osbourn et al., Methods 36:61-68 (2005) and Klimka et al., Br. J. Cancer, 83:252-260 (2000) (describing the “guided selection” approach to FR shuffling).


Human framework regions that may be used for humanization include but are not limited to: framework regions selected using the “best-fit” method (see, e.g., Sims et al. J. Immunol. 151:2296 (1993)); framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions (see, e.g., Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992); and Presta et al. J. Immunol., 151:2623 (1993)); human mature (somatically mutated) framework regions or human germline framework regions (see, e.g., Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008)); and framework regions derived from screening FR libraries (see, e.g., Baca et al., J. Biol. Chem. 272:10678-10684 (1997) and Rosok et al., J. Biol. Chem. 271:22611-22618 (1996)).


Human Antibodies


In some embodiments, an antibody provided herein is a human antibody. Human antibodies can be produced using various techniques known in the art or using techniques described herein. Human antibodies are described generally in van Dijk and van de Winkel, Curr. Opin. Pharmacol. 5: 368-74 (2001) and Lonberg, Curr. Opin. Immunol. 20:450-459 (2008).


Human antibodies may be prepared by administering an immunogen to a transgenic animal that has been modified to produce intact human antibodies or intact antibodies with human variable regions in response to antigenic challenge. Such animals typically contain all or a portion of the human immunoglobulin loci, which replace the endogenous immunoglobulin loci, or which are present extrachromosomally or integrated randomly into the animal's chromosomes. In such transgenic mice, the endogenous immunoglobulin loci have generally been inactivated. For a review of methods for obtaining human antibodies from transgenic animals, see Lonberg, Nat. Biotech. 23:1117-1125 (2005). See also, e.g., U.S. Pat. Nos. 6,075,181 and 6,150,584 describing XENOMOUSE technology; U.S. Pat. No. 5,770,429 describing HUMAB technology; U.S. Pat. No. 7,041,870 describing K-M MOUSE technology, and U.S. Patent Application Publication No. US 2007/0061900, describing VELOCIMOUSE technology). Human variable regions from intact antibodies generated by such animals may be further modified, e.g., by combining with a different human constant region.


Human antibodies can also be made by hybridoma-based methods. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described. (See, e.g., Kozbor J. Immunol., 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol., 147: 86 (1991).) Human antibodies generated via human B-cell hybridoma technology are also described in Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006). Additional methods include those described, for example, in U.S. Pat. No. 7,189,826 (describing production of monoclonal human IgM antibodies from hybridoma cell lines) and Ni, Xiandai Mianyixue, 26(4):265-268 (2006) (describing human-human hybridomas). Human hybridoma technology (Trioma technology) is also described in Vollmers and Brandlein, Histology and Histopathology, 20(3):927-937 (2005) and Vollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27(3):185-91 (2005).


Human antibodies may also be generated by isolating Fv clone variable domain sequences selected from human-derived phage display libraries. Such variable domain sequences may then be combined with a desired human constant domain. Techniques for selecting human antibodies from antibody libraries are described below.


Antibodies of the invention may be isolated by screening combinatorial libraries for antibodies with the desired activity or activities. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics. Such methods are reviewed, e.g., in Hoogenboom et al., in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., 2001) and further described, e.g., in the McCafferty et al., Nature 348:552-554; Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1992); Marks and Bradbury, in Methods in Molecular Biology 248:161-175 (Lo, ed., Human Press, Totowa, N.J., 2003); Sidhu et al., J. Mol. Biol. 338(2): 299-310 (2004); Lee et al., J. Mol. Biol. 340(5): 1073-1093 (2004); Fellouse, Proc. Natl. Acad. Sci. USA 101(34): 12467-12472 (2004); and Lee et al., J. Immunol. Methods 284(1-2): 119-132 (2004).


In certain phage display methods, repertoires of VH and VL genes are separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be screened for antigen-binding phage as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994). Phage typically displays antibody fragments, either as scFv fragments or as Fab fragments. Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas. Alternatively, the naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self-antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993). Finally, naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992). Patent publications describing human antibody phage libraries include, for example, U.S. Pat. No. 5,750,373, and US Patent Publication Nos. 2005/0079574, 2005/0119455, 2005/0266000, 2007/0117126, 2007/0160598, 2007/0237764, 2007/0292936, and 2009/0002360. Antibodies or antibody fragments isolated from human antibody libraries are considered human antibodies or human antibody fragments herein.


Variants


In some embodiments, amino acid sequence variants of the antibodies provided herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of an antibody may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g., antigen binding.


Substitution, Insertion, and Deletion Variants


In some embodiments, antibody variants having one or more amino acid substitutions are provided. Sites of interest for substitutional mutagenesis include the HVRs and FRs. Conservative substitutions are defined herein. Amino acid substitutions may be introduced into an antibody of interest and the products screened for a desired activity, e.g., retained/improved antigen binding, decreased immunogenicity, or improved antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC).


Accordingly, an antibody of the invention can comprise one or more conservative modifications of the CDRs, heavy chain variable region, or light variable regions described herein. A conservative modification or functional equivalent of a peptide, polypeptide, or protein disclosed in this invention refers to a polypeptide derivative of the peptide, polypeptide, or protein, e.g., a protein having one or more point mutations, insertions, deletions, truncations, a fusion protein, or a combination thereof. It substantially retains the activity to of the parent peptide, polypeptide, or protein (such as those disclosed in this invention). In general, a conservative modification or functional equivalent is at least 60% (e.g., any number between 60% and 100%, inclusive, e.g., 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99%) identical to a parent. Accordingly, within the scope of this invention are heavy chain variable region or light variable regions having one or more point mutations, insertions, deletions, truncations, a fusion protein, or a combination thereof, as well as antibodies having the variant regions.


As used herein, the percent homology between two amino acid sequences is equivalent to the percent identity between the two sequences. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology=# of identical positions/total # of positions×100), taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm, as described in the non-limiting examples below.


The percent identity between two amino acid sequences can be determined using the algorithm of E. Meyers and W. Miller (Comput. Appl. Biosci., 4:11-17 (1988)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (J. Mol. Biol. 48:444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.


Additionally or alternatively, the protein sequences of the present invention can further be used as a “query sequence” to perform a search against public databases to, for example, identify related sequences. Such searches can be performed using the XBLAST program (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the antibody molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. (See www.ncbi.nlm.nih.gov).


As used herein, the term “conservative modifications” refers to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into an antibody of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include: (i) amino acids with basic side chains (e.g., lysine, arginine, histidine), (ii) acidic side chains (e.g., aspartic acid, glutamic acid), (iii) uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), (iv) nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), (v) beta-branched side chains (e.g., threonine, valine, isoleucine), and (vi) aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).


Non-conservative substitutions will entail exchanging a member of one of these classes for another class.


An exemplary substitutional variant is an affinity matured antibody, which may be conveniently generated, e.g., using phage display-based affinity maturation techniques such as those described in, e.g., Hoogenboom et al., in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., (2001). Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue. Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g., for ADEPT) or a polypeptide which increases the serum half-life of the antibody.


Glycosylation Variants


In some embodiments, an antibody provided herein is altered to increase or decrease the extent to which the antibody is glycosylated. Addition or deletion of glycosylation sites to an antibody may be conveniently accomplished by altering the amino acid sequence such that one or more glycosylation sites are created or removed.


For example, an aglycoslated antibody can be made (i.e., the antibody lacks glycosylation). Glycosylation can be altered to, for example, increase the affinity of the antibody for antigen. Such carbohydrate modifications can be accomplished by, for example, altering one or more sites of glycosylation within the antibody sequence. For example, one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site. Such aglycosylation may increase the affinity of the antibody for antigen. Such an approach is described in further detail in U.S. Pat. Nos. 5,714,350 and 6,350,861 by Co et al.


Glycosylation of the constant region on N297 may be prevented by mutating the N297 residue to another residue, e.g., N297A, and/or by mutating an adjacent amino acid, e.g., 298 to thereby reduce glycosylation on N297.


Additionally or alternatively, an antibody can be made that has an altered type of glycosylation, such as a hypofucosylated antibody having reduced amounts of fucosyl residues or an antibody having increased bisecting GlcNac structures. Such altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies. Such carbohydrate modifications can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies described herein to thereby produce an antibody with altered glycosylation. For example, EP 1,176,195 by Hanai et al. describes a cell line with a functionally disrupted FUT8 gene, which encodes a fucosyltransferase, such that antibodies expressed in such a cell line exhibit hypofucosylation. PCT Publication WO 03/035835 by Presta describes a variant Chinese Hamster Ovary cell line, Led 3 cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields, R. L. et al. (2002) J. Biol. Chem. 277:26733-26740). PCT Publication WO 99/54342 by Umana et al. describes cell lines engineered to express glycoprotein-modifying glycosyltransferases (e.g., beta(1,4)-N-acetylglucosaminyltransferase III (GnTIII)) such that antibodies expressed in the engineered cell lines exhibit increased bisecting GlcNac structures which result in increased ADCC activity of the antibodies (see also Umana et al. (1999) Nat. Biotech. 17: 176-180).


Fc Region Variants


The variable regions of the antibody described herein can be linked (e.g., covalently linked or fused) to an Fc, e.g., an IgG1, IgG2, IgG3 or IgG4 Fc, which may be of any allotype or isoallotype, e.g., for IgG1: G1m, G1m1(a), G1m2(x), G1m3(f), G1m17(z); for IgG2: G2m, G2m23(n); for IgG3: G3m, G3m21(g1), G3m28(g5), G3m1 1(b0), G3m5(b1), G3m13(b3), G3m14(b4), G3m10(b5), G3m15(s), G3m16(t), G3m6(c3), G3m24(c5), G3m26(u), G3m27(v); and for K: Km, Km1, Km2, Km3 (see, e.g., Jefferies et al. (2009) mAbs 1: 1). In some embodiments, the antibodies variable regions described herein are linked to an Fc that binds to one or more activating Fc receptors (FcγI, Fcγlla or FcγIIIa), and thereby stimulate ADCC and may cause T cell depletion. In some embodiments, the antibody variable regions described herein are linked to an Fc that causes depletion.


In some embodiments, the antibody variable regions described herein may be linked to an Fc comprising one or more modifications, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity. Furthermore, an antibody described herein may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation, to alter one or more functional properties of the antibody. The numbering of residues in the Fc region is that of the EU index of Kabat.


The Fc region encompasses domains derived from the constant region of an immunoglobulin, preferably a human immunoglobulin, including a fragment, analog, variant, mutant or derivative of the constant region. Suitable immunoglobulins include IgG1, IgG2, IgG3, IgG4, and other classes such as IgA, IgD, IgE, and IgM. The constant region of an immunoglobulin is defined as a naturally-occurring or synthetically-produced polypeptide homologous to the immunoglobulin C-terminal region, and can include a CH1 domain, a hinge, a CH2 domain, a CH3 domain, or a CH4 domain, separately or in combination. In some embodiments, an antibody of this invention has an Fc region other than that of a wild type IgA1. The antibody can have an Fc region from that of IgG (e.g., IgG1, IgG2, IgG3, and IgG4) or other classes such as IgA2, IgD, IgE, and IgM. The Fc can be a mutant form of IgA1.


The constant region of an immunoglobulin is responsible for many important antibody functions, including Fc receptor (FcR) binding and complement fixation. There are five major classes of heavy chain constant region, classified as IgA, IgG, IgD, IgE, IgM, each with characteristic effector functions designated by isotype. For example, IgG is separated into four subclasses known as IgG1, IgG2, IgG3, and IgG4.


Ig molecules interact with multiple classes of cellular receptors. For example, IgG molecules interact with three classes of Fcγ receptors (FcγR) specific for the IgG class of antibody, namely FcγRI, FcγRII, and FcγRIIL The important sequences for the binding of IgG to the FcγR receptors have been reported to be located in the CH2 and CH3 domains. The serum half-life of an antibody is influenced by the ability of that antibody to bind to an FcR.


In some embodiments, the Fc region is a variant Fc region, e.g., an Fc sequence that has been modified (e.g., by amino acid substitution, deletion and/or insertion) relative to a parent Fc sequence (e.g., an unmodified Fc polypeptide that is subsequently modified to generate a variant), to provide desirable structural features and/or biological activity. For example, one may make modifications in the Fc region in order to generate an Fc variant that (a) has increased or decreased ADCC, (b) increased or decreased CDC, (c) has increased or decreased affinity for Clq and/or (d) has increased or decreased affinity for an Fc receptor relative to the parent Fc. Such Fc region variants will generally comprise at least one amino acid modification in the Fc region. Combining amino acid modifications is thought to be particularly desirable. For example, the variant Fc region may include two, three, four, five, etc., substitutions therein, e.g., of the specific Fc region positions identified herein.


A variant Fc region may also comprise a sequence alteration wherein amino acids involved in disulfide bond formation are removed or replaced with other amino acids. Such removal may avoid reaction with other cysteine-containing proteins present in the host cell used to produce the antibodies described herein. Even when cysteine residues are removed, single chain Fc domains can still form a dimeric Fc domain that is held together non-covalently. In other embodiments, the Fc region may be modified to make it more compatible with a selected host cell. For example, one may remove the PA sequence near the N-terminus of a typical native Fc region, which may be recognized by a digestive enzyme in E. coli such as proline iminopeptidase. In other embodiments, one or more glycosylation sites within the Fc domain may be removed. Residues that are typically glycosylated (e.g., asparagine) may confer cytolytic response. Such residues may be deleted or substituted with unglycosylated residues (e.g., alanine). In other embodiments, sites involved in interaction with complement, such as the Clq binding site, may be removed from the Fc region. For example, one may delete or substitute the EKK sequence of human IgG1. In some embodiments, sites that affect binding to Fc receptors may be removed, preferably sites other than salvage receptor binding sites. In other embodiments, an Fc region may be modified to remove an ADCC site. ADCC sites are known in the art; see, for example, Molec. Immunol. 29 (5): 633-9 (1992) with regard to ADCC sites in IgG1. Specific examples of variant Fc domains are disclosed, for example, in WO 97/34631 and WO 96/32478.


In one embodiment, the hinge region of Fc is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased. This approach is described further in U.S. Pat. No. 5,677,425 by Bodmer et al. The number of cysteine residues in the hinge region of Fc is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody. In one embodiment, the Fc hinge region of an antibody is mutated to decrease the biological half-life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcal protein A (SpA) binding relative to native Fc-hinge domain SpA binding. This approach is described in further detail in U.S. Pat. No. 6,165,745 by Ward et al.


In yet other embodiments, the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector function(s) of the antibody. For example, one or more amino acids selected from amino acid residues 234, 235, 236, 237, 297, 318, 320, and 322 can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the CI component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260, both by Winter et al.


In another example, one or more amino acids selected from amino acid residues 329, 331, and 322 can be replaced with a different amino acid residue such that the antibody has altered Clq binding and/or reduced or abolished CDC. This approach is described in further detail in U.S. Pat. No. 6,194,551 by Idusogie et al.


In another example, one or more amino acid residues within amino acid positions 231 and 239 are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication WO 94/29351 by Bodmer et al.


In yet another example, the Fc region may be modified to increase ADCC and/or to increase the affinity for an Fcγ receptor by modifying one or more amino acids at the following positions: 234, 235, 236, 238, 239, 240, 241, 243, 244, 245, 247, 248, 249, 252, 254, 255, 256, 258, 262, 263, 264, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 299, 301, 303, 305, 307, 309, 312, 313, 315, 320, 322, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 433, 434, 435, 436, 437, 438 or 439. Exemplary substitutions include 236A, 239D, 239E, 268D, 267E, 268E, 268F, 324T, 332D, and 332E. Exemplary variants include 239D/332E, 236A/332E, 236A/239D/332E, 268F/324T, 267E/268F, 267E/324T, and 267E/268F7324T. Other modifications for enhancing FcγR and complement interactions include but are not limited to substitutions 298A, 333A, 334A, 326A, 247I, 339D, 339Q, 280H, 290S, 298D, 298V, 243L, 292P, 300L, 396L, 305I, and 396L. These and other modifications are reviewed in Strohl, 2009, Current Opinion in Biotechnology 20:685-691.


Fc modifications that increase binding to an Fcγ receptor include amino acid modifications at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 279, 280, 283, 285, 298, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 312, 315, 324, 327, 329, 330, 335, 337, 3338, 340, 360, 373, 376, 379, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in abat (WO00/42072).


Other Fc modifications that can be made to Fcs are those for reducing or ablating binding to FcγR and/or complement proteins, thereby reducing or ablating Fc-mediated effector functions such as ADCC, antibody-dependent cellular phagocytosis (ADCP), and CDC. Exemplary modifications include but are not limited substitutions, insertions, and deletions at positions 234, 235, 236, 237, 267, 269, 325, and 328, wherein numbering is according to the EU index. Exemplary substitutions include but are not limited to 234G, 235G, 236R, 237K, 267R, 269R, 325L, and 328R, wherein numbering is according to the EU index. An Fc variant may comprise 236R/328R. Other modifications for reducing FcγR and complement interactions include substitutions 297A, 234A, 235A, 237A, 318A, 228P, 236E, 268Q, 309L, 330S, 331S, 220S, 226S, 229S, 238S, 233P, and 234V, as well as removal of the glycosylation at position 297 by mutational or enzymatic means or by production in organisms such as bacteria that do not glycosylate proteins. These and other modifications are reviewed in Strohl, 2009, Current Opinion in Biotechnology 20:685-691.


Optionally, the Fc region may comprise a non-naturally occurring amino acid residue at additional and/or alternative positions known to one skilled in the art (see, e.g., U.S. Pat. Nos. 5,624,821; 6,277,375; 6,737,056; 6,194,551; 7,317,091; 8,101,720; WO00/42072; WO01/58957; WO02/06919; WO04/016750; WO04/029207; WO04/035752; WO04/074455; WO04/099249; WO04/063351; WO05/070963; WO05/040217, WO05/092925 and WO06/020114).


Fc variants that enhance affinity for an inhibitory receptor FcγRIIb may also be used. Such variants may provide an Fc fusion protein with immune-modulatory activities related to FcγRIIb cells, including, for example, B cells and monocytes. In one embodiment, the Fc variants provide selectively enhanced affinity to FcγRIIb relative to one or more activating receptors. Modifications for altering binding to FcγRIIb include one or more modifications at a position selected from the group consisting of 234, 235, 236, 237, 239, 266, 267, 268, 325, 326, 327, 328, and 332, according to the EU index. Exemplary substitutions for enhancing FcγRIIb affinity include but are not limited to 234D, 234E, 234F, 234W, 235D, 235F, 235R, 235Y, 236D, 236N, 237D, 237N, 239D, 239E, 266M, 267D, 267E, 268D, 268E, 327D, 327E, 328F, 328W, 328Y, and 332E. Exemplary substitutions include 235Y, 236D, 239D, 266M, 267E, 268D, 268E, 328F, 328W, and 328Y. Other Fc variants for enhancing binding to FcγRllb include 235Y/267E, 236D/267E, 239D/268D, 239D/267E, 267E/268D, 267E/268E, and 267E/328F.


The affinities and binding properties of an Fc region for its ligand may be determined by a variety of in vitro assay methods (biochemical or immunological based assays) known in the art including but not limited to, equilibrium methods (e.g., ELISA, or radioimmunoassay), or kinetics (e.g., BIACORE analysis), and other methods such as indirect binding assays, competitive inhibition assays, fluorescence resonance energy transfer (FRET), gel electrophoresis and chromatography (e.g., gel filtration). These and other methods may utilize a label on one or more of the components being examined and/or employ a variety of detection methods including but not limited to chromogenic, fluorescent, luminescent, or isotopic labels. A detailed description of binding affinities and kinetics can be found in Paul, W. E., ed., Fundamental Immunology, 4th Ed., Lippincott-Raven, Philadelphia (1999), which focuses on antibody-immunogen interactions.


In some embodiments, the antibody is modified to increase its biological half-life. Various approaches are possible. For example, this may be done by increasing the binding affinity of the Fc region for FcRn. For example, one or more of the following residues can be mutated: 252, 254, 256, 433, 435, 436, as described in U.S. Pat. No. 6,277,375. Specific exemplary substitutions include one or more of the following: T252L, T254S, and/or T256F. Alternatively, to increase the biological half-life, the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Pat. Nos. 5,869,046 and 6,121,022 by Presta et al. Other exemplary variants that increase binding to FcRn and/or improve pharmacokinetic properties include substitutions at positions 259, 308, 428, and 434, including for example 259I, 308F, 428L, 428M, 434S, 434H, 434F, 434Y, and 434M. Other variants that increase Fc binding to FcRn include: 250E, 250Q, 428L, 428F, 250Q/428L (Hinton et al, 2004, J. Biol. Chem. 279(8): 6213-6216, Hinton et al. 2006 Journal of Immunology 176:346-356), 256A, 272A, 286A, 305A, 307A, 307Q, 311A, 312A, 376A, 378Q, 380A, 382A, 434A (Shields et al, Journal of Biological Chemistry, 2001, 276(9):6591-6604), 252F, 252T, 252Y, 252W, 254T, 256S, 256R, 256Q, 256E, 256D, 256T, 309P, 311S, 433R, 433S, 433I, 433P, 433Q, 434H, 434F, 434Y, 252Y/254T/256E, 433K/434F/436H, 308T/309P/311S (Dall Acqua et al. Journal of Immunology, 2002, 169:5171-5180, Dall'Acqua et al., 2006, Journal of Biological Chemistry 281:23514-23524). Other modifications for modulating FcRn binding are described in Yeung et al., 2010, J Immunol, 182:7663-7671. In some embodiments, hybrid IgG isotypes with particular biological characteristics may be used. For example, an IgG1/IgG3 hybrid variant may be constructed by substituting IgG 1 positions in the CH2 and/or CH3 region with the amino acids from IgG3 at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed that comprises one or more substitutions, e.g., 274Q, 276K, 300F, 339T, 356E, 358M, 384S, 392N, 397M, 422I, 435R, and 436F. In other embodiments described herein, an IgG1/IgG2 hybrid variant may be constructed by substituting IgG2 positions in the CH2 and/or CH3 region with amino acids from IgG1 at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed chat comprises one or more substitutions, e.g., one or more of the following amino acid substitutions: 233E, 234L, 235L, 236G (referring to an insertion of a glycine at position 236), and 321 h.


Moreover, the binding sites on human IgG1 for FcγRl, FcγRII, FcγRIII, and FcRn have been mapped and variants with improved binding have been described (see Shields, R. L. et al. (2001) J. Biol. Chem. 276:6591-6604). Specific mutations at positions 256, 290, 298, 333, 334, and 339 were shown to improve binding to FcγRIII Additionally, the following combination mutants were shown to improve FcγRIII binding: T256A/S298A, S298A/E333A, S298A/K224A, and S298A/E333A/K334A, which has been shown to exhibit enhanced FcγRIIIa binding and ADCC activity (Shields et al., 2001). Other IgG1 variants with strongly enhanced binding to FcγRIIIa have been identified, including variants with S239D/I332E and S239D/I332E/A330L mutations which showed the greatest increase in affinity for FcγRIIIa, a decrease in FcγRIIb binding, and strong cytotoxic activity in cynomolgus monkeys (Lazar et al., 2006). Introduction of the triple mutations into antibodies such as alemtuzumab (CD52-specific), trastuzumab (HER2/neu-specific), rituximab (CD20-specific), and cetuximab (EGFR-specific) translated into greatly enhanced ADCC activity in vitro, and the S239D/I332E variant showed an enhanced capacity to deplete B cells in monkeys (Lazar et al., 2006). In addition, IgG1 mutants containing L235V, F243L, R292P, Y300L and P396L mutations which exhibited enhanced binding to FcγRIIIa and concomitantly enhanced ADCC activity in transgenic mice expressing human FcγRIIIa in models of B cell malignancies and breast cancer have been identified (Stavenhagen et al., 2007; Nordstrom et al., 2011). Other Fc mutants that may be used include: S298A/E333A/L334A, S239D/I332E, S239D/I332E/A330L, L235V/F243L/R292P/Y300L/P396L, and M428L/N434S.


In some embodiments, an Fc is chosen that has reduced binding to FcγRs. An exemplary Fc, e.g., IgG1 Fc, with reduced FcγR binding, comprises the following three amino acid substitutions: L234A, L235E, and G237A.


In some embodiments, an Fc is chosen that has reduced complement fixation. An exemplary Fc, e.g., IgG1 Fc, with reduced complement fixation, has the following two amino acid substitutions: A330S and P331S.


In some embodiments, an Fc is chosen that has essentially no effector function, i.e., it has reduced binding to FcγRs and reduced complement fixation. An exemplary Fc, e.g., IgG1 Fc, that is effectorless, comprises the following five mutations: L234A, L235E, G237A, A330S, and P331S.


When using an IgG4 constant domain, it is usually preferable to include the substitution S228P, which mimics the hinge sequence in IgG1 and thereby stabilizes IgG4 molecules.


Multivalent Antibodies


In one embodiment, the antibodies of the invention may be monovalent or multivalent (e.g., bivalent, trivalent, etc.). As used herein, the term “valency” refers to the number of potential target binding sites associated with an antibody. Each target binding site specifically binds one target molecule or specific position or locus on a target molecule. When an antibody is monovalent, each binding site of the molecule will specifically bind to a single antigen position or epitope. When an antibody comprises more than one target binding site (multivalent), each target binding site may specifically bind the same or different molecules (e.g., may bind to different ligands or different antigens, or different epitopes or positions on the same antigen). See, for example, U.S.P.N. 2009/0130105. In each case, at least one of the binding sites will comprise an epitope, motif or domain associated with a DLL3 isoform.


In one embodiment, the antibodies are bispecific antibodies in which the two chains have different specificities, as described in Millstein et al., 1983, Nature, 305:537-539. Other embodiments include antibodies with additional specificities such as trispecific antibodies. Other more sophisticated compatible multispecific constructs and methods of their fabrication are set forth in U.S.P.N. 2009/0155255, as well as WO 94/04690; Suresh et al., 1986, Methods in Enzymology, 121:210; and WO96/27011.


As stated above, multivalent antibodies may immunospecifically bind to different epitopes of the desired target molecule or may immunospecifically bind to both the target molecule as well as a heterologous epitope, such as a heterologous polypeptide or solid support material. In some embodiments, the multivalent antibodies may include bispecific antibodies or trispecific antibodies. Bispecific antibodies also include cross-linked or “heteroconjugate” antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.


In some embodiments, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences, such as an immunoglobulin heavy chain constant domain comprising at least part of the hinge, CH2, and/or CH3 regions, using methods well known to those of ordinary skill in the art.


Antibody Derivatives


An antibody provided herein may be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available. The moieties suitable for derivatization of the antibody include but are not limited to water-soluble polymers.


Non-limiting examples of water-soluble polymers include, but are not limited to, PEG, copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1,3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, and mixtures thereof. Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water. The polymer may be of any molecular weight and may be branched or unbranched. The number of polymers attached to the antibody may vary, and if more than one polymer is attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody to be improved, whether the antibody derivative will be used in a therapy under defined conditions, etc.


In another embodiment, conjugates of an antibody and nonproteinaceous moiety that may be selectively heated by exposure to radiation are provided. In one embodiment, the nonproteinaceous moiety is a carbon nanotube (Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-11605 (2005)). The radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the antibody-nonproteinaceous moiety are killed.


Another modification of the antibodies described herein is pegylation. An antibody can be pegylated to, for example, increase the biological (e.g., serum) half-life of the antibody. To pegylate an antibody, the antibody, or fragment thereof, typically is reacted with PEG, such as a reactive ester or aldehyde derivative of PEG, under conditions in which one or more PEG groups become attached to the antibody or antibody fragment. Preferably, the pegylation is carried out via an acylation reaction or an alkylation reaction with a reactive PEG molecule (or an analogous reactive water-soluble polymer). As used herein, the term “polyethylene glycol” is intended to encompass any of the forms of PEG that have been used to derivatize other proteins, such as mono (CI-CIO) alkoxy- or aryloxy-polyethylene glycol or polyethylene glycol-maleimide. In some embodiments, the antibody to be pegylated is an aglycosylated antibody. Methods for pegylating proteins are known in the art and can be applied to the antibodies described herein. See, for example, EP 0 154 316 by Nishimura et al. and EP0401384 by Ishikawa et al.


The present invention also encompasses a human monoclonal antibody described herein conjugated to a therapeutic agent, a polymer, a detectable label or enzyme. In one embodiment, the therapeutic agent is a cytotoxic agent. In one embodiment, the polymer is PEG.


Nucleic Acids, Expression Cassettes, and Vectors


The present invention provides isolated nucleic acid segments that encode the polypeptides, peptide fragments, and coupled proteins of the invention. The nucleic acid segments of the invention also include segments that encode for the same amino acids due to the degeneracy of the genetic code. For example, the amino acid threonine is encoded by ACU, ACC, ACA, and ACG and is therefore degenerate. It is intended that the invention includes all variations of the polynucleotide segments that encode for the same amino acids. Such mutations are known in the art (Watson et al., Molecular Biology of the Gene, Benjamin Cummings 1987). Mutations also include alteration of a nucleic acid segment to encode for conservative amino acid changes, for example, the substitution of leucine for isoleucine and so forth. Such mutations are also known in the art. Thus, the genes and nucleotide sequences of the invention include both the naturally occurring sequences as well as mutant forms.


The nucleic acid segments of the invention may be contained within a vector. A vector may include, but is not limited to, any plasmid, phagemid, F-factor, virus, cosmid, or phage in a double- or single-stranded linear or circular form which may or may not be self transmissible or mobilizable. The vector can also transform a prokaryotic or eukaryotic host either by integration into the cellular genome or exist extra-chromosomally (e.g., autonomous replicating plasmid with an origin of replication).


Preferably the nucleic acid segment in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in vitro or in a host cell, such as a eukaryotic cell, or a microbe, e.g., bacteria. The vector may be a shuttle vector that functions in multiple hosts. The vector may also be a cloning vector that typically contains one or a small number of restriction endonuclease recognition sites at which foreign DNA sequences can be inserted in a determinable fashion. Such insertion can occur without loss of essential biological function of the cloning vector. A cloning vector may also contain a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Examples of marker genes are tetracycline resistance or ampicillin resistance. Many cloning vectors are commercially available (Stratagene, New England Biolabs, Clonetech).


The nucleic acid segments of the invention may also be inserted into an expression vector. Typically an expression vector contains prokaryotic DNA elements coding for a bacterial replication origin and an antibiotic resistance gene to provide for the amplification and selection of the expression vector in a bacterial host; regulatory elements that control initiation of transcription such as a promoter; and DNA elements that control the processing of transcripts such as introns, or a transcription termination/polyadenylation sequence.


Methods to introduce nucleic acid segment into a vector are available in the art (Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (2001)). Briefly, a vector into which a nucleic acid segment is to be inserted is treated with one or more restriction enzymes (restriction endonuclease) to produce a linearized vector having a blunt end, a “sticky” end with a 5′ or a 3′ overhang, or any combination of the above. The vector may also be treated with a restriction enzyme and subsequently treated with another modifying enzyme, such as a polymerase, an exonuclease, a phosphatase or a kinase, to create a linearized vector that has characteristics useful for ligation of a nucleic acid segment into the vector. The nucleic acid segment that is to be inserted into the vector is treated with one or more restriction enzymes to create a linearized segment having a blunt end, a “sticky” end with a 5′ or a 3′ overhang, or any combination of the above. The nucleic acid segment may also be treated with a restriction enzyme and subsequently treated with another DNA modifying enzyme. Such DNA modifying enzymes include, but are not limited to, polymerase, exonuclease, phosphatase or a kinase, to create a nucleic acid segment that has characteristics useful for ligation of a nucleic acid segment into the vector.


The treated vector and nucleic acid segment are then ligated together to form a construct containing a nucleic acid segment according to methods available in the art (Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (2001)). Briefly, the treated nucleic acid fragment, and the treated vector are combined in the presence of a suitable buffer and ligase. The mixture is then incubated under appropriate conditions to allow the ligase to ligate the nucleic acid fragment into the vector.


The invention also provides an expression cassette which contains a nucleic acid sequence capable of directing expression of a particular nucleic acid segment of the invention, either in vitro or in a host cell. Also, a nucleic acid segment of the invention may be inserted into the expression cassette such that an anti-sense message is produced. The expression cassette is an isolatable unit such that the expression cassette may be in linear form and functional for in vitro transcription and translation assays. The materials and procedures to conduct these assays are commercially available from Promega Corp. (Madison, Wis.). For example, an in vitro transcript may be produced by placing a nucleic acid sequence under the control of a T7 promoter and then using T7 RNA polymerase to produce an in vitro transcript. This transcript may then be translated in vitro through use of a rabbit reticulocyte lysate. Alternatively, the expression cassette can be incorporated into a vector allowing for replication and amplification of the expression cassette within a host cell or also in vitro transcription and translation of a nucleic acid segment.


Such an expression cassette may contain one or a plurality of restriction sites allowing for placement of the nucleic acid segment under the regulation of a regulatory sequence. The expression cassette can also contain a termination signal operably linked to the nucleic acid segment as well as regulatory sequences required for proper translation of the nucleic acid segment. The expression cassette containing the nucleic acid segment may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. The expression cassette may also be one that is naturally occurring but has been obtained in a recombinant form useful for heterologous expression. Expression of the nucleic acid segment in the expression cassette may be under the control of a constitutive promoter or an inducible promoter, which initiates transcription only when the host cell is exposed to some particular external stimulus.


The expression cassette may include in the 5′-3′ direction of transcription, a transcriptional and translational initiation region, a nucleic acid segment and a transcriptional and translational termination region functional in vivo and/or in vitro. The termination region may be native with the transcriptional initiation region, may be native with the nucleic acid segment, or may be derived from another source.


The regulatory sequence can be a polynucleotide sequence located upstream (5′ non-coding sequences), within, or downstream (3′ non-coding sequences) of a coding sequence, and which influences the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences can include, but are not limited to, enhancers, promoters, repressor binding sites, translation leader sequences, introns, and polyadenylation signal sequences. They may include natural and synthetic sequences as well as sequences, which may be a combination of synthetic and natural sequences. While regulatory sequences are not limited to promoters, some useful regulatory sequences include constitutive promoters, inducible promoters, regulated promoters, tissue-specific promoters, viral promoters, and synthetic promoters.


A promoter is a nucleotide sequence that controls the expression of the coding sequence by providing the recognition for RNA polymerase and other factors required for proper transcription. A promoter includes a minimal promoter, consisting only of all basal elements needed for transcription initiation, such as a TATA-box and/or initiator that is a short DNA sequence comprised of a TATA-box and other sequences that serve to specify the site of transcription initiation, to which regulatory elements are added for control of expression. A promoter may be derived entirely from a native gene, or be composed of different elements derived from different promoters found in nature, or even be comprised of synthetic DNA segments. A promoter may contain DNA sequences that are involved in the binding of protein factors that control the effectiveness of transcription initiation in response to physiological or developmental conditions.


The invention also provides a construct containing a vector and an expression cassette. The vector may be selected from, but not limited to, any vector previously described. Into this vector may be inserted an expression cassette through methods known in the art and previously described (Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (2001)). In one embodiment, the regulatory sequences of the expression cassette may be derived from a source other than the vector into which the expression cassette is inserted. In another embodiment, a construct containing a vector and an expression cassette is formed upon insertion of a nucleic acid segment of the invention into a vector that itself contains regulatory sequences. Thus, an expression cassette is formed upon insertion of the nucleic acid segment into the vector. Vectors containing regulatory sequences are available commercially, and methods for their use are known in the art (Clonetech, Promega, Stratagene).


In another aspect, this disclosure also provides (i) a nucleic acid molecule encoding a polypeptide chain of the antibody or antigen-binding fragment thereof described above; (ii) a vector comprising the nucleic acid molecule as described; and (iii) a cultured host cell comprising the vector as described. Also provided is a method for producing a polypeptide, comprising: (a) obtaining the cultured host cell as described; (b) culturing the cultured host cell in a medium under conditions permitting expression of a polypeptide encoded by the vector and assembling of an antibody or fragment thereof; and (c) purifying the antibody or fragment from the cultured cell or the medium of the cell.


Methods of Production


Antibodies may be produced using recombinant methods and compositions, e.g., as described in U.S. Pat. No. 4,816,567. In one embodiment, an isolated nucleic acid encoding an antibody described herein is provided. Such nucleic acid may encode an amino acid sequence comprising the VL and/or an amino acid sequence comprising the VH of the antibody (e.g., the light and/or heavy chains of the antibody). In a further embodiment, one or more vectors (e.g., expression vectors) comprising such nucleic acid are provided. In a further embodiment, a host cell comprising such nucleic acid is provided. In one such embodiment, a host cell comprises (e.g., has been transformed with): (1) a vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and an amino acid sequence comprising the VH of the antibody, or (2) a first vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and a second vector comprising a nucleic acid that encodes an amino acid sequence comprising the VH of the antibody. In one embodiment, the host cell is eukaryotic, e.g., a Chinese Hamster Ovary (CHO) cell or lymphoid cell (e.g., Y0, NS0, Sp20 cell). In one embodiment, a method of making an antibody is provided, wherein the method comprises culturing a host cell comprising a nucleic acid encoding the antibody, as provided above, under conditions suitable for expression of the antibody, and optionally recovering the antibody from the host cell (or host cell culture medium).


For recombinant production of an antibody, a nucleic acid encoding an antibody, e.g., as described above, is isolated and inserted into one or more vectors for further cloning and/or expression in a host cell. Such nucleic acid may be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).


Suitable host cells for cloning or expression of antibody-encoding vectors include prokaryotic or eukaryotic cells described herein. For example, antibodies may be produced in bacteria, in particular when glycosylation and Fc effector function are not needed. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. Pat. Nos. 5,648,237, 5,789,199, and 5,840,523. (See also Charlton, Methods in Molecular Biology, Vol. 248 (B. K. C. Lo, ed., Humana Press, Totowa, N.J., 2003), pp. 245-254, describing expression of antibody fragments in E. coli.) After expression, the antibody may be isolated from the bacterial cell paste in a soluble fraction and can be further purified.


In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for antibody-encoding vectors, including fungi and yeast strains whose glycosylation pathways have been “humanized,” resulting in the production of an antibody with a partially or fully human glycosylation pattern. See Gerngross, Nat. Biotech. 22:1409-1414 (2004), and Li et al., Nat. Biotech. 24:210-215 (2006).


Suitable host cells for the expression of glycosylated antibody are also derived from multicellular organisms (invertebrates and vertebrates). Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains have been identified, which may be used in conjunction with insect cells, particularly for transfection of Spodoptera frugiperda cells.


Plant cell cultures can also be utilized as hosts. See, e.g., U.S. Pat. Nos. 5,959,177, 6,040,498, 6,420,548, 7,125,978, and 6,417,429 (describing PLANTIBODIES technology for producing antibodies in transgenic plants).


Vertebrate cells may also be used as hosts. For example, mammalian cell lines that are adapted to grow in suspension may be useful. Other examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7); human embryonic kidney line (293 or 293 cells as described, e.g., in Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK); mouse sertoli cells (TM4 cells as described, e.g., in Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1); African green monkey kidney cells (VERO-76); human cervical carcinoma cells (HELA); canine kidney cells (MDCK; buffalo rat liver cells (BRL 3A); human lung cells (W138); human liver cells (Hep G2); mouse mammary tumor (MMT 060562); TRI cells, as described, e.g., in Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982); MRC 5 cells; and FS4 cells. Other useful mammalian host cell lines include CHO cells, including DHFR-CHO cells (Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); and myeloma cell lines such as Y0, NS0, and Sp2/0. For a review of certain mammalian host cell lines suitable for antibody production, see, e.g., Yazaki and Wu, Methods in Molecular Biology, Vol. 248 (B. K. C. Lo, ed., Humana Press, Totowa, N.J.), pp. 255-268 (2003).


COMPOSITIONS AND FORMULATIONS

The antibodies of this invention represent an excellent way for the development of antiviral therapies either alone or in antibody cocktails with additional anti-SARS-CoV-2 virus antibodies for the treatment of human SARS-CoV-2 infections in humans.


In another aspect, the present invention provides a pharmaceutical composition comprising the antibodies of the present invention described herein formulated together with a pharmaceutically acceptable carrier. The composition may optionally contain one or more additional pharmaceutically active ingredients, such as another antibody or a therapeutic agent.


In some embodiments, the pharmaceutical comprises two or more of the antibody or antigen-binding fragment thereof described above, such as any combinations of the antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain that comprise the respective amino acid sequences described herein.


The pharmaceutical compositions of the invention also can be administered in a combination therapy with, for example, another immune-stimulatory agent, an antiviral agent, or a vaccine, etc. In some embodiments, a composition comprises an antibody of this invention at a concentration of at least 1 mg/ml, 5 mg/ml, 10 mg/ml, 50 mg/ml, 100 mg/ml, 150 mg/ml, 200 mg/ml, 1-300 mg/ml, or 100-300 mg/ml.


In some embodiments, the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound. In some embodiments, the antiviral compound comprises: a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase. In some embodiments, the antiviral compound may include: acyclovir, gancyclovir, vidarabine, foscarnet, cidofovir, amantadine, ribavirin, trifluorothymidine, zidovudine, didanosine, zalcitabine or an interferon. In some embodiments, the interferon is an interferon-α or an interferon-β.


Also within the scope of this disclosure is use of the pharmaceutical composition in the preparation of a medicament for the diagnosis, prophylaxis, treatment, or combination thereof of a condition resulting from a SARS-CoV-2.


The pharmaceutical composition can comprise any number of excipients. Excipients that can be used include carriers, surface-active agents, thickening or emulsifying agents, solid binders, dispersion or suspension aids, solubilizers, colorants, flavoring agents, coatings, disintegrating agents, lubricants, sweeteners, preservatives, isotonic agents, and combinations thereof. The selection and use of suitable excipients is taught in Gennaro, ed., Remington: The Science and Practice of Pharmacy, 20th Ed. (Lippincott Williams & Wilkins 2003), the disclosure of which is incorporated herein by reference.


Preferably, a pharmaceutical composition is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound can be coated in a material to protect it from the action of acids and other natural conditions that may inactivate it. The phrase “parenteral administration” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion. Alternatively, an antibody of the present invention described herein can be administered via a non-parenteral route, such as a topical, epidermal or mucosal route of administration, e.g., intranasally, orally, vaginally, rectally, sublingually or topically.


The pharmaceutical compositions of the invention may be prepared in many forms that include tablets, hard or soft gelatin capsules, aqueous solutions, suspensions, and liposomes and other slow-release formulations, such as shaped polymeric gels. An oral dosage form may be formulated such that the antibody is released into the intestine after passing through the stomach. Such formulations are described in U.S. Pat. No. 6,306,434 and in the references contained therein.


Oral liquid pharmaceutical compositions may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid pharmaceutical compositions may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), or preservatives.


An antibody can be formulated for parenteral administration (e.g., by injection, for example, bolus injection or continuous infusion) and may be presented in unit dosage form in ampules, prefilled syringes, small volume infusion containers or multi-dose containers with an added preservative. The pharmaceutical compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical compositions suitable for rectal administration can be prepared as unit dose suppositories. Suitable carriers include saline solution and other materials commonly used in the art.


For administration by inhalation, an antibody can be conveniently delivered from an insufflator, nebulizer or a pressurized pack or other convenient means of delivering an aerosol spray. Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount.


Alternatively, for administration by inhalation or insufflation, an antibody may take the form of a dry powder composition, for example, a powder mix of a modulator and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form in, for example, capsules or cartridges or, e.g., gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator. For intra-nasal administration, an antibody may be administered via a liquid spray, such as via a plastic bottle atomizer.


Pharmaceutical compositions of the invention may also contain other ingredients such as flavorings, colorings, anti-microbial agents, or preservatives. It will be appreciated that the amount of an antibody required for use in treatment will vary not only with the particular carrier selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient. Ultimately the attendant health care provider may determine proper dosage. In addition, a pharmaceutical composition may be formulated as a single unit dosage form.


The pharmaceutical composition of the present invention can be in the form of sterile aqueous solutions or dispersions. It can also be formulated in a microemulsion, liposome, or other ordered structure suitable to high drug concentration.


An antibody of the present invention described herein can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. In general, human antibodies show the longest half-life, followed by humanized antibodies, chimeric antibodies, and nonhuman antibodies. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably, until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime.


The amount of active ingredient that can be combined with a carrier material to produce a single dosage form will vary depending upon the subject being treated and the particular mode of administration and will generally be that amount of the composition, which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.01% to about 99% of active ingredient, preferably from about 0.1% to about 70%, most preferably from about 1% to about 30% of active ingredient in combination with a pharmaceutically acceptable carrier.


Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus can be administered, several divided doses can be administered over time or the dose can be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Alternatively, the antibody can be administered as a sustained release formulation, in which case less frequent administration is required. For administration of the antibody, the dosage ranges from about 0.0001 to 800 mg/kg, and more usually 0.01 to 5 mg/kg, of the host body weight. For example dosages can be 0.3 mg/kg body weight, 1 mg/kg body weight, 3 mg/kg body weight, 5 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg. An exemplary treatment regime entails administration once per week, once every two weeks, once every three weeks, once every four weeks, once a month, once every 3 months or once every three to 6 months. Preferred dosage regimens for an antibody of the invention include 1 mg/kg body weight or 3 mg/kg body weight via intravenous administration, with the antibody being given using one of the following dosing schedules: (i) every four weeks for six dosages, then every three months; (ii) every three weeks; (iii) 3 mg/kg body weight once followed by 1 mg/kg body weight every three weeks. In some methods, dosage is adjusted to achieve a plasma antibody concentration of about 1-1000 μg/ml and in some methods about 25-300 μg/ml. A “therapeutically effective dosage” of an antibody of the invention preferably results in a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. For example, for the treatment of SARS-CoV-2 infection in a subject, a “therapeutically effective dosage” preferably inhibits SARS-CoV-2 virus replication or uptake by host cells by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects. A therapeutically effective amount of a therapeutic compound can neutralize SARS-CoV-2 virus, or otherwise ameliorate symptoms in a subject, which is typically a human or can be another mammal.


The pharmaceutical composition can be a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.


Therapeutic compositions can be administered via medical devices such as (1) needleless hypodermic injection devices (e.g., U.S. Pat. Nos. 5,399,163; 5,383,851; 5,312,335; 5,064,413; 4,941,880; 4,790,824; and 4,596,556); (2) micro-infusion pumps (U.S. Pat. No. 4,487,603); (3) transdermal devices (U.S. Pat. No. 4,486,194); (4) infusion apparati (U.S. Pat. Nos. 4,447,233 and 4,447,224); and (5) osmotic devices (U.S. Pat. Nos. 4,439,196 and 4,475,196); the disclosures of which are incorporated herein by reference.


In some embodiments, the human monoclonal antibodies of the invention described herein can be formulated to ensure proper distribution in vivo. For example, to ensure that the therapeutic compounds of the invention cross the blood-brain barrier, they can be formulated in liposomes, which may additionally comprise targeting moieties to enhance selective transport to specific cells or organs. See, e.g., U.S. Pat. Nos. 4,522,811; 5,374,548; 5,416,016; and 5,399,331; V. V. Ranade (1989) Clin. Pharmacol. 29:685; Umezawa et al., (1988) Biochem. Biophys. Res. Commun. 153:1038; Bloeman et al. (1995) FEBS Lett. 357:140; M. Owais et al. (1995) Antimicrob. Agents Chemother. 39:180; Briscoe et al. (1995) Am. Physiol. 1233:134; Schreier et al. (1994). Biol. Chem. 269:9090; Keinanen and Laukkanen (1994) FEBS Lett. 346:123; and Killion and Fidler (1994) Immunomethods 4:273.


In some embodiments, the initial dose may be followed by administration of a second or a plurality of subsequent doses of the antibody or antigen-binding fragment thereof in an amount that can be approximately the same or less than that of the initial dose, wherein the subsequent doses are separated by at least 1 day to 3 days; at least one week, at least 2 weeks; at least 3 weeks; at least 4 weeks; at least 5 weeks; at least 6 weeks; at least 7 weeks; at least 8 weeks; at least 9 weeks; at least 10 weeks; at least 12 weeks; or at least 14 weeks.


Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor-mediated endocytosis (see, e.g., Wu et al. (1987) J. Biol. Chem. 262:4429-4432). Methods of introduction include, but are not limited to, intradermal, transdermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. The pharmaceutical composition can also be delivered in a vesicle, in particular, a liposome (see, for example, Langer (1990) Science 249: 1527-1533).


The use of nanoparticles to deliver the antibodies of the present invention is also contemplated herein. Antibody-conjugated nanoparticles may be used both for therapeutic and diagnostic applications. Antibody-conjugated nanoparticles and methods of preparation and use are described in detail by Arruebo, M., et al. 2009 (“Antibody-conjugated nanoparticles for biomedical applications” in J. Nanomat. Volume 2009, Article ID 439389), incorporated herein by reference. Nanoparticles may be developed and conjugated to antibodies contained in pharmaceutical compositions to target cells. Nanoparticles for drug delivery have also been described in, for example, U.S. Pat. No. 8,257,740, or U.S. Pat. No. 8,246,995, each incorporated herein in its entirety.


In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In one embodiment, a pump may be used. In another embodiment, polymeric materials can be used. In yet another embodiment, a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose.


The injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous, intracranial, intraperitoneal and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known. For example, the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared is preferably filled in an appropriate ampoule.


A pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe. In addition, with respect to subcutaneous delivery, a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention. Such a pen delivery device can be reusable or disposable. A reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused. In a disposable pen delivery device, there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded.


Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention. Examples include, but certainly are not limited to AUTOPEN™ (Owen Mumford, Inc., Woodstock, UK), DISETRONIC™ pen (Disetronic Medical Systems, Burghdorf, Switzerland), HUMALOG MIX 75/25™ pen, HUIIVIALOG™ pen, HUMALIN 70/30™ pen (Eli Lilly and Co., Indianapolis, Ind.), NOVOPEN™ I, II and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIOR™ (Novo Nordisk, Copenhagen, Denmark), BD™ pen (Becton Dickinson, Franklin Lakes, N.J.), OPTIPEN™, OPTIPEN PRO™, OPTIPEN STARLET™, and OPTICLIK™ (Sanofi-Aventis, Frankfurt, Germany), to name only a few. Examples of disposable pen delivery devices having applications in subcutaneous delivery of a pharmaceutical composition of the present invention include, but certainly are not limited to the SOLOSTAR™ pen (Sanofi-Aventis), the FLEXPEN™ (Novo Nordisk), and the KWIKPEN™ (Eli Lilly), the SURECLICK™ Autoinjector (Amgen, Thousand Oaks, Calif.), the PENLET™ (Haselmeier, Stuttgart, Germany), the EPIPEN (Dey, L. P.) and the HUIIVIIRA™ Pen (Abbott Labs, Abbott Park, Ill.), to name only a few.


Advantageously, the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients. Such dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc. The amount of the antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, it is preferred that the antibody is contained in about 5 to about 300 mg and in about 10 to about 300 mg for the other dosage forms.


Methods and Uses

Methods of Treatment


The antibodies, compositions, and formulations described herein can be used to neutralize SARS-CoV-2 virus and thereby treating or preventing SARS-CoV-2 infections.


Accordingly, in one aspect, this disclosure further provides a method of neutralizing SARS-CoV-2 in a subject, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof or a therapeutically effective amount of the pharmaceutical composition, as described above.


In another aspect, this disclosure additionally provides a method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof or a therapeutically effective amount of the pharmaceutical composition, as described above.


The neutralizing of the SARS-CoV-2 virus can be done via (i) inhibiting SARS-CoV-2 virus binding to a target cell; (ii) inhibiting SARS-CoV-2 virus uptake by a target cell; (iii) inhibiting SARS-CoV-2 virus replication; and (iv) inhibiting SARS-CoV-2 virus particles release from infected cells. One skilled in the art possesses the ability to perform any assay to assess neutralization of SARS-CoV-2 virus.


Notably, the neutralizing properties of antibodies may be assessed by a variety of tests, which all may assess the consequences of (i) inhibition of SARS-CoV-2 virus binding to a target cell; (ii) inhibition of SARS-CoV-2 virus uptake by a target cell; (iii) inhibition of SARS-CoV-2 virus replication; and (iv) inhibition of SARS-CoV-2 virus particles release from infected cells. In other words, implementing different tests may lead to the observation of the same consequence, i.e., the loss of infectivity of the SARS-CoV-2 virus. Thus, in one embodiment, the present invention provides a method of neutralizing SARS-CoV-2 virus in a subject comprising administering to the subject a therapeutically effective amount of the antibody of the present invention described herein.


Another aspect of the present invention provides a method of treating a SARS-CoV-2-related disease. Such a method includes therapeutic (following SARS-CoV-2 infection) and prophylactic (prior to SARS-CoV-2 exposure, infection or pathology). For example, therapeutic and prophylactic methods of treating an individual for a SARS-CoV-2 infection include treatment of an individual having or at risk of having a SARS-CoV-2 infection or pathology, treating an individual with a SARS-CoV-2 infection, and methods of protecting an individual from a SARS-CoV-2 infection, to decrease or reduce the probability of a SARS-CoV-2 infection in an individual, to decrease or reduce susceptibility of an individual to a SARS-CoV-2 infection, or to inhibit or prevent a SARS-CoV-2 infection in an individual, and to decrease, reduce, inhibit or suppress transmission of a SARS-CoV-2 from an infected individual to an uninfected individual. Such methods include administering an antibody of the present invention or a composition comprising the antibody disclosed herein to therapeutically or prophylactically treat (vaccinate or immunize) an individual having or at risk of having a SARS-CoV-2 infection or pathology. Accordingly, methods can treat the SARS-CoV-2 infection or pathology, or provide the individual with protection from infection (e.g., prophylactic protection).


In one embodiment, a method of treating a SARS-CoV-2-related disease comprises administering to an individual in need thereof an antibody or therapeutic composition disclosed herein in an amount sufficient to reduce one or more physiological conditions or symptoms associated with a SARS-CoV-2 infection or pathology, thereby treating the SARS-CoV-2-related disease.


In one embodiment, an antibody or therapeutic composition disclosed herein is used to treat a SARS-CoV-2-related disease. Use of an antibody or therapeutic composition disclosed herein treats a SARS-CoV-2-related disease by reducing one or more physiological conditions or symptoms associated with a SARS-CoV-2 infection or pathology. In aspects of this embodiment, administration of an antibody or therapeutic composition disclosed herein is in an amount sufficient to reduce one or more physiological conditions or symptoms associated with a SARS-CoV-2 infection or pathology, thereby treating the SARS-CoV-2-based disease. In other aspects of this embodiment, administration of an antibody or therapeutic composition disclosed herein is in an amount sufficient to increase, induce, enhance, augment, promote or stimulate SARS-CoV-2 clearance or removal; or decrease, reduce, inhibit, suppress, prevent, control, or limit transmission of SARS-CoV-2 to another individual.


One or more physiological conditions or symptoms associated with a SARS-CoV-2 infection or pathology will respond to a method of treatment disclosed herein. The symptoms of SARS-CoV-2 infection or pathology vary, depending on the phase of infection.


In some embodiments, the method of neutralizing SARS-CoV-2 in a subject comprises administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of the antibody or antigen-binding fragment, as described above, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity or a therapeutically effective amount of the pharmaceutical composition described above.


In some embodiments, the method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of the antibody or antigen-binding fragment, as described above, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity or a therapeutically effective amount of the pharmaceutical composition described above. In some embodiments, the first antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second antibody or antigen-binding fragment thereof.


In some embodiments, the first antibody or antigen-binding fragment thereof and the second antibody or antigen-binding fragment thereof can be any combinations of the antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain that comprise the respective amino acid sequences described herein.


In some embodiments, the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound. In some embodiments, the antiviral compound comprises: a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase. In some embodiments, the antiviral compound may include: acyclovir, gancyclovir, vidarabine, foscarnet, cidofovir, amantadine, ribavirin, trifluorothymidine, zidovudine, didanosine, zalcitabine or an interferon. In some embodiments, the interferon is an interferon-α or an interferon-β.


In some embodiments, the antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second therapeutic agent or therapy. In some embodiments, the antibody or antigen-binding fragment thereof is administered to the subject intravenously, subcutaneously, or intraperitoneally. In some embodiments, the antibody or antigen-binding fragment thereof is administered prophylactically or therapeutically.


The antibodies described herein can be used together with one or more of other anti-SARS-CoV-2 virus antibodies to neutralize SARS-CoV-2 virus and thereby treating SARS-CoV-2 infections.


Combination Therapies


Combination therapies may include an anti-SARS-CoV-2 antibody of the invention and any additional therapeutic agent that may be advantageously combined with an antibody of the invention or with a biologically active fragment of an antibody of the invention. The antibodies of the present invention may be combined synergistically with one or more drugs or therapy used to treat a disease or disorder associated with a viral infection, such as a SARS-CoV-2 infection. In some embodiments, the antibodies of the invention may be combined with a second therapeutic agent to ameliorate one or more symptoms of said disease. In some embodiments, the antibodies of the invention may be combined with a second antibody to provide synergistic activity in ameliorating one or more symptoms of said disease. In some embodiments, the first antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second antibody or antigen-binding fragment thereof.


For example, the antibody described herein can be used in various detection methods for use in, e.g., monitoring the progression of a SARS-CoV-2 infection; monitoring patient response to treatment for such an infection, etc. The present disclosure provides methods of detecting a neuraminidase polypeptide in a biological sample obtained from an individual. The methods generally involve: a) contacting the biological sample with a subject anti-neuraminidase antibody; and b) detecting binding, if any, of the antibody to an epitope present in the sample. In some instances, the antibody comprises a detectable label. The level of neuraminidase polypeptide detected in the biological sample can provide an indication of the stage, degree, or severity of a SARS-CoV-2 infection. The level of the neuraminidase polypeptide detected in the biological sample can provide an indication of the individual's response to treatment for a SARS-CoV-2 infection.


In some embodiments, the second therapeutic agent is another antibody to a SARS-COV-2 protein or a fragment thereof. It is contemplated herein to use a combination (“cocktail”) of antibodies with broad neutralization or inhibitory activity against SARS-COV-2. In some embodiments, non-competing antibodies may be combined and administered to a subject in need thereof. In some embodiments, the antibodies comprising the combination bind to distinct non-overlapping epitopes on the protein. In some embodiments, the second antibody may possess longer half-life in human serum.


As used herein, the term “in combination with” means that additional therapeutically active component(s) may be administered prior to, concurrent with, or after the administration of the anti-SARS-COV-2 antibody of the present invention. The term “in combination with” also includes sequential or concomitant administration of an anti-SARS-COV-2 antibody and a second therapeutic agent.


The additional therapeutically active component(s) may be administered to a subject prior to administration of an anti-SARS-COV-2 antibody of the present invention. For example, a first component may be deemed to be administered “prior to” a second component if the first component is administered 1 week before, 72 hours before, 60 hours before, 48 hours before, 36 hours before, 24 hours before, 12 hours before, 6 hours before, 5 hours before, 4 hours before, 3 hours before, 2 hours before, 1 hour before, 30 minutes before, 15 minutes before, 10 minutes before, 5 minutes before, or less than 1 minute before administration of the second component. In other embodiments, the additional therapeutically active component(s) may be administered to a subject after administration of an anti-SARS-COV-2 antibody of the present invention. For example, a first component may be deemed to be administered “after” a second component if the first component is administered 1 minute after, 5 minutes after, 10 minutes after, 15 minutes after, 30 minutes after, 1 hour after, 2 hours after, 3 hours after, 4 hours after, 5 hours after, 6 hours after, 12 hours after, 24 hours after, 36 hours after, 48 hours after, 60 hours after, 72 hours after administration of the second component. In yet other embodiments, the additional therapeutically active component(s) may be administered to a subject concurrent with administration of an anti-SARS-COV-2 antibody of the present invention. “Concurrent” administration, for purposes of the present invention, includes, e.g., administration of an anti-SARS-COV-2 antibody and an additional therapeutically active component to a subject in a single dosage form, or in separate dosage forms administered to the subject within about 30 minutes or less of each other. If administered in separate dosage forms, each dosage form may be administered via the same route (e.g., both the anti-SARS-COV-2 antibody and the additional therapeutically active component may be administered intravenously, etc.); alternatively, each dosage form may be administered via a different route (e.g., the anti-SARS-COV-2 antibody may be administered intravenously, and the additional therapeutically active component may be administered orally). In any event, administering the components in a single dosage from, in separate dosage forms by the same route, or in separate dosage forms by different routes are all considered “concurrent administration,” for purposes of the present disclosure. For purposes of the present disclosure, administration of an anti-SARS-COV-2 antibody “prior to,” “concurrent with,” or “after” (as those terms are defined hereinabove) administration of an additional therapeutically active component is considered administration of an anti-SARS-COV-2 antibody “in combination with” an additional therapeutically active component.


The present invention includes pharmaceutical compositions in which an anti-SARS-COV-2 antibody of the present invention is co-formulated with one or more of the additional therapeutically active component(s) as described elsewhere herein.


Administration Regimens


According to certain embodiments, a single dose of an anti-SARS-COV-2 antibody of the invention (or a pharmaceutical composition comprising a combination of an anti-SARS-COV-2 antibody and any of the additional therapeutically active agents mentioned herein) may be administered to a subject in need thereof. According to certain embodiments of the present invention, multiple doses of an anti-SARS-COV-2 antibody (or a pharmaceutical composition comprising a combination of an anti-SARS-COV-2 antibody and any of the additional therapeutically active agents mentioned herein) may be administered to a subject over a defined time course. The methods according to this aspect of the invention comprise sequentially administering to a subject multiple doses of an anti-SARS-COV-2 antibody of the invention. As used herein, “sequentially administering” means that each dose of anti-SARS-COV-2 antibody is administered to the subject at a different point in time, e.g., on different days separated by a predetermined interval (e.g., hours, days, weeks or months). The present invention includes methods which comprise sequentially administering to the patient a single initial dose of an anti-SARS-COV-2 antibody, followed by one or more secondary doses of the anti-SARS-COV-2 antibody, and optionally followed by one or more tertiary doses of the anti-SARS-COV-2 antibody.


The terms “initial dose,” “secondary doses,” and “tertiary doses,” refer to the temporal sequence of administration of the anti-SARS-COV-2 antibody of the invention. Thus, the “initial dose” is the dose which is administered at the beginning of the treatment regimen (also referred to as the “baseline dose”); the “secondary doses” are the doses which are administered after the initial dose; and the “tertiary doses” are the doses which are administered after the secondary doses. The initial, secondary, and tertiary doses may all contain the same amount of anti-SARS-COV-2 antibody, but generally may differ from one another in terms of frequency of administration. In some embodiments, however, the amount of anti-SARS-COV-2 antibody contained in the initial, secondary and/or tertiary doses varies from one another (e.g., adjusted up or down as appropriate) during the course of treatment. In some embodiments, two or more (e.g., 2, 3, 4, or 5) doses are administered at the beginning of the treatment regimen as “loading doses” followed by subsequent doses that are administered on a less frequent basis (e.g., “maintenance doses”).


In certain exemplary embodiments of the present invention, each secondary and/or tertiary dose is administered 1 to 48 hours (e.g., 1, 1½, 2, 2½, 3, 3½, 4, 4½, 5, 5½, 6, 6½, 7, 7½, 8, 8½, 9, 9½, 10, 10½, 11, 11½, 12, 12½, 13, 13½, 14, 14½, 15, 15½, 16, 16½, 17, 17½, 18, 18½, 19, 19½, 20, 20½, 21, 21½, 22, 22½, 23, 23½, 24, 24½, 25, 25½, 26, 26½, or more) after the immediately preceding dose. The phrase “the immediately preceding dose,” as used herein, means, in a sequence of multiple administrations, the dose of anti-SARS-COV-2 antibody, which is administered to a patient prior to the administration of the very next dose in the sequence with no intervening doses.


The methods, according to this aspect of the invention, may comprise administering to a patient any number of secondary and/or tertiary doses of an anti-SARS-COV-2 antibody. For example, In some embodiments, only a single secondary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) secondary doses are administered to the patient. Likewise, In some embodiments, only a single tertiary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) tertiary doses are administered to the patient.


In some embodiments of the invention, the frequency at which the secondary and/or tertiary doses are administered to a patient can vary over the course of the treatment regimen. The frequency of administration may also be adjusted during the course of treatment by a physician depending on the needs of the individual patient following clinical examination.


Diagnostic Uses of the Antibodies


The anti-SARS-COV-2 antibodies of the present invention may be used to detect and/or measure SARS-COV-2 in a sample, e.g., for diagnostic purposes. Some embodiments contemplate the use of one or more antibodies of the present invention in assays to detect a SARS-COV-2-associated-disease or disorder. Exemplary diagnostic assays for SARS-COV-2 may comprise, e.g., contacting a sample, obtained from a patient, with an anti-SARS-COV-2 antibody of the invention, wherein the anti-SARS-COV-2 antibody is labeled with a detectable label or reporter molecule or used as a capture ligand to selectively isolate SARS-COV-2 from patient samples. Alternatively, an unlabeled anti-SARS-COV-2 antibody can be used in diagnostic applications in combination with a secondary antibody, which is itself detectably labeled. The detectable label or reporter molecule can be a radioisotope, such as H, C, P, S, or I; a fluorescent or chemiluminescent moiety such as fluorescein isothiocyanate, or rhodamine; or an enzyme such as alkaline phosphatase, β-galactosidase, horseradish peroxidase, or luciferase. Specific exemplary assays that can be used to detect or measure SARS-COV-2 in a sample include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (MA), and fluorescence-activated cell sorting (FACS).


In another aspect, this disclosure further provides a method for detecting the presence of SARS CoV-2 in a sample comprising the steps of: (i) contacting a sample with the antibody or antigen-binding fragment thereof described above; and (ii) determining binding of the antibody or antigen-binding fragment to one or more SARS CoV-2 antigens, wherein binding of the antibody to the one or more SARS CoV-2 antigens is indicative of the presence of SARS CoV-2 in the sample.


In some embodiments, the SARS-CoV-2 antigen comprises a S polypeptide, such as a S polypeptide of a human or an animal SARS-CoV-2. In some embodiments, the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide. In some embodiments, the RBD comprises amino acids 319-541 of the S polypeptide.


In some embodiments, the antibody or antigen-binding fragment thereof is conjugated to a label. In some embodiments, the step of detecting comprises contacting a secondary antibody with the antibody or antigen-binding fragment thereof and wherein the secondary antibody comprises a label. In some embodiments, the label includes a fluorescent label, a chemiluminescent label, a radiolabel, and an enzyme.


In some embodiments, the step of detecting comprises detecting fluorescence or chemiluminescence. In some embodiments, the step of detecting comprises a competitive binding assay or ELISA.


In some embodiments, the method further comprises binding the sample to a solid support. In some embodiments, the solid support includes microparticles, microbeads, magnetic beads, and an affinity purification column.


Samples that can be used in SARS-COV-2 diagnostic assays according to the present invention include any tissue or fluid sample obtainable from a patient, which contains detectable quantities of either SARS-COV-2 protein, or fragments thereof, under normal or pathological conditions. Generally, levels of SARS-COV-2 protein in a particular sample obtained from a healthy patient (e.g., a patient not afflicted with a disease associated with SARS-COV-2) will be measured to initially establish a baseline, or standard, level of SARS-COV-2. This baseline level of SARS-COV-2 can then be compared against the levels of SARS-COV-2 measured in samples obtained from individuals suspected of having a SARS-COV-2-associated condition, or symptoms associated with such condition.


The antibodies specific for SARS-COV-2 protein may contain no additional labels or moieties, or they may contain an N-terminal or C-terminal label or moiety. In one embodiment, the label or moiety is biotin. In a binding assay, the location of a label (if any) may determine the orientation of the peptide relative to the surface upon which the peptide is bound. For example, if a surface is coated with avidin, a peptide containing an N-terminal biotin will be oriented such that the C-terminal portion of the peptide will be distal to the surface.


Kits

In another aspect, this disclosure provides a kit comprising a pharmaceutically acceptable dose unit of the antibody or antigen-binding fragment thereof of or the pharmaceutical composition as described above. Also within the scope of this disclosure is a kit for the diagnosis, prognosis or monitoring the treatment of SARS-CoV-2 in a subject, comprising: the antibody or antigen-binding fragment thereof as described; and a least one detection reagent that binds specifically to the antibody or antigen-binding fragment thereof.


In some embodiments, the kit also includes a container that contains the composition and optionally informational material. The informational material can be descriptive, instructional, marketing or other material that relates to the methods described herein and/or the use of the agents for therapeutic benefit. In an embodiment, the kit also includes an additional therapeutic agent, as described above. For example, the kit includes a first container that contains the composition and a second container for the additional therapeutic agent.


The informational material of the kits is not limited in its form. In some embodiments, the informational material can include information about production of the composition, concentration, date of expiration, batch or production site information, and so forth. In one embodiment, the informational material relates to methods of administering the composition, e.g., in a suitable dose, dosage form, or mode of administration (e.g., a dose, dosage form, or mode of administration described herein), to treat a subject in need thereof. In one embodiment, the instructions provide a dosing regimen, dosing schedule, and/or route of administration of the composition or the additional therapeutic agent. The information can be provided in a variety of formats, including printed text, computer-readable material, video recording, or audio recording, or information that contains a link or address to substantive material.


The kit can include one or more containers for the composition. In some embodiments, the kit contains separate containers, dividers or compartments for the composition and informational material. For example, the composition can be contained in a bottle or vial, and the informational material can be contained in a plastic sleeve or packet. In other embodiments, the separate elements of the kit are contained within a single, undivided container. For example, the composition is contained in a bottle or vial that has attached thereto the informational material in the form of a label. In some embodiments, the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms (e.g., a dosage form described herein) of the agents.


The kit optionally includes a device suitable for administration of the composition or other suitable delivery device. The device can be provided pre-loaded with one or both of the agents or can be empty, but suitable for loading. Such a kit may optionally contain a syringe to allow for injection of the antibody contained within the kit into an animal, such as a human.


Definitions

To aid in understanding the detailed description of the compositions and methods according to the disclosure, a few express definitions are provided to facilitate an unambiguous disclosure of the various aspects of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.


The term “antibody” as referred to herein includes whole antibodies and any antigen-binding fragment or single chains thereof. Whole antibodies are glycoproteins comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The heavy chain variable region CDRs and FRs are HFR1, HCDR1, HFR2, HCDR2, HFR3, HCDR3, HFR4. The light chain variable region CDRs and FRs are LFR1, LCDR1, LFR2, LCDR2, LFR3, LCDR3, LFR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies can mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (CIq) of the classical complement system.


The term “antigen-binding fragment or portion” of an antibody (or simply “antibody fragment or portion”), as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., a Spike or S protein of SARS-CoV-2 virus). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term “antigen-binding fragment or portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL, and CHI domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fab′ fragment, which is essentially a Fab with part of the hinge region (see, FUNDAMENTAL IMMUNOLOGY (Paul ed., 3rd ed. 1993)); (iv) a Fd fragment consisting of the VH and CHI domains; (v) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (vi) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; (vii) an isolated CDR; and (viii) a nanobody, a heavy chain variable region containing a single variable domain and two constant domains. Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv or scFv); see, e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Such single chain antibodies are also intended to be encompassed within the term “antigen-binding fragment or portion” of an antibody. These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.


An “isolated antibody,” as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds to a Spike or S protein of SARS-CoV-2 virus is substantially free of antibodies that specifically bind antigens other than the neuraminidase). An isolated antibody can be substantially free of other cellular material and/or chemicals.


The terms “monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.


The term “human antibody” is intended to include antibodies having variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. Furthermore, if the antibody contains a constant region, the constant region also is derived from human germline immunoglobulin sequences. The human antibodies of the invention can include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo). However, the term “human antibody,” as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.


The term “human monoclonal antibody” refers to antibodies displaying a single binding specificity, which have variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. In one embodiment, the human monoclonal antibodies can be produced by a hybridoma that includes a B cell obtained from a transgenic nonhuman animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a light chain transgene fused to an immortalized cell.


The term “recombinant human antibody,” as used herein, includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as (a) antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom (described further below), (b) antibodies isolated from a host cell transformed to express the human antibody, e.g., from a transfectoma, (c) antibodies isolated from a recombinant, combinatorial human antibody library, and (d) antibodies prepared, expressed, created or isolated by any other means that involve splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable regions in which the framework and CDR regions are derived from human germline immunoglobulin sequences. In some embodiments, however, such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.


The term “isotype” refers to the antibody class (e.g., IgM or IgG1) that is encoded by the heavy chain constant region genes. The phrases “an antibody recognizing an antigen” and “an antibody specific for an antigen” are used interchangeably herein with the term “an antibody which binds specifically to an antigen.”


The term “human antibody derivatives” refers to any modified form of the human antibody, e.g., a conjugate of the antibody and another agent or antibody. The term “humanized antibody” is intended to refer to antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences. Additional framework region modifications can be made within the human framework sequences.


The term “chimeric antibody” is intended to refer to antibodies in which the variable region sequences are derived from one species, and the constant region sequences are derived from another species, such as an antibody in which the variable region sequences are derived from a mouse antibody, and the constant region sequences are derived from a human antibody. The term can also refer to an antibody in which its variable region sequence or CDR(s) is derived from one source (e.g., an IgA1 antibody) and the constant region sequence or Fc is derived from a different source (e.g., a different antibody, such as an IgG, IgA2, IgD, IgE or IgM antibody).


The invention encompasses isolated or substantially purified nucleic acids, peptides, polypeptides or proteins. In the context of the present invention, an “isolated” nucleic acid, DNA or RNA molecule or an “isolated” polypeptide is a nucleic acid, DNA molecule, RNA molecule, or polypeptide that exists apart from its native environment and is therefore not a product of nature. An isolated nucleic acid, DNA molecule, RNA molecule or polypeptide may exist in a purified form or may exist in a non-native environment such as, for example, a transgenic host cell. A “purified” nucleic acid molecule, peptide, polypeptide or protein, or a fragment thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. In one embodiment, an “isolated” nucleic acid is free of sequences that naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. A protein, peptide or polypeptide that is substantially free of cellular material includes preparations of protein, peptide or polypeptide having less than about 30%, 20%, 10%, or 5% (by dry weight) of contaminating protein. When the protein of the invention, or biologically active portion thereof, is recombinantly produced, preferably culture medium represents less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-protein-of-interest chemicals.


The terms polypeptide, peptide, and protein are used interchangeably herein.


The terms “polypeptide,” “peptide,” and “protein” are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, pegylation, or any other manipulation, such as conjugation with a labeling component. As used herein, the term “amino acid” includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics.


A peptide or polypeptide “fragment” as used herein refers to a less than full-length peptide, polypeptide or protein. For example, a peptide or polypeptide fragment can have is at least about 3, at least about 4, at least about 5, at least about 10, at least about 20, at least about 30, at least about 40 amino acids in length, or single unit lengths thereof. For example, fragment may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or more amino acids in length. There is no upper limit to the size of a peptide fragment. However, in some embodiments, peptide fragments can be less than about 500 amino acids, less than about 400 amino acids, less than about 300 amino acids or less than about 250 amino acids in length. Preferably the peptide fragment can elicit an immune response when used to inoculate an animal. A peptide fragment may be used to elicit an immune response by inoculating an animal with a peptide fragment in combination with an adjuvant, a peptide fragment that is coupled to an adjuvant, or a peptide fragment that is coupled to arsanilic acid, sulfanilic acid, an acetyl group, or a picryl group. A peptide fragment can include a non-amide bond and can be a peptidomimetic.


As used herein, the term “conjugate” or “conjugation” or “linked” as used herein refers to the attachment of two or more entities to form one entity. A conjugate encompasses both peptide-small molecule conjugates as well as peptide-protein/peptide conjugates.


The term “recombinant,” as used herein, refers to antibodies or antigen-binding fragments thereof of the invention created, expressed, isolated or obtained by technologies or methods known in the art as recombinant DNA technology which include, e.g., DNA splicing and transgenic expression. The term refers to antibodies expressed in a non-human mammal (including transgenic non-human mammals, e.g., transgenic mice), or a cell (e.g., CHO cells) expression system or isolated from a recombinant combinatorial human antibody library.


A “nucleic acid” or “polynucleotide” refers to a DNA molecule (for example, but not limited to, a cDNA or genomic DNA) or an RNA molecule (for example, but not limited to, an mRNA), and includes DNA or RNA analogs. A DNA or RNA analog can be synthesized from nucleotide analogs. The DNA or RNA molecules may include portions that are not naturally occurring, such as modified bases, modified backbone, deoxyribonucleotides in an RNA, etc. The nucleic acid molecule can be single-stranded or double-stranded.


The term “substantial identity” or “substantially identical,” when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or GAP, as discussed below. A nucleic acid molecule having substantial identity to a reference nucleic acid molecule may, in certain instances, encode a polypeptide having the same or substantially similar amino acid sequence as the polypeptide encoded by the reference nucleic acid molecule.


As applied to polypeptides, the term “substantial similarity” or “substantially similar” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 90% sequence identity, even more preferably at least 95%, 98% or 99% sequence identity. Preferably, residue positions, which are not identical, differ by conservative amino acid substitutions. A “conservative amino acid substitution” is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. See, e.g., Pearson (1994) Methods Mol. Biol. 24: 307-331, which is herein incorporated by reference. Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine, and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartate and glutamate, and 7) sulfur-containing side chains: cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine. Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Science 256: 1443 45, herein incorporated by reference. A “moderately conservative” replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.


Sequence similarity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions, and other modifications, including conservative amino acid substitutions. For instance, GCG software contains programs such as GAP and BESTFIT, which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1. FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) supra). Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. See, e.g., Altschul et al. (1990) J. Mol. Biol. 215: 403-410 and (1997) Nucleic Acids Res. 25:3389-3402, each of which is herein incorporated by reference.


As used herein, the term “affinity” refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity, which reflects a 1:1 interaction between members of a binding pair (e.g., antibody and antigen). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (KD). Affinity can be measured by common methods known in the art, including those described herein.


The term “specifically binds,” or “binds specifically to,” or the like, refers to an antibody that binds to a single epitope, e.g., under physiologic conditions, but which does not bind to more than one epitope. Accordingly, an antibody that specifically binds to a polypeptide will bind to an epitope that present on the polypeptide, but which is not present on other polypeptides. Specific binding can be characterized by an equilibrium dissociation constant of at least about 1×10-8 M or less (e.g., a smaller KD denotes a tighter binding). Methods for determining whether two molecules specifically bind are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. As described herein, antibodies have been identified by surface plasmon resonance, e.g., BIACORE™, which bind specifically to a Spike or S protein of SARS-CoV-2 virus.


Preferably, the antibody binds to a Spike or S protein with “high affinity,” namely with a KD of 1×10-7 M or less, more preferably 5×10-8 M or less, more preferably 3×10-8 M or less, more preferably 1×10-8 M or less, more preferably 5×10-9 M or less or even more preferably 1×10-9 M or less, as determined by surface plasmon resonance, e.g., BIACORE. The term “does not substantially bind” to a protein or cells, as used herein, means does not bind or does not bind with a high affinity to the protein or cells, i.e., binds to the protein or cells with a KD of 1×10-6 M or more, more preferably 1×10-5 M or more, more preferably 1×10-4 M or more, more preferably 1×10-3 M or more, even more preferably 1×10-2 M or more.


The term “Kassoc” or “Ka,” as used herein, is intended to refer to the association rate of a particular antibody-antigen interaction, whereas the term “Kdis” or “Kd,” as used herein, is intended to refer to the dissociation rate of a particular antibody-antigenn interaction. The term “KD,” as used herein, is intended to refer to the dissociation constant, which is obtained from the ratio of Kd to Ka (i.e., Kd/Ka) and is expressed as a molar concentration (M). KD values for antibodies can be determined using methods well established in the art. A preferred method for determining the KD of an antibody is by using surface plasmon resonance, preferably using a biosensor system such as a BIACORE system.


Antibodies that “compete with another antibody for binding to a target” refer to antibodies that inhibit (partially or completely) the binding of the other antibody to the target. Whether two antibodies compete with each other for binding to a target, i.e., whether and to what extent one antibody inhibits the binding of the other antibody to a target, may be determined using known competition experiments. In some embodiments, an antibody competes with, and inhibits binding of another antibody to a target by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%. The level of inhibition or competition may be different depending on which antibody is the “blocking antibody” (i.e., the cold antibody that is incubated first with the target). Competition assays can be conducted as described, for example, in Ed Harlow and David Lane, Cold Spring Harb Protoc; 2006 or in Chapter 11 of “Using Antibodies” by Ed Harlow and David Lane, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA 1999. Competing antibodies bind to the same epitope, an overlapping epitope or to adjacent epitopes (e.g., as evidenced by steric hindrance). Other competitive binding assays include: solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see Stahli et al., Methods in Enzymology 9:242 (1983)); solid phase direct biotin-avidin EIA (see Kirkland et al., J. Immunol. 137:3614 (1986)); solid phase direct labeled assay, solid phase direct labeled sandwich assay (see Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Press (1988)); solid phase direct label RIA using 1-125 label (see Morel et al., Mol. Immunol. 25(1):7 (1988)); solid phase direct biotin-avidin EIA (Cheung et al., Virology 176:546 (1990)); and direct labeled RIA. (Moldenhauer et al., Scand. J. Immunol. 32:77 (1990)).


The term “epitope” as used herein refers to an antigenic determinant that interacts with a specific antigen-binding site in the variable region of an antibody molecule known as a paratope. A single antigen may have more than one epitope. Thus, different antibodies may bind to different areas on an antigen and may have different biological effects. The term “epitope” also refers to a site on an antigen to which B and/or T cells respond. It also refers to a region of an antigen that is bound by an antibody. Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction. Epitopes may also be conformational, that is, composed of non-linear amino acids. In some embodiments, epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or sulfonyl groups, and, In some embodiments, may have specific three-dimensional structural characteristics, and/or specific charge characteristics. An epitope typically includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acids in a unique spatial conformation. Methods for determining what epitopes are bound by a given antibody (i.e., epitope mapping) are well known in the art and include, for example, immunoblotting and immune-precipitation assays, wherein overlapping or contiguous peptides from a Spike or S protein are tested for reactivity with a given antibody. Methods of determining spatial conformation of epitopes include techniques in the art and those described herein, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance (see, e.g., Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66, G. E. Morris, Ed. (1996)).


The term “epitope mapping” refers to the process of identification of the molecular determinants for antibody-antigen recognition.


The term “binds to an epitope” or “recognizes an epitope” with reference to an antibody or antibody fragment refers to continuous or discontinuous segments of amino acids within an antigen. Those of skill in the art understand that the terms do not necessarily mean that the antibody or antibody fragment is in direct contact with every amino acid within an epitope sequence.


The term “binds to the same epitope” with reference to two or more antibodies means that the antibodies bind to the same, overlapping or encompassing continuous or discontinuous segments of amino acids. Those of skill in the art understand that the phrase “binds to the same epitope” does not necessarily mean that the antibodies bind to or contact exactly the same amino acids. The precise amino acids that the antibodies contact can differ. For example, a first antibody can bind to a segment of amino acids that is completely encompassed by the segment of amino acids bound by a second antibody. In another example, a first antibody binds one or more segments of amino acids that significantly overlap the one or more segments bound by the second antibody. For the purposes herein, such antibodies are considered to “bind to the same epitope.”


As used herein, the term “immune response” refers to a biological response within a vertebrate against foreign agents, which response protects the organism against these agents and diseases caused by them. An immune response is mediated by the action of a cell of the immune system (for example, a T lymphocyte, B lymphocyte, natural killer (NK) cell, macrophage, eosinophil, mast cell, dendritic cell or neutrophil) and soluble macromolecules produced by any of these cells or the liver (including antibodies, cytokines, and complement) that results in selective targeting, binding to, damage to, destruction of, and/or elimination from the vertebrate's body of invading pathogens, cells or tissues infected with pathogens, cancerous or other abnormal cells, or, in cases of autoimmunity or pathological inflammation, normal human cells or tissues. An immune reaction includes, e.g., activation or inhibition of a T cell, e.g., an effector T cell or a Th cell, such as a CD4+ or CD8+ T cell, or the inhibition of a Treg cell.


The term “detectable label” as used herein refers to a molecule capable of detection, including, but not limited to, radioactive isotopes, fluorescers, chemiluminescers, chromophores, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, chromophores, dyes, metal ions, metal sols, ligands (e.g., biotin, avidin, streptavidin or haptens), intercalating dyes and the like. The term “fluorescer” refers to a substance or a portion thereof that is capable of exhibiting fluorescence in the detectable range.


In many embodiments, the terms “subject” and “patient” are used interchangeably irrespective of whether the subject has or is currently undergoing any form of treatment. As used herein, the terms “subject” and “subjects” may refer to any vertebrate, including, but not limited to, a mammal (e.g., cow, pig, camel, llama, horse, goat, rabbit, sheep, hamsters, guinea pig, cat, dog, rat, and mouse, a non-human primate (for example, a monkey, such as a cynomolgus monkey, chimpanzee, etc.) and a human). The subject may be a human or a non-human. In more exemplary aspects, the mammal is a human. As used herein, the expression “a subject in need thereof” or “a patient in need thereof” means a human or non-human mammal that exhibits one or more symptoms or indications of disorders (e.g., neuronal disorders, autoimmune diseases, and cardiovascular diseases), and/or who has been diagnosed with inflammatory disorders. In some embodiments, the subject is a mammal. In some embodiments, the subject is human.


As used herein, the term “disease” is intended to be generally synonymous and is used interchangeably with, the terms “disorder” and “condition” (as in medical condition), in that all reflect an abnormal condition (e.g., inflammatory disorder) of the human or animal body or of one of its parts that impairs normal functioning, is typically manifested by distinguishing signs and symptoms, and causes the human or animal to have a reduced duration or quality of life.


As used herein, the term “treating” or “treatment” of any disease or disorder refers in one embodiment, to ameliorating the disease or disorder (i.e., arresting or reducing the development of the disease or at least one of the clinical symptoms thereof). In another embodiment, “treating” or “treatment” refers to ameliorating at least one physical parameter, which may not be discernible by the patient. In yet another embodiment, “treating” or “treatment” refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In yet another embodiment, “treating” or “treatment” refers to preventing or delaying the onset or development or progression of the disease or disorder.


The terms “prevent,” “preventing,” “prevention,” “prophylactic treatment” and the like refer to reducing the probability of developing a disorder or condition in a subject, who does not have, but is at risk of or susceptible to developing a disorder or condition.


The terms “decrease,” “reduced,” “reduction,” “decrease,” or “inhibit” are all used herein generally to mean a decrease by a statistically significant amount. However, for avoidance of doubt, “reduced,” “reduction” or “decrease” or “inhibit” means a decrease by at least 10% as compared to a reference level, for example, a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease (e.g., absent level as compared to a reference sample), or any decrease between 10-100% as compared to a reference level.


As used herein, the term “agent” denotes a chemical compound, a mixture of chemical compounds, a biological macromolecule (such as a nucleic acid, an antibody, a protein or portion thereof, e.g., a peptide), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues. The activity of such agents may render it suitable as a “therapeutic agent,” which is a biologically, physiologically, or pharmacologically active substance (or substances) that acts locally or systemically in a subject.


As used herein, the terms “therapeutic agent,” “therapeutic capable agent,” or “treatment agent” are used interchangeably and refer to a molecule or compound that confers some beneficial effect upon administration to a subject. The beneficial effect includes enablement of diagnostic determinations; amelioration of a disease, symptom, disorder, or pathological condition; reducing or preventing the onset of a disease, symptom, disorder, or condition; and generally counteracting a disease, symptom, disorder or pathological condition.


The term “therapeutic effect” is art-recognized and refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active sub stance.


The term “effective amount,” “effective dose,” or “effective dosage” is defined as an amount sufficient to achieve or at least partially achieve a desired effect. A “therapeutically effective amount” or “therapeutically effective dosage” of a drug or therapeutic agent is any amount of the drug that, when used alone or in combination with another therapeutic agent, promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. A “prophylactically effective amount” or a “prophylactically effective dosage” of a drug is an amount of the drug that, when administered alone or in combination with another therapeutic agent to a subject at risk of developing a disease or of suffering a recurrence of disease, inhibits the development or recurrence of the disease. The ability of a therapeutic or prophylactic agent to promote disease regression or inhibit the development or recurrence of the disease can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.


Doses are often expressed in relation to bodyweight. Thus, a dose which is expressed as [g, mg, or other unit]/kg (or g, mg etc.) usually refers to [g, mg, or other unit] “per kg (or g, mg etc.) bodyweight,” even if the term “bodyweight” is not explicitly mentioned.


As used herein, the term “composition” or “pharmaceutical composition” refers to a mixture of at least one component useful within the invention with other components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical composition facilitates administration of one or more components of the invention to an organism.


As used herein, the term “pharmaceutically acceptable” refers to a material, such as a carrier or diluent, which does not abrogate the biological activity or properties of the composition, and is relatively non-toxic, i.e., the material may be administered to an individual without causing undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.


As used herein, the term “pharmaceutically acceptable carrier” includes a pharmaceutically acceptable salt, pharmaceutically acceptable material, composition or carrier, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a compound(s) of the present invention within or to the subject such that it may perform its intended function. Typically, such compounds are carried or transported from one organ, or portion of the body, to another organ, or portion of the body. Each salt or carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject. Some examples of materials that may serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose, and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol, and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; diluent; granulating agent; lubricant; binder; disintegrating agent; wetting agent; emulsifier; coloring agent; release agent; coating agent; sweetening agent; flavoring agent; perfuming agent; preservative; antioxidant; plasticizer; gelling agent; thickener; hardener; setting agent; suspending agent; surfactant; humectant; carrier; stabilizer; and other non-toxic compatible substances employed in pharmaceutical formulations, or any combination thereof. As used herein, “pharmaceutically acceptable carrier” also includes any and all coatings, antibacterial and antifungal agents, and absorption delaying agents, and the like that are compatible with the activity of one or more components of the invention, and are physiologically acceptable to the subject. Supplementary active compounds may also be incorporated into the compositions.


“Combination” therapy, as used herein, unless otherwise clear from the context, is meant to encompass administration of two or more therapeutic agents in a coordinated fashion and includes, but is not limited to, concurrent dosing. Specifically, combination therapy encompasses both co-administration (e.g., administration of a co-formulation or simultaneous administration of separate therapeutic compositions) and serial or sequential administration, provided that administration of one therapeutic agent is conditioned in some way on the administration of another therapeutic agent. For example, one therapeutic agent may be administered only after a different therapeutic agent has been administered and allowed to act for a prescribed period of time. See, e.g., Kohrt et al. (2011) Blood 117:2423.


As used herein, the term “co-administration” or “co-administered” refers to the administration of at least two agent(s) or therapies to a subject. In some embodiments, the co-administration of two or more agents/therapies is concurrent. In other embodiments, a first agent/therapy is administered prior to a second agent/therapy. Those of skill in the art understand that the formulations and/or routes of administration of the various agents/therapies used may vary.


As used herein, the term “contacting,” when used in reference to any set of components, includes any process whereby the components to be contacted are mixed into the same mixture (for example, are added into the same compartment or solution), and does not necessarily require actual physical contact between the recited components. The recited components can be contacted in any order or any combination (or sub-combination) and can include situations where one or some of the recited components are subsequently removed from the mixture, optionally prior to addition of other recited components. For example, “contacting A with B and C” includes any and all of the following situations: (i) A is mixed with C, then B is added to the mixture; (ii) A and B are mixed into a mixture; B is removed from the mixture, and then C is added to the mixture; and (iii) A is added to a mixture of B and C.


“Sample,” “test sample,” and “patient sample” may be used interchangeably herein. The sample can be a sample of serum, urine plasma, amniotic fluid, cerebrospinal fluid, cells, or tissue. Such a sample can be used directly as obtained from a patient or can be pre-treated, such as by filtration, distillation, extraction, concentration, centrifugation, inactivation of interfering components, addition of reagents, and the like, to modify the character of the sample in some manner as discussed herein or otherwise as is known in the art. The terms “sample” and “biological sample” as used herein generally refer to a biological material being tested for and/or suspected of containing an analyte of interest such as antibodies. The sample may be any tissue sample from the subject. The sample may comprise protein from the subject.


As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, etc., rather than within a multi-cellular organism.


As used herein, the term “in vivo” refers to events that occur within a multi-cellular organism, such as a non-human animal.


As used herein, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


As used herein, the terms “including,” “comprising,” “containing,” or “having” and variations thereof are meant to encompass the items listed thereafter and equivalents thereof as well as additional subject matter unless otherwise noted.


As used herein, the phrases “in one embodiment,” “in various embodiments,” “in some embodiments,” and the like are used repeatedly. Such phrases do not necessarily refer to the same embodiment, but they may unless the context dictates otherwise.


As used herein, the terms “and/or” or “/” means any one of the items, any combination of the items, or all of the items with which this term is associated.


As used herein, the word “substantially” does not exclude “completely,” e.g., a composition which is “substantially free” from Y may be completely free from Y. Where necessary, the word “substantially” may be omitted from the definition of the invention.


As used herein, the term “each,” when used in reference to a collection of items, is intended to identify an individual item in the collection but does not necessarily refer to every item in the collection. Exceptions can occur if explicit disclosure or context clearly dictates otherwise.


As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In some embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value). Unless indicated otherwise herein, the term “about” is intended to include values, e.g., weight percents, proximate to the recited range that are equivalent in terms of the functionality of the individual ingredient, the composition, or the embodiment.


As disclosed herein, a number of ranges of values are provided. It is understood that each intervening value, to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


All methods described herein are performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. In regard to any of the methods provided, the steps of the method may occur simultaneously or sequentially. When the steps of the method occur sequentially, the steps may occur in any order, unless noted otherwise. In cases in which a method comprises a combination of steps, each and every combination or sub-combination of the steps is encompassed within the scope of the disclosure, unless otherwise noted herein.


Each publication, patent application, patent, and other reference cited herein is incorporated by reference in its entirety to the extent that it is not inconsistent with the present disclosure. Publications disclosed herein are provided solely for their disclosure prior to the filing date of the present invention. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates, which may need to be independently confirmed.


It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.


EXAMPLES

Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. This example describes the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. It was found that IgM, IgA, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. The memory B cells display clonal evolution after 6.2 months, and antibodies have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 3 months after COVID-19 onset, using immunofluorescence, electron tomography and polymerase chain reaction, revealed persistence of SARS-CoV-2 in the small bowel of 6 out of 14 volunteers. It was concluded that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


Antibody responses to SARS-CoV-2 were initially characterized in a cohort of COVID-19-convalescent individuals approximately 40 days (1.3 months) after infection. Between 31 Aug. and 16 Oct. 2020, 100 participants returned for a 6-month follow-up study visit. Although initial criteria allowed enrollment of close contacts of individuals diagnosed with RT-PCR confirmed SARS-CoV-2 infection, 13 of the contacts did not seroconvert and were excluded from further analyses. The remaining 87 participants with RT-PCR-confirmed COVID-19 diagnosis and/or seroconversion returned for analysis approximately 191 days (6.2 months, range: 165-223 days) after the onset of symptoms. In this cohort, symptoms lasted for a median of 12 days (0-44 days) during the acute phase, and 10 (11%) of the participants were hospitalized. 38 (44%) of the participants reported persistent long-term symptoms attributable to COVID-19 (Methods and Tables 1 and 2). The duration and severity of symptoms during acute disease was significantly greater among participants with persistent post-acute symptoms at the second study visit (FIGS. 6m-o). Importantly, all 87 participants tested negative for SARS-CoV-2 using an approved saliva-based PCR assay (Methods) at the 6-month follow-up study visit. Participant demographics and clinical characteristics are shown in Tables land 2.









TABLE 1







Cohort characteristics










Temporal dynamics (days)














Sx
Sx

Acute
















onset
onset

disease
Post-
ELISA binding

















to
to

severity
acute

N (COI)


















initial
follow-
Time
by
Sx
RBD (AUC)
total
total
Neutralization























Age
visit
up visit
between
WHO
persis-
IgG
IgG
IgM
IgM
IgA
IgA
Ig
Ig
(NT50)
























Sex
n
(years)
(T1)
(T2)
visits
(0-8) ¶
tence †
(T1)
(T2)
(T1)
(T2)
(T1)
(T2)
(T1)
(T2)
(T1)
(T2)



























Male
52
44.5
39
190
148
2
25/52
11632
6697
2811
1502
1411
1218
47.8
53.9
649
78




(24-76)
(21-63)
(165-211)
(119-178)
(0-6)
(48.1%)












Fe-
35
45  
36
192
154
2
13/35
8884
6834
2358
1459
1235
1083
59.8
56.8
297
87


male

(26-73)
(17-67)
(168-223)
(122-179
(0-5)
(37.1%)





Sx = Symptoms


¶ = WHO Ordinal Scale for Clinical Improvement, COVID-19 Trial Design Synopsis


† = Persistent fatigue, dyspnea, athletic deficit, or ≥3 other solicited symptoms beyond 6 weeks from Sx onset


Reported data are median (range) unless stated otherwise













TABLE 2





Individual participant characteristics



















Temporal dynamics (days)


























Sx
Sx


Acute








Sx
onset
onset


disease








duration
to
to

# of
severity
Post-







during
initial
follow-up
Time
solicited
by
acute Sx



Age



acute
visit
visit
between
comorbidities
WHO
persistence


ID
(years)
Sex
Race
Ethnicity
disease
(T1)
(T2)
visits
§
(0-8) ¶






 7
40
M
White
Non-
11
30
181
151
0
2
Y






Hispanic









 8
37
M
White
Non-
3
57
205
148
0
2
Y






Hispanic









 9
35
F
White
Non-
12
53
201
148
0
2
Y






Hispanic









 20
26
F
White
Non-
2
17
191
174
1
2
N






Hispanic









 21
54
M
White
Hispanic
11
27
200
173
1
2
Y


 24
34
M
White
Non-
15
30
175
145
1
1
N






Hispanic









 27
28
M
White
Non-
9
32
210
178
1
1
Y






Hispanic









 31
51
M
White
Non-
9
33
183
150
0
2
Y






Hispanic









 38
57
F
White
Non-
10
38
211
173
0
2
N






Hispanic









 40
44
M
White
Non-
7
23
195
172
0
2
N






Hispanic









 46
39
M
White
Non-
8
30
174
144
0
2
Y






Hispanic









 47
43
F
White
Non-
11
33
177
144
0
2
Y






Hispanic









 48
37
F
White
Non-
7
21
174
153
0
2
N






Hispanic









 55
36
M
White
Non-
3
49
210
161
0
2
N






Hispanic









 57
66
M
White
Non-
6
21
180
159
4
2
N






Hispanic









 71
45
F
White
Non-
12
48
202
154
0
2
Y






Hispanic









 72
42
M
White
Non-
16
35
188
153
1
2
Y






Hispanic









 75
46
F
White
Non-
10
36
212
176
0
1
N






Hispanic









 76
49
F
White
Non-
28
34
204
170
0
1
Y






Hispanic









 82**
46
M
N/A
Non-
0
N/A
N/A
163
0
1
N






Hispanic









 88
41
M
White
Non-
7
23
180
157
1
1
N






Hispanic









 95
44
M
White
Non-
9
36
204
168
1
2
Y






Hispanic









 96
48
F
White
Non-
9
30
194
164
0
1
N






Hispanic









 98
35
F
White
Non-
2
24
203
179
0
2
N






Hispanic









 99
36
F
White
Non-
13
29
204
175
0
2
N






Hispanic









107
53
F
White
Non-
10
29
202
173
0
2
Y






Hispanic









114
30
F
White
Non-
15
36
195
159
0
2
Y






Hispanic









115
65
F
White
Non-
20
41
188
147
0
2
N






Hispanic









119
56
M
White
Non-
13
48
207
159
0
1
N






Hispanic









120
56
F
White
Non-
26
48
207
159
0
1
N






Hispanic









123
26
M
White
Non-
12
34
191
157
0
2
Y






Hispanic









125
51
F
White
Non-
10
26
168
142
0
1
N






Hispanic









131
39
M
White
Non-
5
25
191
166
0
0
N






Hispanic









132
36
M
White
Non-
10
50
193
143
0
0
N






Hispanic









134
27
F
White
Non-
16
22
171
149
0
0
N






Hispanic









135
62
F
White
Non-
8
31
190
159
0
2
N






Hispanic









140
63
F
White
Non-
28
47
223
176
0
1
N






Hispanic









149
41
M
White
Non-
17
28
173
145
1
2
N






Hispanic









154
68
M
Asian
Non-
16
30
196
166
3
2
Y






Hispanic









157
50
M
White
Non-
10
32
179
147
0
1
N






Hispanic









172
38
F
White
Non-
8
22
182
160
1
2
N






Hispanic









173
47
M
White
Non-
5
53
185
132
0
2
N






Hispanic









178
26
F
White
Non-
6
24
190
166
1
1
N






Hispanic









186
38
F
N/A
N/A
8
33
189
156
0
1
N


190*
54
F
White
Non-
18
63
190
127
0
4
Y






Hispanic









192*
47
F
White
Non-
44
62
190
128
1
3
Y






Hispanic









195
24
M
White
Non-
18
42
191
149
0
2
N






Hispanic









201
50
M
White
Non-
15
33
185
152
1
2
N






Hispanic









222
28
M
Asian
Non-
11
37
173
136
1
2
N






Hispanic









229
45
M
White
Non-
10
63
203
140
1
2
N






Hispanic









230
50
M
White
Non-
18
33
190
157
0
2
Y






Hispanic









232
38
F
White
Non-
13
43
197
154
1
2
N






Hispanic









233
55
M
White
Non-
20
41
206
165
0
2
N






Hispanic









241
36
M
White
Non-
12
30
202
172
1
2
N






Hispanic









256
63
F
White
Non-
27
42
217
175
0
2
Y






Hispanic









287
47
M
White
Non-
11
23
165
142
0
1
N






Hispanic









310
34
F
White
Non-
17
35
185
150
0
2
Y






Hispanic









314
46
M
White
Non-
11
43
184
141
0
2
Y






Hispanic









315
29
F
White
Non-
15
42
190
148
0
1
N






Hispanic









319
50
M
White
Non-
5
38
180
142
1
2
N






Hispanic









323
39
F
White
Non-
7
45
185
140
0
2
N






Hispanic









325
52
M
White
Non-
16
38
192
154
0
2
Y






Hispanic









328
54
F
White
Non-
22
62
203
141
0
2
N






Hispanic









352
44
M
White
Non-
16
43
197
154
0
2
N






Hispanic









353
60
M
White
Non-
14
49
186
137
0
2
Y






Hispanic









393*
69
M
White
Non-
23
54
187
133
0
5
N






Hispanic









394
48
F
Multiple
Hispanic
7
67
200
133
2
2
N


401
61
M
White
Non-
16
53
209
156
0
2
Y






Hispanic









403*
52
M
Asian
Non-
18
39
174
135
1
4
Y






Hispanic









410
34
M
White
Non-
12
46
192
146
1
2
Y






Hispanic









437
43
F
Asian
Non-
14
34
192
158
1
2
N






Hispanic









461
49
M
White
Non-
7
39
185
146
2
2
Y






Hispanic









470
28
F
White
Non-
17
51
173
122
0
2
Y






Hispanic









478
31
M
White
Non-
16
52
172
120
0
1
Y






Hispanic









500
46
M
White
Non-
12
53
207
154
0
2
N






Hispanic









501*
32
M
Asian
Non-
18
53
192
139
0
4
Y






Hispanic









506
46
M
White
Non-
12
59
178
119
1
2
Y






Hispanic









507
39
M
White
Non-
15
60
200
140
0
2
Y






Hispanic









509
36
M
White
Non-
11
50
190
140
0
2
N






Hispanic









537
52
M
White
Non-
15
45
178
133
2
2
Y






Hispanic









539*
73
F
White
Non-
19
55
209
154
1
5
Y






Hispanic









547*
59
M
White
Non-
15
36
211
175
0
3
N






Hispanic









632
38
M
White
Non-
10
43
168
125
0
2
Y






Hispanic









633
39
M
White
Non-
8
57
182
125
0
1
N






Hispanic









652*
76
M
White
Non-
18
56
211
155
2
6
N






Hispanic









664*
45
F
White
Non-
17
42
192
150
0
5
Y






Hispanic









674*
41
M
White
Non-
17
57
182
125
0
4
Y






Hispanic













Serological assays











N (COI)














RBD (AUC)
RBD (Pylon, IV)
total
total
Neutralization





















IgG
IgG
IgM
IgM
IgA
IgA
IgG
IgG
IgM
IgM
Ig
Ig
(NT50)





















ID
(T1)
(T2)
(T1)
(T2)
(T1)
(T2)
(T1)
(T2)
(T1)
(T2)
(T1)
(T2)
(T1)
(T2)





 7
11981
9545
6524
1516
1479
1344
34
18
3.6
0.31
56
171
2730
192


 8
9010
7653
1998
1153
1342
1380
6.9
4.9
0.27
0.26
43
16
151
39


 9
18953
12848
2963
1753
989
1227
27
23
1.1
0.49
174
187
306
295


 20
4134
8690
1976
1228
1018
1314
1.5
13
0.36
0.25
1
4
50
172


 21
36389
20744
14506
1242
2855
1914
127
59
4.4
0.23
82
159
5053
561


 24
5736
3803
2715
1150
927
1101
2.9
0.93
0.34
0.2
6
17
281
10


 27
9283
5312
2182
1943
2182
1943
13
4.5
0.35
0.21
88
168
739
86


 31
3212
3705
1272
903
906
913
1.3
1.5
0.22
0.15
35
41
192
18


 38
13718
12760
2009
1249
2902
3198
11
59
0.24
0.35
49
35
519
832


 40
5291
6467
1792
1161
1481
1501
0.6
0.6
0.33
0.15
3
12
64
10


 46
4799
4416
2247
1315
1055
1153
3
2.2
0.24
0.17
51
141
59
21


 47
17581
9284
9749
1914
1586
851
43
16
1.2
0.21
103
101
10433
349


 48
3265
3681
2358
1952
802
898
2.8
3.9
0.27
0.23
2
10
173
22


 55
12982
6419
2515
1487
2213
1466
16
3.3
0.27
0.19
85
17
186
10


 57
9108
4987
9199
2622
954
884
23
4.6
1.7
0.35
19
128
2049
45


 71
5207
4559
1606
998
723
860
3.5
6.6
0.14
0.33
21
33
112
65


 72
24822
10485
24034
2095
4887
2407
N/A
N/A
N/A
N/A
N/A
N/A
3138
81


 75
5083
3811
1386
1459
1386
1459
7.2
2.1
0.36
0.2
71
74
271
36


 76
8354
5632
1697
1299
1320
886
5.1
0.67
0.23
0.22
3
2
220
10


 82**
6472
5187
2667
3094
1125
846
N/A
N/A
N/A
N/A
N/A
N/A
131
20


 88
8263
6730
1789
2276
1546
903
4.7
9.3
0.56
0.31
7
186
425
56


 95
14380
7894
2709
1703
1250
1023
18
7.2
0.42
0.12
136
235
962
155


 96
24147
15675
3959
1498
1099
965
N/A
N/A
N/A
N/A
N/A
N/A
928
206


 98
8275
7190
2495
2417
2495
2417
15
6.9
0.7
0.65
72
55
249
53


 99
12764
6017
2693
2390
2693
2390
24
5.3
0.41
0.34
46
12
1128
163


107
7967
6298
1560
1025
915
850
3.8
6.3
0.49
0.18
64
76
297
87


114
5979
5654
1163
912
898
940
N/A
N/A
N/A
N/A
N/A
N/A
114
32


115
26997
11600
19944
2081
991
890
63
22
2.9
0.27
116
157
1128
432


119
12155
6663
7000
1533
2152
1822
13
4.2
14
1.1
20
23
650
35


120
6096
6292
2310
1091
856
1045
5.5
2.7
0.33
0.14
10
9
101
10


123
5977
6228
2722
1880
1127
1357
2.1
0.67
0.21
0.15
4
2
76
10


125
4498
4271
2234
1361
684
807
1.8
1.1
1
0.19
4
2
127
10


131
4285
3911
1318
943
1201
1166
0.27
0.93
0.35
0.26
1
3
50
14


132
12506
8783
8532
4822
1068
1070
10
9.8
0.81
0.26
161
149
521
200


134
8884
6818
7472
2068
1057
982
4.1
3.7
2.1
0.37
15
6
2701
263


135
9301
8386
3157
888
1256
952
9.9
16
0.77
0.21
50
81
350
441


140
6181
4957
1235
1061
1235
1061
3.5
2.2
0.22
0.12
39
14
52
13


149
6275
3875
1422
1073
1058
842
10
3.4
0.48
0.21
69
151
495
28


154
25056
13409
5544
1169
2072
1205
57
16
2.9
0.18
13
23
928
65


157
11979
8751
11125
2370
1969
1374
15
7.9
5.4
0.71
67
89
742
190


172
10507
6124
4007
1339
3230
1244
5.2
5.1
0.85
0.21
14
102
301
157


173
9127
5004
12194
1660
1162
979
2.5
2.8
7.3
0.59
149
143
647
176


178
4316
3757
1394
1373
1351
1222
1.2
0.73
0.43
0.49
2
3
10
10


186
7427
4850
1687
960
1085
815
10
5
0.41
0.29
64
32
297
73


190*
16156
10408
4567
1664
1207
1107
43
18
0.9
0.42
102
81
598
165


192*
13879
9000
5894
1525
1819
1598
30
22
0.68
0.38
106
145
608
409


195
14242
7933
3954
2055
1227
978
22
6.9
1.5
0.24
15
31
1315
106


201
26093
11284
6230
1635
3374
1477
131
48
3.3
0.23
34
69
3897
741


222
14063
6930
1132
723
2841
1612
7.9
2.7
0.37
0.18
14
17
865
50


229
14677
8054
5507
1606
1066
1141
31
19
0.49
0.25
146
191
1273
135


230
5605
5015
1300
1868
1059
1130
1.8
1.5
0.19
0.17
6
10
382
375


232
8127
15997
1948
2352
1335
1362
N/A
N/A
N/A
N/A
N/A
N/A
147
633


233
6897
6940
1917
1211
1066
1065
8.3
4.3
0.27
0.16
3
9
173
11


241
8912
5749
7327
1446
2562
2195
3.3
0.8
1.4
0.38
69
18
923
118


256
10574
6500
1886
1533
1886
1533
7.7
6.4
0.34
0.17
65
27
142
31


287
7442
4357
2873
1211
910
928
9.3
3.9
0.77
0.41
15
15
240
38


310
26782
15634
1554
1023
1435
1083
47
15
0.27
0.31
51
137
485
153


314
12475
7247
2431
1273
854
811
38
14
0.89
0.2
131
198
667
297


315
18570
13153
2528
2022
1252
1083
55
21
0.75
0.31
135
58
376
179


319
7614
4736
2215
762.1
1575
1174
6.9
3.9
0.26
0.16
27
12
241
74


323
4220
5152
2930
1547
888
931
0.93
0.67
0.33
0.34
4
1
51
20


325
26673
12400
16598
4879
2703
1464
54
14
14
3
50
56
1603
229


328
8118
7073
1216
1268
1216
1268
7.5
5.5
0.29
0.21
99
81
94
66


352
19958
6525
5585
1064
2614
1731
43
11
0.84
0.22
17
16
519
33


353
23981
13736
6807
2062
9230
3637
58
20
0.83
0.22
68
51
855
222


393*
8729
5150
13320
1974
1075
892
14
6.1
2.5
0.27
13
51
715
144


394
22856
12823
6178
1909
1009
1131
96
35
1.1
0.34
59
69
1281
282


401
31108
19746
1677
1336
1677
1336
94
34
4.8
0.4
89
116
1098
134


403*
24462
13614
4060
3187
2107
1164
170
29
0.7
0.13
29
41
3888
179


410
6355
4353
2456
1730
1249
1112
2.8
1.3
0.36
0.29
25
19
222
65


437
15987
6834
3051
1940
3051
1940
16
6.3
0.89
0.23
146
75
699
176


461
17491
13418
6867
1946
1827
1454
38
44
2
0.46
73
182
1077
361


470
6054
4894
2315
1798
1003
1025
5.3
3.1
0.2
0.16
90
86
50
14


478
6600
4083
3238
1824
1264
1283
7.1
3.3
1.8
0.24
33
41
263
15


500
6039
5366
2254
2305
2356
2412
4.2
1.6
0.57
0.2
26
16
194
36


501*
22775
8667
5272
1242
1557
1098
N/A
N/A
N/A
N/A
N/A
N/A
719
125


506
3036
2595
1205
975
1338
1041
N/A
N/A
N/A
N/A
N/A
N/A
10
10


507
15458
7586
4505
989
1208
1218
22
13
0.88
0.36
104
90
400
49


509
9217
5538
2930
1258
1286
1417
11
4.5
0.41
0.18
165
189
236
36


537
11285
6443
2448
1083
1245
1192
13
8.6
0.56
0.23
89
52
923
986


539*
20337
9568
7505
1386
1714
2124
68
41
1
0.65
144
199
488
50


547*
28228
15394
3863
2048
3863
2048
73
33
9.1
0.22
66
140
2901
211


632
16796
9152
1766
1548
2415
1833
31
12
0.36
0.25
141
153
572
161


633
8759
5108
1436
1224
2019
1404
4.8
3.3
0.25
0.26
121
157
135
32


652*
25025
7388
2748
1433
2748
1433
112
27
1
0.18
79
73
2324
275


664*
12698
6927
3357
1420
1440
1395
11
4
0.43
0.21
61
26
384
37


674*
36682
21702
3061
1141
1320
1218
251
57
0.4
0.13
45
66
1619
298





*= hospitalized,


**= asymptomatic


§ = Arterial hypertension (HTN), obesity (OB), diabetes mellitus (DM), asthma (A), chronic obstructive pulmonary disease (COPD), coronary artery disease (CAD), cancer (CX)


¶ = WHO Ordinal Scale for Clinical Improvement, COVID-19 Trial Design Synopsis


† = Persistent fatigue, dyspnea, athletic deficit, or ≥3 other solicited symptoms beyond 6 weeks from Sx onset


Reported data are median (range) unless stated otherwise






Antibody reactivity in plasma to RBD and nucleoprotein (N) in plasma was measured by validated serological assays (Robbiani, D. F. et al. Nature 584, 437-442). Two anti-RBD assays were strongly correlated (anti-RBD IgG and IgM ELISA/Pylon-IgG and IgM at 1.3 months, r=0.9200 and r=0.7543, p<0.0001, respectively.). The IgM, IgG, and IgA anti-RBD antibodies in plasma decreased significantly between 1.3 and 6.2 months (FIGS. 1a-c). However, the drop in RBD-binding activity differed significantly by isotype, IgM showed the greatest decrease in anti-RBD reactivity (53%), followed by IgG (33%), while IgA decreased by only 15% (FIG. 1e). In all cases, the magnitude of the decrease was inversely proportional to and directly correlated with the initial antibody levels such that individuals with higher initial levels showed greater relative changes (FIGS. 1f-i). In contrast, the Roche anti-N assay showed a small but significant increase (19%) in reactivity between the 2 time points that did not correlate with IgA anti-RBD ELISAs and was modestly correlated with IgM at 1.3 months and IgG anti-RBD reactivity at both time points, respectively (FIG. 1d). Notably, individuals with persistent post-acute symptoms had significantly higher anti-RBD IgG and anti-N antibody levels at both study visits.


Plasma neutralizing activity was measured using an HIV-1 virus pseudotyped with the SARS-CoV-2 spike protein. The geometric mean half-maximal neutralizing titer (NT50) in this group of 87 participants was 401 and 78 at 1.3 and 6.2 months, respectively, representing a five-fold decrease (FIGS. 1j-k). Neutralizing activity was directly correlated with the IgG anti-RBD ELISA measurements. Moreover, the absolute magnitude of the decrease in neutralizing activity was inversely proportional to and directly correlated with the neutralizing activity at the earlier time point (FIG. 1l). We conclude that antibodies to RBD and plasma neutralizing activity decrease significantly but remain detectable 6 months after infection with SARS-CoV-2 in the majority of individuals.


Whereas plasma cells are the source of circulating antibodies, memory B cells contribute to recall responses. To identify and enumerate the circulating SARS-CoV-2 memory B cell compartment, we used flow cytometry to isolate individual B lymphocytes with receptors that bound to RBD (FIGS. 2a-b and FIG. 6). Notably, the percentage of RBD-binding memory B cells increased marginally between 1.3 and 6.2 months in 21 randomly selected individuals (FIG. 2b).


To determine whether there were changes in the antibodies produced by memory B cells after 6.2 months, we obtained 532 paired antibody heavy and light chains from the same 6 individuals that were examined at the earlier time point (Table 9). There was no significant difference in IGV gene representation at the two time points, including the over-representation of the IGHV3-30 and 3-53 gene segments (FIG. 7). In keeping with this observation, and similar to the earlier time point, antibodies that shared the same IGHV and IGLV genes comprised 8.6% of all sequences in different individuals (FIG. 13a). As might be expected, there was a small but significant overall increase in the percentage of IgG-expressing anti-RBD memory cells, from 47% to 57% (p=0.011, FIGS. 13b-d). Consistent with the fractional increase in IgG memory cells, the extent of somatic hypermutation for both IGH and IGL differed significantly in all 6 individuals between the two time points. Whereas the average number of nucleotide mutations in IGH and IGL was only 4.2 and 2.8 at the first time point, these values were increased to 11.7 and 6.5 at the second time point (p<0.0001, FIG. 2c and FIG. 9). In contrast, the overall average IGH and IGL CDR3 length and hydrophobicity were unchanged (FIG. 10).


Similar to the earlier time point, it was found expanded clones of memory B cells at 6.2 months including 23 that appeared at both time points. However, expanded clones accounted for only 12.4% of all antibody sequences after 6.2 months compared to 32% after 1.3 months (p=0.0225, FIG. 2d). In addition, the overall clonal composition of the memory compartment differed at the two time points in all individuals examined (FIG. 2d). Forty-three expanded clones that were present at the earlier time point were not detectable after 6.2 months, while 22 new expanded clones appeared. In addition, the relative distribution of clones that appeared at both time points also varied. For example, the dominant clones in COV21 and COV57, representing 9.0% and 16.7% of all sequences, respectively, were reduced to 1.1% and 1.9% of all sequences after 6.2 months (FIG. 3d). It was concluded that while the magnitude of the RBD-specific memory B cell compartment is conserved between 1.3 and 6.2 months after SARS-CoV-2 infection, there is significant clonal turnover and antibody sequence evolution, consistent with prolonged germinal center reactions.


One hundred and twenty-two representative antibodies from the 6.2-month time point were tested for reactivity to RBD (Table 4). The antibodies that were evaluated included: (1) 49 that were randomly selected from those that appeared only once; (2) 23 that appeared as singles at both 1.3 and 6.2 months; (3) 23 representatives of newly appearing expanded clones; (4) 27 representatives of expanded clones appearing at both time points. One hundred and fifteen of 122 of the antibodies bound to RBD, indicating that flow cytometry efficiently identified B cells producing anti-RBD antibodies (FIG. 3a and Table 4). Taking all antibodies together, the mean EC50 was not significantly different at the two time points (FIG. 3a, Table 4). However, a comparison of the antibodies that were present at both time points revealed a significant improvement of the EC50 after 6.2 months (p=0.0227, FIG. 3b and FIG. 11a).









TABLE 4A







Sequences of cloned recombinant antibodies













Anti-

















Patient
body
Time
SEQ

SEQ



ID
ID
point
ID NO
IGH VDJ (aa)
ID NO
IGL VJ (aa)





COV47
C050
6.2
  1
EVQLVESGGGLFQPGGSLRLSCAASGFSVRNNYVSW
  2
QSALTQPASVSGSPGQSIIISCTGTSGDIGGY




m

VRQAPGKGLEWVSVIYSGGTTYYADSVKGRFTISRDI

NYVSWYQQHPGKAPKLMIYDVSFRPSGVS






SENTLYLQMNSLRAEDTAVYYCAREGDVEGLHDFW

NRFSGSKSDNTASLTISGLQAEDEADYYCS






SGYSRDRYYFDYWGQGTLVTVSS

SFTGNNTRVFGTGTKVTVL



C051
6.2
  3
EVQLVESGGGLIQAGGSLRLSCAASGFGVRNNYMSW
  4
QSALTQPASVSGSPGQSITFSCTGTSSDVGG




m

VRQAPGKGLEWVSVIYSGGTTYYADSVKGRFTISRD

YNYVSWYQQYPGKAPKLLIYDVTNRPSGV






NSKNTVFLQMNSLRAEDTAVYYCAREGDVEGFSDL

SDRFSGSKSGNTASLTISGLQAEDEADYYC






WSGYSRDRYYFDYWGQGTLVTVSS

SSFTSSNTRVFGTGTKVTVL



C052
6.2
  5
EVQLVESGGGLIRPGGSLRLSCAASGFSVSNNYMSW
  6
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

VRQAPGKGLEWVSVIYSGGTTYYADSVKGRFNISRD

YNYVSWYQQHPGKAPKLMIYDVSNRPSG






NSKNTVYLQMNSLRAEDTAVYYCAREGDVEGYYDF

VSNRFSGSKSGNTASLTISGLQAEDEADYY






WSGYSRDRYYFDYWGQGALVTVSS

CNSYTSNNTRVFGTGTKVTVL



C053
6.2
  7
EVQLVESGGGLIQPGGSLRLSCAASGFIVSNNYMSW
  8
QSALTQPASVSGSPGQSITISCTGSSSDVGG




m

VRQAPGKGLDWVSVIYSGGTTYYADSVKGRFTISRD

YNFVSWYQQHPGRAPKLMIYDVSNRPSGV






NSKNTLYLQMNSLRAEDTAVYYCAREGDVEGYHDS

SNRFSGSKSGNTASLTISGLQVEDEADYYC






WSGYSRDRYYFDYWGQGTLVTVSS

SSYTNNNTRVFGTGTKVTVL



C054
6.2
  9
EVQLVESGGGLIQPGGSLRLSCAASGFTVSNNYMSW
 10
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

VRQAPGKGLEWVSVIYSGGSTYDADSVKGRFTISRD

YNYVSWYQQHPGKAPKLMIYDVSNRPSG






NSKNTLYLQMNSLSAEDTAVYYCAREGDVEGYYDF

VSNRFSGSKSGNTASLTISGLQAEDEADYY






WSGYSRDRYYFDYWGQGTLVTVSS

CSSYTSSSARVFGTGTKVTVL



C055
6.2
 11
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKYMTW
 12
QSALTQPASVSGSPGQSIAISCTGTSNDVGS




m

VRQAPGKGLEWVSVLYSGRTDYYADSVKGRFTISRD

YTLVSWYQQYPGKAPKLLIFEDSQRSSGIS






SSKNILYLQMSSLRVEDTGFYYCARDSSEVRDHPGHP

NRFSGSKSGNTASLTISGLRGEDEADYYCC






GRSVGAFDIWSQGTMVTVSS

SYAGSHTFVFGGGTKVTVL



C057
6.2
 13
QVQLVQSGAEVKRPGASVKLSCKASGYIFTDYSIHW
 14
QSALTQPASVSGSPGQSITISCTGTSSDVGA




m

VRQAPGQGLEWMGWVNPNSGGGNSAQKFMDWVT

YKFVSWYQQHPGKAPQLIIYEVSNRPSGVS






MARDTSITTVYMELSRLRSDDTAVYYCARGPLFHKL

NRFSGSKSGNTASLTISGLQAEDEADYYCS






VYDSWSGYHDGFDIWGQGTMVTVSS

SYTNASTWVFGGGTELTVL



C058
1.3
 15
QVQLVQSGAEVKKPGASVKVSCKASGYIFTDYSMH
 16
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

WVRQAPGQGLEWIGWVNPNSGGTNYAQKFQGWVT

YKFVSWYQQHPGKAPKLMIYEVSNRPSGV






MARDTSITTVYMELSRLKSDDTAVYFCARGPLFHRL

SNRFSGSKSGNTASLTISGLQAEDEADYYC






VYDFWSGYHDGFDMWGQGTMVTVSS

NSYTSSSTWVFGGGTKLTVL



C059
6.2
 17
QVQLVQSGAEVKKPGASIKVSCKASGYTFTDYSIVIR
 18
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

WVRQAPGQGLEWMGWINPNSGGTKYAQKFQGWVT

YNYVSWYQHYPGKAPKLMIYEVTHRPSG






MTRDMSITTVYMELTRLRSDATAVFYCARGPLFHKL

VSNRFSGSKSGNTASLTISGLQAEDEADYY






VYDSWTGYHDGFDIWGQGTMVTVSS

CSSSTNSSTWVFGGGTKMTVL



C060
6.2
 19
EVQLVESGGGLVQPGGSQRLSCAASGFTVSSNYMSW
 20
EIVMTQSPATLSVSPGERATLSCRASQSVSS




m

IRQAPGKGLEWVSVIYSGGSAYYVDSVKGRFTISRDN

HLAWYQQKPGQAPRLLIYGASTRATGIPTR






SKNTLYLQMNSLRPEDTAVYYCARIANYMDVWGKG

FSGSGSGTEFTLTISSLQSEDFAVYYCQQYN






TTVTVSS

NWPPLTFGGGTKVEIK



C062
6.2
 21
EVQLVESGGGLVKPGGSLRLTCAASGFTFSTYSMNW
 22
NFMLTQPHSVSESPGKTVTISCTGSSGSIAS




m

VRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDN

NYVQWYQQRPGSAPTTVIYEDNQRPSGVP






AKNSLYLQMNSLRAEDTAVYYCARERGYYGGKTPP

DRFSGSIDSSSNSASLTISGLKTEDEADYYC






FLGGQGTLVTVSS

QSYDSSNYWVFGGGTKLTVL



C063
6.2
 23
EVQLVQSGAEVKKPGDSLKISCKASGYSFTRYWIGW
 24
SYELTQPPSVSVAPGQTATITCGGNNIGSKT




m

VRQMPGKGLDWMGIIYPGDSDTRYSSSFQGQVTISA

VHWYQQKPGQAPVVVVYDDSDRPSGIPER






DKSISTAYLQWSSLKASDTSLYYCVRRASSTNFEFWG

FSGSKSGSTATLTITRVEAGDEADYYCQV






QGTLVTVSS

WDSTSDHYVFGTGTKVAVI



C064
6.2
 25
EVQLLESGGDLVQPGGSLRLSCAASGFTFSNYAMSW
 26
QSALTQPASVSGSPGQSITISCTGTSSDVGS




m

VRQAPGKGLEWVSAISGSGGNTYYADSVKGRFTISR

YNLVSWYQQHPGKAPKLMIYEGSKRPSGV






DNSKNTLYLQMNSLRAEDTAVYYCAKAVHYGGNSD

SNRFSGSKSGNTASLTISGLQAEDEADYYC






RRFSEPSAPFDYWGQGTLVTVSS

CSYAGSSTPYVFGTGTKVTVL



C065
6.2
 27
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSNYYWS
 28
IRMTQSPSSLSASVGDRVTITCQASQDITNY




m

WIRQHPGKGLEWIGYIDYSGGTYYNPSLKSRVTISVD

LNWYQQKPGKAPKLLLYDASNLETGVPSR






TSKNQFSLKLSSVTAADTAVYYCARVSTTVTTYLVG

FSGSGSGTDFTFTISSLQPEDIATYYCQQYD






GFDIWGQGTMVTVSS

NLPWTFGQGTKVEIK



C066
6.2
 29
EVQLVESGGGLIQPGGSLRLSCAASGLLVSRNYMTW
 30
DIQLTQSPAFLSASVGDRVTITCRASQGMS




m

VRQAPGKGLEWVSVIYSGGSTFYADSVRGRFTISRDN

NYLAWYQQKPGKAPNLLIYTASTLQSGVP






SKNTLYLQMDSLRAEDTAVYYCARDVGDYYGMDV

SRFSGSGSGTEFTLTISSLQPEDFATYYCQL






WGQGTTVTVSS

LNSYPQLTFGGGTKVEIK



C067
6.2
 31
VQLVESGGGVVQPGRSLRLSCAASGFSFRIFGMNWV
 32
DIVMTQSPDSLAVSLGARATINCKSSQSILY




m

RQAPGKGLDWVAGISHDGSDKYFADSVKGRFTISRD

SSDNKSSLAWYQQKPGHPPKLLIYWASTR






NSKNTLYLQMNSLRADDTAVYYCARDMEVDYYDR

ESGVPDRFSGSESGTDFTLTISNLQGEDVA






SGHYHVFHAFDIWGQGTMVTVSS

VYYCQQYYSIPRSFGQGTKLEIK



C068
6.2
 33
QVQLVESGGGVVQPGRSLRLSCVASGFSFSTYGMHW
 34
QSALTQPRSVSGSPGQSVTISCTGTSSDIGG




m

VRQAPGKGLEWVALIWSDGSNKYYGDAAEGRFTISR

YNYVSWYQQHPDKAPKFIIFDVSKRPSGVP






DNSNNTLYLQMNNLRAEDTALYYCARDHSSSSFVY

DRFSGSKSGNTASLTISGLQAEDEADYYCC






YYYMDVWGKGTTVTVSS

SYAGPYPYVFGTGTKVTVL



C069
6.2
 35
QVQLVQSGAEVKKPGSSVNVSCKASGGTFSTYAIHW
 36
EIVLTQSPGTLSLAPGERATLSCRASQSVNS




m

VRQAPGQGLEWMGGIIPLFHTANYAQKFQGRVTITA

NYLAWYQQKPGQAPRLLIYGASSRATGIP






DESTSTAYMELSSLRSEDTAMYYCAINTQWDLVPRW

DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ






GRGTLVTVSS

QYGFSLYSFGQGTKLEIK



C081
1.3
 37
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSAWMSW
 38
DIQLTQSPSSLSASVGDRVTITCRASQSISSY




m

VRQAPGKGLEWVGRIKTKTDGGTKDYAAPVKGRFTI

LNWYQQKPGKAPKLLIYAASSLQSGVPSRF






SRDDSKNTLYLQMNSLKTEDTAVYYCTTTNDYGDY

SGSGSGTAFTLTISSLQPEDFATYYCQQSYS






SPAYWGQGTLVTVSS

TPLTFGGGTKVEIK



C083
1.3
 39
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNW
 40
QLVLTQSPSASASLGASVKLTCTLSSGHSS




m

VRQAPGKGLEWVSSISSSTSYIYYADSVKGRFTISRD

YAIAWHQQQPEKGPRYLMSLNSDGSHSKG






NAKNSLYLQMNSLRAEDTAVYYCARERYGDNWGQ

DGIPDRFSGSSSGAERYLTISSLQSEDEADY






GTLVTVSS

YCQTWGPWVFGGGTKLTVL



C085
1.3
 41
QVQLQESGPGLVKPSETLSLTCTVSGDSMSSYFWTWI
 42
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGA




m

RQPPGKGLECIGYFYPSGSTNYNPSLKSRVTISIDTSK

DYDVHWYQQFPGTAPKVLIYANTNRPSGV






NQFSLKLSSVTAADTAVYYCARLKQQLVGFGWFDP

PERFSGSKSGTSASLAITGLQAEDEADYYC






WGQGTLVTVSS

QSYDHSLNWVFGGGTKLTVL



C086
6.2
 43
QVQLQESGPGLVKPSETLSLTCTVSGDSISTYFWAWI
 44
QSVLTQPPSVSGAPGQRVTISCTGSISNIGA




m

RQPPGRGLECIGSFFPSGSTYYNPSLKSRVTISVDTSK

DYEVHWYVQFPGTAPKVLIYANTNRPSGV






NQFSLKLNSVTAADTAVYYCARLKQQLVGFGWFDP

PERFSASKSGTSASLAITGLQAEDEADYYC






WGQGSLVTVSS

QSYDHRLHWVFGGGTKLTVL



C088
6.2
 45
QVQLVQSGAEAKKPGASVKVSCKTSGYTFTNYFMH
 46
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGG




m

WVRQAPGQGPEWMGIIDSSDGGASYAQKFQGRVTM

GSVVHWYQQLPGTAPKLLIYANSNRPSGV






TRDTSTSTVYMELRSLKFEDTAVYYCARASTSTTSW

PDRFSGSKSGTSASLAIAGLQAEDEADYYC






SDALSLGSWGQGTLVTVSS

QSWDNGLSASGVVFGGGTKLTVL



C089
1.3
 47
QVQLVESGGGVVQPGRSLRLSCAASGFTFRTYAMH
 48
DIQLTQSPSFLSASVGDRVTITCRASQGISS




m

WVRQAPGKGLEWVAVILSDGNNKYYADSVKGRFTI

YLAWYQQKPGKAPKLLIYGASTLQSGVPS






SRDNSKNTLYLQMNSLRAEDTAIFYCAREQEANYYD

RFSGSGSGTEFTLTISSLQPEDFASYYCQKV






ISGYYHWGESLGYWGQGTLVTVSS

NSHPPGLTFGGGTKVEIK



C090
6.2
 49
QVQLVESGGGVVQPGRSLRLSCAASGFTFRTYAMH
 50
DIQLTQSPSFLSASVGDRVTITCRASQGISS




m

WVRQAPGKGLEWVAVILSDGNNKYYADSVKGRFTI

YLAWYQQKPGKAPKFLIYGASTLQSGVPS






SRDNSKNTLYLQMNSLRAEDTAIFYCAREQEANYYD

RFSGSGSGTEFTLTISSLQPEDFASYYCQKV






ISGYYHWGESLGYWGQGTLVTVSS

NSYPPGLTFGGGTKVEIK



C518
6.2
 51
EVQLVESGGGLIQPGGSLRLSCAASGITVSSNYMSWV
 52
DIQLTQSPSFLSASVGDRVTITCRASQGISS




m

RQAPGKGLEWVSVMYAGGSSFYADSVKGRFTISRDN

YLAWYQQKPGKAPKLLIYAASTLQSGVPS






SKNTLYLQMNSLRVEDTAVYYCARDLIALGVDVWG

RFSGSGSGTEFTLTISSLQPEDFATYYCQLL






QGTTVTVSS

NSYPMCSFGQGTKLEIK



C519
6.2
 53
QVQLQESGPGLVKPSETLSLTCAVSGGSISSYYWSWI
 54
DIQMTQSPSSLSASVGDRVTITCQASQDIIF




m

RQPPGKGLEWIGYIDTSGSTNYNPSLKSRVTMSVDTS

YLNWYQQKPGKAPKLLIYDASNLKTGVPS






KNQFSLNVNSVTAADTAVYFCGVCAGDCYAASVFD

RFSGSGSGTDFAFTISSLQPEDIATYYCQQY






YRGQGTLVTVSS

DNLPLTFGGGTKVEIK





COV72
C501
6.2
 55
QVQLVQSGPEVKKPGTSVKVSCKASGFTFGSSAVQW
 56
DIQMTQSPCSLSASVGDRVTITCQATQDIR




m

VRQARGQRLEWIGWIVVGSGNTDYAQRFQERVTITR

KYLNWFRRKLEKAPKLLIYDASTLDTRVPS






DMSTNTVYMELSSLRFEDTAVYYCAAVYCSGTTCH

RFSGNRSATDFTFTICSLQPEDNARYSCQQS






DAFDIWGRGTMVTVSS

DTLPPLGGDTPDTFGHGTKLEIK



C502
6.2
 57
QVQLVQSGAEVKKPGSSVKVSCKASGDTFSSHAINW
 58
EIVMTQSPATLSVSPGKRATLSCRASQSVR




m

VRQAPGQGLEWMGRSIPMLGVTTSAQKFKGRVTITA

SNLAWYQQRPGQAPRLLIYDAATRATGIPT






DHSTSTVFMDLSSLRSDDTAIYYCARGVVGATPGSFD

RFSGSGSGTEFTLTISSLQSEDFAVYYCQQY






LWGQGTMVTVSS

DNGLTFGGGTKVEIK



C503
6.2
 59
QVQLQESGPGLVQPSGTLSLSCTVTGGSISSNNWWS
 60
QSALTQPASVSGSPGQSITFSCTGTSSDVGA




m

WVRQSPVKGLEWIGEIYHNGNINYNPSLKSRVTMSID

YNYISWYQQHPGKAPKLMIYDVNNRPSGV






KSKNHFSLKLSSVTAADTAVYYCARGDVLDWFDPW

SRRFSGSKSGNTASLTISGLQSEDEADYFCS






GQGTLVTVS

SYAGNSTVRFGGGTKLTVL



C504
6.2
 61
QVQLQESGPGLVKPSETLSLTCTVSGGSISSSYWNWI
 62
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

RQSPGKGLEWIGYIYYDGYTTFNPSLKSRVTISVDTS

YLNWYQQKPGKAPKLLIYATSSLQSGVPS






KNQFSLKLSSVTAADTAFYYCAAGLKGRSSSWYEY

RFSGSGSGTDFTLTITSLQPEDFATYYCQQT






WGQGTLVTVSS

YSSPHTFGQGTKLEIK



C505
6.2
 63
EVQLLESGGGLVQPGGSLRLSCADSGFSFSTYGMSW
 64
SYELTQPPSVSVSPGQTASITCSGDKLGDK




m

VRQAPGKGLEWVSTISGSGDNTYHADSVKGRFTISR

YACWYQQKPGQSPVMVIYQDTKRPSGIPE






DNSKNTLYLQMNSLRAEDTAVYYCAKNIAEMSTFD

RFSGSNSGNTATLTISGTQAMDEADYYCQ






DYFYYYGMDVWGQGTTVTVSS

AWDSSTFYVFGTGTKVTVL



C506
6.2
 65
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHW
 66
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

VRQGTGKGLEWVSVIGTAGDAYYPGSVKGRFTISRE

YLNWYQQKPGKAPKLLIYAASSLQSGVPS






NAKNSLYLQMNSLRAGDTAVYYCARMVYDSSGFKG

RFSGSGSGTDFTLTISNLQPEDFATYYCQQS






YFDLWGRGTLVTVSS

YSTSMYTFGQGTKLEIK



C507
6.2
 67
EVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAIHW
 68
NFMLTQPHSVSESPGKTVTISCTGSSGSIAS




m

VRQAPGKGLEWVAVISFDGSNKYYRDSVKGRFTISR

NYVQWYQQRPGSAPTTVIYEDNQRPSGVP






DNGKNTLYLQMNSLRAEDTAVYYCAKAALGYCTN

DRFSGSIDSSSNSASLSISGLKTEDEADYYC






GVCYCDNWGQGTLVTVSS

QSYDINSLWVFGGGTRLTVL



C508
6.2
 69
QLQLQESGPGLVKPSETLSLTCTVSGASIRNSNYFWG
 70
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

WIRQPPGKGLQWIGSIYYSGSTSYNPSLRTRVTVSVD

YNYVSWYQQHPGKAPKLMIYDVSNRPSG






TSKNQFSLKLSSVTAADTAVYYCARPRAGGDSSFFW

VSNRFSGSKSGNTASLTISGLQAEDEADYY






DSWGRGTLVTVSS

CSSYTSSSTMVFGGGTKLTVL



C509
6.2
 71
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSSNWWS
 72
EIVLTQSPATLSLSPGERATLSCRASQSVST




m

WVRQPPGKGLEWIGEIYNSGSTNYNPSLKSRVTILVD

YLAWYQQKPGQAPRLLIYDASNRATGIPA






KSKNQFSLKLSSVTAADTAVYYCAGSYSNYIGGVWF

RFSGSGSGTDFTLTISSLEPEDFAVYYCQQR






DPWGQGTLVTVSS

NNWLTFGGGTKVEIK



C510
6.2
 73
QVQLQQWGAGLLKPSETLSRTCAVYGGSFSGYYWS
 74
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHS




m

WFRQSPGKGLEWIGEINHSGSTNYNPSLKNRVTISVD

NGYNYLDWYLQKSGQSPQLLIYLGSNRAS






TSKNQFSLMLSSVTAADTAVYYCARGGFGVVINYYY

GVPDRFSGSGSGTDFTLKISRVEAEDVGVY






SGMDVWGRGTTVTVSS

YCMQALQTPPTFGQGTKVEIK



C511
6.2
 75
EVQLVESGGGLVQPGGSLRLSCAATEITVSSNYMTW
 76
DIQLTQSPSFLSASVGDRVTITCRASQGISS




m

VRQAPGKGLEWVSVIYPGGSTFYADSVKGRFSISRDN

YLAWYQQKPGKAPKLLIYAASTLQSGVPS






SKNTLYLQMNSLRAEDTAVYYCARDLVVYGLDCW

RFSGSGSGTEFTLTISSLQPEDFATYYCQQL






GQGTLVTVSSEVQLVESGGGLVQPGGSLRLSCAATEI

NTYPPPFGGGTKVEIK






TVSSNYMTWVRQAPGKGLEWVSVIYPGGSTFYADS








VKGRFSISRDNSKNTLYLQMNSLRAEDTAVYYCARD








LVVYGLDCWGQGTLVTVSS





C512
6.2
 77
QVQLQESGPGLVKPSGTLSLTCAVSAGSISSNNWWS
 78
QSALTQPASVSGSPGQSITISCTGTSSDVGA




m

WVRQPPGKGLEWIGEVYHNGNINYNPSLKSRVTLSV

NNYVSWYQQHPGKAPKLMIYDVNERPSG






DKSKNQFSLKLSSVTAADTAVYYCAKGGDRAMGPE

VSNRFSGSKSGNTASLTISGLQTEDEADYY






YFDSWGQGTLVTVSS

CSSFASSSTLLFGGGTKLTVL



C513
6.2
 79
EVQLLESGGGLVQPGGSLRLSCVASGFSFSTYAMSW
 80
EIVLTQSPDTLSLSPGERATLSCRASQSVHS




m

VRQAPGQGLEWVSTITGTSIGTYYADSVKGRFTISRD

KQLAWYQQKPGQAPRLLIYGASSRATGIP






NSKNTVFLQMKSLRAEDAAVYYCANHPLASGDEYY

DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ






YYYMDVWGKGTTVTVSS

QYGSIRALTFGGGTKVEIK



C514
6.2
 81
EVQLVESGGGLVQPGGSLRLSCAASEFIVTRNYMSW
 82
DIQMTQSPSSLSASVGDRVTITCQASQDINN




m

VRQAPGKGLEWVSLIYPGGSTFYADSVKGRFTISRDN

FLNWYQQKPGKAPKLLIYDASNLETGVPS






SKNTLFLHMNSLRAEDTAVYYCARDLAGRLDYWGQ

RFSGSGSGTDFTFTISSLQPEDIAIYYCQQY






GTLVTVSS

DSLSRLTFGGGTKVEIK



C515
1.3
 83
EVQLVESGGGLVQPGGSLRLSCAASGFIVSSNYMSW
 84
DIQLTQSPSFLSASVGDRVTITCRASQGISS




m

VRQAPGKGLEWVSILYSGGSTYYADSVKGRFTISRD

YLAWYQQKPGKAPKLLIYAASTLQSGVPS






NSKNTLYLQMNSLRAEDTAVYYCARDLVVYGADY

RFSGSGSGTEFTLTISSLQPEDFATYYCQQL






WGQGTLVTVSS

NSYPPPFGGGTKVEIK



C516
1.3
 85
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISW
 86
EIVMTQSPATLSVSPGERATLSCRASQSVSS




m

VRQAPGQGLEWMGRIIPMLVIATYARKFQGRVTITA

NLAWYQQKPGQAPRLLIYGASTRATGIPA






DKSTSTAYMELSSLRSEDTAVYYCARGVVAATPGNF

RFSGSGSGTEFTLTISSLQSEDFAVYYCQQY






DIWGQGTMVTVSS

NNGLTFGGGTKVEIK



C517
1.3
 87
EVQLVESGGGLVQPGGSLRLSCAASEFIVSRNYMSW
 88
DIQMTQSPSSLSASVGDRVTITCQASQDISK




m

VRQAPGKGLEWVSLIYSGGSTYYADSVKGRFTISRD

YLNWYQQKPGKAPKLLIYDASNLETGVPS






NSKNTLYLQMNSLRAEDTAMYYCARDIAGRLDYWG

RFSGSGSGTDFTFTISSLQPEDFATYYCQHY






QGTLVTVSS

DSLSRLTFGGGTKVEIK



C597
1.3
 89
QVQLVQSGPEVKKPGTSVKVSCKASGFTFTNSAVQW
 90
EIVLTQSPGTLSLSPGERATLSCRASQSFRSS




m

VRQSRRQRLEWIGWIVVGSGNTNYAQKFQERVTITR

YLAWYQQKPGQAPRLLIYGASSRATGIPDR






DMSTSTAYMELSSLRSEDTAVYYCAAVDCNSTSCYD

FSGSGSGSDFTLTISRLEPEDFAVYYCQQY






AFDIWGQGTMVTVSS

DISPWTFGQGTKVEIK



C598
6.2
 91
QVQLVQSGPEVKKPGTSVKVSCKASGFTFSSSAVQW
 92
EIVLTQSPGTLSLSPGERATLSCRASQSVRS




m

VRQARGQRLEWIGWIVVGSGNTNYAQKFQERVTITR

SYFAWYQQKPGQAPRLLIYAASSRATGIPD






DMSTSTAYMELSSLRSEDTAVFYCAAPYCNVTTCFD

RFSGSGSGTDFTLTISRLEPEDFALYYCQQY






GFNIWGRGTMVTVSS

GSSPWTFGQGTKVEIK





COV96
C523
6.2
 93
QVQLQESGPGLVKPSETLSLTCTVSGASISSHYWSWI
 94
QSVLTQPPSASGTPGQRVTISCSGSSSNIGS




m

RQPPGKGLEWIGYIHYIGSTNYNPSLKSRVTILLDTSK

NTVNWYQQLPGTAPKLLIYSNNQRPSGVP






NQFSLRLRSVTAADTAVYYCARGWPYCGVDCYSGF

DRFSGSKSGTSASLAISGLQSEDEADYYCA






DYWGQGTLVTVSS

AWDDSLNGLWVFGGGTKLTVL



C524
6.2
 95
EVQLVESGGDLIQPGGSLRLSCAASGFSVSNSYMSW
 96
QLVLTQSPSASASLGASVNLTCTLSSGHSS




m

VRQAPGKGLEWVSIIYSGGSTYYADSVKGRFTISRDN

YAIAWHQQQPEKGPRFLMKLSSDGSHNKG






SKNTLYLQMNSLRAEDTAVYFCAKTPRGDYDSSGTS

DGIPDRFSGSSSGAERFLTISSLQSEDEADY






AYWGQGTLVTVSS

YCQTWGIGSDWVFGGGTKLTVL



C525
6.2
 97
EVQLVESGGRLVQPGRSLRLSCAASGFTFDDYAIHW
 98
DIQMTQSPSSVSASVGDRVTITCRASQDISS




m

VRQAPGKGLEWVSGISWNSGSIGYADSVRGRFTISRD

WLAWYQQKPGKAPKLLIYLASSLQSGVPS






NAKNSLYLQMNSLRAEDTALYYCAKGLDSSSSASPD

RFSGSGSGTDHLTISSLQPEDFGTYYCQQG






YWGQGTLVTVSS

NSFPLTFGGGTKVEIK



C526
6.2
 99
QVQLVQSGAEVKKPGASVKVSCKASGHTFTTYYLH
100
SYELTQPPSVSVAPGKTARITCGGNNIGSKS




m

WVRQAPGQGLEWMGRIDPSGGSTTYAQKFQGRVTM

VHWYQQKPGQAPVLVIYYDSDRPSGIPERF






TRDTSTSTVYMELSSLRSEDTALYYCARGGYCGSTSC

SGSNSGNTATLTISRVEAGDEADYYCQVW






SPDDYFDYWGQGTLVTVSS

DSSSDHYYVFGTGTKVTVL



C527
6.2
101
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHW
102
DIQMTQSPSTLSASVGDRVTITCRASQSIDI




m

VRQAPGKGLEWVALIGYDGTDKYYAENVKGRFTISR

WLAWYQQKPGKAPKFLIHKASTLESGVPS






DNSKNTLFLQMNSLRGGDTAVYLCARDGIPFRYGM

RFSGSGSGTEFTLTISSLQPDDFATYYCQHY






DVWGQGTTVTVSS

HSYSGTFGQGTKVEIK



C528
6.2
103
EVQLVESGGGLVQPGGSLRLSCAASGFTFRNYDMH
104
DIQMTQSPSSLSASVGDRVTITCRASQTIHN




m

WVRQVAGKGLEWVSAIGTSGDTYYPDSVKGRFTISR

YLNWYQQIPGKAPRLLIYATNTLQSGVPSR






ENAKNSVYLQMNNLRAGDTAVYFCVRDREISGWTG

FSGSGSGTDFTLTITGLQPEDFATYYCQQS






WYFDLWGRGTLVTVSS

YSTPPITFGQGTRLEIK



C529
6.2
105
EVQLLESGGGLVQPGGSLRLSCAASGFTFNNYAMN
106
DIQMTQSPSTLSASVGDRVTITCRASQTISP




m

WVRQAPGRGLEWVSGISGSGANTYYADSVKGRFTIS

WLAWYQQKPGKAPNLLIYKASSLESGVPS






RDNPKNTLSLQMNSLRAEDTALYYCAKVLSPTYYDS

RFSGSGSGTEFTLTISSLQPDDFATYYCQQY






WSGPDAFDFWGQGTMVTVSS

NSYSSWTFGQGTKVEIK



C530
6.2
107
QVQLVESGGGVAQPGRSLRLSCAASGFTFSRYGMH
108
SYELTQPPSVSVSPGQTARITCSGDAFPLQY




m

WVRQAPGKGLEWVAVIWHDGSDKYCADFVKGRFTI

GYWYQQKPGQAPVLVIYKDKERPSGISERF






SRDNSKNTLYMQMDSLRAEDTAVYYCARGGRPDHE

SGSSSGTTVTLTISGVQAEDEADYYCQSAD






TGIAVLGEYYFDSWGQGTLVTVSS

TNGVVFGGGTSLTVL



C531
6.2
109
EVQLVESGGGLVQPGRSLRLSCVATGFTFDDFAMHW
110
DIQSTQSPSFLSASVGDRVAITCRASQGISS




m

VRQAPGKGLEWVSGISWNGGIIGYVDSVKGRFTISRD

YLAWYQQKPGKAPKLLIYPASTLQSGVPS






NAKNSLYLQMNSLRPEDTALYYCVKGYRYYYDILT

GFSGSGSGTEFTLTISSLQPEDFATYYCQQL






GYYNDAGAFDYWGQGTLVTVSS

NDYPFTFGPGTKVDIK



C532
6.2
111
EVQLVQSGAEVKKPGESLKISCKGSGYRFTNYWIGW
112
EIVMTQSPATLSVSPGERATLSCRASQSVSS




m

VRQNIPGKGLEWIGNIFPGDSDSRYSPSFQGQVTISVD

NLAWYQQKPGQAPRLLIYGASTRATGFPA






MSITTAYLHWSSLKASDTAIYYCARLSERWYSPFDS

RFSGSGSGTEFTLTISSLQSEDFAVYFCQQY






WGQGTLVTVSS

NNWPPGGFTFGPGTKVDIK



C533
6.2
113
EVQLVESGGSLVKPGGSLRLSCVASGLTFNHAWMS
114
DIQMTQSPSSLSASVGDRVTITCRASQAIAT




m

WVRQAPGKGLEWVGRIKSKIDGGTTDYAAPVKGRF

FLNWYQQKPGKAPKLLIYAASSLQSGVPSR






TISRDDSKSTQYLQMNSLKTEDTAVYYCTTDCFWRL

FSGSGSGTDFTLTISNLQPEDFATYYCQQSY






GGTTCYEHDAFDVWGQGTMVTVSS

NSLHFGGGTKVEIK



C534
6.2
115
QVQLVQSGAEVKKPGSSVRVSCKASGGTFSRNVISW
116
EIVLTQSPGTLSLSPGERATLSCRASQSVSS




m

VRQAPGQGLEWMGGIIPMFATANYAQKFQGRVTITA

NYLAWYQQKPGQAPRLLIYDASSRATGIP






DESSSTAYMELSSLRSEDTAVYYCAREDFILVSAPIRE

DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ






NSYYYYGMDVWGQGTTVTVSS

QYGGSPRTFGQGTKVEIK



C535
6.2
117
EVQLVESGGALVQPGRSLRLSCAASGFTFDDYAMH
118
DIQMTQSPSSVSASVGDRVTITCRASQGIGS




m

WVRQAPGKGLEWVSSISWNGVSIGYADSVRGRFTIS

WLAWYQQKPGKAPKLLIYLASSLQSGVPS






RDNAKNSLYLQMNSLKIGDTAFYYCARGLDGSSSAS

RFSGSGSGTYFTLTISGLQPEDFATYYCQQ






PDSWGQGTLVTVSS

GNSFPLTFGGGTKVEIK



C536
6.2
119
QVQLVESGGGLVKPGRSLRLSCTVSGFTFGAYAMSW
120
QSVLTQPPSASGTPGQRITISCSGSSSNIGSN




m

FRQAPGKGLEWVGFIRSKTYGGTTEYAASLKGRFTIS

TVNWYQQLPGTAPKLLIYSNNQRPSGVPD






RDDSKSIAFLQMNSLKTEDTAVYFCSRGGYYDGSPY

RFSGSKSGTSASLAISGVQSEDEADYYCAA






YWNRPDAFDIWGLGTMVTVS

WDDSLNGPDVVFGGGTKLTVL



C537
6.2
121
QLQLQESGPGLVKPSETLSLTCTVSGGAISSRNYHWG
122
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

WIRQPPGKGLEWIGSIYYSGSTYYSPSLKSRVTISVDT

YLNWYQQKPGKAPKLLIYAASSLQSGVPS






SKNQFSLRLSSVTAADTAVYYCARLETSGWYTEDVF

RFSGSGSGTDFTLTISSLLPEDFATYYCQRS






DIWGQGTMVTVSS

YSAMYTFGQGTKLEIK



C538
6.2
123
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWA
124
QSALTQPPSASGSPGQSVTISCTGTSSDVGS




m

WIRQPPGKGLEWIGNIYYSGITYYSPSLKSRVTISVDT

YNYVSWYQQHPGKAPKLMIYEVTKRPSG






SKNQFSLKLRSVTAADTAVYYCARQHRYGSGSSELL

VPDRFSGSKSGNTASLTVSGLQADDEADY






WGQGTLVTVSS

YCSSYAGSSNLIFGGGTKLTVL



C539
6.2
125
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYALHW
126
DIQMTQSPSSVSASVGDRVTITCRASQDISS




m

VRQAPGKGLEWVSGISWNGDSIGYADSVKGRFTISR

WLAWYQQKPGKAPKLLISLASGLQSGVPS






DNAKNSLSLQMNSLTAEDTALYYCAKGVEYSSSSNC

RFSGSGSETDFTLTISSLQPEDFATYYCQQT






DYWGQGTLVTVSS

NSFPLTFGGGTKVEI



C540
6.2
127
EVQLVESGGGLVQPGGSLRLSCAASGFTFRNYDMH
128
DIQMTQSPSSLSASVGDRVTITCRASQTIHN




m

WVRQVAGKGLEWVSAIGTSGDTYYPDSVKGRFTISR

YLNWYQQIPGKAPRLLIYATNTLQSGVPSR






ENAKNSVYLQMNNLRAGDTAVYFCVRDREISGWTG

FSGSGSGTDFTLTITGLQPEDFATYYCQQS






WYFDLWGRGTLVTVSS

YSTPPITFGQGTRLEIK



C542
6.2
129
EVQLVESGGGLVQPGGSLRLSCAASGLTVTSNYMSW
130
DIQMTQSPSSLSASVGDRVTITCQASQDISN




m

VRQAPGRGLEWVSLIYPGGTTYYADSVKGRFTVSRD

FLNWYQQKPGKAPKLLIYDASNLETGVPS






NSKNTLYLQMDSLRAEDTGVYYCARETLGRGGDCW

RFSGSRSGTDFTFTISSLQPDDIATYYCQQY






GQGTLVTVSS

DNLPRSFGQGTKLEIK



C543
6.2
131
QVQLVESGGGVVQPGRSLRLSCTASGFTFSTAGMHW
132
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

VRQAPGKGLEWVAVISYDGSNKDYADSVKGRFTISR

YLNWYHQKPGKAPKLLIYAAISLQSGVPSR






DNSKSTLYLQMNSLRPEDTAVYYCAKDTPGGDDWIT

FSGSGFGTDFTLTISSLQPEDFAIYYCQQSY






GWGLYGMDVWGQGTTVTVSS

STPWTFGQGTKVEIK



C544
6.2
133
QVQLVQSGAEVKKPGASVKVSCKASGYTFSSHDINW
134
SYELTQPPSVSAAPGKTARITCGGNNIGGK




m

VRQATGQGLEWVGWMNPNSGNTGSAQSFQGRVTLT

NVHWYQQKPGQAPVLVVFDDSDRPSGIPE






RNASISTAYLELSSLRSEDTAVYFCARGFSLTWYFDL

RFSGSNSGNTATLTISRVEAGDEADYYCQL






WGRGTLVTVSS

WDSTSDHPDVVFGGGTQLTVL



C545
6.2
135
EVQLLESGGGLVKPGGSLRLSCAASGFTFSDYSMTW
136
NFMLTQPLSVSESPGKTVTISCTRSSGSIAS




m

VRQAPGKGLEWVSFISSSSTYIYYADSVKGRFTISRD

NYVQWYQQRPGGAPTTVIYEDTQRPSGVP






NAKSSLYLQMNRLRAEDTAVYYCTRVQVGARGWA

DRFSGSIDSSSNSASLTISGLKTEDEADYYC






DYWGQGTLVTVSS

QSCDTINWVFGGGTKLTVV



C546
6.2
137
EVQLLESGGGLVHPGGSLRLSCAASGFTFSTYAMHW
138
DIQMTQSPSSLSASVGDRVTLTCRASQGIST




m

VRQAPGKGLEWVSAISGSGTGTFYADSVKGRFSISRD

YLNWYQQKPGKAPNLLIYAASSLQSGVPS






NSKNTLYLQMNSLRAEDTAVYYCATERIAVSDTRM

RFSGSGSGTDFTLTISSLQPEDFATYYCQQS






YNWFDPWGQGTLVTVSS

YSAPPWTFGQGTKVEIK



C547
1.3
139
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHW
140
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

VRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISR

YLNWYQQKPGKAPKLLIYAAFSLQSGVPS






DNSKNTLYLQMNSLRAEDTAVYYCAKDTPGGDDILT

RFSGSGSGTDFTLTISSLQPEDFATYYCQQS






GWGLYGMDVWGQGTTVTVSS

YSTPWTFGQGTKVEIK



C548
1.3
141
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISW
142
QSALTQPPSASASLGASVTLTCTLSSGYSN




m

VRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITA

YKVDWYQQRPGKGPRFVMRVGTGGIVGS






DESTSTAYMELSSLRSEDTAVYYCARREAYGPRDYY

KGDGIPDRFSVLGSGLNRYLTIKNIQEEDES






YYYGMDVWGQGTTVTVSS

DYHCGADQGSGSNFVGVFGGGTKLTVL



C549
6.2
143
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSTSAISW
144
QSALTQPPFASASLGASVTLTCTLSSDYSY




m

VRQAPGQGLEWMGGIIPFFGTPNYAQKFQGRVTIIAD

YKVDWYQQRPGKGPRFVIRVGPGGIVGSK






ESTTTAYMELSGLRFEDSAVYYCARREPYGPRDYYY

GDGFPDRFSVLGSGLNRSLTINNIQEEDEG






FFGMDVWGPGTTVTVSS

DYHCGADEGSGGTFVGVFGGGTKLTV



C550
1.3
145
EVQLVQSGAEVKKPGESLKISCKGSGYRFTNYWIGW
146
EIVMTQSPATLSVSPGERATLSCRASQSVSS




m

VRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISA

NLAWYQQKPGQAPRLLIYGASTRATGIPA






DKSITTAYLQWSSLKASDTAMYYCARLSDRWYSPFD

RFSGSGSGTEFTLTISSLQSEDFAVYYCQQY






PWGQGTLVTVSS

NNWPPGGFTFGPGTKVDIK



C552
1.3
147
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHW
148
SYELTQPPSVSVAPGKTARITCGGNNIGSKS




m

VRQAPGKGLEWVALISYDGSNKHYADSVKGRFTISR

VHWYQQKPGQAPVLVIYYDTDRPSGIPERF






DNSKNTLYLQMNSLRAEDTAVYYCARAGTTNSDYF

SGSNSGNTATLTISRVEAGDEADYYCQVW






DYWGQGTLVTVSS

DSSSALWVFGGGTKLTVL



C553
6.2
149
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYEIHW
150
SYELTQPPSVSVAPGMTARITCGGNTIGSKS




m

VRQAPGKGLEWVAGISYDGSTKYYADSVKGRFTISR

VHWYQQKAGQAPVLVIYYDSDRPSGIPER






DNSKNTLYLQMNSLRPEDTAVFYCARAGTTNSDYFD

FSGSNSGNTATLTISRVEAGDEADYYCQV






YWGQGTLVTVSS

WDSSSVLWVFGGGTKLTVL



C554
1.3
151
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAWMS
152
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVT




m

WVRQAPGKGLEWVGRIKSKTDGGTTDYAAPVKGRF

SGHYPYWFQQKPGQAPRTLIYDTSNKHSW






TISRDDSKNTLYLQMNSLKTEDTAVYYCTTDDPGSY

TPARFSGSLLGGKAALTLSGAQPEDEAEYY






YYGMDVWGQGTTVTVSS

CLLSYSGARVFGGGTKLTVL



C555
6.2
153
EVQLVESGGGLVKPGGSLRLSCAASGLTFSTTWMSW
154
QTVVTQEPSLTVSPGGTVTLTCASSTGAVT




m

VRQAPGKGLEWVGRIKSKGDGGTTDFAGPVKGRFSI

SGHYPYWFQQKPGQAPRTLIYATSNKHSW






SRDDSKNTLYLHMNSLKTEDTAVYYCTTDDPGSYY

TPARFSGSLLGGKAALTLSGAQPEDEADY






YGMDVWGQGTTVTVSS

YCLLSYSGARVFGGGTKLTVL



C556
1.3
155
QVQLVQSGAEVKKPGASVKVSCKASGYTFTYYYMH
156
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

WVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTM

YLNWYQQKPGKAPKLLIYAASSLQSGVPS






TRDTSTSTVYMELSSLRSEDTAVYYCARPLLPGETGS

RFSGSGSGTDFTLTISSLQPEDFATYYCQQS






LNRLDYWGQGTLVTVSS

YSTLWTFGQGTKVEIK



C557
6.2
157
QVQLVQSGAEVKKPGASVKVSCKASGYPFSRYYIHW
158
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

VRQAPGQGLEWMGIINPSGGSTTYAQRFQGRVTMTR

YLNWYQQKPGIAPXLLIYGASSLQSGVPSR






DTSASTVYLDLSSLGSEDSAVYYCARPLLPGETGNLN

FSGSGSGTDFTLTISSVQPDDFATYYCQQS






RLDYWGQGTLVTVSS

YSTLWTFGQGTKVEIK



C558
1.3
159
EVQLVQSGAEVKKPGESLKISCKVSGYTFTNYWIGW
160
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

VRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISA

YLNWYQQKPGKAPKLLIYAASSLQSGVPS






DKSIITAYLQWSSLKASDTAMYYCARVPSSSDYGDY

RFSGSGSGTDFTLTISSLQPEDFATYYCQQS






GGFEYWGQGTLVTVSS

YSTPCSFGQGTKLEIK



C559
6.2
161
EVQLVQSGAEVKKPGESLKISCKVSGYTFTNYWIGW
162
DIQMTQSPSSLSASVGDRVTITCRASQTITI




m

VRQMPGKGLEWMGIIFPGDSDTRYSPSFQGQVTISAD

YLNWYQQKPGKAPKLLIYAASSLQSGVPS






RSITTAYLQWRSLKASDTAMYYCARVPSSSDYGDYG

RFSGSGSGTDFTLTISSLQPEDFATYYCQQS






GFEYWGQGTLVTVSS

YSTPCSFGQGTKLEIK



C560
1.3
163
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA1VII1
164
QSVLTQPPSASGTPGQRVTISCSGSSSNIGS




m

WVRQAPGKGLEWVSGVSWNSGTIGYADSVKGRFTIS

NTVNWYQQLPGTAPKLLIYSNNQRPSGVP






RDNAKNSLYLQMNSLRAEDTALYYCAKIADIVRAYD

DRFSGSKSGTSASLAISGLQSEDEADYYCA






FWSGQHFDAFDIWGQGTMVTVSS

AWDDSLVVFGGGTKLTVL



C56
6.2
165
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAIHW
166
QSVLTQPPSASGTPGQRVTISCSGSSSNIGS




m

VRQAPGKGLEWVSGVSWNSGTIGYADSVKGRFFISR

NTVNWYQHLPGTAPKLLIYSNNQRPSGVP






DNAKNSLYLQMNSLRAEDTAWYYCAKIADLVGAYD

DRFSGSKSGTSASLAISGLQSEDEADYYCA






FRSGQHFAAFDVWGQGTMVTVSS

SWDDSLVVFGGGTKLTVL



C562
6.2
167
EVQLVESGGGVVQPGKSLRLSCAASGFTFRSYAMH
168
DIQMTQSPSSLSASVGDRVTITCRASQSISN




m

WVRQAPGKGLEWVAVIWDDGSSKHYSDSVKGEIFTI

YLNWYQQKPGKAPNLLIYTASSLQSGVPS






SRDNSKNTLYLQMNSLRAEDTAVYYCARDSNVDTV

RFSGSGSGTDFTLTISSLQPEDFATYYCQQS






MVTWFDYWGQGTMVTVSS

YSTPPWTFGQGTKVEIK



C563
6.2
169
EVQLVESGGGLVKPGGSLRLSCAASGFPFTNAWMS
170
DIVMTQSPDSLAVSLGERATINCKSSQSVL




m

WVRQAPGKGLEWVGHIKDYTDGGTTDYAAPVKGK

YSSNKKNYLAWYRQKPGQPPKLLIYWAST






FTISRDDSKNTLYLHMNSLKTEDTAVYYCSTVGSYY

RESGVPDRFSGSGSGTDFTLTISSLQAEDVA






YDSRGPTSDAFDIWGQGTLVTVSS

VYYCQQYYSTPYTFGQGTKLEIK



C564
1.3
171
EVQLLESGGGLVQPGTSLRLSCAASGFTFSSYAMSW
172
DIQMTQSPSSLSASVGDRVTLTCRASQSISS




m

VRQAPGKGLEWVSAISSSGGSTYYADSVKGRFTISRD

YLNWYQQKPGKAPNLLIYAASSLQSGVPS






NSKNTLYLHMNSLRAEDTAVYYCATERIAVAGTRM

RFSGSGSGTDFTLTISSLQPEDFATYYCQQS






YNWFDPWGQGTLVTVSS

YSAPPWTFGQGTKVEIK



C213
1.3
173
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNW
174
NFMLTQPHSVSESPGKTVTISCTRSSGSIAS




m

VRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDN

NYVQWYQQRPGSAPTTVIYEDNERPSGVP






AKNSLYLQMNSLRAEDTAVYYCARVQVGARGWVD

DRFSGSIDSSSNSASLTISGLKTEDEADYYC






YWGQGTLVTVSS

QSYDRINWVFGGGTKLTVL



C217
1.3
175
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNW
176
NFMLTQPHSVSESPGKTVTISCTRSSGSIAS




m

VRQAPGKGLEWVSFISSRSSYIYYADSVKGRFTISRD

NYVQWYQQRPGSAPTTVIYEDNQRPSGVP






NAKNSLYLQMNSLRAEDTAVYYCARVQVGARGWV

DRFSGSIDSSSNSASLTISGLKTEDEADYYC






DYWGQGTLVTVSS

QSYDSINWVFGGGTKLTVL





COV57
C070
6.2
177
VQLVESGGGVVQPGGSLRLSCVASGFEFRDYGMHW
178
DIQMTQSPSTLAASVGDTVTITCRASYDVK




m

VRQAPGKGLHWVAIVQSDGKNIYYADSVKGRFTISR

KWVAWYQQKPGKVPKLLIYKASTLEVGV






DNSKRSQYLQMNSLRPEDTAVYYCAKENYRGTGYL

PLRFSGSGSGTEFTLTINGLQPDDFATYYCQ






ESWGQGTLVTVSS

HFHSYPYSFGQGTKLEIK



C073
6.2
179
QLQLQESGPGLVKPSETLSLTCTVSGASIPSSTSYWG
180
DIQLTQSPSSLSASVGDRLTITCRASQSITTS




m

WIRQPPGKGLEWIGSIYYTGSTYYNPSLKSRVTISVDT

LNWYQQKPGKAPKLLIYAASSLQSGVPSRF






SKNHFSLILSSVTAADTAVYYCARRSITLAGRDCLDF

SGSGSGTDFTLAISSLQPEDFATYYCQQSYI






WGQGTLVTVSS

PLLTFGGGTKVDIK



C075
6.2
181
VQLLESGPGLLKPSQTLSLTCAISGDSVSSSGAAWNW
182
IRMTQSPSSVSASVGDRVTITCRASQGISN




m

IRQSPSRGLEWLGRTYYKSKWYNDYAVSVKSRITINP

WLAWYQQKPGKAPKVLLYAASSLRSGVP






DTSKNQFSLQLNSVTPEDTAVYYCARMWVVAGTTD

SRFSGSGSGTDFTLTISSLQPEDFATYYCQQ






DYYYHYGMDVWGQGTTVTVSS

TNTLPLSFGGGTKVD1K



C077
6.2
183
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYAMH
184
SYELTQPPSVSVAPGQTARIPCGGNNIGSK




m

WVRQAPGQRLEWMGWINTDNGNTKYSQKFQGRVTI

SVHWYQQKPGQAPVLVVYDDSDRPSGIPE






TRDTSASTAYMELSSLRSEDTAVYYCAREGALTNWF

RFSGSNSGNTATLTISRVEAGDEADYYCQV






DPWGQGTLVTVSS

WDSSSDLHVVFGGGTKLTVL



C078
6.2
185
QVQLQQWGAGLLKPSETLSLTCAVYGGSLSAYYWS
186
SYELTQPPSVSVAPGQTARIPCGGNNIGSKS




m

WIRQPPGKGLEWIGEINNGGTTNYNPSLKSRVTLSVD

VHWYQQKPGQAPVLVVYDDSDRPSGIPER






TSKNQFSLELSSVTAADTAIYYCARPGITATTGFDFW

FSGSNSGNTATLTISRVEAGDEADYYCQV






GQGSLVTVSS

WDSSSDLHVVFGGGTKLTVL



C079
6.2
187
VQLVESGGGVVQPGGSLRLSCAASLFSFSDYGMHW
188
QSALTQPASVSGSPGQSITISCTGTSSDVGS




m

VRQAPGKGLEWVAFIWYDGTKKDYTHSVKGRFTVS

YNLVSWYQQHPGKAPKLLIYEVGKRPSGV






RDNSKNTLYLQMNSLRAEDTAMYYCAKARGFQHYF

SNRFSGSKSGNTASLTISGLQAEDEADYYC






DQWGQGTLVTVSS

CSYAGSGTLGVVFGGGTKLTVL



C080
6.2
189
EVQLVQSGAEVKKPGESLNISCKASGYSFTIYWIAWV
190
QSVLTQPPSVSGAPGQRVTISCAGSSSNIGA




m

RQLPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADK

GFDVYWYQQLPGTAPKLLIYGNNNRPSGV






SISTAYLQWRSLKASDSAVYYCARGVAVDWYFDLW

PDRFSGSKSGTSASLAITGLQAEDEADYYC






GRGTLVTVSS

QSSGSVLSDLYVFGTGTKVTVL



C091
1.3
191
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYTISW
192
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGA




m

VRQAPGQGLEWMGRIIPILGIANYAQKFQGRVTITAD

GYDVHWYQQLPGTAPKLLIYGNSNRPSGV






KSTSTAYMELSSLRSEDTAVYYCARDSGYSGYGSTY

PDRFSGSKSGTSASLAITGLQAEDEADYYC






YMDVWGKGTTVTVSS

QSYDSSLSGSVFGTVTKVTVL



C092
6.2
193
QVQLVQSGAEVKKPGSSVKVSCKASGGSFTNHFISW
194
QSVLTQPPSVSGAPGQRVTISCTGSNSNIGA




m

VRQAPGQGLEWMGRIIPILGTANYAQNFQGRVMMT

GYDVHWYQQLPGAAPKLLIYGNNNRPSG






ADKSTSTAYMELSSLRSEDTAVYYCARDSGYSGYGS

VPDRFSGSKSDTSASLAITGLQVEDEADYY






TYYMDVWGKGTTVTVSS

CQSYDSSLSDSVFGSGTKVTVL



C093
1.3
195
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWI
196
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGN




m

RQPPGKGLEWIGYIHYSGSTNYNPSLKSRVTISVDTS

NYVSWYQQLPGTAPKLLIYDNNKRPSGIPD






KNQFSLKLSSVTAADTAVYYCARHYDILTALSWFDP

RFSGSKSGTSATLGITGLQTGDEADYYCGT






WGQGTLVTVSS

WDSSLSAYWVFGGGTKLTVL



C094
6.2
197
QVQLQESGPGLVKPSETLSLTCNVSGVSISTDYWSWI
198
QSVLTQPPSVSAAPGQKVTISCSITNSNLGN




m

RQPPGKGLEWIGYIYYSGNTKDYNPSLKSRVTISVDT

IYVSWYQQLPGTAPKLLIYGNNKRPSGIPD






SKNQFSLMLSSVTAADTAVYYCARHYDILTSLSWFD

RFSGSKSGTSATLGITGLQTGDEAHYYCGT






PWGQGTLVTVSS

WDSSLSANWVFGGGTKLTVL



C034
1.3
199
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISW
200
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHS




m

VRQAPGQGLEWMGRIIPILGIANYAQKFQGRVTITAD

NGYNYLDWYLQKPGQSPQLLIYLGSNRAS






KSTSTAYMELSSLRSEDTAVYYCARDSEYSSSWYSR

GVPDRFSGSGSGTDFTLKISRVEAEDVGVY






GYYGMDVWGQGTTVTVSS

YCMQALQTPPTFGGGTKVEIK



C035
1.3
201
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSYWMTW
202
SYELTQPPSVSVSPGQTARVTCSGHALPDQ




m

VRQAPGKGLEWVASIKYNGNERNYVDSVKGRFTISR

YTYWYQQRPGRAPVLVIYVNNQRPSGIPD






DNARNSLFLQLNNLGAEDTAVYYCARQPESTIWYYF

RFSATTSGTTVTLTISGVQAEDEADYYCQS






DYWGQGTLVTVSS

ADSSGSYVVFGGGTKLTVL



C520
6.2
203
QVQLQQWGAGLLKPSETLSLTCAVFGGSFSGYYWG
204
DIQMTQSPSSLSASVGDRVTITCRASQDISN




m

WIRQPPGKGLEWIAEINHSENSHYNPSLKSRVTISVDT

FLAWYQQKPGKVPSLLIYAASILQPGVPSR






FKNQFSLNLSSVTAADTALYYCVRRPRRYCSGDTCR

FSGSGSGTDFTLTITSLQPEDVATYYCQKY






GAFDIWGQGTMVTVSS

KIDPFTFGPGTKVDIK



C521
6.2
205
EVQLVESGGGLVRPGGSLTLSCVASGFTVGSNFMSW
206
QSALTQPASVSGSPGQSITISCTGTGSDIGA




m

VRQAPGKGLEWVSLIYNSGGTHYADSVKGRFTISRD

YNYVSWHQHHPGKAPKLIIYDVSNRPSGV






RSKNTLYLQMNSLRAEDTAIYYCANHGYYYYMDV

SNRFSGSKSGNTASLTISGLQAEDEADYYC






WGKGTTVTVS

TSYTNTTTPWVFGGGTKVTVL



C522
6.2
207
EVQLVESGGGLIQPGGSLRLSCAASEFIVSRNYMSWV
208
DIQMTQSPSSLSASVGDRVTITCQASQDINI




m

RQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDES

FLNWYQQKPGKAPKLLIYDASSLETGVPSR






KNTLYLQMNSLRAEDTAIYYCARDRGGGILDYWGQ

FSGSGSGTDFTFTISSLQPEDFATYYCQQYG






GTLVTVS

NLPKYTFGQGTKLEIK





COV21
C095
6.2
209
VQLVEAGGGVVQPGRSLRLSCAASGLAFSIYGMHW
210
DIQLTQSPSSLSASVGDRVTITCRASQSISN




m

VRQAPGKGLEWVAIVAQDGSKKYYADSVKGRFTISR

YLNWYQQKPGKAPKVIIYAASSLQSGVPSR






DNSKNTLYLEMNSLRTEDTAVYYCVKEGRPSDTVV

FSGSGSGTDFTLTISSLQPEDFATYYCQQSH






VVAFDYWGQGSLVTVSS

SIPRTFGQGTKVEIK



C096
6.2
211
EVQLVESGGGLVKPGGSLRLSCVASGFTFRNAWMN
212
DIVMTQSPLSLPVTLGEPASISCRSSQSLLHS




m

WVRQAPGKGLEWVGRIKANSDGGTIDYAEPVQGRF

NGFHFLEWYLQKPGQSPQLLIYVGSNRAS






TISREDSRNSLYLQMNSLKTEDTAVYYCTTGPQYDD

GVPDRFSGSGSGTDFTLKISRVEAEDVGVY






FGHSYIVDSWGPGTLVTVSS

YCMQTLQTPLTFGGGTKVEIK



C097
6.2
213
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGPYYWS
214
DIVMTQSPLSLPVTPGEPASISCRSSRGLLH




m

WIRQHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVD

SNGYNYLDWYLQKPGQSPQLLIYLGSNRA






TSKKQFSLNLNSVTAADTAVYYCARVWQYYDSTGS

SGVPDRFSGSGSVTDFTLNISRVEAEDVGV






FDYWGQGTLVTVSS

YYCMQALQTPFTFGPGTKVDIK



C098
1.3
215
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSW
216
EIVLTQSPGTLSLSPGERATLSCRASQSVSS




m

VRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRD

SYLAWYQQKPGQAPRLLIYGASSRATGIPD






NSKNTLYLQMNSLRAEDTAVYYCARDLYSSGGTDI

RFSGSGSGTDFTLTISRLEPEDFAVYYCQQ






WGQGTMVTVSS

YGSSPGTFGQGTKVEIK



C099
6.2
217
EVQLVESGGGLIQPGGSLRLSCAASGITVSSNYMSWV
218
EIVLTQSPGTLSLSPGERATLSCRASQSIGSS




m

RQAPGKGLEWVSVMYAGGSTFYADSVKGRFTISRD

YLAWYQQKPGLAPRLLIYGASRRATGIPD






DSKNTLFLQMNSLRAEDTAIYYCARDLYSSGGTDIW

KFSGSGSGADFTLTISRLEPEDFAVYYCQQ






GQGTMVTVSS

YGSSPGTFGQGTKVEIK



C043
6.2
219
QLVQSGPEVKKPGTSVKVSCKASGFTFYNSAVQWVR
220
EIVLTQSPGTLSLSPGERGTLSCRASQSVRS




m

QARGQRLEWVGWIVVGSGNTDYAQKFQERVTMTR

NYLAWYKQRPGQAPRLLVYGASSRATGIP






DLSTNTAYMEVNSLRSEDTAVYYCAAPYCSGGTCLD

DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ






GFDIWGQGTMVTVSS

QYGSSPWTFGQGTKVEIK



C044
1.3
221
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNW
222
SYELTQPPSVSVAPGKTARITCGGNNIGSKS




m

VRQAPGKGLEWVSYISSSSSTIYYADSVKGRFTISRD

VHWYQQKPGQAPVLVIYYDSDRPSGIPERF






NAKNSLYLQMNSLRDEDTAVYYCAREAHDGALTDY

SGSNSGNTATLTISRVEAGDEADYYCQVW






GDYLNWFDPWGQGTLVTVSS

DSSSDHLYWVFGGGTKLTVL



C045
6.2
223
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYSMNW
224
SYELTQPPSVSVAPGKTARITCGGTNIGSKN




m

VRQAPGKGLEWVSYISSSSSTIHYADSVKGRFTISRD

VHWYQQKPGQAPVLVIYYDNDRPSGIPER






NAKNSLYLQMNSLRDEDTAVYYCAREAHDGALTDY

FSGSNSGNTATLTISRVEAGDEADYYCQV






GDYLNWFDPWGQGTLVTVSS

WDTTSDHFYWVFGGGTKLTVL



C046
6.2
225
EVQLVESGGGLAQPGRSLRLSCAASGFTFDDYAMH
226
EIVLTQSPATLSLSPGERATLSCRASQSVSS




m

WVRQAPGKGLEWVSGINWNSGSLGYADSVKGRFTIS

YLAWYQQKPGQAPRLLIYDASNRATGIPA






RGIAKNSLYLQMNSLRPEDTAFYYCAKAGVRGIAAA








GPDLNFDYWGQGTLVTVSS

RFIGSGSGTDFTLTISSLEPEDFAVYYCQQRI



C047
6.2
227
QVQLQESGPGLVKPSETLSLTCTVSGGSISSTTYYWD
228
TFGQGTRLEIK




m

WIRQSPGKGLEWIGSIFYTGITYYSPSLKSRVTISVDTS

YNYVSWYQQHPDKAPKLIIYEVTKRPSGV






KNQFSLRLNSMTAADTAVYYCARRLRQLWFGPWFD

PDRFSGSKSGNTASLTVSGLQAEDEADYY






PWGQGTLVTVSS

CSSYAGSNNVMFGGGTKLTVL



C048
1.3
229
VQLQESGPGLVKPSETLSLTCAVSGGSVSSGNYYWN
230
DIQMTQSPSTLSASVGDRVTITCRASQSISS




m

WIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVD

WLAWYQQKPGKAPKLLIYKASSLESGVPS






TSKNQFSLKLNSVTAADTAVYHCARETYYYDSSGYY

RFSGSGSGTEFTLTISSLQPDDFATYYCQQY






ISDAFDIWGQGTMVTVSS

NSFSYTFGQGTKLEIK



C049
6.2
231
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGTFYWS
232
DIQMTQSPSTLSSSVGDRVTITCRASQNISR




m

WIRQPPGKGLEWIGYIHYSGSTNYNPSLKSRVTISVD

WLAWYQQKPGKAPKLLIYKASTLESGVPS






TSKNQFSLRLSSVTAADTAVYYCARESFYYDRSGYY

RFSGSGSGTKFTLTISSLQPDDFATYYCQQ






GSDAFDIWGQGTMVTVSS

YNSYLYTFGQGTKLEIK



C710
6.2
233
QVQLQESGPGLVKPSETLSLTCIVSGGSINSTTYYWD
234
QSALTQPPSASGSPGQSVTISCTGTRSDVGD




m

WIRQSPGKGLEWIGSIFYTGITYYSPSLKTRVTISVDTS

YNYVSWYQQHPDKAPKLIIFEVTKRPSGVP






KNQFSLRLNSMTAADTAVYYCARRLRQLWFGPWFD

DRFSGSKSGNTASLTVSGLQAEDEADYYC






PWGQGTLVTVSS

SSYAGSSNVMFGGGTKLTVL



C703
6.2
235
EVQLLESGGGLVQPGGSLRLSCAGSGFTFSHYALSW
236
SYELTQSPSVSVAPGKTARITCGGDSIGSKN




m

VRQAPGKGLEWVSCISGTGGNSHYADSVKGRFTSSR

VHWYQQKPGQAPVLVMYYDNDRPSGIPE






DNSKNILYLQMNSLRAEDTAVYFCAKGGDFWSGYLI

RFSGYNSGNTATLSISRVEAGDEADYYCLV






PFDSWGQGTLVTVSS

WDGSGDPWVFGGGTKLTVL



C704
6.2
237
VQLVESGGGVVQPGRSLRLSCAASGFTFSRYGMHW
238
IRMTQSPSSLSASVGDRVTITCQASQDINNY




m

VRQAPGKGLEWVAVSSYDGSNEYYANSVKGRFTISR

LNWYQQKPGKAPKLLIYDASDLETGVPSR






DNSKNTLYLQMNSLRAEDTAVYYCAKTGASYCGGD

FSGGGSGTDFTFTISSLQPEDIATYYCQHYN






CPFHFDYWGQGTLVTVSS

NLPITFGQGTRLEIK



C706
6.2
239
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNVWMS
240
EIVLTQSPGTLSLSPGERASLSCRARQSVYS




m

WVRQAPGKGLEWVGRIKSKIDGGTTEYAAPVKGRFI

NYLAWYQHKSGQAPRLLFYGASSRATDIP






ISRDDSKNTLSLQMNSLKTEDTAVYYCTTDHGREPP

DRFSASGSGTDFTLTISRLEPEDFAVYYCLQ






VHWGQGTLVTVSS

YGPSPTFGPGTRLEIK



C707
6.2
241
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNW
242
IRMTQSPSSLSASVGDRVTITCQASQAIASY




m

VRQAPGKGLAWVSSISSSNNIIYYADSVKGRFTISRD

LSWYQHKPGRAPKLLIYDASNLEIGVPSRF






DAKDSLYLHMKSLRADDTAVYFCARVPSWAPYQLL

SGSGSGTDFTFTISSLQSEDNATYYCQQYES






PGPFDYWGQGILVTVSS

LPGTFGGGTKVEIK



C708
6.2
243
EVQLVESGGGLVQPGGSLRLSCAASGFSFSTYWMSW
244
IRMTQSPSSVSASVGDRVTITCRASQGISSW




m

VRQAPGKGLEWVADIKQDGSEKYFVDSVKGRFTISR

LAWYQQKPGKAPKLLIYAASSLQSGVPSRF






DNAKNSLYLHLNSLRAEDTAVYYCAREMAGSGNYY

SGSESGTDFTLTISSLQPEDFATYYCQQANS






WFGYGMDVWGQGTTVTVSS

FPLTFGGGTKVEIK



C709
6.2
245
QVQLVQSGAEVRKPGASVKVSCMASGYTFNTYDIN
246
QSALTQPPSASGSPGQSVTISCTGTSSDVGG




m

WVRQGTGQGLEWMGWMNPNSGNTGHAQKFQGRV

YNFVSWFQQHPGKAPKLMIYEVSKRPSGV






AMTVNTSMNTAYMELSSLRSEDTAVYYCARGADML








NVAVGADFDYWGQGTLVTVSS

PDRFSGSKSANTASLTVSGLQAEDEADYFC





COV107
C565
6.2
247
EVQLVESGGGLIQPGGSLRLSCAASGLIVSSNYMNW
248
SSYAGSNNWVFGGGTKLTVL




m

VRQAPGKGLEWVSLLYSGGSTYYADSVKGRFTISRD

YLAWYQQKRGQAPRLLIYGASSRATGIPD






NSKNTLYLQMNSLRPEDTAVYYCARDLSVVGAFDI

RFSGSGSGTDFTLTISRLEPEDFAVYYCQQ






WGQGTMVTVSS

YGTSPRVTFGPGTKVDIK



C566
6.2
249
QVQLQESGPGLVKSSQTLSLNCSVFGASISSGGYYWT
250
NFMLTQPHSVSESPGKTVTISCSGSGGSIAS




m

WIRQHPGKGLEWIGYIHYRGTYYNPSLKSRVTMSVD

NYVQWYQQRPGSAPTAVIYEDNQRPSGVP






TSKNQFSLKVRSVSAADTAIYYCARAIVVVTLNWFD

DRFSGSIDSSSNSASLTISGLKTEDEADYYC






LWGQGTLVTVSS

QSYDTSNPVIFGGGTKLTV



C567
6.2
251
QVQLQESGPGLVKPSETLSLTCTVSGGSVINGSYYWS
252
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGN




m

WIRQPPGKGLEWIGFVYYSGSTNYNPSLKSRVTISVD

NYVSWYQQLPGAAPKLLIYENNMRPSGIP






TSKNQFSLNLNSVTAADTAVYYCATGSKSSYYFDYW

DRFSGSKSGTSATLGITGLQTGDEADYYCG






GQGTLVTVSS

TWDSSLSVPYVFGTGTRVTVL



C568
6.2
253
QVQLVQSGAEVKKPGASVKVSCTASGYTFSSYYTHW
254
DIQMTQSPSSLSASVGDRVTITCRASQGIRN




m

VRQAPGQGLEWMGIINPGAGSTSYAQKFQGRVAMT

DLGWYQQKPGKAPKRLIYAASNLQSGVPS






TDTSTRTVYMELSSLRSDDTAVYYCARDEAFLPSAIF

RFSGSGSGTEFTLTISSLQPEDFATYYCLQH






VGDYWGQGTLVTVSS

STYPHTWTFGQGTKVEIK



C569
6.2
255
QVQLVESGGNVVQPGRSLRLSCAASGFTFSNYGMH
256
DIQMTQSPSSLSASVGDRVTITCQASQDISN




m

WIRQAPGKGLEWVAVISYDGSDKYYADSVKGRVTIS

YLNWYQQKPGKVPKLLIYDASNLETGVPS






RDNSKNTLYLQMNSLRAEDTAVYYCAKGGPYGDHV

RFSGSGSGTDFTFTISSLQPEDIATYYCQQF






RSDYWGLGTLVTVSS

HNLPLTFGQGTKLEIK



C570
6.2
257
QVQLQESGPGLVKPSETLSLTCTVSGASISSYYWSWI
258
DIQMTQSPSSLSASVGDRVTIACRASQSISS




m

RQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISLDTSK

YLHWYQQQPGKAPKLLIYAVTNLQSGVPS






NQFSLQLSSVTAADTAVYYCATYYFDNSGYSYGLDV

RFSGSGSGTDFTLTISSLQPEDFATYYCQQS






WGQGTTVTVSS

YSLPQTFGQGTKVEIK



C571
6.2
259
EVQLVESGGGLIQPGGSLKLSCVVSGFTVSRNYISWV
260
QSVLTQPPSVSGAPGQRVTIVCTGTSSNIGA




m

RQAPGKGLEWVSVLFAGGSTFYADSVKGRFAISRDN

GYDVHWYQQLPGRAPKVLVSGNN1RPSEV






SNNTLFLQMNSLRVEDTAIYYCARGDGELIFDQWGQ

PDRFSGSRSGTSASLAITSLQPEDEAQYYCQ






GTLVTVSS

SYDSNLYAVFGGGTKLTVL



C572
6.2
261
EVQLVESGGGLIKPGRSLRLSCTASGFTFGDYAMTW
262
DIVMTQSPLSLSVTPGEPASISCRSSQSLLHS




m

FRQAPGKGLEWVGFIRSKAYGGTTGYAASVKYRFTI

NGNNYFDWYLQKPGQSPQLLIYLASNRAS






SRDDSKSIAYLQMDSLKTEDTAVYYCTRWDGWSQH

GVPDRFSGSGSGTDFTLKISRVEAEDVGVY






DYWGQGTLVTVSS

YCMQVLQIPYTFGQGTKLEI



C573
6.2
263
QVQLQESGPGLVKPSGTLSLTCAVSGGSISTVNWWS
264
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

WVRQPPGKGLEWIGEIHHSGNTNHNPSLRSRVTISVD

YNYVSWYQQHPGKVPKVMIYDVSNRPSGI






KSKNQFSLKLRSVTAADTAVYYCARDGGRPGDAFD

SNRFSGSKSGNTASLTISGLQAEDEADYYC






LWGQGTMVTVSS

NSYRSNSTRVFGTGTKVTV



C574
1.3
265
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGFS
266
QSVLTQPPSASGTPGQRVTISCSGSSSNIGS




m

WVRQAPGQGLEWLGWISAYNGNTNYAQKLQGRVT

NTVNWYQQLPGTAPKLLIYSNNQRPSGVP






MTTDTSTSTAYMELRSLRSDDTAVYYCARAIAVAGT

DRFSGSKSGTSASLAISGLQSEDEADYYCA






SGEFDYWGQGTLVTVSS

AWDDSLNGHVVFGGGTKLTVL



C575
6.2
267
QVQLVQSGAEVKKPGASVMLSCKASGYTFTSYGISW
268
QSVLTQPPSASGTPGQRVTISCSGSSSNIGS




m

VRQAPGQGLEWMGWISAYNGNTNYAQKLQGRVSM

NTVNWYQQLPGTAPKLLIYSNNQRPSGVP






TTDTSTSTAYMELRSLRSDDTAVYYCARAMAVAGTS

DRFSGSKSGTSASLAISGLQSEDEADYYCA






GDFDYWGQGTLVTVSS

AWDDSLNGHVVFGGGTKLTVL



C576
1.3
269
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYAISW
270
EIVLTQSPGTLSLSPGERATLSCRASQSVSS




m

VRQAPGQGLEWMGGIIPILGTANYAQKFQGRVTITA

SYLAWYQQKPGQAPRLLIYGASSRATGIPD






DESTSTAYMELSSLRSEDTAVYYCASFHVAYGDYIPF

RFSGSGSGTDFTLTISRLEREDFAVYYCQQ






DYWGQGTLVTVSS

YGRSPTWTFGQGTKVEIK



C577
6.2
271
QVQLVQSGAEVKKPGSSVKVSCKASGDTFSIYAFSW
272
EIVLTQSPGTLSLSPGERATLSCRASQSVTS




m

VRQAPGQGLQWMGAIIPLLGTTNYAQKFLGRVTITA

SYLAWYQQKPGQAPRLLIYGASSRATGIPD






DESTSTTFMELSSLTSEDTAVYHCATFHVAYGDYIPF

RFSGSGSGTDFTLTISRLEPEDFAVYYCQQ






DSWGQGTLVIVSS

YGRSPTWTFGQGTKVEIK



C578
1.3
273
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSSGMHW
274
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

VRQAPGKGLEWVAIISYDGSNKYYADSVKGRFTISR

YNYVSWYQQHPGKAPKLMIYDVSNRPSG






DNSKNTLSLQMNSLRAEDTAVYYCAKDPLPFRDFFY

VSNRFSGSKSGNTASLTISGLQAEDEADYY






YYMDVWGKGTTVTVSS

CSSYTSSSTLGVFGTGTKVTVL



C579
6.2
275
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHL
276
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

VRQAPGKGLEWVAIISYDGSNKYYADSVKGRFTISR

YNYVSWYQQHPGKAPKLMIYDVSNRPSG






DSSKNTLYLQMNNLRAEDTAVYYCAKDPLPFRDYY

VSNRFSGSKSGNTASLTISGLQAEDEADYY






YYYMDVWGKGTTVTVSS

CSSYTSSSTLGVFGTGTKVTVL



C580
6.2
277
EVQLVQSGAEVKKAGESLKISCNSSGYSFTNYWIAW
278
QSVLTQPPSASGTPGQRVTISCSGSNSNIGD




m

VRQVPGKGLEWMGIIYLGDSDTRYSPSFQGRVTISAD

NTVHWYQQLPGTAPKLLIFNNNQRPSGVP






KSISAAYLHWSSLKASDTAIYYCARGGPPGGVKLELT

DRFSGSKSGTSASLAISGLQSDDEADYYCA






DFWGQGTLVTVSS

AWDDSLDGPVVFGGGTKLTVL



C581
1.3
279
EVQLVQSGAEVKKPGESLKISCKGSGYRFTSYWIAW
280
QSVLTQPPSASGTPGQRVTISCSGSSSNIGS




m

VRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISA

NTVNWYQQLPGTAPQLLIYNNYQRPSGVP






DQSISTAYLQWSSLKASDTAMYYCARGGPPGGVKLE

DRFSGSKSGTSASLAISGLQSEDEADYYCA






LTDYWGQGALVTVSS

AWDDSLNGPVVFGGGTKLTVL



C582
6.2
281
QVQLVESGGGVVQPGRSLRLSCVASGFTFSYFDMHW
282
SYELTQPPSVSVAPGKTARITCGGNNIGSKS




m

VRQAPGKGLEWVALISHDGSTTFYGDSARGRFTISRD

VHWYQQRPGQAPVLVIYYDSDRPSGIPERF






NSRNTLDLQMNSLRPEDTAVYFCAKPVDAAMFDFW

SGSNSGNTATLTISRVEAGDEADFYCQVW






GQGTLVTVS

DRSTNHLVVFGGGTQLTVL



C583
6.2
283
EVQLVESGGGLIQPGGSLRLSCAASILTVSRNYMSWV
284
DIQMTQSPSSLSASVGDRVTITCQASQDINK




m

RQAPGKGLEWVSSIYSGGTTYYADSVKGRFTISRDDS

YLNWYQQKPGKAPKLLIYDASNLETGVPS






KNTLYLQMNSLRAEDTAVYYCARPVVGGRAGMDV

RFSGSGSGTDFTFTISSLQPEDIGTFYCLHN






WGQGTTVTVSS

DNPPLTFGGGTKVEIK



C584
6.2
285
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYDMHW
286
DIQMTQSPSSLSASVGDRVTITCRASQSISS




m

VRQATGKGLEWVSAIGTAGDKYYPGSVKGRFTISRE

YLNWYQQKPGKAPKFLIYAASSLQSGVPS






NAKNSLYLQMNSLRAGDTAVYYCVRAGYSSGWPLY

RFSGSGSGTDFTLTISNLQPEDFATYYCQQS






WYFDLWGRGTLVTVSS

YRTPPEFTFGPGTKVDIK



C585
6.2
287
QVQLQESGPGLVKPSETLSLTCTVSGDSISSYFWSWIR
288
NFMLTQPHSVSESPGKTVTISCTGSSGSIAS




m

QPPGRGLEWIGYIHDSVNTNYNPSLKSRVTISVDTSK

NYVQWYQQRPGSAPTTVIYEDNQRPSGVP






SQFSLRLSSVTAADTAVYYCARCAWLRGSFDYWGQ

DRFSGSIDSSSNSASLTISGLKTEDEADYYC






GTLVTVSS

QSYDFSSHYVFGTGTKVTVL



C586
6.2
289
EVQLVESGGGLIQPGGSLRLSCTASGLIVSSNYMSWI
290
DIQMTQSPSSLSASVGDRVTITCQASQDIVK




m

RQAPGKGLEWVSLIYSGGSTFYADSVKGRFTISRDNS

YLNWYQQKSGKAPKLLIHDASNLETGVTS






KNTLFLHMNSLRAEDTAVYYCARHPYGTDVWGQGT

RFSGSGSGTHFTFTISSLQPEDLATYYCQQY






TVTVSS

DNLPITFGQGTRLEIK



C587
6.2
291
QVQLVQSGAEVKKSGSSVKVSCKASGGSFSSYAISW
292
QSALTQPASVSGSPGQSITISCTGTRSDVGR




m

VRQAPGQGLEWMGGIIPIFGTAKYAQKFQGRVTITA

NNLVSWYQHHPGKAPKVMIYEGSKRPSGV






DESTSTAYMELSSLRSEDTAVYYCASRWEQLNGGSW

STRFSGSKSGNTASLTISGLQAEDEADYYC






HYFDYWGQGTLVTVSS

CSYAGSSTFEGVFGGGTKLTVL



C588
6.2
293
EVQLVESGGGLVQPGGSLKLSCAASGFTFSGSAMHW
294
EIVLTQSPATLSLSPGERATLSCRASQSVSS




m

VRQASGKGLEWVGRIRNKANSYATAYGASVRGRFT

YLAWYQQKPGQAPRLLIYDASNRATGIPA






VSRDDSKNTAYLQMNSLKIEDTAVYYCTKDIAAGIP

RFSGSGSGTDFTLTISSLEPEDFAVYYCQQH






ALNWFDSWGQGTLVTVSS

TNWPPRITFGGGTKVEIK



C589
6.2
295
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGDYYWS
296
EIVLTQSPGTLSLSPGERATLSCRASQSVSS




m

WIRQPPGKGLEWIGYIYYSGSTNYNPSLRSRVTISVDT

RYLAWYQQKPGQAPRLLIYGASSRATGIPD






SKNQFSLRLRSVTAADTAVYYCARDAIGSASYGVEY

RFSGSGSGTEFTLTISRLEPEDFAVYYCQQY






FQHWGQGTLVTVSS

GSSPPYTFGQGTKLEIK



C590
6.2
297
QVQLVQSGAEVKKPGASVKVSCKVSGYNLTELSMY
298
EIVLTQSPGTLSLSPGERATLSCRASQSISYT




m

WVRQAPGKGLEWMGGFDPEDGGPIHAQKFQGRVT

SLAWYQQKPGQAPRLLIFGASRGATGTPD






MTEDPSTDTAYMELRSLRSEDTALYYCATGGLFMIR

RFSGSWSGTDFTLTISRLEPEDFAVYYCQQ






GLEIWGRGTLVTVSS

YGNSPRLSFGGGTKVEIK



C591
1.3
299
QVQLVQSGAEVKKPGASVKVSCKASGYILTDYFIHW
300
SYELTQPPSVSVSPGQTASITCSGDKLGDK




m

VRQAPGQGLEWMGWINPNSGGTNYAQKFQGRVTM

YACWYQQKAGQSPVLVIYQDSKRPSGIPE






TRDTSISTAYMELSRLRSDDTAVYHCARYKGTTVNT

RFSGSKSGNTATLTISGTQAMDEADYYCQ






NYYYGMDVWGQGTTVTVSS

AWDSSTVVFGGGTKLTVL



C592
6.2
301
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYFNH
302
SYELTQPPSVSVSPGQTASITCSGDKLRNK




m

WVRQAPGQGLEWMGWINPNSGGTNSAQKFQGRVT

YACWYQQKAGQSPMLVIYQDTKRPSGIPE






MTRDTSITTVYMELSRLRSDDTAVYYCARYKGTTVN

RFSGSNSGNTATLTISGTQAMDEADYYCQ






TNYYYGMDVWGQGTTVTVSS

AWDISTVVFGGGTKLTVL



C593
6.2
303
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINW
304
DIVMTQSPLPLPVTPGEPASISCRSSQSLLYS




m

VRQAPGQGLEWMGWMNPNSGNTDYAQKFQGRFTM

NGYNYLDWYLQKPGQSPQLLIYLGSNRAS






TRNTSISTAYMELSSLRSEDTAVYYCASRRWDPLTFY

GVPDRFSGSGSGTDFTLKISRVEAEDVGVY






YYMVVWGKGTTVTVSS

FCMQALQTPPTFGGGTKVEIK



C594
1.3
305
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHW
306
EIVMTQSPATLSVSPGERATLSCRASQSVSS




m

VRQAPGKGLEWVAVISDDGSNKYYADSVKGRFTISR

NLAWYQQKPGQAPRLLIYGASTRATGIPA






DNSKNTLYLQMNSLRAEDTAVYYCAKSWWLSENW

RFSGTGSGTEFTLTISSLQSEDFAVYYCQQY






FDPWGQGTLVTVSS

NNWPLTFGGGTKVEIK



C595
6.2
307
QVQLVESGGGVVQAGRSLRLSCAASGFTFSSFGLHW
308
EIVMTQSPATLSVSPGERATLSCRASQSVRS




m

VRQAPGKGLEWVAVISDDGANKYYADSVKGRFTISR

NLAWYQQKPGQAPRLLIYGASTRATGIPA






DNSKNTLYLQMNSLRADDTAKYYCAKSWWLSENW

RFSGSGSGTDFTLTISSLQSEDFAVYYCQQ






FDPWGQGTLVTVSS

YNNWPLTFGGGTKVEIK



C596
6.2
309
QVQLVESGGGVVQPGRSLRLSCAASGITFSHYGMHW
310
DIQMTQSPSSLSASVGDRVTITCQASQDVS




m

VRQAPGKGLEWVALISSDGSKKYYADSVKGRFTISR

NSLNWYQQKPGKAPKLLIYDASNLETGVP






DNSKSTLYLQMNSLRAEDTAIYYCAKDLGYYYGPPY

SRFSGSGSGTDFSFTISSLQPEDIATYYCLQ






GPDYWGQGTLVTVSS

YDNFSMYTFGQGTKLEIK



C032
1.3
311
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGW
312
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGA




m

VRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISA

GYDVHWYQQLPGTAPKLLIYGNSNRPSGV






DKSISTAYLQWSSLKASDTAMYYCARGVAVDWYFD

PDRFSGSKSGTSASLAITGLQAEDEADYYC






LWGRGTLVTVSS

QSYDSSLSALYVFGTGTKVTVL



C132
1.3
313
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSNNWWS
314
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

CVRQPPGKGLEWIGEIYHSGSTNYNPSLKSRVTISVD

YNYVSWYQQHPGKAPKLMIYDVSNRPSG






KSKNQFSLKLSSVTAADTAVYYCARGGDTAMGPEY

VSNRFSGSKSGNTASLTISGLQAEDEADYY






FDYWGQGTLVTVSS

CSSYTSSSTLLFGGGTKLTVL



C143
1.3
315
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKYMTW
316
QSALTQPASVSGSPGQSITISCTGTSNDVGS




m

VRQAPGKGLEWVSVLYSGGSDYYADSVKGRFTISRD

YTLVSWYQQYPGKAPKLLIFEGTKRSSGIS






NSKNALYLQMNSLRVEDTGVYYCARDSSEVRDHPG

NRFSGSKSGNTASLTISGLQGEDEADYYCC






HPGRSVGAFDIWGQGTMVTVSS

SYAGASTFVFGGGTKLTVL



C144
1.3
317
EVQLVESGGGLIQPGGSLRLSCAASGFTVSNNYMSW
381
QSALTQPASVSGSPGQSITISCTGTSSDVGG




m

VRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRD

YNYVSWYQQHPGKAPKLMIYDVSNRPSG






KSKNTLYLQMNRLRAEDTAVYYCAREGEVEGYNDF

VSNRFSGSKSGNTASLTISGLQAEDEADYY






WSGYSRDRYYFDYWGQGTLVTVSS

CSSYTSSSTRVFGTGTKVTVL



C512
6.2
319
QVQLQESGPGLVKPSGTLSLTCAVSAGSISSNNWWS
320
QSALTQPASVSGSPGQSITISCTGTSSDVGA




m

WVRQPPGKGLEWIGEVYHNGNINYNPSLKSRVTLSV

NNYVSWYQQHPGKAPKLMIYDVNERPSG






DKSKNQFSLKLSSVTAADTAVYYCAKGGDRAMGPE

VSNRFSGSKSGNTASLTISGLQTEDEADYY






YFDSWGQGTLVTVSS

CSSFASSSTLLFGGGTKLTVL



C164
1.3
321
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKYMTW
322
QSALTQPASVSGSPGQSITISCTGTSNDVGS




m

VRQAPGKGLEWVSVLYSGGSDYYADSVKGRFTISRD

YTLVSWYQQYPGKAPKLLIFEVTKRSSGIS






NSKNALYLQMNSLRVEDTGVYYCARDSSEVRDHPG

NRFSGSKSGNTASLTISGLQGEDEADYYCC






HPGRSVGAFDIWGQGTMVTVSS

SYAGASTFVFGGGTKLTVL


















TABLE 4B









Anti-









Patient
body
EC50 [ng/ml]















ID
ID
RBD
R346S
E484K
Q493R
N439K
N440K
A475V





COV47
C050
1.93
1.67
>10000
1.45
1.47
1.79
1.68



C051
1.65
2.30
200.40
1.46
1.63
2.09
1.57



C052
1.23
1.30
>10000
12.15
1.52
1.65
1.41



C053
1.53
1.57
>10000
2.12
1.65
1.82
1.61



C054
1.58
1.59
>10000
>10000
1.92
1.86
1.82



C055
1.25
1.30
3.15
1.27
1.47
1.35
1.23



C057
2.31
2.43
>10000
9.78
1.72
1.83
1.83



C058
2.28
2.62
>10000
601.30
2.36
2.71
2.27



C059
1.88
2.27
>10000
4.37
5.69
1.63
1.69



C060
43.54
22.02
4040.00
4328.00
111.70
773.50
>10000



C062
4.69
9.39
127.50
10.84
17.40
26.93
64.52



C063
414.00
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C064
362.70
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C065
29.13
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C066
4.20
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C067
6.98
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C068
5.46
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C069
381.40
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C081
12.47
6.85
6.51
8.36
6.84
4.14
6.13



C083
25.12
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C085
2.38
2.73
4.30
>10000
3.72
3.93
2.55



C086
3.01
3.08
5.36
456.00
3.18
2.87
2.68



C088
2.44
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C089
4.69
9.32
>10000
11.64
40.61
49.85
58.56



C090
6.22
11.82
40.01
18.65
31.23
100.20
42.96



C518
1.13
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C519
1.07
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.


COV72
C501
>10000
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C502
6.48
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C503
6.55
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C504
9.08
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C505
15.98
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C506
5.94
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C507
5.60
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C508
>10000
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C509
4.44
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C510
308.50
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C511
1.33
0.96
1.24
1.43
0.91
1.21
1.27



C512
1.68
2.13
1.43
1.63
1.38
1.60
1.68



C513
1.31
0.99
1.42
1.21
1.31
1.28
1.40



C514
0.82
0.98
0.87
0.94
0.98
1.07
0.93



C515
1.73
1.35
2.49
3.49
1.44
1.60
10.72



C516
5.72
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C517
0.87
1.03
1.19
1.20
1.26
1.39
1.25



C597
3.77
2.45
4.42
4.20
2.08
1.95
2.57



C598
3.78
2.57
3.16
3.02
2.06
2.08
2.45


COV96
C523
9.08
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C524
5.00
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C525
10.56
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C526
18.25
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C527
13.44
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C528
5.66
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C529
8.00
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C530
10.46
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C531
6.84
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C532
1.00
1.15
1.36
2.80
4.44
3.98
18.92



C533
1.61
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C534
4.85
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C535
2.46
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C536
1.88
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C537
41.85
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C538
3.95
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C539
1.30
1.16
1.79
1.37
1.41
1.79
1.49



C540
2.90
1.72
2.32
1.77
1.78
2.62
1.96



C542
1.07
1.08
0.69
1.80
1.76
1.55
2.33



C543
1.28
1.41
1.23
3.84
4.64
2.78
2.23



C544
2.34
2.05
2.73
2.09
2.15
2.85
2.21



C545
3.68
1.84
2.07
1.54
3.43
2.74
2.62



C546
3.57
2.28
2.44
10.79
24.50
25.91
38.13



C547
1.78
1.88
2.81
11.65
19.19
17.39
4.99



C548
1.72
1.94
>10000
49.38
1.78
1.55
1.68



C549
1.76
1.91
1.48
1.48
2.13
2.61
2.40



C550
2.56
2.77
6.18
6.26
11.40
7.48
20.44



C552
1.08
1.16
1.14
1.41
1.37
2.17
1.77



C553
1.19
1.27
1.13
1.77
1.73
2.48
2.11



C554
8.20
2.36
7.01
>10000
11.96
19.72
32.37



C555
2.88
1.63
2.32
3.42
4.28
4.79
6.13



C556
1.36
1.88
2.29
1.35
1.53
1.44
1.24



C557
2.18
1.25
2.26
1.24
1.69
2.01
1.34



C558
2.41
1.58
1.56
24.28
5.10
16.29
1.13



C559
2.89
1.96
2.00
44.53
4.09
>10000
3.47



C560
1.60
1.23
2.14
4.08
5.07
6.09
7.02



C561
1.53
0.89
1.09
2.56
2.72
2.48
2.86



C562
2.55
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C563
1.19
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C564
14.64
6.59
9.81
251.10
233.20
2113.00
396.90



C213
2.02
1.59
1.87
1.31
1.79
1.61
1.54



C217
2.28
1.68
1.94
1.78
1.81
1.80
1.57


COV57
C070
>10000
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C073
20.61
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C075
>10000
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C077
45.95
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C078
3859.00
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C079
>10000
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C080
1.97
1.74
2.66
2.00
2.27
2.28
2.60



C091
89.45
3.53
8.09
3.76
3.04
23.38
4.28



C092
7.07
2.78
3.14
3.14
2.41
3.22
2.92



C093
1.02
0.88
37.05
235.60
2.92
3.20
2.35



C094
1.67
1.56
244.90
931.60
2.83
2.46
1.97



C034
15.67
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C035
15.16
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C520
>10000
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C521
6.90
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C522
0.93
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.


COV21
C095
1.10
1.05
>10000
1.53
1.44
1.06
1.08



C096
5.18
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C097
3.45
2.70
3.58
4.88
2.83
2.23
2.37



C098
7.70
12.94
676.50
1402.00
49.69
20.56
>10000



C099
2.45
2.25
7.61
3.95
1.85
1.94
1.83



C043
12.13
11.20
18.77
1.35
1.89
1.45
1.37



C044
1821.00
2.89
2747.00
2.20
2.62
40.21
94.12



C045
7.00
1.77
4.16
1.74
4.84
3.58
4.04



C046
4.02
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C047
11.10
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C048
4.80
5.02
17.10
6.93
3.74
4.09
3.89



C049
4.09
4.78
7.73
4.79
3.27
2.76
3.32



C710
17.80
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C703
10.95
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C704
13.38
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C706
73.48
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C707
25.99
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C708
130.00
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C709
7.56
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.


COV107
C565
1.27
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C566
5.88
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C567
18.90
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C568
5.99
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C569
11.05
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C570
0.74
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C571
4.63
2.83
26.56
1.93
4.10
4.78
>10000



C572
2.90
2.43
3974.00
297.40
2.02
1.46
2.20



C573
2.20
3555.00
5.57
2.27
1.90
1.61
2.09



C574
8.12
>10000
>10000
2.61
5.39
>10000
4.68



C575
6.09
>10000
>10000
2.89
5.50
>10000
4.40



C576
5.29
2.79
7.88
2.68
3.07
4.37
2.63



C577
1.32
0.70
1.97
1.87
1.84
1.89
1.66



C578
1.08
1.27
136.70
>10000
1.32
1.69
1.39



C579
3.48
2.37
2108.00
>10000
3.30
4.20
3.37



C580
1.82
1.69
2.50
1.83
2.21
1.93
1.99



C581
1.58
3.04
2.75
1.53
1.77
1.81
1.74



C582
8.43
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C583
4.42
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C584
10.50
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C585
11.00
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C586
5.42
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C587
4.39
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C588
1.36
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C589
6.61
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C590
2.81
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C591
3.83
3.95
>10000
5.37
5.26
4.30
4.21



C592
6.00
6.34
>10000
5.87
4.48
5.83
5.04



C593
4.36
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.



C594
2.63
6.30
37.37
1.76
17.83
7.23
2.05



C595
2.04
1.67
4.49
1.03
9.20
3.19
2.30



C596
21.02
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.













Anti-
Neutralization













Patient
body
EC50 [ng/ml]
IC50
IC90















ID
ID
S477N
V483A
V367F
[ng/ml]
[ng/ml]







COV47
C050
1.51
1.88
1.78
12.92
28.41




C051
1.70
1.98
2.01
12.51
91.69




C052
1.52
1.42
1.53
4.89
27.79




C053
1.56
1.83
1.63
8.23
39.80




C054
1.60
1.73
1.54
4.84
15.45




C055
1.16
1.54
1.28
6.40
36.83




C057
1.40
2.00
1.96
2.78
33.59




C058
1.93
2.85
2.31
5.28
31.55




C059
1.52
2.04
1.93
8.35
24.49




C060
38.21
1413.00
7849.00
>10000
>10000




C062
5.70
5.55
3.90
703.61
>10000




C063
n.d.
n.d.
n.d.
>10000
>10000




C064
n.d.
n.d.
n.d.
3053.48
>10000




C065
n.d.
n.d.
n.d.
2746.14
>10000




C066
n.d.
n.d.
n.d.
22.80
136.01




C067
n.d.
n.d.
n.d.
87.33
350.23




C068
n.d.
n.d.
n.d.
54.70
114.53




C069
n.d.
n.d.
n.d.
10.04
99.15




C081
7.24
8.33
6.11
309.73
>10000




C083
n.d.
n.d.
n.d.
253.56
>10000




C085
2.19
2.18
1.97
17.18
76.89




C086
2.61
2.85
2.39
7.02
40.88




C088
n.d.
n.d.
n.d.
14.54
47.15




C089
10.00
10.74
125.30
>10000
>10000




C090
10.51
9.70
84.08
>10000
>10000




C518
n.d.
n.d.
n.d.
31.03
78.53




C519
n.d.
n.d.
n.d.
23.81
192.33



COV72
C501
n.d.
n.d.
n.d.
>10000
>10000




C502
n.d.
n.d.
n.d.
12.49
38.46




C503
n.d.
n.d.
n.d.
21.57
81.32




C504
n.d.
n.d.
n.d.
>10000
>10000




C505
n.d.
n.d.
n.d.
234.42
>10000




C506
n.d.
n.d.
n.d.
>10000
>10000




C507
n.d.
n.d.
n.d.
1102.33
>10000




C508
n.d.
n.d.
n.d.
>10000
>10000




C509
n.d.
n.d.
n.d.
14.21
112.09




C510
n.d.
n.d.
n.d.
>10000
>10000




C511
0.96
1.13
1.12
28.83
89.14




C512
1.46
1.79
1.87
52.23
274.99




C513
1.12
1.04
1.11
12.86
88.44




C514
0.98
1.02
1.21
22.28
86.32




C515
1.28
1.43
1.55
11.04
51.00




C516
n.d.
n.d.
n.d.
8.85
35.24




C517
1.24
1.29
1.44
11.31
49.51




C597
2.01
2.17
2.19
5.09
20.05




C598
2.16
2.27
2.21
7.12
31.29



COV96
C523
n.d.
n.d.
n.d.
973.58
>10000




C524
n.d.
n.d.
n.d.
8.01
38.55




C525
n.d.
n.d.
n.d.
317.73
3940.15




C526
n.d.
n.d.
n.d.
412.25
>10000




C527
n.d.
n.d.
n.d.
917.08
>10000




C528
n.d.
n.d.
n.d.
4005.30
>10000




C529
n.d.
n.d.
n.d.
577.95
5512.55




C530
n.d.
n.d.
n.d.
1068.11
>10000




C531
n.d.
n.d.
n.d.
55.18
719.62




C532
3.00
4.36
6.28
116.15
1779.53




C533
n.d.
n.d.
n.d.
14.15
98.87




C534
n.d.
n.d.
n.d.
>10000
>10000




C535
n.d.
n.d.
n.d.
372.46
>10000




C536
n.d.
n.d.
n.d.
91.11
837.79




C537
n.d.
n.d.
n.d.
>10000
>10000




C538
n.d.
n.d.
n.d.
>10000
>10000




C539
1.43
1.60
1.92
657.71
>10000




C540
1.88
2.43
2.39
7379.68
>10000




C542
1.47
1.42
1.38
16.46
97.25




C543
1.66
2.28
1.85
1389.22
>10000




C544
2.00
2.33
2.37
2413.78
>10000




C545
1.38
1.19
1.66
2711.36
>10000




C546
10.85
12.37
8.97
>10000
>10000




C547
3.08
4.12
4.02
5301.94
>10000




C548
1.49
1.35
1.45
30.51
207.19




C549
2.29
2.34
2.64
14.07
32.09




C550
7.27
6.83
48.37
>10000
>10000




C552
1.48
1.91
1.99
3095.35
>10000




C553
1.90
2.28
2.38
687.37
>10000




C554
10.86
5.70
7.51
>10000
>10000




C555
4.34
4.18
5.22
276.16
>10000




C556
1.12
1.10
0.81
47.18
738.16




C557
1.18
0.95
0.92
21.52
2070.32




C558
1.03
>10000
1.06
>10000
>10000




C559
1.37
>10000
2.90
613.04
>10000




C560
4.20
3.67
4.28
145.86
1947.93




C561
2.87
3.17
3.19
47.02
197.28




C562
n.d.
n.d.
n.d.
2552.29
>10000




C563
n.d.
n.d.
n.d.
4.51
22.94




C564
44.26
38.27
39.96
>10000
>10000




C213
1.42
1.17
1.38
2128.97
>10000




C217
1.47
1.25
1.48
8055.33
>10000



COV57
C070
n.d.
n.d.
n.d.
>10000
>10000




C073
n.d.
n.d.
n.d.
>10000
>10000




C075
n.d.
n.d.
n.d.
>10000
>10000




C077
n.d.
n.d.
n.d.
>10000
>10000




C078
n.d.
n.d.
n.d.
>10000
>10000




C079
n.d.
n.d.
n.d.
>10000
>10000




C080
2.27
2.22
2.44
44.28
1888.45




C091
3.47
117.90
25.24
56.67
630.92




C092
2.70
3.09
3.78
227.25
>10000




C093
2.42
3.19
2.51
22.80
81.34




C094
2.08
2.29
2.44
470.54
1472.13




C034
n.d.
n.d.
n.d.
1689.38
>10000




C035
n.d.
n.d.
n.d.
>10000
>10000




C520
n.d.
n.d.
n.d.
>10000
>10000




C521
n.d.
n.d.
n.d.
11.30
61.22




C522
n.d.
n.d.
n.d.
20.64
73.97



COV21
C095
1.15
0.94
1.07
11.28
52.56




C096
n.d.
n.d.
n.d.
80.20
349.01




C097
2.35
2.12
2.45
9.60
31.11




C098
6.35
9.39
5.39
478.60
4246.68




C099
1.64
1.55
1.54
27.23
86.08




C043
1.52
1.35
1.52
10.56
74.43




C044
2.13
2.64
2.53
>10000
>10000




C045
1.61
1.74
1.77
>10000
>10000




C046
n.d.
n.d.
n.d.
8.69
52.59




C047
n.d.
n.d.
n.d.
>10000
>10000




C048
3.38
3.99
3.14
62.20
522.84




C049
2.41
2.83
3.05
18.12
129.11




C710
n.d.
n.d.
n.d.
>10000
>10000




C703
n.d.
n.d.
n.d.
681.46
>10000




C704
n.d.
n.d.
n.d.
>10000
>10000




C706
n.d.
n.d.
n.d.
2030.41
>10000




C707
n.d.
n.d.
n.d.
>10000
>10000




C708
n.d.
n.d.
n.d.
488.95
8858.44




C709
n.d.
n.d.
n.d.
406.54
>10000



COV107
C565
n.d.
n.d.
n.d.
25.58
77.59




C566
n.d.
n.d.
n.d.
129.68
1776.43




C567
n.d.
n.d.
n.d.
>10000
>10000




C568
n.d.
n.d.
n.d.
>10000
>10000




C569
n.d.
n.d.
n.d.
2427.93
>10000




C570
n.d.
n.d.
n.d.
207.05
>10000




C571
3.79
3.51
3.28
326.24
2134.35




C572
1.49
3.19
1.72
72.63
1800.09




C573
1.36
1.40
1.54
13.41
117.64




C574
2.63
3.02
2.71
>10000
>10000




C575
2.39
2.66
2.31
5394.51
>10000




C576
2.61
2.54
2.27
16.19
312.74




C577
1.70
1.79
1.83
419.38
>10000




C578
1.56
1.52
1.64
13.27
150.36




C579
2.93
3.79
3.20
154.75
1054.97




C580
2.03
1.75
2.11
116.79
575.02




C581
1.84
1.59
4.26
31.57
351.60




C582
n.d.
n.d.
n.d.
161.62
2079.03




C583
n.d.
n.d.
n.d.
37.71
103.79




C584
n.d.
n.d.
n.d.
3453.82
>10000




C585
n.d.
n.d.
n.d.
222.00
1198.28




C586
n.d.
n.d.
n.d.
45.20
126.36




C587
n.d.
n.d.
n.d.
6.17
31.00




C588
n.d.
n.d.
n.d.
12.00
122.24




C589
n.d.
n.d.
n.d.
227.05
2760.53




C590
n.d.
n.d.
n.d.
96.65
425.47




C591
3.15
3.66
3.26
245.65
2213.79




C592
5.10
5.37
5.58
18.96
160.71




C593
n.d.
n.d.
n.d.
10.24
45.28




C594
1.78
2.01
1.84
158.54
855.34




C595
1.95
2.08
1.85
53.21
636.88




C596
n.d.
n.d.
n.d.
965.51
>10000










To determine whether the antibodies expressed by memory B cells at the late time point also showed altered breadth, we compared them to earlier clonal relatives in binding assays using control and mutant RBDs: The mutations E484K and Q493R were selected for resistance to class 2 antibodies such as C144 and C121 that bind directly to the ACE2 interaction ridge in the RBD, while R346S, N439K, and N440K were selected for resistance to class 3 antibodies such as C135 that do not directly interfere with ACE-2 binding (FIG. 3c). In addition, V367F, A475V, S477N, and V483A represent circulating variants that confer complete or partial resistance to class 1 and 2 antibodies (FIG. 3c). Out of 45 paired singlets and clones appearing at both time points, 38 (80%) showed increased binding to mutant RBDs at the 6.2 month time point (FIGS. 11b-j, Table 5). For example, C144, an antibody recovered at the 1.3 month time point, was unable to bind to Q493R or E484K RBDs, but all 4 of its 6.2 month clonal derivatives bound to Q493R, and one also showed binding to E484K (FIG. 3d). Overall, the most pronounced increase in binding occurred for RBD mutations in amino acid positions such as E484, Q493, N439, N440, and R346 that are critical for binding of class 2 and 3 antibodies (FIG. 3e, FIGS. 11b-j, and Table 5).









TABLE 5





mAb EC50s





















Epitope





EC50 (ng/ml)















Patient

Antibody
RBD
R346S
E484K
Q493R
N439K
N440K





21
shared
C005 (1.3 m)
2.846
2.838
>10000
4.534
1.897
1.649



clones
C043 (6.2 m)
12.13
11.2
18.77
1.347
1.891
1.446




C002 (1.3 m)
1.983
2.108
>10000
2823
1.806
1.283




C095 (6.2 m)
1.097
1.045
>10000
1.53
1.442
1.059




C021 (1.3 m)
4.192
4.698
87.2
>10000
30.24
8.461




C097 (6.2 m)
3.447
2.698
3.583
4.876
2.829
2.233



shared
C048 (1.3 m)
4.804
5.023
17.1
6.931
3.743
4.085



singlets
C049 (6.2 m)
4.086
4.778
7.733
4.794
3.273
2.755




C044 (1.3 m)
1821
2.893
2747
2.204
2.62
40.21




C045 (6.2 m)
7.002
1.772
4.159
1.744
4.835
3.584




C098 (1.3 m)
7.698
12.94
676.5
1402
49.69
20.56




C099 (6.2 m)
2.446
2.245
7.614
3.952
1.853
1.941



new
C047 (6.2 m)
11.1
n.d.
n.d.
n.d.
n.d.
n.d.



clones



randomly
C046 (6.2 m)
4.02
n.d.
n.d.
n.d.
n.d.
n.d.



selected
C096 (6.2 m)
5.18
n.d.
n.d.
n.d.
n.d.
n.d.




C703 (6.2 m)
10.95
n.d.
n.d.
n.d.
n.d.
n.d.




C704 (6.2 m)
13.38
n.d.
n.d.
n.d.
n.d.
n.d.




C706 (6.2 m)
73.48
n.d.
n.d.
n.d.
n.d.
n.d.




C707 (6.2 m)
25.99
n.d.
n.d.
n.d.
n.d.
n.d.




C708 (6.2 m)
130
n.d.
n.d.
n.d.
n.d.
n.d.




C709 (6.2 m)
7.559
n.d.
n.d.
n.d.
n.d.
n.d.




C710 (6.2 m)
17.8
n.d.
n.d.
n.d.
n.d.
n.d.


47
shared
C144 (1.3 m)
1.831
1.8235
>10000
>10000
1.822
1.872



clones
C050 (6.2 m)
1.929
1.668
>10000
1.449
1.471
1.793




C051 (6.2 m)
1.65
2.3
200.4
1.458
1.628
2.094




C052 (6.2 m)
1.23
1.3
>10000
12.15
1.52
1.654




C053 (6.2 m)
1.5255
1.568
>10000
2.118
1.653
1.821




C054 (6.2 m)
1.5785
1.589
>10000
>10000
1.916
1.857




C164 (1.3 m)
1.4135
1.548
76.52
1.354
1.614
1.42




C143 (1.3 m)
2.0095
1.8425
500.55
2.112
2.163
1.724




C055 (6.2 m)
1.2492
1.299
3.151
1.272
1.474
1.351




C058 (1.3 m)
2.284
2.62
>10000
601.3
2.356
2.707




C057 (6.2 m)
2.31
2.4325
>10000
9.78
1.718
1.827




C059 (6.2 m)
1.88
2.2665
>10000
4.371
5.691
1.634




C148 (1.3 m)
616.6
280.5
7067
>10000
114.6
>10000




C060 (6.2 m)
43.54
22.02
4040
4328
111.7
773.5




C151 (1.3 m)
15.02
20.25
38.13
22.87
45.31
226.4




C062 (6.2 m)
4.689
9.391
127.5
10.84
17.4
26.93



shared
C089 (1.3 m)
4.694
9.324
>10000
11.64
40.61
49.85



singlets
C090 (6.2 m)
6.216
11.82
40.01
18.65
31.23
100.2




C085 (1.3 m)
2.38
2.727
4.296
>10000
3.72
3.925




C086 (6.2 m)
3.008
3.08
5.363
456
3.183
2.867



new
C518 (6.2 m)
1.13
n.d.
n.d.
n.d.
n.d.
n.d.



clones
C519 (6.2 m)
1.065
n.d.
n.d.
n.d.
n.d.
n.d.



randomly
C063 (6.2 m)
414
n.d.
n.d.
n.d.
n.d.
n.d.



selected
C064 (6.2 m)
362.7
n.d.
n.d.
n.d.
n.d.
n.d.




C065 (6.2 m)
29.13
n.d.
n.d.
n.d.
n.d.
n.d.




C066 (6.2 m)
4.204
n.d.
n.d.
n.d.
n.d.
n.d.




C067 (6.2 m)
6.976
n.d.
n.d.
n.d.
n.d.
n.d.




C068 (6.2 m)
5.455
n.d.
n.d.
n.d.
n.d.
n.d.




C069 (6.2 m)
381.4
n.d.
n.d.
n.d.
n.d.
n.d.




C083 (1.3 m)
25.12
n.d.
n.d.
n.d.
n.d.
n.d.




C088 (6.2 m)
2.44
n.d.
n.d.
n.d.
n.d.
n.d.


57
shared
C032 (1.3 m)
17.29
934.8
72.62
25.82
68.28
1320



clones
C080 (6.2 m)
1.969
1.736
2.657
1.998
2.268
2.283




C093 (1.3 m)
1.02
0.8772
37.05
235.6
2.918
3.201




C094 (6.2 m)
1.67
1.557
244.9
931.6
2.827
2.458




C091 (1.3 m)
89.45
3.533
8.09
3.762
3.038
23.38




C092 (6.2 m)
7.066
2.776
3.135
3.137
2.405
3.22



new
C520 (6.2 m)
>10000
n.d.
n.d.
n.d.
n.d.
n.d.



clones
C521 (6.2 m)
6.9
n.d.
n.d.
n.d.
n.d.
n.d.




C522 (6.2 m)
0.93
n.d.
n.d.
n.d.
n.d.
n.d.



randomly
C034 (1.3 m)
15.67
n.d.
n.d.
n.d.
n.d.
n.d.



selected
C035 (1.3 m)
15.16
n.d.
n.d.
n.d.
n.d.
n.d.




C070 (6.2 m)
>10000
n.d.
n.d.
n.d.
n.d.
n.d.




C073 (6.2 m)
20.61
n.d.
n.d.
n.d.
n.d.
n.d.




C075 (6.2 m)
>10000
n.d.
n.d.
n.d.
n.d.
n.d.




C077 (6.2 m)
45.95
n.d.
n.d.
n.d.
n.d.
n.d.




C078 (6.2 m)
3859
n.d.
n.d.
n.d.
n.d.
n.d.




C079 (6.2 m)
>10000
n.d.
n.d.
n.d.
n.d.
n.d.


72
shared
C132 (1.3 m)
3.5625
>10000
7.5395
2.547
3.811
2.21



clones
C512 (6.2 m)
1.6785
2.1335
1.4285
1.625
1.376
1.595




C128 (1.3 m)
2.28
1.606
2.958
1.933
2.092
2.028




C513 (6.2 m)
1.31
0.9926
1.415
1.211
1.312
1.284




C515 (1.3 m)
1.73
1.35
2.486
3.49
1.436
1.603




C511 (6.2 m)
1.33
0.9596
1.243
1.434
0.9147
1.208




C516 (1.3 m)
5.72
n.d.
n.d.
n.d.
n.d.
n.d.




C502 (6.2 m)
6.48
n.d.
n.d.
n.d.
n.d.
n.d.



shared
C517 (1.3 m)
0.87
1.025
1.185
1.2
1.26
1.385



singlets
C514 (6.2 m)
0.82
0.9783
0.8688
0.9353
0.9793
1.068




C597 (1.3 m)
3.766
2.45
4.416
4.196
2.08
1.953




C598 (6.2 m)
3.782
2.573
3.158
3.019
2.056
2.084



randomly
C501 (6.2 m)
>10000
n.d.
n.d.
n.d.
n.d.
n.d.



selected
C503 (6.2 m)
6.477
n.d.
n.d.
n.d.
n.d.
n.d.




C504 (6.2 m)
6.549
n.d.
n.d.
n.d.
n.d.
n.d.




C505 (6.2 m)
9.082
n.d.
n.d.
n.d.
n.d.
n.d.




C506 (6.2 m)
15.98
n.d.
n.d.
n.d.
n.d.
n.d.




C510 (6.2 m)
5.942
n.d.
n.d.
n.d.
n.d.
n.d.




C507 (6.2 m)
5.602
n.d.
n.d.
n.d.
n.d.
n.d.




C508 (6.2 m)
>10000
n.d.
n.d.
n.d.
n.d.
n.d.




C509 (6.2 m)
4.439
n.d.
n.d.
n.d.
n.d.
n.d.




C135 (1.3 m)
3.019
>10000
3.552
2.03
2.66
>10000


96
shared
C201 (1.3 m)
1.585
1.388
2.863
1.247
1.24
1.615



clones
C539 (6.2 m)
1.302
1.163
1.789
1.374
1.413
1.791




C216 (1.3 m)
2.892
0.2625
2.244
2.045
2.391
3.187




C540 (6.2 m)
2.904
1.716
2.319
1.774
1.783
2.617




C547 (1.3 m)
1.784
1.883
2.808
11.65
19.19
17.39




C543 (6.2 m)
1.28
1.411
1.226
3.842
4.641
2.778




C209 (1.3 m)
1.76
1.493
2.439
1.515
1.633
2.06




C544 (6.2 m)
2.343
2.048
2.728
2.093
2.152
2.85




C202 (1.3 m)
1.586
1.325
2.689
101.2
2.89
2.597




C542 (6.2 m)
1.073
1.082
0.69
1.797
1.764
1.553




C213 (1.3 m)
2.022
1.59
1.866
1.314
1.786
1.61




C217 (1.3 m)
2.281
1.682
1.943
1.784
1.814
1.8




C545 (6.2 m)
3.677
1.839
2.074
1.542
3.426
2.74



shared
C548 (1.3 m)
1.717
1.9395
>10000
49.38
1.778
1.545



singlets
C549 (6.2 m)
1.758
1.914
1.475
1.478
2.132
2.612




C552 (1.3 m)
1.081
1.162
1.14
1.408
1.366
2.166




C553 (6.2 m)
1.194
1.266
1.129
1.772
1.729
2.476




C558 (1.3 m)
2.41
1.581
1.559
24.28
5.104
16.29




C559 (6.2 m)
2.887
1.961
2
44.53
4.09
>10000




C564 (1.3 m)
14.64
6.592
9.81
251.1
233.2
2113




C546 (6.2 m)
3.57
2.28
2.438
10.79
24.5
25.91




C560 (1.3 m)
1.6
1.228
2.143
4.082
5.072
6.094




C561 (6.2 m)
1.53
0.8889
1.087
2.561
2.722
2.478




C554 (1.3 m)
8.2
2.357
7.007
>10000
11.96
19.72




C555 (6.2 m)
2.88
1.63
2.315
3.423
4.284
4.793




C550 (1.3 m)
2.56
2.772
6.178
6.263
11.4
7.483




C532 (6.2 m)
1
1.145
1.356
2.798
4.438
3.981




C556 (1.3 m)
1.364
1.88
2.286
1.348
1.532
1.443




C557 (6.2 m)
2.179
1.254
2.261
1.238
1.693
2.013



new
C533 (6.2 m)
1.61
n.d.
n.d.
n.d.
n.d.
n.d.



clones
C534 (6.2 m)
4.849
n.d.
n.d.
n.d.
n.d.
n.d.




C535 (6.2 m)
2.46
n.d.
n.d.
n.d.
n.d.
n.d.




C536 (6.2 m)
1.875
n.d.
n.d.
n.d.
n.d.
n.d.




C537 (6.2 m)
41.85
n.d.
n.d.
n.d.
n.d.
n.d.




C538 (6.2 m)
3.945
n.d.
n.d.
n.d.
n.d.
n.d.




C562 (6.2 m)
2.554
n.d.
n.d.
n.d.
n.d.
n.d.




C563 (6.2 m)
1.187
n.d.
n.d.
n.d.
n.d.
n.d.



randomly
C523 (6.2 m)
9.076
n.d.
n.d.
n.d.
n.d.
n.d.



selected
C524 (6.2 m)
4.996
n.d.
n.d.
n.d.
n.d.
n.d.




C525 (6.2 m)
10.56
n.d.
n.d.
n.d.
n.d.
n.d.




C526 (6.2 m)
18.25
n.d.
n.d.
n.d.
n.d.
n.d.




C527 (6.2 m)
13.44
n.d.
n.d.
n.d.
n.d.
n.d.




C528 (6.2 m)
5.664
n.d.
n.d.
n.d.
n.d.
n.d.




C529 (6.2 m)
7.995
n.d.
n.d.
n.d.
n.d.
n.d.




C530 (6.2 m)
10.46
n.d.
n.d.
n.d.
n.d.
n.d.




C531 (6.2 m)
6.843
n.d.
n.d.
n.d.
n.d.
n.d.


107
shared
C114 (1.3 m)
4.048
22.16
1547
1.787
1.894
1.59



clones
C571 (6.2 m)
4.625
2.828
26.56
1.929
4.104
4.783




C115 (1.3 m)
3.154
2.908
>10000
250.6
2.517
2.092




C572 (6.2 m)
2.903
2.432
3974
297.4
2.016
1.462




C108 (1.3 m)
14.97
>10000
52.35
6.82
28.56
5




C573 (6.2 m)
2.202
3555
5.567
2.272
1.9
1.605



shared
C574 (1.3 m)
8.121
>10000
>10000
2.611
5.394
>10000



singlets
C575 (6.2 m)
6.086
>10000
>10000
2.893
5.501
>10000




C576 (1.3 m)
5.29
2.792
7.882
2.682
3.065
4.368




C577 (6.2 m)
1.3225
0.698
1.9705
1.872
1.837
1.889




C578 (1.3 m)
1.08
1.271
136.7
>10000
1.316
1.689




C579 (6.2 m)
3.48
2.365
2108
>10000
3.3
4.2




C581 (1.3 m)
1.583
3.042
2.746
1.533
1.77
1.809




C580 (6.2 m)
1.815
1.69
2.504
1.832
2.206
1.925




C591 (1.3 m)
3.832
3.951
>10000
5.374
5.255
4.304




C592 (6.2 m)
5.998
6.34
>10000
5.872
4.48
5.831




C594 (1.3 m)
2.632
6.299
37.37
1.762
17.83
7.225




C595 (6.2 m)
2.039
1.668
4.487
1.034
9.203
3.194



New
C565 (6.2 m)
1.27
n.d.
n.d.
n.d.
n.d.
n.d.



clones
C566 (6.2 m)
5.884
n.d.
n.d.
n.d.
n.d.
n.d.




C567 (6.2 m)
18.9
n.d.
n.d.
n.d.
n.d.
n.d.




C568 (6.2 m)
5.99
n.d.
n.d.
n.d.
n.d.
n.d.




C569 (6.2 m)
11.05
n.d.
n.d.
n.d.
n.d.
n.d.




C570 (6.2 m)
0.74
n.d.
n.d.
n.d.
n.d.
n.d.




C593 (6.2 m)
4.359
n.d.
n.d.
n.d.
n.d.
n.d.




C596 (6.2 m)
21.02
n.d.
n.d.
n.d.
n.d.
n.d.



randomly
C582 (6.2 m)
8.432
n.d.
n.d.
n.d.
n.d.
n.d.



selected
C583 (6.2 m)
4.424
n.d.
n.d.
n.d.
n.d.
n.d.




C584 (6.2 m)
10.5
n.d.
n.d.
n.d.
n.d.
n.d.




C585 (6.2 m)
11
n.d.
n.d.
n.d.
n.d.
n.d.




C586 (6.2 m)
5.422
n.d.
n.d.
n.d.
n.d.
n.d.




C587 (6.2 m)
4.392
n.d.
n.d.
n.d.
n.d.
n.d.




C588 (6.2 m)
1.362
n.d.
n.d.
n.d.
n.d.
n.d.




C589 (6.2 m)
6.614
n.d.
n.d.
n.d.
n.d.
n.d.




C590 (6.2 m)
2.812
n.d.
n.d.
n.d.
n.d.
n.d.


















Epitope






EC50 (ng/ml)















Patient

Antibody
A475V
S477N
V483A
V367F







21
shared
C005 (1.3 m)
1.576
1.537
1.455
1.415




clones
C043 (6.2 m)
1.365
1.524
1.349
1.515





C002 (1.3 m)
1.218
1.275
3.189
1.167





C095 (6.2 m)
1.08
1.152
0.9391
1.069





C021 (1.3 m)
6.825
3.965
4.32
3.45





C097 (6.2 m)
2.366
2.354
2.124
2.45




shared
C048 (1.3 m)
3.886
3.382
3.985
3.135




singlets
C049 (6.2 m)
3.316
2.412
2.834
3.051





C044 (1.3 m)
94.12
2.127
2.635
2.525





C045 (6.2 m)
4.043
1.606
1.742
1.774





C098 (1.3 m)
>10000
6.345
9.394
5.39





C099 (6.2 m)
1.828
1.642
1.549
1.541




new
C047 (6.2 m)
n.d.
n.d.
n.d.
n.d.




clones




randomly
C046 (6.2 m)
n.d.
n.d.
n.d.
n.d.




selected
C096 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C703 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C704 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C706 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C707 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C708 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C709 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C710 (6.2 m)
n.d.
n.d.
n.d.
n.d.



47
shared
C144 (1.3 m)
2.369
1.647
1.719
1.447




clones
C050 (6.2 m)
1.676
1.513
1.877
1.781





C051 (6.2 m)
1.572
1.697
1.981
2.009





C052 (6.2 m)
1.41
1.523
1.421
1.528





C053 (6.2 m)
1.612
1.562
1.831
1.625





C054 (6.2 m)
1.82
1.597
1.73
1.54





C164 (1.3 m)
2.185
1.377
1.503
1.302





C143 (1.3 m)
14.43
1.563
1.129
1.209





C055 (6.2 m)
1.226
1.161
1.54
1.28





C058 (1.3 m)
2.274
1.934
2.853
2.314





C057 (6.2 m)
1.831
1.4
1.998
1.956





C059 (6.2 m)
1.693
1.515
2.043
1.931





C148 (1.3 m)
>10000
30.99
>10000
>10000





C060 (6.2 m)
>10000
38.21
1413
7849





C151 (1.3 m)
67.25
20.35
19.02
13.45





C062 (6.2 m)
64.52
5.704
5.549
3.896




shared
C089 (1.3 m)
58.56
10
10.74
125.3




singlets
C090 (6.2 m)
42.96
10.51
9.695
84.08





C085 (1.3 m)
2.551
2.188
2.184
1.971





C086 (6.2 m)
2.675
2.605
2.848
2.389




new
C518 (6.2 m)
n.d.
n.d.
n.d.
n.d.




clones
C519 (6.2 m)
n.d.
n.d.
n.d.
n.d.




randomly
C063 (6.2 m)
n.d.
n.d.
n.d.
n.d.




selected
C064 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C065 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C066 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C067 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C068 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C069 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C083 (1.3 m)
n.d.
n.d.
n.d.
n.d.





C088 (6.2 m)
n.d.
n.d.
n.d.
n.d.



57
shared
C032 (1.3 m)
38.6
19.24
15.38
7.508




clones
C080 (6.2 m)
2.603
2.273
2.215
2.439





C093 (1.3 m)
2.351
2.418
3.192
2.505





C094 (6.2 m)
1.971
2.084
2.291
2.441





C091 (1.3 m)
4.281
3.467
117.9
25.24





C092 (6.2 m)
2.923
2.7
3.088
3.784




new
C520 (6.2 m)
n.d.
n.d.
n.d.
n.d.




clones
C521 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C522 (6.2 m)
n.d.
n.d.
n.d.
n.d.




randomly
C034 (1.3 m)
n.d.
n.d.
n.d.
n.d.




selected
C035 (1.3 m)
n.d.
n.d.
n.d.
n.d.





C070 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C073 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C075 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C077 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C078 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C079 (6.2 m)
n.d.
n.d.
n.d.
n.d.



72
shared
C132 (1.3 m)
3.736
2.228
2.233
2.127




clones
C512 (6.2 m)
1.682
1.455
1.794
1.873





C128 (1.3 m)
4.997
1.659
1.549
1.746





C513 (6.2 m)
1.403
1.118
1.038
1.112





C515 (1.3 m)
10.72
1.28
1.428
1.548





C511 (6.2 m)
1.268
0.963
1.125
1.123





C516 (1.3 m)
n.d.
n.d.
n.d.
n.d.





C502 (6.2 m)
n.d.
n.d.
n.d.
n.d.




shared
C517 (1.3 m)
1.248
1.239
1.292
1.441




singlets
C514 (6.2 m)
0.9336
0.9761
1.017
1.213





C597 (1.3 m)
2.573
2.007
2.171
2.189





C598 (6.2 m)
2.445
2.161
2.266
2.211




randomly
C501 (6.2 m)
n.d.
n.d.
n.d.
n.d.




selected
C503 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C504 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C505 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C506 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C510 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C507 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C508 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C509 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C135 (1.3 m)
2.06
1.79
2.108
2.081



96
shared
C201 (1.3 m)
1.308
1.245
1.339
1.399




clones
C539 (6.2 m)
1.49
1.432
1.603
1.917





C216 (1.3 m)
2.65
2.591
2.681
2.458





C540 (6.2 m)
1.962
1.881
2.429
2.392





C547 (1.3 m)
4.993
3.084
4.115
4.02





C543 (6.2 m)
2.229
1.663
2.278
1.851





C209 (1.3 m)
1.712
1.685
1.887
1.842





C544 (6.2 m)
2.211
2
2.332
2.372





C202 (1.3 m)
5589
2.069
1.733
1.714





C542 (6.2 m)
2.326
1.473
1.422
1.384





C213 (1.3 m)
1.538
1.415
1.168
1.376





C217 (1.3 m)
1.566
1.468
1.247
1.476





C545 (6.2 m)
2.624
1.377
1.192
1.655




shared
C548 (1.3 m)
1.68
1.486
1.349
1.452




singlets
C549 (6.2 m)
2.395
2.285
2.341
2.64





C552 (1.3 m)
1.771
1.476
1.908
1.989





C553 (6.2 m)
2.109
1.9
2.284
2.384





C558 (1.3 m)
1.125
1.033
>10000
1.06





C559 (6.2 m)
3.469
1.365
>10000
2.897





C564 (1.3 m)
396.9
44.26
38.27
39.96





C546 (6.2 m)
38.13
10.85
12.37
8.973





C560 (1.3 m)
7.018
4.199
3.672
4.279





C561 (6.2 m)
2.864
2.87
3.174
3.192





C554 (1.3 m)
32.37
10.86
5.703
7.508





C555 (6.2 m)
6.129
4.337
4.18
5.223





C550 (1.3 m)
20.44
7.269
6.825
48.37





C532 (6.2 m)
18.92
3.003
4.355
6.282





C556 (1.3 m)
1.242
1.124
1.101
0.8145





C557 (6.2 m)
1.341
1.178
0.9521
0.9152




new
C533 (6.2 m)
n.d.
n.d.
n.d.
n.d.




clones
C534 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C535 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C536 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C537 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C538 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C562 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C563 (6.2 m)
n.d.
n.d.
n.d.
n.d.




randomly
C523 (6.2 m)
n.d.
n.d.
n.d.
n.d.




selected
C524 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C525 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C526 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C527 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C528 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C529 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C530 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C531 (6.2 m)
n.d.
n.d.
n.d.
n.d.



107
shared
C114 (1.3 m)
827.6
1.426
1.405
2.932




clones
C571 (6.2 m)
>10000
3.791
3.51
3.281





C115 (1.3 m)
2.879
1.901
3.938
2.347





C572 (6.2 m)
2.2
1.485
3.186
1.722





C108 (1.3 m)
8.471
3.691
507.3
20.64





C573 (6.2 m)
2.086
1.358
1.398
1.544




shared
C574 (1.3 m)
4.677
2.626
3.015
2.707




singlets
C575 (6.2 m)
4.404
2.392
2.661
2.311





C576 (1.3 m)
2.628
2.611
2.544
2.267





C577 (6.2 m)
1.661
1.704
1.793
1.829





C578 (1.3 m)
1.385
1.561
1.517
1.644





C579 (6.2 m)
3.37
2.93
3.79
3.199





C581 (1.3 m)
1.737
1.837
1.586
4.255





C580 (6.2 m)
1.988
2.03
1.747
2.112





C591 (1.3 m)
4.205
3.149
3.663
3.259





C592 (6.2 m)
5.035
5.101
5.374
5.581





C594 (1.3 m)
2.045
1.78
2.009
1.839





C595 (6.2 m)
2.298
1.948
2.082
1.854




New
C565 (6.2 m)
n.d.
n.d.
n.d.
n.d.




clones
C566 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C567 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C568 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C569 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C570 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C593 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C596 (6.2 m)
n.d.
n.d.
n.d.
n.d.




randomly
C582 (6.2 m)
n.d.
n.d.
n.d.
n.d.




selected
C583 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C584 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C585 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C586 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C587 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C588 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C589 (6.2 m)
n.d.
n.d.
n.d.
n.d.





C590 (6.2 m)
n.d.
n.d.
n.d.
n.d.










Next, all 122 antibodies from the 6.2 month time point were tested for activity in a pseudotyped SARS-CoV-2 neutralization assay (FIG. 4a and Table 6). Consistent with RBD binding assays, the mean neutralization IC50 values were not significantly different at the two time points when all antibodies were compared (FIG. 4a). However, comparison of the antibodies that were present at both time points revealed a significant improvement of the IC50 values at 6.2 months (p=0.0003, FIG. 4b and FIG. 12a).









TABLE 6







Inhibitory concentrations of the monoclonal antibodies










mAb (1.3 months)
mAb (6.2 months)

















IC50
IC90

IC50
IC90


patient

ID
[ng/ml]
[ng/ml]
ID
[ng/ml]
[ng/ml]

















21
shared
C005
60.49*
205.20*
C043
10.56
74.43



clones
C002
8.88*
37.61*
C095
11.28
52.56













C021
 >10000*
C097
9.60
31.11













shared
C044
>10000
C045
>10000















singlets
C048
62.20
522.84
C049
18.12
129.11




C098
478.60
4246.68
C099
27.23
86.08














new



C047
>10000



clones



C710
>10000















randomly



C046
8.69
52.59



selected



C096
80.20
349.01







C706
2030.41
>10000










C707
>10000











C709
406.54
>10000



C708
488.95
8858.44



C703
681.46
>10000










C704
>10000














47
shared
C144
2.86
40.53
C050
12.92
28.41



clones



C051
12.51
91.69







C052
4.89
27.79







C053
8.23
39.80







C054
4.84
15.45




C164
59.32
811.44
C055
6.40
36.83




C143
336.47
3002.09




C058
5.28
31.55
C057
2.78
33.59







C059
8.35
24.49












C148
>10000
C060
>10000
















C151
1410.56
>10000
C062
703.61
>10000



shared
C085
17.18
76.89
C086
7.02
40.88













singlets
C089
>10000
C090
>10000















new



C518
31.03
78.53



clones



C519
23.81
192.33














randomly



C063
>10000















selected



C064
3053.48
>10000







C065
2746.14
>10000







C066
22.80
136.01







C067
87.33
350.23







C068
54.70
114.53







C069
10.04
99.15







C088
14.54
47.15


57
shared
C032
75.71
1402.00
C080
44.28
1888.45



clones



shared
C091
56.67
630.92
C092
227.25
>10000



singlets
C093
22.80
81.34
C094
470.54
1472.13














new



C520
>10000















clones



C521
11.30
61.22







C522
20.64
73.97














randomly



C070
>10000



selected



C073
>10000







C075
>10000







C077
>10000







C078
>10000







C079
>10000














72
shared
C132
1024.35
>10000
C512
52.23
274.99



clones
C128
70.06
274.60
C513
12.86
88.44




C515
11.04
51.00
C511
28.83
89.14




C516
8.85
35.24
C502
12.49
38.46



shared
C517
11.31
49.51
C514
22.28
86.32



singlets
C597
5.09
20.05
C598
7.12
31.29














randomly



C501
>10000















selected



C503
21.57
81.32










C504
>10000











C505
234.42
>10000










C506
>10000



C510
>10000











C507
1102.33
>10000










C508
>10000



















C509
14.21
112.09


96
shared
C201
3171.04
>10000
C539
657.71
>10000














clones
C216
>10000
C540
7379.68
>10000














C202
323.96
3694.13
C542
16.46
97.25



C547
5301.94
>10000
C543
1389.22
>10000



C209
2499.24
>10000
C544
2413.78
>10000



C213
2128.97
>10000
C545
2711.36
>10000



C217
8055.33
>10000














shared
C564
>10000
C546
12640.78
>10000















singlets
C548
30.51
207.19
C549
14.07
32.09




C552
3095.35
>10000
C553
687.37
>10000













C554
>10000
C555
276.16
>10000



C55O
>10000
C532
116.15
1779.53














C556
47.18
738.16
C557
21.52
2070.32













C558
>10000
C559
613.04
>10000














C560
145.86
1947.93
C561
47.02
197.28














new



C534
>10000















clones



C536
91.11
837.79










C537
>10000



C538
>10000



















C562
2552.29
>10000







C563
4.51
22.94







C533
14.15
98.87







C535
372.46
>10000



randomly



C523
973.58
>10000



selected



C524
8.01
38.55







C525
317.73
3940.15







C526
412.25
>10000







C527
917.08
>10000







C528
4005.30
>10000







C529
577.95
5512.55







C530
1068.11
>10000







C531
55.18
719.62













107
shared
C114
>10000
C571
326.24
2134.35















clones
C115
252.22
3497.40
C572
72.63
1800.09




C108
480.69*
>10000*
C573
13.41
117.64














shared
C574
>10000
C575
5394.51
>10000















singlets
C576
16.19
312.74
C577
419.38
>10000




C578
13.27
150.36
C579
154.75
1054.97




C581
31.57
351.60
C580
116.79
575.02




C591
245.65
2213.79
C592
18.96
160.71




C594
158.54
855.34
C595
53.21
636.88



New



C565
25.58
77.59



clones



C566
129.68
1776.43










C567
>10000



C568
>10000



















C569
2427.93
>10000







C570
207.05
>10000







C593
10.24
45.28







C596
965.51
>10000



randomly



C582
161.62
2079.03



selected



C583
37.71
103.79







C584
3453.82
>10000







C585
222.00
1198.28







C586
45.20
126.36







C587
6.17
31.00







C588
12.00
122.24







C589
227.05
2760.53







C590
96.65
425.47







*Robbiani et al. 2020






To determine whether the antibodies exhibiting altered RBD binding also show increased neutralizing breadth, 5 representative antibody pairs recovered at the two time points were tested against HIV-1 viruses pseudotyped with E484G, Q493R, and R346S mutant spike proteins (FIG. 4c, Table 6). Notably, the Q493R and E484G pseudotyped viruses were resistant to neutralization by C144; in contrast, its clonal derivative C051 neutralized both variants with IC50 values of 4.7 and 3.1 ng/ml respectively (FIGS. 4c-d). Similarly, R346S pseudotyped viruses were resistant to C032, but a clonal derivative C080 neutralized this variant with an IC50 of 5.3 ng/ml (FIG. 4c and FIGS. 12b-f). Consistent with the observed changes in binding and neutralizing activity, several late-appearing antibodies (e.g., C051) had acquired mutations directly in or adjacent to the RBD-binding paratope (FIG. 4e and FIG. 13). It was concluded that memory B cells that evolved during the observation period express antibodies with increased neutralizing potency and breadth.


Antibody evolution occurs by somatic mutation and selection in germinal centers wherein antigen can be retained in the form of immune complexes on the surface of follicular dendritic cells for prolonged periods of time. Persistent viral replication in tissues represents another potential source of antigen. SARS-CoV-2 replicates in ACE2-expressing cells in the lungs, nasopharynx, and small intestine, and viral RNA has been detected in stool samples even after the virus is cleared from the nasopharynx. To determine whether there might be antigen persistence in the intestine after resolution of clinical illness, we obtained biopsies from the upper and lower gastrointestinal (GI) tract of 14 individuals, an average of 4 months (range 2.8-5.5 months) after initial SARS-CoV-2 diagnosis (Table 7). Nasopharyngeal swab PCR assays were negative in all 14 individuals at the time of biopsy. However, biopsy samples from 3 of the 14 participants produced PCR amplicons that were sequence-verified as SARS-CoV-2. Immunostaining was performed to determine whether viral protein was also detectable in upper and lower GI tract, with de-identified biopsies from individuals pre-dating the pandemic (n=10) serving as controls. ACE2 was expressed on the intestinal brush border of SARS-CoV-2 recovered participants (FIGS. 5a and c). SARS-CoV-2 N protein was detected in the small intestinal enterocytes, from the duodenum and terminal ileum in 5 of 14 individuals but not in any control samples (FIGS. 5b and 5d and FIGS. 14-16). When detected, immunostaining was sporadic, patchy, exclusive to the intestinal epithelium and not associated with inflammatory infiltrates.









TABLE 7A







Sinai cohort characteristics









Baseline patient characteristics













Patient
Cases/

Age
Pertinent medical
Indication for
Date of


ID
controls
Sex
(years)
history/comorbidities
GI procedure
GI procedure





CGI088
case
M

seasonal allergies, asthma
GERD
June-20


CGI089
case
M

MM, HTN
IDA
July-20


CGI090
case
M

gout, HTN, prostate cancer
CRC screening, GERD
July-20


CGI091
case
F

asthma
bowel changes
July-20


CGI092
case
M

HTN, HLD
CRC screening, GERD
July-20


CGI093
case
F

fibromyalgia, PUD, IDA,
PUD
July-20






psoriasis


CGI094
case
M

IBD (Crohn)
IBD
August-20


CGI095
case
F

allergic rhinitis, GERD
IBS
August-20


OSH?


CGI096
case
M

prostate cancer, ESRD, DM,
Rectal bleeding
August-20






HTN


CGI097
case
M

IBD (Crohn)
IBD
August-20


CGI098
case
F

asthma, HTN, HCV
CRC screening
September-20


CGI099
case
M

CRC, IDA, CAD
IDA
September-20


CGI100
case
M

DM1, CD
CD
September-20


CGI106


ctrl 1
control
M
55
GERD, EE
epigastric pain
June-19


ctrl 2
control
F
66
HLD, MVP
abdominal pain
December-19


ctrl 3
control
F
82
DM2, OA, HTN, HLD, asthma,
dysphagia
July-19






COPD, CAD


ctrl 4
control
F
79
anemia, renal angiomyolipoma,
abdominal pain
September-18






breast cancer, DM2, HTN


ctrl 5
control
F
79
Afib, CHF, anemia, HTN, MR
weight loss
May-19


ctrl 6
control
M
33
DM2, obesity, HTN, heart
IDA
October-19






murmur


ctrl 7
control
M
56
GERD, HTN, DM2, migraine,
abdominal pain
April-19






OSA, IBS, diverticulosis


ctrl 8
control
M
42
none
rectal bleeding
September-19


ctrl 9
control
F
51
ulnar neuropathy, biceps
CRC screening
April-19






tendonitis


ctrl 10
control
F
23
none
abdominal pain
July-19





GERD (gastroesophageal reflux disease), CRC (colorectal cancer), IDA (iron deficiency anemia), PUD (peptic ulcer disease), IBD (inflammatory bowel disease), HLD (hyperlipidemia), MV (mitral valve prolapse), MR (mitral regurgitation), DM (diabetes melitus type 2) OA (osteoarthritis), HTN (arterial hypertension), COPD (chronic obstructive pulmonary disease), CAD (coronary artery disease), Afib (atrial fibrilation), CHF (congestive heart failure), OSA (obstructive sleep apnea), IBS (irritable bowel syN/Arome), CD (celiac disease), MM (multiple myeloma), ESRD (eN/A stage renal disease), HCV (hepatitis C), EE (eosinophilic esophagitis), MDD (major depressive disorder)













TABLE 7B







Sinai cohort characteristics

















Detection of

Detection of









SARS-CoV-2

SARS-CoV-2 by












nucleocapsid
Detection
PCR from
COVID-19 history


















(N) antigen by
of Corona
intestinal
Positive


Positive






immunoflu-
virion-like
biopsy
nasopha-

Symptom
nasopha-
Nasopha-



orescence
particles by
samples
ryngeal
Positive
onset
ryngeal
ryngeal

COVID-19


















(IF)
electron

Sub-
SARS-
SARS-
to GI
PCR to GI
PCR at
associated



















Patient
Duode-
Ile-
microscopy
Genomic
genomic
CoV-2
CoV-2
biopsy
biopsy
the time of
Hospi-
GI


ID
num
um
(EM)
SARS2
SARS2
PCR
serology
(days)
(days)
biopsy
talized
symptoms





CGI088
+
+
+


March-20
May-20
 92
 84
Negative
No
No


CGI089
+
+
N/A


March-20
July-20
N/A
106
Negative
No
No


CGI090


N/A


March-20
N/A
119
112
Neg?

No


CGI091


N/A


N/A
May-20
N/A
N/A
Neg?

No acute














Sx, but














ED visit














in May 2020














for RLQ














pain


CGI092
+
+
N/A
Duode-

April-20
August-20
N/A
105
Negative
No
watery






num







diarrhea


CGI093

N/A
N/A


N/A
May-20
121
N/A
Neg?

diarrhea














nausea,














abdominal














pain


CGI094


N/A
Terminal

April-20
N/A
N/A
113
Negative
No
No






ileum


CGI095


N/A


April-20
N/A
N/A
130
Neg?

No?


OSH?


CGI096
N/A

N/A


April-20
N/A
N/A
148
Negative
Yes
No


CGI097
N/A

N/A


March-20
June-20
N/A
 99
Neg?

No


CGI098


N/A


March-20
N/A
N/A
166
Neg?

No?


CGI099


N/A
Duode-
Duode-
N/A
May-20
173
N/A
Negative
No
Watery






num
num






diarrhea


CGI100
+
N/A
N/A


N/A
5/2020
N/A
N/A
Neg?


CGI106
+
N/A


ctrl 1

N/A
N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 2


N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 3

N/A
N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 4

N/A
N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 5

N/A
N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 6
N/A

N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 7
N/A

N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 8
N/A

N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 9
N/A

N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A


ctrl 10
N/A

N/A


N/A
N/A
N/A
N/A
N/A
N/A
N/A









Detection of SARS-CoV-2 RNA and N protein could represent defective viral particles and/or infected cell debris. We used electron tomography to examine a tissue sample from one of the individuals who was positive by immunoflourescence (FIGS. 5e-j). Particles with typical SARS-CoV-2 morphologies were found within intracellular membrane-enclosed vesicles consistent with coronavirus exit compartments in terminal ileum apical epithelial cells (FIGS. 5e-h), suggesting the presence of intact virions. Particles were also found in vesicles in apical epithelial cells of the duodenum, although there were fewer and less densely-populated vesicles observed (FIGS. 5i-j).


Neutralizing antibodies to SARS-CoV-2 develop in most individuals after infection but decay with time. These antibodies are effective in prevention and therapy in animal models and are likely to play a role in protection from re-infection in humans. Although there is a significant drop in plasma neutralizing activity between 1.3 and 6.2 months, antibody titers remain measurable in most individuals.


Neutralizing monoclonal antibodies obtained from individuals during the early convalescence period showed remarkably low levels of somatic mutations that some investigators attributed to defects in germinal center formation. The data indicates that the anti-SARS-CoV-2 memory B cell response evolves during the first 6 months after infection, with accumulation of Ig somatic mutations, and production of antibodies with increased neutralizing breadth and potency. Persistent antibody evolution occurs in germinal centers and requires that B cells are exposed to antigen trapped in the form of immune complexes on follicular dendritic cells. This form of antigen can be long-lived because follicular dendritic cells do not internalize immune complexes. Moreover, even small amounts of persistent viral replication could contribute antigen to fuel antibody evolution. The observation that SARS-CoV-2 persists in the small intestinal epithelium even 3 months after infection, at a time when it is not detectable in the nasopharynx by standard quantitative PCR, is consistent with the relative persistence of anti-RBD IgA antibodies and continued antibody evolution.


Memory responses are responsible for protection from re-infection and are essential for effective vaccination. The observation that memory B cell responses do not decay after 6.2 months, but instead continue to evolve, is strongly suggestive that individuals who are infected with SARS-CoV-2 could mount a rapid and effective response to the virus upon re-exposure.


Methods

Study Participants.


Previously enrolled study participants (Robbiani, D. F. et al. Nature 584, 437-442) were asked to return for a 6-month follow-up visit at the Rockefeller University Hospital in New York from August 31 through Oct. 16, 2020. Eligible participants were adults aged 18-76 years and were either diagnosed with SARS-CoV-2 infection by RT-PCR (cases), or were close contacts (e.g., household, co-workers, members of same religious community) with someone who had been diagnosed with SARS-CoV-2 infection by RT-PCR (contacts). Close contacts without seroconversion against SARS-CoV-2 as assessed by serological assays (described below) were not included in the subsequent analysis. Most study participants were residents of the Greater New York City tri-state region and were asked to return approximately 6 months after the time of onset of COVID-19 symptoms. Participants presented to the Rockefeller University Hospital for blood sample collection and were asked to recall the symptoms and severity of clinical presentation during the acute (first 6 weeks) and the convalescent (7 weeks until the second study visit) phase of COVID-19, respectively. The severity of acute infection was assessed by the WHO Ordinal Clinical Progression/Improvement Scale (https://www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis). Shortness of breath was assessed through the modified Medical Research Council (mMRC) dyspnea scale. Participants who presented with persistent symptoms attributable to COVID-19 were identified on the basis of chronic shortness of breath or fatigue, deficit in athletic ability and/or three or more additional long-term symptoms such as persistent unexplained fevers, chest pain, new-onset cardiac sequalae, arthralgias, impairment of concentration/mental acuity, impairment of sense of smell/taste, neuropathy or cutaneous findings. All participants at Rockefeller University provided written informed consent before participation in the study, and the study was conducted in accordance with Good Clinical Practice.


Gastrointestinal Biopsy Cohort.


To determine if SARS-CoV-2 can persist in the gastrointestinal tract, we recruited a cohort of 14 individuals with prior diagnosis of and recovery from COVID-19 illness. Eligible participants included adults, 18-76 years of age who were previously diagnosed with SARS-CoV-2 by RT PCR and presented to the gastroenterology clinics of Mount Sinai Hospital. Endoscopic procedures were performed for clinically indicated conditions as detailed in Table 7. All participants were negative for SARS-CoV-2 by nasal swab PCR and asymptomatic at the time of the endoscopic procedures. Informed consent was obtained from all participants. The biopsy-related studies were approved by the Mount Sinai Ethics Committee/IRB (IRB 16-0583, The impact of viral infections and their treatment on gastrointestinal immune cells).


SARS-CoV-2 Saliva PCR Test


Saliva was collected into guanidine thiocyanate buffer as described (Chomczynski, P. & Sacchi, N. Analytical biochemistry 162, 156-159 (1987)). RNA was extracted using either a column-based (Qiagen QIAmp DSP Viral RNA Mini Kit, Cat #61904) or a magnetic bead-based method as described (DeAngelis, M. M., et al. Nucleic Acids Res 23, 4742-4743 (1995)). Reverse transcribed cDNA was amplified using primers and probes validated by the CDC or by Columbia University Personalized Medicine Genomics Laboratory, respectively, and approved by the FDA under the Emergency Use Authorization. Viral RNA was considered detected if the cycle threshold (Ct) for two viral primers/probes were <40.


Blood Samples Processing and Storage.


Peripheral Blood Mononuclear Cells (PBMCs) were obtained by gradient centrifugation and stored in liquid nitrogen in the presence of FCS and DMSO. Heparinized plasma and serum samples were aliquoted and stored at −20° C. or less. Prior to experiments, aliquots of plasma samples were heat-inactivated (56° C. for 1 hour) and then stored at 4° C.


High Throughput Automated Serology Assays


Plasma samples from 80 out of 87 participants were tested by high throughput automated serology assays. The Roche Elecsys anti-SARS-CoV-2 assay was performed on Roche Cobas e411 (Roche Diagnostics, Indianapolis, Ind.). The Elecsys anti-SARS-CoV-2 assay uses a recombinant protein representing the N antigen for the determination of antibodies against SARS-CoV-2. This assay received Emergency Use Authorization (EUA) approval from the United States Food and Drug Administration (FDA) (Roche Diagnostics. Elecsys Anti-SARS-CoV-2. FDA https://www.fda.gov/media/137605, 1-7 (2020).). The Pylon COVID-19 IgG and IgM assays were used to measure plasma IgG and IgM antibodies against SARS-CoV-2, respectively. Plasma samples were assayed on the Pylon 3D analyzer (ET HealthCare, Palo Alto, Calif.) as previously described (Yang, H. S. et al. Clin Chim Acta 509, 117-125 (2020).). This assay was implemented clinically as a laboratory-developed test under the New York State Department of Health regulations. Briefly, the assay was performed using a unitized test strip containing wells with pre-dispensed reagents. The COVID-19 reagent contains biotinylated recombinant versions of the SARS-CoV-2 S-Protein RBD and trace amounts of N protein as antigens that bind IgG and IgM, respectively. The cutoff values for both Pylon assays were determined using the mean of non-COVID-19 samples plus 6 Standard Deviations (SDs). The results of a sample are reported in the form of a cutoff index (COI) or an index value (IV), which were determined by the instrument readout of the test sample divided by instrument readout at cut off.


ELISAs


Validated ELISAs (Grifoni, A. et al. Cell 181, 1489-1501 e1415 (2020); Amanat, F. et al. Nat Med 26, 1033-1036 (2020).) to evaluate antibodies binding to SARS-CoV-2 RBD and additional RBDs were performed by coating of high-binding 96-half-well plates (Corning 3690) with 50 μl per well of a 1 μg/ml protein solution in PBS overnight at 4° C. Plates were washed 6 times with washing buffer (1×PBS with 0.05% Tween-20 (Sigma-Aldrich)) and incubated with 170 μl per well blocking buffer (1×PBS with 2% BSA and 0.05% Tween-20 (Sigma)) for 1 h at room temperature. Immediately after blocking, monoclonal antibodies or plasma samples were added in PBS and incubated for 1 h at room temperature. Plasma samples were assayed at a 1:67 starting dilution and 7 additional threefold serial dilutions. Monoclonal antibodies were tested at 10 μg/ml starting concentration and 10 additional fourfold serial dilutions. Plates were washed 6 times with washing buffer and then incubated with anti-human IgG, IgA or IgM secondary antibody conjugated to horseradish peroxidase (HRP) (Jackson Immuno Research 109-036-088 and 109-035-129) in blocking buffer at a 1:5,000 dilution. Plates were developed by addition of the HRP substrate, TMB (ThermoFisher) for 10 min (plasma samples) or 4 minutes (monoclonal antibodies), then the developing reaction was stopped by adding 50 μl 1 M H2SO4 and absorbance was measured at 450 nm with an ELISA microplate reader (FluoStar Omega, BMG Labtech) with Omega and Omega MARS software for analysis. For plasma samples, a positive control (plasma from patient COV72, diluted 66.6-fold and seven additional threefold serial dilutions in PBS) was added to every assay plate for validation. The average of its signal was used for normalization of all of the other values on the same plate with Excel software before calculating the area under the curve using Prism V8.4 (GraphPad). For monoclonal antibodies, the EC50 was determined using four-parameter nonlinear regression (GraphPad Prism V.8.4).


Expression of RBD Proteins


Mammalian expression vectors encoding the RBDs of SARS-CoV-2 (GenBank MN985325.1; S protein residues 319-539) and eight additional mutant RBD proteins (E484K, Q493R, R346S, N493K, N440K, V367F, A475V, S477N, and V483A) with an N-terminal human IL-2 or Mu phosphatase signal peptide were previously described (Barnes, C. O. et al. Cell 182, 828-842 e816, (2020).).


SARS-CoV-2 Pseudotyped Reporter Virus


SARS-CoV-2 pseudotyped particles were generated as previously described (Robbiani, D. F. et al. Nature 584, 437-442 (2020); Schmidt, F. et al. J Exp Med 217 (2020).). Briefly, 293T cells were transfected with pNL4-3ΔEnv-nanoluc and pSARS-CoV-2-5Δ19. For generation of RBD-mutant pseudoviruses, pSARS-CoV-2-SΔ19 carrying either of the following spike mutations was used instead of its wt counterpart: Q493R, R346S, or E484G (Weisblum, Y. et al. EbioRxiv 17, 1055-1042 (2020).). Particles were harvested 48 hpt, filtered, and stored at −80° C.


Pseudotyped Virus Neutralization Assay


Fourfold serially diluted plasma from COVID-19-convalescent individuals or monoclonal antibodies were incubated with SARS-CoV-2 pseudotyped virus for 1 h at 37° C. The mixture was subsequently incubated with 293TAce2 cells for 48 h after which cells were washed with PBS and lysed with Luciferase Cell Culture Lysis 5× reagent (Promega). Nanoluc Luciferase activity in lysates was measured using the Nano-Glo Luciferase Assay System (Promega) with the Glomax Navigator (Promega). The obtained relative luminescence units were normalized to those derived from cells infected with SARS-CoV-2 pseudotyped virus in the absence of plasma or monoclonal antibodies. The half-maximal inhibitory concentration for plasma (NT50) or monoclonal antibodies (IC50) was determined using four-parameter nonlinear regression (least squares regression method without weighting; constraints: top=1, bottom=0) (GraphPad Prism).


Biotinylation of Viral Protein for Use in Flow Cytometry


Purified and Avi-tagged SARS-CoV-2 RBD was biotinylated using the Biotin-Protein Ligase-BIRA kit according to manufacturer's instructions (Avidity) as described before (Robbiani, D. F. et al. Nature 584, 437-442 (2020).). Ovalbumin (Sigma, A5503-1G) was biotinylated using the EZ-Link Sulfo-NHS-LC-Biotinylation kit according to the manufacturer's instructions (Thermo Scientific). Biotinylated ovalbumin was conjugated to streptavidin-BV711 (BD biosciences, 563262) and RBD to streptavidin-PE (BD Biosciences, 554061) and streptavidin-AF647 (Biolegend, 405237).


Single-Cell Sorting by Flow Cytometry


Single-cell sorting by flow cytometry was described previously (Robbiani, D. F. et al. Nature 584, 437-442 (2020).). Briefly, peripheral blood mononuclear cells were enriched for B cells by negative selection using a pan-B-cell isolation kit according to the manufacturer's instructions (Miltenyi Biotec, 130-101-638). The enriched B cells were incubated in FACS buffer (1×PBS, 2% FCS, 1 mM EDTA) with the following anti-human antibodies (all at 1:200 dilution): anti-CD20-PECy7 (BD Biosciences, 335793), anti-CD3-APC-eFluro 780 (Invitrogen, 47-0037-41), anti-CD8-APC-eFluor 780 (Invitrogen, 47-0086-42), anti-CD16-APC-eFluor 780 (Invitrogen, 47-0168-41), anti-CD14-APC-eFluor 780 (Invitrogen, 47-0149-42), as well as Zombie NIR (BioLegend, 423105) and fluorophore-labelled RBD and ovalbumin (Ova) for 30 min on ice. Single CD3−CD8−CD14−CD16−CD20+Ova−RBD−PE+RBD−AF647+B cells were sorted into individual wells of 96-well plates containing 4 μl of lysis buffer (0.5×PBS, 10 mM DTT, 3,000 units/ml RNasin Ribonuclease Inhibitors (Promega, N2615) per well using a FACS Aria III and FACSDiva software (Becton Dickinson) for acquisition and FlowJo for analysis. The sorted cells were frozen on dry ice, and then stored at −80° C. or immediately used for subsequent RNA reverse transcription.


Antibody Sequencing, Cloning, and Expression


Antibodies were identified and sequenced as described previously (Robbiani, D. F. et al. Nature 584, 437-442 (2020).). In brief, RNA from single cells was reverse-transcribed (SuperScript III Reverse Transcriptase, Invitrogen, 18080-044) and the cDNA stored at −20° C. or used for subsequent amplification of the variable IGH, IGL, and IGK genes by nested PCR and Sanger sequencing. Sequence analysis was performed using MacVector. Amplicons from the first PCR reaction were used as templates for sequence- and ligation-independent cloning into antibody expression vectors. Recombinant monoclonal antibodies and Fabs were produced and purified as previously described (Robbiani, D. F. et al. Nature 584, 437-442 (2020).).


Computational Analyses of Antibody Sequences


Antibody sequences were trimmed based on quality and annotated using Igblastn v.1.14. with IMGT domain delineation system. Annotation was performed systematically using Change-0 toolkit v.0.4.540. Heavy and light chains derived from the same cell were paired, and clonotypes were assigned based on their V and J genes using in-house R and Perl scripts (FIG. 7). All scripts and the data used to process antibody sequences are publicly available on GitHub (https://github.com/stratust/igpipeline).


The frequency distributions of human V genes in anti-SARS-CoV-2 antibodies from this study were compared to Sequence Read Archive accession SRP01097041. The V(D)J assignments were done using IMGT/High V-Quest, and the frequencies of heavy and light chain V genes were calculated for 14 and 13 individuals, respectively, using sequences with unique CDR3s. The two-tailed t-test with unequal variances was used to determine statistical significance (FIG. 7).


Nucleotide somatic hypermutation and CDR3 length were determined using in-house R and Perl scripts. For somatic hypermutations, IGHV and IGLV nucleotide sequences were aligned against their closest germlines using Igblastn, and the number of differences were considered nucleotide mutations. The average mutations for V genes was calculated by dividing the sum of all nucleotide mutations across all patients by the number of sequences used for the analysis. To calculate the GRAVY scores of hydrophobicity, the Guy H. R. Hydrophobicity scale was used based on free energy of transfer (kcal/mole) implemented by the R package Peptides (the Comprehensive R Archive Network repository; https://journal.r-project.org/archive/2015/RJ-2015-001/RJ-2015-001.pdf). 532 heavy chain CDR3 amino acid sequences from this study and 22,654,256 IGH CDR3 sequences from the public database of memory B cell receptor sequences were used. The Shapiro-Wilk test was used to determine whether the GRAVY scores are normally distributed. The GRAVY scores from all 532 IGH CDR3 amino acid sequences from this study were used to perform the test, and 5,000 GRAVY scores of the sequences from the public database were randomly selected. The Shapiro-Wilk P values were 6.896×10-3 and 2.217×10-6 for sequences from this study and the public database, respectively, indicating that the data were not normally distributed. Therefore, we used the Wilcoxon nonparametric test to compare the samples, which indicated a difference in hydrophobicity distribution (P=5×10-6) (FIG. 10).


Biopsies and Immunofluorescence


Endoscopically obtained mucosal biopsies were formalin fixed and paraffin embedded. Sections (5 μm) were cut, dewaxed in xylene, and rehydrated in graded alcohol and phosphate-buffered saline (PBS). Heat-induced epitope retrieval was performed in target retrieval solution (Dako, S1699) using a commercial pressure cooker. Slides were then cooled to room temperature, washed in PBS, and permeabilized for 30 minutes in 0.1% Triton X-100 in PBS. Non-specific binding was blocked with 10% goat serum (Invitrogen, 50062Z) for 1 hour at room temperature. Sections were then incubated with a combination of primary antibodies diluted in blocking solution overnight at 4° C. Slides were washed 3 times in PBS and then incubated in secondary antibody and 4′,6-diamidino-2-phenylindole (1 ug/mL) for 1 hour at room temperature. Sections were washed in PBS 3 times and then mounted with Fluoromount-G (Electron Microscopy Sciences, 1798425). Controls included, omitting primary antibody (no primary 995 control), or substituting primary antibodies with non-reactive antibodies of the same isotype (isotype control). A Nikon Eclipse Ni microscope and digital SLR camera (Nikon, DS-Qi2) was used to visualize and image the tissue.


The antibody used to stain sections for N protein was raised in rabbits against SARS-CoV N and is cross-reactive with SARS-CoV-2 N protein (Spiegel, M. et al. J Virol 79, 2079-2086 (2005).).









TABLE 8







Reagent Used in this Example.
















Catalog
Host




Antigen
Clone
Vendor
number
species
Conjugate
Dilution





ACE2
Polyclonal
Abcam
ab15348
rabbit
unconjugated
1:1000


EPCAM
SPM491
GeneTex
GTX34693
mouse
unconjugated
1:100 


SARS-CoV-
Polyclonal
N/A
N/A
rabbit
unconjugated
1:2000


2


nucleocapsid


No known
Polyclonal
Abcam
ab37415
rabbit
unconjugated
variable


specificity


(isotype


control)


Yeast GAL4
15-
Abcam
ab170190
mouse
unconjugated
variable


(isotype
6E10A7


control)


Mouse IgG
Polyclonal
Abcam
ab150116
goat
Alexa Fluor
1:1000


H&L




594


Rabbit IgG
Polyclonal
Abcam
ab150077
goat
Alexa Fluor
1:1000


H&L




488









Electron Microscopy and Dual-Axis Tomography


Tissues samples were fixed with 3% glutaraldehyde to meet biosafety requirements. Tissues were rinsed with cold 0.1M sodium cacodylate trihydrate+5% sucrose and further dissected to block sizes sufficient for embedding and sectioning. Tissues were postfixed for 1 h with cold 2% osmium tetroxide in cacodylate buffer, en bloc stained with 1% aqueous uranyl acetate, dehydrated with acetone and embedded in Epon-Araldite resin (Electron Microscopy Sciences). Samples were flat-embedded between two Teflon-coated glass microscope slides and the resin polymerized at 60° C. for 24 h. Embedded tissue blocks were observed by light microscopy to ascertain preservation quality and select regions of interest (i.e., apical epithelium). Blocks were extracted with a scalpel and glued to plastic sectioning stubs prior to sectioning. Semi-thin (150 nm) serial sections were cut with a UC6 ultramicrotome (Leica Microsystems) using a diamond knife (Diatome, Ltd. Switzerland). Sections were placed on formvar-coated copper-rhodium slot grids (Electron Microscopy Sciences) and stained with 3% uranyl acetate and lead citrate. Colloidal gold particles (10 nm) were placed on both surfaces of the grids to serve as fiducial markers for tomographic image alignment. Grids were placed in a dual-axis tomography holder (Model 2010, E. A. Fischione Instruments, Export Pa.) and imaged with a Tecnai G2 T12 transmission electron microscope (120 KeV; ThermoFisher Scientific). Images were recorded with a 2 k×2 k CCD camera (XP1000; Gatan, Pleasonton, Calif.). Tomographic tilt series and large-area montages were acquired automatically using the SerialEM software package (Mastronarde, D. N. A. J Struct Biol 152, 36-51 (2005).). For dual-axis tomography, images were collected at 1° intervals as samples were tilted +/−62°. The grid was then rotated 90°, and a second tilt-series was acquired about the orthogonal axis. Tomograms were calculated, analyzed, and modeled using the IMOD software package (Mastronarde, D. N. & Held. J Struct Biol 197, 102-113 (2017); Mastronarde, D. N. Journal of microscopy 230, 212-217 (2008).) on MacPro and iMac Pro computers (Apple, Inc).


Presumptive SARS-CoV-2 virions were identified from tomographic reconstructions of tissue samples by observing structures resembling virions described in cryo-electron tomography studies of purified SARS-CoV-2 and SARS-CoV-2 in infected cells. We used the following criteria for SARS-CoV-2 virion identification in tissues: (i) Structures that were spherical in 3D and not continuous with other adjacent structures with ˜60-120 nM diameters, (ii) Spherical structures with densities corresponding to a distinct membrane bilayer, internal puncta consistent with ribonucleoproteins and densities corresponding to surface spikes on the external peripheries of the spheres.


Code Availability


Computer code to process the antibody sequences is available at GitHub (https://github.com/stratust/igpipeline).


The foregoing examples and description of the preferred embodiments should be taken as illustrating, rather than as limiting the present invention as defined by the claims. As will be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the scope of the invention, and all such variations are intended to be included within the scope of the following claims. All references cited herein are incorporated by reference in their entireties.









TABLE 9





Sequence pairs of antibody heavy and light chain variable regions from six individuals at 1.3


and 6.2 month time points.



















Heavy Chain
Light Chain





















SEQ

SEQ


SEQ

SEQ




Time
SEQUENCE_
ID

ID

SEQUENCE_
ID

ID




point
ID
NO
aa
NO
cdr3_aa
ID
NO
aa
NO
cdr3_aa





6.2M
COVD21_
323
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
324
AKDTPGG
COVD21_
325
DIQMTQSPSSLSASVGDRVTITCQASQ
326
QQY




mo6_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DDILTGW
mo6_

DISNYLNWYQHHPGKAPKLLIHDASIL

HYL




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

GLYGMD
K_

ETGVPTRFSGTGSGTKFTFTISSLQPED

PPH




P1A10-

YCAKDTPGGDDILTGWGLYGMDVWGQGTTV

V
P1A10-

IATYYCQQYHYLPPHFGPGTKVDSK






p1369

TVSS


p1389










6.2M
COVD21_
327
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
328
ARRGDG
COVD21_
329
QSVLTQPPSASGTAGQRVTISCSGGSS
330
AA
LAMBDA



mo6_ 

CVTWIRQAPGKGLEWLSYSNTNDSSRSYADS

NVPLFHY
mo6_

NIGSNTVHWYQQLPGTAPKLLIYSNY

WD




HC_

VKGRFTISRDNAKNSLYLQMDSLRAEDTAVY

YYMDV
L_

KRPSGVPDRFSGSKSGASASLAISGLQ

DSA




P1C10-

YCARRGDGNVPLFHYYYMDVWGKGTTVTVS


P1C10-

SEDEAEYYCAAWDDSANGPIFGGGTK

NGP




p1369

S


p1409

LTVL

I






6.2M
COVD21_
331
QVQLVQSGAEVGKPGSSVRLSCKASRGTFNIY
332
ATGGESG
COVD21_
333
QSVLTQPPSASGTPGQRVTISCSGSSSN
334
AA
LAMBDA



mo6_ 

SISWLRQSPGQGLEWVGVITPLFGSSNYAHEF

TSWFDP
mo6_

IGSHPVHWYQQLPGMAPKLLIYISNQ

WD




HC_

QGRVTLTADESTNTAYMDLSSLTSEDTALYYC


L_

RPSGVPDRFSGSKSGTSASLAISGLQSE

DSQ




P2G9-

ATGGESGTSWFDPWGQGTLLTVSS


P2G9-

DEADYYCAAWDDSQNGWVFGGGTK

NG




p1369




p1409

LTVL

WV






6.2M
COVD21_
335
QVQLVQSGAEVKKPGASVKVSCKASGYTFTY
336
ARPLLPG
COVD21_
337
QSVLTQPPSVSEAPRQRVTISCSGSSA
338
AT
LAMBDA



mo6_ 

YYMHWVRQAPGQGLEWMGIINPSGGSTSYAQ

ETGSLNR
mo6_

NIENNGVNWYQQLPGKAPKLLIYNDD

WD




HC_

KFQGRVTMTRDTSTSTVYMELSSLRSEDTAVY

LDY
L_

LLFSGVSDRFSGSKSGTSASLAISGLQS

DSL




P1A5-

YCARPLLPGETGSLNRLDYWGQGTLVTVSS


P1A5-

EDEADYYCATWDDSLNGPVFGGGTK

NGP




p1369




p1409

LTVL

V






6.2M
COVD21_
339
QVQLVQSGAEVKKPGSSVKVSCKASGDTFSS
340
ARGVVG
COVD21_
341
QSVLTQPASVSGSPGQSITISCTGTSSD
342
CSY
LAMBDA



mo6_ 

HAINWVRQAPGQGLEWMGRSIPMLGVTTSAQ

ATPGSFD
mo6_

VGNYNLVSWYQQHPGKAPKLMIYGV

AGS




HC_

KFKGRVTITADHSTSTVFMDLSSLRSDDTAIYY

L
L_

SKRPSGVSYRFSGSKSANTASLTISGL

SVI




P2C5-

CARGVVGATPGSFDLWGQGTMVTVSS


P2C5-

QAEDEADYYCCSYAGSSVIFGGGTKL






p1369




p1409

TVL








6.2M
COVD21_
343
QVQLQESGPGLVKPSQTLSLTCSVSGASISNAD
344
ARELRWS
COVD21_
345
QSVLTQPASESGSPGQSITISCTGTSSD
346
CSY
LAMBDA



mo6_ 

YYWSWIRQPPGKGLEWIGYIYYSGTSYYNPSL

LGGGASY
mo6_

VGSYNLVSWYQQHPGKAPKLMIYEGI

AGS




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC


L_

KRPSGVSNRFSGSKSGNTASLTISGLQ

TNV




P1F3-

ARELRWSLGGGASYWGQGTLVTVSS


P1F3-

AEDEADYYCCSYAGSTNVIFGGGTKL

I




p1369




p1409

TVL








6.2M
COVD21_
347
EVQLLESGGDLVHPGGSLRLSCAASGFTFRSY
348
VRTRMD
COVD21_
349
QSVLTQPASESGSPGQSITISCTGTNSD
350
CSY
LAMBDA



mo6_ 

AMSWVRQAPGKGLEWVSSVSGAGGSTYYAD

YYDSIGY
mo6_

VGSYDLVSWYQQHPGKAPKLIIYEVN

AGT




HC_

SVKGRFTISRDNSKNTLFMHMNSLRAEDTAV

PWAFEI
L_

KRPSGVSSRFSGSKSGNTASLTISGLQI

WL




P1H10-

YYCVRTRMDYYDSIGYPWAFEIWGQGTMVT


P1H10-

EDEADYYCCSYAGTWLFGGGTRLTV






p1369

VSS


p1409

L








6.2M
COVD21_
351
QVQLVESGGGVVQPGGSLRLSCAASGFTFSNH
352
ASEDYYD
COVD21_
353
QYVLTQPRSVSGSPGQSVTISCTGTSS
354
CSY
LAMBDA



mo6_ 

GMHWVRQAPGKGLEWVAVMSYDGSNEDYS

SSGSFDN
mo6_

DVGGSNYVSWYQQHPGKAPKVMVY

AGT




HC_

ASVKGRFTISRDNSKNTLSLQMNSLRPEDTAV


L_

DVRKRPSGVPDRFSGSKSGNTASLTIS

YT




P1F5-

YYCASEDYYDSSGSFDNWGQGTLVTVSS


P1F5-

GLQPEDEADYYCCSYAGTYTWVFGG

WV




p1369




p1409

GTTLTVL








6.2M
COVD21_
355
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
356
AKDTPGG
COVD21_
357
QSVLTQPASVSGSPGQSITISCTGTSSD
358
CSY
LAMBDA



mo6_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DDILTGW
mo6_

VGSYNLVSWYQQYPGKAPKLMIYEV

VGS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

GLYGNID
L_

SKRPSGVSNRFSGSKSGNTASLTISGL

STR




P2B7-

YCAKDTPGGDDILTGWGLYGMDVVVGQGTTV

V
P2B7-

RAEDEADYYCCSYVGSSTRVFGGGTK

V




p1369

TVSS


p1409

LTVL








6.2M
COVD21_
359
QVQLVQSGAEVKKPGASVTVSCKASGYIFTD
360
AIKPPTY
COVD21_
361
QSVLTQPPSVSAAPGQKVTISCSGSSS
362
GT
LAMBDA



mo6_ 

YYMHWVRQAPGQGLEWMGWINPNSGGANY

HFDNNGY
mo6_

NIGNYYVSWYQQLPGTAPKLLIYDNN

WD




HC_

AQKFQGRISMTTDTSVTTGYMDLSRLRSDDTA

HLPYDYV
L_

KRPSGIPDRFSGSKSGTSATLGITGLQT

NSL




P1H5-

VYYCAIKPPTYHFDNNGYHLPYDYVDVVVGTG

DV
P1H5-

GDEADYYCGTWDNSLSTDWVFGGGT

STD




p1369

TTVTVAS


p1409

KLTVL

WV






6.2M
COVD21_
363
QVQLVQSGAEVKKPGTSVKVSCKASGYTFTD
364
AIKPPIYY
COVD21_
365
QSVLTQPPSVSAAPGQKVSISCSGSSS
366
GT
LAMBDA



mo6_ 

YFMHWVRQAPGQGLEWMGWINPNSGGTNY

YDSSGSF
mo6_

NIGNHYVSWYQQFPGTAPKLLIYDNN

WD




HC_

AQNFQGRVTMTSDTSITTAYMELSRLRSDDTA

LSYYYM
L_

KRPSGIPDRFSGSKSGTSATLGIAGLQT

SSL




P1C1-

VYYCAIKPPIYYYDSSGSFLSYYYMDVVVGKG

DV
P1C1-

GDEADYYCGTWDSSLSADWVFGGGT

SAD




p1369

TTVTVS


p1409

KLTVL

WV






6.2M
COVD21_
367
QVQLVQSGTELVKPGASVNLSCKASGYTFTSY
368
ARPPYYS
COVD21_
369
QSVLTQEPSLTVSPGGTVTLTCASSTG
370
LLY
LAMBDA



mo6_ 

WMHWVKQRPGQGLEWIGNINPSNGGTNYNE

NFLFVY
mo6_

AVTSDSYPNWFQQKPGQPPRALIYSTS

DGD




HC_

KFKNKATLTVDKSSSTAYMQLSSLTSEDSAVY


L_

NKHSWTPARFSGSLLGGKAALTLSGV

AVL




P1F11-

YCARPPYYSNFLFVYWGQGTTVTVSS


P1F11-

QPEDEADYYCLLYDGDAVLFGGGTK






p1369




p1409

LTVL








6.2M
COVD21_
371
EVQLLESGGGLVQPGGSLRLSCAGSGFTFSHY
372
AKGGDF
COVD21_
373
SYVLTQSPSVSVAPGKTARITCGGDSI
374
LV
LAMBDA



mo6_ 

ALSWVRQAPGKGLEWVSCISGTGGNSHYADS

WSGYLIP
mo6_

GSKNVHWYQQKPGQAPVLVMYYDN

WD




HC_

VKGRFTSSRDNSKNILYLQMNSLRAEDTAVYF

FDS
L_

DRPSGIPERFSGYNSGNTATLSISRVEA

GSG




P2A9-

CAKGGDFWSGYLIPFDSWGQGTLVTVS


P2A9-

GDEADYYCLVWDGSGDPWVFGGGT

DP




p1369




p1409

KLTVL

WV






6.2M
COVD21_
375
QVQLVQSGAEVKKPGASVKVSCKTSGYLFTG
376
ARDFDFS
COVD21_
377
QSVLTQPPSASGSPGQSVTISCTGTSSD
378
NSY
LAMBDA



mo6_ 

YYIHWVRQAPGHGLEWMGWVNPNSGATNNT

VVSNAFD
mo6_

VGGYNYVSWYQQHPDKAPKLMIYEV

AGN




HC_

QKFQGRITMTRDTSITTVHMELSRLKSDDTAV

I
L_

SKRPSGVPDRFSGSKSGNTASLTVSGL

NIL




P1C7-

YYCARDFDFSVVSNAFDIWGQGTMVTVSS


P1C7-

QAEDEADYYCNSYAGNNILVFGGGT

V




p1369




p1409

KLTVL








6.2M
COVD21_
379
QVQLVQSGAEVKKPGASVKVSCKASGYLFTG
380
ARDLGW
COVD21_
381
QSVLTQPPSASGSPGQSVTISCTGTSSD
382
NSY
LAMBDA



mo6_ 

HYIHWVRQAPGQGLEWMAWINPNSGATNYT

SRVQGSL
mo6_

VGGYDFVSWYQQHPGKAPKLIIYEVN

AGN




HC_

QKFQGRVTMTRDTSITTTFMELSRLRSDDTAV

DI
L_

QRPSGVPDRFSGSKSGDSASLTVSGLQ

NN




P1D11-

YYCARDLGWSRVQGSLDIWGQGTIVTVSS


P1D11-

TEDEADYYCNSYAGNNNWVFGGGTK

WV




p1369




p1409

LTVL








6.2M
COVD21_
383
QVQLVQSGAEVKKPGASVMVSCRTSGYRITD
384
ARGTFYY
COVD21_
385
QSVLTQPPSASGSPGQSVTISCTGTSSD
386
SNY
LAMBDA



mo6_ 

YYIHWVRQAPGQGLEWMGWINPISGGTNYAQ

DSSGYYI
mo6_

VGGYNYVSWYQQHPGKAPKLLIYEV

AGS




HC_

KFQGRVTMTRDTSILTAYMELTRLRSDDTAV

DY
L_

SKRPSGVPDRFSASKSGNTASLTVSGL

NNP




P1F7-

YYCARGTFYYDSSGYYIDYWGQGTLVTVSS


P1F7-

QAEDEADYYCNSYAGSNNPVVFGGG

VV




p1369




p1409

TKLTVL








6.2M
COVD21_
387
QVQLVQSGVEVKKPGASVKVSCKSSGYTFTS
388
ARGVISM
COVD21_
389
SYVLTQPPSVSVSPGQTASITCSGDDL
390
QA
LAMBDA



mo6_ 

YGINWVRQAPGQGLEWMGWINGYNGNTNYA

VRGVPSL
mo6_

GDKYACWYQQKPGQSPVLVIYHDFK

WD




HC_

QKFQGRVTMTSDTSTSTAYMQLSSLRSDDTA

PQYNYG
L_

RPSGIPERFSGSKSGNTATLTVSGTQA

SST




P2B1-

VYFCARGVISMVRGVPSLPQYNYGMDVWGQ

MDV
P2B1-

MDEADYYCQAWDSSTGVFGTGTKVT

GV




p1369

GTTVTVSS


p1409

VL








6.2M
COVD21_
391
QVQLVQSGAEVGKPGSSVKVSCKAPSGTFNIY
392
ATGGESE
COVD21_
393
SYVLTQKPSVSVAPERAACLTCGGDN
394
QLC
LAMBDA



mo6_ 

SISWLRQSPGQGLEWVGAITPLFSSSNYAHKF

TTWFDP
mo6_

VASKDVQWCQLRPGQAPVVVIYSDS

HSA




HC_

QHRVTITADEATNTAYMELSSLTSEDTALYYC


L_

DRPPETPDRFSGSNSGNTASLTTSRVE

SGH




P2A8-

ATGGESETTWFDPWGQGTLVTVSS


P2A8-

AGDEADYYCQLCHSASGHPWVFGGG

PW




p1369




p1409

TNLTVL

V






6.2M
COVD21_
395
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
396
ARELFRTI
COVD21_
397
NFMLTQPHSVSESPGKTVTISCTGSSG
398
QSF
LAMBDA



mo6_ 

WHMWVRQAPGKGLVWVSRINSYGSITNYAD

DP
mo6_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSS




HC_

SVKGRFTISRDNAKNTLYLQMNSLRAEDTAV


L_

QRPSGVPDRFSGSIDSSSNSASLTISGL

SVV




P1F10-

YYCARELFRTIDPWGQGTLVTVSS


P1F10-

KTEDEADYYCQSFDSSSVVFGGGTKL






p1369




p1409

TVL








6.2M
COVD21_
399
QVQLVESGGGVVQPGRSLRLSCVASGITFRTY
400
ATTLPNY
COVD21_
401
NFMLTQPHSVSESPGKTVTISCTGSSG
402
QSF
LAMBDA



mo6_ 

AMHWVRQAPGKGLEWVAVISYDGSNRHYAD


mo6_

SIATNYVQWFQQRPGSAPTTVIYEDN

DSS




HC_

SVKGRFTISRDNSKNTLSLQMNSLRTEDTAVY


L_

QRPSGVPDRFSGSIDSSSNSASLTISGL

YW




P2C3-

YCATTLPNYWGRGTLVTVSS


P2C3-

KTEDEADYYCQSFDSSYWVFGGGTK

V




p1369




p1409

LTVL








6.2M
COVD21_
403
EVQLVESGGGLVQPGESLRLSCAGSGFTFSSH
404
ARAVTG
COVD21_
405
NFMLTQPHSVSESPGKTVTISCTCSGG
406
QSY
LAMBDA



mo6_ 

WMSWVRQAPGKGLEWVANIKEDGSADFYVD

WFLGIDF
mo6_

TIALNYVQWYQQRPGSAPTTVIYEDN

DGN




HC_

SVKGRFTISRDSAKNSLFLQMNSLRAEDTAVY


L_

QRPSGVPDRFSGSVDSSSNSASLSISGL

YH




P2E10-

YCARAVTGWFLGIDFWGQGTLVTVSS


P2E10-

KTEDEADYYCQSYDGNYHWVFGGGT

WV




p1369




p1409

KLTVL








6.2M
COVD21_
407
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
408
ARASYYY
COVD21_
409
NFMLTQPHSVSESPGKTVTISCTGSSG
410
QSY
LAMBDA



mo6_ 

WMIWVRQAPGKGLEWVANIKLDGSEKKYVD

GWFDP
mo6_

SIASNYVQWYQQRPGSAPTNVIYEDN

DGT




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTAV


L_

QRPSGVPDRFSGSIDSSSNSASLTISGL

NL




P1B3-

YYCARASYYYGWFDPWGQGTLVTVSS


P1B3-

KTEDEADYYCQSYDGTNLWVFGGGT

WV




p1369




p1409

KLTVL








6.2M
COVD21_
411
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
412
AGQKWL
COVD21_
413
NFMLTQPHSVSESPGKTVTISCTGSGG
414
QSY
LAMBDA



mo6_ 

YMSWIRQAPGKGLECVSYISTSGSAKNCADSV

RAPFDY
mo6_

SIASNYVQWYQQRPGSAPRNVIYEDS

DNI




HC_

MGRFTISRDNAKNSLFLQMNSLRAEDTAVYY


L_

QRPSGVPDRFSGSIDSSSNSASLTISGL

YHY




P2C2-

CAGQKWLRAPFDYWGQGILVTVSS


P2C2-

KTEDEADYYCQSYDNIYHYVFGTGTQ

V




p1369




p1409

VTVL








6.2M
COVD21_
415
EVQLVQSGSEVKKPGESLKISCKASGYSFSYY
416
ARLSYGH
COVD21_
417
QSVLTQPPSVSGAPGQRVTISCAGSSS
418
QSY
LAMBDA



mo6_ 

WIGWVRQMPGKGLDWMGIIYPGDSATRYSPS

SGYTTVE
mo6_

NIGAGFDVQWYQQLPGRAPKLLIFGN

DSR




HC_

FQGQVTISADKSISTAYLQWSSLKASDTAMYY

DWFDP
L_

NNRPSGIPARFSGSKSGTSGSLAITGLQ

LSA




P2H11-

CARLSYGHSGYTTVEDWFDPWGQGTLVTVSS


P2H11-

AEDEADYYCQSYDSRLSASVFGGGTK

SV




p1369




p1409

LTV








6.2M
COVD21_
419
EVQLLESGGGLLQPGGSLRLSCAASGFTFSSY 
420
AKHPVM
COVD21_
421
SVLTQPPSVSGAPGQRVTISCTGSSS
422
QSY
LAMBDA



mo6_ 

VMSWVRQAPGKGLEWVSSISGSGGGTYYADS

AALGDV
mo6_

NFGAGYDVHWYQLLPGTAPKLLMYG

DSS




HC_

VKGRFTISRDNSKNTLFLQMNSLRAEDTAVYY


L_

NSDRPSGVPDRFSGSKSGTSASLAITG

LSG




P1B4-

CAKHPVMAALGDVYYYYGMDVWGQGTTVT


P1B4-

LQAEDEADYYCQSYDSSLSGWVFGG

WV




p1369

VSS


p1409

GTKLTVL








6.2M
COVD21_
423
QVQLVQSGAELKKPGASVRVSCKASGYTFTD
424
ARTSSPH
COVD21_
425
SYVLTQSPSVSVAGKTARITCGGRDI
426
QV
LAMBDA



mo6_ 

YYIHWVRQAPGQGFEWMGWINPDSGGTNYP

SSSTGDL
mo6_

GSKSVHWYQQRPGQAPVLVISYDND

WD




HC_

QNFQGRVTMTRGTSISTAYVELTRLRFDDTAV

DY
L_

RPSGIPERFSGSNSGNTATLTISRVEAG

GTG




P1E1-

YYCARTSSPHSSSTGDLDYWGQGTLVTVS


P1E1-

DEADYYCQVWDGTGDHPGWVFGGG

DHP




p1369




p1409

TRLTVL

GW













V






6.2M
COVD21_
427
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
428
ARGGYC
COVD21_
429
SYVLTQPPSVSVAPGKTARITCGGIDI
430
QV
LAMBDA



mo6_ 

YAISWVRQAPGQGLEWMGGIVPIFGSANYAQ

VGGTCQD
mo6_

GSKSVHWYQQKPGQAPLLVIYYDND

WD




HC_

KFQGRVTITADESTSTANMELRSLRFEDTAVY

WFDP
L_

RPSGIPERLSGSNSGNTATLTISRVEAG

GTS




P2E9-

YCARGGYCVGGTCQDWFDPWGQGTLVIVSS


P2E9-

DEADYYCQVWDGTSDHPAYVFGTGT

DHP




p1369




p1409

KVSVL

AYV






6.2M
COVD21_
431
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
432
AHHQGG
COVD21_
433
SYVLTQPPSVSVAPGKTATITCGGDSV
434
QV
LAMBDA



mo6_ 

DMHWVRQAPGKGLEWVAFISYDGGNKHSAD

GTGVYYS
mo6_

GSKSVHWYQQKSGQAPVLVISYDND

WDI




HC_

SVKGRFSISRDNSKNTLYLQMNSLRPEDTAVY

DPFDS
L_

RPSGIPDRFSGSNSGNTATLTISRVEAG

SPV




P1B8-

YCAHHQGGGTGVYYSDPFDSWGQGTLVTVSS


P1B8-

DEADYHCQVWDISPVFGGGTKLTVL






p1369




p1409










6.2M
COVD21_
435
QVQLVQSGAEVKKPGASVKVSCKASGYTFSH
436
ARGLSIL
COVD21_
437
SYVLTQPPSVSVAPGKTARITCGGNNI
438
QV
LAMBDA



mo6_ 

YDINWVRQATGQGLEWMGWMNPNSGNTGY

AVSEDWF
mo6_

GGKRIYWYQQKPGQAPVLVIYYNND

WD




HC_

AQKFQGRVTLTKNTSISTVYMELRSLTSEDTA

DP
L_

RPSGIPERFSGSNSGNTATLTISRVEAG

NSI




P1H2-

VYYCARGLSILAVSEDWFDPWGPGTLVTVSS


P1H2-

DEADYYCQVWDNSIDHYIFGTGTKVT

DHY




p1369




p1409

V

I






6.2M
COVD21_
439
EVQLLESGGALVQPGGSLRLSCAASGFTFSIFA
440
AKTIDTFF
COVD21_
441
SYVLTQPPSVSVAPGKTARITCGGNNI
442
QV
LAMBDA



mo6_ 

MSWVRQAPGKGLEWVSTISDVSTYYADSVKG

FDH
mo6_

GSKSVYWYQQKPGQAPVLVIYYDSD

WD




HC_

RFTISRDNSKNTLYLQMNGLRAEDTAVYYCA


L_

RPSGIPERFSGSNSGNTATLTISGVEAG

SSS




P2H3-

KTIDTFFFDHWGQGTLVTVSS


P2H3-

DEADYYCQVWDSSSDHWVFGGGTKL

DH




p1369




p1409

TVL

WV






6.2M
COVD21_
443
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTY
444
AREAHDG
COVD21_
445
SYVLTQPPSVSVAPGKTARITCGGTNI
446
QV
LAMBDA



mo6_ 

SMNWVRQAPGKGLEWVSYISSSSSTIHYADSV

ALTDYGD
mo6_

GSKNVHWYQQKPGQAPVLVIYYDND

WD




HC_

KGRFTISRDNAKNSLYLQMNSLRDEDTAVYY

YLNWFDP
L_

RPSGIPERFSGSNSGNTATLTISRVEAG

TTS




P1D10-

CAREAHDGALTDYGDYLNWFDPWGQGTLVT


P1D10-

DEADYYCQVWDTTSDHFYWVFGGG

DHF




p1369

VSS


p1409

TKLTVL

WY













V






6.2M
COVD21_
447
QVQLVQSGAEVKKPGASVRVSCKASGYTFTT
448
ARDYGSG
COVD21_
449
QSALTQPPSASGSPGQSVTISCTGTSSD
450
SSD
LAMBDA



mo6_ 

YDINWVRQASGQGLEWMGWMNPDSGNTGY

SYYRGN
mo6_

VGGYNYVSWYQQHPGKAPKLMIYEV

AGS




HC_

AQKFQGRVTMTRNISISTAYLDLSSLQSDDTA

WFDP
L_

SGVPDRFSGSKSGNTASLTVSGL

NNV




P2C7-

VYYCARDYGSGSYYRGNWFDPWGQGTLVIV


P2C7-

QAEDEAEYYCSSDAGSNNVVFGGGT

V




p1369

SS


p1409

KLTVL








6.2M
COVD21_
451
QVQLVQSGAEVRKPGASVKVSCMASGYTFNT
452
ARGADM
COVD21_
453
QSVLTQPPSASGSPGQSVTISCTGTSSD
454
SSY
LAMBDA



mo6_ 

YDINWVRQGTGQGLEWMGWMNPNSGNTGH

LNVAVG
mo6_

VGGYNFVSWFQQHPGKAPKLMIYEV

AGS




HC_

AQKFQGRVAMTVNTSMNTAYMELSSLRSEDT

ADFDY
L_

SGVPDRFSGSKSANTASLTVSGL

NN




P1E3-

AVYYCARGADMLNVAVGADFDYWGQGTLV


P1E3-

QAEDEADYFCSSYAGSNNWVFGGGT

WV




p1369

TV


p1409

KLTVL








6.2M
COVD21_
455
QVQLVESGGGVVQPGRSLRLSCVGSGFTFSNY
456
AREGSSG
COVD21_
457
QSVLTQPASVSGSPGQSITISCTGTSSD
458
SSY
LAMBDA



mo6_ 

AVHWVRQAPGKGLEWVTVISSDGGDKDYAD

SYYTGFY
mo6_

VGNYNYVSWYQQHPGKAPKVMIYD

TSN




HC_

AVKGRFTISRDNSKYKVYLEMKSLRGEDTAV

SYMDV
L_

VDTRPSGVSDRFSGSKSGNTASLTISG

SAL




P1F8-

YYCAREGSSGSYYTGFYSYMDVVVGKGTTVT


P1F8-

LQPEDEADYYCSSYTSNSALANWVFG

AN




p1369

VSS


p1409



WV






6.2M
COVD21_
459
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
460
ARVGRLA
COVD21_
461
QSVLTQPASVSGSPGQSITISCTGTSSD
462
SSY
LAMBDA



mo6_ 

HYMHWVRQAPGQGLEWMGWINPNTGGTNF

PRPYYFY
mo6_

VGDYNYVSWYQQYPGKAPKLMIYDV

TST




HC_

AQKFQGRVTMTRDTSISTAYMELNRLRSDDT

YYMD
L_

SNRPSGVSDRFSSKSGNTASLTISGL

TTL




P1C9-

AVYYCARVGRLAPRPYYFYYYMDVVVGKGTT


P1C9-

QAEDEADYYCSSYTSTTTLVFGTGTK

V




p1369

VTVSS


p1409

VTVL








6.2M
COVD21_
463
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGD
464
ARVVRL
COVD21_
465
QSVLTQPPSASGSPGQSVTISCTGTSSD
466
STY
LAMBDA



mo6_ 

YYWSWVRQPPGKGLEWIGYIYYTGITYYRPSL

WPRYFDS
mo6_

VGTYDYVSWYQQHPGKAPKVIIYEVS

AGS




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVFYC


L_

RRPSGVPDRFSGSKSGNTASLTVSGLQ

DNL




P2B10-

ARVVRLWPRYFDSWGQGTLVTVSS


P2B10-

AEDEAHYYCSTYAGSDNLEFGGGTKL

E




p1369




p1409

TVL








6.2M
COVD21_
467
QVQLVQSGAEVKKPGSSVKVSCKASGGTFNS
468
AREGGHT
COVD21_
469
QSVLTQPPSASGSPGQSVTISCTGTSSD
470
TSY
LAMBDA



mo6_ 

YALSWVRQAPGQGLEWMGGIIFIFDKPDYAQ

HPYYHG
mo6_

VGGYNYVSWYQQHPGKAPKLMIYEV

AGS




HC_

KFKGRLTITADESTNTVYMELSSLRSEDTAVY

MDV
L_

TKRPSGVPDRFSGSKSGNTASLTVSGL

ITY




P2A2-

YCAREGGHTHPYYHGMDVVVGQGTTVTVYS


P2A2-

RPEDEADYYCTSYAGSITYVFGTGTK

V




p1369




p1409

VSV








6.2M
COVD21_
471
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
472
AKPKKRG
COVD21_
473
QSVLTQPASVSGSPGQSITISCTGTNSD
474
TSY
LAMBDA



mo6_ 

AMHWVRQAPGKGLEWVSGISWNSGSMGYAE

DYYGSGS
mo6_

IGAYNFVSWYQQHPGKAPKLMIYDV

RMT




HC_

SLKGRFTISRDNAKNSLYLQMNSLRAEDTALY

FDY
L_

NNRPSGVSSRFSGSKSGNTASLTISGL

STV




P1C3-

YCAKPKKRGDYYGSGSFDYWGQGTLVTVSS


P1C3-

QAEDEADYYCTSYRMTSTVVFGGGT

V




p1369




p1409

KLTVL








6.2M
COVD21_
475
QLQLQESGPGLVKPSETLSLTCIVSGGSINSTT
476
ARRLRQL
COVD21_
477
QSVLTQPPSASGSPGQSVTISCTGTRS
478
SSY
LAMBDA



mo6_ 

YYWDWIRQSPGKGLEWIGSIFYTGITYYSPSLK

WFGPWF
mo6_

DVGDYNYVSWYQQHPDKAPKLIIFEV

AGS




HC_

TRVTISVDTSKNQFSLRLNSMTAADTAVYYCAR

DP
L_

TKRPSGVPDRFSGSKSGNTASLTVSGL

SNV




P1A12-

RLRQLWFGPWFDPWGQGTLVTVSS


P1A12-

QAEDEADYYCSSYAGSSNVMFGGGT

M




p1369




p1409

KLTVL








6.2M
COVD21_
479
QLQLQESGPGLVKPSETLSLTCTVSGGSISSTT
480
ARRLRQL
COVD21_
481
QSVLTQPPSASGSPGQSVTISCTGTRS
482
SSY
LAMBDA



mo6_ 

YYWDWIRQSPGKGLEWIGSIFYTGITYYSPSLK

WFGPWF
mo6_

DVGDYNYVSWYQQHPDKAPKLIIYE

AGS




HC_

SRVTISVDTSKNQFSLRLNSMTAADTAVYYCA

DP
L_

VTKRPSGVPDRFSGSKSGNTASLTVSG

NNV




P1D9-

RRLRQLWFGPWFDPWGQGTLVTVSS


P1D9-

LQAEDEADYYCSSYAGSNNVMFGGG

M




p1369




p1409

TKLTVL








6.2M
COVD21_
483
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNV
484
TTDHGRE
COVD21_
485
EIVLTQSPGTLSLSPGERASLSCRARQS
486
LQY
KAPPA



mo6_ 

WMSWVRQAPGKGLEWVGRIKSKIDGGTTEY

PPVH
mo6_

VYSNYLAWYQHKSGQAPRLLFYGAS

GPS




HC_

AAPVKGRFIISRDDSKNTLSLQMNSLKTEDTA


K_

SRATDIPDRFSASGSGTDFTLTISRLEP

PT




P1A1-

VYYCTTDHGREPPVHWGQGTLVTVSS


P1A1-

EDFAVYYCLQYGPSPTFGPGTRLEIK






p1369




p1389










6.2M
COVD21_
487
EVQLVQSGAEVKKPGESLKISCKGSGFLFSRY
488
ARTQHGV
COVD21_
489
DIQMTQSPSTLSASVGDRVTITCRASQ
490
QQY
KAPPA



mo6_ 

WIGWVRQMPGKGLEWLGIIYSGDSDTRYSPSF

TDAFDI
mo6_

SISSWLAWYQQKPGKAPKFLIYEASR

SNY




HC_

QGQVTFSVDKSVNTAYLHWSSLKASDTAVYY


K_

LESGVPSRFSGSGSGIEFTLTINSLQPD

SPT




P1A4-

CARTQHGVTDAFDIWGQGTMVTVSP


P1A4-

DFATYYCQQYSNYSPTFGQGTKVEF






p1369




p1389










6.2M
COVD21_
491
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGP
492
ARVWQY
COVD21_
493
DIVMTQSPLSLPVTPGEPASISCRSSRG
494
MQ
KAPPA



mo6_ 

YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL

YDSTGSF
mo6_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

KSRVTISVDTSKKQFSLNLNSVTAADTAVYYC

DY
K_

LGSNRASGVPDRFSGSGSVTDFTLNIS

TPF




P1A6-

ARVWQYYDSTGSFDYWGQGTLVTVSS


P1A6-

RVEAEDVGVYYCMQALQTPFTFGPG

T




p1369




p1389










6.2M
COVD21_
495
QVQLVESGGGVVQPGRSLRLACAASGFTF
496
ARGDTSG
COVD21_
497
EIVLTQSPGTLSLSPGERATLSCRASQS
498
QQY
KAPPA



mo6_ 

GMHWVRRAPGKGLEWVAVIWHDGSNKYYA

WYALGL
mo6_

VSSSYLAWYQQKPGQAPRLLIYGASS

GSS




HC_

DSVKGRFTISRDNSKSTLFLQMNSLRAEDTAV

DV
K_

RATGIPDRFSGSGSGTDFTLTISRLEPE

PPY




P1A7-

YYCARGDTSGWYALGLDVWGRGTTVTVSS


P1A7-

DFAVYYCQQYGSSPPYTFGQGTKLEI

T




p1369




p1389

K








6.2M
COVD21_
499
EVQLVESGGGLAQPGRSLRLSCAASGFTFDDY
500
AKAGVR
COVD21_
501
EIVLTQSPATLSLSPGERATLSCRASQS
502
QQR
KAPPA



mo6_ 

AMHWVRQAPGKGLEWVSGINWNSGSLGYAD

GIAAAGP
mo6_

VSSYLAWYQQKPGQAPRLLIYDASNR

IT




HC_

SVKGRFTISRGIAKNSLYLQMNSLRPEDTAFY

DLNFDY
K_

ATGIPARFIGSGSGTDFTLTISSLEPEDF






P1A8-

YCAKAGVRGIAAAGPDLNFDYWGQGTLVTVS


P1A8-

AVYYCQQRITFGQGTRLEIK






p1369

S


p1389










6.2M
COVD21_
503
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSF
504
AKQLVSG
COVD21_
505
EIVLTQSPATLSLSPGERATLSCRASQS
506
QQR
KAPPA



mo6_ 

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

GYGDLW
mo6_

VSSFLAWYQQKPGQAPRLLIHDASDR

SN




HC_

SVQGRFTISRDNSKNTLSLQMNSLRAEDTAVY

FGGLDY
K_

ATGIPARFSGSGSGTDFTLTISSLEPED

WP




P1B11-

YCAKQLVSGGYGDLWFGGLDYWGQGTLVTV


P1B11-

FAVYYCQQRSNWPQTFGQGTKVEIK

QT




p1369

SS


p1389










6.2M
COVD21_
507
QVQLVESGGGVVRPGRSLRLSCAASGFTFNNY
508
ARDQSLE
COVD21_
509
DIQMTQSPSSLSASVGDRVTITCRASQ
510
QQS
KAPPA



mo6_ 

GMHWVRQAPGKGLEWVAVIGSDGHIKHYAD

EFLVTWF
mo6_

SISSYLNWYQQKPGKAPKLLIHAASSL

YNT




HC_

SVKGRFTISRDNSKNTLYLQLNSLRAEDTAMY

DP
K_

QSGVPSRFSGSGSGTDFTLTINSLQPED

PPW




P1B9-

YCARDQSLEEFLVTWFDPWGQGTLVTVS


P1B9-

FATYYCQQSYNTPPWTFGQGTKVEIK

T




p1369




p1389










6.2M
COVD21_
511
QVQLVESGGGLVKPGGSLRLSCAVSGFTFSEY
512
ATDRTKN
COVD21_
513
DVVMTQSPLSLPVTLGQPASISCRSSE
514
MQ
KAPPA



mo6_ 

YMSWIRQAPEKGLEWVSHISSSGSTMYYADS

SYDSSGG
mo6_

SLVYSDGNTYLSWFQQRPGQSPRRLI

GTH




HC_

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

DY
K_

YKVSNRDSGVPDRFSGSGSGTDFTLKI

WPP




P1C11-

YCATDRTKNSYDSSGGDYWGQGTLVTVSS


P1C11-

SRVEAEDVGVYYCMQGTHWPPYTFG

YT




p1369




p1389

QGTKLEIK








6.2M
COVD21_
515
QMQLVQSGPEVKKPGTSVKVSCKASGFTFYN
516
AAPYCSG
COVD21_
517
EIVLTQSPGTLSLSPGERGTLSCRASQS
518
QQY
KAPPA



mo6_ 

SAVQWVRQARGQRLEWVGWIVVGSGNTDYA

GTCLDGF
mo6_

VRSNYLAWYKQRPGQAPRLLVYGAS

GSS




HC_

QKFQERVTMTRDLSTNTAYMEVNSLRSEDTA

DI
K_

SRATGIPDRFSGSGSGTDFTLTISRLEP

PWT




P1C2-

VYYCAAPYCSGGTCLDGFDIWGQGTMVTVSS


P1C2-

EDFAVYYCQQYGSSPWTFGQGTKVEI






p1369




p1389










6.2M
COVD21_
519
EVQLVESGGGLIQPGGSLRLSCAASGITVSSNY
520
ARDLYSS
COVD21_
521
EIVLTQSPGTLSLSPGERATLSCRASQS
522
QQY
KAPPA



mo6_ 

MSWVRQAPGKGLEWVSVMYAGGSTFYADSV

GGTDI
mo6_

IGSSYLAWYQQKPGLAPRLLIYGASR

GSS




HC_

KGRFTISRDDSKNTLFLQMNSLRAEDTAIYYC


K_

RATGIPDKFSGSGSGADFTLTISRLEPE

PGT




P1C6-

ARDLYSSGGTDIWGQGTMVTVSS


P1C6-

DFAVYYCQQYGSSPGTFGQGTKVEIK






p1369




p1389










6.2M
COVD21_
523
EVQLVESGGGLIQPGGSLRVSCAASGVTVSSN
524
ARDLGER
COVD21_
525
DIQMTQSPSSVSASVGDRVTITCRASQ
526
QQA
KAPPA



mo6_ 

YMTWVRQGPGKGLEWVSVIYPGGNTFYADS

GMDV
mo6_

GFGNWLAWYQQKPGKAPKLLIYAAS

NSF




HC_

VKGRFTISRDTSKNTLSLQMNSLRVEDTAVYY


K_

NLQSGVPSRFSGSGSGTDFTLTISSLQA

PS




P1D12-

CARDLGERGMDVWGHGTTVTV


P1D12-

EDFATYFCQQANSFPSFGGGTKVEIK






p1369




p1389










6.2M
COVD21_
527
QVQLVESGGGVVQPGRSLRLSCAASGFTFNN
528
ARDEGSL
COVD21_
529
DIQMTQSPSSLSASVGDRVTITCRASQ
530
QQS
KAPPA



mo6_ 

YGMHWVRQAPGKGLEWVAVIWYDGRSKHY

TTTFDS
mo6_

SISSHLNWFQQKPGKAPKLLIYAASSL

YAT




HC_

ADSVRGRFTISRDNSKNALFLQMNTLRAEDTA


K_

QTGVPSRFSGSGSGTDFTLTITSLQPED

PPW




P1D1-

MYYCARDEGSLTTTFDSWGQGTLVTVSS


P1D1-

FATYYCQQSYATPPWTFGQGTKVEI

T




p1369




p1389










6.2M
COVD21_
531
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
532
ARDSQLI
COVD21_
533
DIQMTQSPSSLSASVGDRVTITCRTSQ
534
QQY
KAPPA



mo6_ 

VMSWVRQAPGKGLEWVSEISGSGDITDYADS

DMVVVL
mo6_

TISNYLNWFQQKPGKAPKLLIYXVSSL

YTT




HC_

VKGRFTISRDNSKKTLYLQMKSLRAEDTAVY

DY
K_

RSGVPSRFSGSGSGTDFTLTISSLQPED

PPT




P1D2-

YCARDSQLIDMVVVLDYWGQGTLVTVSS


P1D2-

FATYYCQQTYTTPPTFGGGTKV






p1369




p1389










6.2M
COVD21_
535
QVQLVESGGGVVQPGRSLRLSCAATGFTFSNF
536
ARALDGD
COVD21_
537
DVVMTQSPLSLPVTLGQPASISCTSSQ
538
MQS
KAPPA



mo6_ 

GMHWVRQAPGKGLEWVAVISYHGTNKDYAD

YSEYFQH
mo6_

SLLFSDGNTYLTWFQQRPGQSPRRLIY

TH




HC_

SVKGRFTISRDNSKNTLYLQLNSLRFDDTAVY


K_

KVSNRDSGVPDRFSGSGSGTDFTLKIS

WP




P1D4-

YCARALDGDYSEYFQHWGQGTLVTVSS


P1D4-

RVEAEDVGVYYCMQSTHWPQTFGQG

QT




p1369




p1389

TKVEIK








6.2M
COVD21_
539
EVQLVESGGGLVQPDRSLRLSCAASGFTFDDY
54
VKEIGLE
COVD21_
541
DIQMTQSPSSLSASVGDRVTLTCRASQ
542
QQS
KAPPA



mo6_ 

AMHWVRQAPGKGLEWVSGISRNSGIKVYADS

LPVDVFD
mo6_

SISRYLNWFQQKAGKAPKLLIYAASSL

YST




HC_

VKGRFTISRDNAKNSLFLQMNSLRAEDTALYY

F
K_

QTGVPSRFSGSGSGTDFTLTISSLQLED

PVT




P1D6-

CVKEIGLELPVDVFDFWGQGTMVTVSS


P1D6-

FATYYCQQSYSTPVTFGQGTRLEIK






p1369




p1389










6.2M
COVD21_
543
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTY
544
ARGNWN
COVD21_
545
DIQMTQSPSSLSASVGDRVTISCRASQ
546
QQS
KAPPA



mo6_ 

DMHWVRQATGKGLEWVSAIGTSGDTYYPDS

PPSYYYM
mo6_

SINTYLNWYQQRPGKAPKLLIYASSSL

YST




HC_

VKGRFTISRENAKNSLFLQMNGLRAGDTAIYY

DV
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P1E12-

CARGNWNPPSYYYMDVWGKGTTVTVS


P1E12-

FATYYCQQSYSTPPWTFSQGTKVEIK

T




p1369




p1389










6.2M
COVD21_
547
QVQLVESGGGVVQPGRSLRLSCVASGFSFSKY
548
AKGGLY
COVD21_
549
DIQMTQSPSSLSASVGDRVTIICQASQ
550
QQY
KAPPA



mo6_ 

GMHWVRQAPGKGLEWVAVVSYDGSNKYYA

GSGTYYE
mo6_

DITYYLNWFQQKPGKPPKLLIHDASN

EHL




HC_

DSVKGRIAVSRDNSKNTLFLQMNSLKAEDTA

NFDY
K_

LEAGVPSRFSGGGSGTDFTFTISSLQPE

PYT




P1E2-

VYYCAKGGLYGSGTYYENFDYWGQGTRVTV


P1E2-

DFATYYCQQYEHLPYTFGQGTRLEIK






p1369

SS


p1389










6.2M
COVD21_
551
QVQLVESGGGVVQPGRSLRLSCAASGLAFSIY
552
VKEGRPS
COVD21_
553
DIQMTQSPSSLSASVGDRVTITCRASQ
554
QQS
KAPPA



mo6_ 

GMHWVRQAPGKGLEWVAIVAQDGSKKYYA

DTVVVV
mo6_

SNYLNWYQQKPGKAPKVIIYAASSL

HSIP




HC_

DSVKGRFTISRDNSKNTLYLEMNSLRTEDTAV

AFDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

RT




P1F2-

YYCVKEGRPSDTVVVVAFDYWGQGSLVTVSS


P1F2-

FATYYCQQSHSIPRTFGQGTKVEIK






p1369




p1389










6.2M
COVD21_
555
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGT
556
ARESFYY
COVD21_
557
DIQMTQSPSTLSSSVGDRVTITCRASQ
558
QQY
KAPPA



mo6_ 

FYWSWIRQPPGKGLEWIGYIHYSGSTNYNPSL

DRSGYYG
mo6_

NISRWLAWYQQKPGKAPKLLIYKAST

NSY




HC_

KSRVTISVDTSKNQFSLRLSSVTAADTAVYYC

SDAFDI
K_

LESGVPSRFSGSGSGTKFTLTISSLQPD

LYT




P1F9-

ARESFYYDRSGYYGSDAFDIWGQGTMVTVSS


P1F9-

DFATYYCQQYNSYLYTFGQGTKLEM






p1369




p1389

K








6.2M
COVD21_
559
EVQLVESGGGLIHPGGSLRLSCAASDIIVSSNY
560
ARDLVVN
COVD21_
561
DIQLTQSPSFLSASVGDRVTITCRASQ
562
QLL
KAPPA



mo6_ 

MSWVRQAPGKGLEWVSVIYPGGSAFYGDSVK

GMDV
mo6_

SNYLAWYQQKPGKAPKLLIYAAST

NSD




HC_

GRFTVSRDNSKNTLYLQMNSLSAEDTAVYYC


K_

LQSGVPSRFSGSGSGTEFTLTISGLQPE

PYT




P1G12-

ARDLVVNGMDVWGQGTTVIVS


P1G12-

DFATYYCQLLNSDPYTFGQGTKLEI






p1369




p1389










6.2M
COVD21_
563
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
564
ARDQGYS
COVD21_
565
EIVLTQSPGTLSLSPGERATLSCRASQS
566
QQH
KAPPA



mo6_ 

YYWNWIRQHPGRGLEWIGYIFYSGSTYYNAS

SSWDAFD
mo6_

ISSSYVAWYQQKTGQAPRLLIYGASS

GSS




HC_

LRSRVTISIDTSKNQFSLKLKSVTAADTAVYYC

I
K_

RATGIPDRFSGSGSGTEFTLTISRLEPE

LT




P1G5-

ARDQGYSSSWDAFDIWGQGTMVTVSS


P1G5-

DFAVYYCQQHGSSLTFGGGTKVEIK






p1369




p1389










6.2M
COVD21_
567
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
568
ARDEYYY
COVD21_
569
DIQMTQSPSSLSASVGDRVTITCRASQ
570
LHH
KAPPA



mo6_ 

YGINWVRQAPGQGLEWMGWISAFNGDTNYA

ESGASSA
mo6_

GIRNHLGWFQQKPGEAPKRLIYAASS

DDF




HC_

QKVQGRVTMTTDTSTNTVYMELRSLRSDDTA

DIGHI
K_

LQTGVPSRFSGSGSGTQFTLTIASLQPE

PPR




P1H11-

VYYCARDEYYYESGASSADIGHIWGQGTVVT


P1H11-

DFATYYCLHHDDFPPRFTFGPGTKVN

FT




p1369




p1389










6.2M
COVD21_
571
EVQLVESGGGLVKPGGSLRLSCVASGFTFRNA
572
TTGPQYD
COVD21_
573
DIVMTQSPLSLPVTLGEPASISCRSSQS
574
MQ
KAPPA



mo6_ 

WMNWVRQAPGKGLEWVGRIKANSDGGTIDY

DFGHSYI
mo6_

LLHSNGFHFLEWYLQKPGQSPQLLIY

TLQ




HC_

AEPVQGRFTISREDSRNSLYLQMNSLKTEDTA

VDS
K_

VGSNRASGVPDRFSGSGSGTDFTLKIS

TPL




P1H3-

VYYCTTGPQYDDFGHSYIVDSWGPGTLVTVSS


P1H3-

RVEAEDVGVYYCMQTLQTPLTFGGG

T




p1369




p1389

TKVEIK








6.2M
COVD21_
575
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
576
TTDDPGS
COVD21_
577
DIQMTQSPSSLSASVGDRVTITCQASQ
578
QQY
KAPPA



mo6_ 

WMSWVRQAPGRGLEWVGRIKSKTDGGTTDY

YYYGMD
mo6_

DISNYLNWYQQKPGKVPKLLIYDASN

DSF




HC_

AAPVKGRFTISRDDSKNTLYLQMNSLK1EDTA

V
K_

LEAGVPSRFSGSGSGKDFTFTISSLQPE 

PIT




P1H7-

VYYCTTDDPGSYYYGMDVWGQGTTVTVS


P1H7-

DIATYYCQQYDSFPITFGPGTKVD






p1369




p1389










6.2M
COVD21_
579
EVQLVESGGGLVQPGGSLRLSCAASGFTLSSH
580
ARGNYFD
COVD21_
581
EIVMTQSPATLSVSPGERATLSCRASQ
582
QQY
KAPPA



mo6_ 

DMHWVRQVPGKRLEWVSAIGPSGDTYYPDSV

SSGFRNY
mo6_

SVSSNLAWYQQKPGQAPRVLIYGAST

HN




HC_

KGRFTISRENAKNSLYLQMNSLRAGDTAVYY

YYGMDV
K_

RATGIPARFSGSGSGTEFTLTISSLQSE

WPP




P1H8-

CARGNYFDSSGFRNYYYGMDVWGQGTTVTV


P1H8-

DFAVYYCQQYHNWPPLTFGGGTKVEI

LT




p1369




p1389










6.2M
COVD21_
583
QVQLVESGGGVVQPGRSLRLSCVASGFSFSNY
584
ARVFGN
COVD21_
585
DIQMTQSPSSLSASVGDRATITCRASQ
586
LQH
KAPPA



mo6_ 

GMHWVRQAPGKGLEWVAAIWYDGVDKYRD

WDDFDY
mo6_

GITNDLGWYQQKPGKAPKRLIYGASS

NSY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRVEDTAVY


K_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PWT




P2A11-

YCARVFGNWDDFDYWGQGTLVTVSS


P2A11-

DFATYYCLQHNSYPWTFGQGTKVEIK






p1369




p1389










6.2M
COVD21_
587
EVQLVESGGGLVQPGRSLRLSCAASGFTLDDF
588
AKVLNRN
COVD21_
589
EIVMTQSPATLSVSPGESVTLSCRASQ
590
QHY
KAPPA



mo6_ 

AMHWVRQAPGKGLEWVSGISWNSGTIDYAD

SFFYGSF
mo6_

SVSSNLAWYQQKPGQAPRLLIYGAST

NN




HC_

SVKGRFTISRDNAKNSLYLQMNSLRPEDTAFY

DY
K_

RATGVPARFSGSGSGTEFTLTISSLQSE

WPP




P2A3-

YCAKVLNRNSFFYGSFDYWGQGTLVTVSS


P2A3-

DFAVYYCQHYNNWPPGITFGQGTRLE

GIT




p1369




p1389










6.2M
COVD21_
591
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRY
592
AKTGASY
COVD21_
593
DIQMTQSPSSLSASVGDRVTITCQASQ
594
QHY
KAPPA



mo6_ 

GMHWVRQAPGKGLEWVAVSSYDGSNEYYA

CGGDCPF
mo6_

DINNYLNWYQQKPGKAPKLLIYDASD

NNL




HC_

NSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

HFDY
K_

LETGVPSRFSGGGSGTDFTFTISSLQPE

PIT




P2A5-

YYCAKTGASYCGGDCPFHFDYWGQGTLVIVS


P2A5-

DIATYYCQHYNNLPITFGQGTRLEIK






p1369

S


p1389










6.2M
COVD21_
595
EVQLVESGGGLIQPGGSLRLSCAASGFTFSTSD
596
ARGRQQL
COVD21_
597
DIQMTQSPSSLSASVGDRVTITCRASQ
598
QQS
KAPPA



mo6_ 

MHWVRQVIGKGLEWVSVIGSAGDTYYPDSVK

IPDLITSR
mo6_

SIGSYLNWYQQKPGKAPKLLIYAASS

YST




HC_

GRFTISRENARNSLYLQMNSLRAEDTAVYYCA

YNYYYY
K_

LQSGVPSRFSGSGSGTDFTLTISSLQPE

LSY




P2A6-

RGRQQLIPDLITSRYNYYYYMDLWGKGTTVIV


P2A6-

DFATYYCQQSYSTLSYTFGQGTKLDI

T




p1369

SS


p1389

K








6.2M
COVD21_
599
EVQLVESGGGLIKPGGSLRLSCAASGFSFSDA
600
ATAADIV
COVD21_
601
DIQMTQSPSSLSASVGDRVTITCRASQ
602
QQS
KAPPA



mo6_ 

WMTWVRQAPGKGLEWIGRIKSKTDGGTTDY

VVVAPDS
mo6_

SISYYLNWYQQKPGKAPKLLIYAASS

YST




HC_

AAPVKGRFTISRDDSKNTLYLQMKSLK

PFDC
K_

LQSGVPSRFSGSGSGTDFTLTITSLQPE

LLT




P2B12-

VYYCATAADIVVVVAPDSPFDCWGQGTLVTV


P2B12-

DFATYYCQQSYSTLLTFGGGTKVEIK






p1369

SS


p1389










6.2M
COVD21_
603
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
604
ARVPSWA
COVD21_
605
DIQMTQSPSSLSASVGDRVTITCQASQ
606
QQY
KAPPA



mo6_ 

SMNWVRQAPGKGLAWVSSISSSNNIIYYAD


mo6_

AIASYLSWYQHKPGRAPKLLIYDASN

ESL




HC_

KGRFTISRDDAKDSLYLHMKSLRADDTAVYF


K_

LEIGVPSRFSGSGSGTDFTFTISSLQSE

PGT




P2B3-

CARVPSWAPYQLLPGPFDYWGQGILVTV


P2B9-

DNATYYCQQYESLPGTFGGGTKVEIK






p1369




p1389










6.2M
COVD21_
607
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSA
608
TTTNDYG
COVD21_
609
DIVMTQSPDSLAVSLGERATINCKSSQ
610
QQY
KAPPA



mo6_ 

WMSWVRQAPGKGLEWVGRIKTKTDGGTKDY

DYSPAY
mo6_

SILYVSNNKNYLAWYQQKPGQPPKLL

YSP




HC_

AAPVKGRFTISRDDSKNTLYLQMNSLKIEDTA


K_

IYWASSGVPDRFSGSGSGTDFTLT

PPT




P2B4-

VYYCTTTNDYGDYSPAYWGQGTLVTVSS


P2B4-

IGSLQAEDVAVYYCQQYYSPPPTFGQ






p1369




p1389

GTKVEI








6.2M
COVD21_
611
QVQLVESGGGVVQPGRTLRLSCAASGFIFSDY
612
ARLATIP
COVD21_
613
EIVMTQSPATLSVSPGERATLSCRASQ
614
QQY
KAPPA



mo6_ 

GMHWVRQAPGKGLEWVAVIWYDGSNKYYA

YFYYMD
mo6_

SVSNKLAWYQQKPGQAPRLLIYGAST

SN




HC_

DSVKGRFTISRDNSKNTLSLQMSSLRAEDTAV

V
K_

RATDIPARFSGSGSGTEFTLTISSLQSE

WPP




P2B5-

YYCARLATIPYFYYMDVWGKGTTVTVSS


P2B5-

DFAVYYCQQYSNWPPLTFGGGTKVEI

LT




p1369




p1389










6.2M
COVD21_
615
QVQLVQSGAEVKKPGSSVKVSCKASGDTFSS
616
ARGVVG
COVD21_
617
DIQMTQSPSSLSASVGDRVTITCRASQ
618
QQS
KAPPA



mo6_ 

HAINWVRQAPGQGLEWMGRSIPMLGVTTSAQ

ATPGSFD
mo6_

SISRYLNWYQQRPGRAPELLIYSASSL

YET




HC_

KFKGRVTITADHSTSTVFMDLSSLRSDDTAIYY

L
K_

QSGVPSRFSASGSGTDFTLTISSLQPED

PPIT




P2B6-

CARGVVGATPGSFDLWGQGTMVTVSS


P2B6-

FATYYCQQSYETPPITFGQGTRLEI






p1369




p1389










6.2M
COVD21_
619
QVQLVESGGGVVQPGRSLRLSCAASRFTFSSY
620
ARDESIM
COVD21_
621
DIQMTQSPVSLSASVGDRVTITCRASQ
622
QQS
KAPPA



mo6_ 

GMHWVRQAPGKGLEWVAVIWHDGSNKYYA

VTANEID
mo6_

TIISHLNWYQQKPGKAPNLLIYAASSL

YST




HC_

DSVKGRFTISRDNSKNTVYLQMNSLRVEDTA

Y
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P2C10-

VYYCARDESIMVTANEIDYWGQGTLVTVSS


P2C10-

FATYYCQQSYSTPPWTFGQGTKVEIK

T




p1369




p1389










6.2M
COVD21_
623
QVQLVQSGAEVKKPGASVKVSCKASGYTFTN
624
AKDRGII
COVD21_
625
DIQMTQSPVSLSASVGDRVTITCRASQ
626
QQY
KAPPA



mo6_ 

HYMHWVRQAPGQGLEWMGIINPGGGSTSYA

VSRDAFD
mo6_

SIGNWLAWYQQKPGKAPNLLIYKASS

NNY




HC_

QKFQGRVTMTSDTSTSTVYMELSSLRSEDTAV

I
K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

SWT




P2C11-

YYCAKDRGIIVSRDAFDIWGQGTMVTVSS


P2C11-

DFATYYCQQYNNYSWTFGQGTKVEI






p1369




p1389

K








6.2M
COVD21_
627
QVQLVESGGGVVQPGRSLRLSCAASGFTFSDY
628
ARDWGT
COVD21_
629
DIQMTQSPSSLSASVGDRVTITCRASQ
630
QQS
KAPPA



mo6_ 

AMHWVRQAPGKGLEWVAVIWDDGRTKHYA

LTTLFDY
mo6_

TIISHLNWYQQKPGKAPNLLIYAASSL

YST




HC_

DSVKGRFTISRDKAKNTLYLQMNSLRAEDTAI


K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P2C9-

YYCARDWGTLTTLFDYWGQGALVTVSS


P2C9-

FATYYCQQSYSTPPWTFGQGTKVEIK

T




p1369




p1389










6.2M
COVD21_
631
EVQLVESGGGLVQPGGSLRLSCAASGFIFRSF
632
ARVPRDY
COVD21_
633
EIVLTQSPGTLSLSPGERATLFCRASQS
634
QQY
KAPPA



mo6_ 

WMYWVRQAPGKGLVWVSRISSDGSRTAYAD

YDRTGNH
mo6_

VTSSDLAWYQQKPGQAPRLLISGASS

ASS




HC_

SVKGRFTISRDNTKDTLYLQMNSLRAEDTAVY

HVDEYFQ
K_

RATGIPDRFIGSGSGTDFTLTISGLAPE

PYT




P2D12-

YCARVPRDYYDRTGNHHVDEYFQHWGQGTL


P2D12-

DFAVYYCQQYASSPYTFGQGTKLEI






p1369

VSVSS


p1389










6.2M
COVD21_
635
QVQLVQSGAAVKKPGASVKVSCKASGYTFTT
636
ARGALIP
COVD21_
637
DIQMTQSPSTLSASVGDRVTITCRASQ
638
QYY
KAPPA



mo6_ 

YYMHWVRQAPGQGLEWMGIINPSAGSTTYA

MVGAPFD
mo6_

SIGTGLAWYQQKPGTAPKVLIYKAST

SYY




HC_

QRFQGRVTMTTDTSTSTVYMELSSLRSEDTAV

Y
K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

SPG




P2D3-

YYCARGALIPMVGAPFDYWGQGTLVTVSS


P2D3-

DFATYYCQYYSSYSPGYTFGQGTTLEI

YT




p1369




p1389










6.2M
COVD21_
639
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
640
ARGVVG
COVD21_
641
EIVLTQSPATLSLSPGERATLSCRASQS
642
QQR
KAPPA



mo6_ 

YAISWVRQAPGQGLEWMGRSIPMLGVTTSAQ

ATPGSFD
mo6_

VSNYLAWYQQKPGAPRLLIYDASN

IT




HC_

KFKGRVTITADHSTSTVFMDLSSLRSDDTAIYY

L
K_

RATGIPSGSGSGTDFTLTISSLEPE






P2D4-

CARGVVGATPGSFDLWGQGTMVTVSS


P2D4-

DFAVYYCQQRITFGQGTRLEIK






p1369




p1389










6.2M
COVD21_
643
QVQLVESGGGVVHPARSLRLSCAASGFTFSSY
644
ARDYGP
COVD21_
645
DIQMTQSPSSLSASVGDRVTITCRASQ
646
QQS
KAPPA



mo6_ 

GMHWVRQTPGKGLEWVAVISYDGSYKDYAD

MVTYHD
mo6_

SISSYLNWYQQKPGKAPKLLFYTASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQLNSLRAEDTAVY

Y
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P2D9-

YCARDYGPMVTYHDYWGQGTLVTVSS


P2D9-

FATYYCQQSYSTPPWTFGQGTKVEIK

T




p1369




p1389










6.2M
COVD21_
647
EVQLLESGGDLVQPGGSLRLSCEASGFTFSIYA
648
AKHAMG
COVD21_
649
DIQLTQSPSFLSASVGDRVTITCRASQ
650
QRL
KAPPA



mo6_ 

MSWVRQVPGTGLEWVSGFSGNTGDTHYADS

GWYGFG
mo6_

GIDSYLAWYQQTPGKAPKLLIYAAST

NGY




HC_

VKGRFTISRDTSSNTLYLQMNSLRAGDTAIYY

AFDI
K_

LQSGVPSRFSGSGSGTDFTLTISSLQPE

PWT




P2E12-

CAKHAMGGWYGFGAFDIWGQGTTVTVSS


P2E12-

DFATYYCQRLNGYPWTFGQGTKVEIK






p1369




p1389










6.2M
COVD21_
651
QVQLVQSGAEVKKPGSSVKVSCKASGGTF
652
ARDLQNR
COVD21_
653
DIQMTQSPSSLSASVGDRVTITCQASH
654
HQY
KAPPA



mo6_ 

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQK

GGMDV
mo6_

DISTYLNWYQHKPGKAPKVLIYDASN

DNL




HC_

FQGRVTITADESTSTAYMELSSLRSEDTAVYY


K_

LQTGVPSRFSGSGSGTHFTFTISSLQPE

PPT




P2E5-

CARDLQNRGGMDVWGQGTTVTVSS


P2E5-

DVATYYCHQYDNLPPTFGGGTKVEL






p1369




p1389










6.2M
COVD21_
655
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
656
ARDVLER
COVD21_
657
EIVLTQSPGTLSLSPGERATLSCRASQS
658
QQF
KAPPA



mo6_ 

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

GGMDV
mo6_

VGSSFLAWYQQRPGQAPRLLIYGASS

GSS




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAIYY


K_

RATGIPDRFSGSGFGTDFTLTISRLEPE

PFT




P2E6-

CARDVLERGGMDVWGQGTTVIVSS


P2E6-

DSAVYYCQQFGSSPFTFGPGTRVEIK






p1369




p1389










6.2M
COVD21_
659
EVQLVESGGGLVQPGRSLRLSCVVSGFTLENY
660
AKDNAPK
COVD21_
661
EIVLTQSPVSLSLSPGERATLSCRASQS
662
QQR
KAPPA



mo6_ 

AMHWVRQAPGKGLEWVSGISWNSGTKGYAD

NDYDFW
mo6_

VGSYLAWYQHKPGQAPRLLIYDALN

SN




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTALY

TDNFGKH
K_

RATGIPARFSGSGSGTDFTLTISSLEPE

WP




P2F1-

YCAKDNAPKNDYDFWTDNFGKHYYYGMDV

YYYGMD
P2F1-

DFAVYYCQQRSNWPQLTFGGGTKVEI

QLT




p1369

WGQGTTVTVS

V
p1389

K








6.2M
COVD21_
663
EVQLVESGGGLVQPGGSLRLSCAASGFSFSTY
664
AREMAGS
COVD21_
665
DIQMTQSPSSVSASVGDRVTITCRASQ
666
QQA
KAPPA



mo6_ 

WMSWVRQAPGKGLEWVADIKQDGSEKYFVD

GNYYWF
mo6_

GISSWLAWYQQKPGKAPKLLIYAASS

NSF




HC_

SVKGRFTISRDNAKNSLYLHLNSLRAEDTAVY

GYGMDV
K_

LQSGVPSRFSGSESGTDFTLTISSLQPE

PLT




P2F2-

YCAREMAGSGNYYWFGYGMDVVVGQGTTVT


P2F2-

DFATYYCQQANSFPLTFGGGTKVEIK






p1369

VSS


p1389










6.2M
COVD21_
667
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
668
ARGDHR
COVD21_
669
DIQMTQSPSSLSASVGDRVTITCRASQ
670
QQS
KAPPA



mo6_ 

DMHWVRQVPGKGLEWVSGIGTAGDTYYPGS

GSFHTFK
mo6_

SISSYLNWYQLKPGKAPKLLIYAASTL

YSN




HC_

VKGRFTISREDAKHSLYLQLNSLRDGDTAVYY

TYYYYY
K_

HSGVPSRFSGSGSGTEFTLTISSLQPED

PPE




P2F9-

CARGDHRGSFHTFKTYYYYYMDVWGKGTTV

MDV
P2F9-

FATYYCQQSYSNPPENAFGQGTKLEIE

NA




p1369

TVSS


p1389










6.2M
COVD21_
671
QVQLVQSGAAVKXXGASVKVSCKAFGYTFTS
672
ARFGYYY
COVD21_
673
EIVLTQSPGTLSLSPGERVTLSCRASQS
674
QQY
KAPPA



mo6_ 

YDIIWVRQATGQGLEWMGWMSPNNSNTGYA

VDSGPNR
mo6_

VGANYLAWYQQKPGQAPRLLIYGTY

NRS




HC_

QKFQGRVTMTRDTSINTAYMELTSLRSEDTAV

ARYTGLD
K_

NRATGIPDRFSGSGSGTDFTLTISRLEP

PIT




P2G12-

YYCARFGYYYVDSGPNRARYTGLDVVVGQGT

V
P2G12-

EDFAVYYCQQYNRSPITFGQGTRLEI






p1369

TVTVSS


p1389










6.2M
COVD21_
675
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNY
676
VKGPYFD
COVD21_
678
DIVMTQTPLSSPVTLGQTASISCRSSQS
678
MQ
KAPPA



mo6_ 

AMNWVRQAPGRGLEWVSAISSGGDRTYYAD

FWSGSYD
mo6_

LVHSDGTTYLSWLQQRPGQPPRLLIY

GTE




HC_

SVKGRFSISRDRSRNNLYLQTNSLRAEDTAIYY

DLPYYYH
K_

KISNRFSGVPDRFSGSGAGTDFTLKISR

FPH




P2G1-

CVKGPYFDFWSGSYDDLPYYYHGMDVWGQG

GMDV
P2G1-

VEAEDVGVYYCMQGTEFPHTFGQGT

T




p1369




p1389

KLEIK








6.2M
COVD21_
679
QVQLVESGGGVVQPGRSLRLSCAASGFAFSTY
680
ARDATMI
COVD21_
681
DIQMTQSPSSLSASVGDRVTISCQASQ
682
QQY
KAPPA



mo6_ 

GMHWVRQTPGKGLAWVAAISYDGRNTYYGD

TLVRGIM
mo6_

GISNYLNQQKPGKAPKLLIHDASIL

DNF




HC_

SVKGRFTITRDNSKNTLYLQLNSLRDEDTALY

GPPFDH
K_

ETGVPSRFSGSGSGTDFTFTISSLQPED

PPD




P2H2-

YCARDATMITLVRGIMGPPFDHWGQGSLVTV


P2H2-

IATYYCQQYDNFPPDFGPGTKVDI






p1369

SS


p1389










6.2M
COVD21_
683
QVQLQESGPGLVKPSETLSLTCAVSGGSVSSG
684
ARETYYY
COVD21_
685
DIQMTQSPSTLSASVGDRVTITCRASQ
686
QQY
KAPPA



P1_ 

NYYWNWIRQPPGKGLEWIGYIYYSGSTNYNP

DSSGYYIS
P2_

SISSWLAWYQQKPGKAPKLLIYKASS

NSF




HC_

SLKSRVTISVDTSKNQFSLKLNSVTAADTAVY

DAFDI
K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

SYT




C5-

HCARETYYYDSSGYYISDAFDIWGQGTMVTV


C5-

DFATYYCQQYNSFSYTFGQGTKLEIK






p1369

SS


p1389










1.3M
COVD21_
687
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
688
ARGPGW
COVD21_
689
QSVLTQPPSASGTPGQRVTISCSGSSSN
690
AA
LAMBDA



P3_ 

VMNWVRQAPGKGLAWVAVISFDGSNKYYAD

QWPELDY
P3_

IGSNTVNWYQQLPGTGPKLLIYSNNE

WD




HC_

SVKGRFTVSRDNSKNTLYLQMNSLRAEDTAL


L_

RPSGVPDRFSGSKSGTSASLAISGLQPE

DSL




E6-

YYCARGPGWQWPELDYWGQGTLVTVSS


E6-

DEADYYCAAWDDSLNGPVFGTGTKV

NGP




p1369




p1409

TVL

V






1.3M
COVD21_
691
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
692
AKGGEGF
COVD21_
693
QSVLTQPPSASGTPGQRVTISCSGSSSN
694
AA
LAMBDA



P3_ 

AMHWVRQAPGKGLEWVSGVTWNSGSIGYAD

RNWNDG
P3_

IGSNTVNWYQQLPGTAPKLLIYSNNQ

WD




HC_

SVKGRFIISRDNAKNSLYLQMNSLRAEDTALY

LDYFDY
L_

RPSGVPDRFSGSKSGTSASLAISGLQSE

DSL




G3-

YCAKGGEGFRNWNDGLDYFDYWGQGTLVTV


G3-

DEADYYCAAWDDSLNGYVFGTGTKV

NGY




p1369




p1409

TVL

V






1.3M
COVD21_
695
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
696
ARGGYY
COVD21_
697
QSVLTQPPSASGTPGQRVTISCSGSSSN
698
AA
LAMBDA



P2_ 

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKS

YDSSGYE
P1_

IGSNYVYWYQQLPGTAPKLLIYRNNQ

WD




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR

YYYYYG
L_

RPSGVPDRFSGSKSGTSASLAISGLRSE

DSL




E2-

GGYYYDSSGYEYYYYYGMDVWGQGTTVTVS

MDV
E2-

DEADYYCAAWDDSLSGYWVFGGGT

SGY




p1369

S


p1409

KLTVL

WV






1.3M
COVD21_
699
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
700
AREVKRV
COVD21_
701
QSVLTQPPSASGTPGQRVTISCSGISSN
702
AE
LAMBDA



P3_ 

SMNWVRQAPGKGLEWVSSISSSSSYIYYADSV

VAAPEYY
P3_

LGSNTVNWFQQLPGTAPKLLIYNSNR

WD




HC_

KGRFTISRDNAKNSLYLQMNSLRAEDTAVYY

FDY
L_

RPSGVPDRFSGSKSGTSASLAISGLQSE

DSL




D12-

CAREVKRVVAAPEYYFDYWGQGXLVTVSS


D12-

DEGDYYCAEWDDSLSTWVFGGGTHL

STW




p1369




p1409

TVL

V






1.3M
COVD21_
703
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
704
ARGNRLL
COVD21_
705
QSVLTQPPSASGTPGQRVTISCSGSSSN
706
AS
LAMBDA



P2_ 

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQK

YCSSTSC
P1_

IGSNSVNWFQQLPGTAPKLLIYSNNQR

WD




HC_

FQGRVTITADESTSTAYMELSSLRSEDTAVYY

YLDAVRQ
L_

PSGVPDRFSGSKSGASASLAISGLQSE

DSL




B3-

CARGNRLLYCSSTSCYLDAVRQGYYYYYYM

GYYYYY
B3-

DEADYYCASWDDSLNGPLFGGGTKL

NGP




p1369

DVWGKGTTVTVSS

YMDV
p1409



L






1.3M
COVD21_
707
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDA
708
TTDQIYG
COVD21_
709
QSVLTQPPSASGTPGQRVTISCSGSSSN
710
AT
LAMBDA



P2_ 

WMSWVRQAPGKGLEWVGRLKSKTDGGTTD

DYLRMPV
P1_

IGSNYVYWYQQLPGTAPKLLIYRNNQ

WD




HC_

YAAPVKGRFTISRDDSKNTLSLQMNSLKTEDT

PFDY
L_

RPSGVPDRFSGSKSGTSASLAISGLRSE

DSL




D10-

AVYYCTTDQIYGDYLRMPVPFDYWGQGTLVT


D10-

DEADYYCATWDDSLSGPVFGGGTKL

SGP




p1369

VSS


p1409



V






1.3M
COVD21_
711
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
712
AKSPYYY
COVD21_
713
QSVLTQPASESGSPGQSITISCTGTSSD
714
CSY
LAMBDA



P1_ 

YYMHWVRQAPGQGLEWMGWINPISGGTNSA

DSSGYLG
P2_

VGTYNLVSWYQQHPGKAPKLMIYEG

AAS




HC_

QKFQGRVTMTRDTSITTAYMELSSLRSDDTAV

GFDY
L_

SKRPSGVSNRFSGSKSGNTASLTISGL

STY




D10-

YHCAKSPYYYDSSGYLGGFDYWGQGTLVTVS


D10-

QAEDEADYYCCSYAASSTYVFGTGTK

V




p1369

S


p1409










1.3M
COVD21_
715
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
716
ATEDYYD
COVD21_
717
QSVLTQPRSVSGSPGQSVTISCTGTSS
718
CSY
LAMBDA



P3_ 

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

SSGSFDY
P3_

DVGGYNYVSWYQQHPGKAPKLMIYD

AGS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


L_

VSKRPSGVPDRFSGSKSGNTASLTISG

FW




A5-

YCATEDYYDSSGSFDYWGQGTLVTVSS


A5-

LQAEDEADYYCCSYAGSFWVFGGGT

V




p1369




p1409

KLTVL








1.3M
COVD21_
719
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
720
ARDLGYS
COVD21_
721
QSALTQPASESGSPGQSITISCTGTSSD
722
CSY
LAMBDA



P1_ 

YYMHWVRQAPGQGLEWMGWINPNSGGRNY

YVQGYFD
P2_

VGSYNLVSWYQQHPGKAPKLMIYEG

AGS




HC_

TQKFQGRVTMTRDTSISTAYMELSRLRSDDTA

Y
L_

SKRPSGVSNRFSGSKSGNTASLTISGL

NT




C7-

VYYCARDLGYSYVQGYFDYWGXGTLVTVSS


C7-

QAEDEADYYCCSYAGSNTWVFGGGT

WV




p1369




p1409

KLTVL








1.3M
COVD21_
723
QVQLVQSGAEVKKPGASVKVSCKASGYIFTG
724
ARDLGFS
COVD21_
725
QSVLTQPASVSGSPGQSITISCTGTSSD
726
CSY
LAMBDA



P2_ 

YYMHWVRQAPGQGLEWMGWINPNSGGTNY

RLQFLFD
P1_

VGSYNLVSWYQQHPGKAPKLMIYEV

AGS




HC_

AQKFQGRVTMTRDTSISTVYMELSRLRSDDTA

Y
L_

SKRPSGVSNRFSGSKSGNTASLTISGL

SIV




B12-

VYYCARDLGFSRLQFLFDYWGQGTLVTVSS


B12-

QAEDEADYYCCSYAGSSIVVFGGGTK

V




p1369




p1409

LTVL








1.3M
COVD21_
727
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
728
ARVHVV
COVD21_
729
QSXXTQPRSVSGSPGQSVTISCTGTSS
730
CSY
LAMBDA



P3_ 

YYWSWIRQHPGKGLEWIGYIYYSGSPYYNPSL

RGVANYP
P3_

DVGGYNCVSWYQQHPGKAPKLMIYD

AGS




HC_

KSRVTISIDTSKNQFSLKLSSVTAADTAVYYCA

YFDY
L_

VSKRPSGVPDRFSGSKSGNTASLTISG

YTP




G7-

RVHVVRGVANYPYFDYWGQGTLVTVSS


G7-

LQAEDEADYYCCSYAGSYTPWVFGG

WV




p1369




p1409

GTKLTVL








1.3M
COVD21_
731
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
732
AREYFYD
COVD21_
733
QSVLTQPRSVSGSPGQSVTISCTGTSS
734
CSY
LAMBDA



P1_ 

GIHWVRQAPGKGLEWVAVIWYDGSNKYYAD

SSDYYFE
P2_

DVGGYNYVSWYQQHPGKAPKLMIYD

AGS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

YYFDY
L_

VSKRPSGVPDRFSGSKSGNTASLTISG

YTY




E10-

YCAREYFYDSSDYYFEYYFDYWGQGTLVTVS


E10-

LQAEDEADYYCCSYAGSYTYVFGTG

V




p1369

S


p1409

TKVTVL








1.3M
COVD21_
735
QVQLVQSGAEVKKPGASVKVSCKAXGYTFTR
736
LVGISTIV
COVD21_
737
QSVLTQPSSHSASSGASVRLTCMLSSG
738
GHT
LAMBDA



P1_ 

XHMQWVGQAPGQGLEWMGIINXSGGSTSYA

VVRPAV
P2_

FSVGDFWIRWYQQKPGNPPRYLLYY

WH




HC_

QKFQGRVTMARDTSTSSVXMELSSLRXRTRPC

WTS
L_

HSDSNKGQGSGVPSRFSGSNDASANA

SNS




E4-

ITVLVGISTIVVVRPAVWTSGAKGPRSPXX


E4-

GILRISGLQPEDEADYYCGTWHSNSR

RV




p1369




p1409

VFGGGTKLTVL








1.3M
COVD21_
739
QVQLQESGPGLVKPSQTLSLTCTVSGGSFS
740
ARVATDY
COVD21_
741
QSVLTQEPSLTVSPGGTVTLTCASSTG
742
LLY
LAMBDA



P2_ 

GYYWHWIRQHPGKGLEWIGYIYYSGSTYYNP

GDSFDY
P1_

AVTSGYYPSWFQQKPGQAPRALIYST

YGG




HC_

SLKSRVTISVDTSKNQFSLKLSSVTAADTAVY


L_

SNKHSWTPARFSGSLLGGKAALTLSG

AW




A9-

YCARVATDYGDSFDYWGQGTLVTVSS


A9-

VQPEDEADYYCLLYYGGAWVFGGGT

V




p1369




p1409

KLTVL








1.3M
COVD21_
743
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
744
ARDSGGD
COVD21_
745
SYVLTQPPSVSVSPGQTARITCSGDAL
746
QSA
LAMBDA



P2_ 

SMNWVRQAPGKGLEWVSYISSSSSTIYYADSV

IVVIPAVN
P1_

PNQYAYWYQQKPGQAPVLVIYKDSE

DSR




HC_

KGRFTISRDNAKNSLYLQMNSLRAEDTAVYY

GFDY
L_

RPSGIPERFSGSSSGTTVTLTISGVQAE

GV




H2-

CARDSGGDIVVIPAVNGFDYWGQGTLVT


H2-

DEADYYCQSADSRGVFGGGTKLTVL






p1369




p1409










1.3M
COVD21_
747
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
748
ARAWAM
COVD21_
749
SYVLTQPPSVSVSPGQTARITCSGDAL
75
QSA
LAMBDA



P2_ 

WMHWVRQAPGKGLVWVSRINSDGSSTSYAD

RQTTLTP
P1_

PKQYAYWYQQKPGQAPVLVIYKDSE

DSR




HC_

SVKGRFTISRDNAKNTLYLQMNSLRAEDTAV

EWIDY
L_

RPSGIPERFSGSSSGTTVTLTISGVQAE 

KVV




D9-

YYCARAWAMRQTTLTPEWIDYWGQGTLVTV


D9-

DEADYYCQSADSRKVVFGGGTKLTV






p1369

SS


p1409










1.3M
COVD21_
751
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
752
ARYYDIL
COVD21_
753
SYVLTQPPSVSVSPGQTARITCSGDAL
754
QSA
LAMBDA



P1_ 

WMSWVRQAPGKGLEWVANIKQDGSEKYYV

TGYYVD
P2_

PKQYAFWYQQKPGQAPVLVIYKDSE

DSS




HC_

DSVKGRFTISRDNAKNSLYLQMNSLRAEDTA

YYYMDV
L_

RPSGIPERFSGSSSGTTVTLTISGVQAE

GTY




C10-

VYYCARYYDILTGYYVDYYYMDVWGXGTTV


C10-

DEADYYCQSADSSGTYVVFGGGTRLT

VV




p1369

TVSS


p1409










1.3M
COVD21_
755
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
756
ARLRWLR
COVD21_
757
NFMLTQPHSVSESPGKTVTISCTGSSG
758
QSY
LAMBDA



P1_ 

WMSWVRQAPGKGLEWVTNIKLDGSEKYYVD

ADFDY
P2_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSG




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTAV


L_

QRPSGVPDRFSGSIDSSSNSASLTISGL

NVV




F1-

YYCARLRWLRADFDYWGQGTLVTVSS


F1-

KTEDEADYYCQSYDSGNVVFGGGTK






p1369




p1409

LTVL








1.3M
COVD21_
759
QVQLQESPGLVKPSETLSLTCTVSGGSISAYY
760
ARDNGY
COVD21_
761
NFMLTQPHSVSESPGKTVTISCTGSSG
762
QSY
LAMBDA



P1_ 

WSWIRQPAGKGLEWIGRIYTSGSTIYNPSLKSR

VWGSYRP
P2_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSR




HC_

VTMSVDTSKNQFSLKLSSVTAADTAVYYCAR

DAFDI
L_

QRPSFVPDRISGSIDSSSNASLTISGL

NVV




B6-

DNGYVWGSYRPDAFDIWGQGTMVTVSS


B6-

KTEDEADYYCQSYDSRNVVFGGGTR






p1369




p1409

LTVL








1.3M
COVD21_
763
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
764
ARVVGYS
COVD21_
765
QSVLTQPPSVSGAPGQRVTISCTGSSS
766
QSY
LAMBDA



P2_ 

WSWIRQPAGKGLEWIGRIYTSGSTNYNPSLES

SRGANYY
P1_

NIGAGYDVHWYQQLPGTAPKLLIYGN

DSS




HC_

RVTMSVDTSKNQFSLKLSSVTAADTAVYYCA

MDV
L_

SNRPSGVPDRFSGSKSGTSASLAITGL

LSD




D4-

RVVGYSSRGANYYMDVWGKGTTVTVSS


D4-

QAEDEADYYCQSYDSSLSDSLFGGGT

SL




p1369




p1409

KLTVL








1.3M
COVD21_
767
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
768
AREKDIV
COVD21_
769
QSVLTQPPSVSGAPGQRVTISCTGSSS
770
QSY
LAMBDA



P3_ 

CMHWVRQAPGKGLEWVAVIWYDGNNKYYA

ATDFDY
P3_

NIGAGYDVHWYQQLPGTAPKLLIYGN

DSS




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV


L_

SNRPSGVPDRFSGSKSGTSASLAITGL

LSG




H8-

YYCAREKDIVATDFDYWGQGTLVTVSS


H8-

QAEDEADYYCQSYDSSLSGPYVFGTG

PYV




p1369




p1409

TKVTVL








1.3M
COVD21_
771
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
772
ARVGYY
COVD21_
773
QSVLTQPPSVSGAPGQRVTISCTGSSS
774
QSY
LAMBDA



P3_ 

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQK

YDRSGFP
P3_

NIGAGYDVHWYQQLPGTAPKLLIYGN

DSS




HC_

FQGRVTITADKSTSTAYMELSSLRSEDTAVCY

RTEDYFD
L_

SNRPSGVPDRFSGSKSGTSASLAITGL

LSG




C11-

CARVGYYYDRSGFPRTEDYFDYWGQGTLVTV

Y
C11-

QAEDEADYYCQSYDSSLSGVVFGGGT

VV




p1369

SS


p1409

KLTVL








1.3M
COVD21_
775
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
776
ARSYDSS
COVD21_
777
QSVLTQPPSVSGAPGQRVTISCTGSSS
778
QSY
LAMBDA



P3_ 

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKS

GLSYNWF
P3_

NIGAGYDVHWYQQLPGTAPKLLIYGN

DSS




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR

DP
L_

SNRPSGVPDRFSGSKSGTSASLAITGL

LSG




C4-

SYDSSGLSYNWFDPWGQGTLVTVSS


C4-

QAEDEADYYCQSYDSSLSGYVVFGG

YVV




p1369




p1409

GTKLTVL








1.3M
COVD21_
779
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
780
ARGKWL
COVD21_
781
NFMLTQPHSVSESPGKTVTISCTGSSG
782
QSY
LAMBDA



P1_ 

YMSWIRQAPGKGLEWVSSISSSGSTIYYADSV

RGSFDY
P2_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSS




HC_

KGRFTISRDNAKTSLYLQMNSLRAEDTAVYY


L_

QRPSGVPDRFSGSIDSSSNSASLTISGL

NH




A12-

CARGKWLRGSFDYWGQGTLVTVSS


A12-

KTEDEADYYCQSYDSSNHWVFGGGT

WV




p1369




p1409

KLTVL








1.3M
COVD21_
783
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
784
AKVPIHY
COVD21_
785
NFMLTQPHSVSESPGKTVTISCTGSSG
786
QSY
LAMBDA



P2_ 

AMSWVRQAPGKGLEWVSAISGSGGTTYYADS

CSNGVCY
P1_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSS




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
L_

QRPSGVPDRFSGSIDSSSNSASLTISGL






F8-

YCAKVPIHYCSNGVCYFDYWGQGTLVTVS


F8-

KTEDEADYYCQSYDSSNRWVFGGGT






p1369




p1409

KLTVL








1.3M
COVD21_
787
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
788
ARGGQDE
COVD21_
789
SYVLTQPPSVSVAPGKTARITCGGNSI
790
QV
LAMBDA



P2_ 

YYMHWVRQAPGQGLEWMGWINPNSGGTNY

LTGAFDI
P1_

GSKSVHWYQQKPGQAPVLVIYYD

WD




HC_

AQKFQGRVTMTRDTSISTAYMELSRLTSDDTA


L_

GIPERFSGSNSGNTATLTISRVEAG

SG




G7-

VYYCARGGQDELTGAFDIWGQGTMVTVS


G7-

DEADFHCQVWDSGWVFGGGTKLTVL

WV




p1369




p1409










1.3M
COVD21_
791
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
792
AREAHDG
COVD21_
793
SYVLTQPPSVSVAPGKTARITCGGNNI
794
QV
LAMBDA



P2_ 

SMNWVRQAPGKGLEWVSYISSSSSTIYYADSV

ALTDYGD
P1_

GSKSVHWYQQKPGQAPVLVIYYDSD

WD




HC_

KGRFTISRDNAKNSLYLQMNSLRDEDTAVYY

YLNWFDP
L_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




A8-

CAREAHDGALTDYGDYLNWFDPWGQGTLVT


A8-

DEADYYCQVWDSSSDHLYWVFGGGT

DHL




p1369

VSS


p1409

KLTVL

YW






1.3M
COVD21_
795
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
796
AKDGRSG
COVD21_
797
SYVLTQPPSVSVAPGKTARITCGGNDI
798
QV
LAMBDA



P1_ 

AMHWVRQAPGKGLEWVSGISWNSGTIGYAD

DQWPELY
P2_

GSNGVYWYQQKPGQAPVLVIYYD

WD




HC_

SVKGRFTISRDNAKNSLHLHMRSLRAEDTALY

YFDY
L_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




A5-

YCAKDGRSGDQWPELYYFDYWGQGTLVTVS


A5-

DEADYYCQVWDSSSDHVVFGGGTKL

DHV




p1369

S


p1409

TVL

V






1.3M
COVD21_
799
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
800
ARSSVTG
COVD21_
801
SYVLTQPPSVSVAPGKTARITCGGNNI
802
QV
LAMBDA



P1_ 

YYMHWVRQAPGQGLEWMGIINPSGGSTSYAQ

TPPFDY
P2_

GSKSVHWYQQKPGQAPVLVIYYDSD

WD




HC_

KFQGRVTMTRDTSTSTVYMELSSLRSEDTAVY


L_

RPSGIPERFSGSNSGNTAILTISRVEAG

SSS




D3-

YCARSSVTGTPPFDYWGQGTLVTVSS


D3-

DEADYYCQVWDSSSDHVVFGGGTKL

DHV




p1369




p1409

TVL

V






1.3M
COVD21_
803
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
804
ARVPREG
COVD21_
805
SYVLTQPPSVSVAPGKTARITCGENNI
806
QV
LAMBDA



P2_ 

YYMHWVRQAPGQGLEWMGIINPSGGSTSYAQ

TPGFDP
P1_

GSKSVHWYQQKPGQAPVLVIYYDSD

WD




HC_

KFQGRVTMTRDTSTSTVYMELSSLRSEDTAVY


L_

RPSGIPERFSGSNSGNTATLTINRVEAG

SSS




G8-

YCARVPREGTPGFDPWGQGTLVTVSS


G8-

DEADYYCQVVVDSSSDHVVFGGGTKL

DHV




p1369




p1409

TVL

V






1.3M
COVD21_
807
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
808
AKVWSIS
COVD21_
809
SYVLTQPPSVSVAPGKTARITCGGNNI
810
QV
LAMBDA



P1_ 

AMSWVRQAPGKGLEWVSGISDSGVSTYNADS

LDAFDI
P2_

GSKSVHWYQQKPGQAPVLVIYYDSD

WD




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


L_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




F11-

YCAKVWSISLDAFDIWGQGTMVTVSS


F11-

DEADYYCQVWDSSSDLFGGGTKLTV

DL




p1369




p1409

L








1.3M
COVD21_
811
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
812
AKDGAG
COVD21_
813
SYVLTQPPSVSVAPGKTARITCGGNNI
814
QV
LAMBDA



P1_ 

AMHWVRQAPGKGLEWVSGISWNSVSIDYADS

TENWFDP
P2_

GSKSVHWYQQKPGQAPLLVIYYDSD

WD




HC_

VKGRFTISRDNAKNSLYLQMNSLRAEDTALY


L_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




D6-

YCAKDGAGTENWFDPWGQGTLVTVSS


D6-

DETDYYCQVWDSSSDPHVVFGGGTK

DPH




p1369




p1409

LTV

VV






1.3M
COVD21_
815
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
816
ARDSPFS
COVD21_
817
QSVLTQPPSASGSPGQSVTISCTGTSSD
818
SSD
LAMBDA



P1_ 

YYMHWVRQAPGQGLEWMGWINPNSGGTNY

GLGASND
P2_

VGGYNYVSWYQQHPGKAPKLMIYEV

AGS




HC_

AQKFQGRVTMTRDTSISTAYMELSRLRSDDTA


L_

SKRPSGVPDRFSGSKSGNTASLTVSGL

NNV




B5-

VYYCARDSPFSGLGASNDYWGQGTLVTVSS


B5-

QAEDEADYYCSSDAGSNNVVFGGGT

V




p1369




p1409

KLTVL








1.3M
COVD21_
819
QVQLVQSGAEVKKPGASVKVSCMASGYTFTG
820
ARDSPFS
COVD21_
821
QSALTQPPSASGSPGQSVTISCTGTSSD
822
SSD
LAMBDA



P3_ 

YYMHWVRQAPGQGLEWMGWINPNSGGTNY

ALGASND
P3_

VGGYNYVSWYQQHPGKAPKLMIYEV

AGS




HC_

AQKFQGRVTMTRDTSISTAYMELSRLRSDDTA


L_

SKRPSGVPDRFSGSKSGNTASLTVSGL

NNV




B5-

VYYCARDSPFSALGASNDYWGQGTLVTVSS


B5-

QAEDEAEYYCSSDAGSNNVVFGGGT

V




p1369




p1409

KLTVL








1.3M
COVD21_
823
EVQLVESGGGLVKPGGSLRLSCAASGFTFSTY
824
ARDRNRY
COVD21_
825
QSVLTQPPSASGSPGQSVTISCTGTSSD
826
SSY
LAMBDA



P2_ 

NMNWVRQAPGKGLEWVSSITSSSSYIYYADS

DFWSGY
P1_

VGGYKYVSWYQQHPGKAPKLMIYEV

AGS




HC_

VKGRFTISRDNAENSLYLQMNSLRAEDTAVY

YRLVGFD
L_

SKRPSGVPDRFSGSKSGNTASLTVSGL

NNH




C3-

YCARDRNRYDFWSGYYRLVGFDPWGQGTLV

P
C3-

QAEDEADYYCSSYAGSNNHVFGGGT

V




p1369

TVSS


p1409

KLTVL








1.3M
COVD21_
827
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
828
ARGSYSN
COVD21_
829
QSVLTQPPSASGSPGQSVTISCTGTSSD
830
SSY
LAMBDA



P1_ 

YYWGWIRQHPGKGLEWIGYIYYSGSTYYNPS

YNGGLD
P2_

VGGYNYVSWYQQHPGKAPKLMIYEV

AGS




HC_

LKSRVTISVDTSKNQFSLKLSSVTAADTAVYY


L_

SKRPSGVPDRFSGSKSGNTASLTVSGL

NN




D5-

CARGSYSNYNGGLDYWGQGTLVTVSS


D5-

QAEDEADYYCSSYAGSNNWVFGGGT

WV




p1369




p1409

KLTVL








1.3M
COVD21_
831
QVQLVESGGGVVQPGRSLRLSCAASGFTFTSY
832
ARDMMIR
COVD21_
833
QSVLTQPASVSGSPGQSITISCTGTSSD
834
SSYI
LAMBDA



P3_ 

GMHWVRQAPGKGLEWVAVIWYDGSNKYYA

GVAWYY
P3_

VGGYNYVSWYQQHPGKAPKLIIYNVS

SSN




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

YMDV
L_

NRPSGVSNRFSGSKSGNTASLTISGLQ

TV




G10-

YYCARDMMIRGVAWYYYMDVWGKGTTVTV


G10-

AEDEADYYCSSYISSNTVFGGGTKLT






p1369

SS


p1409

VL








1.3M
COVD21_
835
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
836
AKGRVV
COVD21_
837
QSVLTQPASVSGSPGQSITISCTGTSSG
838
SSY
LAMBDA



P2_ 

AMHWVRQAPGKGLEWVSGTSWNSGTIGYAD

YAIDPDS
P1_

VGGYNFVSWYQQHPGKAPKLMIYDV

TSR




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTALY

VSPFDY
L_

SNRPSGVSNRFSGSKSGNTASLTISGL

STL




F2-

YCAKGRVVYAIDPDSVSPFDYWGQGTLVTVS


F2-

QAEDEADYHCSSYTSRSTLGVFGGGT

GV




p1369

S


p1409

KLTVL








1.3M
COVD21_
839
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
840
AKDMLG
COVD21_
841
QSALTQPASVSGSPGQSITISCTGTSSD
842
SSY
LAMBDA



P2_ 

AMHWVRQAPGKGLEWVSGISWNSGSIGYAHS

NYYYYA
P1_

VGGYNYVSWYQHHPGKAPKLMIYDV

TSS




HC_

VKGRFTISRDNAKNSLYLHMNSLRAEDTALY

MVV
L_

SNRPSGVSNRFSGSKSGNTASLTISGL

STL




G3-

YCAKDMLGNYYYYAMVVWGQGTTVTVSS


G3-

QAEDEADYYCSSYTSSSTLEGVFGGG

EGV




p1369




p1409

TKLTVL








1.3M
COVD21_
843
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
844
ARDRPLW
COVD21_
845
QSVLTQPASVSGSPGQSITISCTGTNSD
846
SSY
LAMBDA



P1_ 

YYLHWVRQAPGQGLEWMGWINPTSGGTKYA

FGVEYG
P2_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




HC_

QKFQGRVTMTRDTSITTAYMEVNRLRSDDTA

MDV
L_

GNRPSGVSNRFSGSKSGNTASLTISGL

STL




D7-

VYYCARDRPLWFGVEYGMDVVVGQGTTVTVS


D7-

QAEDEADYYCSSYTSSSTLVFGGGTK

V




p1369

S


p1409

LTVL








1.3M
COVD21_
847
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
848
ASTGYYI
COVD21_
849
QSALTQPASVSGSPGQSITISCTGTSSD
850
SSY
LAMBDA



P1_ 

YYMHWVRQAPGQGLEWMGWINPNSGGTNY

LTGYEFG
P2_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




HC_

AQKFQGRVTMTRDTSISTAYMELSRLRSDDTA

AMDV
L_

SNRPSGVSNRFSGSKSGNTASLTISGL

STV




F4-

VYYCASTGYYILTGYEFGAMDVWGQGTTVT


F4-

QAEDEADYYCSSYTSSSTVFGTGTKV






p1369

VSS


p1409

TVL








1.3M
COVD21_
851
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
852
AKPRKRG
COVD21_
853
QSVLTQPASVSGSPGQSITISCTGTSSD
854
SSY
LAMBDA



P1_ 

AMHWVRQAPGKGLEWVSGISWNSGSIGYADS

DYYGSGS
P2_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




HC_

VKGRFTISRDNAKNSLYLQMNSLRAEDTALY

YDY
L_

SNRPSGVSNRFSGSKSGNTASLTISGL

STV




E2-

YCAKPRKRGDYYGSGSYDYWGQGTLVTVSS


E2-

QAEDEADYYCSSYTSSSTVVFGGGTK

V




p1369




p1409

LTVL








1.3M
COVD21_
855
QVQLVESGGGVVQPERSLRLSCAASGFTFSSY
856
ARSKSYT
COVD21_
857
QSVLTQPASVSGSPGQSITISCAGTSSD
858
SSY
LAMBDA



P3_ 

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

SWGYYH
P3_

VGAYNYVSWYQQHPGKAPKLMIYDV

TSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

MDV
L_

SNRPSGVSNRFSGSKSGNTASLTISGL

STW




C12-

YCARSKSYTSWGYYHMDVW


C12-

QAEDEADYYCSSYTSSSTWVFGGGTK

V




p1369




p1409

LTVL








1.3M
COVD21_
859
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
860
ATIEGQQ
COVD21_
861
QSVLTQPASVSGSPGQSITISCTGTSSD
862
SSY
LAMBDA



P1_ 

YYMHWVRQAPGQGLEWMGWINPNSGGTNY

LPHPPYY
P2_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




HC_

AQKFQGRVTMTRDTSISTAYMELSRLRSDDTA

YYYYYM
L_

SNRPSGVSNRFSGSKSGNTASLTISGL

STY




C1-

VYYCATTEGQQLPHPPYYYYYYYMDVWGKG

DV
C1-

QAEDEADYYCSSYTSSSTYVFGTGTK

V




p1369

TTVTVSS


p1409

VTVL








1.3M
COVD21_
863
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
864
ARYGMG
COVD21_
865
QSVLTQPRSVSGSPGQSVTISCTGTSS
866
YSY
LAMBDA



P2_ 

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKS

ELLTLRSE
P1_

DVGGYNYVSWYQQHPGKAPKLMIYD

AGS




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR

YYFDY
L_

VSKRPSGVPDRFSGSKSGNTASLTISG

YTF




F4-

YGMGELLTLRSEYYFDYWGQGTLVTVSS


F4-

LQAEDEADYYCYSYAGSYTFVFGGG

V




p1369




p1409

TKLTVL








1.3M
COVD21_
867
QVQLVESGGGLVKPGGSLRLSCAASGFIFSDY
868
ARRGDGS
COVD21_
869
QSVLTQPPSASGTPGQRVTVSCSGSSS
870
AA
LAMBDA



P1_ 

CMSWIRRAPGKGLEWLSYISNSGTTRYYADSV

SSIYYYN
P2_

NIGSNTVNWYQQLPGTAPKLLIYSNN

WD




HC_

KGRFTISRDNGRNSLYLQMDSLSAEDTAVYYC

YMDV
L_

QRPSGVPDRFSGSKSGTSASLAISGLQ

DSL




E5-

ARRGDGSSSIYYYNYMDVWGKGTTVTVSS


E5-

SEDEADYFCAAWDDSLNGPVFGGGT

NGP




p1369




p1409

KLTVX

V






1.3M
COVD21_
571
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
872
ARRGDGS
COVD21_
873
QSVLTQPPSASGTPGQRVTVSCSGSSS
874
AA
LAMBDA



P1_ 

CMSWIRQAPGKGLEWLSYISNSGTTRYYADS

SSIYYYN
P2_

NIGSNTVNWYQQLPGTAPKLLIHSNN

WD




HC_

VKGRFTISRDNGRNSLYLQMNSLSAEDTAVY

YMDV
L_

QRPSGVPDRFSGSKSGTSASLAISGLQ

DSL




F8-

YCARRGDGSSSIYYYNYMDVWGKGTTVTVSS


F8-

SEDEADYYCAAWDDSLNGPVFGGGT

NGP




p1369




p1409



V






1.3M
COVD21_
875
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
876
ARRGDGS
COVD21_
877
QSVLTQPPSASGTPGQRVTVSCSGSSS
878
AA
LAMBDA



P1_ 

CMSWIRQAPGKGLEWLSYISNSGTTRYYADS

SSIYYYN
P2_

NIGSNTINWYQQLPGTAPKLLIYSNNQ

WD




HC_

VKGRFTISRDNGRNSLYLQMNSLSAEDTAVY

YMDV
L_

RPSGVPDRFSGSKSGTSASLAISGLQSE

DSL




G5-

YCARRGDGSSSIYYYNYMDVWGKGTTVTVSS


G5-

DEANYYCAAWDDSLNGPVFGGGTKL

NGP




p1369




p1409

TVL

V






1.3M
COVD21_
879
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
880
ARDYGDF
COVD21_
881
EIVLTQSPGTLSLSPGERATLSCRASQS
882
QQY
KAPPA



P1_ 

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

YFDY
P2_

VSSTYLAWYQQKPGQAPRLLIYGASS

GSS




HC_

VKGRFTISRDNSKNTLYLQMNSLRAGDTAVY


K_

RATGIPDRFSGSGSGTDFTLTISRLEPE

PRT




A10-

YCARDYGDFYFDYWGQGTLVTVSS


A10-

DFAVYYCQQYGSSPRTFGQGTKLEIK






p1369




p1389










1.3M
COVD21_
883
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
884
ARGYGD
COVD21_
885
DIQLTQSPSFLSASVGDRVTITCRASQ
886
QHL
KAPPA



P1_ 

YMTWVRQAPGKGLEWVSLIYSGGSTFYADSV

YYFDY
P2_

GISSYLAWYQQKPGKAPKLLIYAAST

NG




HC_

KGRFTISRDSSKNTLYLQMNSLRAEDTAVYYC


K_

LQSGVPSRFSGSGSGTEFTLTISSLQPE






A2-

ARGYGDYYFDYWGQGTLVTVSS


A2-

DSATYYCQHLNGFGPGTKVDIK






p1369




p1389










1.3M
COVD21_
887
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
888
ARDLYSS
COVD21_
889
EIVLTQSPVSLSLSPGERATLSCRASQS
890
QQY
KAPPA



P1_ 

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

GGTDI
P2_

VSSSYLAWYQQKPGQAPRLLIYGASS

GSS




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


K_

RATGIPDRFSGSGSGTDFTLTISRLEPE

PGT




A3-

YCARDLYSSGGTDIWGQGTMVTVSS


A3-

DFAVYYCQQYGSSPGTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
891
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
892
ARDHSLG
COVD21_
893
AIQLTQSPSSLSASVGDRVTITCRASQ
894
QQF
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVIWYDGSNKYYA

VRGDGY
P2_

GISSALAWYQQKPGKAPKFLIYDASSL

NNY




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

GMDV
K_

ESGVPSRFSGSGSGTDFTLTISSLQPED

PLT




A4-

YYCARDHSLGVRGDGYGMDVWGQGTTVTVS


A4-

FATYYCQQFNNYPLTFGGGTKVEIK






p1369

S


p1389










1.3M
COVD21_
895
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
896
ARDLSVF
COVD21_
897
DIQLTQSPSFLSASVGDRVTVTCRASQ
898
QQV
KAPPA



P1_ 

YMSWVRQAPGKGLEWVSVIYSGGSTFYADSV

GMDV
P2_

GISSYLAWYQQKPGKAPKLLIYAAST

NSY




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYY


K_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

SH




B12-

CARDLSVFGMDVWGQGTTVTVSS


B12-

DFATXYCQQVNSYSHFGGGSKAEI






p1369




p1389










1.3M
COVD21_
899
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
900
ARDSEDC
COVD21_
901
DIVMTQSPXSLAVSLGERATINCKSSQ
902
QQY
KAPPA



P1_ 

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

SSTSCYL
P2_

SVLYSSNNKNYLAWYQQKPGQPPKL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

DY
K_

LIYWASTRESGVPDRFSGSGSGTDFTL

PFT




B1-

YCARDSEDCSSTSCYLDYWGQGTLVTVSS


B1-

TISSLQAEDVAVYYCQQYYSTPFTFGP






p1369




p1389

GTKVDIK








1.3M
COVD21_
903
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
904
AKASGIY
COVD21_
905
DIQMTQSPSTLSASVGDRVTITCRASQ
906
QQY
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

CSGGNCY
P2_

SISSWLAWYQQKPGKAPKLLIYKASS

NSY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

SYYFDY
K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

ST




B2-

YCAKASGIYCSGGNCYSYYFDYWGQGTLVTV


B2-

DFATYYCQQYNSYSTFGQGTKVEIK






p1369

SS


p1389










1.3M
COVD21_
907
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
908
AKEGRPS
COVD21_
909
DIQMTQSPSSLSASVGDRVTITCRASQ
910
OOS
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




B7-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


B7-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
911
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
912
AKEGRPS
COVD21_
913
DIQMTQSPXSLSASVGDRVTITCRASQ
914
QQS
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




B9-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


B9-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
915
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
916
AKAGGPY
COVD21_
917
EIVLTQSPXXLSLSPGERATLSCRASQS
918
QQY
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

CSGGSCY
P2_

VSSRNLAWYQQKPGQAPRLLIDGASS

GSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

SSYFDY
K_

RATGIPDRFSGSGSGTDFTLTISRLEPE

PAI




C4-

YCAKAGGPYCSGGSCYSSYFDYWGQGTLVTV


C4-

DFAVYYCQQYGSSPAITFGQGTRLEIK

T




p1369

SS


p1389










1.3M
COVD21_
919
EVQLVQSGAEVKKPGESLKISCKGSGYSFTTY
920
ARHWYY
COVD21_
921
EIVMTQSPATLSVSPGERATLSCRASQ
922
QQY
KAPPA



P1_ 

CIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF

GDYGNYS
P2_

VSSNLAWYQQKPGQAPRLLIYGAST

NN




HC_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC

YYYLDV
K_

RATGIPARFSGSGSGTEFTLTISSLQSE

WPL




C6-

ARHWYYGDYGNYSYYYLDVVVGKGTTVTVSS


C6-

DFAVYYCQQYNNWPLTFGGGTKVEI

T




p1369




p1389

K








1.3M
COVD21_
923
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
924
ARDWGD
COVD21_
925
EIVLTQSPGTLSLSPGERATLSCRASQS
926
QQY
KAPPA



P1_ 

YMSWVRQAPGKGLEWVSVIYSGGSTFYADSV

YYFDY
P2_

VSSSYLAWYQQKPGQAPRLLIYGASS

GSS




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYY


K_

RATGIPDRFSGSGSGTDFTLTISRLEPE

PRT




C8-

CARDWGDYYFDYWGQGTLVTVSS


C8-

DFAVYYCQQYGSSPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
927
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
928
AKDSGTA
COVD21_
929
DIQMTQSPXSLSASVGDRVTITCRASQ
930
QQS
KAPPA



P1_ 

AMSWVRQAPGKGLEWVSAISGSGDITYYADS

MVEIFDY
P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YSS




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

TLT




D1-

YCAKDSGTAMVEIFDYWGQGTLVTVSS


D1-

FATYFCQQSYSSTLTFGGGTKVEIK






p1369




p1389










1.3M
COVD21_
931
QVQLVESGGGLVKPGGSLRLSCAASGFIFSDY
932
ARGLVYT
COVD21_
933
DIQMTQSPSSLSASVGDRVTITCQASQ
934
QQH
KAPPA



P1_ 

YMSWIRQAPGKGLEWVSYISSSASTIYYADSV

PYRFGY
P2_

DISNYLNWYQQKPGKAPKLLIYDASN

DNV




HC_

KGRFTISRDNAKNSLYLQMNSLRAEDTAVYY


K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

VT




D2-

CARGLVYTPYRFGYWGQGTLVTVSS


D2-

DIATYYCQQHDNVVTFGPGTKVEIK






p1369




p1389










1.3M
COVD21_
935
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
936
ARATCSG
COVD21_
937
DVVMTQSPLSLPVTLGQPASISCRSSQ
938
MQ
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYFAD

GSCLFGQ
P2_

SLVYSDGNTYLNWFQQRPGQSPRRLI

GTH




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

NAFDI
K_

YKVSNRDSGVPDRFSGSGSGTDFTLKI

WPP




D4-

YCARATCSGGSCLFGQNAFDIWGQGTMVTVS


D4-

SRVEAEDVGVYYCMQGTHWPPYTFG

YT




p1369

S


p1389

QGTKLEIK








1.3M
COVD21_
939
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
940
ARDGTSI
COVD21_
941
DIQMTQSPSSVSASVGDRVTITCRASQ
942
QQA
KAPPA



P1_ 

GIHWVRQAPGKGLEWVAVIWYDGSNKYYAD

TLITEGD
P2_

GISSWLAWYQQKPGKAPKLLIYAASS

NSL




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

AFDI
K_

LQSGVPSRFSGSGSGTDFTLTISSLQPE

PLT




D8-

YCARDGTSITLITEGDAFDIWGQGTMVTVSS


D8-

DFATYYCQQANSLPLTFGGGTKVEIK






p1369




p1389










1.3M
COVD21_
943
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
944
AKEGRPS
COVD21_
945
DIQMTQSPSSLSASVGDRVTITCRASQ
946
QQS
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




E11-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


E11-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
947
QVQLVESGGGVVQPGRSLRLSCAASGFTFRRY
948
AKASGEY
COVD21_
949
DIQMTQSPSSLSASVGDRVTITCQASQ
950
QQY
KAPPA



P1_ 

GIHWVRQAPGKGLEWVAVISYDGSNKYYADS

CGGGSCY
P2_

DISNYLNWYQQKPGKAPELLIYDASN

DNL




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

RGVFDY
K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PLT




E12-

YCAKASGEYCGGGSCYRGVFDYWGQGTLVT


E12-

DIATYYCQQYDNLPLTFGGGTKVEI






p1369

VSS


p1389










1.3M
COVD21_
951
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
952
AKEGRPS
COVD21_
953
DIQMTQSPSSLSASVGDRVTITCRASQ
954
QQS
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




E1-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


E1-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
955
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
956
ARTMYY
COVD21_
957
DIVMTQSPLSLPVTPGEPASISCRSSQS
958
MQ
KAPPA



P1_ 

YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL

YDSSGSF
P2_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

DY
K_

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPH




E6-

ARTMYYYDSSGSFDYWGQGTLVTVSS


E6-

RVEAEDVGVYYCMQALQTPHTFGGG

T




p1369




p1389

TKVEIK








1.3M
COVD21_
959
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSS
960
AAPHCSG
COVD21_
961
EIVLTQSPXSLSLSPGERATLSCRASQS
962
QQY
KAPPA



P1_ 

AVQWVRQARGQRLEWIGWIVVGSGNTNYAQ

GSCYDAF
P2_

VSSSYLAWYQQKPGQAPRLLIYGASS

GSS




HC_

KFQERVTITRDMSTSTAYMELSSLRSEDTAVY

DI
K_

RATGIPDRFSGSGSGTDFTLTISRLEPE

PWT




F10-

YCAAPHCSGGSCYDAFDIWGQGTMVTVSS


F10-

DFAVYYCQQYGSSPWTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
963
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
964
ARVLYYY
COVD21_
965
DIQMTQSPSSLSASVGDRVTITCQASQ
966
QQY
KAPPA



P1_ 

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQK

DSSGYPN
P2_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

FQGRVTITADESTSTAYMELSSLRSEDTAVYY

LEYFQH
K_

LEAGVPSRFSGSGSGTDFTFTISSLQPE

PSF




F12-

CARVLYYYDSSGYPNLEYFQHWGQGTLVTVS


F12-

DIATYYCQQYDNLPSFTFGPGTXVDIK

T




p1369

S


p1389










1.3M
COVD21_
967
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
968
AKEGRPS
COVD21_
969
DIQMTQSPSSLSASVGDRVTITCRASQ
970
QQY
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

SRT




F6-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


F6-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
971
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
972
AKDDSSG
COVD21_
973
DIQMTQSPSSLSASVGDRVTITCRASQ
974
QQS
KAPPA



P1_ 

AMSWVRQAPGKGLEWVSAISGSGGSTYYADS


P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YNT




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPIT




F7-

YCAKDDSSGYHYYFDYWGQGTLVTVSS


F7-

FATYYCQQSYNTPPITFGPGTKVDIK






p1369




p1389










1.3M
COVD21_
975
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
976
ARDGAV
COVD21_
977
DIVMTQSPLSLPVTPGEPASISCRSSQS
978
MQ
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVIWYDGSNKYYA

VRFLEWP
P2_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

TVGYYY
K_

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPIT




G11-

YYCARDGAVVRFLEWPTVGYYYYYMDVWG

YYMDV
G11-

RVEAEDVGVYYCMQALQTPITFGQGT






p1369

KGTTVTVSS


p1389

RLEIK








1.3M
COVD21_
979
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
980
ASGELSA
COVD21_
981
EIVLTQSPATLSLSPGERATLSCRASQS
982
QQR
KAPPA



P1_ 

YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL

FGELFPH
P2_

VSTYLAWYQQKPGQAPRLLIYDASNR

SN




HC_

ESRVTISVDTSKNQFSLKLSSVTAADTAVYYC

DY
K_

ATGIPARFSGSGSGTDFTLTISSLEPED

WLF




G1-

ASGELSAFGELFPHDYWGXGTLVTVSS


G1-

FAVYYCQQRSNWLFTFGPGTKVDIK

T




p1369




p1389










1.3M
COVD21_
983
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
984
ARDCGG
COVD21_
985
DIQMTQSPSSLSASVGDRVTITCRASQ
986
QQS
KAPPA



P1_ 

AMHWVRQAPGKGLEWVAVISYDGSNKYSAD

DCYPTTD
P2_

SISSYLNWYQQKPGIAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

AFDI
K_

QSGVPSRFSGIGSGTDFTLTISSLQPED

PWT




G2-

YCARDCGGDCYPTTDAFDIWGQGTMVTVSS


G2-

FATYYCQQSYSTPWTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
987
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
988
ARDEGYC
COVD21_
989
DIQMTQSPSSLSASVGDRVTITCQASQ
990
QQY
KAPPA



P1_ 

YAISWVRQAPGQGLEWMGGIIPIFYTANYAQK

SGGSCYG
P2_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

FQGRVTITADKSTSTAYMELSSLRSEDTAVYY

YYYGMD
K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PMY




G6-

CARDEGYCSGGSCYGYYYGMDVVVGQGTTVT

V
G6-

DIATYYCQQYDNLPMYTFGQGTKLEI

T




p1369

VSS


p1389

K








1.3M
COVD21_
991
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
992
AKNQNSY
COVD21_
993
DIQMTQSPSSLSASVGDRVTITCQASQ
994
QQY
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

GYLSYFD
P2_

DINNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

Y
K_

LETGVPSRFSGSGSGTDFAFTISSLQPE

PRT




G8-

YCAKNQNSYGYLSYFDYWGQGTLVTVSS


G8-

DIATYYCQQYDNLPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
995
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
996
ARDYGSS
COVD21_
997
DIQMTQSPSSLSASVGDRVTITCRASQ
998
QQS
KAPPA



P1_ 

GMHWVRQAPGKGLEWVAVISYDGSSKFYAD

WYQVPD
P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

Y
K_

QSGVPSRFSGSRSGTDFTLTISSLQPED

PPL




G9-

YCARDYGSSWYQVPDYWGQGTLVTVSS


G9-

FATYYCQQSYSTPPLTFGGGTKVEIK

T




p1369




p1389










1.3M
COVD21_
999
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
1000
ARVPSVG
COVD21_
1001
DIQMTQSPVSLSASVGDRVTITCRASQ
1002
QQY
KAPPA



P1_ 

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKS

DCSSTSC
P2_

SISSWLAWYQQKPGKAPKLLIYKASS

NSY




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR

LYVVYFDL
K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

ST




H5-

VPSVGDCSSTSCLYWYFDLWGRGTLVTVSS


H5-

DFATYYCQQYNSYSTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1003
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
1004
ARYCSGG
COVD21_
1005
DIQMTQSPXSLSASVGDRVTITCRASQ
1006
QQS
KAPPA



P1_ 

WMSWVRQAPGKGLEWVANIKQDGSEKYYV

SCHPPGQ
P2_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

DSVKGRFTISRDNAKNSLYLQMNSLRAEDTA


K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

WT




H7-

VYYCARYCSGGSCHPPGQWLSDAFDIWGQGT


H7-

FATYYCQQSYSTWTFGQGTKVEIK






p1369

MVTVSS


p1389










1.3M
COVD21_
1007
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
1008
ASPASRG
COVD21_
1009
DIQMTQSPSSLSASVGDRVTITCQASQ
1010
QQY
KAPPA



P1_ 

YYMHWVRQAPGQGLEWMGWLNPISGGTNY

YSGYDHG
P2_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

AQKFQGRVTMTRDTSISTAYMELSRLRSDDTA

YYYYMD
K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PIT




H9-

VYYCASPASRGYSGYDHGYYYYMDVWGKGT


H9-

DIATYYCQQYDNLPITFGQGTRLEIK






p1369

TVTVSS


p1389










1.3M
COVD21_
1011
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
1012
ARVGYDS
COVD21_
1013
DIQMTQSPSSLSASVGDRVTITCRASQ
1014
QQS
KAPPA



P2_ 

DMHWVRQATGKGLEWVSAIGTAGDTYYPGS

SGYSGW
P1_

SISSYLNWYQQKPGKAPKVLIYAASSL

YST




HC_

VKGRFTISRENAKNSLYLQMNSLRAGDTAVY

YFDL
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPL




A10-

YCARVGYDSSGYSGWYFDLWGRGTLVTVSS


A10-

FATYYCQQSYSTPPLTFGGGTKVEIK

T




p1369




p1389










1.3M
COVD21_
1015
QVQLVESGGGVVQPGRSLRLSCAASGFTYSG
1016
ARDGIVD
COVD21_
1017
DIQMTQSPSSLSASVGDRVTITCRASQ
1018
QQS
KAPPA



P2_ 

YAMHWVRQAPGKGLEWVAVILDDGSNKYYA

TAMVTW
P1_

SISSYLNWYHQKPGKAPKLLIYTASSL

YST




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




A11-

YYCARDGIVDTAMVTWFDYWGQGTLVTVSS


A11-

FATYYCQQSYSTPPWTFGQGTKVEIK

T




p1369




p1389










1.3M
COVD21_
1019
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
1020
AKEGRPS
COVD21_
1021
DIQMTQSPSSLSASVGDRVTITCRASQ
1022
QQS
KAPPA



P2_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P1_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




A4-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


A4-

1022






p1369




p1389










1.3M
COVD21_
1023
QLQLQESGPGLVKPSETLSVTCTVSGGSISSSR
1024
ARHAAA
COVD21_
1025
DIQMTQSPSTLSASVGDSVTITCRASQ
1026
QQY
KAPPA



P2_ 

YYWGWIRQPPGKGLEWIGSIYYSGSTYYNPSL

YYDRSGY
P1_

SISSWLAWYQQKPGKAPKLLIYKASS

NNY




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

YFIEYFQ
K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

RYT




B10-

ARHAAAYYDRSGYYFIEYFQHWGQGTLVTVS

H
B10-

DFATYYCQQYNNYRYTFGQGTKLEIK






p1369

S


p1389










1.3M
COVD21_
1027
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
1028
ARDPSVV
COVD21_
1029
DVVMTQSPLSLPVTLGQPASISCRSSQ
1030
MQ
KAPPA



P2_ 

GMHWVRQAPGKGLEWVAVIWHDGSNKYYA

VTAIDFD
P1_

SLVFSDGNTYLNWFQQRPGQSPRRLI

GTH




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAL

Y
K_

YKVSNRDSGVPDRFSGSGSGTDFTLKI

WP




B11-

YYCARDPSVVVTAIDFDYWGQGTLVTVSS


B11-

SRVEAEDVGVYFCMQGTHWPWTFGQ

WT




p1369




p1389

GTKVEIK








1.3M
COVD21_
1031
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
1032
ARGNRLL
COVD21_
1033
EIVLTQSPATLSLSPGERATLSCRASQS
1034
QQR
KAPPA



P2_ 

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQK

YLDAVRQ
P1_

SYLAWYQQKPGQAPRLLIYDASNR

SN




HC_

FQGRVTITADESTSTAYMELSSLRSEDTAVYY

GYYYYY
K_

ATGIPARFSGSGSGTDFTLTISSLEPED

WPL




B2-

CARGNRLLYCSSTSCYLDAVRQGYYYYYYM

YMDV
B2-

FAVYYCQQRSNWPLTFGGGTKVEIK

T




p1369

DVWGKGTTVTVSS


p1389










1.3M
COVD21_
1035
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
1036
AKEGRPS
COVD21_
1037
DIQMTQSPSSLSASVGDRVTITCRASQ
1038
QQS
KAPPA



P2_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P1_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




B5-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


B5-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1039
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
1040
AKEGRPS
COVD21_
1041
DIQMTQSPSSLSASVGDRVTITCRASQ
1042
QQS
KAPPA



P2_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P1_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




C12-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


C12-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1043
EVQLLESGGGLVQPGGSLRLSCAASGFTFNSY
1044
AKDGGR
COVD21_
1045
DIQMTQSPSSLSASVGDRVTITCRASQ
1046
QQS
KAPPA



P2_ 

AMSWVRQAPGKGLEWVSGISGSGDSTYYADS

QWLVELL
P1_

SIASYLNWFQQKPGKAPKLLIYAAS

YSS




HC_

VKGRFTISRDNSKNTVYLQMNSLRAEDTAVY

DY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPT




C4-

YCAKDGGRQWLVELLDYWGHGTLVTVS


C4-

FATYCCQQSYSSPPTFGQGTKLEIK






p1369




p1389










1.3M
COVD21_
1047
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
1048
ASPASRG
COVD21_
1049
DIQMTQSPSSLSASVGDRVTITCQASQ
1050
QQY
KAPPA



P2_ 

YYMHWVRQAPGQGLEWMGWINPISGGTNYA

YSGYDHG
P1_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV

YYYYMD
K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PIT




C8-

YYCASPASRGYSGYDHGYYYYMDVWGKGTT

V
C8-

DIATYYCQQYDNLPITFGQGTRLEIK






p1369

VTVSS


p1389










1.3M
COVD21_
1051
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
1052
AREHTPT
COVD21_
1053
DVVMTQSPLSLPVTLGQPASISCRSSQ
1054
MQ
KAPPA



P2_ 

GMHWVRQAPGKGLEWVAVIWYDGSNKYYA

DIVVVNV
P1_

SLVYIDGNTYLNWFQQRPGQSPRRLI

GTH




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

EY
K_

YKVSNRDSGVPDRFSGSGSGTDFTLKI

WP




C9-

YYCAREHTPTDIVVVNVEYWGQGTLVTVS


C9-

SRVEAEDVGVYYCMQGTHWPYTFGQ

YT




p1369




p1389

GTKLEIK








1.3M
COVD21_
1055
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
1056
ARDQGM
COVD21_
1057
DIQMTQSPSSLSASVGDRVTITCRASQ
1058
QQS
KAPPA



P2_ 

AMHWVRQAPGKGLEWVAVILYDGSNKYYAD

ATTYFDY
P1_

SISSYLNWYQQKPGKAPKLLIYAAS

YNT




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




D1-

YCARDQGMATTYFDYWGQGTLVTVSS


D1-

FATYFCQQSYNTPPWTFGQGTKVEIK

T




p1369




p1389










1.3M
COVD21_
1059
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
1060
ARGSYSN
COVD21_
1061
DIQMTQSPSSLSASVGDRVTITCRASQ
1062
QQS
KAPPA



P2_ 

DMHWVRQATGKGLEWVSIIGTAGDTYYPGSV

YVGYMD
P1_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

KGRFTISRENAKNSLYLQMNSLRAGDTAVYY

V
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PGL




D3-

CARGSYSNYVGYMDVWGKGTTVTVS


D3-

FATYYCQQSYSTPGLTFGGGTKVEIK

T




p1369




p1389










1.3M
COVD21_
1063
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
1064
ARAWAM
COVD21_
1065
EIVLTQSPGTLSLSPGERATLSCRASQS
1066
QQY
KAPPA



P2_ 

WMHWVRQAPGKGLVWVSRINSDGSSTSYAD

RQTTLTP
P1_

VSSSYLAWYQQKPGQAPRLLIYGASS

GSS




HC_

SVKGRFTISRDNAKNTLYLQMNSLRAEDTAV

EWIDY
K_

RATGIPDRFSGSGSGTDFTLTISRLEPE

PYT




D8-

YYCARAWAMRQTTLTPEWIDYWGQGTLVTV


D8-

DFAVYYCQQYGSSPYTFGQGTKLEIK






p1369

SS


p1389










1.3M
COVD21_
1067
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
1068
AKAGVR
COVD21_
1069
EIVLTQSPATLSLSPGERATLSCRASQS
1070
QQR
KAPPA



P2_ 

AMHWVRQAPGKGLEWVSGISWNSGTIGYAD

GIAAAGP
P1_

VSSYLAWYQQKPGQAPRLLIYDASNR

IT




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTAFY

DLNFDH
K_

ATGIPARFSGSGSGTDFTLTISSLEPED






E10-

YCAKAGVRGIAAAGPDLNFDHWGQGTLVTVS


E10-

FAVYYCQQRITFGQGTRLEIK






p1369

S


p1389










1.3M
COVD21_
1071
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
1072
AKEGRPS
COVD21_
1073
DIQMTQSPSSLSASVGDRVTITCRASQ
1074
QQS
KAPPA



P2_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P1_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




E4-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


E4-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1075
EVQLVESGGDLVKPGGSLRLSCAASGFTFNNA
1076
TTGPHYD
COVD21_
1077
DIVMTQSPLSLPVXPGEPASISCRSSQS
1078
MQ
KAPPA



P2_ 

WMSWVRQAPGKGLEWVGRIKDKSDGETTDY

SSGYSYT
P1_

LLHSNGFHFLEWYLQKPGQSPQLLIYS

GLQ




HC_

AAPVQGRFTVSRDDSKNTLYLQMNSLKTEDT

VDS
K_

GSNRASGVPDRFSGSGSGTHFTLKISR

TPL




E9-

AVYYCTTGPHYDSSGYSYTVDSWGQGTLVTV


E9-

VEAEDVGVYYCMQGLQTPLTFGGGT

T




p1369

SS


p1389

KVEIK








1.3M
COVD21_
1079
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
1080
ASPASRG
COVD21_
1081
DIQMTQSPSSLSASVGDRVTITCQASQ
1082
QQY
KAPPA



P2_ 

YYMHWVRQAPGQGLEWMGWINPISGGTNYA

YSGYDHG
P1_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV

YYYYMD
K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PIT




F12-

YYCASPASRGYSGYDHGYYYYMDVWGKGTT

V
F12-

DIATYYCQQYDNLPITFGQGTRLEIK






p1369

VTVSS


p1389










1.3M
COVD21_
1083
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
1084
AKEGRPS
COVD21_
1085
DIQMTQSPSSLSASVGDRVTITCRASQ
1086
QQS
KAPPA



P2_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P1_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




F1-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


F1-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1087
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
1088
ARDYGDF
COVD21_
1089
DIQMTQSPSSLSASVGDRVTITCRASQ
1090
QQY
KAPPA



P2_ 

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

YFDY
P1_

GISNSLAWYQQKPGKAPKLLLYAASR

YST




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


K_

LESGVPSRFSGSGSGTDYTLTINSLQPE

PRT




F7-

YCARDYGDFYFDYWGQGTLVTVSS


F7-

DFATFYCQQYYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1091
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSS
1092
AAPHCSG
COVD21_
1093
EIVLTQSPGTLSLSPGERATLSCRASQS
1094
QQY
KAPPA



P2_ 

AVQWVRQARGQRLEWIGWIVVGSGNTNYAQ

GSCLDAF
P1_

VRSSYLAWYQQKPGQAPRLLIYGASS

GSS




HC_

KFQERVTITRDMSTSTAYMELSSLRSEDTAVY

DI
K_

RATGIPDRFSGSGSGTDFTLTISRLEPE

PWT




F9-

YCAAPHCSGGSCLDAFDIWGQGTMVTVSS


F9-

DFAVYYCQQYGSSPWTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1095
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
1096
TTGPHYD
COVD21_
1097
DIVMTQSPLSLPVTPGEPASISCRSSQS
1098
MQ
KAPPA



P2_ 

WMNWVRQAPGKGLEWVGRIKDKSDGGTIDY

DSGYSYT
P1_

LLHSNGFHFLDWYLQKPGQTPQLLIY

ALQ




HC_

AAPVQGRFTISRDDSKNTLYLQMNSLKTEDTA

VDY
K_

VGSNRASGVPDRFSGSGSGTDFTLKIS

TPL




G2-

VYYCTTGPHYDDSGYSYTVDYWGQGTLVTV


G2-

RVEAEDVGVYYCMQALQTPLTFGGG

T




p1369

SS


p1389

TKVEIK








1.3M
COVD21_
1099
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
1100
AKASGIY
COVD21_
1101
DIQMTQSPSTLSASVGDRVTITCRASQ
1102
QQY
KAPPA



P2_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

CSGGDCY
P1_

SISSWLAWYQQKPGKAPKLLIYKASS

NSY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

SYYFDY
K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

ST




G4-

YCAKASGIYCSGGDCYSYYFDYWGQGTLVTV


G4-

DFATYYCQQYNSYSTFGQGTKVEIK






p1369

SS


p1389










1.3M
COVD21_
1103
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1104
ARDRAET
COVD21_
1105
DIQMTQSPSSLSASVGDRVTITCRASQ
1106
QQS
KAPPA



P2_ 

YYMHWVRQAPGQGLEWMGIINPSGGSTTYA

EGSETYY
P1_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

QKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV

YDSSGYY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPS




G5-

YYCARDRAETEGSETYYYDSSGYYLLGYWGQ

LLGY
G5-

FATYYCQQSYSTPPSFGQGTKVEIK






p1369

GTLVTVSS


p1389










1.3M
COVD21_
1107
EVQLLESGGGLVQPGGSLRLSCAASRFTFSNY
1108
AKDRAA
COVD21_
1109
DIQMTQSPXXLSASVGDRVTITCQAS
1110
QQY
KAPPA



P2_ 

AMSWVRQAPGKGLEWVSTISGSGGSTYYADS

AHWATD
P1_

QDISNYLNWYQQKPGKAPKLLIYDAS

DNR




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

Y
K_

NLETGVPSRFSGSGSGTDFTFTISSLQP

LFT




G9-

YCAKDRAAAHWATDYWGQGTLVTVSS


G9-

EDIATYYCQQYDNRLFTFGPGTKVDI






p1369




p1389

K








1.3M
COVD21_
1111
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
1112
ARDHDY
COVD21_
1113
DIQMTQSPSSLSASVGDRVTITCRASQ
1114
QQS
KAPPA



P2_ 

AMHWVRQAPGKGLEWVAVISYDGSSKYYAD

GEIVDAF
P1_

SISSYLNWYQQRPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

DI
K_

QSGFPSRFSGSGSGTDFTLTISSLQPED

LM




H10-

YCARDHDYGEIVDAFDIWGQGTMVTVSS


H10-

FATYYCQQSYSTLMYTFGQGTKLEI

YT




p1369




p1389










1.3M
COVD21_
1115
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSN
1116
ARHAAA
COVD21_
1117
DIQMTQSPSTLSASVGDRVTITCRASQ
1118
QKY
KAPPA



P2_ 

YYWGWIRQPPGKGLEWIGSIYYSGSTYYNPSL

YYDRSGY
P1_

SISSWLAWYQQKPGKAPKLLIYKASS

NSY




HC_

KSRVTISVDTSKNQFSLKVSSVTAADTAVYYC

YFIEYFQ
K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

RYT




H11-

ARHAAAYYDRSGYYFIEYFQHWGXGTLVTVS

H
H11-

DFATYYCQKYNSYRYTFGQGTKLEIK






p1369

S


p1389










1.3M
COVD21_
1119
EVQLVQSGAEVKKPGESLKISCKGSGYSFSSY
1120
ARQWRG
COVD21_
1121
EIVMTQSPATLSVSPGERATLSCRASQ
1122
QQY
KAPPA



P2_ 

CIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF

YYDRSGY
P1_

SVSSNLAWYQQKSGQAPRLLIYGAST

NN




HC_

QGQVTISVDKSISTAYLQWSSLKASDTAMYYC

YHFDAFD
K_

RATGIPARFSGSGSGTEFTLTISSLQSE

WL




H4-

ARQWRGYYDRSGYYHFDAFDIWGQGTMVTV

I
H4-

DFAVYYCQQYNNWLGTFGQGTKVEF

GT




p1369

SS


p1389

K








1.3M
COVD21_
1123
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
1124
ARDGIVD
COVD21_
1125
DIQMTQSPSSLSASVGDRVTITCRASQ
1126
QQS
KAPPA



P2_ 

AMHWVRQAPAKGLEWVAVILYDGSGKYYAD

TALVTWF
P1_

SISTYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

DY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




H7-

YCARDGIVDTALVTWFDYWGQGTLVTVSS


H7-

FATYYCQQSYSTPPWTFGQGTKVEIK

T




p1369




p1389










1.3M
COVD21_
1127
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
1128
AREFGDP
COVD21_
1129
DIQMTQSPSTLSASVGDRVTITCRANQ
1130
QQY
KAPPA



P2_ 

GMHWVRQAPGKGLEWVTVISYDGRNKYYAD

EWYFDY
P1_

SISSWLAWYQQKPGKAPKLLIYKASS

NSY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


K_

LESGVPSRFSGSGSGTEFTLTISSLQPD

WT




H9-

YCAREFGDPEWYFDYWGQGTLVTVSS


H9-

DFATYYCQQYNSYWTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1131
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRY
1132
AKVTAPY
COVD21_
1133
DIQMTQSPSSLSASVGDRVTITCQASQ
1134
QQY
KAPPA



P3_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

CSGGSCY
P3_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

GGNFDY
K_

LETGVPSRFSGSGSGTDFTFTINSLQPE

PPT




A4-

YCAKVTAPYCSGGSCYGGNFDYWGQGTLVT


A4-

DIATYYCQQYDNLPPTFGGGTKVEIK






p1369

VSS


p1389










1.3M
COVD21_
1135
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
1136
AKEGRPS
COVD21_
1137
DIQMTQSPSSLSASVGDRVTITCRASQ
1138
QQS
KAPPA



P3_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P3_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




A6-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


A6-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1139
EVQLVESGGGLVKPGGSLRLSCAASGFTFTNA
1140
TTGPQYD
COVD21_
1141
DIVMTQSPLSLPVTPGEPASISCRXSQS
1142
MQ
KAPPA



P3_ 

WMNWVRQAPGKGLEWVGRIKAMTDGGTTD

DNGYSYT
P3_

LLHSNGFHFVDWYLQKPGQSPHLLIY

ALQ




HC_

YAAPVQGRFTISRDDSRNTLYLQMNSLKTEDT

VDY
K_

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPL




B10-

AVYSCTTGPQYDDNGYSYTVDYWGQGTLVT


B10-

RVEAEDVGVYYCMQALQTPLTFGGG

T




p1369

VSS


p1389

TKVEIK








1.3M
COVD21_
1143
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIY
1144
AKEGRPS
COVD21_
1145
DIQMTQSPSSLSASVGDRVTITCRASQ
1146
QQS
KAPPA



P3_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

DIVVVVA
P3_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




B12-

YCAKEGRPSDIVVVVAFDYWGQGTLVTVSS


B12-

FATYYCQQSYSTPRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1147
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
1148
ARDFDDS
COVD21_
1149
DIQMTQSPSSLSASVGDRVTITCRASQ
1150
QQS
KAPPA



P3_ 

AIHWVRQAPGKGLEWVAVISYDGSNKYYADS

SFWAFDY
P3_

SIRSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


K_

QSGVPSRFSGSGSGTDFTLTISSLQPDD

PPA




B9-

YCARDFDDSSFWAFDYWGQGTLVTVSS


B9-

FATYYCQQSYSTPPATFGQGTKLEIK

T




p1369




p1389










1.3M
COVD21_
1151
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
1152
ARVGYSS
COVD21_
1153
DIQMTQSPSSLSASVGDRVTITCRASQ
1154
QQS
KAPPA



P3_ 

DMHWVRQATGKGLEWVSTIGTAGDTYYPGS

GWAYWY
P3_

SISSFLNWYQQKPGKAPKLLIYAASSL

YIT




HC_

VKGRFTISRENAKNSLYLQMNSLRAGDTAVY

VDL
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PQY




E11-

YCARVGYSSGWAYWYVDLWGRGTLVTVSS


E11-

FATYYCQQSYITPQYTFGQGTKVEIK

T




p1369




p1389










1.3M
COVD21_
1155
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
1156
AKAGVR
COVD21_
1157
EIVLTQSPATLSLSPGERATLSCRASQS
1158
QQR
KAPPA



P3_ 

AMHWVRQAPGKGLEWVSGISWNSGSIGYADS

GIAAAGP
P3_

VSSYLAWYQQKPGQAPRLLIYDASNR

IT




HC_

VKGRFTISRDNAKNSLYLQMNSLRAEDTALY

DLNFDY
K_

ATGIPARFSGSGSGTDFTLTISSLEPED






E2-

YCAKAGVRGIAAAGPDLNFDYWGQGTLVTVS


E2-

FAVYYCQQRITFGQGTRLEIK






p1369

S


p1389










1.3M
COVD21_
1159
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
1160
ARVWQY
COVD21_
1161
DIVMTQSPLSLPVTPGEPASISCRSSQS
1162
MQ
KAPPA



P3_ 

YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL

YDSSGSF
P3_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

DY
K_

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPF




E7-

ARVWQYYDSSGSFDYWGQGTLVTVSS


E7-

RVEAEDVGVYYCMQALQTPFTFGPG

T




p1369




p1389

TKVDIK








1.3M
COVD21_
1163
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
1164
ARANYDS
COVD21_
1165
DIQMTQSPSSLSASVGDRVTITCRASQ
1166
QQS
KAPPA



P3_ 

DMHWVRQATGKGLEWVSTIGTAGDTYYPGS

SGLGLGY
P3_

RISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

VKGRFTISRENAKNSLYLQLNSLRAGDTAVYY

FDY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPIT




E9-

CARANYDSSGLGLGYFDYWGQGTLVTVSS


E9-

FATYYCQQSYSTPPITFGQGTRLEIK






p1369




p1389










1.3M
COVD21_
1167
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
1168
AREVDYC
COVD21_
1169
DIVMTQSPDSLAVSLGERATINCKSSQ
1170
QQY
KAPPA



P3_ 

YAISWVRQAPGQGLEWMGGIIPIFGTTNYAQK

SSAYCYA
P3_

SVLYSSNNKNYLAWYQQKPGQPPKL

YST




HC_

FQGRVTITADESTSTTYMELSSLRSEDTAVYY

DY
K_

LIYWASTRESGVPDRFSGSGSGTDFTL

PFT




F2-

CAREVDYCSSAYCYADYWGQGTLVTVSS


F2-

TISSLQAEDVAVYYCQQYYSTPFTFGP






p1369




p1389

GTKVDIK








1.3M
COVD21_
1171
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
1172
ARVWQY
COVD21_
1173
DIVMTQSPLSLPVTPGEPASISCRSSQS
1174
MQ
KAPPA



P3_ 

YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL

YDSSGSF
P3_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

DY
K_

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPF




F3-

ARVWQYYDSSGSFDYWGQGTLVTVSS


F3-

RVEAEDVGVYYCMQALQTPFTFGPG

T




p1369




p1389

TKVDIK








1.3M
COVD21_
1175
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
1176
AKQIGEY
COVD21_
1177
DIQMTQSPVSLSASVGDRVTITCQASQ
1178
QQY
KAPPA



P3_ 

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

CSGGSCY
P3_

DISNYLHWYQQKPGKAPKLLIYDASN

DNL




HC_

SVKGRFTISRDNSKNTLYLQMSSLRAEDTAVY

QGSLDY
K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PFT




F5-

YCAKQIGEYCSGGSCYQGSLDYWGQGTLVTV


F5-

DIATYYCQQYDNLPFTFGPGTKVDAK






p1369

SS


p1389










1.3M
COVD21_
1179
EVQLVESGGDLVKPGGSLRLSCAASGFTFNNA
1180
TTGPHYD
COVD21_
1181
DIVMTQSPLSLPVTPGEPASISCRSSQS
1182
MQ
KAPPA



P3_ 

WMSWVRQAPGKGLEWVGRIKDKSDGETTDY

SSGYSYT
P3_

LLHSTGFHFLEWYLQKPGQSPQLLIYS

GLQ




HC_

AAPVQGRFTVSRDDSKNTLYLQMNSLKTEDT

VDS
K_

GSNRASGVPDRFSGSGSGTHFTLKISR

TPL




G11-

AVYYCTTGPHYDSSGYSYTVDSWGQGTLVTV


G11-

VEAEDVGIYYCMQGLQTPLTFGGGTK

T




p1369

SS


p1389

VEIK








1.3M
COVD21_
1183
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1184
ARDRAET
COVD21_
1185
DIQMTQSPSSLSASVGDRVTITCRASQ
1186
QQS
KAPPA



P3_ 

YYMHWVRQAPGQGLEWMGIINPSGGSTTYA

EGSETYY
P3_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

QKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV

YDSSGYY
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPS




G5-

YYCARDRAETEGSETYYYDSSGYYLLGYWGQ

LLGY
G5-

FATYYCQQSYSTPPSFGQGTKVEIK






p1369

GTLVTVSS


p1389










1.3M
COVD21_
1187
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
1188
ATPPGGN
COVD21_
1189
DVVMTQSPLSLPVTLGQPASISCRSSQ
1190
MQ
KAPPA



P3_ 

YMSWIRQAPGKGLEWVSYISSSGNSIYSADSV

PTYYYDT
P3_

SLVYSDGNTYLNWFQQRPGQSPRRLI

GTH




HC_

KGRFTISRDNAKNSLYLQMNSLRAEDTAVYY

SGYSLAY
K_

YNVSNRDSGVPDRFSGSGSGTDFTLKI

WPP




G6-

CATPPGGNPTYYYDTSGYSLAYWGQGTLVTV


G6-

SRVEAEDVGVYYCMQGTHWPPNFGQ

N




p1369

SS


p1389

GTRLEIK








1.3M
COVD21_
1191
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSN
1192
ARALKYY
COVD21_
1193
DIQMTQSPSSLSASVGDRVTITCQASQ
1194
QQY
KAPPA



P3_ 

YYWGWIRQPPGKGLEWIGSIYYSGSTYYNPSL

DILTGYSE
P3_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

KSRVTISVDTSKSQFSLKLSSVTAADTAVYYC

PRTFLDY
K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PIT




G8-

ARALKYYDILTGYSEPRTFLDYWGQGTLVTVS


G8-

DIATYYCQQYDNLPITFGQGTRLEIK






p1369

S


p1389










1.3M
COVD21_
1195
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
1196
TRDDSSW
COVD21_
1197
DIQMTQSPSSLSASVGDRVTITCRASQ
1198
QQS
KAPPA



P3_ 

WMHWVRQAPGKGLVWVSRINSDGSRRAYAT

PHFFDN
P3_

SISSYLNWYQQKPGKAPKLLIYVASSL

YST




HC_

SVKGRFTISRDNAKNTLYLQMDSLRDEDTAV


K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

RT




H10-

YYCTRDDSSWPHFFDNWGQGTLVTVSS


H10-

FATYYCQQSYSTRTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1199
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
1200
ANHGDY
COVD21_
1201
DIQMTQSPSSLSASVGDRVTITCQASQ
1202
QQY
KAPPA



P3_ 

AMSWVRQAPGKGLEWVSGISDSGVSTYYADS

VGYMDV
P3_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PPY




H2-

YCANHGDYVGYMDVWGKGTTVTVSS


H2-

DIATYYCQQYDNLPPYTFGQGTKLEI

T




p1369




p1389

K








1.3M
COVD21_
1203
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
1204
AKDTGS
COVD21_
1205
DIQMTQSPSSLSASVGDRVTITCRASQ
1206
QQS
KAPPA



P3_ 

AMSWVRQAPGKGLEWVSGMSGSGGITYYAD

MIVELLG
P3_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

Y
K_

QSGVPSRFSGSGSGTDFTLTISSLQPED

PGT




H3-

YCAKDTGSMIVELLGYWGQGTLVTVSS


H3-

FATYFCQQSYSTPGTFGQGTKVEIK






p1369




p1389










1.3M
COVD21_
1207
QVQLVESGGGVVQPGRSLRLSCATSGFTFSSY
1208
AKVMGP
COVD21_
1209
EIVLTQSPATLSLSPGERATLSCRASQS
1210
QQR
KAPPA



P3_ 

GLHWVRQAPGKGLEWVALISYDGSDKYYAD

YCSGGSC
P3_

VSSYLAWYQQKPGQAPRLLIYDASNR

SN




HC_

SVKGRFTISRDTSKNTLFLQMNSLRAEDTAVY

YSGYFDY
K_

ATGIPARFSGSGSGTDFTLTISSLEPED

WPL




H4-

YCAKVMGPYCSGGSCYSGYFDYWGQGTLVT


H4-

FAVYYCQQRSNWPLTFGGGTKVEIK

T




p1369

VSS


p1389










1.3M
COVD21_
1211
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
1212
ARAQAV
COVD21_
1213
DIQMTQSPSSLSASVGDRVTITCQASQ
1214
QQY
KAPPA



P3_ 

YYWSWIRQHPGKGLEWIEYIYYSGSTYYNPSL

GANYAA
P3_

DISNYLNWYQQKPGKAXKLLIYDALN

DNL




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

AFDI
K_

LETGVPSRFSGSGSGTDFTFTISSLQPE

PIT




H7-

ARAQAVGANYAAAFDIWGQGTMVTVSS


H7-

DIATYYCQQYDNLPITFGQGTRLEIK






p1369




p1389










6.2M
COVD47_
1215
EVQLVESGGGLVQPGGSLRLSCAASGFSVST
1216
ARDSSE
B6c-
1217
QSALTQPASVSGSPGQSIAISCTGTSND
1218
CSY
LAMBDA



mo6_P2

KYMTWVRQAPGKGLEWVSVLYSGRTDYYA

VRDHPG
p1410

VGSYTLVSWYQQYPGKAPKLLIFEDSQ

AGS




HC_

DSVKGRFTISRDSSKNILYLQMSSLRVEDTGF

HPGRSV


RSSGISNRFSGSKSGNTASLTISGLRGE

HTF




B7-

YYCARDSSEVRDHPGHPGRSVGAFDIWSQGT

GAFDI


DEADYYCCSYAGSHTFVFGGGTKVTV

V




p1369

MVTVSS













6.2M
COVD47_
1219
QVQLQESGPGLVKPSQTLSLTCTVSGGSVRSG
1220
ASSLVP
COVD47_
1221
QSVLTQPPSVSGAPGQRITISCTGSSSNI
1222
QSY
LAMBDA



mo6_P1

GYYWNWIRQHPGKGLQWIGYVNYSGSTDYN

YYFDS
mo6_P1

GAGFDVHWYQQVPGTAPKLLIYGNNI

DNS




HC_

PSLESRLTISVDTXKRQFSLKLTSVTAADTAV


L_

RPSGVPDRFSGSKSDTSASLAITGLQSE

LSD




A2-

YYCASSLVPYYFDSWGQGTLVTVSS


A2-

DEADYFCQSYDNSLSDPYVFGTGTKV

PYV




p1369




p1409

TV








6.2M
COVD47_
1223
EVQLVESGGGLVQPGGSQRLSCAASGFTVSS
1224
ARIANY
COVD47_
1225
EIVMTQSPATLSVSPGERATLSCRASQS
1226
QQ
KAPPA



mo6_P1

NYMSWIRQAPGKGLEWVSVIYSGGSAYYVD

MDV
mo6_P1

VSSHLAWYQQKPGQAPRLLIYGASTR

YN




HC_

SVKGRFTISRDNSKNTLYLQMNSLRPEDTAV


K_

ATGIPTRFSGSGSGTEFTLTISSLQSEDF

NW




A3-

YYCARIANYMDVWGKGTTVTVSS


A3-

AVYYCQQYNNWPPLTFGGGTKVEIK

PPL




p1369




p1389



T






6.2M
COVD47_
1227
QVQLVQSGAEVKKPGSSVKVSCKASGGSFSS
1228
AIDPSA
COVD47_
1229
QSVLTQPRSVSGSPGQAVTISCTGTSSA
1230
SSY
LAMBDA



mo6_P1

SAINWVRQAPGQGLEWMGGIIPMFGTANYA

WYPSRS
mo6_P1

VGVYNHLSWYQQHPGKAPKVMIYDIY

ISST




HC_

QNFQGRVTITADGSTSTAYMELNNLKSEDTA

PRLDS
L_

KRPSGVPDRFSGSKSGNTASLTISGLQS

TSW




A4-

VYYCAIDPSAWYPSRSPRLDSWGQGTLVTVS


A4-

EDEADYYCCSYAGNYTWGGGTKLTV

V




p1369

S


p1409

L








6.2M
COVD47_
1231
EVQLVQSGAEVKKSGESLKISCKGSGYSFATY
1232
ARGLSG
COVD47_
1233
EIVLTQSPATLSLSPGERATLSCRASQS
1234
LQR
KAPPA



mo6_P1

WIGWVRQKPGKGLEWMGIIHPSDSDTKYGPS

SYSDDE
mo6_P1

LSPYLAWYQQKPGQAPRLLIYDASNR

SY




HC_

FQGQVTMSADKSISTAYLQWSSLKTSDTAMY

GVEE
K_

ATGIPARFSGSGSGTDFTLTISSLEPEDF

WPL




A6-

YCARGLSGSYSDDEGVEEWGQGTLVTVSS


A6-

AVYYCLQRSYWPLTFGQGTKVEIK

T




p1369




p1389_R










6.2M
COVD47_
1235
QVQLVQSGAEVKKPGSSVNVSCKASGGTFST
1236
AINTQW
COVD47_
1237
EIVLTQSPGTLSLAPGERATLSCRASQS
1238
QQ
KAPPA



mo6_P1

YAIHWVRQAPGQGLEWMGGIIPLFHTANYAQ

DLVPR
mo6_P1

VNSNYLAWYQQKPGQAPRLLIYGASS

YGF




HC_

KFQGRVTITADESTSTAYMELSSLRSEDTAMY


K_

RATGIPDRFSGSGSGTDFTLTISRLEPED

SLY




A7-

YCAINTQWDLVPRWGRGTLVTVSS


A7-

FAVYYCQQYGFSLYSFGQGTKLEIK

S




p1369




p1389










6.2M
COVD47_
1239
QVQLQESGPGLVKPSQTLSLTCTVSGGSITSG
1240
ARGWAS
COVD47_
1241
DIVMTQTPLSSPVTLGQPASISCRSSQS
1242
TQA
KAPPA



mo6_P1

DYYWNWIRQHPGKGLEWIGYIYYNGGPYNN

STWCYG
mo6_P1

LVHSDGNTYLSWLQQRPGQPPRLLIYQ

TQF




HC_

PSLKSRPTISLDTSKNQFSLKLTSVTAADTAM

CMDV
K_

ISNRFSGVPDRFSGSGAGTDFTLKISRV

PHT




A9-

YYCARGWASSTWCYGCMDVVVGQGTTVTVS


A9-

EAEDVGIYYCTQATQFPHTFGQGTKLE






p1369

S


p1389

IK








6.2M
COVD47_
1243
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
1244
AKDPFP
COVD47_
1245
SYVLTQPPSVSVAPGQTARITCGGNDI
1246
QV
LAMBDA



mo6_P1

YGIHWVRQAPGKGLEWVAVISYDGTIKSYAG

LAVAGT
mo6_P1

GSKNVHWYQQKPGQAPVLVVYDDSD

WD




HC_

SVKGRFTISKDNSKNTLYLQMNSLRAEDTAV

GYFDY
L_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSG




B11-

YYCAKDPFPLAVAGTGYFDYWGQGTLVTVS


B11-

DEADYYCQVWDSSGDFWVFGGGTKL

DF




p1369

S


p1409



WV






6.2M
COVD47_
1247
QLQLQESGPGLVRPSETLSLTCTVSGVSITSGS
1248
ATELYY
COVD47_
1249
EIVMTQSPATLSVSPGERVSLSCRASQG
1250
QQ
KAPPA



mo6_P1

YSWGWVRQPPGKGLEWIGTINYSESTYYSPS

YDRSGF
mo6_P1

VSSNLAWYQQKPGQAPRLLIYGAS

YN




HC_

LKSRVTMSVDTSKNQFSLLLRSVTAADTAVY

QHWDGF
K_

ATGIPARISGSGSGTEFTLTISSLQSEDF

NW




B1-

YCATELYYYDRSGFQHWDGFAIWGQGTMVT


B1-

AIYYCQQYNNWPRRTFGQGTKLEIK

PRR




p1369

VSS


p1389



T






6.2M
COVD47_
1251
EVQLVESGGGLVQPGGSLRLSCAASGFTFSN
1252
ARDARN
COVD47_
1253
SYVLTQPPSVSVAPGKTARITCGGDDI
1254
QV
LAMBDA



mo6_P1

NWMSWVRQAPGKGLEWVANIKQDGSEKYY

FDWYFD
mo6_P1

ATKSVHWYQQKPGQAPVLVIYYDSDR

WD




HC_

VDSVKGRFTVSRDNAKNSLYLQMSSLRAEDT

L
L_

PSGIPERFSGSNSGNTATLTINRVEAGD

STS




B8-

AVYYCARDARNFDWYFDLWGRGTLVTVSS


B18-

EADYYCQVWDSTSDHRGYVFGTGTK

DHR




p1369




p1409

VTVL

GY













V






6.2M
COVD47_
1255
EVQLVESGGGLIQPGGSLRLSCAASGLLVSRN
1256
ARDVGD
COVD47_
1257
DIQLTQSPSFLFASVGDRVTITCRASQG
1258
QLL
KAPPA



mo6_P1

YMTWVRQAPGKGLEWVSVIYSGGSTFYADS

YYGMD
mo6_P1

MSNYLAWYQQKPGKAPNLLIYTASTL

NSY




HC_

VRGRFTISRDNSKNTLYLQMDSLRAEDTAVY

V
K_

QSGVPSRFSGSGFGTEFTFTISSLQPEDF

PQL




C11-

YCARDVGDYYGMDVWGQGTTVTVSS


C11-

ATYYCQLLNSYPQLTFGGGTKVEIK

T




p1369




p1389










6.2M
COVD47_
1259
EVQLVESGGGLIQPGGSLRLSCAASGITVSSN
1260
ARDLIAL
COVD47_
1261
DIQLTQSPSFLSASVGDRVTITCRASQG
1262
QLL
KAPPA



mo6_P1

YMSWVRQAPGKGLEWVSVMYAGGSSFYAD

GVDV
mo6_P1

ISSYLAWYQQKPGKAPKLLIYAASTLQ

NSY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRVEDTAV


K_

SGVPSRFSGSGSGTEFTLTISSLQPEDFA

PMC




C1-

YYCARDLIALGVDVWGQGTTVTVSS


C1-

TYYCQLLNSYPMCSFGQGTKLEIK

S




p1369




p1389










6.2M
COVD47_
1263
EVQLVESGGGLVQPGGSLRLSCAASGIIVSRN
1264
ARDVAR
COVD47_
1265
DIQMTQSPSSLSASVGDRVTITCQASQ
1266
QQC
KAPPA



mo6_P1

YMSWVRQAPEKGLEWVSVIYAGGSAFYADS

YSDI
mo6_P1

DINNYLNWYQQKPGKAPKLLIYDASN

DNL




HC_

VKGRFTISRDNSKNTLYLQMNGLRAEDTAIY


K_

LETGVPSRFRGSRSGTEFTFTISSLQPED

PCS




C5-

YCARDVARYSDIWGQGTMVTVSS


C5-

IATYYCQQCDNLPCSFGQGTKLEIK






p1369




p1389










6.2M
COVD47_
1267
EVQLVQSGAEVKKPGESLRISCRGSGYSFTNH
1268
ARIAPFH
COVD47_
1269
EIVLTQSPGTLSLSPGERATLSCRASQS
1270
QQ
KAPPA



mo6_P1

WISWVRQTPGKGLEWMGRIDPSDSYTHYSPS

DSGSAY
mo6_P1

VSNSYLAWYQQRPGQAPRLLIFGASSK

YG




HC_

FQGHVTFSADKSISTVYLQWSSLKASDTAMY

YPTQNY
K_

ATGIPDRFSGSGSGTDFTLTISRLEPEDF 

NLI




C8-

HCARIAPFHDSGSAYYPTQNYMDVVVGKGTT

MDV
C8-

AVYYCQQYGNLILTFGGGTKVEIK

LT




p1369

VTVSS


p1389










6.2M
COVD47_
1271
EVQLVESGGGLIRPGGSLRLSCAASGFSVSNN
1272
AREGDV
COVD47_
1273
QSALTQPASVSGSPGQSITISCTGTSSD
1274
NSY
LAMBDA



mo6_P1

YMSWVRQAPGKGLEWVSVIYSGGTTYYADS

EGYYDF
mo6_P1

VGGYNYVSWYQQHPGKAPKLMIYDV

TSN




HC_

VKGRFNISRDNSKNTVYLQMNSLRAEDTAVY

WSGYSR
L_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

NTR




D12-

YCAREGDVEGYYDFWSGYSRDRYYFDYWG

DRYYFD
D12-

AEDEADYYCNSYTSNNTRVFGTGTKV

V




p1369

QGALVTVSS

Y
p1409










6.2M
COVD47_
1275
EVQLVESGGGLVKPGGSLRLSCAASRFTFSSA
1276
STTNDY
COVD47_
1277
DIQMTQSPSSLSASVGDRVTITCRASQS
1278
QQS
KAPPA



mo6_P1

WMSWVRQAPGKGLEWVGRIKTKTDGETTD

GDYSPA
mo6_P1

ISSYLNWYQQKPGKAPKLLIYAASSLQ

YTT




HC_

YAAPVKGRFTISRDDSKNTLYLQMNSLK

Y
K_

SGVPSRFSGSGSETAFALTISSLQPEDFA

PLT




D2-

TAVYYCSTTNDYGDYSPAYWGQGTLVTVSS


D2-

TYYCQQSYTTPLTFGGGTKVEIK






p1369




p1389










6.2M
COVD47_
1279
QVQLVESGGGVVQPGRSLRLSCAASGFIFSSF
1280
TRAPRG
COVD47_
1281
DIQMTQSPSTLSASVGDRVTITCRASQ
1282
QQ
KAPPA



mo6_P1

GMHWVRQAPGKGLEWVAVISYDGTDKYYG

YYNSSG
mo6_P1

NINNWLAWYQQKPGKVPKVLISESSSL

YQS




HC_

DSVKGRFIISRDNSKNTLHLQMNSLRTEDTAV

HYYIVD
K_

ESGVPSRFSGSGSGTEFTLTIISLQPDDF

YPL




D3-

YYCTRAPRGYYNSSGHYYIVDYFDYWGQGA

YFDY
D3-

ATYYCQQYQSYPLTFGQGTKTEIK

T




p1369

LVTVSS


p1389










6.2M
COVD47_
1283
EVQLVESGGGLIQPGGSLRLSCAASGFIVSNN
1284
AREGDV
COVD47_
1285
QSALTQPASVSGSPGQSITISCTGSSSDV
1286
SSY
LAMBDA



mo6_P1

YMSWVRQAPGKGLDWVSVIYSGGTTYYADS

EGYHDS
mo6_P1

GGYNFVSWYQQHPGRAPKLMIYDVSN

TNN




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

WSGYSR
L_

RPSGVSNRFSGSKSGNTASLTISGLQVE

NTR




D5-

YCAREGDVEGYHDSWSGYSRDRYYFDYWG

DRYYFD
D5-

DEADYYCSSYTNNNTRVFGTGTKVTV

V




p1369

QGTLVTVSS

Y
p1409

L








6.2M
COVD47_
1287
EVQLVESGGGLVQPGGSLRLSCTASGFAFSSD
1288
ARGTQS
COVD47_
1289
DIQMTQSPSSLSASVGDRVTITCRASQS
1290
QQS
KAPPA



mo6_P1

DMHWVRQRTGKGLECVSVIGTAGDSYYSDS

SGWYNG
mo6_P1

ISKYLNWYQQKPGKAPNLLIYAASSLQ

YST




HC_

VKGRFTISRENANNTLYLQMNSLRAGDTAVY

GLKYYY
K_

SGVPSRFSGSGSGTDFTLTISSLQLEDF

PFG




D6-

YCARGTQSSGWYNGGLKYYYYMDVWGKGT

YMDV
D6-

ATYYCQQSYSTPFGTFGGGTKVEIK

T




p1369

TVTVSS


p1389










6.2M
COVD47_
1291
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSG
1292
ARESGV
COVD47_
1293
EIVLTQSPGTLSLSPGERATLSCRASQT
1294
QQ
KAPPA



mo6_P1

TYYWSWIRQPPGKGLEWIGYIYYSGNTNYNP

GGTFDY
mo6_P1

VSSSYLAWYQQKPGQAPRLLIFGASRR

YGS




HC_

SLKSRVTISLDTSKNQFSLKLNSVTAADTAVY


K_

ATGIPVRFSGGGSGTDFTLTISRLEAED

SPS




D7-

YCARESGVGGTFDYWGQGTLVTVSS


D7-

FAVYYCQQYGSSPSYTFGQGTKLEIK

YT




p1369




p1389










6.2M
COVD47_
1295
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1296
ARDHDF
COVD47_
1297
EIVLTQSPGTLSLSPGERATLSCRASQS
1298
QQS
KAPPA



mo6_P1

NYYMHWVRQAPGQGLEWMGIINPDGGSTTY

IPTITRGF
mo6_P1

VSSTYLAWYQQKPGQAPRLLIYGASSR

GIS




HC_

AQKFQGRVTMTRDTSTSTVYMELRSLRSEDT

DL
K_

ATGIPDRFSGSGSGTDFTLTISRLEPEDF

LLT




E10-

AMYYCARDHDFIPTITRGFDLWGQGTLVTVS


E10-

AVYYCQQSGISLLTFGGGTKVEIK






p1369

S


p1389










6.2M
COVD47_
1299
QVQLQQWGAGLLKPSETLSLTCVVYGGSFSA
1300
ARETGT
COVD47_
1301
EIVLTQSPGTLSLSPGERATLSCRASQS
1302
QQ
KAPPA



mo6_P1

YYWSWIRQPPGKGLEWIGEINHSGSTNYKSSL

YGTFDH
mo6_P1

VSSTYLAWYQQKPGQAPRLLIYGASSR

YAF




HC_

QSRVTISVDTSKNQFSLKLSSVTAADTAVYYC


K_

ATGIPDRFSGSGSGTDFTLTISRLEPEDF

SV




E11-

ARETGTYGTFDHWGQGTPVTVSS


E11-

AVYYCQQYAFSVWTFGQGTKVEI

WT




p1369




p1389










6.2M
COVD47_
1303
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSG
1304
AREEQQ
COVD47_
1305
QSVLTQPPSVSGAPGQRVTISCTGSSSN
1306
QSF
LAMBDA



mo6_P1

GYYWSWIRQHPGKGLEWIGYIYYSGGTYYNP

LAPWFD
mo6_P1

IGAGYDVHWYQQLPGTAPKLLIYDNIN

DSS




HC_

SLKSRVTISVDTSKNQFSLRLSSVTAADTAVY

P
L_

RPSGVPDRFSGSKSGTSASLAITGLQAE

LSA




E2-

YCAREEQQLAPWFDPWGQGTLVTVSS


E2-

DEADYYCQSFDSSLSAYVFAPGTKVTV

YV




p1369




p1409










6.2M
COVD47_
1307
EVQLVESGGGLVQPGGSQRLSCAASGFTVSS
1308
ARIANY
COVD47_
1309
EIVMTQSPATLSVSPGERATLSCRASQS
1310
QQ
KAPPA



mo6_P1

NYMSWIRQAPGKGLEWVSVIYSGGSAYYVD

MDV
mo6_P1

VSSHLAWYQQKPGQAPRLLIYGASTR

YN




HC_

SVKGRFTISRDNSKNTLYLQMNSLRPEDTAV


K_

ATGIPTRFSGSGSGTEFTLTISSLQSEDF

NW




E5-

YYCARIANYMDVWGKGTTVTVSS


E5-

AVYYCQQYNNWPPLTFGGGTKVEIK

PPL




p1369




p1389



T






6.2M
COVD47_
1311
EVQLVESGGGLFQPGGSLRLSCAASGFSVRN
1312
AREGDV
COVD47_
1313
QSVLTQPASVSGSPGQSIIISCTGTSGDI
1314
SSF
LAMBDA



mo6_P1

NYVSWVRQAPGKGLEWVSVIYSGGTTYYAD

EGLHDF
mo6_P1

GGYNYVSWYQQHPGKAPKLMIYDVSF

TGN




HC_

SVKGRFTISRDISENTLYLQMNSLRAEDTAVY

WSGYSR
L_

RPSGVSNRFSGSKSDNTASLTISGLQAE

NTR




E8-

YCAREGDVEGLHDFWSGYSRDRYYFDYWG

DRYYFD
E8-

DEADYYCSSFTGNNTRVFGTGTKVTV

V




p1369

QGTLVTVSS

Y
p1409










6.2M
COVD47_
1315
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSN
1316
ARVSTT
COVD47_
1317
DIQMTQSPSSLSASVGDRVTITCQASQ
1318
QQ
KAPPA



mo6_P1

YYWSWIRQHPGKGLEWIGYIDYSGGTYYNPS

VTTYLV
mo6_P1

DITNYLNWYQQKPGKAPKLLLYDASN

YD




HC_

LKSRVTISVDTSKNQFSLKLSSVTAADTAVYY

GGFDI
K_

LETGVPSRFSGSGSGTDFTFTISSLQPED

NLP




E9-

CARVSTTVTTYLVGGFDIWGQGTMVTVSS


E9-

IATYYCQQYDNLPWTFGQGTKVEIK

WT




p1369




p1389










6.2M
COVD47_
1319
QVQLQQWGAGLLKPSETLSLTCTVYGGSFSG
1320
ARVRWL
COVD47_
1321
NFMLTQPHSVSESPGKTVTISCTGSSGS
1322
QSY
LAMBDA



mo6_P1

YYWSWIRQPPGKGLEWIGEINHSGTTNYNPS

RGETDY
mo6_P1

IASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




HC_

LKSRVTISLDTSKNQFSLKLSSVTAADTAVYY


L_

PSGVPDRFSGSIDSSSNSASLTISGLKTE

NQR




F11-

CARVRWLRGETDYWGQGTLVTVSS


F11-

DEADYYCQSYDSSNQRVFGGGTKLTV

V




p1369




p1409

L








6.2M
COVD47_
1323
EVQLLESGGGLVQPGGSLRLSCAASGLTFSRY
1324
AKDVVS
COVD47_
1325
DIQMTQSPSSLSASVGDRVTITCQASQ
1326
QQ
KAPPA



mo6_P1

AMSWVRQAPGKGXEWFSGIGGDRDRSXYAD

WPHYYF
mo6_P1

DINNYLNWYQQKPGKAPKLLIYDASN

YD




HC_

SAKGRFTISRDNSKSTLYLQMNSLRTEDTAVY

DF
K_

LEAGVPSRFSGRGSGTDFTFTISSLQPE

NLL




F12-

YCAKDVVSWPHYYFDFWGQGTLVTVSS


F12-

DIATYYCQQYDNLLITFGQGTRLDIK

IT




p1369




p1389










6.2M
COVD47_
1327
EVQLVQSGAEVKKPGESLKISCKGSGYSFISN
1328
ATSIAVS
COVD47_
1328
QSVLTQPPSVSGAPGQRVTISCTGSSSN
1330
QA
LAMBDA



mo6_P1

WIGWVRQMPGKGLEWMGIIYPYDSDTRYSPS

GTYAFD
mo6_P1

IGAYGVHWYQQFPGTAPKLLIYGDSSR

YDS




HC_

FQGQITISADKSISTAYLQWSSLKASDTAMYY

V
L_

PSGVPDRFSASKSGTSASLAITGLQAED

GLS




F1-

CATSIAVSGTYAFDVWGQGTVVTVSS


F1-

EADYYCQAYDSGLSGNFVFGTGTKVT

GNF




p1369




p1409_R



V






6.2M
COVD47_
1331
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
1332
ARDCGP
COVD47_
1333
SYVLTQPPSVSVSPGQTARITCSGDAFP
1334
QSA
LAMBDA



mo6_P1

YAMYWVRQAPGKGLEWVAVISFDGRNIYYA

AQPPLV
mo6_P1

KQYGYWYQQKPGQAPVLVIYKDSERP

DSS




HC_

DSVKGRFSISRENSKSTLFLQMNSLRLDDTAM

EADDYF
L_

SGIPERFSGSSSGTTVTLTISGVQAEDE

GTR




F6-

YYCARDCGPAQPPLVEADDYFYFYGMDVVVG

YFYGMD
F6-

ADYYCQSADSSGTRRVFGGGTKLTVL

RV




p1369

QGTTVTVSS

V
p1409










6.2M
COVD47_
1335
EVQLVQSGAEVKKPGESLRISCKGFGYSFTNY
1336
ARRGYN
COVD47_
1337
DIQMTQSPSSLSASVGDSVTITCRASQS
1338
QQS
KAPPA



mo6_P1

WIGWVRQMPGKGLEWMGIIYPGDSDTKYSPS

YGNYYY
mo6_P1

ISTYLNWYQQKPGKAPKLLIYDASSLQ

FST




HC_

FQGQVTMSADKSTNTAYLHWSSLKASDTAM

LDV
K_

SGVPSRFSGSGSGTDFTLTLSSLQPEDF

LAL




F9-

YYCARRGYNYGNYYYLDVWGKGTPVTVSS


F9-

ATYYCQQSFSTLALTFGGGTKVEIK

T




p1369




p1389










6.2M
COVD47_
1339
QVQLQESGPGLVKPSETLSLTCAVSGGSISSY
1340
GVCAGD
COVD47_
1341
DIQMTQSPSSLSASVGDRVTITCQASQ
1342
QQ
KAPPA



mo6_P1

YWSWIRQPPGKGLEWIGYIDTSGSTNYNPSLK

CYAASV
mo6_P1

DIIFYLNWYQQKPGKAPKLLIYDASNL

YD




HC_

SRVTMSVDTSKNQFSLNVNSVTAADTAVYFC

FDY
K_

KTGVPSRFSGSGSGTDFAFTISSLQPEDI

NLP




G10-

GVCAGDCYAASVFDYRGQGTLVTVSS


G10-

ATYYCQQYDNLPLTFGGGTKVEIK

LT




p1369




p1389










6.2M
COVD47_
1343
QVQLVQSGAEVKKPGASVKVSCKASGYNFTS
1344
ARDRLK
COVD47_
1345
QSVLTQPPSASASLGASVTLTCTLSSGY
1346
GA
LAMBDA



mo6_P1

YYMYWVRQAPGQGLEWMGIINPSGGSTSYA

QPNPGL
mo6_P1

SNYKVDWYQQRPGKGPRFVMRVGTG

DH




HC_

QKFQGRVTMTRDTSTSTVYMELSSLRSEDTA

RMYNW
L_

GIVGSKGDGIPDRFSVLGSGLNRYLTIK

GSG




G12-

VYYCARDRLKQPNPGLRMYNWFAPWGQGT

FAP
G12-

NIQEEDESDYHCGADHGSGSNFVWVF

SNF




p1369

LVTVSS


p1409

GGGTKLTVL

VW






6.2M
COVD47_
1347
EVQLLESGGGLVQPGGSLRLSCAASGFSFSDY
1348
AIPFTIFG
COVD47_
1349
QSVLTQPRSVSGSPGQSVTISCTGTSSD
1350
CSY
LAMBDA



mo6_P1

AMYWVRQAPGKGLEWVSTISGSGANTYYAD

VVPDWC
mo6_P1

VGAYNYVSWYQQHPGKAPKLMIYNV

VAG




HC_

SVKGRFTISRDNSKNTLSLQMNSLRGEDTAV

FDF
L_

SERPSGVPDRFSGSKSGNTASLTISGLQ

NF




G1-

YYCAIPFTIFGVVPDWCFDFWGRGTLVTVS


G1-

ADDEADYYCCSYAGNFWVFGTGTKLT

WV




p1369




p1409

VL








6.2M
COVD47_
1351
EVQLVESGGGLIQPGGSLRLSCAASGFTVSNN
1352
AREGDV
COVD47_
1353
QSALTQPASVSGSPGQSITISCTGTSSD
1354
SSY
LAMBDA



mo6_P1

YMSWVRQAPGKGLEWVSVIYSGGSTYDADS

EGYYDF
mo6_P1

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




HC_

VKGRFTISRDNSKNTLYLQMNSLSAEDTAVY

WSGYSR
L_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

SAR




G4-

YCAREGDVEGYYDFWSGYSRDRYYFDYWG

DRYYFD
G4-

AEDEADYYCSSYTSSSARVFGTGTKVT

V




p1369

QGTLVTVSS

Y
p1409

VL








6.2M
COVD47_
1355
EVQLVESGGDLVQPGGSLRLSCAASGFTFTTY
1356
ARGDCL
COVD47_
1357
DIQMTQSPSSLSASVGDRVTITCRASQS
1358
QQT
KAPPA



mo6_P1

SMSWVRQAPGKGLEWISYINSGSANIHYADS

SSSCYSL
mo6_P1

ITSYLSWYLQKPGEAPKLLIYAASILQS

YRS




HC_

VKGRFTVSRDNAKNSLYLQMNSLRDEDTAV

DY
K_

GVPSRFGGNGSGTDFTLTISSLQPEDFA

PLT




G5-

YYCARGDCLSSSCYSLDYWGQGALVTVSS


G5-

TFYCQQTYRSPLTFGGGTRVEIK






p1369




p1389










6.2M
COVD47_
1359
QVQLVESGGGVVQPGRSLRLSCAASGFSFRIF
1360
ARDMEV
COVD47_
1361
DIVMTQSPDSLAVSLGARATINCKSSQ
1362
QQ
KAPPA



mo6_P1

GMNWVRQAPGKGLDWVAGISHDGSDKYFA

DYYDRS
mo6_P1

SILYSSDNKSSLAWYQQKPGHPPKLLI

YYS




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRADDTA

GHYHVF
K_

YWASTRESGVPDRFSGSESGTDFTLTIS

IPRS




G7-

VYYCARDMEVDYYDRSGHYHVFHAFDIWG

HAFDI
G7-

NLQGEDVAVYYCQQYYSIPRSFGQGT






p1369

QGTVVTVSS


p1389

KLEIK








6.2M
COVD47_
1363
EVQLVESGGGLVKPGGSLRLTCAASGFTFSTY
1364
ARERGY
COVD47_
1365
NFMLTQPHSVSESPGKTVTISCTGSSGS
1366
QSY
LAMBDA



mo6_P1

SMNWVRQAPGKGLEWVSSISSSSSYIYYADS

YGGKTP
mo6_P1

IASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




HC_

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

PFL
L_

PSGVPDRFSGSIDSSSNSASLTISGLKTE

NY




G8-

YCARERGYYGGKTPPFLGGQGTLVTVSS


G8-

DEADYYCQSYDSSNYWVFGGGTKLTV

WV




p1369




p1409

L








6.2M
COVD47_
1367
EVQLVESGGNLVQPGGSLRLSCSASGFTFSNY
1368
VRGDM
COVD47_
1369
SYVLTQPPSVSVAPGQTARITCGGDEIG
1370
QV
LAMBDA



mo6_P1

AIHWVRQAPGKGLEYVSLVSSNGDTTYYAGS

VAGYFD
mo6_P1

SKNVHWYQQKPGQAPVLVVYDDSDR

WD




HC_

VKGRFTISRDNSKNTLYLQMSSLRAEDTAVY

Y
L_

PSGIPERFSGSNSANTASLTISRLESGDE

SSS




H10-

YCVRGDMVAGYFDYWGQGTLVTVSS


H10-

ADYYCQVWDSSSDHHWVFGGGTKLT

DH




p1369




p1409

VL

HW













V






6.2M
COVD47_
1371
QVQLVQSGAEVKKPGASVKVSCKASGYIFSR
1372
ARDPSY
COVD47_
1373
SYVLTQPPSVSVAPGQTARIACGGDTI
1374
QV
LAMBDA



mo6_P1

YDMHWVRQAPGQRLEWMGWINAGNGNTR

CSDERC
mo6_P1

GSKNVHWYQQKPGQAPVLVVYDD

WD




HC_

YSQKFQGRVTITRDTSATTVYMDLTSLRSEDT

SRRDWF
L_

RPSGIPERFSGSNSGNTATLSISRVEAG

SGS




H11-

AVYYCARDPSYCSDERCSRRDWFDPWGQGT

DP
H11-

DEADYFCQVWDSGSDHFWVFGGRDQ

DHF




p1369

LVTVSS


p1409

ADRP

WV






6.2M
COVD47_
1375
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSG
1376
ARGVGF
COVD47_
1377
DIQLTQSPSFLSASVGDRVTITCRASQG
1378
QQL
KAPPA



mo6_P1

GYYWSWIRQHPGKGLEWIGYIYYSGSTYYNP

GELGFD
mo6_P1

ISSYLAWYQQKPGKAPKLLIYGASTLQ

NSY




HC_

SLKSRVSISVDTSKNQFSLKLSSVTAADTAVY

P
K_

SGVPSRFSGSGSGTEFTLTISSLQPEDFA

PPIT




H4-

YCARGVGFGELGFDPWGQGTLVTVSS


H4-

TYYCQQLNSYPPITFGQGTRLEIK






p1369




p389










6.2M
COVD47_
1379
EVQLVESGGGLVKPGGSLTLSCAASGFSFFSY
1380
VRERYG
COVD47_
1381
QSVLTQSPSASASLGASVKLTCTLSSG
1382
QT
LAMBDA



mo6_P1

NMNWVRQAPGKGLEWVSSIGSTTKYIYYAD

DN
mo6_P1

HSSYAIAWHQQQPEKGPRFLMSLNSD

WG




HC_

SVKGRFTISRDNAKNLLYLQMNSLRAEDTAV


L_

GSHSKGDGIPDRFSGSSSGPERYLTISSL

LW




H6-

YYCVRERYGDNWGQGTLVTVSS


H6-

QSEDEADYYCQTWGLWVFGGGTKLT

V




p1369




p1409

VL








6.2M
COVD47_
1383
QVQLQESGPGLVRPSQILSLTCTVSGGSISSGG
1384
ATFTVA
COVD47_
1385
DIQMTQSPSSLSASVGDRVTITCQASQ
1386
QH
KAPPA



mo6_P2

YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPS

GHFLF
mo6_P2

DSTNHLNWYQQKPGKAPKLLIYDASN

YD




HC_

LKSRVSISVDTSKNQFSLKLSSVTAADTAVFY


K_

LETGVPSRFSGSGSGTDFTFTISSLQPED

DLP




A10-

CATFTVAGHFLFWGQGTLVTVSS


A10-

IATYYCQHYDDLPSFGPGTKVDFK

S




p1369




p1389










6.2M
COVD47_
1387
QVQLVQSGAEVKRPGASVKLSCKASGYIFTD
1388
ARGPLF
COVD47_
1389
QSVLTQPASVSGSPGQSITISCTGTSSD
1390
SSY
LAMBDA



mo6_P2

YSIHWVRQAPGQGLEWMGWVNPNSGGGNS

HKLVYD
mo6_P2

VGAYKFVSWYQQHPGKAPQLIIYEVS

TNA




HC_

AQKFMDWVTMARDTSITTVYMELSRLRSDD

SWSGYH
L_

NRPSGVSNRFSGSKSGNTASLTISGLQA

STW




A11-

TAVYYCARGPLFHKLVYDSWSGYHDGFDIW

DGFDI
A11-

EDEADYYCSSYTNASTWVFGGGTELT

V




p1369

GQGTMVTVSS


p1409

VL








6.2M
COVD47_
1391
EVQLVESGGGLIQPGGSLRLSCAASGITVSSN
1392
ARDLIAL
COVD47_
1393
DIQLTQSPSFLSASVGDRVTITCRASQG
1394
QLL
KAPPA



mo6_P2

YMSWVRQAPGKGLEWVSIIYAGGSSFYADSV

GVDV
mo6_P2

ISTYLAWYQQKPGKAPKLLIYAASTLQ

DSY




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYY


K_

SGVPSRFSGSGSGTEFTLTISSLQPEDFA

PMC




A3-

CARDLIALGVDVWGQGTTVTVSS


A3-

TYYCQLLDSYPMCSFGQGTKLEIK

S




p1369




p1389










6.2M
COVD47_
1395
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1396
VRGENS
COVD47_
1397
DIQMTQSPSSLSASVGDRVTITCRASQG
1398
QQ
KAPPA



mo6_P2

DYYIHCVRQAPGQGLEWMGMINPGGGSTSY

FDSSGN
mo6_P2

ISNYLAWFQQKPGKAPKSLIYAASNLQ

YNS




HC_

AQKFQGRVTMTRDTSTTTVYMEMSSLRSEDT

EQYNNY
K_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

YPP




A4-

AVYYCVRGENSFDSSGNEQYNNYAMDVVVG

AMDV
A4-

TYYCQQYNSYPPTFGGGTKVEIK

T




p1369

QGTTVTVSS


p1389










6.2M
COVD47_
1399
QVQLQESGPGLVKPSETLSLTCAVSGGSISSY
1400
GVCAGD
COVD47_
1401
DIQMTQSPSSLSASVGDRVTITCQASQ
1402
QQ
KAPPA



mo6_P2

YWSWIRQPPGKGLEWIGYIDTSGSTNYNPSLK

CYSASV
mo6_P2

DIIFYLNWYQQKPGKAPKLLIYDASNL

YD




HC_

SRVTLSVDTSKNQFSLNLSSVTAADTAVYFC

FDY
K_

KTGVPSRFSGSGSGTDFAFTISSLQPEDI

NLP




A7-

GVCAGDCYSASVFDYWGQGTLVTVSS


A7-

ATYYCQQYDNLPLTFGGGTKVEIK

LT




p1369




p1389










6.2M
COVD47_
1403
QVQLVESGGGVVQPGRSLRLSCAASGFTFGH
1404
AKAPSP
COVD47_
1405
DIQMTQSPSSLSASVGDRVTITCQASQ
1406
QQ
KAPPA



mo6_P2

YGMHWVRQAPGKGLEWVAVILYDGSNTYY

YCGGGD
mo6_P2

DITDYLNWYQQKPGKAPKLLIYDASN

YA




HC_

ADSVKGRFTISRDNSKNTLYLQMNSLRTED

CYSSGF
K_

LETGVPSRFSGSGTGTDFSFTISSLQPED

NLP




B11-

AVYYCAKAPSPYCGGGDCYSSGFDPWGQGS

DP
B11-

FATYYCQQYANLPLTFGGGTKVEIK

LT




p1369

LVTVSS


p1389










6.2M
COVD47_
1407
QLQLQESGPGLVKPSETLSLTCTVSSGSISSSS
1408
ARHPAV
COVD47_
1409
SYVLTQPPSVSVAPGKTASITCGGDNIG
1410
QV
LAMBDA



mo6_P2

YYWGWIRQPPGKGLEWIGSIFSSGGAHYNPS

AGDEYF
mo6_P2

SKNVHWYQQKPGQAPVLVIYYDSDRP

WD




HC_

LKSRVTISVDTSRNQFSLNLTSVTAADTAVYY

QH
L_

SGIPERFSGSNSGNTATLTISRVEAGDE

STT




B12-

CARHPAVAGDEYFQHWGQGTLVTVSS


B12-

ADYYCQVWDSTTDLPHYVFGAGTRVT

DLP




p1369




p1409



HY













V






6.2M
COVD47_
1411
EVQLVQSGAEVTKTGESLKISCKSSGYSFISN
1412
ARLLGG
COVD47_
1413
QSVLTQPPSASGSPGQSVTISCTGTSSD
1414
GSY
LAMBDA



mo6_P2

WIGWVRQMPGKGLEWVAIIYPGDSDTRYSPS

TYAADF
mo6_P2

VGGHNYVSWYRHHPGKAPKLMIYEVS

AGS




HC_

FQGQVTISADTSISTAYLQWSSLKASDTAMY

DY
L_

SGVPDRFSGSKSGNTASLTVSGLQ

HK




B3-

YCARLLGGTYAADFDYWGQGTLVTVSS


B3-

AEDEADYYCGSYAGSHKWVFGGGTK

WV




p1369




p1409_R

LTVL








6.2M
COVD47_
1415
EVQLVQSGAEVKKPGDSLKISCKASGYSFTR
1416
VRRASS
COVD47_
1417
SYVLTQPPSVSVAPGQTATITCGGNNIG
1418
QV
LAMBDA



mo6_P2

YWIGWVRQMPGKGLDWMGIIYPGDSDTRYS

TNFEF
mo6_P2

SKTVHWYQQKPGQAPVVVVYDDSDR

WD




HC_

SSFQGQVTISADKSISTAYLQWSSLKASDTSL


L_

PSGIPERFSGSKSGSTATLTITRVEAGDE

STS




C10-

YYCVRRASSTNFEFWGQGTLVTVSS


C10-

ADYYCQVWDSTSDHYVFGTGTKVAVI

DH




p1369




p1409



YV






6.2M
COVD47_
1419
EVQLVQSGAEVKKPGESLKISCKGSGYTFTK
1420
ARPGGK
COVD47_
1421
DIQMTQSPSSLSASVGDRVTITCQASQ
1422
QQ
KAPPA



mo6_P2

YWIAWVRQMPGKGLEWMGFIYPADSDTRYS

GEHYHG
mo6_P2

DISDYLNWYQQKPGKAPKLLIYDASNL

YN




HC_

PSFEGQVTISADKSTSTAYLQWSSLKASDTAI

PIDY
K_

ETGVPSRFSGSGSGTDFTFTISSLQPKDI

NFP




C11-

YYCARPGGKGEHYHGPIDYWGQGTLVTVSS


C11-

ATYYCQQYNNFPPSFGQGTKLEIK

PS




p1369




p1389










6.2M
COVD47_
1423
QVQLVESGGGVVQPGRSLRLSCAASGFTFRT
1424
AREQEA
COVD47_
1425
DIQLTQSPSFLSASVGDRVTITCRASQG
1426
QK
KAPPA



mo6_P2

YAMHWVRQAPGKGLEWVAVILSDGNNKYY

NYYDIS
mo6_P2

ISSYLAWYQQKPGKAPKFLIYGASTLQ

VNS




HC_

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

GYYHW
K_

SGVPSRFSGSGSGTEFTLTISSLQPEDFA

YPP




C4-

AIFYCAREQEANYYDISGYYHWGESLGYWG

GESLGY
C4-

SYYCQKVNSYPPGLTFGGGTKVEIK

GLT




p1369

QGTLVTVPS


p1389










6.2M
COVD47_
1427
QVQLQESGPGLVKPSQTLSLSCTVSGGSISSG
1428
ARDYVT
COVD47_
1429
DIQMTQSPSSLSASVGDRVTITCQASRD
1430
QQ
KAPPA



mo6_P2

GYYWSWIRQHPGKGLEWIGYIYYSGSTYYNP

GRGAFD
mo6_P2

ISNYLNWYQQRPGEAPKLLIYDASNLE

YDT




HC_

SLKSRITMSVDTSKNQFSLKLSSVTAADTAVY

I
K_

TGVPSRFSGSGSGTDFTFTISSLQPEDIA

FPC




C9-

YCARDYVTGRGAFDIWGQGTMVIVSS


C9-

TYYCQQYDTFPCTFGQGTKLEI

T




p1369




p1389










6.2M
COVD47_
1431
EVQLLESGGGLVQPGGSLRLSCVVSGFTFKN
1432
AKRGYH
COVD47_
1433
DIQMTQSPSSLFASIGDRVTITCQGSQDI
1434
QQ
KAPPA



mo6_P2

YAMSWVRQAPGKGLEWVSGINGYNDNTYY

YDSSAY
mo6_P2

SNHLNWYQQKPGKAPKLLIYDASNLE

YDT




HC_

AASVKGRFTISRDNSKNTLYLQMNSLRLEDT

FSPYYFD
K_

TGVPSRFSGNGSGTDFTFTIASLQPEDI

LPP




D11-

AVYFCAKRGYHYDSSAYFSPYYFDYWGQGT

Y
D11-

ATYYCQQYDTLPPFFGGGTKVEIK

F




p1369

LVTVSS


p1389










6.2M
COVD47_
1435
QVQLVQSGAEVKKPGSSVKVSCKASGDTYN
1436
ARAGVA
COVD47_
1437
EIVLTQSPGTLSLSPGERATLSCRASQSI
1438
QQ
KAPPA



mo6_P2

TYAISWVRQAPGQGLEYMGGITLVFGTTNYA

YGDYVP
mo6_P2

SSNYLAWYQQNPGQAPRLLIYGASSR

YG




HC_

QKFQGRLTITTDESTTTFYMDLISLRSEDTAIY

DY
K_

ATGIPDRFSGSGSGTDFTLTISRLEPEDF

NSP




D5-

YCARAGVAYGDYVPDYWGQGTLVIVSS


D5-

AVYYCQQYGNSPPWTFGQGTKVEIK

PWT




p1369




p1389










6.2M
COVD47_
1439
QVQLQESGPGLVKPSETLSLTCTVSGDSISTYF
1440
ARLKQQ
COVD47_
1441
QSVLTQPPSVSGAPGQRVTISCTGSISNI
1442
QSY
LAMBDA



mo6_P2

WAWIRQPPGRGLECIGSFFPSGSTYYNPSLKS

LVGFGW
mo6_P2

GADYEVHWYVQFPGTAPKVLIYANTN

DHR




HC_

RVTISVDTSKNQFSLKLNSVTAADTAVYYCA

FDP
L_

RPSGVPERFSASKSGTSASLAITGLQAE

LH




D6-

RLKQQLVGFGWFDPWGQGSLVTVSS


D6-

DEADYYCQSYDHRLHWVFGGGTKLT

WV




p1369




p1409

VL








6.2M
COVD47_
1443
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
1444
ARDLRT
COVD47_
1445
DIQMTQSPSTLSASVGDRVTITCRASQS
1446
QQ
KAPPA



mo6_P2

CMNWVRQAPGKGLEWVSYISSSSNIIYYADS

YNDFWS
mo6_P2

ISSWLAWYQQKPGKAPKLLIYKASSLE

YN




HC_

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

GHGPYF
K_

SGVPSRFSGSGSETEFTLTISSLQPDDFA

HYS




D9-

YCARDLRTYNDFWSGHGPYFFDYWGQGTLV

FDY
D9-

TYYCQQYNHYSYTFGQGTKLEIK

YT




p1369

TVSS


p1389










6.2M
COVD47_
1447
QVQLQESGPGLVKPSETLSLTCTVSGGSISTFY
1448
ARGVVQ
COVD47_
1449
SYVLTQPPSVSVAPGKTARITCGGDNI
1450
QV
LAMBDA



mo6_P2

WNWIRQPPGKGLEWIGHIYYSGSTNYNPSLK

LNYDYG
mo6_P2

GSKSVHWYQQRPGQAPVLVIYYDSDR

WD




HC_

SRVTISLDTSENQFSLRMSSVTGADTAVYYCA

MDV
K_

PSGIPERFSGSNSGNTATLTISRVEAGD

NGS




E10-

RGVVQLNYDYGMDVWGQGTTVTVSS


D9-

EADYYCQVWDNGSDHPVLFGGGTKL

DHP




p1369




p1389



VL






6.2M
COVD47_
1451
QVQLVESGGGVVQPGRSLRLSCVASGFSFST
1452
ARDHSS
COVD47_
1453
QSVLTQPRSVSGSPGQSVTISCTGTSSDI
1454
CSY
LAMBDA



mo6_P2

YGMHWVRQAPGKGLEWVALIWSDGSNKYY

SSFVYY
mo6_P2

GGYNYVSWYQQHPDKAPKFIIFDVSK

AGP




HC_

GDAAEGRFTISRDNSNNTLYLQMNNLRAEDT

YYMDV
L_

RPSGVPDRFSGSKSGNTASLTISGLQAE

YPY




E11-

ALYYCARDHSSSSFVYYYYMDVWGKGTTVT


E11-

DEADYYCCSYAGPYPYVFGTGTKVTV

V




p1369

VSS


p1409










6.2M
COVD47_
1455
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSH
1456
ARAMAP
COVD47_
1457
DIQMTQSPSTLSASVGDRVTITCRASQT
1458
QQ
KAPPA



mo6_P2

SMSWVRQAPVKGLEWVSYISGRSSTIYYADS

TYNDFY
mo6_P2

ISSWLAWYQQKPGKAPKVLIYKASSLE

YNS




HC_

VKGRFTISRDNAKNSLYLQMNSLRDEDTAVY

SGPDVF
K_

TGVPSRFSGSGSGTEFTLTIINLQPDDFA

YSV




E12-

YCARAMAPTYNDFYSGPDVFDIWGQGTMVT

DI
E12-

TYYCQQYNSYSVTFGGGTKVEIK

T




p1369

VSS


p1389










6.2M
COVD47_
1459
QVQLQESGPGLVKPSGTLSLTCAVSGASITSS
1460
ARVSGM
COVD47_
1461
DIQMTQSPSSLSASVGDRVTITCRASQG
1462
QQ
KAPPA



mo6_P2

NWWSWVRQPPGEGLEWIGEIYHNGN1EYNP

FDY
mo6_P2

ISNSLAWYQQKPGKAPKLLLYAASTLE

YYS




HC_

SLKSRVTISVDKSKNQFSLKLSSVTAADTAVY


K_

SGVPSRFSGSGSGTEYTLTISSLQPEDF

IRT




E1-

YCARVSGMFDYWGQGSLVTVSS


E1-

ATYYCQQYYSIRTFGQGTRVDIK






p1369




p1389










6.2M
COVD47_
1463
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
1464
ARDVTP
COVD47_
1465
DIQMTQSPSTLSASVGDRVTITCRASQS
1466
QQ
KAPPA



mo6_P2

YGMHWVRQAPGKGLEWVATIWYDGSEKYY

YYYGSG
mo6_P2

IGVWLAWYQQKPGKAPKLLIYKASSL

YNS




HC_

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

SYYKLG
K_

ETGVPSRFSGSGSGTEFTLTINSLQPDD

FPL




E3-

AVFYCARDVTPYYYGSGSYYKLGETTHPDY

ETTHPD
E3-

FATYHCQQYNSFPLTFGQGTKLEI

T




p1369

WGQGTLVTVSS

Y
p1389










6.2M
COVD47_
1467
EVQLVESGGGLIQAGGSLRLSCAASGFGVRN
1468
AREGDV
COVD47_
1469
QSVLTQPASVSGSPGQSITFSCTGTSSD
1470
SSF
LAMBDA



mo6_P2

NYMSWVRQAPGKGLEWVSVIYSGGTTYYAD

EGFSDL
mo6_P2

VGGYNYVSWYQQYPGKAPKLLIYDVT

TSS




HC_

SVKGRFTISRDNSKNTVFLQMNSLRAEDTAV

WSGYSR
L_

NRPSGVSDRFSGSKSGNTASLTISGLQA

NTR




E4-

YYCAREGDVEGFSDLWSGYSRDRYYFDYWG

DRYYFD
E4-

EDEADYYCSSFTSSNTRVFGTGTKVTV

V




p1369

QGTLVTVSS

Y
p1409

L








6.2M
COVD47_
1471
QVQLVQSGAEAKKPGASVKVSCKTSGYTFTN
1472
ARASTS
COVD47_
1473
QSVLTQPPSVSGAPGQRVTISCTGSSSN
1474
QS
LAMBDA



mo6_P2

YFMHWVRQAPGQGPEWMGIIDSSDGGASYA

TTSWSD
mo6_P2

IGGGSVVHWYQQLPGTAPKLLIYANSN

WD




HC_

QKFQGRVTMTRDTSTSTVYMELRSLKFEDTA

ALSLGS
L_

RPSGVPDRFSGSKSGTSASLAIAGLQAE

NGL




E5-

VYYCARASTSTTSWSDALSLGSWGQGTLVTV


E5-

DEADYYCQSWDNGLSASGVVFGGGT

SAS




p1369

SS


p1409

KLTVL

GV













V






6.2M
COVD47_
1475
QVQLQESGPGLVKPSGTLSLTCAVSGGSISNN
1476
ARAWIQ
COVD47_
1477
EIVLTQSPGTLSLSPGERATLSCRASQT
1478
QQ
KAPPA



mo6_P2

NWWSWVRQPPGKGLEWIGEIFHSGTITYNPS

PHNWFD
mo6_P2

VSSSYLAWYQQKPGQAPRLLIYGASSR

YGS




HC_

SRVTISVDKSKNQFSLKLKSVTAADTAVY

P
K_

ATGIPDRFSGSGSGTDFTLTISRLEPEDF

SPR




E7-

YCARAWIQPHNWFDPWGQGILVTVSS


E5-

AVYYCQQYGSSPRTFGQGTKLEIK

T




p1369




p1389










6.2M
COVD47_
1479
QVQLVESGGGVVQPGRSLRLSCEASGFTFSH
1480
AKVGAP
COVD47_
1481
QSVLTQPASVSGSPGQSITISCTGTS
1482
SSY
LAMBDA



mo6_P2

YGIHWVRQAPGKGLEWVAVMSYDGSDEYY

YYYYYY
mo6_P2

VGAYNYVSWYQQYPGKAPKLMIYEV

ISST




HC_

ADSVKGRFTISRDNSRNTVYLQMNSLRTDDT

GMDV
L_

SDRPSGVSNRFSGSKSGNTASLTISGLQ

TSW




F10-

AVYYCAKVGAPYYYYYYGMDVWGQGTPVT


F10-

AEDEADYYCSSYISSTTSWVFGGGTKL

V




p1369

VSS


p1409










6.2M
COVD47_
1483
QVQLVQSGAEVKKPGASIKVSCKASGYTFTD
1484
ARGPLF
COVD47_
1485
QSVLTQPASVSGSPGQSITISCTGTSSD
1486
SSS
LAMBDA



mo6_P2

YSMHWVRQAPGQGLEWMGWINPNSGGTKY

HKLVYD
mo6_P2

VGGYNYVSWYQHYPGKAPKLMIYEV

TNS




HC_

AQKFQGWVTMTRDMSITTVYMELTRLRSDA

SWTGYH
L_

THRPSGVSNRFSGSKSGNTASLTISGLQ

STW




F10-

TAVFYCARGPLFHKLVYDSWTGYHDGFDIW

DGFDI
F11-

AEDEADYYCSSSTNSSTWVFGGGTKM

V




p1369

GQGTMVTVSS


p1409

TVL








6.2M
COVD47_
1487
QVQLVESGGGVVQPGRSLRLSCAASGFAFSN
1488
ARDPMI
COVD47_
1489
DVVMTQSPLSLPVTLGQPASISCRSGQS
1490
MQ
KAPPA



mo6_P2

YGMHWVRQAPGKGLDWVAVIWYDGSNKY

VVVEMD
mo6_P2

LVHSDGNTYLNWFQQRPGQSPRRLIYR

GTH




HC_

YADSVKGRFTISRDNSKNTLYLQMNSLRAEN

Y
K_

VSNRDSGVPDRFSGSGSGTDFTLKISRV

WP




F2-

TAVYYCARDPMIVVVEMDYWGQGTLVTVSS


F2-

EADDVGVYYCMQGTHWPYTFGQGTK

YT




p1369




p1389

LEIK








6.2M
COVD47_
1491
QVQLVESGGGVVQTGRSVRLSCAASGFTFTN
1492
ARDFIPE
COVD47_
1493
QSVLTQPASVSGSPGQSITISCTGSSSDI
1494
NSY
LAMBDA



mo6_P2

YGMHWVRQAPGKGLEWVAVIWYDGSNKYY

DLIVVD
mo6_P2

GGYNFVSWYQQHPGKAPKLMIYDVSN

TGS




HC_

ADSVRGRFTISRDNSKNTLFLQMNSLRAEDT

VTGGAY
L_

RPPGVSYRFSGSKSGNTASLTISGLQAE

TTP




F5-

AVYYCARDFIPEDLIVVDVTGGAYGMDVWG

GMDV
F5-

DEADYYCNSYTGSTTPLFGGGTKLTVL

L




p1369

QGTTVTVSS


p1409










6.2M
COVD47_
1495
EVQLVESGGTLVQPGGSLRLSCSASGFTFSTY
1496
VKDRDS
COVD47_
1497
DIQMTQSPSSLSASVGDRVTITCRARQS
1498
QQS
KAPPA



mo6_P2

TMHWVRQAPGKGLEYVSGISITGDIAYYADS

STWYDA
mo6_P2

ITSYLNWYQQKPGKAPKLLIYAASSLQ

YST




HC_

VKGRFTISRDNSKNTLYFQMSSLRPEDTALYY

FDI
K_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

PWT




F6-

CVKDRDSSTWYDAFDIWGQGTMVTVSS


F6-

TYYCQQSYSTPWTFGQGTKVEIK






p1369




p1389










6.2M
COVD47_
1499
QLQLQESGPGLVKPSETLSLTCTVSGGSMSSS
1500
ARHDLP
COVD47_
1501
QSVLTQPPSVSAAPGQKVTISCSGSTSN
1502
GS
LAMBDA



mo6_P2

NHYWGWIRQPPGKGLEWIGSIYYSGSTFHNP

PYSSGW
mo6_P2

IGSNSVSWYQQLPGTAPKLLIYDNNKR

WD




HC_

SLMSRVTISVDTSKSQFSLKLTSVTAADTAVY

SYFDN
L_

PSGIPDRFSGSKSGTSATLGITGLQTGD

SSL




F7-

YCARHDLPPYSSGWSYFDNWGQGTLVTVSS


F7-

EADYYCGSWDSSLREVFGTGTKVSVL

REV




p1369




p1409










6.2M
COVD47_
1503
QVQLVQSGAGVRKPGASVKVSCKASGYTFT
1504
VRGAVV
COVD47_
1505
SYVLTQPPSVSVAPGQTARITCGADNI
1506
QV
LAMBDA



mo6_P2

GYYMHWVRQAPGQGLEWMGWINPNNGDTG

YGTAG
mo6_P2

GSKNVHWYQQKAAQAPVLVVYDDSD

WD




HC_

YAQKFQGWVTMTRDTSISTAYMELSRLTSAD

WFDP
L_

RPSGIPERFSGSNSGNTATLTISRVEAG

SYS




G3-

TAVYYCVRGAVVYGTAGWFDPWGQGTLVT


G3-

DEADYYCQVWDSYSNWVFGGGAKLT

NW




p1369

VSS


p1409



V






6.2M
COVD47_
1507
EVQLVQSGAEVKKPGESLKISCKGPAYSFTNY
1508
ARQFCG
COVD47_
1509
NFMLTQPHSVSESPGKTVTISCTGNSGS
1510
QSY
LAMBDA



mo6_P2

WIGWVRQMPGKGLEWMGVIYPGDSETRYSP

GHCPFD
mo6_P2

IASNYVQWYQQRPDSAPTTVIFEDDQR

DSN




HC_

SFQGQVTISADKSISTAYLQWNSLSASDTAIY

F
L_

PSGVPDRFSGSIDSSSNSASLTISGLR1E

NL




G6-

YCARQFCGGHCPFDFWGQGTLVTVSS


G6-

DEADYYCQSYDSNNLWVFGGGTKLT

WV




p1369




p1409










6.2M
COVD47_
1511
EVQLLESGGDLVQPGGSLRLSCAASGFTFSNY
1512
AKAVHY
COVD47_
1513
QSVLTQPASVSGSPGQSITISCTGTSSD
1514
CSY
LAMBDA



mo6_P2

AMSWVRQAPGKGLEWVSAISGSGGNTYYAD

GGNSDR
mo6_P2

VGSYNLVSWYQQHPGKAPKLMIYEGS

AGS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

RFSEPSA
L_

KRPSGVSNRFSGSKSGNTASLTISGLQA

STP




H10-

YYCAKAVHYGGNSDRRFSEPSAPFDYWGQG

PFDY
H10-

EDEADYYCCSYAGSSTPYVFGTGTKV

YV




p1369

TLVTVSS


p1409

TVL








6.2M
COVD47_
1515
QLQLQESGPGLVKPSETLSLTCSVSGGSIIRSS
1516
ARRRYL
COVD47_
1517
SYVLTQPPSVSVAPGQTARITCGGNNI
1518
QV
LAMBDA



mo6_P2

YYWGWIRQPPGKGLEWIGSIYYSGSTYYNPS

DWSSPF
mo6_P2

GSKRVHWYQQKPGQAPVLVVYDDSD

WD




HC_

LKSRVTISVDTSKNQFSLKLSSVTAADTAVYY

EY
L_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




H11-

CARRRYLDWSSPFEYWGQGTLVTVSS


H11-

DEADYSCQVWDSSSDLQVFGGGTKLT

DLQ




p1369




p1409



V






6.2M
COVD47_
1519
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSD
1520
ARESGT
COVD47_
1521
EIVLTQSPGTLSLSPGERVTLSCRASQN
1522
QQ
KAPPA



mo6_P2

YYWSWIRQPPGKGLEWIGENNHSGKTNYNPS

YATFDY
mo6_P2

VSSAYLAWYQQKPGQAPRLLIYGASS

YG




HC_

SRVTISVDTSKNQFSLKLTSVTAADTAVYY


K_

RATGIPDRFSGSGSGTDFTLTISRLEPED

YTI




H6-

CARESGTYATFDYWGQGTLVTVSS


H6-

FAVYYCQQYGYTIWTFGQGTKVEIK

WT




p1369




p1389










6.2M
COVD47_
1523
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
1524
ARRNLIT
COVD47_
1525
AIQLTQSPSSLSASVGDRVTITCRASQG
1526
QQF
KAPPA



mo6_P2

WIGWVRQMPGRGLEWMGIIYPGDSDTKYSPS

ADGPFY
mo6_P2

ISGALAWYQQKPGNAPDLLIYDAS

NSY




HC_

FQGQVTISADKSISTAYLQWSSLKASDTAMY

YYGMD
K_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

SST




H9-

YCARRNLITADGPFYYYGMDVWGQGTTVTV

V
H9-

TYYCQQFNSYSSTFGQGTRLEIK






p1369

SS


p1389










1.3M
COV047_
1527
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1528
ARDRGG
COV047_
1529
DIQMTQSPSSLSASVGDRVTITCRASQG
1530
QK
KAPPA



P3_IgG_

YGISWVRQAPGQGLEWMGWISAYNGNTNYA

HDFWSG
P3_

ISNYLAWYQQRPGKVPKLLIFAASTLQ

YNS




10-

QKLQGRVTMTTDTSTSTAYMELRSLRSDDTA

YGFYYY
Kappa_

SGVPSRFSGSGSGTDFTLTISSLQPEDV

APR




P1369

VFYCARDRGGHDFWSGYGFYYYYGMDVWG

YGMDV
10-

ATYYCQKYNSAPRTFGQGTKVEIK

T






QGTTVTVSS


P1389










1.3M
COV047_
1531
EVQLVETGGGLIQPGGSLRLSCAASEFTVSSN
1532
ARVLPF
COV047_
1533
QSVLTQPPSVSGAPGQRVTISCTGSSSN
1534
QSY
LAMBDA



P3_IgG_

YMSWVRQAPGKGLEWVSLIYSGGSTYYADS

GDYFDY
P3_

IGAGYDVHWCQQLPGTAPKLLIYGYS

DN




14-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


Lambda_

NRPSGVPDRFSGSKSGTSASLAITGLQA

LSA




P1369

YCARVLPFGDYFDYWGQGTLVTVSS


14-

EDEADYYCQSYDINLSAWVFGGGTRL

WV









P1409

TXL








1.3M
COV047_
1535
EVQLVESGGGLVQPGGSLRLSCAASGFSVST
1536
ARDSSE 
COV047_
1537
QSVLTQPASVSGSPGQSITISCTGTSND
1538
CSY
LAMBDA



P3_IgG_

KYMTWVRQAPGKGLEWVSVLYSGGSDYYA

VRDHPG
P3_

VGSYTLVSWYQQYPGKAPKLLIFEGTK

AG




16-

DSVKGRFTISRDNSKNALYLQMNSLRVEDTG

HPGRSV
Lambda_

RSSGISNRFSGSKSGNTASLTISGLQGE

AST




P1369

VYYCARDSSEVRDHPGHPGRSVGAFDIWGQ

GAFDI
16-

DEADYYCCSYAGASTFVFGGGTKLTV

FV






GTMVTVSS


P1409

L








1.3M
COV047_
1539
EVQLVESGGGLVQPGGSQRLSCAASGFTVSS
1540
ARIANY
COV047_
1541
EIVMTQSPATLSVSPGERATLSCRASQS
1542
QQ
KAPPA



P3_IgG_

NYMSWIRQAPGKGLEWVSVIYSGGSAYYVD

MDV
P3_

VSSHLAWYQQKPGQAPRLLIYGAS

YN




24-

SVKGRFTISRDNSKNTLYLQMNSLRPEDTAV


Kappa_

ATGIPTRFSGSGSGTEFTLTISSLQSEDF

NW




P1369

YYCARIANYMDVWGKGTTVTVSS


24-

AVYYCQQYNNWPPLTFGGGTKVEIK

PPL









P1389



T






1.3M
COV047_
1543
EVQLVESGGGLVQPGGSLRLSCVASGFTFSSY
1544
ARPTAV
COV047_
1545
QSVLTQPASVSGSPGQSITISCTGTSSD
1546
SSY
LAMBDA



P3_IgG_

WMHWVRQVPGKGPVWVSHINSEGSSTNYAD

AAAGNY
P3_

VGYYNFVSWYQQHPGKAPKLMIYEVS

RSS




25-

SVRGRFTISRDNAKDTLYLQMNNLRAEDTAV

FYYYGM
Lambda_

NRPSGVSNRFSGSKSGNTASLIISGLQA

STL




P1369

YYCARPTAVAAAGNYFYYYGMDVWGQGTT

DV
25-

EDEADYYCSSYRSSSTLVFGGGTKLTV

V






VTVSS


P1409

L








1.3M
COV047_
1547
QVQLQESGPGLVKPSETLSLTCTVSGGSISSY
1548
ARHSWL
COV047_
1549
NFMLTQPHSVSESPGKTVTISCTGSSGS
1550
QSY
LAMBDA



P3_IgG_

YWSWIRQPPGKGLEWIGYIYTSGSTNYNPSLK

RGMAD
P3_

IASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




35-

SRVTISVDTSKNQFSLKLSSVTAADTAVYYCA

Y
Lambda_

GVPDRFSGSIDSSSNSASLTISGLKTE

IWV




P1369

RHSWLRGMADYWGQGTLVTVSS


35-

DEADYYCQSYDSSIWVFGGGTKLTVL











P1409










1.3M
COV047_
1551
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSS
1552
ARTWIQ
COV047_
1553
DIQMTQSPSSLSASVGDRVTITCRASQG
1554
QQ
KAPPA



P3_IgG_

NWWSWVRQPPGKGLEWIGEIYHSGTTNYNP

PHNWFD
P3_

ISNYLAWFQQKPGKAPKSLIYAASSLQ

YNS




38-

SLKSRVTISVDKSKNQFSLKLSSVTAADTAVY

P
Kappa_

SGVPSKFSGSGSGTDFTLTISSLQPEDF

YPL




P1369

YCARTWIQPHNWFDPWGQGTLVTVSS


38-

ATYYCQQYNSYPLFTFGPGTKVDIK

FT









P1389










1.3M
COV047_
1555
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
1556
AREAAR
COV047_
1557
DIVMTQSPDSLAVSXGERATINCKSSQ
1558
QQ
KAPPA



P3_IgG_

SMNWVRQAPGKGLEWVSSISSSSSYIYYADS

RYDFWS
P3_

SVLYSSNNKNYLAWYQQKPGQPPKLL

YYS




40-

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

GLNWFD
Kappa_

IYWASTRESGVPDRFSGSGSGTDFTLTI

TML




P1369

YCAREAARRYDFWSGLNWFDPWGQGTLVT

P
40-

SSLQAEDVAVYYCQQYYSTTMLMLTFGGG

T






VSS


P1389

TKVEIK








1.3M
COV047_
1559
EVQLVESGGGLIQPGGSLRLSCAASGFTVSNN
1560
AREGEV
COV047_
1561
QSVLTQPASVSGSPGQSITISCTGTSSD
1562
SSY
LAMBDA



P3_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

EGYNDF
P3_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




43-

VKGRFTISRDKSKNTLYLQMNRLRAEDTAVY

WSGYSR
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

STR




P1369

YCAREGEVEGYNDFWSGYSRDRYYFDYWG

DRYYFD
43-

AEDEADYYCSSYTSSSTRVFGTGTKVT

V






QGTLVTVSS

Y
P1409

VL








1.3M
COV047_
1563
EVQLVESGGGLVQPGGSLRLSCAASGFTVSS
1564
ARDYGD
COV047_
1565
EIVMTQSPATLSVSPGERATLSCRASQS
1566
QQ
KAPPA



P3_IgG_

NYMSWVRQAPGKGLEWVSVIYSGGSAYYAD

FYFDY
P3_

VSSNLAWYQQKPGQAPRLLIYGASTR

YN




47-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV


Kappa_

ATGIPARFSGSGSGTEFTLTISSLQSEDF

NW




P1369

YYCARDYGDFYFDYWGQGTLVTVSS


47-

AVYYCQQYNNWPRTFGQGTKVEIK

PRT









P1389










1.3M
COV047_
1567
QVQLQESGPGLVKPSETLSLTCTVSGDSMSSY
1568
ARLKQQ
COV047_
1569
QSVLTQPPSVSGAPGQRVTISCTGSSSN
1570
QSY
LAMBDA



P3_IgG_

FWTWIRQPPGKGLECIGYFYPSGSTNYNPSLK

LVGFGW
P3_

IGADYDVHWYQQFPGTAPKVLIYANT

DHS




49-

SRVTISIDTSKNQFSLKLSSVTAADTAVYYCA

FDP
Lambda_

NRPSGVPERFSGSKSGTSASLAITGLQA

LN




P1369

RLKQQLVGFGWFDPWGQGTLVTVSS


49-

EDEADYYCQSYDHSLNWVFGGGTKLT

WV









P1409

VL








1.3M
COV047_
1571
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1572
ARVPAS
COV047_
1573
SYVLTQPPSVSVSPGQTARITCSGDALP
1574
QSA
LAMBDA



P3_IgG_

YGISWVRQAPGQGLEWMGWISAYNGNTNYA

YGDDDY
P3_

KQYAYWYQQKPGQAPVLVIYKDSERP

DSS




53-

QKLQGRVTMTTDTSTSTAYMELRSLRSDDTA

YYYYG
Lambda_

GIPERFSGSSSGTTVTLTISGVQAEDE

GTL




P1369

VYYCARVPASYGDDDYYYYYGMDVWGQGT

MDV
53-

ADYYCQSADSSGTLWVFGGGTKLTVL

WV






TVTVSS


P1409










1.3M
COV047_
1575
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSA
1576
TTTNDY
COV047_
1577
DIQMTQSPSSLSASVGDRVTITCRASQS
1578
QQS
KAPPA



P3_IgG_

WMSWVRQAPGKGLEWVGRIKTKTDGGTKD

GDYSPA
P3_

SYLNWYQQKPGKAPKLLIYAASSLQ

YST




54-

YAAPVKGRFTISRDDSKNTLYLQMNSLK1ED

Y
Kappa_

SGVPSRFSGSGSGTAFTLTISSLQPEDFA

PLT




P1369

TAVYYCTTTNDYGDYSPAYWGQGTLVTVS


54-

TYYCQQSYSTPLTFGGGTKVEIK











P1389










1.3M
COV047_
1579
QVQLQESGPGLVKPSETLSLTCTVSGGSISSY
1580
ARHDTIF
COV047_
1581
QSVLTQPASVSGSPGQSVTISCTGTSSD
1582
CSY
LAMBDA



P3_IgG_

YWSWIRQPPGKGLEWIGYIYYSRSTNYNPSL

GVGQYY
P3_

VGSYNLVSWYQQHPGKAPKVMIYEDS

AGS




5-

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

FDY
Lambda_

KRPSGVSNRFSGSKSGNTASLTISGLQA

STW




P1369

ARHDTIFGVGQYYFDYWGQGTLVTVSS


5-

EDEADYYCCSYAGSSTWVFGGGTKLT

V









P1409

VL








1.3M
COV047_
1583
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1584
ASSSSTP
COV047_
1585
DIQLTQSPSFLSASVGDRVTITCRASQG
1586
QQL
KAPPA



P3_IgG_

HYMHWVRQAPGQGLEWMGIINPSGGGTSYA

DYYGM
P3_

ISSYLAWYQQKPGKAPKLLIYGASTLQ

NSY




61-

QKFQGRVTMTRDTSMSTVYMELSSLRSEDTA

DV
Kappa_

SGVPSRFSGSGSGTEFTLTISSLQPEDFA

PLC




P1369

VYYCASSSSTPDYYGMDVWGQGTTVTVSS


61-

TYYCQQLNSYPLCSFGQGTKLEIK

S









P1389










1.3M
COV047_
1587
QVQLVESGGGVVQPGRSLRLSCAASGFTFSN
1588
AKDPFP
COV047_
1589
SYVLTQPPSVSVAPGQTARISCGGNNIG
1590
QV
LAMBDA



P3_IgG_

YGMHWVRQAPGKGLEWVAVISYDGNNKYY

LAVAGT
P3_

SKNVHWYQQKPGQAPVLVVYDDSDR

WD




64-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

GYFDY
Lambda_

PSGIPERFSGSNSGNTATLTISRVEAGD

SSS




P1369

AVYYCAKDPFPLAVAGTGYFDYWGQGTLVT


64-

EADYYCQVWDSSSDPWVFGGGTKLT

DP






VSS


P1409

VL

WV






1.3M
COV047_
1591
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
1592
ARDYGD
COV047_
1593
EIVMTQSPATLSVSPGERATLSCRASQS
1594
QQ
KAPPA



P3_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

YYFDY
P3_

VSSNLAWYQQKPGQAPRLLIYGASTR

YN




65-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


Kappa_

ATGIPARFSGSGSGTEFTLTISSLQSEDF

NW




P1369

YCARDYGDYYFDYWGQGTLVTVSS


65-

AVYYCQQYNNWPRTFGQGTKVEIK

PRT









P1389










1.3M
COV047_
1595
QVQLVESGGGVVQPGRSLRLSCAASGFTFNN
1596
ARAGWE
COV047_
1597
DIQMTQSPSSLSASVGDRVTITCQASQ
1598
QQ
KAPPA



P3_IgG_

YGMHWVRQAPGKGLEWVAVISYDGNNKYY

LLRIRYY
P3_

DISNYLNWYQQKPGKAPKFLIYGASNL

YD




70-

ADSVKDRFTISRDNSKNTLYLQMNNLRAEDT

FDF
Kappa_

ETGVPPRFSGSGSGTDFTFIISSLQPEDI

NLP




P1369

AMYYCARAGWELLRIRYYFDFWGQGTLVTV


70-

ATYYCQQYDNLPPTFGGGTKVEIK

PT






SS


P1389










1.3M
COV047_
1599
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1600
ARVPRG
COV047_
1601
DIQMTQSPSSLSASVGDRVTITCQASQ
1602
QQ
KAPPA



P3_IgG_

YNITWVRQAPGQGLEWVGWISAYNGNTNYA

YYDRSG
P3_

DISNYLNWYQQKPGKPPKLLIYDASNL

YDS




77-

QKFQGRVTMTTDTSTSTAYMELRSLRSDDTA

YYYLPH
Kappa_

ETGVPSRFSGSGSGTDFIFSISSLQPEDI

LPG




P1369

VYYCARVPRGYYDRSGYYYLPHYLDYWGQ

YLDY
77-

ATYYCQQYDSLPGCSFGQGTKLEIK

CS






GTLTVSS


P1389










1.3M
COV047_
163
QVQLVQSGAEVKKPGASVKVSCKASGYTFTT
1604
ARGGSS
COV047_
1605
SYVLTQPPSVSVAPGQTARITCGGNNI
1606
QV
LAMBDA



P3_IgG_

YYMHWVRQAPGQGLEWMGIINPSGGSTSYA

RYCSSTS
P3_

GSKSVHWYQQKPGQAPVLVVYDDGD

WD




78-

QKFQGRVTMTRDTSTSTVYMELNSLRSEDTA

CYSFGV
Lambda_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1369

VYYCARGGSSRYCSSTSCYSFGVDNFDYWG

DNFDY
78-

DEADYYCQVWDSSSDHYYVFGTGTK

DH






QGTLVTVSS


P1409



YY













V






1.3M
COV047_
1607
EVQLVESGGGLVKPGGSLRLSCAASGFTFSTY
1608
ARVVAN
COV047_
1609
DIVMTQSPDSLAVSXGERATINCKSSQ
1610
QQ
KAPPA



P3_IgG_

SMNWVRQAPGKGLEWVSSISSSSSYIYYADS

WFDP
P3_

SVLYSSNNKNYLAWYQQKPGQPPKLL

YYS




84-

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY


Kappa_

IYWASTRESGVPDRFSGSGSGTDFTLTI

TPQ




P1369

YCARVVANWFDPWGQGTLVTVSS


84-

SSLQAEDVAVYYCQQYYSTPQPSWTF

PSW









P1389

GQGTKVEIK

T






1.3M
COV047_
1611
EVQLVQSGAEVKKPGESLKISCKGSGYRFTN
1612
ARLSDR
COV047_
1613
QSVLTQEPSLTVSPGGTVTLTCGSSTG
1614
LLS
LAMBDA



P3_IgG_

YWIGWVRQMPGKGLEWMGIIYPGDSDTRYS

WYSPFD
P3_

AVTSGHYPYWFQQKSGQAPRTLIYETS

YSG




8-

PSFQGQVTISADKSITTAYLQWSSLKASDTAM

P
Lambda_

IKHSWTPARFSGSLLGGKAALTLSGAQ

ARP




P1369

YYCARLSDRWYSPFDPWGQGTLVTVSS


8-

PEDEADYYCLLSYSGARPVFGGGTKLT

V









P1409

VL








1.3M
COV047_
1615
EVQLVQSGAEVKKPGESLKISCKGSGYRFTN
1616
ARLSDR
COV047_
1617
QSVLTQEPSLTVSPGGTVTLTCGSSTG
1618
LLS
LAMBDA



P3_IgG_

YWIGWVRQMPGKGLEWMGIIYPGDSDTRYS

WYSPFD
P3_

AVTSGHYPYWFQQKSGQAPRTLIYETS

YSG




91-

PSFQGQVTISADKSITTAYLQWSSLKASDTAM

P
Lambda_

IKHSWTPARFSGSLLGGKAALTLSGAQ

ARP




P1369

YYCARLSDRWYSPFDPWGQGTLVTVSS


91-

PEDEADYYCLLSYSGARPVFGGGTKLT

V









P1409

VL








1.3M
COV047_
1619
EVQLVETGGGLIQPGGSLRLSCAASGFTVSSN
1620
ARAISES
COV047_
1621
DIQMTQSPSSLSASVGDRVTITCQASQ
1622
QQ
LAMBDA



P4_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTFYADS

PRYGVY
P4_

DISNYLNWYQQKPGKAPKLLIYDASNL

YD




11-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


Kappa_

ETGVPSRFSGSGSGTDFTFTISSLQPEDI

NLP




P1369

YCARAISESPRYGVYWGQGTLVTVSS


11-

ATYYCQQYDNLPLTFGQGTRLEIK

LT









P1389










1.3M
COV047_
1623
EVQLVESGGGLVQPGGSLRLSCAASGFSVST
1624
ARDSSE
COV047_
1625
QSVLTQPASVSGSPGQSITISCTGTSND
1626
CSY
LAMBDA



P4_IgG_

KYMTWVRQAPGKGLEWVSVLYSGGSDYYA

VRDHPG
P4_

VGSYTLVSWYQQYPGKAPKLLIFEGTK

AG




12-

DSVKGRFTISRDNSKNALYLQMSSLRVEDTGI

HPGRSV
Lambda_

RSSGISNRFSGSKSGNTASLTISGLQGE

AST




P1369

YYCARDSSEVRDHPGHPGRSVGAFDIWGQGT

GAFDI
12-

DEADYYCCSYAGASTFVFGGGTKLTV

FV






MVTVSS


P1409










1.3M
COV047_
1627
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
1628
AREAEW
COV047_
1629
QSVLTQPRSVSGSPGQSVTISCTGTSSD
1630
CSY
LAMBDA



P4_IgG_

IMNWVRQAPGKGLEWVSSISSSSSYIYYADSV

EAFDI
P4_

VGGYNYVSWYQQHPGKAPKLMICDV

AGS




17-

KGRFTISRDNAKNSLYLQMNSLRAEDTAVYY


Lambda_

SKRPSGVPDRFSGSKSGNTASLTISGLQ

YT




P1369

CAREAEWEAFDIWGQGTMVTVSS


17-

AEDEADYYCCSYAGSYTWVFGGGTKL

WV









P1409

TVL








1.3M
COV047_
1631
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
1632
AKVDGS
COV047_
1633
QSVLTQPASVSGSPGQSITISCTGTSSD
1634
SSY
LAMBDA



P4_IgG_

YGMHWVRQAPGKGLEWVAVISYDGSNKYY

YYYYYY
P4_

VGAYNYVSWYQQHPGKAPKLMIYEV

TSS




20-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

GMDV
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

STA




P1369

AVYYCAKVDGSYYYYYYGMDVWGQGTTVT


20-

AEDEADYYCSSYTSSSTAWVFGGGTK

WV






VSS


P1409

LTVL








1.3M
COV047_
1635
QVQLVESGGGVVQPGRSLRLSCAASGFTFRT
1636
AREQEA
COV047_
1637
DIQLTQSPSFLSASVGDRVTITCRASQG
1639
QK
KAPPA



P4_IgG_

YAMHWVRQAPGKGLEWVAVILSDGNNKYY

NYYDIS
P4_

ISSYLAWYQQKPGKAPKLLIYGASTLQ

VNS




22-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

GYYHW
Kappa_

SGVPSRFSGSGSGTEFTLTISSLQPEDFA

HPP




P1369

AIFYCAREQEANYYDISGYYHWGESLGYWG

GESLGY
22-

SYYCQKVNSHPPGLTFGGGTKVEI

GLT






QGTLVTVPS


P1389










1.3M
COV047_
1639
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSN
1640
ARDILR
COV047_
1641
QSVLTQPASVSGSPGQSITISCTGTSSD
1642
SSY
LAMBDA



P4_IgG_

TAAWNWIRQSPSRGLEWLGRTYYRSKWYND

DTSWPH
P4_

VGGYNYLSWYQQHPGKAPKLMIYEVS

TSS




23-

YAVSVISRIIINPDTSKNQFSLQLKSVTPEDTA

DAFDI
Lambda_

NRPSGVSNRFSGSKSGNTASLTISGLQA

STP




P1369

VYYCARDILRDTSWPHDAFDIWGQGTMVTV


23-

EDEADYYCSSYTSSSTPFYVFGTGTKV

FYV






SS


P1409

TVL








1.3M
COV047_
1643
QVQLVQSGAEVKKPGASVKVSCKASGYIFTD
1644
ARGPLF
COV047_
1645
QSVLTQPASVSGSPGQSITISCTGTSSD
1646
NSY
LAMBDA



P4_IgG_

YSMHWVRQAPGQGLEWIGWVNPNSGGTNY

HRLVYD
P4_

VGGYKFVSWYQQHPGKAPKLMIYEVS

TSS




27-

AQKFQGWVTMARDTSITTVYMELSRLKSDD

FWSGYH
Lambda_

NRPSGVSNRFSGSKSGNTASLTISGLQA

STW




P1369

TAVYFCARGPLFHRLVYDFWSGYHDGFDMW

DGFDM
27-

EDEADYYCNSYTSSSTWVFGGGTKLT

V






GQGTMVTVSS


P1409










1.3M
COV047_
1647
QVQLVESGGGVVQPGRSLRLSCAASGLTFSF
1648
YALFER
COV047_
1649
DVVMTQSPLSLPVTLGQPASISCRSSQS
1650
MQ
KAPPA



P4_IgG_

YAIHWVRQAPGKGLEWVAYISYEGSDKYYA

GNWND
P4_

LVHSDGNIYLSWYQQRPGQSPRRLIYK

GTH




31-

DSVKGRFTISRANSKSTLYLQMNSLRAEDTA

AEY
Kappa_

VSNRDSGVPDRFSASGSGTDFTLRISRV

WP




P1369

VYYCYALFERGNWNDAEYWGQGTLVTVSS


31-

EAEDVGVYYCMQGTHWPRTFGQGTK

RT









P1389

LEIK








1.3M
COV047_
1651
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
1652
ARERGY
COV047_
1653
NFMLTQPHSVSESPGKTVTISCTGSSGS
1654
QSS
LAMBDA



P4_IgG_

SMNWVRQAPGKGLEWVSSISSSSSYIYYADS

YGGKTP
P4_

IASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




34-

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

PFL
Lambda_

PSGVPDRFSGSIDSSSNSASLTISGLKTE

NY




P1369

YCARERGYYGGKTPPFLGGQGTLVTVSS


34-

DEADYYCQSYDSSNYWVFGGGTKLTV

WV









P1409

L








1.3M
COV047_
1656
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
1657
AKSGGR
COV047_
1658
QSVLTQPPSVSGAPGQRVTISCTGSSSSI
1659
QSY
LAMBDA



P4_IgG_

AMSWVRQAPGKGLEWVSAISGSGGSTYYAD

HYYDSS
P4_

GAGYDVHWYQQLPGTAPKLLIYGNSN

DSS




36-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

GYYRLP
Lambda_

RPSGVPDRFSGSKSGTSASLAITGLQAE

LSG




P1369

YYCAKSGGRHYYDSSGYYRLPLDDAFDIWG

LDDAFDI
36-

DEADYYCQSYDSSLSGSWVFGGGTKL

SW






QGTMVTVSS


P1409



V






1.3M
COV047_
1659
QVQLQESGPGLVKPSETLSLTCTVSGGSISSY
1660
ARYQLA
COV047_
1661
QSVLTQPRSVSGSPGQSVTISCTGTSSD
1662
CSY
LAMBDA



P4_IgG_

YWSWIRQPPGKGLEWIGYIYYSGSTNYNPSL

PGSGSY
P4_

VGGYNYVSWYQQHPGKAPKLMIYDV

AGS




38-

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

YNWGG
Lambda_

SKRPSGVPDRFSGSKSGNTASLTISGLQ

YT




P1369

ARYQLAPGSGSYYNWGGYPRESEYYFDYWG

YPRESE
38-

AEDEADYYCCSYAGSYTWVFGGGTKL

WV






QGTLVTVSS

YFYDY
P1409

TVL








1.3M
COV047_
1663
QVQLQESGPGLVKPSQTLSLTCAVSGDSIRSG
1664
ARVKG
COV047_
1665
NFMLTQSHSVSESPGKTVTISCTGSSGN
1666
QSY
LAMBDA



P4_IgG_

GYYWSWVRQHPGRGLEWIGYIYFSGTTYYN

WLRGYF
P4_

IVNNYVQWYQQRPGSAPIIVIYEDTQR

DSG




39-

PSLKSRVTISVDTSEKQFSLKLTSVTDADTAV

DY
Lambda_

PSGVPDRFSGSIDTSSNSASLTISGLKTE

SHV




P1369

YFCARVKGWLRGYFDYWGQGAPVTVSA


39-

DEADYYCQSYDSGSHVVFGGGTKLTV

V









P1409










1.3M
COV047_
167
EVQLVESGGGLVQPGGSLRLSCAASGFSVST
1668
ARDSSE
COV047_
1669
QSVLTQPASVSGSPGQSITISCTGTSND
1670
CSY
LAMBDA



P4_IgG_

KYMTWVRQAPGKGLEWVSVLYSGGSDYYA

VRDHPG
P4_

VGSYTLVSWYQQYPGKAPKLLIFEVTK

AG




3-

DSVKGRFTISRDNSKNALYLQMNSLRVEDTG

HPGRSV
Lambda_

RSSGISNRFSGSKSGNTASLTISGLQGE

AST




P1369

VYYCARDSSEVRDHPGHPGRSVGAFDIWGQ

GAFDI
3-

DEADYYCCSYAGASTFVFGGGTKLTV

FV






GTMVTVSS


P1409










1.3M
COV047_
1671
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
1672
ARVGYG
COV047_
1673
EIVLTQSPATLSLSPGERATLSCRASQS
1674
QQR
KAPPA



P4_IgG_

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ

YYFDY
P4_

VSSYLAWYQQKPGQAPRLLIYDASNR

SN




43-

KFQGRVTITADESTSTAYMELSSLRSEDTAVY


Kappa_

ATGIPARFSGSGSGTDFTLTISSLEPEDF

WPS




P1369

YCARVGYGYYFDYWGQGTLVTVSS


43-

AVYYCQQRSNWPSFGQGTKLEIK











P1389










1.3M
COV047_
1675
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1676
ARASTS
COV047_
1677
QSVLTQPPSVSGAPGQRVTISCTGSSSN
1678
QSY
LAMBDA



P4_IgG_

YYIHWVRQAPGQGLEWMGIINPSDGGTSYAQ

TTNWND
P4_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSG




48-

KFQGRVTMTRDTSTSTVYMELSSLRSEDTAV

ALSLGC
Lambda_

NRPSGVPDRFSGSKSGTSASLAITGLQA

LSG




P1369

YSCARASTSTTNWNDALSLGCWGQGTLVTV


48-

EDEADYYCQSYDSGLSGSGVVFGGGT

SGV






SS


P1409



V






1.3M
COV047_
1679
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
1680
ARDRKY
COV047_
1681
QSVLTQPPSVSEAPRQRVTISCSGSSSNI
1682
AA
LAMBDA



P4_IgG_

YGMHWVRQAPGKGLEWVAVIWYDGSNKYY

SSGWSV
P4_

GNNAVNWYQQLPGKAPKLLIYYDDLL

WD




50-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

VNFDY
Lambda_

PSGVSDRFSGSKSGTSASLAISGLQSED

DSL




P1369

AVYYCARDRKYSSGWSVVNFDYWGQGTLV


50-

EADYYCAAWDDSLNGWVFGGGTKLT

NG






TVSS


P1409



WV






1.3M
COV047_
1683
EVQLVESGGGLVQPGGSLRLSCAASGFTVSS
1684

COV047_
1685
DIQMTQSPSSLSASVGDRVTITCQASQ
1686
QQ
KAPPA



P4_IgG_

NYMSWVRQAPGKGLEWVSVIYSGGSAYYAD


P4_

DISNYLNWYQQKPGKAPKLLIYDASNL

YD




51-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV


Kappa_

ETGVPSRFSGSGSGTDFTFTISSLQPEDI

NLP




P1369

YYCARDSTPGYGDYISGQGTLVTVSS


51-

ATYYCQQYDNLPITFGQGTRLEIK

IT









P1389










1.3M
COV047_
1687
QVQLVESGGGVVQPGRSLRLSCADSGFTFST
1688
ARAEWL
COV047_
1689
NFMLTQPHSVSESPGKTVTISCTGSSGS
1690
QSY
LAMBDA



P4_IgG_

YGMHWVRQAPGKGLEWVALISYDGSNKYY

RGAFDI
P4_

IASNYVQWYQQRPGSAPTTVIYEDNQR

DST




52-

ADSVKGRFTISGDNSKNTLYLQMNSLRAEDT


Lambda_

GVPDRFSGSIDSSSNSASLTISGLKTE

NH




P1369

AVYYCARAEWLRGAFDIWGQGTMVTVSS


52-

DEADYYCQSYDSTNHWVFGGGTKLT

WV









P1409

VL








1.3M
COV047_
1691
EVQLVESGGGLIQPGGSLRLSCAASGFSVSSN
1692
AREGEV
COV047_
1693
QSVLTQPASVSGSPGQSITISCTGTSSD
1694
SSY
LAMBDA



P4_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

EGYYDF
P4_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




57-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

WSGYSR
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

TTR




P1369

YCAREGEVEGYYDFWSGYSRDRYYFDYWG

DRYYFD
57-

AEDEADYYCSSYTSSTTRVFGTGTRVT

V






QGTLVTVSS

Y
P1409

VL








1.3M
COV047_
1695
EVQLVESGGGLIQPGGSLRLSCAASGFTVSNN
1696
AREGEV
COV047_
1697
QSALTQPASVSGSPGQSITISCTGTSSD
1698
SSY
LAMBDA



P4_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

EGYYDF
P4_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSIS




58-

LKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

WSGYSR
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

TRV




P1369

YCAREGEVEGYYDFWSGYSRDRYYFDYWG

DRYYFD
58-

AEDEADYYCSSYTSISTRVFGTGTKVT








QGTLVTVSS

Y
P1409

VL








1.3M
COV047_
1699
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1700
ARGTEY
COV047_
1701
QSALTQPASVSGSPGQSITISCTGTSSD
1702
SST
LAMBDA



P4_IgG_

GYYIHWVRQAPGQGLEWMGWINPNSGGTKY

NWNSAH
P4_

VGGYNYVSWYQQHPGKAPKLMIYEV

TSS




60-

AQKFQGWVTMTRDTSITTVYMELSRLRSDDT

FDP
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

STS




P1369

AVYYCARGTEYNWNSAHFDPWGQGTLVTVS


60-

AEDEADYYCSSYTSSSTSWVFGGGTKL

WV






S


P1409

TVL








1.3M
COV047_
1703
EVQLVESGGGLVQPGGSLRLSCAASGFSVST
1704
ARDSSE
COV047_
7105
QSALTQPASVSGSPGQSITISCTGTSND
1706
CSY
LAMBDA



P4_IgG_

KYMTWVRQAPGKGLEWVSVLYSGGSDYYA

VRDHPG
P4_

VGSYTLVSWYQQYPGKAPKLLIFEGTK

AG




65-

DSVKGRFTISRDNSKNALYLQMSSLRVEDTGI

HPGRSV
Lambda_

RSSGISNRFSGSKSGNTASLTISGLQGE

AST




P1369

YYCARDSSEVRDHPGHPGRSVGAFDIWGQGT

GAFDI
65-

DEADYYCCSYAGASTFVFGGGTKLTV

FV






MVTVSS


P1409

L








1.3M
COV047_
1707
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
1708
ARERYG
COV047_
1709
QLVLTQSPSASASLGASVKLTCTLSSG
1710
QT
LAMBDA



P4_IgG_

SMNWVRQAPGKGLEWVSSISSSTSYIYYADS

DN
P4_

HSSYAIAWHQQQPEKGPRYLMSLNSD

WG




67-

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY


Lambda_

GSHSKGDGIPDRFSGSSSGAERYLTISS

PW




P1369

YCARERYGDNWGQGTLVTVSS


67-

LQSEDEADYYCQTWGPWVFGGGTKL

V









P1409

TVL








1.3M
COV047_
1711
QVQLVESGGGVVQPGRSLRLSCTASGFTFSSY
1712
AKVGLG
COV047_
1713
DIQMTQSPSSLSASVGDRVTITCRASQS
1714
QQS
KAPPA



P4_IgG_

GMHWVRQAPGKGLEWVAVISYDGSNKYYA

YSSGWY
P4_

ISSFLNWYQQKPGKAPNLLIYAASSLQ

YRT




69-

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA

GEEIDY
Kappa_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

PLT




P1369

VYYCAKVGLGYSSGWYGEEIDYWGQGTLVT


69-

TYYCQQSYRTPLTFGGGTKVEIK








VSS


P1389










1.3M
COV047_
1715
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
1716
ARGGRY
COV047_
1717
EIVMTQSPATLSVSPGERATLSCRASQS
1718
QQ
KAPPA



P4_IgG_

YGMHWVRQAPGKGLEWVAVIWYDGSNKYY

YDSSGY
P4_

VSSNLAWYQQKPGQAPRLLIYGASTR

YN




70-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

NGTYEF
Kappa_

ATGIPARFSGSGSGTEFTLTISSLQSEDF

NW




P1369

AVYYCARGGRYYDSSGYNGTYEFDYWGQG

DY
70-

AVYYCQQYNNWPPVTFGPGTKVDIK

PPV






TLVTVSS


P1389



T






1.3M
COV047_
1719
QVQLQESGPGLVKPSETLSLTCTVSGGSISNY
1720
ARGPPR
COV047_
1721
DIVMTQSPDSLAVSXGERATINCKSSQ
1722
QQ
KAPPA



P4_IgG_

YWSWIRQPPGKGLEWIGYIYTSGSTNYNPSLK

LLWFGE
P4_

SVLYSSNNKNYLAWYQQKPRQPPKLLI

YYS




72-

SRVTISVDTSKNQFSLKLSSVTAADTAVYYCA

SPPTYW
Kappa_

YWASTRESGVPDRISGSGSGTDFTLTIS

TPL




P1369

RGPPRLLWFGESPPTYWYFNLWGRGTLVTVS

YFNL
72-

SLQAEDVAVYYCQQYYSTPLTFGGGT

T






S


P1389

KVEIK








1.3M
COV047_
1723
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSS
1724
ARVAAF
COV047_
1725
DIQMTQSPSSLSASVGDRVTITCRASQG
1726
QQ
KAPPA



P4_IgG_

NWWSWVRQPPGKGLEWIGEIYHSGSTNYNPS

LDY
P4_

ISNSLAWYQQKPGKAPKLLLYAASRLE

YYS




83-

LKSRVTISVDKSKNQFSLKLSSVTAADTAVYY


Kappa_

SGVPSRFSGSGSGTDYTLTISSLQPEDF

TRT




P1369

CARVAAFLDYWGQGTLVTVSS


83-

ATYYCQQYYSTRTFGQGTKVEIK











P1389










1.3M
COV047_
1727
QLQLQESGSRLVKPSQTLSLTCAVSGGSISSG
1728
ARFTNP
COV047_
1729
QSVLTQPPSASGSPGQSVTISCTGTSSD
1730
TSY
LAMBDA



P4_IgG_

GYSWSWIRQPPGKGLQWIGYIYHSGSTYYNP

NYYDSS
P4_

VGGYNYVSWYQQHPGKAPKLMIYEV

AGS




86-

SLKSRVTISVDRSKNQFSLKLSSVTAADTAVY

GYYGFD
Lambda_

SKRPSGVPDRLSGSKSGNTASLTVSGL

NN




P1369

YCARFTNPNYYDSSGYYGFDYWGQGTLVTV

Y
86-

QAEDEADYYCTSYAGSNNWVFGGGT

WV






SS


P1409

KLTVL








1.3M
COV047_
1731
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
1732
ARDLRY
COV047_
1733
DIQMTQSPSSLSASVGDRVTITCRASQS
1734
QQS
KAPPA



P4_IgG_

DAISWVRQAPGQGLEWMGGIMPIFGTANYA

CSGGRC
P4_

INNYLNWYQQKPGKAPKLLIYAASSLQ

YST




89-

QKFQGRVTITADESTSTAYMELSSLRSEDTAV

LWWFDP
Kappa_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

PRT




P1369

YYCARDLRYCSGGRCLWWFDPWGQGTLVT


89-

TYYCQQSYSTPRTFGPGTKVDIK








VSS


P1389










1.3M
COV047_
1735
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
1736
AKNVGT
COV047_
1737
DIQMTQSPSSLSASVGDRVTITCQASQ
1738
QQ
KAPPA



P4_IgG_

YGMHWVRQAPGKGLEWVAVTSYDGTNKYY

GYNVM
P4_

DISNYLNWYQQKPGKAPKLLIYDTSNL

YD




91-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

YYFDY
Kappa_

ERGVPSRFSGSGSGSDFTFTISSLQPEDI

NLP




P1369

AVYFCAKNVGTGYNVMYYFDYWGQGTLVT


91-

ATYYCQQYDNLPITFGQGTRLEIK

IT






VSS


P1389










1.3M
COV047_
1739
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1740
ARTPRV
COV047_
1741
QSALTQPRSVSGSPGQSVTISCTGTSSD
1742
CSY
LAMBDA



P5_IgG_

GYYLHWVRQAPGQGLEWMGWINPNSGGTN

YDPTLP
P5_

VGGYNYVSWYQQHPGKAPKLMIYDV

AGS




10-

YAQKFQGWVTMTRDTSISTAYMELSRLRSDD

NQWLV
Lambda_

SKRPSGVPDRFSGSKSGNTASLTISGLQ

YT




P1369

TAVYYCARTPRVYDPTLPNQWLVGEYYCDY

GEYYCD
10-

AEDEADYYCCSYAGSYTWVFGGGTKL

WV






WGQGTLVTVSS

Y
P1409

TVL








1.3M
COV047_
1743
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
1744
ARYTYY
COV047_
1745
AIQLTQSPSSLSASVGDRVTITCRASQG
1746
QQF
KAPPA



P5_IgG_

NYAISWVRQAPGQGLEWMGGIIPIFGTANYA

YDRSGY
P5_

ISTVLAWYQQKPGKTPKLLIYDASSLE

NSY




15-

QKLQGRVTITTDESTSTAYMELSSLRSEDTAV

YRPDYF
Kappa_

SGAPSRFSGSGSGTDFTLTISSLQPEDFA

QLT




P1369

YYCARYTYYYDRSGYYRPDYFDYWGQGTLV

DY
15-

TYYCQQFNSYQLTFGGGTKVEIK








TVSS


P1389










1.3M
COV047_
1747
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
1748
ASAFWQ
COV047_
1749
NFMLTQPHSVSESPGKTVTISCTGSSGS
1750
QSY
LAMBDA



P5_IgG_

WMHWVRQAPGKGLVWVSHINGDGSSTSYA

RGNFDY
P5_

IASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




16-

DSVKGRFTISRDNAKNTLYLQMNSLRAEDTA


Lambda_

PSGVPDRFSGSIDSSSNSASLTISGLKTE

ILW




P1369

VYYCASAFWQRGNFDYWGQGTLVTVSS


16-

DEADYYCQSYDSSILWVFGGGTKLTV

V









P1409

L








1.3M
COV047_
1751
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1752
ARPSSSL
COV047_
1753
SYVLTQPPSVSVAPGQTARITCGGNNI
1754
QV
LAMBDA



P5_IgG_

YDISWVRQAPGQGLEWMGWINAYNGNTNY

TSYFDY
P5_

GSKNVHWYQQKPGQAPVLVVYDDSD

WD




21-

AQKLQGRVTMTTDTSTSTAYMELRSLRSDDT


Lambda_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1369

AVYYCARPSSSLTSYFDYWGQGTLVTVSS


21-

DEADYYCQVWDSSSDRHWVFGGGTK

DRH









P1409

LTVL

WV






1.3M
COV047_
1755
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
1756
ARERGY
COV047_
1757
NFMLTQPHSVSESPGKTVTISCTGSSGS
1758
QSY
LAMBDA



P5_IgG_

NMNWVRQAPGKGLEWVSCISSSSSYIYYADS

DGGKTP
P5_

IASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




24-

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY


Lambda_

PSGVPDRFSGSIDSSSNSASLTISGLKTE

NY




P1369

YCARERGYDGGKTPPFLGGQGTLVTVSS


24-

DEADYYCQSYDSSNYWVFGGGTKLTV

WV









P1409










1.3M
COV047_
1759
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
1760
AREGDV
COV047_
1761
QSALTQPASVSGSPGQSITISCTGTSSD
1762
SSY
LAMBDA



P5_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

EGYYDF
P5_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




26-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

WSGYSR
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

STR




P1369

YCAREGDVEGYYDFWSGYSRDRYYFDYWG

DRYYFD
26-

AEDEADYYCSSYTSSSTRVFGTGTKVT

V






QGTLVTVSS

Y
P1409

VL








1.3M
COV047_
1763
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSN
1764
ARDFGE
COV047_
1765
EIVMTQSPATLSVSPGERATLSCRASQS
1766
QQ
KAPPA



P5_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTFYADS

FYFDY
P5_

VSSNLAWYQQKPGQAPRLLIYGASTR

YN




27-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


Kappa_

ATAIPARFSGSGSGTEFTLTISSLQSEDF

NW




P1369

YCARDFGEFYFDYWGQGTLVTVSS


27-

AVYYCQQYNNWPRTFGQGTKVEIK

PRT









P1389










1.3M
COV047_
1767
QVQLVQSGAEVKKPGASVKVSCMASGYTLT
1768
VRGGTW
COV047_
1769
QSALTQPASVSGSPGQSITVSCAGSSTD
1770
TSF
LAMBDA



P5_IgG_

AYYIHWVRQAPGQGLESLGWINPRTGGTTIL

NYVGGE
P5_

VGGYNFVSWYQHHPGRVPKLIIYEVN

TSS




29-

QKFQGWVTMTRDTSINTVYLELPRVTLADTA

V
Lambda_

NRPSGVSVRFSGSKSGNTASLTISGLQA

SDS




P1369

VYYCVRGGTWNYVGGEVWGQGTAVTVSS


29-

EDEADYYCTSFTSSSDSWIFGGGTKLT

WI









P1409

VL








1.3M
COV047_
1771
QVQLVESGGGVVQPGRSLRLSCAASGFTFSG
1772
AKDLGS
COV047_
1773
DIQMTQSPSSLSASVGDRLTITCRASQS
1774
QQS
KAPPA



P5_IgG_

YDIHWVRQAPGKGLEWVAVISYDGSSKFYA

SLYYDA
P5_

ITSYLNWYQQKPGKAPKLLIYAASSLQ

YST




30-

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA

FDI
Kappa_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

PPW




P1369

VYYCAKDLGSSLYYDAFDIWGQGTMVTVSS


30-

TYYCQQSYSTPPWTFGQGTKVEIK

T









P1389










1.3M
COV047_
1775
EVQLVESGGGLIQPGGSLRLSCAASGFTVRNN
1776
AREGEV
COV047_
1777
QSALTQPASVSGSPGQSITISCTGTSSD
1778
SSY
LAMBDA



P5_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

EGYYDF
P5_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




41-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

WSGYSR
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

STR




P1369

YCAREGEVEGYYDFWSGYSRDRYYFDYWG

DRYYFD
41-

AEDEADYYCSSYTSSSTRVFGTGTKVT

V






QGTLVTVSS

Y
P1409

VL








1.3M
COV047_
1779
EVQLVESGGGLIQPGGSLRLSCAASGFSVSSN
1780
AREGEV
COV047_
1781
QSVLTQPASVSGSPGQSITISCTGTSSD
1782
SSY
LAMBDA



P5_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

EGYYDF
P5_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




49-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

WSGYSR
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

TTR




P1369

YCAREGEVEGYYDFWSGYSRDRYYFDYWG

DRYYFD
49-

AEDEADYYCSSYTSSTTRVFGTGTRVT

V






QGTLVTVSS

Y
P1409

VL








1.3M
COV047_
1783
EVQLVESGGGLVQPGGSLRLSCAASGFSVST
1784
ARDSSE
COV047_
1785
QSVLTQPASVSGSPGQSITISCTGTSND
1786
CSY
LAMBDA



P5_IgG_

KYMTWVRQAPGKGLEWVSVLYSGGSDYYA

VRDHPG
P5_

VGSYTLVSWYQQYPGKAPKLLIFEGTK

AG




57-

DSVKGRFTISRDNSKNALYLQMNSLRVEDTG

HPGRSV
Lambda_

RSSGISNRFSGSKSGNTASLTISGLQGE

AST




P1369

VYYCARDSSEVRDHPGHPGRSVGAFDIWGQ

GAFDI
57-

DEADYYCCSYAGASTFVFGGGTKLTV

FV






GTMVTVSS


P1409

L








1.3M
COV047_
1787
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
1788
ARVGGA
COV047_
1789
QSALTQPASVSGSPGQSITISCTGTSSD
1790
CSY
LAMBDA



P5_IgG_

YMSWVRQAPGKGLEWVSVIYSGYSTYYVDS

HSGYDG
P5_

VGSYNLVSWYQQHPGKAPKLMIYEGS

AGS




58-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

SFDY
Lambda_

KRPSGVSNRFSGSKSGNTASLTISGLQA

STW




P1369

YCARVGGAHSGYDGSFDYWGQGTLVTVSS


58-

EDEADYYCCSYAGSSTWVFGGGTKLT

V









P1409

VL








1.3M
COV047_
1791
QVQLVESGGGVVQPGRSLRLSCAASGFMFSS
1792
ARDGLN
COV047_
1793
DIQMTQSPSSVSASVGDRVTITCRASQ
1794
QQ
KAPPA



P5_IgG_

YGMHWVRQAPGKGLEWVAVIWYDGSNKYY

WNVPHY
P5_

GISSWLAWYQQKPGKAPKLLIYAASSL

ANS




59-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

GMDV
Kappa_

QSGVPSRFSGSGSGTDFTLTISSLQPEDF

FPP




P1369

AVYYCARDGLNWNVPHYGMDVWGQGTTVT


59-

ATYYCQQANSFPPLTFGGGTKVEIK

LT






VSS


P1389










1.3M
COV047_
1795
QVQLVESGGGVVQPGRSLRLSCAASGFTFST
1796
AKVGME
COV047_
1797
DIQMTQSPSSLSASVGDRVTITCRASQS
1798
QQS
KAPPA



P5_IgG_

YGMHWVRQAPGKGLEWVAVISYDGSNKYF

YSSGWY
P5_

ISSYLNWYQQKPGKVPKLLIYAASSLQ

YRT




68-

ADSVKGRFTISRDNSKNTLYLQMNSLRPEDT

GEEIDF
Kappa_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

PLT




P1369

AVYYCAKVGMEYSSGWYGEEIDFWGQGTLV


68-

TYYCQQSYRTPLTFGGGTKVEIK








TVSS


P1389










1.3M
COV047_
1799
EVQLVESGGGLVQPGGSLRLSCAASGFTVSS
1800
ARDLRD
COV047_
1801
QSALTQPASVSGSPGQSITISCTGTSSD
1802
SSY
LAMBDA



P5_IgG_

NYMSWVRQAPGKGLEWVSVIYSGGSAYYAD

QDGYSY
P5_

VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




71-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

GAFDY
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGLQ

SSW




P1369

YYCARDLRDQDGYSYGAFDYWGQGTLVTVS


71-

AEDEADYYCSSYTSSSSWVFGGGTKLT

V






S


P1409










1.3M
COV047_
1803
EVQLVESGGGLVKPGGSLRLSCAVSGFTFSN
1804
TSQVWL
COV047_
1805
NFMLTQPHSVSESPGKTVTISCTGSSGS
1806
QSY
LAMBDA



P5_IgG_

VWMRWVRQAPGKGXEWVGRIKSKTDGGTT

RGPGDY
P5_

IASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




72-

XYAAPVKGRFTXSRDDSKNTLYLQMNSLK


Lambda_

PSGVPDRFSGSIDSSSNSASLTISGLKTE

LN




P1369

DTAVYYCTSQVWLRGPGDYWGQGTLVTVSS


72-

DEADYYCQSYDSSLNWVFGGGTKLTV

WV









P1409

L








1.3M
COV047_
1807
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
1808
AKDPWE
COV047_
1809
SYVLTQPPSVSVAPGQTARITCGGNNI
1810
QV
LAMBDA



P5_IgG_

YGMHWVRQAPGKGLEWVAVISYDGSNKHY

LRQGNY
P5_

GSKNVHWYQQKPGQAPVLVVYDDSD

WD




77-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT

FDY
Lambda_

RPSGIPERFSGSNSGTTATLTISRVEAG

SSS




P1369

AVYYCAKDPWELRQGNYFDYWGQGTLVTV


77-

DEADYYCQVWDSSSDPWVFGGGTKL

DP






SS


P1409

TVL

WV






1.3M
COV047_
1811
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
1812
ARDSAY
COV047_
1813
DIQMTQSPSSLSASVGDRVTITCRASQS
1814
QQS
KAPPA



P5_IgG_

YGISWVRQAPGQGLEWMGWISAYNGNTNYA

SGYDFF
P5_

ISSFLNWYQQKPGKAPKLLIYAASSLH

YRT




78-

QKLQGRVTMTTDTSTSTAYMELRSLRSDDTA

EAPRDY
Kappa_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

PPL




P1369

VYYCARDSAYSGYDFFEAPRDYWGQGTLVT


78-

TYYCQQSYRTPPLFGGGTKVEI








VSS


P1389










1.3M
COV047_
1815
EVQLVESGGGLVKPGGSLRLSCAASGLTFTA
1816
ARDVAS
COV047_
1817
DIQMTQSPSSLSASVGDRVTITCRASQS
1818
QQS
KAPPA



P5_IgG_

YRMNWVRQAPGKGLEWLSSISNTNGDI

NYAYFD
P5_

ISSYLNWYQQKPGKAPKLLIYAASSLQ

YST




84-

DSVKGRFTISRDNAKNSLYLQMNSLRADDTA

L
Kappa_

SGVPSRFSGSGSGTDFTLTISSLQPEDFA

PPL




P1369

VYYCARDVASNYAYFDLWGQGTLVTVSS


84-

TYYCQQSYSTPPLTFGGGTKVEIK

T









P1389










1.3M
COV047_
1819
QVQLVESGGGVVQPGRSLRLSCAASGFTFSR
1820
AKQAGP
COV047_
1821
DIQMTQSPSSLSASVGDRVTITCQASQ
1822
QQ
KAPPA



P5_IgG_

YGMHWVRQAPGKGLEWVAVMSYDGSSKYY

YCSGGS
P5_

GISNYLNWYQQKPGKAPKLLIYDASNL

YD




87-

ADSVKGRFTISRDNSKNTLCLQMNSLRAEDT

CYSAPF
Kappa_

ETGVPSRFSGSGSGTDFTFTISSLQPEDI

NLP




P1369

AVYYCAKQAGPYCSGGSCYSAPFDYWGQGT

DY
87-

ATYYCQQYDNLPITFGQGTRLEIK

IT






LVTVSS


P1389










1.3M
COV047_
1823
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
1824
ARDRVI
COV047_
1825
DIQMTQSPSSLSASVGDRVTITCQASQ
1826
QQ
KAPPA



P5_IgG_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

YGMDV
P5_

DISNYLNWYQQKPGKAPKLLIYDASNL

YD




8-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


Kappa_

ETGVPSRFSGSGSGTDFTFTISSLQPEDI

NLP




P1369

YCARDRVIYGMDVWGQGTTVTVSS


8-

ATYYCQQYDNLPQTFGGGTKVEIK

QT









P1389










1.3M
COV047_
1827
EVQLVESGGGLVQPGGSLRLSCAASGFSVST
1828
ARDSSE
COV047_
1829
QSALTQPASVSGSPGQSITISCTGTSND
1830
CSY
LAMBDA



P5_IgG_

KYMTWVRQAPGKGLEWVSALYSGGSDYYA

VRDHPG
P5_

VGSYTLVSWYQQYPGKAPKLLIFEDTK

AGT




90-

DSVKGRFTISRDNSKNTLYLQMSSLRVEDTG

HPGRSV
Lambda_

RSSGISNRFSGSKSGNTASLTISGLQGE

STF




P1369

VYYCARDSSEVRDHPGHPGRSVGAFDIWGQ

GAFDI
90-

DEADYYCCSYAGTSTFVFGGGTKLTV

V






GTMVTVSS


P1409










1.3M
COV047_
1831
EVQLVESGGGLVQPGGSLRLSCAASGFSVST
1832
ARDSSE
COV047_
1833
DIVMTQSPDSLAVSXGERATINCKSSQ
1834
QQ
KAPPA



P5_IgG_

KYMTWVRQAPGKGLEWVSALYSGGSDYYA

VRDHPG
P5_

SVLYSSNNKNYLAWYQQKPGQPPKLL

YYS




91-

DSVKGRFTISRDNSKNTLYLQMSSLRVEDTG

HPGRSV
Kappa_

IYWASTRESGVPDRFSGSGSGTDFTLTI

TPL




P1369

VYYCARDSSEVRDHPGHPGRSVGAFDIWGQ

GAFDI
91-

SSLQAEDVAVYYCQQTPLYYSTPLTFGGG

T






GTMV


P1389










1.3M
COV047_
1835
EVQLVESGGGLVQPGGSQRLSCAASGFTVSS
1836
ARIANY
COV047_
1837
EIVMTQSPATLSVSPGERATLSCRASQS
1838
QQ
KAPPA



P5_IgG_

NYMSWIRQAPGKGLEWVSVIYSGGSAYYVD

MDV
P5_

VSSHLAWYQQKPGQAPRLLIYGASTR

YN




94-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV


Kappa_

ATGIPTRFSGSGSGTEFTLTISSLQSEDF

NW




P1369

YYCARIANYMDWVGKGTTVTVSS


94-

AVYYCQQYNNWPPLTFGGGTKVEIK

PPL









P1389



T






1.3M
COV047_
1839
QVQLVQSGAEVKKPGASVKVSCKASGYNFTS
1840
ARDRGG
COV047_
1841
DIQMTQSPSSLXASVGDRVTITCRASQ
1842
QK
KAPPA



P5_IgG_

YGISWVRQAPGQGLEWMGWISGYNGNTNYG

HNFWSG
P5_

GISNYLAWYQQKPGKVPKLLIYAASTL

YNS




95-

QKFQGGVTMTTDTSTSTAYMELRSLRSDDTA

YGYYYY
Kappa_

QSGVPSRFSGSESGTDFTLTISSLQPED

APR




P1369

VYYCARDRGGHNFWSGYGYYYYYGMDVVV

YGMDV
95-

VATYYCQKYNSAPRTFGQGTKVEIK

T






GQGTTVTVSS


P1389










6.2M
COV57_
1843
EVQLVESGGGLVQPGRSLRLSCTGSEFTFGDFS
1844
TRAWIP
COV57_
1845
QSVLTQPPSASGTPGQRVTISCSGSSSN
1846
AA
LAMBDA



mo6_

MSWFRQAPGKGLEWVGFIRRKADGGT1EYAA

TPHDY
mo6_L_

IGSNPVNWYQQLPGTAPKLLIYSNNRR

WD




HC_

SVRGRFTISRDDSKSIAYLVMNSLKSEDTAVYY


P1B11-

PSGVPDRFSGSKSGASASLAISGLQSED

DSR




P1B11-

CTRAWIPTPHDYWGQGVLVTVSS


p1409

EAAYYCAAWDDSRKGPVFGGGTKLT

KGP




p1369






V

V






6.2M
COV57_
1847
QVQLVESGGGVVQPGRSLRLSXAASGFTFSTY
1848
AKPLGR
COV57_
1849
QSVLTQPASVSGSPGQSITISCTGTSSD
1850
CSY
LAMBDA



mo6_

GMHWVRQAPGKGLEWVAVISYDGSDKYYAD

YCSSTN
mo6_L_

VGSYNLVSWYQQHSGKAPKLMIYEIS

AD




HC_

SVKGRFAISRDNSKNTLFLQMNSLRAEDTAVY

CLRGYL
P1D12-

KRPSGISNRFSGSKSGNTASLTISGLQA

NHT




P1D12-

YCAKPLGRYCSSTNCLRGYLDYWGQGTLVTVS

DY
p1409

EDEADYYCCSYADNHTPVVFGGGTKL

PVV




p1369

S




TVL








6.2M
COV57_
1851
QVQLVESGGGVVQPGGSLRLSCAASLFSFSDY
1852
AKARGF
COV57_
1853
QSVLTQPASVSGSPGQSITISCTGTSSD
1854
CSY
LAMBDA



mo6_

GMHWVRQAPGKGLEWVAFIWYDGTKKDYTH

QHYFD
mo6_L_

VGSYNLVSWYQQHPGKAPKLLIYEVG

AGS




HC_

SVKGRFTVSRDNSKNTLYLQMNSLRAEDTAM

Q
P2E8-

KRPSGVSNRFSGSKSGNTASLTISGLQ

GTL




P2E8-

YYCAKARGFQHYFDQWGQGTLVTVSS


p1409

AEDEADYYCCSYAGSGTLGVVFGGGT

GV




p1369






KLTVL

V






6.2M
COV57_
1855
QVQLQESGPGLEKPSETLSLTCTVSGGSISSYY
1856
ARDTGP
COV57_
1857
QSVLTQPRSVSGSPGQSVTISCTGTSSD
1858
GSY
LAMBDA



mo6_

WSWIRQPPGKGLEWIGYVHYSGSTKYNPSLKS

YYYGM
mo6_L_

VGGYDYVSWYQQHPGKAPKLIIYDVT

AGS




HC_

RVTISVDTSKTQFSLNLSSVTAADTAVYYCARD

DV
P2C6-

KRPSGVPDRFSGSKSGNTASLTISGLQ

FRI




P2C6-

TGPYYYGMDVWGQGTTVTVSS


p1409

TEDEADYSCGSYAGSFRIFGGGTKLTV






p1369















6.2M
COV57_
1859
QVQLQESGPGLVKPSETLSLTCNVSGVSISTDY
1860
ARHYDI
COV57_
1861
QSVLTQPPSVSAAPGQKVTISCSITNSN
1862
GT
LAMBDA



mo6_

WSWIRQPPGKGLEWIGYIYYSGNTKDYNPSLK

LTSLSW
mo6_L_

LGNIYVSWYQQLPGTAPKLLIYGNNK

WD




HC_

SRVTISVDTSKNQFSLMLSSVTAADTAVYYCAR

FDP
P2A5-

RPSGIPDRFSGSKSGTSATLGITGLQTG

SSL




P2A5-

HYDILTSLSWFDPWGQGTLVTVSS


p1409

DEAHYYCGTWDSSLSANWVFGGGTK

SAN




p1369






LTVL

WV






6.2M
COV57_
1863
QVQLVESGGGVVQPGRSLRLSCAASGFTFRSY
1864
AKSEGQ
COV57_
1865
QSVLTQEPSLTVSPGGTVTLTCGSSTG
1866
LLS
LAMBDA



mo6_

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

YCSGGS
mo6_L_

VVTSGHYPYWFQQKPGQAPRTLIYDT

YSG




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

CSSADY
P1D7-

SNKHSWTPARFSGSLLGGKAALTLSG

ARP




P1D7-

YCAKSEGQYCSGGSCSSADYYYYGMDVVVGQ

YYYGM
p1409

AQPEDEAEYYCLLSYSGARPVFGGGT

V




p1369

GTTVTVSS

DV


KLTVL








6.2M
COV57_
1867
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1868
AKDLTD
COV57_
1869
SYVLTQPPSVSVSPGQTASITCSGDKL
1870
QA
LAMBDA



mo6_

LHWVRQAPGKGLEWVALISSDGTNKYYADSV

TSGWD
mo6_L_

GEKSASWYQQKPGQSPVLVIYRDTER

WD




HC_

KGRFTISRDNSKKTEYLQMNSLRAEDTAVYYC

DDYYY
P2D10-

PSGIPERFSGSNSGTTATLTISGALAMD

KST




P2D10-

AKDLTDTSGWDDDYYYYYGMDAWGQGTTVT

YYGMD
p1409

EAEYYCQAWDKSTVVFGGGTTLTV

VV




p1369

VSS

A











6.2M
COV57_
1871
QVQLQQSGPGLLKPSQTLSLTCAISGDSVSSSG
1872
ARMWV
COV57_
1873
SYVLTQPPSVSVSPGQTARITCSGNAL
1874
QSA
LAMBDA



mo6_

AAWNWIRQSPSRGLEWLGRTYYKSKWYNDYA

VAGTTD
mo6_L_

PKQYVYWYQQKPGQAPVLVIYKDSE

DST




HC_

VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYY

DYYYH
P1C4-

RPSGIPERFSGSSSGTTVTLTISGVQAE

GTY




P1C4-

CARMWVVAGTTDDYYYHYGMDVVVGQGTTV

YGMDV
p1409

DEAEYYCQSADSTGTYVIFGGGTKLT

VI




p1369

TVSS




VL








6.2M
COV57_
1875
QVQLVQSGAEVKRPGSSVKVSCQASGGTSSSY
1876
ARETGY
COV57_
1877
NFMLTQPHSVSESPGKTVTISCSGSSGS
1878
QSF
LAMBDA



mo6_

TISWVRQAPGQGLEWMGRIIPILGVANYAQKF

SGHLAV
mo6_L_

IASNYVQWYQQRPGSAPTTVIYEDNQ

DSN




HC_

QGGVTISADKSTGTAYMELSSLRSEDTAVYYC

SYMDV
P1H6-

RPSGVPDRFSGSIDSSSNSASLTISGLKT

TW




P1H6-

ARETGYSGHLAVSYMDVVVGKGTTVTVSS


p1409

EDEADYYCQSFDSNTWVFGGGTKLTV

V




p1369






L








6.2M
COV57_
1879
EVQLVQSGAEVKKPGESLNISCKASGYSFTIYW
1880
ARGVA
COV57_
1881
QSVLTQPPSVSGAPGQRVTISCAGSSS
1882
QSS
LAMBDA



mo6_

IAWVRQLPGKGLEWMGIIYPGDSDTRYSPSFQG

VDWYF
mo6_L_

NIGAGFDVYWYQQLPGTAPKLLIYGN

GSV




HC_

QVTISADKSISTAYLQWRSLKASDSAVYYCAR

DL
P1B8-

NNRPSGVPDRFSGSKSGTSASLAITGL

LSD




P1B8-

GVAVDWYFDLWGRGTLVSVSS


p1409

QAEDEADYYCQSSGSVLSDLYVFGTG

LYV




p1369






TKVTVL








6.2M
COV57_
1883
QVQLVQSGAEVKKPGSSVKVSCKASGGSFTNH
1884
ARDSGY
COV57_
1885
QSVLTQPPSVSGAPGQRVTISCTGSNS
1886
QSY
LAMBDA



mo6_

FISWVRQAPGQGLEWMGRIIPXXGTANYAQNF

SGYGST
mo6_L_

NIGAGYDVHWYQQLPGAAPKLLIYGN

DSS




HC_

QGRVMMTADKSTSTAYMELSSLRSEDTAVYY

YYMDV
P1A10-

NNRPSGVPDRFSGSKSDTSASLAITGL

LSD




P1A10-

CARDSGYSGYGSTYYMDVWGKGTSVTVS


p1409

QVEDEADYYCQSYDSSLSDSVFGSGT

SV




p1369






KVTVL








6.2M
COV57_
1887
QVQLVQSGAEVKRPGSSVKVSCQASGGTSSSY
1888
ARETGY
COV57_
1889
QSVLTQPPSVSGAPGQRVTFSCTGTNS
1890
QSY
LAMBDA



mo6_

TISWVRQAPGQGLEWMGRIIPILGVANYAQKF

SGHLAV
mo6_L_

NIGAGYDVHWYQQLPGTAPKLLIYGN

DSS




HC_

QGGVTISADKSTGTAYMELSSLRSEDTAVYYC

SYMDV
P1G6-

NNRPSGVADRFSGSKSGTSASLAITGL

LSD




P1G6-

ARETGYSGHLAVSYMDVWGKGTTVTVSS


p1409

QAEDEADYYCQSYDSSLSDSVFGGGT

SV




p1369






KLTVL








6.2M
COV57_
1891
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
1892
ARDMG
COV57_
1893
QSVLTQPPSVSGAPGQRVTISCTGSSSN
1894
QSY
LAMBDA



mo6_

PISWVRQAPGQGLEWMGRVIPILGITNYAEKYQ

YSGSGS
mo6_L_

IGAGYDVHWYQQLPGTAPKLLIYVNT

DSS




HC_

GGVTISADKSTSTAYMELSRLTSEDTAVYYCAR

SYYMD
P1B2-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSG




P1B2-

DMGYSGSGSSYYMDVWGRGTTVTVSS

V
p1409

AEDEADYYCQSYDSSLSGGVFGGGTK

GV




p1369






LTVL








6.2M
COV57_
1895
EVQLVESGGGLVQPGGSQRLSCAASGFLFSSY
1896
AGSQW
COV57_
1897
NFMLTQPHSVSESPGKTVTISCTRSSGS
1898
QSY
LAMBDA



mo6_

WMSWVRQAPGKGLEWVANIKQDGSEKYYVD

LRGAFE
mo6_L_

IAGNYVQWYQQRPGSSPTTVIYEDNQ

DSS




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

I
P2A10-

RPSGVPDRFSGSIDSSSNSASLTISGLKT

NW




P2A10-

FCAGSQWLRGAFEIWGQGTMVTVSS


p1409

EDEADYYCQSYDSSNWVFGGGTKLT

V




p1369






VL








6.2M
COV57_
1899
QVQLVQSGAEVKKPGASVKVSCKASGYTFSGY
1900
VGGMV
COV57_
1901
NFMLTQPHSVSESPGKTVTISCTGSSGS
1902
QSY
LAMBDA



mo6_

GISWVRQAPGQGLEWMGWVSAYNGNTNYAQ

AAAGW
mo6_L_

IASNYVQWYQQRPGSAPTTVIYEDNQ

GSR




HC_

KLQGRVTMTTDTSTSTAYMELRSLRFDDTAVY

GVSA
P2B2-

RPSGVPDRFSGSIDSSSNSASLTISGLKT

FW




P2B2-

YCVGGMVAAAGWGVSAWGQGTPVIVSS


p1409

EDEADYYCQSYGSRFWVFGGGTKLT

V




p1369






VL








6.2M
COV57_
1903
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
1904
ARGDTF
COV57_
1905
SYVLTQPPSVSVAPGQTARITCGGNNI
1906
QV
LAMBDA



mo6_

YFWSWIRQHPGKGLEWLGYNYYTGTPHYNPS

GRGYYF
mo6_L_

GSKSVHWYQQKPGQAPVMVVYDDSD

WD




HC_

LKSRLVISIDTSKNQFSLKLSSVTAADTAVYYC

DY
P1E8-

RPSGIPERFSGSNSGDTATLTISRVEAG

RSS




P1E8-

ARGDTFGRGYYFDYWGQGTLVTVSP


p1409

DEADYSCQVWDRSSDHPWVFGGGTK

DHP




p1369






LTVL

WV






6.2M
COV57_
1907
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGYV
1908
AREKSL
COV57_
1909
SYVLTQPPSVSVAPGQPARIPCGGNNI
1910
QV
LAMBDA



mo6_

MHWVRQAPGEGLEYVSTVGGDGGSPYYANSV

TGAFDI
mo6_L_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




HC_

KGRFSISRDNSKNTLYLQMGSLRGDDTAVYFC


P1H5-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSP




P1H5-

AREKSLTGAFDIWGQGTMVTVSS


p1409

DEADYYCQVWDSSPDHYVFGTGTKV

DH




p1369






TVL

YV






6.2M
COV57_
1911
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
1912
AREGAL
COV57_
1913
SYVLTQPPSVSVAPGQTARIPCGGNNI
1914
QV
LAMBDA



mo6_

AMHWVRQAPGQRLEWMGWINTDNGNTKYSQ

TNWFDP
mo6_L_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




HC_

KFQGRVTITRDTSASTAYMELSSLRSEDTAVYY


P1D9-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1D9-

CAREGALTNWFDPWGQGTLVTVSS


p1409

DEADYYCQVWDSSSDLHVVFGGGTK

DLH




p1369






LTVL

VV






6.2M
COV57_
1915
EVQLVESGGGLVQPGRSLRLSCVASGFTFDDY
1916
AKSGG
COV57_
1917
SYVLTQPPSVSVAPGQTARITCGGNNI
1918
QV
LAMBDA



mo6_

AMHWVRQAPGKGLEWVSGISWNSGSIGYADS

VDWTW
mo6_L_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




HC_

VKGRFTISRDNAKNSLYLQMNSLRAEDTALYY

TLHY
P1E5-

RPSGIPERFSGSNSGNTATLTISRVEAG

TSS




P1E5-

CAKSGGVDWTWTLHYWGQGTLVTVSS


p1409

DEADYYSQVWDTSSDHPVIFGGGTKL

DHP




p1369






TVL

VI






6.2M
COV57_
1919
EVQLVESGGGVVQPGGSLRLSCAASGFTVSSNF
1920
ANQGY
COV57_
1921
QSALTQPASVSGSPGQSITISCTGTSSD
1922
SSY
LAMBDA



mo6_

MSWVRQAPGKGLEWVSLIYNSGSTYYADSVK

YYYMD
mo6_L_

VGGYNYVSWYQHHPGKAPKLMIYDV

TSG




HC_

GRFTISRDKSKNSLYLQMNSLRAEDTAVYYCA

V
P2C11-

SYRPSGVSNRFSGSKSGNTASLTISGLQ

STP




P2C11-

NQGYYYYMDVWGKGTPVTVSS


p1409

SEDEADYYCSSYTSGSTPWVFGGGTK

WV




p1369






LTVL








6.2M
COV57_
1923
EVQLVESGGGLVRPGGSLTLSCVASGFTVGSNF
1924
ANHGY
COV57_
1925
QSVLTQPASVSGSPGQSITISCTGTGSD
1926
TSY
LAMBDA



mo6_

MSWVRQAPGKGLEWVSLIYNSGGTHYADSVK

YYYMD
mo6_L_

IGAYNYVSWHQHHPGKAPKLIIYDVS

TNT




HC_

GRFTISRDRSKNTLYLQMNSLRAEDTAIYYCAN

V
P1B9-

NRPSGVSNRFSGSKSGNTASLTISGLQ

TTP




P1B9-

HGYYYYMDVWGKGTAVTVS


p1409

AEDEADYYCTSYTNTTTPWVFGGGTK

WV




p1369






VTVL








6.2M
COV57_
1927
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS
1928
CAARLY
COV57_
1929
QSVLTQPASVSGSPGQSITISCTGTSSD
1930

LAMBDA



mo6_

MNWVRQAPGKGLEWISYISSGSSTIHYSDSVQG

YHYYM
mo6_L_

VGSYDLVSWFQQHPGKAPKLMIYEVN






HC_

RFTVSRDNAKNSLYLQMNSLRDEDTAVYYCC

DV
P1A2-

KRPSGVSDRFSGSKSGNTASLTIFGLQ






P1A2-

AARLYYHYYMDVWGKGTTVTVSS


p1409

AEDEADYYCCSYVGTSIFGTGTKVTV






p1369






L








6.2M
COV57_
1931
EVQLVESGGGLVQPGGSLRLSCEASGITFSGYS
1932
ARDRR
COV57_
1933
QSALTQPRSVSGSPGQSVTISCTGTSSD
1934

LAMBDA



mo6_

MNWVRQAPGKGLEWVSYISSGSSTVHYADSV

YTIGQV
mo6_L_

VGDYGYVSWYQQHPDKAPKLIIYDVN






HC_

KGRFTISRDNAKNSLYLQMNSLRVEDTAVYYC

DHYYY
P1B6-

KWPSGVPDRFSGSKSGITASLTISGLQ






P1B6-

ARDRRYTIGQVDHYYYAMDVWGQGTTVTVSS

AMDV
p1409

ADDEADYYCCSYAGYYIFGTGTKVTV






p1369






L








6.2M
COV57_
1935
EVQLVESGGGLVQPGGSLRLSCAASGIIVSNNY
1936
TRLGGY
COV57_
1937
DIQMTQSPSSLSASVGDRVTITCQASQ
1938
LQY
KAPPA



mo6_

MSWVRQAPGKGLEWVSTIFSGGSTYYADSVK

RYGMD
mo6_K_

DISKYLNWYQQKPGTAPKLLIYDASEL

DNL




HC_

DRFTISRDNSNNTLYLQMNSLRPEDTAVYYCTR

V
P1D4-

ERGVPSRFSGSGSGTDFTFTIISLQPEDI

PYT




P1D4-

LGGYRYGMDVWGQGTTVTVS


p1389

ATYYCLQYDNLPYTFGQGTKLQIK






p1369















6.2M
COV57_
1939
EVQLVESGGGLVQPGRSLKLSCVVSGFSFDDY
1940
VKDTR
COV57_
1941
DIVMTQSPLSLPVTPGEPASISCRSSQS
1942
MQ
KAPPA



mo6_

AMHWVRQGPGKGLQWVSGLSWNSDSIGYADS

AHYDIL
mo6_K_

LLHSNGYNYLDWYLQRPGQSPQLLIY

VLQ




HC_

VKGRFTISRDNAKNSLYLQMNSLRAEDTALYY

AGYNG
P2D12-

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPG




P2D12-

CVKDTRAHYDILAGYNGMDVWGQGTTVTVSS

MDV
p1389

RVEAEDVGIYYCMQVLQTPGFGGGTK






p1369






VEIK








6.2M
COV57_
1943
EVQLVESGGNLVQPGGSLRLSCAASGVTVSSN
1944
ARDLY
COV57_
1945
DIQLTQSPSFLSASVGDRVTITCRASQG
1946
QEL
KAPPA



mo6_

YMTWVRQAPGKGLEWVSVIYSGGSTFYADSV

YYGMD
mo6_K_

ISSYLAWYQQKPGKAPKLLIYAASTLQ

NSY




HC_

KGRFTISRDNSKNTVYLQMKSLRAEDTAVYYC

V
P1H11-

SGVPSRFSGSGSGTEFTLTISSLQPEDF

PS




P1H11-

ARDLYYYGMDVWGQGTTVTVSS


p1389

ATYYCQELNSYPSFGQGTKLEIK






p1369















6.2M
COV57_
1947
QVQLVESGGGVVQPGGSLRLSCVASGFEFRDY
1948
AKENY
COV57_
1949
DIQMTQSPSTLAASVGDTVTITCRASY
1950
QHF
KAPPA



mo6_

GMHWVRQAPGKGLHWVAIVQSDGKNIYYADS

RGTGYL
mo6_K_

DVKKWVAWYQQKPGKVPKLLIYKAS

HSY




HC_

VKGRFTISRDNSKRSQYLQMNSLRPEDTAVYY

ES
P1A8-

TLEVGVPLRFSGSGSGTEFTLTINGLQP

PYS




P1A8-

CAKENYRGTGYLESWGQGTLVTVSS


p1389

DDFATYYCQHFHSYPYSFGQGTKLDI






p1369






K








6.2M
COV57_
1951
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSSN
1952
ARDYIE
COV57_
1953
DIQMTQSPSSLSAFVGDRVTITCRASQ
1954
QH
KAPPA



mo6_

WWSWVRQPPGKGLEWIGEIYHSGSTNYNPSLK

RVFARR
mo6_K_

SISNFLNWYQHKPGEAPKVLIFGATNL

NYI




HC_

SXVSMSVDKSKNQFSLKLTSVTAADTAVYYCA

EQGLFH
P1E4-

QSGVPSRFRGSGSGTDFILTISSLQPED

NPR




P1E4-

RDYIERVFARREQGLFHYSYMDVWGRGTTVT

YSYMD
p1389

FAVYYCQHNYINPRTFGQGTKVQIK

T




p1369

VSS

V











6.2M
COV57_
1955
EVQLVESGGGLVKPGGSLRLSCEVSGFTFTNA
1956
SIDLLPY
COV57_
1957
DIQMTQSPSTLSASIGDRVTITCRASESI
1958
QH
KAPPA



mo6_

WMSWVRQAPGKGLEWVARIKNKFDGGTTDY

KTGQYF
mo6_K_

ANWLAWYQQKPGKAPKLMIYXSFNL

YHS




HC_

AAPVKGRFTISRDDSKNTLYLQMNSLKTEDTAI

PH
P2C4-

KSGVPSRFSASGSGTEFTLTIRSLQPDD

YPY




P2C4-

YYCSIDLLPYKTGQYFPHWGQGTLVAVS


p1389

SGTYYCQHYHSYPYTFGPGPNLEI

T




p1369















6.2M
COV57_
1959
QVQLQQWGAGLLKPSETLSLTCAVFGGSFSGY
1960
VRRPRR
COV57_
1961
DIQMTQSPSSLSASVGDRVTITCRASQ
1962
QK
KAPPA



mo6_

YWGWIRQPPGKGLEWIAEINHSENSHYNPSLKS

YCSGDT
mo6_K_

DISNFLAWYQQKPGKVPSLLIYAASIL

YKI




HC_

RVTISVDTFKNQFSLNLSSVTAADTALYYCVRR

CRGAFD
P1B10-

QPGVPSRFSGSGSGTDFTLTITSLQPED

DPF




P1B10-

PRRYCSGDTCRGAFDIWGQGTMVTVSS

I
p1389

VATYYCQKYKIDPFTFGPGTKVDIK

T




p1369















6.2M
COV57_
1963
QVQLQQWGAGLLKPSETLSLTCAVFGGSFSGY
1964
VRRPRR
COV57_
1965
DIQMTQSPSSLSASVGDRVTITCRASQ
1966
QK
KAPPA



mo6_

YWGWIRQPPGKGLEWIAEINHSENSHYNPSLKS

YCSGDT
mo6_K_

DISNFLAWYQQKPGKVPSLLIYAASIL

YKI




HC_

RVTISVDTFKNQFSLNLSSVTAADTALYYCVRR

CRGAFD
P1E11-

QPGVPSRFSGSGSGTDFTLTITSLQPED

DPF




P1E11-

PRRYCSGDTCRGAFDIWGQGTMVTVSS

I
p1389

VATYYCQKYKIDPFTFGPGTKVDIK

T




p1369















6.2M
COV57_
1967
QVQLQQWGAGLLKPSETLSLTCAVFGGSFSGY
1968
VRRPRR
COV57_
1969
DIQMTQSPSSLSASVGDRVTITCRASQ
1970
QK
KAPPA



mo6_

YWGWIRQPPGKGLEWIAEINHSENSHYNPSLKS

YCSGDT
mo6_K_

DISNFLAWYQQKPGKVPSLLIYAASIL

YKI




HC_

RVTISVDTFKNQFSLNLSSVTAADTALYYCVRR

CRGAFD
P2B5-

QPGVPSRFSGSGSGTDFTLTITSLQPED

DPF




P2B5-

PRRYCSGDTCRGAFDIWGQGTMVTVSS

I
p1389

VATYYCQKYKIDPFTFGPGTKVDIK

T




p1369















6.2M
COV57_
1971
EVQLVESGGGLVKPGGSLRLSCAASGFTFNTYT
1972
ARVGPP
COV57_
1973
EIVLTQSPGTLSLSPGERATLSCRASQS
1974
QQF
KAPPA



mo6_

MNWVRQAPGKGLEWVSSIGSSGSHIYYADSLR

GWLQS
mo6_K_

ISSSFLAWYQQKPGQAPRLLIYGAYSR

SA




HC_

GRFTMSRDNAKNSLYLQMNSLRAEDTAVYYC

DYDYY
P1G8-

AIGIPDRFSGSGSGTDFTLTISRLEPEDF






P1G8-

ARVGPPGWLQSDYDYYGMDVWGQGTTVIVSS

GMDV
p1389

AVYYCQQFSAFGGGTKVEIK






p1369















6.2M
COV57_
1975
EVQLVESGGGLVQPGGSLRLSCTASGITVSSNY
1976
ARDLG
COV57_
1977
DIQLTQSPSFLSASVGDRVTITCRASQG
1978
QQL
KAPPA



mo6_

MGWVRQAPGKGLEWVSIVYPGGSTFYADSVK

DSRLDY
mo6_K_

ISNYLAWYQQKPGKAPKLLIYAASTL

NN




HC_

GRFTISRDNSKNMLSLQMSRLRAEDTAVYYCA


P2D6-

QSGVPSRFSGSGSGTEFTLAISSLQPED

NPP




P2D6-

RDLGDSRLDYWGQGTLVTVSS


p1389

FATYYCQQLNNNPPGYTFGQGTKLEI

GYT




p1369






K








6.2M
COV57_
1979
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSNY
1980
ARVDSS
COV57_
1981
DIQMTQSPSSLSASVGDRVTITCRASQ
1982
QQS
KAPPA



mo6_

YWSWIRQPAGKGLEWIGRIFSSGSTNYNPSLKS

GWYTG
mo6_K_

SINSYLNWYQHKPGKAPKLLIYAAFSL

FPT




HC_

RVTISVDTSKKQFSLKLSSVTAADTAVYYCARV

DTFDI
P2A11-

QSGVPSRFSGGGSGTDFTLTISSLQPED

PPY




P2A11-

DSSGWYTGDTFDIWGQGTMVTVSS


p1389

FATYYCQQSFPTPPYTFGQGTKLEIK

T




p1369















6.2M
COV57_
1983
QLQLQESGPGLVKPSETLSLTCTVSGASIPSSTS
1984
ARRSIT
COV57_
1985
DIQMTQSPSSLSASVGDRLTITCRASQS
1986
QQS
KAPPA



mo6_

YWGWIRQPPGKGLEWIGSIYYTGSTYYNPSLKS

LAGRDC
mo6_K_

ITTSLNWYQQKPGKAPKLLIYAAS

YIP




HC_

RVTISVDTSKNHFSLILSSVTAADTAVYYCARR

LDF
P2D1-

SGVPSRFSGSGSGTDFTLAISSLQPEDF

LLT




P2D1-

SITLAGRDCLDFWGQGTLVTVSS


p1389

ATYYCQQSYIPLLTFGGGTKVEI






p1369















6.2M
COV57_
1987
QVQLQQWGAGLLKPSETLSLTCAVYGGSLSAY
1988
ARPGIT
COV57_
1989
DIQMTQSPSSLSASVGDRVTITCRASQ
1990
QQS
KAPPA



mo6_

YWSWIRQPPGKGLEWIGEINNGGTTNYNPSLKS

ATTGFD
mo6_K_

SISTYLNWYHQKPGKAPKVLIYAASSL

YN




HC_

RVTLSVDTSKNQFSLELSSVTAADTAIYYCARP

F
P2D8-

QGGVPSTFSGSGSGTDFTLTISSLQPDD

MPL




P2D8-

GITATTGFDFWGQGSLVTVSS


p1389

FGTYYCQQSYNMPLTFGGGTKVEIK

T




p1369















6.2M
COV57_
1991
EVQLVESGGDLTQPGGSLRLSCAASGFTFSNYD
1992
ARTEYA
COV57_
1993
DIQMTQSPSSLSASVGDRVTITCRTSQT
1994
QQS
KAPPA



mo6_

MHWVRQATGKGLEWVSGIGTSGDTYYADSVK

WGSYR
mo6_K_

ISTYLNWYQQKPGKAPKVLIFAASSLQ

YSA




HC_

GRFTISRENAKNSLFLQMNHLRAGDTATYYCA

SYWYF
P2E5-

SGVPSRFSGSGSGTDFTLTISSLQPEDF

PPW




P2E5-

RIEYAWGSYRSYWYFDLWGRGTQVTVSS

DL
p1389

ATYFCQQSYSAPPWTFGPGTKVEIK

T




p1369















6.2M
COV57_
1995
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
1996
VRDPTK
COV57_
1997
DIQMTQSPSSLSASVGDRVTITCRASQ
1998
QQS
KAPPA



mo6_

MHWVRQATGKGLEWVSAIGTAGDTYYPDSVK

SWYFDL
mo6_K_

SISSYLNWYQQKPGKAPQLLIYAASSL

YST




HC_

GRFTISRENAKNSLYLQMNSLRAGDTAVYYCV


P2B6-

QSGVPSRFSGSGSGTDFTLTVSSLQPE

PPIT




P2B6-

RDPTKSWYFDLWGRGTLVTVAS


p1389

DFATYYCQQSYSTPPITFGQGTRLEIK






p1369















6.2M
COV57_
1999
QVQLQQSGPGLLKPSQTLSLTCAISGDSVSSSG
2000
ARMWV
COV57_
2001
DIQMTQSPSSVSASVGDRVTITCRASQ
2002
QQT
KAPPA



mo6_

AAWNWIRQSPSRGLEWLGRTYYKSKWYNDYA

VAGTTD
mo6_K_

GISNWLAWYQQKPGKAPKVLLYAAS

NTL




HC_

VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYY

DYYYH
P1C5-

SLRSGVPSRFSGSGSGTDFTLTISSLQP

PLS




P1C5-

CARMWVVAGTTDDYYYHYGMDVWGQGTTV

YGMDV
p1389

EDFATYYCQQTNTLPLSFGGGTKVEIK






p1369

TVSS













6.2M
COV57_
2003
EVQLVESGGGLIQPGGSLRLSCAASEFIVSYNY
2004
ARDRG
COV57_
2005
DIQMTQSPSSVSASVGDRVTITCRASQ
2006
QQT
KAPPA



mo6_

MSWVRQAPGKGLEWVSTIYSGGSTYYADSVK

GGILDF
mo6_K_

GISNWLAWYQQKPGKAPKVLLYAAS

NTL




HC_

GRFTISRDNSKNTLHLQMIRLRVEDTAVYYCAR


P1H9-

SLRSGVPSRFSGSGSGTDFTLTISSLQP

PLS




P1H9-

DRGGGILDFWGQGTLVTVSS


p1389

EDFATYYCQQTNTLPLSFGGGTKVEIK






p1369















6.2M
COV57_
2007
EVQLVESGGGLVQPGGSLRLSCAASGFSFSSYS
2008
ARGSGA
COV57_
2009
DIQMTQSPSSLSASVGDRVTITCRASQ
2010
QQT
KAPPA



mo6_

MNWVRQAPGKGLEWVSYIGGSGSIIYYADSVK

ARSYYY
mo6_K_

SINNYLNWYHQKPGKAPKLLIYATSTL

YST




HC_

GRFTLSRDNAKNSLSLHMHSLRAEDTAVYYCA

YGLDV
P1D2-

QSGVPSRFSGSGSGPDFTLTISSLQPED

PPT




P1D2-

RGSGAARSYYYYGLDVWGQGTTVTVSS


p1389

FATYYCQQTYSTPPTFGQGTRLEIK






p1369















6.2M
COV57_
2011
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
2012
ARQRDT
COV57_
2013
DIQMTQSPSSLSASVGDRVTVTCRASQ
2014
QQT
KAPPA



mo6_

YWSWIRQPPGKGLEWIGEINHSGSTSYSPSLKS

DMAML
mo6_K_

SITTYLNWYQQKPRKAPKLLIYAVSNL

YST




HC_

RVTISVDTSKNQFSLKLTSVTAADTAVYYCAR

FQYTGL
P2A7-

QGGVPSRFSGSGSGTFFNFTIDGLQPE

PRT




P2A7-

QRDTDMAMLFQYTGLDVWGQGTTVTVSS

DV
p1389

DIATYYCQQTYSTPRTFGQGTKVEIE






p1369















6.2M
COV57_
2015
QVQLVESGGGVVQPGRSLRLSCAASGFTFRIYA
2016
AREGV
COV57_
2017
DIQMTQSPSSLSASVGDRVTITCRASQ
2018
QQT
KAPPA



mo6_

MHWVRQAPGKGLEWVAIIWNDGSKQYYADS

ALAGN
mo6_K_

TISTFLNWYRQIPGKAPKLLIYAASSLQ

YST




HC_

MKGRFTISRDNSKNTLYLQMNSLRDEDTALYY

GVDGF
P1B3-

SGVPSRFSGSGSGTDFTLTISSLQPEDF

PYT




P1B3-

CAREGVALAGNGVDGFDIWGQGTMVTVSS

DI
p1389

ATYYCQQTYSTPYTFGRGTKLEIK






p1369















6.2M
COV57_
2019
EVQLVESGGGLVQPGGSLRLSCAASGFTVSNN
2020
ARGRPF
COV57_
2021
DIQMTQSPSSLSASVGDRVTITCQASQ
2022
QQ
KAPPA



mo6_

YMTWVRQAPGKGLGWVAVMFIGSTYYADSV

RGRGAF
mo6_K_

DINNYLNWYQQKPGKAPKLLIYDASN

YD




HC_

KGRFTMSRDNSKNTLYLQMNSLRAEDTALYY

DI
P2C1-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




P2C1-

CARGRPFRGRGAFDIWGQGTMVTVSS


p1389

DIATYYCQQYDNLPPLTFGGGTKVEIK

PLT




p1369















6.2M
COV57_
2023
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSSG
2024
ARMWV
COV57_
2025
DIQMTQSPSSLSASVGDRVTITCQASQ
2026
QQ
KAPPA



mo6_

AAWNWIRQSPSRGLEWLGRTYYKSKWYNDYA

VAGTTD
mo6_K_

DISNYLNWYQQKPGKAPKLLIYDASN

YD




HC_

VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYY

DYYYH
P1B4-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




P1B4-

CARMWVVAGTTDDYYYHYGMDVWGQGTTV

YGMDV
p1389

DIATYYCQQYDNLPYTFGQGTKLEIK

YT




p1369

T













6.2M
COV57_
2027
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
2028
AKVRL
COV57_
2029
DIQMTQSPSSLSASVGDRVTITCQASQ
2030
QQ
KAPPA



mo6_

ALHWVRQAPGKGLEWVSGISWNSASIHYADSV

YSTYLR
mo6_K_

DIRQNLNWYQHKPGKAPKLLIYGAST

YD




HC_

KGRFTISRDNAKNSLYLQMNRLRAEDTALYYC

GPFDI
P1H8-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLS




P1H8-

AKVRLYSTYLRGPFDIWGQGTMVTVSS


p1389

DIAAYYCQQYDNLSPLTFGGGTKVEIK

PLT




p1369















6.2M
COV57_
2031
EVQLVESGGGLIQPGGSLRLSCAASEFIVSRNY
3032
ARDRG
COV57_
2033
DIQMTQSPSSLSASVGDRVTITCQASQ
2034
QQ
KAPPA



mo6_

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

GGILDY
mo6_K_

DINIFLNWYQQKPGKAPKLLIYDASSL

YG




HC_

GRFTISRDESKNTLYLQMNSLRAEDTAIYYCAR


P1C1-

ETGVPSRFSGSGSGTDFTFTISSLQPED

NLP




P1C1-

DRGGGILDYWGQGTLVTVS


p1389

FATYYCQQYGNLPKYTFGQGTNLEIK

KYT




p1369















6.2M
COV57_
2035
EVQLVESGGGLIQPGGSLRLSCAASEFIVSYNY
2036
ARDRG
COV57_
2037
DIQMTQSPSSLSASVGDRVTITCQASQ
2038
QQ
KAPPA



mo6_

MSWVRQAPGKGLEWVSTIYSGGSTYYADSVK

GGILDF
mo6_K_

DINKYLNWYQQKPGKAPKLLIYDASN

YG




HC_

GRFTISRDNSKNTLHLQMIRLRVEDTAVYYCAR


P1H10-

LEAGVPSRFSGRGSGTDFTFTISSLQPE

NLP




P1H10-

DRGGGILDFWGQGTLVTVSS


p1389

DIATYYCQQYGNLPKYTFGQGTKLEI

KYT




p1369















6.2M
COV57_
2039
QVQLQESGPGLMKPSQTLSLTCSVSGDSIRSGN
2040
TRGLRF
COV57_
2041
EIVLTQSPGTLSLSPGERATLSCRASQS
2042
QQ
KAPPA



mo6_

NHWSWIRQPAGKGLEWIGRVYMSGDTHYNPS

LDYPVL
mo6_K_

VSSSYLAWYQQKPGQAPRLLIYGASS

YGS




HC_

LKSRVTISVDTSKNHFSLKLSSVTAADTAVYYC

DV
P1F4-

RATGIPDRFSGSGSGTDFTLTISRLEPE

SLY




P1F4-

TRGLRFLDYPVLDVWGTGTTVTVSS


p1389

DFAVYYCQQYGSSLYMYTFGQGTKL

MY




p1369








T






6.2M
COV57_
2043
QVQLQESGPGLVKPSETLSLTCNVSGVSISTDY
2044
ARHYDI
COV57_
2045
EIVLTQSPGTLSLSPGERATLSCRASQS
2046
QQ
KAPPA



mo6_

WSWIRQPPGKGLEWIGYIYYSGNTKDYNPSLK

LTSLSW
mo6_K_

ISSSYLAWYQQKPGQAPRLLIYGASIR

YGS




HC_

SRVTISVDTSKNQFSLMLSSVTAADTAVYYCAR

FDP
P2A4-

ATGIPDRFSGRGSGTDFTLTISRLEPED

SLY




P2A4-

HYDILTSLSWFDPWGQGTLVTVSS


p1389

FAVYYCQQYGSSLYTFGQGTKLEIK

T




p1369















6.2M
COV57_
2047
QVQLVESGGRLVKPGGSLRLSCVASGFTLSDY
2048
ARDRGT
COV57_
2049
EIVLTQSPGTLSLSPGERATLSCRASQS
2050
QQ
KAPPA



mo6_

YMSWIRQAPGRGLEWLSYSSDGDETIYYADSV

TSSYYS
mo6_K_

VDSSDLAWYQQKPGQAPRLLIYGASS

YGS




HC_

KGRFTISTDNAKNSLYLQMNSLTAEDTAVYFC

YYYGM
P1A6-

RATGVPDRFSGSGSGTDFTLTISRLEPE

SPG




P1A6-

ARDRGTTSSYYSYYYGMDVWGQGTSVTVSS

DV
p1389

DFVVYYCQQYGSSPGTFGGGTRVEIK

T




p1369















1.3M
COVD57_
2051
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
2052
ARHYDI
COVD57_
2053
QSVLTQPPSVSAAPGQKVTISCSGSSSNGT
2054
GT
LAMBDA



P2_

WSWIRQPPGKGLEWIGYIHYSGSTNYNPSLKSR

LTALSW
P2_L_

IGNNYVSWYQQLPGTAPKLLIYDNNK

WD




HC_

VTISVDTSKNQFSLKLSSVTAADTAVYYCARH

FDP
F8-

RPSGIPDRFSGSKSGTSATLGITGLQTG

SSL




F8-

YDILTALSWFDPWGQGTLVTVSS


1409

DEADYYCGTWDSSLSAYWVFGGGTK

SAY




1369






LTVL

WV






1.3M
COVD57_
2055
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
2056
ARLLST
COVD57_
2057
SYVLTQPPSVSVSPGQTASITCSGDKL
2058
QA
LAMBDA



P2_

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR

EWLFN
P2_L_

GDKYACWYQQKPGQSPVLVIYQDSK

WD




HC_

VTISVDTSKNQFSLKLSSVTAADTAVYYCARLL

WFDP
H11-

RPSGIPERFSGSNSGNTATLTISGTQAM

SST




H11-

STEWLFNWFDPWGQGTLVTVSS


1409

DEADYYCQAWDSSTAYVFGTGTKVT

AY




1369






VL

V






1.3M
COVD57_
2059
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSYW
2060
ARQPES
COVD57_
2061
SYELTQPPSVSVSPGQTARVTCSGHAL
2062
QSA
LAMBDA



P1_

MTWVRQAPGKGLEWVASIKYNGNERNYVDSV

TIWYYF
P1_L_

PDQYTYWYQQRPGRAPVLVIYVNNQ

DSS




HC_

KGRFTISRDNARNSLFLQLNNLGAEDTAVYYC

DY
B7-

RPSGIPDRFSATTSGTTVTLTISGVQAE

GSY




B7-

ARQPESTIWYYFDYWGQGTLVTVSS


1409

DEADYYCQSADSSGSYVVFGGGTKLT

VV




1369






VL








1.3M
COVD57_
2063
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSYW
2064
ARQPES
COVD57_
2065
SYVLTQPPSVSVSPGQTARVTCSGHAL
2066
QSA
LAMBDA



P1_

MTWVRQAPGKGLEWVASIKYNGNERNYVDSV

TIWYYF
P1_L_

PDQYTYWYQQRPGRAPVLVIYVNNQ

DSS




HC_

KGRFTISRDNARNSLFLQLNNLGAEDTAVYYC

DY
F5-

RPSGIPDRFSATTSGTTVTLTISGVQAE

GSY




F5-

ARQPESTIWYYFDYWGQGTLVTVSS


1409

DEADYYCQSADSSGSYVVFGGGTKLT

VV




1369






VL








1.3M
COVD57_
2067
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSYW
2068
ARQPES
COVD57_
2069
SYELTQPPSVSVSPGQTARVTCSGHAL
2070
QSA
LAMBDA



P1_

MTWVRQAPGKGLEWVASIKYNGNERNYVDSV

TIWYYF
P1_L_

PDQYTYWYQQRPGRAPVLVIYVNNQ

DSS




HC_

KGRFTISRDNARNSLFLQLNNLGAEDTAVYYC

DY
H2-

RPSGIPDRFSATTSGTTVTLTISGVQAE

GSY




H2-

ARQPESTIWYYFDYWGQGTLVTVSS


1409

DEADYYCQSADSSGSYVVFGGGTKLT

VV




1369















1.3M
COVD57_
2071
QVQLVESGGGVVQPGRSLRLSCAASGFTFNRIA
2072
AKSPM
COVD57_
2073
NFMLTQPHSVSESPGKTVTISCTGSSGS
2074
QSY
LAMBDA



P1_

MYWVRQAPGKGLEWVAVISFDGSYEYYAESV

GYCTN
P1_L_

IASNYVQWYQQRPGSAPTTVIYEDTQ

DIN




HC_

KGRFAISRDNSKNTLYLQMNSLRAEDTAVYYC

GVCYPD
E9-

RPSGVPDRFSGSIDSSSNSASLTISGLKT

SR




E9-

AKSPMGYCTNGVCYPDSWGQGTLVTVSS

S
1409

EDEADYYCQSYDINSRWVFGGGTKLT

WV




1369















1.3M
COVD57_
2075
QVQLVESGGGVVQPGRSLRLSCAASGFTFNRIA
2076
AKSPM
COVD57_
2077
NFMLTQPHSVSESPGKTVTISCTGSSGS
2078
QSY
LAMBDA



P2_

MYWVRQAPGKGLEWVAVISFDGSYEYYAESV

GYCTN
P2_L_

IASNYVQWYQQRPGSAPTTVIYEDTQ

DIN




HC_

KGRFAISRDNSKNTLYLQMNSLRAEDTAVYYC

GVCYPD
G5-

RPSGVPDRFSGSIDSSSNSASLTISGLKT

SR




G5-

AKSPMGYCTNGVCYPDSWGQGTLVTVSS

S
1409

EDEADYYCQSYDINSRWVFGGGTKLT

WV




1369















1.3M
COVD57_
2079
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
2080
ARGVA
COVD57_
2081
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2082
QSY
LAMBDA



P1_

IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

VDWYF
P1_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

GQVTISADKSISTAYLQWSSLKASDTAMYYCA

DL
B4-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSA




B4-

RGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSALYVFGTGT

LYV




1369






KVTVL








1.3M
COVD57_
2083
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
2084
ARGVA
COVD57_
2085
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2086
QSY
LAMBDA



P1_

IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

VDWYF
P1_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

GQVTISADKSISTAYLQWSSLKASDTAMYYCA

DL
B4-

NRPSGVPDRFSGSKSGTSASLAITGLQ






B4-

RGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSALYVFGTGT






1369






KVTVL








1.3M
COVD57_
2087
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
2088
ARGVA
COVD57_
2089
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2090
QSY
LAMBDA



P1_

IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

VDWYF
P1_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

GQVTISADKSISTAYLQWSSLKASDTAMYYCA

DL
G8-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LS




G8-

RGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSALYVFGTGT

LYV




1369






KVTVL








1.3M
COVD57_
2091
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
2092
ARGVA
COVD57_
2093
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2094
QSY
LAMBDA



P2_

IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

VDWYF
P2_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

GQVTISADKSISTAYLQWSSLKASDTAMYYCA

DL
A2-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSA




A2-

RGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSALYVFGTGT

LYV




1369






KVTVL








1.3M
COVD57_
2095
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
2096
ARGVA
COVD57_
2097
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2098
QSY
LAMBDA



P2_

IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

VDWYF
P2_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

GQVTISADKSISTAYLQWSSLKASDTAMYYCA

DL
B12-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSA




B12-

RGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSALYVFGTGT

LYV




1369






KVTVL








1.3M
COVD57_
2099
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
210
ARGVA
COVD57_
2101
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2102
QSY
LAMBDA



P2_

TGWVRQMPGKGLEWMGIIYPGDSDTRYRPAF

VDWYF
P2_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC

DL
B2-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSA




B2-

ARGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSALYVFGTGT

LYV




1369






KVTVL








1.3M
COVD57_
2103
EVQLVQSGAEVKKPGESLKISCKGSGYSFTTY
2104
ARGVA
COVD57_
2105
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2106
QSY
LAMBDA



P2_

WIGWVRQMPGKGLEWMGIIYPADSDTRYSPSF

VDWYF
P2_L_

IGAGYDVHWYQQLPGTAPKLLIYGYT

DSS




HC_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC

DL
D10-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSA




D10-

ARGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSALYVFGTGT

LYV




1369






KVTVL








1.3M
COVD57_
2107
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
2108
ARGVA
COVD57_
2109
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2110
QSY
LAMBDA



P2_

IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

VDWYF
P2_L_

IGAGSDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

GQVTISADKSISTAYLQWSSLKASDTAMYYCA

DL
E1-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSA




E1-

RGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSALYVFGTGT

LYV




1369






KVTVL








1.3M
COVD57_
2111
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
2112
ARAGFG
COVD57_
2113
QSVLTQPPSVSGAPGQRVTISCTGSNS
2114
QSY
LAMBDA



P1_

YWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKS

VVITYG
P1_L_

NIGAGYDVHWYQQLPGTAPKLLIYGN

DSS




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCARA

SGTDPL
F10-

SNRPSGVPDRFSGSKSGTSASLAITGLQ

LSG




F10-

GFGVVITYGSGTDPLFDYWGQGTLVTVSS

FDY
1409

AEDEADYYCQSYDSSLSGSRVFGGGT

SRV




1369






KLTVL








1.3M
COVD57_
2115
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
2116
ARAGFG
COVD57_
2117
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2118
QSY
LAMBDA



P1_

YWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKS

VVITYG
P1_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCARA

SGTDPL
H3-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSG




H3-

GFGVVITYGSGTDPLFDYWGQGTLVTVSS

FDY
1409

AEDEADYYCQSYDSSLSGSRVFGGGT

SRV




1369






KLTVL








1.3M
COVD57_
2119
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2120
ARDSGY
COVD57_
2121
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2122
QSY
LAMBDA



P2_

TISWVRQAPGQGLEWMGRIIPILGIANYAQKFQ

SGYGST
P2_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

GRVTITADKSTSTAYMELSSLRSEDTAVYYCAR

YYMDV
B1-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSG




B1-

DSGYSGYGSTYYMDVWGKGTTVTVSS


1409

AEDEADYYCQSYDSSLSGSVFGTVTK

SV




1369






VTVL








1.3M
COVD57_
2123
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
2124
ARGVA
COVD57_
2125
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2126
QSY
LAMBDA



P2_

IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

VDWYF
P2_L_

IGAGYDVHWYQQLPGTAPKLLIYGNS

DSS




HC_

GQVTISADKSISSAYLQWSSLKASDTAMYYCA

DL
C10-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LSV




C10-

RGVAVDWYFDLWGRGTLVTVSS


1409

AEDEADYYCQSYDSSLSVLYVFGTGT

LYV




1369






KVTVL








1.3M
COVD57_
2127
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
2128
AKDTGS
COVD57_
2129
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2130
QSY
LAMBDA



P2_

MSWVRQAPGKGLEWVSGMSGSGGITYYADSV

MIVELL
P2_L_

IGAGSDVHWYQKLPGTAPKVFIYGYN

DTS




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

GY
H12-

NRPSGVPDRFSGSKSGTSASLAITGLQ

LRV




H12-

AKDTGSMIVELLGYWGQGTLVTVSS


1409

AEDEADYYCQSYDTSLRVVFGGGTKL

V




1369






TV








1.3M
COVD57_
2131
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYA
2132
ARGPIA
COVD57_
3133
SYVLTQPPSVSVAPGQTARITCGGNNI
2134
QV
LAMBDA



P1_

MHWVRQAPGKGLEYVSGISSNGGSPYYANSV

AAGSYF
P1_L_

GSKNVHWYQQKPGQAPVLVVYDDSD

WD




HC_

KGRFTISRDNSKNTLYLQMGSLRAEDMAVYYC

DY
C8-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




C8-

ARGPIAAAGSYFDYWGQGTLVTVSS


1409

DEADYYCQVWDSSSDPHWVFGGGTK

DPH




1369






LTVL

WV






1.3M
COVD57_
2135
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYA
2136
AREGPF
COVD57_
2137
SYVLTQPPSVSVAPGQTARITCGGNNI
2138
QV
LAMBDA



P2_

MHWVRQAPGKGLEYVSVISSNGGSTYYANSV

LPSLYS
P2_L_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




HC_

KGRFTISRDNSKNTLYLQMGSLRAEDMAVYYC

SSRDAF
C2-

RPSGIPERFSGSNSGDTATLTISRVEAG

SSS




C2-

AREGPFLPSLYSSSRDAFDIWGQGTMVTVSS

DI
1409

DEADYYCQVWDSSSDPHYVFGTGTK

DPH




1369






VTV

YV






1.3M
COVD57_
2139
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
2140
TTDPHC
COVD57_
2141
SYVLTQPPSVSVAPGQTARITCGGNNI
2142
QSY
LAMBDA



P2_

WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY

SSTSCPI
P2_L_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




HC_

AAPVKGRFTISRDDSKNTLYLQMNSLKTEDTA

FYYYY
A10-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




A10-

VYYCTTDPHCSSTSCPIFYYYYMDVWGKGTTV

MDV
1409

DEADYYCQVWDSSSDQGVFGGGTKL

DQ




1369

TVSS




TVL

GV






1.3M
COVD57_
2143
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
2144
TTDPHC
COVD57_
2145
SYVLTQPPSVSVAPGQTARITCGGNNI
2146
QSY
LAMBDA



P2_

WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY

SSTSCPI
P2_L_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




HC_

AAPVKGRFTISRDDSKNTLYLQMNSLKTEDTA

FYYYY
C4-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




C4-

VYYCTTDPHCSSTSCPIFYYYYMDVWGKGTTV

MDV
1409

DEADYYCQVWDSSSDQGVFGGGTKL

DQ




1369

TVSS




TVL

GV






1.3M
COVD57_
2147
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNY
2148
AREIPDI
COVD57_
2149
QSVLTQPPSASGSPGQSVTISCTGTRSD
2150
SSY
LAMBDA



P1_

YIHWVRQAPGKGLEWMGMINPNGGTTRYPLK

LEVVAA
P1_L_

VGGYNYVSWYQQHPGKAPKLIIYEVT

AGI




HC_

FQGRVTMTRDTSTRTVYMELNSLRSEDTALYF

TGSLDD
A9-

KRPSGVPDRFSGSKSGDTASLTVSGLQ

TNL




A9-

CAREIPDILEVVAATGSLDDWGQGSLVTVS


1409

ADDEADYFCSSYAGITNLVFGGGTKL

V




1369






TV








1.3M
COVD57_
2151
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW
2152
ARGIAV
COVD57_
2153
QSVLTQPASVSGSPGQSITISCTGTSSDI
2154
SSY
LAMBDA



P2_

IGWVRQMPGKGLEWVGIIYPGDSDTRYSPSFQ

DWYFD
P2_L_

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




HC_

GQVTISADKSISTAYLQWSSLKASDTAMYYCA

L
A9-

RPSGVSNRFSGSKSGNTASLTISGLQA

STP




A9-

RGIAVDWYFDLWGRGTLVTVSS


1409

EDEADYYCSSYRGSSTPYVFGTGTKV

YV




1369






TVL








1.3M
COVD57_
2155
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY
2156
AREYLE
COVD57_
2157
QSVLTQPASVSGSPGQSITISCTGTSSD
2158
SSY
LAMBDA



P1_

YMHWVRQAPGQGLEWMGRINPNSGGTNYAQ

RYFDGG
P1_L_

VGGYNYVSWYQQHPGKAPKLMIYDV

TPN




HC_

KFQGRVTMTRDTSISTAYMELSRLRSDDTAVY

QRWISY
A5-

SNRPSGVSNRFSGSKSGNTASLTISGLQ

STL




A5-

YCAREYLERYFDGGQRWISYYYMDVWGKGTA

YYMDV
1409

AEDEADYYCSSYTPNSTLVVFGGGTK

VV




1369

VTVSS




LTVL








1.3M
COVD57_
2159
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2160
ARDSEY
COVD57_
2161
QSVLTQPPSASGSPGQSVTISCTGTSSD
2162
YSY
LAMBDA



P1_

AISWVRQAPGQGLEWMGRIIPILGIANYAQKFQ

SSSWYS
P1_L_

VGGYNYVSWYQHHPGKAPKLMIFEV

GG




HC_

GRVTITADKSTSTAYMELSSLRSEDTAVYYCAR

RGYYG
A11-

TKRPSGVPDRFSGSKSGNTASLTVSGL

NN




A11-

DSEYSSSWYSRGYYGMDVWGQGTTVTVSS

MDV
1409

QAEDEADYYCYSYGGNNNAVFGGGT

NA




1369






KLTVL

V






1.3M
COVD57_
2163
QVQLQQWGAGLLKPSETLSRTCAVFGGSFTNY
2164
ARRRSF
COVD57_
2165
DIVMTQSPLSLPVTPGEPASISCRSSQS
2166
MQ
KAPPA



P1_

YWSWIRQSPGKGLEWIGEINDSGITNYNPSLKS

SRPSSID
P1_K_

LLHRNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

RVTISVDTSKNQFSLSLRSVTAADTAVYYCARR

Y
D12-

LGSNRASGVPDRFRGSGSGTDFTLKIS

TLT




D12-

RSFSRPSSIDYWGQGTLVTVSS


1389

RVEAEDVGVYYCMQALQTLTFGQGT






1369






RLEIK








1.3M
COVD57_
2167
QVQLQQWGAGLLKPSETLSRTCAVFGGSFTNY
2168
ARRRSF
COVD57_
2169
DIVMTQSPLSLPVTPGEPASISCRSSQS
2170
MQ
KAPPA



P2_

YWSWIRQSPGKGLEWIGEINDSGITNYNPSLKS

SRPSSID
P2_K_

LLHRNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

RVTISVDTSKNQFSLSLRSVTAADTAVYYCARR

Y
B6-

LGSNRASGVPDRFRGSGSGTDFTLKIS

TLT




B6-

RSFSRPSSIDYWGQGTLVTVSS


1389

RVEAEDVGVYYCMQALQTLTFGQGT






1369






RLEIK








1.3M
COVD57_
2171
QVQLQQWGAGLLKPSETLSRTCAVFGGSFTNY
2172
ARRRSF
COVD57_
2173
DIVMTQSPLSLPVTPGEPASISCRSSQS
2174
MQ
KAPPA



P2_

YWSWIRQSPGKGLEWIGEINDSGITNYNPSLKS

SRPSSID
P2_K_

LXHRNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

RVTISVDTSKNQFSLSLRSVTAADTAVYYCARR

Y
H7-

LGSNRASGVPDRFRGSGSGTDFTLKIS

TLT




H7-

RSFSRPSSIDYWGQGTLVTVSS


1389

RVEAEDVGVYYCMQALQTLTFGQGT






1369






RLEIK








1.3M
COVD57_
2175
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2176
ARDSEY
COVD57_
2177
DIVMTQSPLSLPVTPGEPASISCRSSQS
2179
MQ
KAPPA



P1_

AISWVRQAPGQGLEWMGRIIPILGIANYAQKFQ

SSSWYS
P1_K_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

GRVTITADKSTSTAYMELSSLRSEDTAVYYCAR

RGYYG
B11-

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPP




B11-

DSEYSSSWYSRGYYGMDVWGQGTTVTVSS

MDV
1389

RVEAEDVGVYYCMQALQTPPTFGGG

T




1369






TKVEIK








1.3M
COVD57_
2179
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2180
ARDSEY
COVD57_
2181
DIVMTQSPLSLPVTPGEPASISCRSSQS
2182
MQ
KAPPA



P1_

AISWVRQAPGQGLEWMGRIIPILGIANYAQKFQ

SSSWYS
P1_K_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

GRVTITADKSTSTAYMELSSLRSEDTAVYYCAR

RGYYG
F11-

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPP




F11-

DSEYSSSWYSRGYYGMDVWGQGTTVTVSS

MDV
1389

RVEAEDVGVYYCMQALQTPPTFGGG

T




1369






TKVEIK








1.3M
COVD57_
2183
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2184
ARDSEY
COVD57_
2185
DIVMTQSPLSLPVTPGEPASISCRSSQS
2186
MQ
KAPPA



P2_

AISWVRQAPGQGLEWMGRIIPILGIANYAQKFQ

SSSWYS
P2_K_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

GRVTITADKSTSTAYMELSSLRSEDTAVYYCAR

RGYYG
A11-

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPP




A11-

DSEYSSSWYSRGYYGMDVWGQGTTVTVSS

MDV
1389

RVEAEDVGVYYCMQALQTPPTFGGG

T




1369






TKVEIK








1.3M
COVD57_
2187
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2188
ARDSEY
COVD57_
2189
DIVMTQSPLSLPVTPGEPASISCRSSQS
2190
MQ
KAPPA



P2_

AISWVRQAPGQGLEWMGRIIPILGIANYAQKFQ

SSSWYS
P2_K_

LLHSNGYNYLDWYLQKPGQSPQLLIY

ALQ




HC_

GRVTITADKSTSTAYMELSSLRSEDTAVYYCAR

RGYYG
E2-

LGSNRASGVPDRFSGSGSGTDFTLKIS

TPP




E2-

DSEYSSSWYSRGYYGMDVWGQGTTVTVSS

MDV
1389

RVEAEDVGVYYCMQALQTPPTFGGG

T




1369






TKVEIK








1.3M
COVD57_
2191
EVQLVESGGGLVKPGRSLRLSCTASGFTFGDYA
2192
TRARSV
COVD57_
2193
DIVMTQTPLSLSVTPGQPASISCKSSQS
2194
MQ
KAPPA



P1_

MSWFRQAPGKGLEWVGFIRSKAYGGTTEYAA

TMVWY
P1_K_

LLHSDGKTYLYWYLQKPGQPPQLLIY

SIQ




HC_

SVKGRFTISRDDSKSIAYLQMNSLKTEDTAVYY

RYYMD
B8-

EVSNRFSGVPDRFSGSGSGTDFTLKISR

LPY




B8-

CTRARSVTMVWYRYYMDVWGKGTTVTVSS

V
1389

VEAEDVGVYYCMQSIQLPYTFGQGTK

T




1369






LEIK








1.3M
COVD57_
2195
QVQLQQWGAGLLKPSETLSRTCAVYGGSFTDY
2196
ARGAK
COVD57_
2197
EIVLTQSPATLSLSPGERATLSCRASQS
2198
QQ
KAPPA



P2_

YWSWIRQSPGKGLEWIGEINHSGSTNYNPFLKS

GDSDW
P2_K_

VSNYLAWYQQKPGQAPRLLISDASNR

GD




HC_

RVTLSVDTSKNQFSLKLDSLTVADTAIYYCARG

YFDL
E3-

ATGVPDRFSGSGSGTDFTLTINSLEPED

NW




E3-

AKGDSDWYFDLWGRGTLVTVSS


1389

FAVYYCQQGDNWPRMYTFGQGTKLQ

PR




1369






IK

MY













T






1.3M
COVD57_
2199
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNY
2200
ARDLA
COVD57_
2201
DIQLTQSPSFLSASVGDRVTITCRASQG
2202
QQL
KAPPA



P1_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

VYGMD
P1_K_

ISSYLAWYQQKPGKAPKLLIYAASTLQ

NSY




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYHCA

V
F9-

SGVPSRFSGSGSGTEFTLTISSLQPEDF

PPV




F9-

RDLAVYGMDVWGQGTTVTVSS


1389

ATYYCQQLNSYPPVTFGQGTRLEIK

T




1369















1.3M
COVD57_
2203
QVQLQESGPGLVKPSETLSLTCTVSGASINSYY
2204
AREVV
COVD57_
2205
EIVLTQSPATLSLSPGERASLSCRASQS
2206
QQ
KAPPA



P1_

WTWIRQPPGKGLEWIGYIHDSGNTNYNPALRS

VQSAK
P1_K_

VGTYLAWYQQKVGQPPRLLIYDASNR

RSS




HC_

RVTISLDTSKNQFSLKVRSVTAADTAVYYCARE

DWSHY
F3-

ATGIPARFSGSGSGTDFTLTISSLDPED

WF




F3-

VVVQSAKDWSHYYYYMDVWGKGTTVSVSS

YYYMD
1389

FAVYYCQQRSSWFVTFGQGTRLEIK

VT




1369



V











1.3M
COVD57_
2207
QVQLQESGPGLVKPSETLSLTCTVSGASINSYY
2208
AREVV
COVD57_
2209
EIVLTQSPATLSLSPGERASLSCRASQS
2210
QQ
KAPPA



P1_

WTWIRQPPGKGLEWIGYIHDSGNTNYNPALRS

VQSAK
P2_K_

VGTYLAWYQQKVGQPPRLLIYDASNR

RSS




HC_

RVTISLDTSKNQFSLKVRSVTAADTAVYYCARE

DWSHY
B11-

ATGIPARFSGSGSGTDFTLTISSLDPED

WF




B11-

VVVQSAKDWSHYYYYMDVWGKGTTVSVSS

YYYMD
1389

FAVYYCQQRSSWFVTFGQGTRLEIK

VT




1369



V











1.3M
COVD57_
2211
QVQLQESGPGLVKPSETLSLTCTVSGASINSYY
2212
AREVV
COVD57_
2213
EIVLTQSPATLSLSPGERASLSCRASQS
2214
QQ
KAPPA



P2_

WTWIRQPPGKGLEWIGYIHDSGNTNYNPALRS

VQSAK
P2_K_

VGTYLAWYQQKVGQPPRLLIYDASNR

RSS




HC_

RVTISLDTSKNQFSLKVRSVTAADTAVYYCARE

DWSHY
D11-

ATGIPARFSGSGSGTDFTLTISSLDPED

WF




D11-

VVVQSAKDWSHYYYYMDVWGKGTTVSVSS

YYYMD
1389

FAVYYCQQRSSWFVTFGQGTRLEIK

VT




1369



V











1.3M
COVD57_
2215
QVQLQESGPGLVKPSETLSLTCTVSGASINSYY
2216
AREVV
COVD57_
2217
EIVLTQSPATLSLSPGERASLSCRASQS
2218
QQ
KAPPA



P2_

WTWIRQPPGKGLEWIGYIHDSGNTNYNPALRS

VQSAK
P2_K_

VGTYLAWYQQKVGQPPRLLIYDASNR

RSS




HC_

RVTISLDTSKNQFSLKVRSVTAADTAVYYCARE

DWSHY
F10-

ATGIPARFSGSGSGTDFTLTISSLDPED

WF




F10-

VVVQSAKDWSHYYYYMDVWGKGTTVSVSS

YYYMD
1389

FAVYYCQQRSSWFVTFGQGTRLEIK

VT




1369



V











1.3M
COVD57_
2219
QVQLQESGPGLVKPSETLSLTCTVSGGSMTSYY
2220
AREVV
COVD57_
2221
EIVLTQSPATLSLSPGERATLSCRASQS
2222
QQ
KAPPA



P2_

WNWIRHTPGKDLEWIGYIDYSGNTNYNPSLRS

VSSPKD
P2_K_

VSTYLTWYQQKPGQAPRLLIYDASNR

RST




HC_

RGTISVDTSKNQFSLRVTSVTAADTAVYYCARE

WSHYY
A6-

ATGIPARFSGSGSGTDFTLTITSLEPEDF

WF




A6-

VVVSSPKDWSHYYYYMDVWGKGTTVTVSS

YYMDV
1389

ALYYCQQRSTWFVTFGQGTRLEIK

VT




1369















1.3M
COVD57_
2223
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
2224
TRDDSS
COVD57_
2225
DIQMTQSPSSLSASVGDRVTITCRASQQQS
2226
QQS
KAPPA



P1_

WMHWVRQAPGKGLVWVSRINSDGSRRAYATS

WPHFFD
P1_K_

SIINYLNWYQQKPGKAPKLLIYTASSL

YSS




HC_

VKGRFTISRDNAKNTLYLQMDSLRDEDTAVYY

N
G3-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PL




G3-

CTRDDSSWPHFFDNWGQGTLVTVSS


1389

FATYFCQQSYSSPLWTFGQGTKVEIK

WT




1369















1.3M
COVD57_
2227
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
2228
ARGTTF
COVD57_
2229
DIQMTQSPSSLSASVGDRVXITCRASQ
2230
QQS
KAPPA



P2_

MHWVRQATGKGLEWVSAIGTAGDTYYPGSVK

NHYYY
P2_K_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




HC_

GRFTISRENAKNSLYLQMNSLRAGDTAVYYCA

MDV
C12-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




C12-

RGTTFNHYYYMDVWGKGTTVTVSS


1389

FATYYCQQSYSTPPWTFGQGTKVEIK

T




1369















1.3M
COVD57_
2231
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
2232
ARHWM
COVD57_
2233
DIQMTQSPSSLSASVGDRVTITCRASQQQS
2234
QQS
KAPPA



P1_

YWSWIRQPPGKGLEWIGEVNHSGSTNYNPSLK

PRDYYY
P1_K_

SISSYLNWYQQKPGKAPKLLIYAASSL 

YST




HC_

SRVTISVDTSKNQFFLKLSSVTAADTAVYYCAR

YGMDV
B9-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PRT




B9-

HWMPRDYYYYGMDVWGQGTTVTVSS


1389

FATYYCQQSYSTPRTFGQGTKVEIK






1369















1.3M
COVD57_
2235
QVQLQQWGAGLLKPSETLSRTCGVYGGSFRDY
2236
ARAYVS
COVD57_
2237
DIQMTQSPSSLSASVGDRVTITCRASQQQS
2238
QQS
KAPPA



P1_

YWSWIRQSPGKGLEWIGEINHSGSTNYNPSLLG

SVSEDY
P1_K_

SISTYLNWYQQKPGKAPELLIYAASSF 

YTT




HC_

RVTISVDTSKNQFSLRLTSVTAADTAVYYCARA

FDY
H10-

QSGVPSRFSGSGSGTDFTLTIRSLEPED

PYT




H10-

YVSSVSEDYFDYWGQGTLVTVSS


1389

SATYYCQQSYTTPYTFGQGTKLEIK






1369















1.3M
COVD57_
2239
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNY
2240
ARDGE
COVD57_
2241
DIQMTQSPSSLSASVGDRVTITCQASQ
2242
QQ
KAPPA



P1_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

GQRETD
P1_K_

DISNYLNWYQQKPGKAPKLLIYDASN

YD




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

Y
C3-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




C3-

RDGEGQRETDYWGQGTLVTVSS


1389

DIATYYCQQYDNLPRTFGQGTKVEIK

RT




1369















1.3M
COVD57_
2243
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
2244
TRDDSS
COVD57_
2245
EIVMTQSPATLSVSPGERATLSCRASQ
2246
QQ
KAPPA



P2_

WMHWVRQAPGKGLVWVSRINSDGSRRAYATS

WPHFFD
P2_K_

SVSSNLAWYHQKPGQAPRLLIYGAST

YD




HC_

VKGRFTISRDNAKNTLYLQMDSLRDEDTAVYY

N
B7-

RATGIPARFSGSGSGTEFTLTISSLQSE

NW




B7-

CTRDDSSWPHFFDNWGQGTLVTVSS


1389

DFAVYYCQQYDNWPLFGQGTRLEIK

PL




1369















1.3M
COVD57_
2247
EVQLVESGGGLVKPGGSLRLSCAASGLTFTAY
2248
ARDVAS
COVD57_
2249
EIVMTQSPATLSLSPGERATLSCRASQS
2250
QQ
KAPPA



P2_

RMNWVRQAPGKGLEWLSSISNTNGDIYYADSV

NYAYF
P2_K_

VSSNLAWYHQKPGQAPRLLIYGASTR

YD




HC_

KGRFTISRDNAKNSLYLQMNSLRADDTAVYYC

DL
E11-

ATGIPARFSGSGSGTEFTLTISSLQSEDF

NW




E11-

ARDVASNYAYFDLWGQGTLVTVSS


1389

AVYYCQQYDNWPLFGQGTRLEIK

PL




1369















1.3M
COVD57_
2251
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSS
2252
AANHCS
COVD57_
2253
EIVLTQSPGTLSLSPGERATLSCRASQSQQ
2254
QQ
KAPPA



P1_

AMQWVRQARGQRLEWIGWIVVGSGNTNYAQ

GGSCYD
P1_K_

VSSSYLAWYQQRPGQAPRLLIYGASS

YGS




HC_

KFQERVTITRDMSTSTAYMELSSLRSEDTAVYY

GFDI
E6-

RATGIPDRFSGSGSGTDFTLTISRLEPE

SPW




E6-

CAANHCSGGSCYDGFDIWGQGTMVTVSS


1389

DFAVYYCQQYGSSPWMFGQGTKVEI

M




1369






K








1.3M
COVD57_
2255
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSS
2256
AAPYCS
COVD57_
2257
EIVLTQSPGTLSLSPGERATLSCRASQS
2258
QQ
KAPPA



P2_

AMQWVRQARGQRLEWIGWIVVGSGNTNYAQ

GGSCND
P1_K_

VSSSYLAWYQQKPGQAPRLLIYGASS

YGS




HC_

KFQERVTITRDMSTSTAYMELSSLRSEDTAVYY

AFDI
H6-

RATGIPDRFSGSGSGTDFTLTISRLEPE

SPW




H6-

CAAPYCSGGSCNDAFDIWGQGTMVTVSS


1389

DFAVYYCQQYGSSPWTFGQGTKVEIK

T




1369















1.3M
COVD57_
2259
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
2260
TTDVGA
COVD57_
2261
EIVLTQSPXSLSLSPGERATLSCGASQS
2262
QQ
KAPPA



P2_

WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY

DSSSAY
P2_K_

VSSSYLAWYQQKPGLAPRLLIYDASSR

YGS




HC_

AAPVKGRFTISRDDSKNTLYLQMNSLKTEDTA

YYYYM
C3-

ATGIPDRFSGSGSGTDFTLTISRLEPED

SPY




C3-

VYYCTTDVGADSSSAYYYYYMDVWGKGTTV

DV
1389

FAVYYCQQYGSSPYTFGQGTKLEIK

T




1369

TVSS













1.3M
COVD57_
2263
EVQLVQSGPVLVKPGPSVKISCKASGFTFTDYY
2264
ARSGPD
COVD57_
2265
EIVMTQSPATLSVSPGERATLSCRASQ
2266
QQ
KAPPA



P2_

MHWVKQSHGKSLEWIGLVYPYNGGTSYNQKF

YFDY
P2_K_

SVSSNLAWYQQKPGQAPRLLIYGAST

YN




HC_

KGKATLTVDTSSSTAYMELNSLTSEDSAVYYC


G11-

RATGIPARFSGSGSGTEFTLTISSLQSE

NW




G11-

ARSGPDYFDYWGQGTTLTVSS


1389

DFAVYYCQQYNNWPRTFGGGTKVEI

PRT




1369






K








6.2M
COV072_
2267
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2268
ARDPSG
COV072_
2269
QSVLTQPPSVSGAPGQRVTISCTGSSS
2270
QSY
LAMBDA



6mo_

AISWVRQAPGQGLEWMGGIIPIFGTANYAQKF

SYPHN
6mo_P4_

NIGAGYDVHWYQQLPGTAPKLLIYG

DSS




P4_IGG_

QGRVTITADESTSTAYMELSSLRFEDTAVYYC

WFDP
Lambda_

NSNRPSGVPDRFSGSKSGTSASLAITG

LSG




17-

ARDPSGSYPHNWFDPWGQGTLVTVSS


17-

LQAEDEADYYCQSYDSSLSGVFGGG

V




P1369




P1409

TKLTVL








6.2M
COV072_
2271
QVQLQQWGAGLLKPSETMSLTCDVSGGSFSG
2272
ARCYD
COV072_
2273
SYVLTQPPSVSVAPGKTARITCGGDY
2274
QVW
LAMBDA



6mo_

YYWSWIRQPPGKGLEWIGDINHSGSTNYNASL

VLTGL
6mo_P4_

IGSKNVHWYQQKPGQAPVLVISYDT

DST




P4_IGG_

KSRVSILVDTSKNQFSLKLSSVTAADTAVYYC

MDV
Lambda_

DRPSGIPERLSGSNSGNTATLTISRVE

TGH




1-

ARCYDVLTGLMDVWGQGTTVTVSS


1-

AGDEADYYCQVWDSTTGHPGVVFG

PGV




P1369




P1409

GGTKLTVL

V






6.2M
COV072_
2275
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSN
2276
ARICRS
COV072_
2277
QSVLTQPASVSGSPGQSITISCTGTSS
2278
CSY
LAMBDA



6mo_

YYWSWIRQHPGKGLDWIGYIFYSGSTYYNPSL

TSCFYG
6mo_P4_

DVGSYNLVSWYQQHPGKAPKLIIYE

ARII




P4_IGG_

KSRLTIAVDTSENQFSLKLSSVTAADTAVYYCA

AFDI
Lambda_

VTKRPSGVSNRFSGSKSGNTASLTISG

TL




24-

RICRSTSCFYGAFDIWGQGTMVTVSS


24-

LQAEDEADYYCCSYARIITLFGGGTK






P1369




P1409

LTX








6.2M
COV072_
2279
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSNY
2280
ARFDRY
COV072_
2281
QSVLTQPASVSGSPGQSITISCTGTSS
2282
CSY
LAMBDA



6mo_

YWGWIRQPPGKGLEWIGNIYYSGITYYIPSLKS

CSSTICY
6mo_P4_

DIGSYDFVSWYQQHPGKAPKLMVYE

AGT




P4_IGG_

RVTISVDTSKNQFSLKLSSVTAADTALYYCARF

AFDG
Lambda_

VNKRPSGISNRFSGSKSGNTASLTISG

TTL




38-

DRYCSSTICYAFDGWGQGTLVTVST


38-

LQAEDEADYHCCSYAGTTTLFGGGT






P1369




P1409

KVTVL








6.2M
COV072_
2283
QVQLQESGPGLVKPSGTLSLICAVSGGSISSNK
2284
TRVML
COV072_
2285
QSVLTQPASVSGSPGQSITISCTGTSS
2286
SAY
LAMBDA



6mo_

WWSWVRQSPGKGLEWIGEIFHNGNTNYNPSL

GFGEFD
6mo_P4_

DVGTYNYVSWYQQHPGKAPKLILYD

TGS




P4_IGG_

KSRVTISIDKSKNQFSLKLNSVTAADTAVYYCT

Y
Lambda_

VSDRPSGVSNRFSGSKSGNTASLTISG

SPL




43-

RVMLGFGEFDYWGQGTLVTVSS


43-

LQAEDEADYYCSAYTGSSPLYVFGG

YV




P1369




P1409

GTKVTV








6.2M
COV072_
2287
EVQLVQSGAEVKKPGESLRISCKGSGYTFTNY
2288
ARHSQG
COV072_
2289
QSVLTQPPSASATPGQRVTVSCSGSSS
2290
EAW
LAMBDA



6mo_

WISWVRQMPGKGLEWMGTITLIDSDTNYSPSF

YNYGA
6mo_P4_

NIGSNTVNWYQHLPETAPKLLIYSNN

DDS




P4_IGG_

QGLVTISDDRSSSTAYLQWSSLKTSDTAMYYC

WYYSG
Lambda_

QRPSGVPDRFSGSKSGTSASLAISGLQ

VLG




45-

ARHSQGYNYGAWYYSGLHVWGQGTTVTVSS

LHV
45-

SEDEADYYCEAWDDSVLGPVFGGGT

PV




P1369




P1409

KLTVL








6.2M
COV072_
2291
EVQLLESGGGLVQPGGSLRLSCADSGFSFSTYG
2292
AKNIAE
COV072_
2293
SYVLTQPPSVSVSPGQTASITCSGDKL
2294
QAW
LAMBDA



6mo_

MSWVRQAPGKGLEWVSTISGSGDNTYHADSV

MSTFDD
6mo_P4_

GDKYACWYQQKPGQSPVMVIYQDT

DSS




P4_IGG_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

YFYYY
Lambda_

KRPSGIPERFSGSNSGNTATLTISGTQ

TFY




50-

AKNIAEMSTFDDYFYYYGMDVWGQGTTVTVS

GMDV
50-

AMDEADYYCQAWDSSTFYVFGTGT

V




P1369

S


P1409

KVTVL








6.2M
COV072_
2295
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
2296
AREVSG
COV072_
2297
SYVLTQPPSVSVAPGKTASITCGGD
2298
QVW
LAMBDA



6mo_

AMHWVRQAPGKGLEWVAVISNDGSSKHYGD

TYEKDY
6mo_P4_

GSKSVHWYQQKPGQAPVLVIYYDTD

DSP




P4_IGG_

SVKGRFTNSRDNSKNTVFLQMNSLRAEDTAVY

FDY
Lambda_

RPSGIPERFSGSNSGNTATLTISRAEA

DHY




53-

YCAREVSGTYEKDYFDYWGQGTLVAVS


53-

GDEADYYCQVWDSSPDHYVFGTGT

V




P1369




P1409

RVTVL








6.2M
COV072_
2299
QVQLQESGPGLVKPSQSLSLTCTVSGVSISSGD
3000
ARFSRL
COV072_
3001
QSVLTQPRSVSGSPGQSVTISCTGTSS
3002
CSY
LAMBDA



6mo_

YYWSWIRQHPGKGLEWIGYIFYSGITYYNPSLK

LGANW
6mo_P4_

DVGSYDYVSWYQQHPGKAPKLMIY

VGT




P4_IGG_

SQVIISVDTSKNQFSLKLSSVTAADTAVYYCAR

FDP
Lambda_

DVTKRPSGVPDRFSGSKSGNTASLTIS

VL




58-

FSRLLGANWFDPWGQGTLVTVSS


58-

GLQAEDEADYYCCSYVGTVLFGGGT






P1369




P1409

KLTVL








6.2M
COV072_
2303
QVQLVESGGGVVQPGRSLRLSCAASGFTFNSY
2304
ARDPLR
COV072_
2305
QSVLTQPPSASATPGQRVTISCSGSSS
2306
STW
LAMBDA



6mo_

GMHWVRQAPGKGLEWVAVIWYDGSNEYYAD

DILTGY
6mo_P4_

NIGSDTVNWYQQLPGTAPKLLIYSND

DDG




P4_IGG_

SVKGRITISRDNSKNTLYLQMNSLRAEDTAVY

HYKYY
Lambda_

QRPSGVPDRFSGSKSGTSASLAISGLQ

LNG




6-

YCARDPLRDILTGYHYKYYYMDVWGKGTTVT

YMDV
6-

SEDEADYYCSTWDDGLNGVVFGGG

VV




P1369

VSS


P1409

TKLTVL








6.2M
COV072_
2309
QVQLQESGPGLVKPSGTLSLTCAVSAGSISSNN
2308
AKGGD
COV072_
2309
QSVLTQPASVSGSPGQSITISCTGTSS
2310
SSFA
LAMBDA



6mo_

WWSWVRQPPGKGLEWIGEVYHNGNINYNPSL

RAMGP
6mo_P4_

DVGANNYVSWYQQHPGKAPKLMIY

SSST




P4_IGG_

KSRVTLSVDKSKNQFSLKLSSVTAADTAVYYC

EYFDS
Lambda_

DVNERPSGVSNRFSGSKSGNTASLTIS

LL




73-

AKGGDRAMGPEYFDSWGQGTLVTVSS


73-

GLQTEDEADYYCSSFASSSTLLFGGG






P1369




P1409

TKLTVL








6.2M
COV072_
2311
QVQLQESGPGLVKPSQTLSLTCAVSGVSINSGD
2312
ARVARS
COV072_
2313
QSVLTQPASVAGSPGQSVTISCTGTSS
2314
CSY
LAMBDA



6mo_

YYWTWIRQHPGKGLEWIGYIYYSGVTYYNPSL

YYPGAF
6mo_P4_

DVGSYDLVSWYQQHPGKAPKLMIFE

APS




P4_IGG_

KSRVTISVDTSKSQFSLKLSSVTAADTATYYCA

FYDSSG
Lambda_

VSKRPSGVSPRFSASKSGNTASLTISG

YTS




80-

RVARSFYDSSGYYPGAFDIWGQGTMVTVSS

DI
80-

LQPEDEADYYCCSYAPSYTSFGGGTK






P1369




P1409

LTVL








6.2M
COV072_
2315
QVQLVQSGAEVKRPGASVKVSCKTSGYTFTNY
2316
ARDFFL
COV072_
2317
QSVLTQPASVSGSPGQSITISCTGTNS
2318
CSY
LAMBDA



6mo_

YIHWVRQAPGQGLEWVGMINPDGGSTSTAQK

IPAQAG
6mo_P4_

DVGSYNLVSWYQQHPGKAPKLMIYE

ASS




P4_IGG_

FQGRVTMTADTSTSTVYMELSSLRSEDAAVYF

FDY
Lambda_

VTKRPSGVSNRFSGSKSGHTASLTISG

RTW




94-

CARDFFLIPAQAGFDYWGQGTLVTVSS


94-

LQAEDEADYYCCSYASSRTWVFGGG

V




P1369




P1409

TKLTVL








6.2M
COV072_
2319
EVQLVESGGGLVQPGGSLRLSCSASGFTFSTYS
2320
VTWEL
COV072_
2321
QSVLTQPASVSGSPGQSITISCTGTSS
2322
SSFT
LAMBDA



6mo_

MHWVRQAPGKGLEYVSAISNNGGSTYYADSV

NDY
6mo_P4_

DVGGYYSVSWYQQHPGKAPKLMIY

TSTT




P4_IGG_

KGRFTISRDNSKNTLYLQMSSLRAEDTAVYYC


Lambda_

DVTNRPSGVSDRFSGSKSGNTASLTIS

RV




9-

VTWELNDYWGQGTLVTVSS


9-

GLQAEDEADYYCSSFTTSTTRVFGGG






P1369




P1409










6.2M
COV072_
2323
EVQLVESGGALVQPGGSLRLSCAASGFTFSSYS
2324
ARMRG
COV072_
2325
SYVLTQPPSVSVAPGQTARITCGGNN
2326
QVW
LAMBDA



6mo_

MNWVRQAPGKGLEWISYISRSSGSIYYADSVK

STYDGE
6mo_P5_

IGSKSVHWYQQKPGQAPVLVIYYDS

DGS




P5_IGG_

GRFTISRDNAKISLYLQMNSLRAEDTAVYYCA

DYFDL
Lambda_

DRPSGIPERFSGSNSGNTATLTIRRVE

SDL




10-

RMRGSTYDGEDYFDLWGQGTLVTVSS


10-

AGDEADYYCQVWDGSSDLPWVFGG

PWV




P1369




P1409

GTKLTVL








6.2M
COV072_
2327
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGD
2328
ARVRY
COV072_
2329
QSVLTQPPSVSGAPGQRVTISCTGSSS
2330
QSY
LAMBDA



6mo_

YYWSWIRQPPGQGLECIGYIYYRGSTYYNPSL

CSGSSC
6mo_P5_

NIGTGYGVHWYQRLPGTAPKLLIYG

DSS




P5_IGG_

KSRVTMSVDTSKNQFSLNLTSVTAADTA

LDNNW
Lambda_

NSNRPSGVPDRFSGSRSGTSASLAITG

LSD




12-

ARVRYCSGSSCLDNNWFDPWGQGTLVTVSS

FDP
12-

LQAEDEGDYYCQSYDSSLSDVLFGG

VL




P1369




P1409










6.2M
COV072_
2331
QVQLQESGPGLVKPSGTLSLSCTVTGGSISSNN
2332
ARGDV
COV072_
2333
QSALTQPASVSGSPGQSITFSCTGTSS
2334
SSY
LAMBDA



6mo_

WWSWVRQSPVKGLEWIGEIYHNGNINYNPSL

LDWFDP
6mo_P5_

DVGAYNYISWYQQHPGKAPKLMIYD

AGN




P5_IGG_

KSRVTMSIDKSKNHFSLKLSSVTAADTA


Lambda_

IGVNNRPSGVSRRFSGSKSGNTASLTISG

STV




13-

ARGDVLDWFDPWGQGTLVTVS


13-

LQSEDEADYFCSSYAGNSTVRFGGGT

R




P1369




P1409

KLTVL








6.2M
COV072_
2335
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2336
AKAAL
COV072_
2337
NFMLTQPHSVSESPGKTVTISCTGSSG
2338
QSY
LAMBDA



6mo_

AIHWVRQAPGKGLEWVAVISFDGSNKYYRDS

GYCTN
6mo_P5_

SIASNYVQWYQQRPGSAPTTVIYEDN

DINS




P5_IGG_

VKGRFTISRDNGKNTLYLQMNSLRAEDTAVYY

GVCYC
Lambda_

QRPSGVPDRFSGSIDSSSNSASLSISGL

LWV




19-

CAKAALGYCTNGVCYCDNWGQGTLVTVSS

DN
19-

KTEDEADYYCQSYDINSLWVFGGGT






P1369




P1409

RLTVL








6.2M
COV072_
2339
QVQLQESGPGLVKPSGTLSLTCAVSGGSINSTH
2340
ARDTW
COV072_
2341
QSALTQPASVSGSPGQSITISCTGTSS
2342
SSY
LAMBDA



6mo_

WWSWVRQPPGKGLEWIGEIHHGGNTNYNPSL

SMGAG
6mo_P5_

DVGAYNYVSWYQQHPGEAPKLIIYD

TSS




P5_IGG_

KSRATISVDRSKNQFSMKLTSVNAADTAVYYC

P
Lambda_

VSDRPSGVSNRFSGSKSGNTASLTISG

TL




1-

ARDTWSMGAGPWGQGTLVTVSS


1-

LQAEDEADYHCSSYTSSSTLFGGGTK






P1369




P1409

VTVL








6.2M
COV072_
2343
QVQLQESGPGLVKPSQTLSLTCSVSGGSISSGN
2344
ARLCRF
COV072_
2345
QSVLTQPASVSGSPGQSITISCTGTSS
2345
CSY
LAMBDA



6mo_

YYWSWIRQRPGKGLEWIGNIFYSGITYYNPSLK

AADSTN
6mo_P5_

DVGSYDLVSWYQQHPGKAPKLMIYE

TGN




P5_IGG_

SPVTISVDTSKSQFSLKLTSVSAADTAVYYCAR

CYSAFD
Lambda_

VSKRPSGISSRFSGSKSGNTASLTISGL

VV




29-

LCRFAADSTNCYSAFDIWGQGTMVTVSS

I
29-

QAEDEADYYCCSYTGNVVFGGGTKL






P1369




P1409

TVL








6.2M
COV072_
2347
QVQLQESGPGLVKPSQTLSLACTVSGGSISGGA
2348
AGFDVS
COV072_
2349
QSVLTQPRSVSGSPGQSVTISCTGTSS
2350
CSY
LAMBDA



6mo_

YYWSWIRQHPGKGLEWIGYIYYSANTYYNPSL

YYDAF
6mo_P5_

DVGVYNYVSWYQQHPGKAPKLIISN

AGS




P5_IGG_

QSRVTISVDTSKKQFSLKLTSVTAADTAIYYCA

DI
Lambda_

VHKRPSGVPDRFSGSKSGNTASLTIS

YVY




34-

GFDVSYYDAFDIWGQGTMVTVSS


34-

GLQAEDEAEYYCCSYAGSYVYVFGT

V




P1369




P1409

GTTVTVL








6.2M
COV072_
2351
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNF
2352
ARDQD
COV072_
2353
SYVLTQPPSVSVSPGQTARITCSGDAL
2354
QSA
LAMBDA



6mo_

WMSWVRQPPGKGLEWVANINQDGSDEYFVGS

VLVVG
6mo_P5_

PRQYVYWYQQRPGQAPVLVIYKDTE

DSR




P5_IGG_

VKGRFTISRDNAKNSLYLQMNNLRVEDTAVY

GTPEAF
Lambda_

RPSGIPERFSGSTSGTTVTLTISGVQA

GQV




49-

YCARDQDVLVVGGTPEAFDIWGQGTMVTVSS

DI
49-

DDEADYYCQSADSRGQVFGGGTKLT






P1369




P1409

VL








6.2M
COV072_
2355
QLQLQESGPGLVKPSETLSLTCSVSGGSISSSNY
2356
ARLVRR
COV072_
2357
QSVLTQPASVSGSPGQSITISCTGTSS
2358
CSY
LAMBDA



6mo_

YWVWIRQPPGKGLEWIGSIYYSGTTYYNPSLK

FDFWEP
6mo_P5_

DVGSYDLVSWYQHHPGKAPKLMIYE

VGS




P5_IGG_

SRVTISVDTSKNQFSLKVDTVTAADTAVYYCA

PGGFDP
Lambda_

VTKRPSGVSNRFSGSKSDNTASLTISG

STV




50-

RLVRRFDFWEPPGGFDPWGQGTLVTVSS


50-

LQAEDEADYFCCSYVGSSTVLFGGG

L




P1369




P1409

TKLTVL








6.2M
COV072_
2359
QLQLQESGPGLVKPSETLSLTCSVSGGSLSNTA
2360
LSGNYL
COV072_
2361
QSVLTQPASVSASPGQSITMSCTGTSS
2362
CSY
LAMBDA



6mo_

YYWGWIRQPPGKGLEWIGSIYYSGNTYSNPSL

PYSSLD
6mo_P5_

DVGTYNLVSWYQQHPGKAPKLLMF

AGN




P5_IGG_

KSRVTMSADRSKNQFSLKLSSVTAADTAVYYC

Y
Lambda_

EVNKRPSGVSDRFSGSKSGNTASLTIS

STW




51-

LSGNYLPYSSLDYWGQGTLVTVSS


51-

GLQAEDEADYHCCSYAGNSTWVFG

V




P1369




P1409

GGTKVTVL








6.2M
COV072_
2363
QVQLVESGGGVVQPGKSLRLSCAASGFTFASF
2364
ARGDY
COV072_
2365
QSVLTQPPSASGTPGQRVTISCSGSSS
2366
AAAW
LAMBDA



6mo_

AMHWVRQAPGKGLEWVSSFDGSNKYYADS

YGSGTY
6mo_P5_

NIGTYPVNWYQYLPGTAPKLLIYSNN

DDS




P5_IGG_

VKGRFTISRDNSKNTVHLQMTSLRAEDTALYF


Lambda_

QRPSGVPDRFSGSKSGTSASLAISGLQ

LNV




58-

CARGDYYGSGTYFNPLPNFDYWGQGSLVTVSS


58-

SEDEADYFCAAWDDSLNVFWVFGG

FWV




P1369




P1409

GTKLTVL








6.2M
COV072_
2367
QVQLVQSGAEVKKPGASVKVSCKASGYSFAN
2368
ARPKW
COV072_
2369
QSVLTQPPSVSAAPGQNVTISCSGSTS
2370
GTW
LAMBDA



6mo_

YYMHWVRQAPRQGLEWIGIVNPSDGSTTYAQ

ELQPSG
6mo_P5_

NILFYYVSWYQHLPGTAPKLLIFDSN

DSG




P5_IGG_

KFQGRVTITRDTSTSTVYMQVSSLKSDDTAVY

GYHYY
Lambda_

NRPSGIPDRFSGSKSGTSATLRITGLQ

LTA




74-

YCARPKWELQPSGGYHYYQMDLWGRGTTVT

QMDL
74-

TGDEADYYCGTWDSGLTAPVFGGGT

PV




P1369

VSS


P1409

KLTV








6.2M
COV072_
2371
QVQLVQSGAEVKKPGASVKVSCKTSGYTFTN
2372
ARVMGI
COV072_
2373
NFMLTQPHSVSESPGKTVTISCTGSSG
2374
QSY
LAMBDA



6mo_

YGISWVRQAPGQGLEWMGWISGFNGNTKYAQ

IVTGPT
6mo_P5_

SIASNYVQWYQQRPGSAPTTVIYEDN

DGS




P5_IGG_

KVQGRVTMTTDASTSTAYMELRSLRSDDTAV

Y
Lambda_

QRPSGVPDRFSGSIDSSSNSASLTISGL

TWV




79-

YYCARVMGIIVTGPTYWGQGTLVTVSS


79-

KTEDEADYSCQSYDGSTWVFGGGTK






P1369




P1409

LTVL








6.2M
COV072_
2375
QVQLQESGPGLVKPSQTLSLSCTVSGGSISSDD
2376
ARWKR
COV072_
2377
QSALTQPRSVSGSPGQSVTISCTGTSS
2378
CSY
LAMBDA



6mo_

YYWSWIRQPPGKGLEWIGYIYYSGSTYYNSSL

WLQFL
6mo_P5_

DVGGYSFVSWYQQHPGKAPKVLIYD

AGS




P5_IGG_

KSRVSISVDTSKNQFSLKLSSVTAADTAVYYCA

YFDY
Lambda_

VDKRPSGVPDRLSGSKSGNTASLTIS

YTLI




88-

RWKRWLQFLYFDYWGQGTLVTVSS


88-

GLQAEDEADYYCCSYAGSYTLIFGG






P1369




P1409

GTKLTVL








6.2M
COV072_
2379
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTF
2380
AREDY
COV072_
2381
QSVLTQPRSVSGSPGQSVTISCTGTSS
2382
CSY
LAMBDA



6mo_

GMHWVRQAPGKGLEWVAAIRYDGSDKYYVD

YDSSGS
6mo_P5_

DVGGYNYVSWYQQHPGKAPKVMTY

AGR




P5_IGG_

SVKGRFTISRDNSKNALYLQMNSLRDEDTAVY

FDY
Lambda_

DVSKRPSGVPDRFSGSKSGNTASLTIS

SWV




8-

YCAREDYYDSSGSFDYWGQGTLVTVSS


8-

GLQAEDEADYYCCSYAGRSWVFGG






P1369




P1409

GTKLTVL








6.2M
COV072_
2383
QLQLQESGPGLVKPSETLSLTCSVSGGSISSSSY
2384
ARLPRE
COV072_
2385
QSVLTQPASVSGSPGQSITISCTGTSS
2386
FSY
LAMBDA



6mo_

YWGWIRQPPGKGLEWIGNIFYSGITYYNPSLKS

YSSSSV
6mo_P5_

DVGSYDLVSWYQQHPDKAPKLMIYE

VGS




P5_IGG_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR

YLVFDI
Lambda_

VSKRPSGISNRFSGSKSGNTASLTISG

NIL




90-

LPREYSSSSVYLVFDIWGQGTMVTVSS


90-

LQAEDEADYYCFSYVGSNILFGGGTK






P1369




P1409

LTVL








6.2M
COV072_
2387
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY
2388
ARLARS
COV072_
2389
QSVLTQPASMSGSPGQSITISCTGTSS
2390
CCY
LAMBDA



6mo_

YWGWIRQPPGKGLEWIGSIFYSGSTYYKPSLRS

FYDSSG
6mo_P5_

DVGSYDLVSWYQQHPGKAPKLFIYE

VGN




P5_IGG_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR

YYPGA
Lambda_

VAKRPSGVSYRFSGSKSGNTASLTIS

NTM




93-

LARSFYDSSGYYPGAWYWGQGTLVTVSS

WY
93-

GLQAEDEADYYCCCYVGNNTMFGG






P1369




P1409

GTKLTV








6.2M
COV072_
2391
QVQLVQSGAEVKKPGASVKVSCKASGYSFAT
2391
ARADTP
COV072_
2393
QSVLTQPASVSGSPGQSITISCTGTSR
2394
SSYS
LAMBDA



6mo_

YYIHWVRQAPGQGLEWMGIIDPSGGSTNYAQ

IVVDTT
6mo_P5_

DIGFYKYVSWYQQHPGKAPKLIIYDV

TAY




P5_IGG_

KFQGRVTMTRDTSTSTVYLELSSLRSEDTAVY

SYFYY
Lambda_

TNRPSGVSNRFSGSKSGNTASLTISGL

VHV




9-

YCARADTPIVVDTTSYFYYMDVWGKGTTVTV

MDV
9-

QAEDEAHYHCSSYSTAYVHVLFGGG

L




P1369

SS


P1409

TRLTVL








6.2M
COV072_
2395
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTN
2396
ARDRSG
COV072_
2397
DIQMTQSPSSLSASVGDRVTITCRASE
2398
QQS
KAPPA



6mo_

YMSWVRQAPGKGLEWVSIIYRGDSTSYADSV

YSYGLI
6mo_P4_

SISNYLNWYQQKPGKAPKLLISAASN

YSSP




P4_IGG_

KGRFTISRDSSKNTLFLQMNSLRAEDTAVYYC

HGMDV
kappa_

LQRGVPSRFSGSGSGTDFTLTISSLQP

PVY




10-

ARDRSGYSYGLIHGMDVWGQGTTVTVSS


10-

EDFATYYCQQSYSSPPVYTFGQGTKL

T




P1369




P1389

EIK








6.2M
COV072_
2399
QVQLQQWGAGLLKPSETLSRTCAVYGGSFSGY
2400
ARGGFG
COV072_
2401
DIVMTQSPLSLPVTPGEPASISCRSSQS
2402
MQA
KAPPA



6mo_

YWSWFRQSPGKGLEWIGEINHSGSTNYNPSLK

VVINYY
6mo_P4_

LLHSNGYNYLDWYLQKSGQSPQLLI

LQT




P4_IGG_

NRVTISVDTSKNQFSLMLSSVTAADTAVYYCA

YSGMD
kappa_

YLGSNRASGVPDRFSGSGSGTDFTLK

PPT




13-

RGGFGVVINYYYSGMDVWGRGTTVTVSS

V
13-

ISRVEAEDVGVYYCMQALQTPPTFG






P1369




P1389

QGTKVEIK








6.2M
COV072_
2403
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
2404
AKGQD
COV072_
2405
EIVLTQSPATLSLSPGERATLSCRASH
2406
QQR
KAPPA



6mo_

VMYWVRQAPGKGLEWVAIILYDGSDPNYADS

PYCAAG
6mo_P4_

SVSTYLAWYQQKFGQAPRLLIYDAS

NNW




P4_IGG_

VKGRFTISRDNSKNTLYLQMNSPRAEDTAVYY

SCYSHY
kappa_

NRATGIPARFSGSGSGTDFTLTISSLEP

PT




14-

CAKGQDPYCAAGSCYSHYFDYWGQGTLVTVS

FDY
14-

EDFAVYYCQQRNNWPTFGQGTRLEI






P1369

S


P1389










6.2M
COV072_
2407
EVQLVQSGAEVKKPGESLRISCKGSGYSFTNY
2408
ARIGAH
COV072_
2409
EIVMTQSPATLSVSPGERATLSCRASR
2410
QHY
KAPPA



6mo_

WISWVRQMPGKGLEWMGRIDPSDSYTTYNPSF

YLHYM
6mo_P4_

SVSTNLAWYQQKPGQAPRLLIYGAS

NNW




P4_IGG_

QGHVTISADKSISTAYLRWSSLKASDTAIYYCA

DV
kappa_

TRATGIPARFSGSGSGTEFTLTISSLQS

PL




15-

RIGAHYLHYMDVWGKGTTVTVSS


15-

EDFVVYYCQHYNNWPLFGGGTKVEI






P1369




P1389

K








6.2M
COV072_
2411
QVQLVQSGAEVKKPGASVKVSCKTSGYTFISY
2412
ARGGAI
COV072_
2413
DIQMTQSPSTLSASVGDRVTITCRAS
2414
QEY
KAPPA



6mo_

YIHWVRQAPGQGLEWMGIINPDGDNTNYAQK

PALRTA
6mo_P4_

QSISNWLAWYQQKPGKAPKLLIYKA

NSY




P4_IGG_

FQGRVTMTRDTSTSTVYMELSSLRFEDTAVYY

FDI
kappa_

SSLESGVPSRFSGSGSGTEFTLTISSLQ

Y




18-

CARGGAIPALRTAFDIWGQGTMVTVSS


18-

PDDFATYYCQEYNSYYFGQGTKLEIK






P1369




P1389










6.2M
COV072_
2415
QVQLVQSGAEVKKPGASVKVSCRASGYTFTSY
2416
ATVTGN
COV072_
2417
EIVMTQSPATLSVSPGETATLSCRASQ
2418
QYY
KAPPA



6mo_

GINWVRQAPGQGLEWMGWISTYEGDTNYAQ

YLSDY
6mo_P4_

SNLAWYQHKPGQAPRLLIYGAST

DNW




P4_IGG_

KLQGRVTMTTDTSTNTAYMELRSLRSDDTAV


kappa_

RATGIPARFSGSGSGTEFTLTISSLQSE

PPEF




20-

YYCATVTGNYLSDYWGQGTLVTVSS


20-

DFAVYYCQYYDNWPPEFTFGPGTKV

T




P1369




P1389

DIK








6.2M
COV072_
2419
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2420
ARGVIA
COV072_
2421
EIVMTQSPATLSVSPGERATLSCRAS
2422
QQY
KAPPA



6mo_

VINWVRQAPGQGLEWMGRIMPILDVATYTQK

ATPGYF
6mo_P4_

QSISNNLAWYQQKPGQSPRLLVYGA

NNG




P4_IGG_

FQGRVTITADKSTSTAYMELSSMRFDDTAVYY

DI
kappa_

STRATGIPARFSGSGSGTEFTLTISSLQ

LT




26-

CARGVIAATPGYFDIWGQGTMVTVSS


26-

SEDFAVYYCQQYNNGLTFGGGTKVE






P1369




P1389

IK








6.2M
COV072_
2423
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
2424
ARGGAI
COV072_
2425
DIQMTQSPSTLSASVGDTITITCRASQ
2426
QQY
KAPPA



6mo_

YIHWVRQAPGQGLEWMGIINADAGSITYAQKF

PVPRGA
6mo_P4_

SISTWLAWFQQKPGKAPKVLIYRASS

NSY




P4_IGG_

QGRVTMTRDTSTSTVYMDLSSLRSEDTAVYYC

SDY
kappa_

LESEVPSRFSGSGSGTEFTLTITSLQPD

PWT




27-

ARGGAIPVPRGASDYWGQGTLVTVSS


27-

DFASYYCQQYNSYPWTFGQGTKVEI






P1369




P1389

K








6.2M
COV072_
2427
EVQLVESGGGLVQPGGSLRLSCAASEITVSSNY
2428
ARDLY
COV072_
2429
DIQLTQSPSFLSASVGDRVTITCRASQ
2430
QQV
KAPPA



6mo_

MTWVRQAPGKGLEWVSVMYSGGSTFYADSV

YYGMD
6mo_P4_

GISNYLAWYQQKPGKAPKLLIYAAST

DSY




P4_IGG_

KGRFTISRDNSKNTLYLQMKSLRVEDTAVYYC

V
kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PL




28-

ARDLYYYGMDVWGQGTTVTVSS


28-

DFATYYCQQVDSYPLFGQGTRLEIK






P1369




P1389










6.2M
COV072_
2431
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
2432
ARMVY
COV072_
2433
DIQMTQSPSSLSASVGDRVTITCRASQ
2434
QQS
KAPPA



6mo_

MHWVRQGTGKGLEWVSVIGTAGDAYYPGSV

DSSGFK
6mo_P4_

SISSYLNWYQQKPGKAPKLLIYAASS

YST




P4_IGG_

KGRFTISRENAKNSLYLQMNSLRAGDTAVYYC

GYFDL
kappa_

LQSGVPSRFSGSGSGTDFTLTISNLQP

SMY




29-

ARMVYDSSGFKGYFDLWGRGTLVTVS


29-

EDFATYYCQQSYSTSMYTFGQGTKL

T




P1369




P1389

EIK








6.2M
COV072_
2435
QVQLVQSGAEVKKPGASVEVSCKASGNTFTN
2436
ARGPPP
COV072_
2437
DIQMTQSPSSLSASVGDRVTITCQAS
2438
QQY
KAPPA



6mo_

HYIHWVRQAPGQGLEWMGIINPWGASTSYAQ

RPIGFLE
6mo_P4_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




P4_IGG_

RFQGRVTMTRDTSTTTDTSTTTVYMEMTSLISE

SLSPED
kappa_

SNLETGVPSRFSGGGSGTDFTFTISSL

PLT




2-

DTAVYYCARGPPPRPIGFLESLSPEDAFGGLDV

AFGGLD
2-

QPQDIATYYCQQYDNLPLTFGGGTK






P1369

WGQGTTVTVSS

V
P1389

VEIK








6.2M
COV072_
2439
QVQLQESGPGLVKPSETLSLTCTVSGGSISSSY
2440
AAGLK
COV072_
2441
DIQMTQSPSSLSASVGDRVTITCRASQ
2442
QQT
KAPPA



6mo_

WNWIRQSPGKGLEWIGYIYYDGYTTFNPSLKS

GRSSSW
6mo_P4_

SISSYLNWYQQKPGKAPKLLIYATSS

YSSP




P4_IGG_

RVTISVDTSKNQFSLKLSSVTAADTAFYYCAA

YEY
kappa_

LQSGVPSRFSGSGSGTDFTLTITSLQP

HT




30-

GLKGRSSSWYEYWGQGTLVTVSS


30-

EDFATYYCQQTYSSPHTFGQGTKLEI






P1369




P1389

K








6.2M
COV072_
2443
EVQLVETGGGLIQPGGSLRLSCAVSGFTVSANY
2444
ARHQV
COV072_
2445
DIQMTQSPSSLSASVGDRVTITCQAS
2446
HQY
KAPPA



6mo_

MIWVRQAPGKGLEWVSMIYPGGSTFYADSVK

GFE
6mo_P4_

QDIRNYLNWYQQKPGKAPKVLIYDA

DNL




P4_IGG_

GRFSISRDNSKDTLHLQMNSLRAEDTAVYYCA


kappa_

TNLEAGVPSRFSGSGSGTDFTFTISSL

PIT




32-

RHQVGFEWGQGTLVTVSS


32-

QPEDIATYFCHQYDNLPITFGQGTRL






P1369




P1389

EIK








6.2M
COV072_
2447
EVQLVESGGGLVQPGGSLRLACAASEIIVSTNY
2448
ARETYG
COV072_
2449
DIQLTQSPSFLSASVGDRVTITCRASQ
2450
QQL
KAPPA



6mo_

MNWVRQAPGKGLEWVSVIYSGGSTFYADSVK

MDV
6mo_P4_

GISSYLAWYQQKPGKAPKLLIYSAST

NSSP




P4_IGG_

GRFTISRDNSKNTLYLQMNSLRVEDTAVYYCA


kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

QKG




34-

RETYGMDVWGQGTTVTVSS


34-

DLATYYCQQLNSSPQKGTFGQGTKV

T




P1369




P1389

EIK








6.2M
COV072_
2451
EVQLVQSGAEVKKHGESLRISCKGSGYSFTNY
2452
ARHGSG
COV072_
2453
EIVLTQSPGTLSLSPGERATLSCRASQ
2454
QQY
KAPPA



6mo_

YITWVRQMPGKGLEWMGRIDPRDSYTNYSPSF

YLEPTN
6mo_P4_

SVSSIYLAWYKPGQAPRLLIYGAS

GSS




P4_IGG_

QGHVTISVDKSISTAYLQWSRLKAADTAIYYC

HYYYY
kappa_

SRATGIPDRFSGSGSGTDFTLTISRLEP






35-

ARHGSGYLEPTNHYYYYGMDVWGQGTTVTV

GMDV
35-

EDFAVYYCQQYGSSFGQGTKLEIK






P1369

SS


P1389










6.2M
COV072_
2455
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSSN
2456
AGSYSN
COV072_
2457
EIVLTQSPATLSLSPGERATLSCRASQ
2458
QQR
KAPPA



6mo_

WWSWVRQPPGKGLEWIGEIYNSGSTNYNPSLK

YIGGV
6mo_P4_

SVSTYLAWYQQKPGQAPRLLIYDAS

NNW




P4_IGG_

SRVTILVDKSKNQFSLKLSSVTAADTAVYYCA

WFDP
kappa_

NRATGIPARFSGSGSGTDFTLTISSLEP

LT




3-

GSYSNYIGGVWFDPWGQGTLVTVSS


3-

EDFAVYYCQQRNNWLTFGGGTKVEI






P1369




P1389

K








6.2M
COV072_
2459
EVQLVQSGAEVKKPGESLKISCKVSGYSFISYW
2460
ARHVT
COV072_
2461
DIQMTQSPSSLSASVGDRLTITCRASH
2462
QQD
KAPPA



6mo_

IGWVRQMPGKGLEWMGIIYPYDSDTRYSPSFQ

WGLGY
6mo_P4_

SIGSSLNWYQHKPGKAPKLLIYAASS

YST




P4_IGG_

GQVTISADKSINTAYLQWSSLKASDTAIYYCAR

FMDV
kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

PLT




44-

HVTWGLGYFMDVWGKGTTVTVSS


44-

EDFATYFCQQSYSTPLTVGGGTTVEI






P1369




P1389

K








6.2M
COV072_
2463
EVQLVESGGGLIQPGGSLRLSCAAPGLIVSRNY
2464
VRPMV
COV072_
2465
DIQMTQSPSSLSASVGDRVTITCQAT
2466
HQY
KAPPA



6mo_

MSWVRQAPGKGLEWVSIIYPGGSSYYADSVK

RGIRDM
6mo_P4_

QDINTYLNWYQQKPGKAPKLLIYDA

DNL




P4_IGG_

GRFTISRDSSKNTLFLQMNFLRADDTAVYYCV

DV
kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PLT




4-

RPMVRGIRDMDVWGKGTSVTVSS


4-

QPEDIATYYCHQYDNLPLTFGGGTK






P1369




P1389

VEIK








6.2M
COV072_
2467
EVQLVESGGGLVQPGGSLRLSCAASEFIVTRNY
2468
ARDLA
COV072_
2469
DIQMTQSPSSLSASVGDRVTITCQAS
2470
QQY
KAPPA



6mo_

MSWVRQAPGKGLEWVSLIYPGGSTFYADSVK

GRLDY
6mo_P4_

QDINNFLNWYQQKPGKAPKLLIYDA

DSL




P4_IGG_

GRFTISRDNSKNTLFLHMNSLRAEDTAVYYCA


kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

SRL




52-

RDLAGRLDYWGQGTLVTVSS


52-

QPEDIAIYYCQQYDSLSRLTFGGGTK

T




P1369




P1389










6.2M
COV072_
2471
EVQLVESGGGLVQPGGSLRLSCAGSGFTVSSN
2472
ARDKL
COV072_
2473
DIQMTQSPSSLSASVGDRVTITCQAS
2474
HQY
KAPPA



6mo_

YMNWVRQAPGKGLEWVSTIYSGGSSFYADSV

QRGGPD
6mo_P4_

QDTNNYLNWYQQKPGKAPKLLIYDA

DNL




P4_IGG_

KGRFTISRDNSKNTLYLQMDSLRGEDTAVYYC


kappa_

SNLETGVPSRFSGSRSGTDFTFTISSLQ

PQT




56-

ARDKLQRGGPDWGQGTLVTVSS


56-

PEDIATYYCHQYDNLPQTFGQGTKLE






P1369




P1389

IK








6.2M
COV072_
2475
QVQLVQSGAEVKKPGASVKVSCKSSGYTFTSY
2476
ARVGD
COV072_
2477
DIQMTQSPSSVSASVGDRVTITCRAS
2478
QQA
KAPPA



6mo_

AISWIRQAPGQGLEWLGWINTFNGDTNFPQKL

YYYGS
6mo_P4_

QGISTSLAWYQQKPGKAPKLLTSLQS

DNF




P4_IGG_

QGRVTMTTDTSTSTAYMELRSLRSDDTAMYY

GTTYYF
kappa_

GVPSRFSGSGSGTDFTLTISSLQPEDF

PPLF




59-

CARVGDYYYGSGTTYYFDYWGQGTLVTVSS

DY
59-

ATYYCQQADNFPPLFTFGPGTKVEIK

T




P1369




P1389










6.2M
COV072_
2479
EVQLVESGGDLVQPGGSLRLSCAASGFSFSTYN
2480
ARHSGS
COV072_
2481
DIQMTQSPSSLSASVGDRVTITCRASQ
2482
QQS
KAPPA



6mo_

MNWVRQAPGKGLEWVLYISSSSDTIYYADSVK

SSYYYY
6mo_P4_

NIYSYLNWYQQKPGKAPKLLIYGVSS

YST




P4_IGG_

GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

GMDV
kappa_

LQSGVPSTFSGSGSGTDFTLTISSLQPE

PPT




62-

RHSGSSSYYYYGMDVWGQGTTVTVSS


62-

DFATYYCQQSYSTPPTFGGGTKVDIK






P1369




P1389










6.2M
COV072_
2483
EVQLVESGGGLVQPGGSLRLSCAASGFTLSHN
2484
ARDLSD
COV072_
2485
AIQMTQSPSSLSASVGDRVTITCRASQ
2486
LQD
KAPPA



6mo_

YMSWVRQAPGKGLEWVSVIYSGGRTYYADSV

GEGP
6mo_P4_

DIRHALGWFHQKPGEAPKLLIYAASN

YNY




P4_IGG_

KDRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


kappa_

LQSGVPPRFSGSGSGTDFTLTISSLQP

PRT




63-

ARDLSDGEGPWGQGTLVTVSS


63-

EDFATYYCLQDYNYPRTFGQGTRVEI






P1369




P1389

K








6.2M
COV072_
2487
EVQLVESGGGLVQPGESLKLSCSASGFTFNNY
2488
VKGDIP
COV072_
2489
DIQMTQSPSSLSTSVGDRVTITCQASQ
2490
QQY
KAPPA



6mo_

GMHWVRQAPGKGLEYLSSISSDGGSTTYADSV

YCSGDC
6mo_P4_

DISNSLNWYQQRPGKAPKLLIYDASN

DNL




P4_IGG_

KGRFTISRDNSKNTLYFQMSSLRTEDTAVYYC

YGNAF
kappa_

LETGVPSRFSGSGSGTYFTFTISSLQPE

PPG




66-

VKGDIPYCSGDCYGNAFDIWGQGTMVTVSS

DI
66-

DIATYYCQQYDNLPPGYTFGQGTKL

YT




P1369




P1389

EIK








6.2M
COV072_
2491
QVQLVESGGGVVQPGRSLRLSCAASGFTFTTY
2492
ARDIGI
COV072_
2493
DVVMTQSPLSLPVTLGQPASISCRSSQ
2494
MQG
KAPPA



6mo_

GMHWLRQVPGKGLEWVAVIWYDGSNQYYAD

VVVEID
6mo_P4_

SLVYIDENTYLHWFQQRPGQSPRRLI

THW




P4_IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

Y
kappa_

YKVSNRDSGVPDRFSGSGSGTDFTLK

PYT




68-

YCARDIGIVVVEIDYWGQGTLVTVSS


68-

ISRVEAEDVGVYXCMQGTHWPYTFG






P1369




P1389

QGTKLEIK








6.2M
COV072_
2495
QMQLVQSGPEVKKPGTSVKVSCKASGFTFSSS
2496
AAPYCN
COV072_
2497
EIVLTQSPGTLSLSPGERATLSCRASQ
2498
QQY
KAPPA



6mo_

AVQWVRQARGQRLEWIGWIVVGSGNTNYAQ

VTTCFD
6mo_P4_

SVRSSYFAWYQQKPGQAPRLLIYAAS

GSSP




P4_IGG_

KFQERVTITRDMSTSTAYMELSSLRSEDTAVFY

GFNI
kappa_

SRATGIPDRFSGSGSGTDFTLTISRLEP

WT




70-

CAAPYCNVTTCFDGFNIWGRGTMVTVS


70-

EDFALYYCQQYGSSPWTFGQGTKVE






P1369




P1389

IK








6.2M
COV072_
2499
EVQLVESGGGLVQPGGSLRLSCAATEITVSSNY
2500
ARDLV
COV072_
2501
DIQLTQSPSFLSASVGDRVTITCRASQ
2502
QQL
KAPPA



6mo_

MTWVRQAPGKGLEWVSVIYPGGSTFYADSVK

VYGLD
6mo_P4_

GISSYLAWYQQKPGKAPKLLIYAAST

NTY




P4_IGG_

GRFSISRDNSKNTLYLQMNSLRAEDTAVYYCA

C
kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PPP




71-

RDLVVYGLDCWGQGTLVTVSS


71-

DFATYYCQQLNTYPPPFGGGTKVEIK






P1369




P1389










6.2M
COV072_
2503
EVQLVESGGGLVQPGGSLRLSCAASGIVVSSN
2504
ARDLV
COV072_
2505
DIQLTQSPSFLSASVGDRVTITCRASQ
2506
QQL
KAPPA



6mo_

YMSWVRQAPGKGLEWVSLLYSGGSTFYADSV

VRGLD
6mo_P4_

GISSDLAWYQQKPGKAPKLLIYAAST

NSD




P4_IGG_

KGRFTISRDNSKNTLYLQMNSLRADDTAVYYC

V
kappa_

LQSGVPSRFSGSGSETEFTLTISSLQPE

LCA




77-

ARDLVVRGLDVWGQGTTVTVSS


77-

DFATYYCQQLNSDLCAFGQGTRLEIK






P1369




P1389










6.2M
COV072_
2507
QVQLVQSGAEVRKPGSSVKVSCKASGGPFDQY
2508
ATPLND
COV072_
2509
GISYYLAWFQQKPGEAPRSLIYDASS
2510
QQY
KAPPA



6mo_

TFSWVRQAPGQGLEWMARITPVVDLTNYAQK

YYASG
6mo_P4_

LQSGVPSKFSGSGSGTDFTLTISSLQP

NSY




P4_IGG_

FQGRITIITDKSTSTAYMELSSLRSEDTAIYYCA

NLGL
kappa_

EDSATYYCQQYNSYPLTFGGGTKLEI

PLT




82-

TPLNDYYASGNLGLWGQGTRVTVSS


82-

K






P1369




P1389










6.2M
COV072_
2511
EVQLVQSGAEVKKPGESLKISCKGSGDSFPSY
2512
ARRGY
COV072_
2513
DIQMTQSPSTLSASVGDRVTITCRAS
2514
QQY
KAPPA



6mo_

WIGWVRQMPGKGLEWMGIIYPDDSETIYSPSF

HYYGM
6mo_P4_

QSISSWLAWYQQKPGKAPKLLIYKAS

NSY




P4_IGG_

QGQVTISTDKSISTAYLQWSSLKASDTAIYYCA

DV
kappa_

SLESGVPSRFSGSGSGTEFTLTITSLQP

LGT




84-

RRGYHYYGMDVWGQGTTVTVSS


84-

DDFATYYCQQYNSYLGTFGQGTKVE






P1369




P1389










6.2M
COV072_
2515
EVQLVQSGAEVKKPGESLRISCKASGYNFPSY
2516
ARTGG
COV072_
2517
DIQMTQSPSSLSASVGDRVTITCRASQ
2518
QQS
KAPPA



6mo_

WISWVRQMPGKGLEWMGRIDPSDSSTNYSPSF

GYYNW
6mo_P5_

NIGSYLNWYQQTPGKVPKLLIYAAST

YSSP




P5_IGG_

QGHVTVSVDKSITTAYLQWSSLKASDTAMYFC

FDP
kappa_

LHSGVPSRFSGSESGTHFTLTISSLQPE

PT




28-

ARTGGGYYNWFDPWGQGTLVTVSS


28-

DFATYFCQQSYSSPPTFGQGTKVEIK






P1369




P1389










6.2M
COV072_
2519
QVQLVQSGAEVKKPGASVKVSCKASGFSFTIY
2520
ARGALL
COV072_
2521
EIVMTQSPATLSVSPGERATLSCRAS
2522
QQY
KAPPA



6mo_

YIHWVRQAPGQGLEWMGIINPDAGSIGYAQNF

PAADAF
6mo_P5_

QGVSSNLAWYQQKPGQAPRLLIYGA

SNW




P5_IGG_

QGRVTMTRDTSTSTVYMELTSLRSEDTAVYFC

DI
kappa_

STRATGIPARFSGSGSGTEFTLTISSLQ

PPL




2-

ARGALLPAADAFDIWGQGTMVTVSS


2-

SEDSAVYYCQQYSNWPPLYTFGQGT

YT




P1369




P1389










6.2M
COV072_
2523
QMQLVQSGPEVKKPGTSVKVSCKASGFTFGSS
2524
AAVYCS
COV072_
2525
DIQMTQSPSSLXASVGDRVTITCQAT
2526
QQS
KAPPA



6mo_

AVQWVRQARGQRLEWIGWIVVGSGNTDYAQ

GTTCHD
6mo_P5_

QDIRKYLNWFRRKLEKAPKLLIYDAS

DTL




P5_IGG_

RFQERVTITRDMSTNTVYMELSSLRFEDTAVY

AFDI
kappa_

TLDTRVPSRFSGNRSATDFTFTICSLQ

PPL




31-

YCAAVYCSGTTCHDAFDIWGRGTMVTASS


31-

PEDNARYSCQQSDTLPPLGGDTPDTF

GGD




P1369




P1389

GHGTKLEIK

TPD













T






6.2M
COV072_
2527
QVQLVQSGAEVKKPGASVKVSCKASGNTFMT
2528
ARGGIV
COV072_
2529
DIQMTQSPSTLSASVGDRVTITCRAS
2530
QHY
KAPPA



6mo_

YYIHWVRQAPGQGPEWMGIMNPSGGSTTYAQ

PDASEP
6mo_P5_

QSISAWLAWYQQKPGKAPKLLIYKA

KSD




P5_IGG_

KFQGRLTMTRDTSKSTVYLELSSLRSEDTAVYF

FDI
kappa_

SSLESGVPSRFSGSGSGTDFTLTISSLQ

SPY




32-

CARGGIVPDASEPFDIWGQGTMVTVSS


32-

PDDFATYYCQHYKSDSPYTFGQGTK

T




P1369




P1389

LEIK








6.2M
COV072_
2531
QVQLVQSGAEVKKPGASVKVSCKASRNTFTN
2532
ARDFAG
COV072_
2533
EIVLTQSPATLSLSPGERATLSCRASQ
2534
QHR
KAPPA



6mo_

YYIHWVRQAPGQGLEWLGIINPDAGSTTYAQK

IPATSYF
6mo_P5_

SVSNYLAWYQQKPGQAPRLLIYDAS

TNW




P5_IGG_

FQGSVIMTRDTSTSTVYMELASLRSEDTAVYY

EY
kappa_

NRATGIPARFSGSGSGTDFTLTISSLEP

PPM




38-

CARDFAGIPATSYFEYWGQGTLVTVSS


38-

EDFAIYYCQHRTNWPPMYTFGQGTK

YT




P1369




P1389

LEIK








6.2M
COV072_
2535
EVQLVESGGGLVQPGGSLRLSCEASGITVSSNY
2536
ARDLV
COV072_
2537
DIQLTQSPSFLSASVGDRVTITCRASQ
2538
QQL
KAPPA



6mo_

MIWVRQAPGKGLEWVSVIYSGGSTFYADSVK

VYGAD
6mo_P5_

GISNYLAWYQQKPGKAPKLLIYTAST

DTY




P5_IGG_

GRFTISRDDSRNTLFLQMSSLRAEDTAVYYCA

Y
kappa_

LQNGVPSRFSGSGSGTEFTLTISSLQP

PPP




43-

RDLVVYGADYWGQGTLVTVSS


43-

K






P1369




P1389










6.2M
COV072_
2539
QVQLVQSGAEVKKPGSSVKVSCKASGGTFNN
2540
ARAAL
COV072_
2541
DIQMTQSPSTLSASVGDRVTITCRAS
2542
QQY
KAPPA



6mo_

YAIGWVRQAPGQGLEWMGTTIPIFGAANSPQK

YCSGGS
6mo_P5_

QSISGWLAWYQQKPGKAPKLLIYKA

NTY




P5_IGG_

FQGRVTITADESMSTVYMELSSLRSEDTALYY

CYRYYF
kappa_

STLQTGVPSRFSGSGSETEFTLTISSLQ

ST




45-

CARAALYCSGGSCYRYYFDYWGQGTLVTVSS

DY
45-

PDDFATYYCQQYNTYSTFGPGTKVEI






P1369




P1389

E








6.2M
COV072_
2543
EVQLVQSGAEVKKPGESLTISCKGSGYSFTNY
2544
ARPRHN
COV072_
2545
DIVMTQSPLSLSVTPGEPASISCRSSQS
2546
MQS
KAPPA



6mo_

WIGWVRQLPGKGLEWMAIFYPGDSDTRFSPSF

STWYY
6mo_P5_

LFRSYGYNYLDWYLQKPGQSPQLLI

LT




P5_IGG_

QGQVTMSADKSTSTAYLQWSSLKASDTAMYY

GAFDI
kappa_

YLGSNRASGVPDRFSGSGSGTDFTLK

PPN




53-

CARPRHNSTWYYGAFDIWGQGTMVTVSS


53-

ISRVEAEDVGVYYCMQSLQTPPNTFG

T




P1369




P1389

PGTKVDIK








6.2M
COV072_
2547
QVQLVESGGGVVQPGRSLRLSCAASGFTFNNY
2548
AKQAG
COV072_
2549
DIQMTQSPSSLSASVGDRVTITCQAS
2550
QQY
KAPPA



6mo_

VMHWVRQAPDKGLEWVAGILYDGSDKNYAD

MYCSG
6mo_P5_

QDIKNNLNWYQQKPGKAPKLQIYDA

ENL




P5_IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

GNCFLS
kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PPT




54-

YCAKQAGMYCSGGNCFLSYFDYWGQGALVT

YFDY
54-

QAEDTATYYCQQYENLPPTFGQGTR






P1369

VSS


P1389

VEIK








6.2M
COV072_
2551
EVQLVESGGGLIQPGGSLRLSCAASGITVSRNY
2552
ARVLY
COV072_
2553
DIQLTQSPSFLSASVGDRVTITCRASQ
2554
QQL
KAPPA



6mo_

MSWVRQAPGKGLEWVSVIYPGGSTFHADSVK

DAFDI
6mo_P5_

GISSYLAWYQQKPGKAPKLLIYSAST

NSY




P5_IGG_

GRFTISRDNSKNMLYLQMNSLRAEDTAVYYC


kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PPCT




55-

ARVLYDAFDIWGQGTMVTVSS


55-

DFATYYCQQLNSYPPCTFGPGTKVDI






P1369




P1389

K








6.2M
COV072_
2555
EVQLVESGGGLVQPGGSLRLSCAASEITVSSNY
2556
ARDPPS
COV072_
2557
DIQMTQSPSSLSASVGDRVTITCQAS
2558
QQY
KAPPA



6mo_

MSWVRQAPGKGLEWVSLIYSGGSTYYADSVK

RRGSC
6mo_P5_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




P5_IGG_

RFTISRDNSKNTLYLQMNSLRADDTAVYYCA


kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PIT




56-

RDPPSRRGSCWGQGTLVTVSS


56-

QPEDIATYYCQQYDNLPITFGQGTRL






P1369




P1389

EIK








6.2M
COV072_
2559
EVQLVETGGGLIQPGGSLRLSCAASDLTVSSNY
2560
AREAY
COV072_
2561
EIVLTQSPGTLSLSPGERATLSCRASQ
2562
QQY
KAPPA



6mo_

MNWVRQAPGKRLEWVSVIYPGGSTFYADSVK

GMDV
6mo_P5_

SVASSYLAWYQQKPGQAPRLLIYGA

GSS




P5_IGG_

GRFTISRDNSKNTLYLQMNSLRAEDTAIYYCA


kappa_

SSRAAGIPDRFSGSGSGTDFTLTISRLE

YT




5-

REAYGMDVWGQGTTVTVSS


5-

PEDFAVYYCQQYGSSYTFGQGTKLEI






P1369




P1389

K








6.2M
COV072_
2563
QVQLQESGPRLVKPAQTLSLTCTVSGVSISYGG
2564
ARVNA
COV072_
2565
DIQMTQSPSSLSVSVGDRVTITCQAS
2566
QHS
KAPPA



6mo_

YYWSWIRQHPGKGLEWIGNVYYSGSTYYNPS

HSHFDY
6mo_P5_

QDFGNSLHWYQQQPGKAPKLLIYDV

DNF




P5_IGG_

LKSRLSISVDTSKNQFSLNLNSVTAADTAVYYC


kappa_

SNLETGVPSRFSGSGSGTDFALTINGL

FRY




61-

ARVNAHSHFDYWGQGTLVTVSS


61-

QPEDIATYYCQHSDNFFRYTFGQGTK

T




P1369




P1389

LEIK








6.2M
COV072_
2567
QVQLVQSGAEVKKPGSSVKVSCEASGDTFTRY
2568
ACSMSP
COV072_
2569
EIVLTQSPGTLSLSPGERATLSCRASQ
2570
QHY
KAPPA



6mo_

SINWIRQTPGQGLEWMGRIIPLFPLANYAQKFQ

VLGAPS
6mo_P5_

SVSSSYLAWYRQKPGQAPRLLIYGAT

HSSP




P5_IGG_

GRVTITADKSTSTAYMELSNLRSEDTAMYYCA

NWFDP
kappa_

SRATGIPDRFSGSGSGTDFTLTISRLEP

WA




62-

CSMSPVLGAPSNWFDPWGQGTLVTVSS


62-

EDFAVYYCQHYHSSPWAFGQGTKVE






P1369




P1389

VK








6.2M
COV072_
2571
QVQLVESGGGVVQPGRSLRLSCAASGFAFSTY
2572
AKQLGP
COV072_
2573
DIQMTQSPSSLSASVGDRVTITCQAS
2574
QQY
KAPPA



6mo_

GMHWVRQAPGKGLEWVAIISYDGSHTFYGDS

YCSGGN
6mo_P5_

QDITNYLIWYQQKPGKAPKLLIYDAS

DNL




P5_IGG_

VKGRFTISRDNSKKTLYLQMNSLRVEDTAVYY

CYVGYF
kappa_

NLEAGVPSRFSGRGSGTDFTFTISSLR

PIT




63-

CAKQLGPYCSGGNCYVGYFDYWGQGTRVTVS

DY
63-

PEDIATYYCQQYDNLPITFGQGTKLEI






P1369

S


P1389

K








6.2M
COV072_
2575
QVQLQESGPGLVKPSETLSLTCTVSGDSISGYY
2576
AREGH
COV072_
2577
EIVLTQSPGTLSLSPGERATLSCRASH
2578
QQY
KAPPA



6mo_

CSWIRQPPGKGLEWIGYIYSTGSTRYNPSLKSR

DFGSGY
6mo_P5_

SVSSFYVAWYQQKPGQAPRLLIYGA

GGS




P5_IGG_

VTISVDTSKNQFSLKLSSVTAADTAMYYCARE

FEY
kappa_

SRRATGIPDRFSGSGSGTDFTLTISRL

LVT




64-

GHDFGSGYFEYWGQGTLVPVSS


64-

DPEDFAVYYCQQYGGSLVTFGQGTK






P1369




P1389

LEIK








6.2M
COV072_
2579
QVQLQESGPGLVKPSETLSLTCTASGGSISGSY
2580
ARVVY
COV072_
2581
EIVLTQSPGTLSLSPGERTTLSCRASLS
2582
QQY
KAPPA



6mo_

WSWIRQPPGKSLEWIGNIDYSGGTDYNASLRS

YDSRGN
6mo_P5_

VSSGYLAWYQHKPGQAPRLLIYGAS

GGS




P5_IGG_

RLTMSVDTSKNQFNLKLTSVTAADTAVYFCAR

YYQYY
kappa_

SRATGIPDRFSGSGSGTDFTLTISRLEP

PFT




72-

VVYYDSRGNYYQYYFDLWGRGTLVTVSS

FDL
72-

EDFAVYYCQQYGG






P1369




P1389

K








6.2M
COV072_
2583
EVQLLESGGGLVQPGGSLRLSCEASGFSFSSYA
2584
AKLPTG
COV072_
2585
DIQMTQSPSSLSASVGDRVTITCRASL
2586
QQS
KAPPA



6mo_

MSWVRQAPGKGLEWVSGISGSGDAPNHADSV

RGGGV
6mo_P5_

SINNYLNWYQQKPGRAPKLLIYAASS

YSW




P5_IGG_

KGRFTISRDNSKNTLYLRMNSLRVEDTAVYFC

DY
kappa_

LQRGVPPRFSGSGSGTDFTLTISSLQP

WT




75-

AKLPTGRGGGVDYWGQGTLVTVSS


75-

EDIAIYYCQQSYSWWTFGGGTKVEIK






P1369




P1389










6.2M
COV072_
2587
QVQLVESGGGVVQPGRSLRVSCAASGFTFSSY
2588
ARVQGI
COV072_
2589
DIQLTQSPSFLSASVGDRVTITCRASQ
2590
QQL
KAPPA



6mo_

GMHWVRQAPGKGLEWVAFIWYDGTNKYYAD

DYGDY
6mo_P5_

GISSYLAWYQQKPGKAPKLLISDAST

NSY




P5_IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAMY

SWWGL
kappa_

LQSGVPSRFSGSGSGAEFTLTISSLQP

PFT




76-

YCARVQGIDYGDYSWWGLDPWGQGTLVTVSS

DP
76-

EDFATYYCQQLNSYPFTFGQGTKLEI






P1369




P1389

K








6.2M
COV072_
2591
QVQLVQSGAEVKKPGSSVKVSCKASGDTFSSH
2592
ARGVV
COV072_
2593
EIVMTQSPATLSVSPGKRATLSCRAS
2594
QQY
KAPPA



6mo_

AINWVROAPGOGLEWMGRSIPMLGVTTSAOK

GATPGS
6mo_P5_

QSVRSNLAWYQQRPGQAPRLLIYDA

DNG




P5_IGG_

FKGRVTITADHSTSTVFMDLSSLRSDDTAIYYC

FDL
kappa_

ATRATGIPTRFSGSGSGTEFTLTISSLQ

LT




7-

ARGVVGATPGSFDLWGQGTVVTVSS


7-

SEDFAVYYCQQYDNGLTFGGGTNVE






P1369




P1389

IK








6.2M
COV072_
2595
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
2596
AKDPGE
COV072_
2597
DIQMTQSPSSLSASVGDRVTIACRAS
2598
QQS
KAPPA



6mo_

DMHWVRQAPGKGLEWVAVISSDGSSKFYGEP

SSWVD
6mo_P5_

QNINNFLNWYQQKPGKAPKLLLYAT

YSN




P5_IGG_

VKGRFTISRDNSKNTVYLQMNSLRAEDTAVYY

YFEY
kappa_

SRLQSGVPSRFSGSGSGTHFTLTITSL

PGL




81-

CAKDPGESSWVDYFEYWGQGTLVTVSS


81-

QPEDFATYYCQQSYSNPGLTFGGGT

T




P1369




P1389

KVDLK








6.2M
COV072_
2599
QVQLVQSGAEVKKPGASLKVSCKASGHTFSNY
2600
ARGGL
COV072_
2601
DIQMTQSPSTLSASVGDRVTITCRAS
2602
QHY
KAPPA



6mo_

YIHWVRQAPGQGLEWMGIINPSGGSTSYAQKF

VPAANE
6mo_P5_

QSISSWLAWYQQKPGNAPQLLIYKAS

NIYS




P5_IGG_

QGRVTMTSDTSTSTVYMELSSLRTEDTAVYYC

VFDI
kappa_

TLESGVPSRFSGSGSGTEFTLTISSLQP

PFT




83-

ARGGLVPAANEVFDIWGQGTMVTVSS


83-

DDFATYYCQHYNIYSPFTFGPGTKVD






P1369




P1389

IK








6.2M
COV072_
2603
QVQLVESGGDIVQPGRSLRLSCATSGFSINDYG
2604
ARRGGL
COV072_
2605
DIVMTQSPLSLPVTPGESASISCRSSQS
2606
MQT
KAPPA



6mo_

MHWVRQAPGKGLEWVAVIEYDGSNKYYADS

WFGEPP
6mo_P5_

LLHSSGYNYVDWYMQKPGQSPQLLI

LQT




P5_IGG_

VKGRFTISRDDSKNTLNLQMNSLRAEDTAVYY

PYYYFY
kappa_

YLGSNRASGVPDRFSGSGSGTDFTLK

PPFT




84-

CARRGGLWFGEPPPYYYFYMDVWGKGTTVTV

MDV
84-

ISRVEAEDVGVYYCMQTLQTPPFTFG






P1369

SS


P1389

QGTKLEIK








6.2M
COV072_
2607
EVQLLESGGGLVQPGGSLRLSCVASGFSFSTYA
2608
ANHPLA
COV072_
2609
EIVLTQSPGTLSLSPGERATLSCRASQ
2610
QQY
KAPPA



6mo_

MSWVRQAPGQGLEWVSTITGTSIGTYYADSVK

SGDEYY
6mo_P5_

SVHSKQLAWYQQKPGQAPRLLIYGA

GSIR




P5_IGG_

GRFTISRDNSKNTVFLQMKSLRAEDAAVYYCA

YYYMD
kappa_

SSRATGIPDRFSGSGSGTDFTLTISRLE

ALT




86-

NHPLASGDEYYYYYMDVWGKGTTVTVSS

V
86-

PEDFAVYYCQQYGSIRALTFGGGTK






P1369




P1389

VEIK








1.3M
COV072_
2611
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSN
2612
ASHLMP
COV072_
2613
QSVLTQPASVSGSPGQSITISCTGTSS
2514
CSY
LAMBDA



Plate2_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADSV

DAFDI
Plate2_

DVGSYNLVSWYQQHPGKAPKLMIYE

GGS




HC_

KGRFTISRDNSKNTLYLHMNSLRAEDTAVFYC


Lambda_

VSKRPSGVSNRFSGSKSGNTASLTISG

STSF




14-

ASHLMPDAFDIWGQGTMVTVSS


14-

LQAEDEADYYCCSYGGSSTSFYVFGT

YV




P1369




P1409

GTKVTVL








1.3M
COV072_
2615
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTY
2616
AGGTW
COV072_
1627
NFMLTQPHSVSESPGKTVTISCTGSSG
2618
QSY
LAMBDA



Plate2_

WMSWVRQPPGKGLEWVANIKQDGSEKYYVD

LRSSFD
Plate2_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSS




HC_

SVKGRFTISRDNAKNSLYLQMNSLRADDTAVY

Y
Lambda_

QRPSGVPDRFSGSIDSSSNSASLTISGL

NWV




33-

YCAGGTWLRSSFDYWGQGTLVTVSS


33-

KTEDEADYYCQSYDSSNWVFGGGTK






P1369




P1409

LTVL








1.3M
COV072_
2619
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSNN
2620
AKGGD
COV072_
2621
QSVLTQPASVSGSPGQSITISCTGTSS
2622
SSFT
LAMBDA



Plate2_

WWSWVRQPPGKGLEWIGEIYHSGSTNYNPSLK

RAMGP
Plate2_

DVGGYNYVSWYQQHPGKAPKLMIY

SSST




HC_

SRVTISVDKSKNQFSLKLSSVTAADTAVYYCA

EYFDY
Lambda_

DVSNRPSGVSNRFSGSKSGNTASLTIS

LL




53-

KGGDRAMGPEYFDYWGQGTLVTVSS


53-

GLQAEDEADYYCSSFTSSSTLLFGGG






P1369




P1409

TRLTVL








1.3M
COV072_
2623
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
2624
ARDTGR
COV072_
2625
SYVLTQPPSVSVAPGKTARITCGGNN
2626
QVW
LAMBDA



Plate2_

WMSWVRQAPGKGLEWVANIKQDGSEKYYVD

ITFGGG
Plate2_

IGSKSVHWYQQKPGQAPVLVIYYDS

DSSS




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

DDAFDI
Lambda_

DRPSGIPERFSGSKSGNTATLTISRVE

DHR




5-

YCARDTGRITFGGGDDAFDIWGQGTMVTVSS


5-

AGDEADYYCQVWDSSSDHRVFGGG

V




P1369




P1409

TKLTVL








1.3M
COV072_
2627
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
2628
ARGVV
COV072_
2629
SYVLTQPPSVSVSPGQTARITCSGDTL
2630
QSA
LAMBDA



Plate2_

YYWNWIRQHPGKGLEWIGYIYYSGSTYYNPSL

LITDYY
Plate2_

PKQYVYWYQQKPGQAPALVIYKDSE

DSS




HC_

KSRVTISVDTSQNQFSLRLSSVTAADTAVYYCA

FDY
Lambda_

RPSGIPERLSGSSSGTTATLTISGVQAE

GTR




71-

RGVVLITDYYFDYWGQGTLVTVSS


71-

DEADYYCQSADSSGTRFGGGTKLTV






P1369




P1409

L








1.3M
COV072_
2631
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
2632
ARGRGL
COV072_
2633
NFMLTQPHSVSESPGKTVTISCTGSSG
2634
QSY
LAMBDA



Plate2_

WSWIRQPPGKGLEWIGYIYYSGSTRYNPSLKSR

PPWFDP
Plate2_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSS




HC_

VTISVDTSKNQFSLKLSSVTAADTAVFYCARGR


Lambda_

QRPSGVPDRFSGSIDSSSNSASLTISGL

NVV




76-

GLPPWFDPWGQGTLVTVSS


76-

KTEDEADYYCQSYDSSNVVFGGGTK






P1369




P1409

LTVL








1.3M
COV072_
2635
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSH
2636
AKSRPT
COV072_
2637
SYVLTQPPSVSVAPGKTARITCGGNN
2638
QVW
LAMBDA



Plate2_

YIHWVRQAPGQGLEWMGIINPSGGSTSYAQKF

PDWYF
Plate2_

IGSKSVHWYQQKPGQAPVLVIYYDN

DGG




HC_

QGRVTMTRDTSTTTLYMDLSSLRSEDTAVYYC

DL
Lambda_

DRPSGIPERFSGSNSGNTATLTISRVE

SDH




81-

AKSRPTPDWYFDLWGRGTLVTVSS


81-

AGDEADYYCQVWDGGSDHPGVVFG

PGV




P1369




P1409

GGTKLTVL

V






1.3M
COV072_
2639
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNY
2640
AKDPLI
COV072_
2641
SYVLTQPPSVSVAPGKTARITCGGNN
2642
QVW
LAMBDA



Plate2_

AMSWVRQAPGKGLEWVSAISGSDGSTYYAGS

TGPTYQ
Plate2_

IGSKSVHWYQQKPGQAPVLVIYYDS

DSSS




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY

YFHY
Lambda_

DRPSGIPERFSGSNSGNTATLTISRVE

DRP




93-

CAKDPLITGPTYQYFHYWGQGTLVTVSS


93-

AGDEAEYHCQVWDSSSDRPGVVFGG

GVV




P1369




P1409

GTKLTVL








1.3M
COV072_
2643
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYA
2644
AKVDY
COV072_
2645
QSVLTQPASVSGSPGQSITISCTGTSS
2646
CSY
LAMBDA



Plate2_

MTWVRQAPGKGLEWVSAISGSGGRTYYADSV

GEYVFS
Plate2_

DVGSYNLVSWYQQHPDKAPKLMIYE

AGT




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

NAFDI
Lambda_

VSKRPSGVSNRFSGSKSGNTASLTISG

STY




94-

AKVDYGEYVFSNAFDIWGQGTMVSVSS


94-

LQAEDEADYYCCSYAGTSTYVFGTG

V




P1369




P1409

TKLTVL








1.3M
COV072_
2647
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
2648
ARALQ
COV072_
2649
NFMLNQPPCEXESPGKTVTISCTGSS
2650
QSY
LAMBDA



P3_

WMSWVRQAPGKGLEWVANIKQDGSEKYYVD

GPWLG
Plate3_

GSIASNYDQWQQRPGSAPTTYVIYED

DSS




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

KGV
Lambda_

KQRTSGVLDWFSGSXARSSNSPSLTI

KGV




12-

YCARALQGPWLGADYWGQGTLVTVSS


12-

XGRKREDEADXYCQSYDSSKGVFGG






P1369




P1409

GTKLTVL








1.3M
COV072_
2651
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
2652
ARPDMS
COV072_
2653
SYVLTQPPSVSVAPGKTARITCGGNN
2654
QVW
LAMBDA



P3_

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR

SSSSPH
Plate3_

IGSKNVHWYQQKPGQAPVLVVYYDS

DSSS




HC_

VTISVDTSKNQFSLKLSSVTAADTAVYYCARP

YWYFD
Lambda_

DRPSGIPERFSGSNSGNTATLTISRVE

GHF




18-

DMSSSSSPHYWYFDLWGRGTLVTVSS

L
18-

AGDEADYYCQVWDSSSGHFHVVFG

HVV




P1369




P1409

GGTKLTVL








1.3M
COV072_
2655
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2656
ARVVG
COV072_
2657
QSALTQPASVSGSPGQSITISCTGTSS
2658
CSY
LAMBDA



P3_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

YDFWS
Plate3_

DVGSYNLVSWYQQHPGKAPKLMIYE

AGS




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

GYDGG
Lambda_

VSKRPSGVSNRFSGSKSGNTASLTISG

STW




1-

RVVGYDFWSGYDGGYFDYWGQGTLVTVSS

YFDY
1-

LQAEDEADYYCCSYAGSSTWVFGGG

V




P1369




P1409

TKLTVL








1.3M
COV072_
2659
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSNN
2660
ARGGD
COV072_
2661
QSVLTQPASVSGSPGQSITISCTGTSS
2662
SSY
LAMBDA



P3_

WWSCVRQPPGKGLEWIGEIYHSGSTNYNPSLK

TAMGPE
Plate3_

DVGGYNYVSWYQQHPGKAPKLMIY

TSSS




HC_

SRVTISVDKSKNQFSLKLSSVTAADTAVYYCA

YFDY
Lambda_

DVSNRPSGVSNRFSGSKSGNTASLTIS

TLL




25-

RGGDTAMGPEYFDYWGQGTLVTVSS


25-

GLQAEDEADYYCSSYTSSSTLLFGGG






P1369




P1409

TKLTVL








1.3M
COV072_
2663
EVQLVESGGGLVKPGGSLRLSCAASGFSFRSYS
2664
ARMGL
COV072_
2665
QSVLTQPPSVSEAPRQRVTISCSGSSS
2666
AAW
LAMBDA



P3_

MNWVRQAPGKGLEWVSSISSSSSYIYYADSVK

ELPGLD
Plate3_

NIGNNAVNWYQQLPGKAPKLLIYYD

DDS




HC_

GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

YGMDV
Lambda_

DLLPSGVSDRFSGSKSGTSASLAISGL

FNG




36-

RMGLELPGLDYGMDVWGQGTTVTVSS


36-

QSEDEADYYCAAWDDSFNGPVFGG

PV




P1369




P1409

GTKLTVL








1.3M
COV072_
2667
EVQLVESGGGLVKPGGSLRLSCAASGFTFSTYS
2668
ARAKLE
COV072_
2669
SYELTQPPSVSVSPGQTASITCSGDKL
2670
QAW
LAMBDA



P3_

MNWVRQAPGKGLEWVSSISSSSNYIYYADSVK

IAHYGG
Plate3_

GDKYTCWYQQKPGQSPVLVIYQDTQ

DSS




HC_

GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

SPGFDY
Lambda_

RPSGIPERFSGSNSGNTATLTISGTQA

TGV




38-

RAKLEIAHYGGSPGFDYWGQGTLVTVSS


38-

MDEADYYCQAWDSSTGVVFGGGTK

V




P1369




P1409

VTVL








1.3M
COV072_
2671
QVQLVQSGAEVKKPGASVKVSCKASGYTFSSN
2672
ARDLG
COV072_
2673
QSVLTQPRSVSGSPGQSVTISCTGTSS
2674
CSY
LAMBDA



P3_

YMHWVRQAPGQGLEWMGIINPSGGSTTYAQK

YIPASD
Plate3_

DFGGYNYVSWYQQHPGKAPKLMIY

AGS




HC_

FQGRVTMTRDTSTSTVYMELSSLRSEDTAVYY

AFDI
Lambda_

DVSKRPSGVPDRFSGSKSGNTASLTIS

YTR




40-

CARDLGYIPASDAFDIWGQGTMVTVS


40-

GLQAEDEADYYCCSYAGSYTRYVFG

YV




P1369




P1409

TGTKVTVL








1.3M
COV072_
2675
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
2676
ARVLGII
COV072_
2677
NFVLTQPHSVSESPGKTVTISCTGSSG
2678
QSY
LAMBDA



P3_

GISWVRQAPGQGLEWMGWISAYNGNTKYAQ

VAGSLN
Plate3_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSS




HC_

KLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY


Lambda_

QRPSGVPDRFSGSIDSSSNSASLTISGL

TWV




44-

FCARVLGIIVAGSLNWGQGTLVTVSS


44-

KTEDEADYYCQSYDSSTWVFGGGTK






P1369




P1409

LTVL








1.3M
COV072_
2679
QVQLVQSGAEVKKPGASVKVSCKASGYTFTN
2680
ARSRPT
COV072_
2681
SYVLTQPPSVSVAPGKTARITCGGNN
2682
QVW
LAMBDA



P3_

YYMHWVRQAPGQGLEWMGIINPSGGSTGYAQ

PDWYF
Plate3_

IGSKSVHWYQQKPGQAPVLVIYYDS

DSSS




HC_

KFQGRVTMTRDTSTSTVYMELSSLRSEDTAVY

DL
Lambda_

DRPSGIPERFSGSNSGNTATLTISRVE






49-

YCARSRPTPDWYFDLWGRGTLVTVSS


49-

AGDEADYYCQVWDSSSDHPGVVFG






P1369




P1409

GGTKLTVL








1.3M
COV072_
2683
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNY
2684
AKDPLI
COV072_
2685
SYVLTQPPSVSVAPGKTARITCGGNN
2686
QVW
LAMBDA



P3_

AMSWVRQAPGKGLEWVSAISGSDGSTYYAGS

TGPTYQ
Plate3_

IGSKSVHWYQQKPGQAPVLVIYYDS

DSSS




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY

YFHY
Lambda_

DRPSGIPERFSGSNSGNTATLTISRVE

DRP




51-

CAKDPLITGPTYQYFHYWGQGTLVTVSS


51-

AGDEAEYHCQVWDSSSDRPGVVFGG

GVV




P1369




P1409

GTKLTVL








1.3M
COV072_
2687
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2688
ARNDGS
COV072_
2689
QSVLTQPPSVSGAPGQRVTISCTGSSS
2690
QSY
LAMBDA



P3_

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

SGWYPE
Plate3_

NIGAGYDVKWYQQLPGTAPKLLIYG

DSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

RGGGFD
Lambda_

NSNRPSGVPDRFSGSKSGTSASLAITG

LSG




54-

YCARNDGSSGWYPERGGGFDYWGQGTLVTVS

Y
54-

LQAEDEADYYCQSYDSSLSGLWVFG

LWV




P1369

S


P1409

GGTKLTVL








1.3M
COV072_
2691
EVQLVESGGGLVKPGGSLRLSCAAASGFTISNA
2692
TTDYSI
COV072_
2693
SYVLTQPPSVAVSPGQTARITCSGDA
2694
QSA
LAMBDA



P3_

WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY

RYYYG
Plate3_

LPKQYAYWYQQKPGQAPVLVIYKDS

DSS




HC_

AAPVKGRFTISRDNSKNTLYLQMNSLKTEDTA

MDV
Lambda_

ERPSGIPERFSGSSSGTTVTLTISGVQA

GTY




55-

VYYCTTDYSIRYYYGMDVWGQGTTVTVSS


55-

EDEADYYCQSADSSGTYEVFGGGTK

EV




P1369




P1409

VTVL








1.3M
COV072_
2695
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
2696
AKAGG
COV072_
2697
QSVLTQPPSVSGAPGQRVTISCTGSSS
2698
QSY
LAMBDA



P3_

GMHWVRQAPGKGLEWVAVLSYEGSSTYYAD

RDYYDS
Plate3_

NIGAGYDVHWYQQLPGTAPKLLIYG

DSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

SGYYLL
Lambda_

NSNRPSGVPDRFSGSKSGTSASLAITG

LSG




56-

YCAKAGGRDYYDSSGYYLLDHYYGMDVWGQ

DHYYG
56-

LQAEDEADYYCQSYDSSLSGFYVFG

FYV




P1369

GTTVTVSS

MDV
P1409

TGTKVTVL








1.3M
COV072_
2699
QVQLVESGGGVVQPGRSLRLSCVASGFTFSSY
2700
ARGEW
COV072_
2701
QSVLTQEPSFSVSPGGTVTLTCGLSSG
2702
VLY
LAMBDA



P3_

GMHWVRQAPGKGLEWVAVIWYDGSNKYYA

DSGSYQ
Plate3_

SVSTSYYPSWYQQTPGQPPRTLIYITN

MGS




HC_

DSVKGRFTISRDNSKNTLYLKMNSLRAEDTAV

YYDYY
Lambda_

TRSSGVPDRFSGSILGNKAALTITGAQ

SNW




71-

YYCARGEWDSGSYQYYDYYMDVWGKGTTVT

MDV
71-

ADDESDYYCVLYMGSSNWVFGGGT

V




P1369

VSS


P1409

KLTVL








1.3M
COV072_
2703
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSAY
2704
AREGA
COV072_
2705
SYVLTQPPSVSVAPGKTARITCGGNN
2706
QVW
LAMBDA



P3_

SWSWIRQPPGKGLEWIGEINHGGSTNYNASLK

VAGGD
Plate3_

IGSKSVHWYQQKPGQAPVLVIYYDS

DGT




HC_

SRVTISADTSKNLFSLKLSSVTAADTAVYYCAR

FDY
Lambda_

DRPSGIPERFSGSNSGNTATLTISRVE

SDH




73-

EGAVAGGDFDYWGQGTLVTVSS


73-

AGDEADYYCQVWDGTSDHPGWVFG

PGW




P1369




P1409

GGTKLTVL

V






1.3M
COV072_
2707
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2708
ARFSNY
COV072_
2709
QSVLTQPPSVSGAPGQRVTISCTGSNS
2710
QSY
LAMBDA



P3_

TISWVRQAPGHGLEWMGRIIPILGIANYAQKFQ

CTSTSC
Plate3_

NIGAGYDVHWYQQLPGTAPKLLIYV

DSS




HC_

GRVTITADKSTSTAYMELSSLRSEDTAVYYCA

YDY
Lambda_

NSNRPSGVPDRFSGSKSGTSASLAITG

LSG




77-

RFSNYCTSTSCYDYWGQGTLVTVSS


77-

LQAEDEADYSCQSYDSSLSGSVFGTG

SV




P1369




P1409

TKVTVL








1.3M
COV072_
2711
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
2712
ARRGGS
COV072_
2713
SYVLTQPPSVSVSPGQTASITCFGDKL
2714
QSW
LAMBDA



P3_

WIVWVRQMPGKGLERMGIIYPGDSDTRYSPSF

YYNNG
Plate3_

GDKYACWYQQKPGQSPVLVIYQDSK

DSS




HC_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC

DGMDV
Lambda_

RPSGIPERFSGSNSGNTATLTISGTQA

TPH




84-

ARRGGSYYNNGDGMDVWGQGTTVTVSS


84-

MDEADYYCQAWDSSTPHVVFGGGT

VV




P1369




P1409

KLTVL








1.3M
COV072_
2715
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2716
ARADL
COV072_
2717
NFMLTQPHSVSESPGKTVTISCTGSSG
2718
QSY
LAMBDA



P3_

AMFWVRQAPGKGLEWVAVISYDGSNKYYAD

GYCTN
Plate3_

SIASNYVQWYQQRPGSAPTTVIYEDN

DSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

GVCYV
Lambda_

QRPSGVPDRFSGSIDSSSNSASLTISGL

NWV




91-

YCARADLGYCTNGVCYVDYWGQGTLVTVSS

DY
91-

KTEDEADYYCQSYDSSNWVFGGGTK






P1369




P1409

LTVL








1.3M
COV072_
2719
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2720
ARALSF
COV072_
2721
NFMLTQPHSVSESPGKTVTISCTGSSG
2722
QSY
LAMBDA



P3_

AIHWVRQAPGKGLEWVAVISNDGSNKYYEDS

IAVAGI
Plate3_

SIASNYVQWYQQRPGSAPTIVIYEDN

DST




HC_

VKGRFTFSRDNSKNTLYLQMNSLRAEDTAVY

DY
Lambda_

QRPSGVPDRFSGSIDSSSNSASLTISGL

THV




94-

YCARALSFIAVAGIDYWGRGTLVTVSS


94-

KTEDEADYYCQSYDSTTHVVFGGGT

V




P1369




P1409

KLIVL








1.3M
COV072_
2723
QVQLVESGGGVVQPGRSLRLSCAASGFTFSHY
2724
ASSSGY
COV072_
2725
DIQMTQSPSTLSASVGDRVTITCRAS
2726
QQY




Plate2_

AMHWVRQAPGKGLEWVAVIPFDGSNKYYAD

LFHFDY
Plate2_

QSISSWLAWYQQKPGKAPKLLIYKAS

NSY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


Kappa_

SLESGVPSRFSGSGSGTEFTLTISSLQP

PWT




12-

YCASSSGYLFHFDYWGQGTLVTVSS


12-

DDFATYYCQQYNSYPWTFGQGTKVE






P1369




P1389

IK








1.3M
COV072_
2727
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2728
AKGPRF
COV072_
2729
DIQMTQSPSSLSASVGDRVTITCQAS
2730
QQY
KAPPA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGTDSVKGR

GWSYR
Plate2_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




HC_

FTISRDTSKNMLYLQMNSLRAEDTAVYYCAKG

GGPGFD
Kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PIT




15-

PRFGWSYRGGPGFDIWGQGTMVTVSS

I
15-

QPEDIATYYCQQYDNLPITFGQGTRL






P1369




P1389

EIK








1.3M
COV072_
2731
EVQLVESGGDLVQPGGSLRLSCAASGLTVSSN
2732
ARDLQ
COV072_
2733
DIQLTQSPSFLSASVGDRVTITCRASQ
2734
QQP
KAPPA



Plate2_

YMSWVRQAPGKGLEWVSVIYSGGSTFYADSV

YYGMD
Plate2_

GISSYLAWYQQKPGKAPKLLIYAAST

DSF




HC_

KGRFTISRDNSQNTLYLQMNSLRAEDTAVYYC

V
Kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

T




16-

ARDLQYYGMDVWGQGTTVTVSS


16-

DFATYYCQQPDSFTFGPGTKVDIK






P1369




P1389










1.3M
COV072_
2735
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
2736
ARVRLG
COV072_
2737
DIVMTQSPLSLPVTPGEPASISCRSSQS
2738
MQA
KAPPA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGSKKYSAD

AYYNY
Plate2_

LLHSNGYNYLDWYLQKPGQSPQLLI

LQT




HC_

SVKGRFTISRDNSKNTLYLQMNSLRPVDTAVY

FGMDV
Kappa_

YLGSNRASGVPDRFSGSGSGTDFTLK

FT




23-

YCARVRLGAYYNYFGMDVWGQGTTVTVSS


23-

ISRVEAEDVGVYYCMQALQTFTFGP






P1369




P1389

GTKVDIK








1.3M
COV072_
2739
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYA
2740
ANHPLA
COV072_
2741
EIVLTQSPGTLSLSPGERATLSCRASQ
2742
QY
KAPPA



Plate2_

MSWVRQAPGKGLEWVSTITGSGRDTYYADSV

SGDDY
Plate2_

SVNSRQLAWYQQKPGQAPRLLIYGA

GSS




HC_

KGTLRFTISRDNSKNFLQLNSLRAEDAAVYSCA

YHYYM
Kappa_

SSRATGIPERFSGSGSGTDFTLTISRLE

RAL




24-

NHPLASGDDYYHYYMDVWGKGTTVTVSS

DV
24-

SEDFAVYHCQQYGSSRALTFGGGTK

T




P1369




P1389

VEIK








1.3M
COV072_
2743
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTY
2744
ATSLFGI
COV072_
2745
AIQMTQSPSSLSASVGDRVTITCRAG
2746
LQD
KAPPA



Plate2_

GMHWVRQAPGKGLEWVAVIWYDGNNKYYA

ISLDY
Plate2_

QGIRNDLGWYQQKPGKAPKLLIYAA

YNY




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV


Kappa_

SSLQSGVPSRFSGSGSGTDFTLTISSLQ

PYT




25-

YYCATSLFGIISLDYWGQGTLVTVSS


25-

PEDFATYYCLQDYNYPYTFGQGTKL






P1369




P1389

EIK








1.3M
COV072_
2747
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2748
AKGPRF
COV072_
2749
DIQMTQSPSSLSASVGDRVTITCQAS
2750
QQY
KAPPA



Plate2_

GMNWVRQAPGKGLEWVAVISYDGSNTYYTDS

GWSYR
Plate2_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




HC_

VKGRFTISRDNSKNTLYLQMNSLRVDDTATYY

GGSGFD
Kappa_

SNLETGVPSRFSGSESGTDFTFTISSLQ

PIT




31-

CAKGPRFGWSYRGGSGFDIWGQGTMVTVSS

I
31-

PEDIATYYCQQYDNLPITFGQGTRLEI






P1369




P1389

K








1.3M
COV072_
2751
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGD
2752
ARTYY
COV072_
2753
EIVLTQSPGTLSLSPGERATLSCRASL
2754
QQY
KAPPA



Plate2_

YYWSWIRQPPGKGLEWIGYIYYSGSTYYNPSL

YDSSGY
Plate2_

SVSSSYLAWYQQKPGQAPRLLIYGAS

GSSP




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

YFQYYF
Kappa_

SRATGIPDRFSGSGSGTDFTLTISRLEP

LT




32-

ARTYYYDSSGYYFQYYFDCWGQGTLVTVSS

DC
32-

EDFAVYYCQQYGSSPLTFGGGTKVEI






P1369




P1389

K








1.3M
COV072_
2756
EVQLVESGGGLVQPGGSLRLSCAASGVTVSSN
2757
ARDLY
COV072_
2758
DIQLTQSPSFLSASVGDRVTITCRASQ
2759
QQL
KAPPA



Plate2_

YMSWVRQAPGKGLEWVSLIYSGGSTFYADSV

YYGMD
Plate2_

GISSYLAWYQQKPGKAPKLLIYAAST

NSY




HC_

KGRFTISRDNSENTLYLQMNTLRAEDTAVYYC

V
Kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

SYT




36-

ARDLYYYGMDVWGQGTTVTVSS


36-

DFATYYCQQLNSYSYTFGQGTKLEIK






P1369




P1389










1.3M
COV072_
2759
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
2760
ARDQVS
COV072_
2761
DVVMTQSPLSLPVTLGQPASISCRSSQ
2762
MQG
KAPPA



Plate2_

WMSWVRQAPGKGLEWVANIKQDGSVKYYVD

WYNLD
Plate2_

SLVYSDGDTYLNWFQQRPGQSPRRLI

THW




HC_

SVKGRFTISRDNAKNSLYLQMNSLRDEDTAVY

AFDI
Kappa_

YKVSNRDSGVPDRFSGSGSGTDFTLK

PKT




37-

YCARDQVSWYNLDAFDIWGQGTMVTVSS


37-

SRVEAEDVGVYYCMQGTHWPKTFG






P1369




P1389

QGTKLEIK








1.3M
COV072_
2763
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2764
ARGGYS
COV072_
2765
EIVLTQSPGTLSLPPGERATLSCRASQ
2766
QQY
KAPPA



Plate2_

AINWVRQAPGQGLEWMGRIIPILDISNYAQKFQ

YGQLY
Plate2_

SVSSSYLAWYQQKPGQAPRLLIYGAS

ANS




HC_

GRVTITADKSTSIAYMELSSLRSEDTAVYYCAR

YFDY
Kappa_

SRATGIPDRFSGSGSGTDFTLTISRLEP

RT




40-

GGYSYGQLYYFDYWGQGTLVTVSS


40-

EDFAVYYCQQYANSRTFGQGTKVEI






P1369




P1389

K








1.3M
COV072_
2767
QVQLVESGGGVVQPGRSLRLSCAASGFTFNNY
2768
ARDWEI
COV072_
2769
DVVMTQSPLSLPVTLGQPASISCRSSQ
2770
MQG
KAPPA



Plate2_

GMHWVRQAPGKGLEWVAVIWYDGSNKYYA

VVAGM
Plate2_

SLVYNDGNTYLNWFQQRPGQSPRRL

THC




HC_

DSVKGRFTISRDNSKNTVYLQMNSLRAEDTAV

DV
Kappa_

IYKVSNRDSGVPDRFSGSGSGTDFTL

PFT




54-

YYCARDWEIVVAGMDVWGQGTTVTVSS


54-

KISRVEAEDVGVYYCMQGTHCPFTF






P1369




P1389

GPGTKVDIK








1.3M
COV072_
2771
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2772
AKGGA
COV072_
2773
DIQMTQSPSSLSASVGDRVTITCQAS
2774
QQY
KAPPA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGSNKYSAD

YSYYY
Plate2_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

YMDV
Kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PLT




63-

YCAKGGAYSYYYYMDVWGKGTTVTVSS


63-

QPEDIATYYCQQYDNLPLTFGGGTK






P1369




P1389










1.3M
COV072_
2775
EVQLLESGGGLVQPGGSLRLSCVASRFTFSNYA
2776
ANSPCS
COV072_
2777
EIVLTQSPGTLSLSPGERATLFCRASQ
2778
QQY
KAPPA



Plate2_

MSWVRQAPGKGLEWVSTITGTGDHTYYADSV

SASCKS
Plate2_

SVTSSHLAWYQQKAGQAPRLLIYGA

GSS




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAIFYCA

GYYYY
Kappa_

SSRATGIPDRFSGSGSGTDFTLTISRLE

RSL




66-

NSPCSSASCKSGYYYYYMDVWGKGTTVTVSS

YMDV
66-

PEDFAVYYCQQYGSSRSLTFGGGTK

T




P1369




P1389

VEIK








1.3M
COV072_
2779
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
2780
ATNYD
COV072_
2781
EIVLTQSPATLSLSPGERATLSCRASQ
2782
QQR
KAPPA



Plate2_

YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL

DYVPAE
Plate2_

SVSSYLAWYQQKPGQAPRLLIYDAS

SNW




HC_

KSRVTISVDTSKKQFSLKLSSVTAADTAVYYC

YFQD
Kappa_

NRATGIPARFSGSGSGTDFTLTISSLEP

PPLT




67-

ATNYDDYVPAEYFQDWGQGTLVTVSS


67-

EDFAVYYCQQRSNWPPLTFGGGTKV






P1369




P1389

EIK








1.3M
COV072_
2783
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2784
ARDGT
COV072_
2785
DIQMTQSPSSLSASVGDRVTITCQAS
2786
QQY
KAPPA



Plate2_

GMHWVRQAPGKGLEWVAVIWYDGSNKYYA

GIAAAG
Plate2_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




HC_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

TANPPF
Kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PYT




72-

YYCARDGTGIAAAGTANPPFDYWGQGTLVTV

DY
72-

QPEDIATYYCQQYDNLPYTFGQGTK






P1369

SS


P1389

LEIK








1.3M
COV072_
2787
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY
2788
ARRPPG
COV072_
2789
DIQMTQSPSSLSASVGDRVTITCRASQ
2790
QQS
KAPPA



Plate2_

YWGWIRQSPGKGLEWIGSIYYSGSTYYNPSLK

DYYYM
Plate2_

SISSYLNWYQQKPGKAPKLLIYAASS

YSIP




HC_

SRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR

DV
Kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

QIT




74-

RPPGDYYYMDVWGKGTTVTVSS


74-

EDFATYYCQQSYSIPQITFGQGTRLEI






P1369




P1389

K








1.3M
COV072_
2791
EVQLVESGGVVVQPGGSLRLSCAASGFTFDDH
2792
AKGLN
COV072_
2793
DIVMTQSPLSLPVTPGEPASISCRSSQS
2794
MQA
KAPPA



Plate2_

TMHWVRQAPGKGLEWVSLISWDAGSTYYADS

YRPQYY
Plate2_

LLHSNGYNYLDWYLQKPGQSPQLLI

LQT




HC_

VKGRFTISRDNRKNFLYLQMNSLRTEDTALYY

YYYGM
Kappa_

YLGSNRASGVPDRFSGSGSGTDFTLK

PWT




78-

CAKGLNYRPQYYYYYGMDVWGQGTTVTVSS

DV
78-

ISRVEAEDVGVYYCMQALQTPWTFG






P1369




P1389

QGTKVEIK








1.3M
COV072_
2795
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTY
2796
ARDSDV
COV072_
2797
DIQMTQSPSSLSASVGDRVTITCRASQ
2798
QQS
KAPPA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGTNKFYAD

DTAMV
Plate2_

SISSYLNWYQHKPGKAPKLLIYASSS

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVF

TWFDY
Kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

PPW




83-

YCARDSDVDTAMVTWFDYWGQGTLVTVSS


83-

EDFATYYCQQSYSTPPWTFGQGTKV

T




P1369




P1389

EIK








1.3M
COV072_
2799
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGD
2800
VRVVM
COV072_
2801
DIQMTQSPSSLSASVGDRVTITCQAS
2802
QQY
KAPPA



Plate2_

YSWSWIRQPPGKGLEWIGYIYYSGSTYYNPSL

SGIAAA
Plate2_

QDISSYLNWYQQKPGKAPKLLIYDAS

DILP




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYC

GQNDY
Kappa_

NLETGVPSRFSGSGSGTDFTFTISSLQ

PMY




86-

VRVVMSGIAAAGQNDYWGQGTLVTVSS


86-

PEDIATYYCQQYDILPPMYTFGQGTK

T




P1369




P1389

LEIK








1.3M
COV072_
2803
QVQLQESGPGLVKPSQTLSLTCTFSGGSISSGG
2804
ARSCSS
COV072_
2805
DIQMTQSPSSLSASVGDRVTITCQAS
2806
QQY
KAPPA



Plate2_

HYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL

TSCPFD
Plate2_

QDISNSLNWYQQKPGKAPKVLIYDA

DNL




HC_

KSRVIISVDTSKNQFSLRLSSVTAADTAVYYCA

Y
Kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PFT




88-

RSCSSTSCPFDYWGQGTLVTVSS


88-

QPEDFATYYCQQYDNLPFTFGPGTK






P1369




P1389

VDIK








1.3M
COV072_
2807
EVQLVETGGGLIQPGGSLRLSCAASGITVSSNY
2808
ARDLY
COV072_
2809
DIQLTQSPSFLSASVGDRVTITCRASQ
2810
QQL
KAPPA



Plate2_

MSWVRQAPGKGLEWVSIIYSGGSTFYADSVKG

YYGMD
Plate2_

GISSYLAWYQQKPGKAPKLLIYAAST

NSY




HC_

RFTISRDNPKNTLYLQMNSLRAEDTAVYYCAR

V
Kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PT




89-

DLYYYGMDVWGQGTTVTVS


89-

DFATYYCQQLNSYPTFGQGTKLEIK






P1369




P1389










1.3M
COV072_
2811
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
2812
AKAGP
COV072_
2813
DIQMTQSPSSLSASVGDRVTITCRASQ
2814
QKY
KAPPA



Plate2_

MSWVRQAPGKGLEWISAISGSGGRTYNADSV

AAAYG
Plate2_

GISNYLAWYQQKPGKVPKLLIYAAST

NSA




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

WYYYY
Kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

LGF




92-

AKAGPAAAYGWYYYYMDVWGKGTTVTASS

MDV
92-

EDVSTYYCQKYNSALGFTFGPGTKV

T




P1369




P1389

DIK








1.3M
COV072_
2815
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
2816
ARDGIT
COV072_
2817
EIVLTQSPATLSLSPGERATLSCRASQ
2818
QQR
KAPPA



Plate2_

GISWVRQAPGQGLEWMGWISAYNGNTNYAQ

GTIEYY
Plate2_

SVSSYLAWYQQKPGQAPRLLIYDAS

SNW




HC_

KLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY

FDY
Kappa_

NRATGIPARFSGSGSGTDFTLTISSLEP

PPG




9-

YCARDGITGTIEYYFDYWGQGTLVTVSS


9-

EDFAVYYCQQRSNWPPGVTFGQGTR

VT




P1369




P1389

LEIK








1.3M
COV072_
2819
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
2820
ARDIAL
COV072_
2821
DIQMTQSPSSLSASVGDRVTITCRASQ
2822
QQS
KAPPA



P3_

YIHWVRQAPGQGLEWMGIINPSAGSTSYAQKF

VPAAM
Plate3_

SSSRYLNWYQQKPGKAPKLLIYAASS

YRT




HC_

QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYC

GLDY
Kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

RLT




10-

ADIALVPMGLDYWGQGTLVTVSS


10-

EDFATYYCQQSYRTRLTFGGGTKVEI






P1369




P1389










1.3M
COV072_
2823
QVQLVQSGSEVKKPGSSVKVSCKASGGTFSSY
2824
ARVNQ
COV072_
2825
EIVMTQSPATLSVSPGERATLSCRAS
2826
QQY
KAPPA



P3_

AFSWVRQAPGQGLEWMGRIIPILALANYAQKF

AVTTPF
Plate3_

QSVSSNLAWYQQKPGQAPRLLIYGA

NNW




HC_

QGRVTITADKSTSTAYMELSSLRSEDTAVYYC

SMDV
Kappa_

STRATGIPARFSGSGSGTEFTLTISSLQ

PIT




17-

ARVNQAVTTPFSMDVWGQGTTVTVSS


17-

SEDFAVYYCQQYNNWPITFGQGTRL






P1369




P1389

EIK








1.3M
COV072_
2827
QVQLVQSGAEVKKPGSSVKVSCKASGDTFSSS
2828
ARANQP
COV072_
2829
EIVMTQSPATLSVSPGERATLSCRAS
2830
QQY
KAPPA



P3_

ALSWVRQAPGQGLEWMGRIIPILGITNYAQKF

VTTPFS
Plate3_

QSVSSNLAWYQQKPGQAPRLLIYAA

NNW




HC_

QGRVTITADKSTSTAYMELNSLRSEDTAVYYC

MDV
Kappa_

STRATGIPARFSGSGSGTEFTLTISSLQ

PIT




21-

ARANQPVTTPFSMDVWGQGTTVTVSS


21-

SEDFAVYYCQQYNNWPITFGQGTRL






P1369




P1389

EIK








1.3M
COV072_
2831
EVQLVESGGGLVQPGGSLRLSCSASGFTFSSYA
2832
VKDITM
COV072_
2833
DIQMTQSPSSLSASVGDRVTITCRASQ
2834
QQS
KAPPA



P3_

MHWVRQAPGKGLEYVSAISSNGGSTYYADSV

IVDVFE
Plate3_

SISNYLNWYQQKPGKAPKLLIYAASS

YTT




HC_

KGRFTISRDNSKNTLYLQMSSLRAEDTAVYYC

Y
Kappa_

LQSAVPSRFSGSGSGTDFTLTISSLQP

PYT




22-

VKDITMIVDVFEYWGQGTLVTVSS


22-

EDFATYFCQQSYTTPYTFGQGTKLEI






P1369




P1389

K








1.3M
COV072_
2835
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2836
ARSFYF
COV072_
2837
DIQLTQSPSFLSASVGDRVTITCRASQ
2839
QQL
KAPPA



P3_

MSWVRQAPGKGLEWISVIYSGGSTFYADSVKG

DAFDI
Plate3_

GISSYLAWYQQKPGKAPKLLIYAAST

NSY




HC_

RFTISRDNSKDTLYLQMNRLRAEDTAVYYCAR


Kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PLLT




26-

SFYFDAFDIWGQGTMVTVSS


26-

DFATYYCQQLNSYPLLTFGGGTKVEI






P1369




P1389

K








1.3M
COV072_
2839
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2840
ARGVV
COV072_
2841
EIVMTQSPATLSVSPGERATLSCRAS
2842
QQY
KAPPA



P3_

AISWVRQAPGQGLEWMGRIIPMLVIATYARKF

AATPGN
Plate3_

QSVSSNLAWYQQKPGQAPRLLIYGA

NNG




HC_

QGRVTITADKSTSTAYMELSSLRSEDTAVYYC

FDI
Kappa_

STRATGIPARFSGSGSGTEFTLTISSLQ

LT




30-

ARGVVAATPGNFDIWGQGTMVTVSS


30-

SEDFAVYYCQQYNNGLTFGGGTKVE






P1369




P1389

IK








1.3M
COV072_
2843
QVQLVQSGAEVKKPGSSVKVSCKASGGTVNN
2844
AKVSLT
COV072_
2845
EIVMTQSPATLSVSPGERATLSCRAS
2846
QQY
KAPPA



P3_

YAINWVRQAPGQGLEWMGGIVPIFGTPNYAQ

LPIAAA
Plate3_

QSVSSHLAWYQQKPGQAPRLLIYGA

HNW




HC_

KFQGRVTITADESTSTAYMELSSLRSEDTAVYY

PRFWFD
Kappa_

STRATGIPARFSGSGSGTEFTLTISSLQ

PPA




31-

CAKVSLTLPIAAAPRFWFDSWGQGTLVTVSS

S
31-

SEDFAVYYCQQYHNWPPALTFGGGT

LT




P1369




P1389

KVEIK








1.3M
COV072_
2847
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTEL
2848
ATNAEI
COV072_
2849
DIVMTQSPLSLPVTPGEPASISCRSSQS
2850
MQA
KAPPA



P3_

SMHWVRQAPGKGLEWMGGFDPEDGETIYVQ

AARKG
Plate3_

LLYSNGYNYLDWYLQKPGQSPQLLI

LQT




HC_

KFQGRATMTEHTSTETAYMELSSLRSEDTAVY

GMDV
Kappa_

YLGSNRASGVPDRFSGSGSGTDFTLK

PWT




34-

YCATNAEIAARKGGMDVWGQGTTVTVSS


34-

ISRVEAEDVGVYYCMQALQTPWTFG






P1369




P1389

QGTKVEIK








1.3M
COV072_
2851
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2852
AKQNG
COV072_
2853
DIQMTQSPSSLSASVGDRVTITCQAS
2854
LQY
KAPPA



P3_

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

LYCSGG
Plate3_

QDISNYLNWFQQKPGKAPKLLIYAAS

DNL




HC_

SVKGRFTISRDNSKNMLYLQMNSLRAEDTAVY

SCYLGY
Kappa_

DLETGVPSRFSGSGSGTDFTFTISSLQ

PLT




37-

YCAKQNGLYCSGGSCYLGYFDYWGQGTLVTV

FDY
37-

PEDIASYYCLQYDNLPLTFGGGTKVE






P1369

SS


P1389

IK








1.3M
COV072_
2855
QVQLVESGGGVVQPGRSLRLSCAVSGFTFSSY
2856
AKQLGL
COV072_
2857
DIQMTQSPSSLSASVGDRVTITCQAS
2858
QQY
KAPPA



P3_

GMHWVRQAPGKGLEWVAVISYDGSNKHYAD

YCSGGN
Plate3_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




HC_

SVKGRFTISRDNSKNTLYVQMNSLRAEDTAMY

CYSGAL
Kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PFT




3-

YCAKQLGLYCSGGNCYSGALDYWGQGTLVTV

DY
3-

QPEDIATYYCQQYDNLPFTFGPGTKV






P1369

SS


P1389

DIK








1.3M
COV072_
2859
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTNS
2860
AAVDC
COV072_
2861
EIVLTQSPGTLSLSPGERATLSCRASQ
2862
QQY
KAPPA



P3_

AVQWVRQSRRQRLEWIGWIVVGSGNTNYAQK

NSTSCY
Plate3_

SFRSSYLAWYQQKPGQAPRLLIYGAS

DISP




HC_

FQERVTITRDMSTSTAYMELSSLRSEDTAVYYC

DAFDI
Kappa_

SRATGIPDRFSGSGSGSDFTLTISRLEP

WT




42-

AAVDCNSTSCYDAFDIWGQGTMVTVSS


42-

EDFAVYYCQQYDISPWTFGQGTKVEI






P1369




P1389

K








1.3M
COV072_
2863
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2864
ASSSGY
COV072_
2865
DIQMTQSPSTLSASVGDRVTITCRAS
2866
QQY
KAPPA



P3_

AMHWVRQAPGKGLEWVAVIPFDGRNKYYAD

LFHSDY
Plate3_

QSISNWLAWFQQKPGKAPKLLIYEA

NSY




HC_

SVTGRFTISRDNSKNTLYLQMNSLRAEDTAVY


Kappa_

XSLESGVPSRFSGSGSGTEFTLTISSLQ

PWT




45-

YCASSSGYLFHSDYWGQGTLVTVSS


45-

PDDFATYYCQQYNSYPWTFGQGTKV






P1369




P1389

EIK








1.3M
COV072_
2867
EVQLVESGGGLVQPGGSLRLSCAASEFIVSRNY
2869
ARDIAG
COV072_
2870
DIQMTQSPSSLSASVGDRVTITCQAS
2871
QY
KAPPA



P3_

MSWVRQAPGKGLEWVSLIYSGGSTYYADSVK

RLDY
Plate3_

QDISKYLNWYQQKPGKAPKLLIYDA

DSL




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAMYYCA


Kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

SRL




47-

RDIAGRLDYWGQGTLVTVSS


47-

QPEDFATYYCQHYDSLSRLTFGGGT

T




P1369




P1389

KVEIK








1.3M
COV072_
2871
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
2872
ARDLLD
COV072_
2873
EIVLTQSPGTLSLSPGERATLSCRASQ
2874
QQY
KAPPA



P3_

AINWVRQAPGQGLEWMGRIIPIVGIANYAQKF

PQLDDA
Plate3_

SVSSTYLAWYQQKPGQAPRLLIYGAS

GSSP




HC_

QGRVTITADKSSSTAYMELSSLRSEDTAVYYC

FDI
Kappa_

SRATGIPDRFSGSGSGTDFTLTISRLEP

WT




48-

ARDLLDPQLDDAFDIWGQGTMVTVSS


48-

EDFAVYYCQQYGSSPWTFGQGTKVE






P1369




P1389

IK








1.3M
COV072_
2875
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNS
2876
ARSGSY
COV072_
2878
EIVMTQSPATLSVSPGERATLSCRAS
2879
QQY
KAPPA



P3_

TAWNWIRQSPSRGLEWLGRTYYRSKWYNHYA

YISHGM
Plate3_

QSVSSNLAWYQQRPGQAPRLLIYGA

NNW




HC_

LSVKSRITINPDTSKNQFSLQLNSVTPEDTAVY

DV
Kappa_

STRATGIPARFSGSGSGTEFTLTISSLQ

PPW




4-

YCARSGSYYISHGMDVWGQGTTVTVSS


4-

SEDFAVYYCQQYNNWPPWTFGQGT

T




P1369




P1389

KVEIK








1.3M
COV072_
2879
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYA
2880
ANHPLA
COV072_
2881
EIVLTQSPGTLSLSPGERATLSCRASQ
2882
QQY
KAPPA



P3_

MSWVRQAPGKGLEWVSTITGSGGFTYYADSV

SGDEYY
Plate3_

SVNSRQLAWYQQKPGQGPRLLIYGA

GSS




HC_

KGRFTISRDNSKNTLFLQMNSLRAEDAAVYYC

YYYMD
Kappa_

SSRATGIPDRFSGSGSGTDFTLTISRLE

RAL




50-

ANHPLASGDEYYYYYMDVWGKGTTVTVSS

V
50-

PEDFAVYYCQQYGSSRALTFGGGTK

T




P1369




P1389

VEIK








1.3M
COV072_
2883
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2884
ARDSDV
COV072_
2885
DIQMTQSPSSLSASVGDRVTITCRASQ
2886
QQS
KAPPA



P3_

AMHWVRQAPGKGLEWVAVILYDGSNKYYAD

DTSMVT
Plate3_

SISSYLNWYQQKPGKAPKLLIYAASS

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

WFDY
Kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

PPW




53-

YCARDSDVDTSMVTWFDYWGQGTLVTVSS


53-

EDFATYYCQQSYSTPPWTFGQGTKV

T




P1369




P1389

EIK








1.3M
COV072_
2887
QVQLVESGGGLVKPGGSLRLSCAASGFTFSHY
2888
ARDRG
COV072_
2889
DIQMTQSPSSLSASVGDRVTITCQAS
2890
QQY
KAPPA



P3_

NMIWIRQAPGKGLEWVSYISSSSSYTNCSDSVR

YSGYGL
Plate3_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




HC_

GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

DRFDY
Kappa_

SHLETGVPSRFSGSGSGTDFTFTISSL

PLT




58-

RDRGYSGYGLDRFDYWGQGTLVTVSS


58-

QPEDIATYYCQQYDNLPLTFGGGTK






P1369




P1389

VEIK








1.3M
COV072_
2891
EVQLVESGGGLVQPGGSLRLSCAASGFIVSSNY
2892
ARDLV
COV072_
2893
DIQLTQSPSFLSASVGDRVTITCRASQ
2894
QQL
KAPPA



P3_

MSWVRQAPGKGLEWVSILYSGGSTYYADSVK

VYGAD
Plate3_

GISSYLAWYQQKPGKAPKLLIYAAST

NSY




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

Y
Kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PPP




59-

RDLVVYGADYWGQGTLVTVSS


59-

DFATYYCQQLNSYPPPFGGGTKVEIK






P1369




P1389










1.3M
COV072_
2895
EVQLLESGGGLVQPGGSLRLSCTASGFTFSTYA
2896
AKSKTV
COV072_
2897
DIQMTQSPSSLSASVGDRVTITCQAS
2898
QQY
KAPPA



P3_

MSWVRQAPGKGLEWVSAISDSGGSTYYADSV

ERLPYC
Plate3_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

GGDCFS
Kappa_

SNLETGVPSRFSGSGSGTDFTFTISSL

PPFT




5-

AKSKTVERLPYCGGDCFSAIDYWGQGTLVTVS

AIDY
5-

QPEDIATYYCQQYDNLPPFTFGPGTK






P1369

S


P1389

VHIK








1.3M
COV072_
2899
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
2900
ARDNIT
COV072_
2901
DIQMTQSPSSLSASVGDRVTITCRASQ
2902
QQS
KAPPA



P3_

YMTWIRQAPGKGLEWVSYITTSSSYTNYADSV

MVRGVI
Plate3_

SISSYLNWYQEKPGKAPKLLIYAASS

YST




HC_

KGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC

VRPNDG
Kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

RAL




64-

ARDNITMVRGVIVRPNDGGYYYALDVWGQGT

GYYYA
64-

EDFATYYCQQSYSTRALTFGGGTKV

T




P1369

TVTVSS

LDV
P1389

EIK








1.3M
COV072_
2903
EVQLVESGGGLIQPGGSLRLSCAASGFIVSRNY
2904
TRDPVP
COV072_
2905
DIQMTQSPSSLSASVGDRVTITCQAS
2906
QQY
KAPPA



P3_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

GRGDA
Plate3_

QDISNYLNWYQQKPGKAPKLLIYDA

DNL




HC_

GRFTISRDNSKNTLYLQMNSLRADDTAVYYCT

Y
Kappa_

SNLETGVPSRFSGSGSGTDFTFTISTL

PIT




67-

RDPVPGRGDAYWGQGTLVTVSS


67-

QPEDIATYYCQQYDNLPITFGGGTKV






P1369




P1389

EIK








1.3M
COV072_
2907
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2908
AKKGQ
COV072_
2909
DIQMTQSPSSLSASLGDRVTITCQASQ
2910
QQY
KAPPA



P3_

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

PYCGGD
Plate3_

DISNYLNWYQQKPGKAPKLLIYDAS

DNL




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

CYFYYF
Kappa_

NLETGVPSRFSGSGSGTDFTFTISSLQ

PPIT




68-

YCAKKGQPYCGGDCYFYYFDYWGQGTLVTVS

DY
68-

PEDIATYYCQQYDNLPPITFGQGTRL






P1369

S


P1389

EIK








1.3M
COV072_
2911
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2912
ARDSDT
COV072_
2913
DIQMTQSPSSLSASVGDRVTITCRASQ
2914
QQS
KAPPA



P3_

TMHWVRQAPGKGLEWVAVISYDGSIKYYADS

AMVDY
Plate3_

SISSYLNWYQQKAGKAPKLLIYAASS

YST




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY

FDY
Kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

FMY




69-

CARDSDTAMVDYFDYWGQGTLVTVSS


69-

EDFATYYCQQSYSTFMYTFGQGTKL

T




P1369




P1389

EIK








1.3M
COV072_
2915
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
2916
AKVDL
COV072_
2917
DIQMTQSPSSLSASVGDRVTITCRASQ
2918
QQT
KAPPA



P3_

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

KYSYGL
Plate3_

SISSYLNWYQQKPGKAPKLLIYAASS

YITP




HC_

SVKGRCTISRDNSKNTLFLQMNSLRPEDTAVY

YYFDY
Kappa_

LQSGVPSRFSGSGSGTDFTLTISSLQP

PS




74-

YCAKVDLKYSYGLYYFDYWGQGTLVTVSS


74-

EDFATYYCQQTYITPPSFGPGTKVDIK






P1369




P1389

K








1.3M
COV072_
2919
EVQLVESGGGLVQPGGSLRLSCAASGITVSSNY
2920
ARDLG
COV072_
2921
DIQLTQSPSFLSASVGDRVTITCRASQ
2922
QQL
KAPPA



P3_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

DYGMD
Plate3_

GISSYLAWYQQKPGKAPKLLIYAAST

NSY




HC_

GRVTISRDNSKNTLYLQMNSLRVEDTAVYYCA

V
Kappa_

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PPY




80-

RDLGDYGMDVWGQGTTVTVSS


80-

DFATYYCQQLNSYPPYTFGQGTKLEI

T




P1369




P1389

K








6.2M
COV096_
2923
QVQLVQSGAEVKKPGSSVKVSCKASGGTFST
2924
ARREPYG
COV096_
2925
QSVLTQPPFASASLGASVTLTCTLSSD
2926
GA
LAMBDA



6mo_

SAISWVRQAPGQGLEWMGGIIPFFGTPNYAQ

PRDYYYF
6mo_P1_

YSYYKVDWYQQRPGKGPRFVIRVGP

DEG




P1_IGG_

KFQGRVTIIADESTTTAYMELSGLRFEDSAVY

FGMDV
Lambda_

GGIVGSKGDGFPDRFSVLGSGLNRSLT

SGG




A1-

YCARREPYGPRDYYYFFGMDVWGPGTTVTV


A1-

INNIQEEDEGDYHCGADEGSGGTFVG

TFV




P1369

SS


P1409

VFGGGTKLTV

GV






6.2M
COV096_
2927
QVQLVESGGGVVQPGRSLRLSCAASGFTFSN
2928
ARAGTT
COV096_
2930
SYVLTQPPSVSVAPGMTARITCGGNTI
2931
QV
LAMBDA



6mo_

YEIHWVRQAPGKGLEWVAGISYDGSTKYYA

NSDYFDY
6mo_P1_

GSKSVHWYQQKAGQAPVLVIYYDSD

WD




P1_IGG_

DSVKGRFTISRDNSKNTLYLQMNSLRPEDTA


Lambda_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




A5-

VFYCARAGTTNSDYFDYWGQGTLVTVSS


A5-

DEADYYCQVWDSSSVLWVFGGGTKL

VL




P1369




P1409

TVL

W






6.2M
COV096_
2931
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
2932
ARDPPND
COV096_
2933
SYVLTQPPSVSAAPGKTAGITCGGDSI
2934
QV
LAMBDA



6mo_

HGINWVRQAPGQGLEWMGWISTYSGNTKYA

ILTGYLD
6mo_P1_

GGKSVHWYQQKPGQAPVLVVYDDS

WD




P1_IGG_

QKFQGRVTMTTDTSTSTVYMELRSLRSDDAA

H
Lambda_

DRPSGIPERFSGSNSGNTATLTISRVEA

GSS




B2-

VYYCARDPPNDILTGYLDHWGQGTLVTVSS


B2-

GDEADYYCQVWDGSSDRHWVFGGG

DR




P1369




P1409

TKLTVL

HW













V






6.2M
COV096_
2935
QVQLVQSGAEVKKPGASVKVSCKASGYTFSS
2936
ARGFSLT
COV096_
2937
SYVLTQPPSVSAAPGKTARITCGGNNI
2938
QL
LAMBDA



6mo_

HDINWVRQATGQGLEWVGWMNPNSGNTGS

WYFDL
6mo_P1_

GGKNVHWYQQKPGQAPVLVVFDDS

WD




P1_IGG_

AQSFQGRVTLTRNASISTAYLELSSLRSEDTA


Lambda_

DRPSGIPERFSGSNSGNTATLTISRVEA

STS




B5-

VYFCARGFSLTWYFDLWGRGTLITVSS


B5-

GDEADYYCQLWDSTSDHPDVVFGGG

DHP




P1369




P1409

TQLTVL

DV













V






6.2M
COV096_
2939
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
2940
AREGSLT
COV096_
2941
SYVLTQPPSVSVAPGKTARITCGGNNI
2942
QV
LAMBDA



6mo_

YSIHWMRQAPGQGLEWTGIINPSGGGTSYAK

GYFDL
6mo_P1_

GSKSVHWYQQKPGQAPILVVYDDSD

WD




P1_IGG_

KFQGRVTMTRDTSTNTVYMELSSLRSEDTAV


Lambda_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




B6-

YYCAREGSLTGYFDLWGRGTLVTVSS


B6-

DEADYYCQVWDSSSDRHVVFGGGTK

DR




P1369




P1409

LTVL

HV













V






6.2M
COV096_
2943
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
2944
TRVQVG
COV096_
2945
NFMLTQPLSVSESPGKTVTISCTRSSG
2946
QSC
LAMBDA



6mo_

SMTWVRQAPGKGLEWVSFISSSSTYIYYADS

ARGWAD
6mo_P1_

SIASNYVQWYQQRPGGAPTTVIYEDT

DTI




P1_IGG_

VKGRFTISRDNAKSSLYLQMNRLRAEDTAVY

Y
Lambda_

QRPSGVPDRFSGSIDSSSNSASLTISGL

NW




C3-

YCTRVQVGARGWADYWGQGTLVTVSS


C3-

KTEDEADYYCQSCDTINWVFGGGTK

V




P1369




P1409

LTVV








6.2M
COV096_
2947
QVQLVESGGGVAQPGRSLRLSCAASGFTFSR
2948
ARGGRP
COV096_
2949
SYVLTQPPSVSVSPGQTARITCSGDAF
2950
QSA
LAMBDA



6mo_

YGMHWVRQAPGKGLEWVAVIWHDGSDKYC

DHETGIA
6mo_P1_

PLQYGYWYQQKPGQAPVLVIYKDKE

DTN




P1_IGG_

ADFVKGRFTISRDNSKNTLYMQMDSLRAEDT

VLGEYYF
Lambda_

RPSGISERFSGSSSGTTVTLTISGVQAE

GV




C4-

AVYYCARGGRPDHETGIAVLGEYYFDSWGQ

DS
C4-

DEADYYCQSADTNGVVFGGGTSLTV

V




P1369

GTLVTVSS


P1409

L








6.2M
COV096_
2951
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSM
2952
ARDQNQI
COV096_
2953
QSVLTQPASVSGSPGQSITISCTGTSSD
2954
CSY
LAMBDA



6mo_

SAISWVRQAPGQGLEWMGGIIPIFGTPNYAQK

DPAYRD
6mo_P1_

VGSYNLVSWYQQHPGKAPKLMIYEG

AGS




P1_IGG_

FQGRVTIAADESTSTAYMELSSLRSEDTAVYY

AFDI
Lambda_

SKRPSGVSNRFSGSKSGNTASLTISGL

SSW




D8-

CARDQNQIDPAYRDAFDIWGQGTMVTVSS


D8-

QAEDEADYYCCSYAGSSSWVFGGGT

V




P1369




P1409

KLTVL








6.2M
COV096_
2955
QVQLQQWGAGLLKPSETLSLTCAVYGGSLSA
2956
ARVQDL
COV096_
2957
SYVLTQPPSVSVAPGQTARITCGGNNI
2958
QV
LAMBDA



6mo_

YQWIWIRQSPGKGLEWIGEINHSGGSNCNPSL

MYSLLY
6mo_P1_

GSKNVHWYQQKPGQAPVLVVYDDS

WD




P1_IGG_

KTRVTMSVDTSKNQFSLRLSSVTAADTGVYY


Lambda_

GDEADYYCQVWDSTSDHPGVVFGGG

STS




E4-

CARVQDLMYSLLYWGQGTLVIVSS


E4-

DRPSGIPERFSGSNSGNTATLSISRVEA

DHP




P1369




P1409

TKLTVL

GV













V






6.2M
COV096_
2959
QVQLVQSGAEVKKSGASVKVSCKASGYSFTD
2960
ARTPAPL
COV096_
2961
QSVLTQPASVSGSPGQSITISCTGTASD
2962
SSY
LAMBDA



6mo_

YFMHWVRQAPGQGLEWMGWINPNSGGTNY

RHVENY
6mo_P1_

VGGYNYVSWYQHHPGKAPTLMIYDV

TRG




P1_IGG_

AQKFQGRVTMTRDTSITTAYMELSRLRSDDT

YYYYGL
Lambda_

SNRPSGVSNRFSGSKSGNTASLTISGL

TTL




F1-

AVYYCARTPAPLRHVENYYYYYGLDVWGQ

DV
F1-

QAEDEADYYCSSYTRGTTLVLFGGGT

VL




P1369

GTTVTVSS


P1409

TLTVL








6.2M
COV096_
2963
QVQLQESGPGLVKPSQTLSLTCTVSGGSISNG
2964
ARFLRNF
COV096_
2965
QSVLTQPPSASGSPGQSVTISCTGTSSD
2966
SSY
LAMBDA



6mo_

DYYWSWIRQHPGKGLEWIGYIYHSGITYYNP

EWLFFDP
6mo_P1_

VGGYDYVSWYQHHPGKAPKVMIYE

VGS




P1_IGG_

SLKSRLMISIDTSKNQFSLKLRSVTAADTAVY


Lambda_

VRKRPSGVPDRFSGSKSGNTASLTVS

NVL




F4-

YCARFLRNFEWLFFDPWGQGTLVTVSS


F4-

GLQAEDEADYYCSSYVGSNVLFGGG






P1369




P1409

TKLTVL








6.2M
COV096_
2967
QVQLQESGPGLVKPSETLSLTCTVSGASISSHY
2968
ARGWPY
COV096_
2969
QSVLTQPPSASGTPGQRVTISCSGSSS
2970
AA
LAMBDA



6mo_

WSWIRQPPGKGLEWIGYIHYIGSTNYNPSLKS

CGVDCY
6mo_P1_

NIGSNTVNWYQQLPGTAPKLLIYSNN

WD




P1_IGG_

RVTILLDTSKNQFSLRLRSVTAADTAVYYCAR

SGFDY
Lambda_

QRPSGVPDRFSGSKSGTSASLAISGLQ

DSL




F6-

GWPYCGVDCYSGFDYWGQGTLVTVSS


F6-

SEDEADYYCAAWDDSLNGLWVFGG






P1369




P1409

GTKLTVL








6.2M
COV096_
2971
QVQLVQSGAEVKKPGASVKVSCEASGFPFIN
2972
ARGRSRG
COV096_
2973
QSVLTQPPSASGTPGQRVTISCSGNSS
2974
AA
LAMBDA



6mo_

YFMHWVRQAPGQGLEWMGVINPGGGSTTYP

VGDVYPS
6mo_P1_

NIGSNTVSWSQQLPGTAPKLLIYSNHQ

WD




P1_IGG_

QKFQGRVTMTRDTSTSTVYMELSSLRSEDTA

VDY
Lambda_

RPSGVPDRFSGSKSGTSASLAISGLQS

DSL




G10-

VYYCARGRSRGVGDVYPSVDYWGQGTLVTV


G10-

EDEADYHCAAWDDSLNGPVFGGGTQ

NGP




P1369

SS


P1409

LTVL

V






6.2M
COV096_
2975
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSS
2976
ARQHRY
COV096_
2977
QSVLTQPPSASGSPGQSVTISCTGTSSD
2978
SSY
LAMBDA



6mo_

YYWAWIRQPPGKGLEWIGNIYYSGITYYSPSL

GSGSSEL
6mo_P1_

VGSYNYVSWYQQHPGKAPKLMIYEV

AGS




P1_IGG_

KSRVTISVDTSKNQFSLKLRSVTAADTAVYYC

L
Lambda_

TKRPSGVPDRFSGSKSGNTASLTVSGL

SNL




G3-

ARQHRYGSGSSELLWGQGTLVTVSS


G3-

QADDEADYYCSSYAGSSNLIFGGGTK

I




P1369




P1409

LTVL








6.2M
COV096_
2979
EVQLVQSGAEVKKAGEPLKISCRASGYTFTR
2980
ARRGGD
COV096_
2981
QSVLTQPRSVSGSPGQSVTISCTGTSS
2982
CSY
LAMBDA



6mo_

YWIGWVRQMPGKGLEWMGIIYPHDSDTRYS

YPPWFDP
6mo_P1_

DFGAYTYVSWYQQRPGKAPKLMIYD

ADS




P1_IGG_

PSFEGQVTISADKSISTAYLQWSRLKASDTAV


Lambda_

VIKRPSGVPDRFSGSKSGNTASLTISGL

YTV




G5-

YYCARRGGDYPPWFDPWGQGTLVTVSS


G5-

QADDEADYYCCSYADSYTVIFGGGT

I




P1369




P1409

KLTVL








6.2M
COV096_
2983
QLQLQESGPGLVKPSETLSLTCTVSGGSITTSS
2984
ARQNRF
COV096_
2985
QSVLTQPPSASGSPGQSVTISCTGTSSD
2986
SSY
LAMBDA



6mo_

YYWGWIRQPPGKGLEWIGAIYYTGITYYNPS

GSGSSEL
6mo_P1_

VGSYDYVSWYQQHPGKAPKLVIYEV

AGS




P1_IGG_

LKSRVTMSVDTSKNQFALRLSSVTAADTAVY

L
Lambda_

SERPSGVPDRFSGSKSGNTATLTVSGL

NNL




G7-

YCARQNRFGSGSSELLWGQGTLVTVSS


G7-

QADDEADYYCSSYAGSNNLIFGGGTK

I




P1369




P1409

LTVL








6.2M
COV096_
2987
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
2988
ARVYHL
COV096_
2989
QSVLTQPASVSGSPGQSITISCTGTSSD
2990
CSY
LAMBDA



6mo_

YYLHWVRQAPGQGLEWVGWINPISGGTNYA

LLGEGS
6mo_P1_

VGSYNLVSWYQQHPGKAPKLMIYEG

AGS




P1_IGG_

QQFQGRVSMTRHTSITTAYMELSRLRSDDTA

WSPLPYY
Lambda_

SKRPSGVSNRFSGSKSGNTASLTISGL

NTF




H3-

VYYCARVYHLLLGEGSWSPLPYYYYGMDV

YYGMDV
H3-

QAEDEADYYCCSYAGSNTFVFGTGT

V




P1369

WGQGTTVTVSS


P1409

KVTVL








6.2M
COV096_
2991
EVQLVESGGGLVKPGRSLRLSCTVSGFTFGAY
2992
SRGGYY
COV096_
2993
QSVLTQPPSASGTPGQRITISCSGSSSNI
2994
AA
LAMBDA



6mo_

AMSWFRQAPGKGLEWVGFIRSKTYGGTTEY

DGSPYY
6mo_P1_

GSNTVNWYQQLPGTAPKLLIYSNNQR

WD




P1_IGG_

AASLKGRFTISRDDSKSIAFLQMNSLKTEDTA

WNRPDA
Lambda_

PSGVPDRFSGSKSGTSASLAISGVQSE

DSL




H9-

VYFCSRGGYYDGSPYYWNRPDAFDIWGLGT

FDI
H9-

DEADYYCAAWDDSLNGPDVVFGGGT

NGP




P1369

VVTVS


P1409

KLTVL

DV













V






6.2M
COV096_
2995
EVQLVESGGGLVKPGRSLRLSCTASGFTFGDY
2996
TRGGYY
COV096_
2997
QSVLTQPPSASGTPGQRVTISCSGSSS
2998
AA
LAMBDA



6mo_

AMSWFRQAPGKGLEWVGFIRSKSYGGT

DGSGFY
6mo_P2_

NIGSNTVNWYQQLPGAAPKLLIYFNN

WD




P2_IGG_

AASVKGRFTISRDDSKSIDYLQMNSLK1EDTA

WNRPDA
Lambda_

QRPSGVPDRFSGSRSGTSASLAISGLQ

DSL




A12-

VYYCTRGGYYDGSGFYWNRPDAFDIWGQGT

FDI
A12-

SEDEADYYCAAWDDSLNGPDVVFGG

NGP




P1369

MVTVSS


P1409

GTKLTVL

DV













V






6.2M
COV096_
2999
QLQLQESGPGLVKPSETLSLTCTVSGGSISNN
3000
ARQNRY
COV096_
3001
QSVLTQPPSASGSPGQSVTISCTGTSSD
3002
SSY
LAMBDA



6mo_

NYYWAWIRQPPGKGLEWIGNIYYTGITYYNP

GSGSSEL
6mo_P2_

VGSYNYVSWYQQHPGKAPKLLIYEV

AGS




P2_IGG_

SLKSRVAISVDMSMNQFSLKLRSVTAADTAV

L
Lambda_

TQRPSGVPDRFSGSKSGNTASLTVSGL

NSL




A6-

YFCARQNRYGSGSSELLWGQGTLVTVSS


A6-

QTEDEADYYCSSYAGSNSLVFGGGTK

V




P1369




P1409

LTVL








6.2M
COV096_
3003
QVQLVQSGAEVKKPGSSVRVSCKASGGTFSR
3004
ARHMVV
COV096_
3005
QSVLTQPPSVSGAPGQRVTISCTGSGS
3006
QSY
LAMBDA



6mo_

DALSWVRQAPGQGLEWMGGIIPISDSATYAQ

IPVGLHY
6mo_P2_

NIGAGFDVHWYQQLPGTAPKLLIYGN

DSG




P2_IGG_

KFQGRVTLIADEATATAYMELSSLRSEDTAV

YYGMDV
Lambda_

SNRPSGVPDRFSGSKSGTSASLAITGL

LSA




A7-

YYCARHMVVIPVGLHYYYGMDVWGQGTTV


A7-

QAEDEADYYCQSYDSGLSASVFGGG

SV




P1369

TVSS


P1409

TKLTVL








6.2M
COV096_
3007
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
3008
ARERGYS
COV096_
3009
QSVLTQPPSVSGAPGQRVTISCTGSNS
3010
QSY
LAMBDA



6mo_

YSISWVRQAPGQGLEWMGGIMPILGIANYAQ

DYGSVQ
6mo_P2_

NIGAGYDVHWYQQLPGTAPKLLIYA

DSS




P2_IGG_

WFQGRVTITADESTSTAYMELSSLRSEDTAVY

YFDY
Lambda_

DINRPSGVPDRFSGSKSDTSASASLAIT

LSG




A9-

YCARERGYSDYGSVQYFDYWGQGTLVTVSS


A9-

GLQAEDEADYYCQSYDSSLSGSVVFG

SVV




P1369




P1409

GGTKLTVL








6.2M
COV096_
3011
QVQLVQSGAEVKKPGASVKVSCKASGHTFTT
3012
ARGGYC
COV096_
3013
SYVLTQPPSVSVAPGKTARITCGGNNI
3014
QV
LAMBDA



6mo_

YYLHWVRQAPGQGLEWMGRIDPSGGSTTYA

GSTSCSP
6mo_P2_

GSKSVHWYQQKPGQAPVLVIYYDSD

WD




P2_IGG_

QKFQGRVTMTRDTSTSTVYMELSSLRSEDTA

DDYFDY
Lambda_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




B5-

LYYCARGGYCGSTSCSPDDYFDYWGQGTLV


B5-

DEADYYCQVWDSSSDHYYVFGTGTK

DH




P1369

TVSS


P1409

VTVL

YY













V






6.2M
COV096_
3015
QVQLVESGGGVVQPGRSLRLSCAASGFIFSSY
3016
ARDGAV
COV096_
3017
SYVLTQPPSVSVAPGKTARITCGGNYI
3018
QV
LAMBDA



6mo_

GMHWVRQAPGKGLEWVAGIWYDGSNKFYA

APAGSLD
6mo_P2_

GSKSVHWYQQKPGQAPVLVIYYDTD

WD




P2_IGG_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA

WFDP
Lambda_

RPSGIPERFSGSNSGNTATLTISRVEAG

SSG




C3-

VYFCARDGAVAPAGSLDWFDPWGQGTLVTV


C3-

DEADYYCQVWDSSGDHYVFGTGTKV

DH




P1369

SS


P1409

TVL

YV






6.2M
COV096_
3020
QLQLQESGPGLVRPSETLSLTCTVSGGSISSSS
3021
ASRGWL
COV096_
3022
NFMLTQPHSVSESPGKTVTISCTHSSG
3023
QSY
LAMBDA



6mo_

YYWGWIRQPPGKGLEWIGDMYYSGSTYYTP

RGAFDV
6mo_P2_

SIASNYVQWYQQRPGSSPTIVIFEDNQ

DSS




P2_IGG_

SLRGRVTISVDTSKNQFSLKLSSVTAADTAVY


Lambda_

RPSGVPDRFSGSIDSSSNSASLTISGLK

IHV




C6-

YCASRGWLRGAFDVWGQGTVATVSS


C6-

TEDEADYYCQSYDSSIHVVFGGGTKL

V




P1369




P1409

TVL








6.2M
COV096_
3023
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3024
AKAASRS
COV096_
3025
QSVLTQPASVSGSPGQSITISCTGTSSD
3026
CSY
LAMBDA



6mo_

YGMHWVRQAPGKGLEWVSGISWNGDSIGYA

TRIGGAF
6mo_P2_

VGGYNLVSWYQQHPGKAPKLMIYEG

AYS




P2_IGG_

DSVKGRFTISRDNAKTSLYLQMNRLRAEDTA

DI
Lambda_

SKRPSGVSNRFSGSKSGNTASLTISGL

FTN




C8-

LYYCAKAASRSTRIGGAFDIWGQGTMVTVSS


C8-

QAEDEADYYCCSYAYSFTNVFGTGT

V




P1369




P1409

KVTV








6.2M
COV096_
3027
EVQLVESGGDLIQPGGSLRLSCAASGFSVSNS
3028
AKTPRGD
COV096_
3029
QSVLTQSPSASASLGASVNLTCTLSSG
3030
QT
LAMBDA



6mo_

YMSWVRQAPGKGLEWVSIIYSGGSTYYADSV

YDSSGTS
6mo_P2_

HSSYAIAWHQQQPEKGPRFLMKLSSD

WGI




P2_IGG_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYF

AY
Lambda_

GSHNKGDGIPDRFSGSSSGAERFLTISS

GSD




C9-

CAKTPRGDYDSSGTSAYWGQGTLVTVSS


C9-

LQSEDEADYYCQTWGIGSDWVFGGG

WV




P1369




P1409

TKLTVL








6.2M
COV096_
3031
EVQLVESGGGLVKPGGSLRLSCAASGLTFSTT
3032
TTDDPGS
COV096_
3033
QSVLTQEPSLTVSPGGTVTLTCASSTG
3034
LLS
LAMBDA



6mo_

WMSWVRQAPGKGLEWVGRIKSKGDGGTTDF

YYYGMD
6mo_P2_

AVTSGHYPYWFQQKPGQAPRTLIYAT

YSG




P2_IGG_

AGPVKGRFSISRDDSKNTLYLHMNSLKTEDT

V
Lambda_

SNKHSWTPARFSGSLLGGKAALTLSG

AR




D9-

AVYYCTTDDPGSYYYGMDVWGQGTTVTVSS


D9-

AQPEDEADYYCLLSYSGARVFGGGT

V




P1369




P1409

KLTVL








6.2M
COV096_
3035
EVQLVESGGGLVQPGRSLRVSCAASGFTFDD
3036
AKDVSK
COV096_
3037
SYVLTQPPSVSVSPGQTARITCSGDAL
3038
QLA
LAMBDA



6mo_

YAMHWVRQAPGKGLEWVSGISWNSGSKAY

TGWFGEI
6mo_P2_

PNQYVYWYQQKPGQAPLLVIYKDTE

DSS




P2_IGG_

ADSVKGRFTISRDNAKNSLHLQMNSLRAEDK

ANREYYF
Lambda_

RPSGIPERFSGSTSGTTVTLTISGVQAE

GV




E7-

ALYYCAKDVSKTGWFGEIANREYYFDYWGQ

DY
E7-

DEADYYCQLADSSGVVFGGGTKLTV

V




P1369

GTLVTVSA


P1409

L








6.2M
COV096_
3039
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3040
AKIADLV
COV096_
3041
QSVLTQPPSASGTPGQRVTISCSGSSS
3042
AS
LAMBDA



6mo_

YAIHWVRQAPGKGLEWVSGVSWNSGTIGYA

GAYDFRS
6mo_P2_

NIGSNTVNWYQHLPGTAPKLLIYSNN

WD




P2_IGG_

DSVKGRFFISRDNAKNSLYLQMNSLRAEDTA

GQHFAAF
Lambda_

QRPSGVPDRFSGSKSGTSASLAISGLQ

DSL




F4-

WYYCAKIADLVGAYDFRSGQHFAAFDVWGQ

DV
F4-

SEDEADYYCASWDDSLVVFGGGTKL

VV




P1369

GTMVTVSS


P1409

TVL








6.2M
COV096_
3043
QVQLQESGPGLVKPSQTLSLNCSVSGGSISSG
3044
ARTDYDI
COV096_
3045
SYVLTQPPSVSVAPGKTARITCGESNI
3046
QV
LAMBDA



6mo_

NYYWSWIRQPAGKGLEWIGHILTRGSTNYNP

LTGYYV
6mo_P2_

GSKSVHWYQRKPGQAPVLVVYDDSD

WD




P2_IGG_

SLKSRVTISVDTSGNQFSLKLSPVTAADTAVY

Y
Lambda_

RPSGIPERFSGSNSGNTATLTISRVEVG

GSS




G10-

YCARTDYDILTGYYVYWGQGTLVTVSS


G10-

DEADYYCQVWDGSSDHFYVFGTGTK

DHF




P1369




P1409

VTVL

YV






6.2M
COV096_
3047
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
3048
ARTQWL
COV096_
3049
NFMLTQPHSVSESPGKTVTISCTHSSG
3050
QSY
LAMBDA



6mo_

YMTWVRQAPGKGLEWVSVVYSGDNTYYAD

RGSFDL
6mo_P2_

SIASNYVQWYQQRPGSSPIIVIYEDNQ

DVS




P2_IGG_

SVKGRFTTSRDNSKNTVFLQMNSLKAEDTAL


Lambda_

RPSGVPDRFSGSIDSSSNSASLTISGLK

NH




G3-

YYCARTQWLRGSFDLWGRGTLVTVSS


G3-

TEDEADYYCQSYDVSNHWVFGGGTR

WV




P1369




P1409

LTVL








6.2M
COV096_
3051
EVQLVESGGGLVQPGRSLKLSCAASGFTFED
3052
VKDLYY
COV096_
3053
SYVLTQPPSVSVAPGKTARLTCGGNN
3054
QV
LAMBDA



6mo_

YAMHWVRQAPGKGLEWVSGSTWNSGTIGY

LGKRRSS
6mo_P2_

IGSKGVHWYQQKPGQAPVLVVYDDS

WD




P2_IGG_

SVKGRFTISRDNAKNSLYLQMNRLRAEDT

VIFEVYG
Lambda_

DRPSGLPERFSGSNSGNTASLTISRVE

SNS




H3-

ALYYCVKDLYYLGKRRSSVIFEVYGMDVWG

MDV
H3-

AGDEADYYCQVWDSNSDLVVFGGGT

DLV




P1369

QGTAVTVSS


P1409

KLTVL

V






6.2M
COV096_
3055
QVQLQESGPGLVKPSQTLSLTCTVSGGSITSG
3056
ARGDYES
COV096_
3057
SYVLTQPPSVSVAPGKTARITCEENDI
3058
QV
LAMBDA



6mo_

RYYWSWIRQPAGKGLEWIGHIFTSGSTNYNPS

LTGYYD
6mo_P2_

GSKNVHWYQQKPGQAPVLVVYDDS

WD




P2_IGG_

LKSRITISVDRSKNQFSLRLSSATAADTAVYFC

Y
Lambda_

DRPSGIPERFSGSNSGNTATLTISRVEA

GSS




H6-

ARGDYESLTGYYDYWGQGTLVTVSS


H6-

GDEADYYCQVWDGSSDHFYVFGTGT

DHF




P1369




P1409

KVTVL

YV






1.3M
COV096_
3059
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSG
3060
ARDIPPT
COV096_
3061
SYVLTQPPSVSVAPGKTARITCGGNNIWD
3062
QV
LAMBDA



HC_

NYYLTWIRQPAGKGLEWIGHIYTSGSTNYNPS

WYFDL
LC_

GSKNVHWYQQKPGQAPVLVVYDDS

WD




101-

LKSRVTISVDTSMNQFSLKLSSVTAADTAVYY


101-

DRPSGIPERFSGSNSGNTATLTISRVEA

STS




P1369

CARDIPPTWYFDLWGRGTLVTVSS


P1409

GDEAGYYCQVWDSTSDHLFWVFGG

DHL











GTKLTVL

FW













V






1.3M
COV096_
3063
QLQLQESGPGLVKPSETLSLTCTVSGGSITSSS
3064
ASLRGAY
COV096_
3065
QXXXTQPASVSGSPGQSITISCTGTSS
3066
CSY
LAMBDA



HC_

YYWGWIRQPPGKGLEWIGTIYYGGSTYYNPS

YDFWSG
LC_

DVGSYNLVSWYQQHPGKAPKLMIYE

AGS




103-

LKSRVTISVDTSKNQISLKLSSVTAADTAVYY

PRDGGW
103-

DSKRPSGVSNRFSGSKSGNTASLTISG

SL




P1369

CASLRGAYYDFWSGPRDGGWFDPWGQGTLV

FDP
P1409

LQAEDEADYYCCSYAGSSLWVFGGG

WV






TVSS




TKLTVL








1.3M
COV096_
3067
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
3068
ARVQVG
COV096_
3069
NFMLTQPHSVSESPGKTVTISCTRSSG
3070
QSY
LAMBDA



HC_

SMNWVRQAPGKGLEWVSFISSRSSYIYYADS

ARGWVD
LC_

SIASNYVQWYQQRPGSAPTTVIYEDN30

DSI




104-

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

Y
104-

QRPSGVPDRFSGSIDSSSNSASLTISGL

NW




P1369

YCARVQVGARGWVDYWGQGTLVTVSS


P1409

KTEDEADYYCQSYDSINWVFGGGTK

V











LTVL








1.3M
COV096_
3071
QVQLVQSGAEVKKPGASVRVSCKASGYTFTG
3072
ARDFAM
COV096_
3073
QXXLTQPPSASGSPGQSVTISCTGTSS
3074
SSY
LAMBDA



HC_

YYIHWVRQAPGQGLEWMGWINPMSGGTNYT

GTVTGTF
LC_

DVGGYNYVSWYQQHPGKAPKLMIYE

AGS




10-

QKFQGWVTMTRDTSINTAYMELSRLRSDDTA

VY
10-

VSKRPSGVPDRFSGSKSGNTASLTVSG

NN




P1369

VYYCARDFAMGTVTGTFVYWGQGTLVTVSS


P1409

LQAEDEADYYCSSYAGSNNWVFGTG

WV











TKVTVL








1.3M
COV096_
3075
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY
3076
ARVQVG
COV096_
3077
NFMLTQPHSVSESPGKTVTISCTRSSG
3078
QSY
LAMBDA



HC_

SMNWVRQAPGKGLEWVSSISSSSSYIYYADS

ARGWVD
LC_

SIASNYVQWYQQRPGSAPTTVIYEDN

DRI




111-

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

NW
111-

ERPSGVPDRFSGSIDSSSNSASLTISGL

NW




P1369

YCARVQVGARGWVDYWGQGTLVTVSS


P1409

KTEDEADYYCQSYDRINWVFGGGTK

V











LTVL








1.3M
COV096_
3079
QVQLVQSGAEVKKPGASVKVSCKASGYTVT
3080
ARERYFD
COV096_
3081
QSALTQPASVSGSPGQSITISCTGTSSD
3082
CSY
LAMBDA



HC_

GYYIHWVRQAPGQGLEWMGWISPNSGGTNY

LGGMDV
LC_

VGSYNLVSWYQQHPGKAPKLMIYED

AGS




116-

AQKFQGWVTMTRDMSITTAYMELSRLRSDD


116-

SKRPSGVSNRFSGSKSGNTASLTISGL

STR




P1369

TAVYYCARERYFDLGGMDVVVGQGTTVTVSS


P1409

QAEDEADYYCCSYAGSSTRLFGGGTK

L











LTVL








1.3M
COV096_
3083
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
3084
ARSLWL
COV096_
3085
NFMLTQPHSVSESPGKTVTISCTRSSG
3086
QSY
LAMBDA



HC_

YMSWVRQAPGKGLEWVSVISSGGGTFYADS

RGSFQH
LC_

SIASNYVQWYQQRPGSSPTTVIYEDN

DSS




121-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


121-

QRPSGVPDRFSGSIDSSSNSASLTISGL

SW




P1369

YCARSLWLRGSFQHWGQGTLVTVSS


P1409

KTEDEADYYCQSYDSSSWVFGGGTK

V











LTVL








1.3M
COV096_
3087
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3088
AKGSSSG
COV096_
3089
SYXLTQPPSVSVAPGKTARITCGGNNI
3090
QV
LAMBDA



HC_

YAMHWVRQVPGKGLEWVSGISWNSASIGYA

WTRPLD
LC_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




130-

DSVKGRFTISRDNAKNSLYLQMNSLRPEDMA

Y
130-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1369

FYYCAKGSSSGWTRPLDYWGQGTLVTVSS


P1409

DEADYYCQVVVDSSSDPVVFGGGTKL

DPV











TVL

V






1.3M
COV096_
3091
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
3092
ARREAY
COV096_
3093
QSXXTQPPSASASLGASVTLTCTLSSG
3094
GA
LAMBDA



HC_

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ

GPRDYY
LC_

YSNYKVDWYQQRPGKGPRFVMRVG

DQ




136-

KFQGRVTITADESTSTAYMELSSLRSEDTAVY

YYYGMD
136-

TGGIVGSKGDGIPDRFSVLGSGLNRYL

GSG




P1369

YCARREAYGPRDYYYYYGMDVWGQGTTVT

V
P1409

TIKNIQEEDESDYHCGADQGSGSNFV

SNF






VSS




GVFGGGTKLTVL

VG













V






1.3M
COV096_
3095
QVQLVQSGAEVKKSGASVKVSCKASGYTFTS
3096
ARGFSLT
COV096_
3097
SYXLTQPPSVSVAPGKTARITCGGNNI
3098
QV
LAMBDA



HC_

YDINWVRQATGQGLEWMGWMNPNSGNTGY

WYFDL
LC_

GSKSVHWYQQKPGHAPVLVVYDDSD

WD




138-

AQKFQGRVTMTRNTSISTAYMDLSSLRSEDT


138-

RPSGIPERFSGSNSGNTATLTISRVEAG

STG




P1369

AVYYCARGFSLTWYFDLWGRGTLVTVSS


P1409

DEADYYCQVWDSTGGHPDVVFGGGT

GHP











KLTVL

DV













V






1.3M
COV096_
3099
EVQLVESGGGLVQPGGSLRLSCAASRFTFSSY
3100
ATAPWL
COV096_
3101
NFMLTQPHSVSESPGKTVTISTRSSG
3102
QSF
LAMBDA



HC_

WMSWVRQAPGKGLEWVANIKQDGSEKYYV

RGGFDY
LC_

SIASNYVQWYQQRPGSSPTTVIYEDSQ

DST




142-

DSVKGRFTISRDNAKNSLYLQMNSLRAEDTA


142-

RPSGVPDRFSGSIDSSSNSASLTISGLK

NL




P1369

VYYCATAPWLRGGFDYWGQGTLVTVSS


P1409

TEDEADYYCQSFDSTNLWVFGGGTK

WV











LTVL








1.3M
COV096_
3103
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3104
AKGGYS
COV096_
3105
QXXXTQPASVSGSPGQSITISCTGTSS
3106
SSY
LAMBDA



HC_

GMHWVRQAPGKGLEWVAVISYDGSNKYYA

YGYSLY
LC_

DVGGYNYVSWHQQHPGKAPKLMIY

TSS




149-

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA

YFDY
149-

DVSNRPSGVSNRFSGSKSGNTASLTIS

STL




P1369

VYYCAKGGYSYGYSLYYFDYWGQGTLVTVS


P1409

GLQAEDEADYYCSSYTSSSTLVFGGG

V






S




TKLTVL








1.3M
COV096_
3107
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
3108
ARGGRY
COV096_
3109
QSVLTQPPSASGTPGQRVTISCSGSSS
3110
AA
LAMBDA



HC_

YDINWVRQATGQGLEWMGWMNPNSGNTGY

CSDVSCY
LC_

NIGSNYVYWYQQLPGTAPKLLIYRNN

WD




152-

AQKFQGRVTITRDTSISTAYMELSSLRXEDTA

SGTGFDY
152-

QRPSGVPDRFSGSKSGTSASLAISGLR

DSL




P1369

VYYCARGGRYCSDVSCYSGTGFDYWGQGTL


P1409

SEDEADYYCAAWDDSLSGYWVFGG

SGY






VTVSS




GTKLTVL

WV






1.3M
COV096_
3111
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3112
AKAQYS
COV096_
3113
NFMLTQPHSVSESPGKTVTISCTRSSG
3114
QSY
LAMBDA



HC_

GMHWVRQAPGKGLEWVAVISYDGSNKYYA

YGYVVY
LC_

SIASNYVQWYQQRPGSSPTIVIYEDNQ

DSS




157-

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA

YFDY
157-

RPSGVPDRFSGSIDSSSNSASLTISGLK

NV




P1369

VYYCAKAQYSYGYVVYYFDYWGQGALVTV


P1409

TEDEADYYCQSYDSSNVVFGGGTKLT

V






SS




VL








1.3M
COV096_
3115
EVQLVESGGGLIQPGRSLRLSCAASGFTFDDY
3116
AKDIGSK
COV096_
3117
SYVLTQPPSVSVAPGKTARITCGGNNI
3118
QV
LAMBDA



HC_

AMHWVRQAPGKGLEWVSGTSWNSGTIGYA

RSTSENY
LC_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




159-

DSVKGRFTISRDNAKNSLYLQMNRLRAEDTA

GMDV
159-

RPSGIPERFSGSNSGNTATLTISKVEAG

SSS




P1369

LYHCAKDIGSKRSTSENYGMDVWGQGTTVT


P1409

DEADYYCQVWDSSSDSVVFGGGTKL

DSV






VSS




TVL

V






1.3M
COV096_
3119
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3120
AKDGGS
COV096_
3121
QSVLTQPPSASGTPGQRVTISCSGSSS
3122
AA
LAMBDA



HC_

YAMHWVRQAPGKGLEWVSGISWNSGIIGYA

GTTEYEA
LC_

NIGSNTVNWYQQLPGTAPKLLIYSNN

WD




15-

DSVMGRFTISRDNAKNSLYLQMNSLRAEDTA

YYFDY
15-

QRPSGVPDRFSGSKSGTSASLAISGLQ

DSL




P1369

LYYCAKDGGSGTTEYEAYYFDYWGQGTLVT


P1409

SEDEADYYCAAWDDSLNGVVFGGGT

NG






VSS




KLTVL

VV






1.3M
COV096_
3123
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSH
3124
ARLPSGR
COV096_
3125
QSXXTQPPSASGTPGQRVTISCSGSSS
3126
AA
LAMBDA



HC_

WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPS

YNWFDP
LC_

NIGSNTVNWYQQLPGTAPKLLIYSNN

WD




174-

FQGQVTISADKSISTAYLQWSSLKASDTAMY


174-

SEDEADYYCAAWDDSLNGHVVFGGG

DSL




P1369

YCARLPSGRYNWFDPWGQGTLVTVSS


P1409

TKLTVL








1.3M
COV096_
3127
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
3128
ARGFSLT
COV096_
3129
SYXLTQPPSVSVAPGKTARITCGGNNI
3130
QV
LAMBDA



HC_

YDVNWVRQATGQGLEWMGWMNPNSGSAG

WYFDL
LC_

GSKSVHWYQQKPGQAPVLVVYDDSD?

WD




176-

YAQKFQGRVTMTRNTSISTAYMELSSLRSEDT


176-

RPSGIPERFSGSNSGNTATLTISRVEAG

STS




P1369

AVYYCARGFSLTWYFDLWGRGTLVTVSS


P1409

DEADYYCQVWDSTSDHPDVVFGGGT

DHP











KLTVL

DV













V






1.3M
COV096_
3131
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
3132
ARLPQEE
COV096_
3133
QSXLTQPPSVSGAPGQRVTISCTGSSS
3134
QSY
LAMBDA



HC_

WIGWVRQMPGKGLEWMGIIYPGDSDTTYSPS

KRFLEWL
LC_

NIGADYDVHWYQQLPGTAPKLLIYG

DSS




189-

FQGQVTISADKSVTTAYLQWSSLKASDTAMY

PPANVRK
189-

NSNRPSGVPDRFSGSKSGTSASLAITG

LG




P1369

YCARLPQEEKRFLEWLPPANVRKQIPYYYGM

QIPYYYG
P1409

LQAEDEADYYCQSYDSSLSGPYWVF

PY






DVWGQGTTVTVSS

MDV


GGGTKLTVL

WV






1.3M
COV096_
3135
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3136
AKIADIV
COV096_
3137
QSALTQPPSASGTPGQRVTISCSGSSS
3138
AA
LAMBDA



HC_

YAMHWVRQAPGKGLEWVSGVSWNSGTIGY

RAYDFW
LC_

NIGSNTVNWYQQLPGTAPKLLIYSNN

WD




1-

ADSVKGRFTISRDNAKNSLYLQMNSLRAEDT

SGQHFDA
1-

QRPSGVPDRFSGSKSGTSASLAISGLQ

DSL




P1369

ALYYCAKIADIVRAYDFWSGQHFDAFDIWGQ

FDI
P1409

SEDEADYYCAAWDDSLVVFGGGTKL

VV






GTMVTVSS




TVL








1.3M
COV096_
3139
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3140
AKDMGR
COV096_
3142
SYVLTQPPSVSVAPGKTARITCGGNNI
3143
QV
LAMBDA



HC_

YAMHWVRQAPGKGLEWVSGISWNSGTIGYA

DDSSGSL
LC_

GSKSVHWFQQKPGQAPVLVVYDDSD

WD




20-

DSVQGRFIISRDNAKNSLYLQMNSLRAEDTAL

LFDY
20-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1369

YYCAKDMGRDDSSGSLLFDYWGQGTLVTVS


P1409

DEADYYCQVWDSSSDHVVFGGGTKL

DH






S




TVL

VV






1.3M
COV096_
3143
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGS
3144
AREIPST
COV096_
3145
QSVLTQPPSASGTPGQRVTISCSGSSS
3146
AA
LAMBDA



HC_

YYWSWIRQPAGKGLEWIGHIYTSGSTNYNPS

WYFDL
LC_

NIGSNYVYWYQQLPGTAPKLLIYRNN

WD




23-

LKSRVTISVDTSKNQFSLKLSSVTAADTAVYY


23-

QRPSGVPDRFSGSKSGTSASLAISGLR

DSL




P1369

CAREIPSTWYFDLWGRGTLVTVSS


P1409

SEDEADYYCAAWDDSLSGYWVFGG

SGY











GTKLTVL

WV






1.3M
COV096_
3147
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
3148
ARGDYD
COV096_
3149
SYXLTQPPSVSVSPGQTARITCSGDAF
3150
QSA
LAMBDA



HC_

WMSWVRQAPGKGLEWVATIKQDGSEKYYV

FWSGYY
LC_

PNQYAYWYQQKPGQAPVLVIYKDSE

DSS




27-

DSVKGRFTISRDNAKNSLYLQMNSLRAEDTA

DY
27-

RPSGIPERFSGSSSGTTVTLTISGVQAE

SW




P1369

VYYCARGDYDFWSGYYDYWGQGTLVTVSS


P1409

DEADYYCQSADSSSWVFGGGTKLTV

V











L








1.3M
COV096_
3151
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
3152
AREGVG
COV096_
3153
SYVLTQPPSVSVAPGKTARITCGGNNI
3154
QV
LAMBDA



HC_

YYMHWVRQAPGQGLEWMGIINPSGGSTRYA

GTSYFDY
LC_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




2-

QKFQGRVTMTRDTSTSTVYMELSSLRSEDTA


2-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1369

VYYCAREGVGGTSYFDYWGQGTLVTVSS


P1409

DEADYYCQVWDSSSDPYVFGTGTKV

DPY











TVL

V






1.3M
COV096_
3155
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
3156
ARDGLSG
COV096_
3157
QSVLTQPPSVSGAPGQRVTISCTGSSS
3158
QSY
LAMBDA



HC_

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ

HFPHNW
LC_

NIGAGYDVHWYQQLPGTAPKLLIYG

DSS




30-

KFQGRVTITADESTSTAYMELSSLRSEDTAVY

FDP
30-

NSNRPSGVPDRFSGSKSGTSASLAITG

LRG




P1369

YCARDGLSGHFPHNWFDPWGQGTLVTVSS


P1409

LQAEDEADYYCQSYDSSLRGVFGGG

V











TKLTVL








1.3M
COV096_
3159
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3160
ARAGTT
COV096_
3161
SYVLTQPPSVSVAPGKTARITCGGNNI
3162
QV
LAMBDA



HC_

AMHWVRQAPGKGLEWVALISYDGSNKHYA

NSDYFDY
LC_

GSKSVHWYQQKPGQAPVLVIYYDTD

WD




40-

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA


40-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1369

VYYCARAGTTNSDYFDYWGQGTLVTVSS


P1409

DEADYYCQVWDSSSALWVFGGGTKL

AL











TVL

WV






1.3M
COV096_
3163
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3164
AKGSSSG
COV096_
3165
SYVLTQPPSVSVAPGKTARITCGGNNI
3166
QV
LAMBDA



HC_

YAMHWVRQVPGKGLEWVSGISWNSASIGYA

WTRPLD
LC_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




44-

DSVKGRFTISRDNAKNSLYLQMNSLRPEDMA

Y
44-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1369

FYYCAKGSSSGWTRPLDYWGQGTLVTVSS


P1409

DEADYYCQVWDSSSDPVVFGGGTKL

DPV











TVL

V






1.3M
COV096_
3167
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
3168
TTDLGYC
COV096_
3169
SYVLTQPPSVSVAPGKTARITCGGNNI
3170
QV
LAMBDA



HC_

WMSWVRQAPGKGLEWVGRIKSKTDGGTTD

SSTNCYY
LC_

GSKSVHWYQQKPGQAPVLVIYYDSD

WD




50-

YAAPVKGRFTISRDDSKNTLYLQMNSLKTED

YY
50-

RPSGIPERFSGSNSGNTATLTISRVEAG

SSS




P1369

TAVYYCTTDLGYCSSTNCYYYYWGQGTLVT


P1409

DEADYYCQVWDSSSDHPVFGGGTKL

DHP






VSS




TVL

V






1.3M
COV096_
3171
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
3172
ASGIGHN
COV096_
3173
NFMLTQPHSVSESPGKTVTISCTRSSG
3174
QSY
LAMBDA



HC_

YYMHWVRQAPGQGLEWMGWINPNSGGTNY

WNYVST
LC_

SIASNYVQWYQQRPGSAPTTVIYEDY

DSG




52-

AQKFQGRVTMTRDTSISTAYMELSRLRSDDT

PNGMDV
52-

QRPSGVPDRFSGSIDSSSNSASLTISGL

VV




P1369

AVYYCASGIGHNWNYVSTPNGMDVWGQGT


P1409

KTEDEADYYCQSYDSGVVFGGGTKL








TVTVSS




TVL








1.3M
COV096_
3175
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
3176
ARDLEYC
COV096_
3177
SYVLTQPPSVSVAPGKTARITCGGNNI
3178
QV
LAMBDA



HC_

YSMHWVRQAPGQGLEWMGWINPNSGGTNY

SSTSCYT
LC_

GSKSVHWYQQKPGQAPVLVVYDDSD

WD




71-

AQKFQGRVTMTRDTSISTAYMELSRLGSDDT

STTFDY
71-

RPSGIPERFSGSNSGNTATLTISRVEAG

YG




P1369

AVYYCARDLEYCSSTSCYTSTTFDYWGQGTL


P1409

DEADYYCQVWDYGVVFAGGTKLTV

VV






VTVSS




L








1.3M
COV096_
3179
QVQLVQSGAEVKKPGASVKVSCKASGYTVT
3180
AREPYFD
COV096_
3181
QSXLTQPASVSGSPGQSITISCTGTSSD
3182
CSY
LAMBDA



HC_

GYYIHWVRQAPGQGLEWMGWISPNSGGTNY

LGGMDV
LC_

VGSYNLVSWYQQHPGKAPKLMIYEG

AGS




77-

AQKFQGWVTMTRDMSITTAYMELSRLRSDD


77-

SKRPSGVSNRFSGSKSGNTASLTISGL

STR




P1369

TAVYYCAREPYFDLGGMDVWGQGTTVTVSS


P1409

QAEDEADYYCCSYAGSSTRVFGGGT

V











KLTVL








1.3M
COV096_
3183
QVQLVQSGAELKKPGASVKVSCKASGYTFNS
3184
ARRVED
COV096_
3185
SYVLTQPPSVSVSPGQTARITCSGEAL
3186
QSA
LAMBDA



HC_

YGISWVRQAPGQGLEWMGGISAYNGNTNYA

NGDDGG
LC_

PKQYAYWYQQKPGQAPVMVIYKDSE

DSS




90-

QKLQGRVTMTTDTSTSTAYMELRSLRSDDTA

DYYYYY
90-

RPSGIPERFSGSSSGTTVTLTISGVQAE

GTL




P1369

VYYCARRVEDNGDDGGDYYYYYGMDVWG

GMDV
P1409

DDADYYCQSADSSGTLVVFGGGTKL

VV






QGTTVTVSS




TVL








1.3M
COV096_
3187
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
3188
TTDDPGS
COV096_
3189
QSVLTQEPSLTVSPGGTVTLTCGSSTG
3190
LLS
LAMBDA



HC_

WMSWVRQAPGKGLEWVGRIKSKTDGGTTD

YYYGMD
LC_

AVTSGHYPYWFQQKPGQAPRTLIYDT

YSG




92-

YAAPVKGRFTISRDDSKNTLYLQMNSLK1ED

V
92-

SNKHSWTPARFSGSLLGGKGALTLSG

AR




P1369

TAVYYCTTDDPGSYYYGMDVWGQGTTVTVS


P1409

AQPEDEAEYYCLLSYSGARVFGGGTK

V






S




LTVL








1.3M
COV096_
3191
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
3192
ARVLGY
COV096_
3193
QSXXTQPPSVSGAPGQRVTISCTGSSS
3194
QSY
LAMBDA



HC_

YAISWGRQAPGQGLEWMGGIIPILGTVNYAQ

YDSSGSN
LC_

NIGAGYDVHWYQQLPGTAPKLLIYA

DSS




99-

KFQGRVTITADKSTSTAYMELSSLRSEDTAVY

DAFDI
99-

NINRPSGVPDRFSGSKSGTSASLAITGL

LSG




P1369

YCARVLGYYDSSGSNDAFDIWGQGTMVTVS


P1409

QAEDEADYYCQSYDSSLSGSVFGGGT

SV






S




KLTVL








6.2M
COV096_
3195
EVQLVESGGSLVKPGGSLRLSCVASGLTFNH
3196
TTDCFW
COV096_
3197
DIQMTQSPSSLSASVGDRVTITCRASQ
3198
QQS
KAPPA



6mo_

AWMSWVRQAPGKGLEWVGRIKSKIDGGTTD

RLGGTTC
6mo_P1_

AIATFLNWYQQKPGKAPKLLIYAASS

YNS




P1_IGG_

YAAPVKGRFTISRDDSKSTQYLQMNSLKTED

YEHDAF
Kappa-

LQSGVPSRFSGSGSGTDFTLTISNLQPE

LH




A10-

TAVYYCTTDCFWRLGGTTCYEHDAFDVWGQ

DV
A10-

DFATYYCQQSYNSLHFGGGTQVEMK






P1369

GTMVTVSS


P1389










6.2M
COV096_
3199
EVQLVESGGGLAQPGGSLRLSCAASGFTFSTY
3200
ARGHHSP
COV096_
3201
DIQMTQSPSSLSASVGDRVTITCRASQ
3202
QQS
KAPPA



6mo_

DMHWVRQTTGKGLEWVSAIGTAGDTYYPDS

ICSSSRCS
6mo_P1_

SITSYLNWYQQKPGKAPKLLIYAASSL

YTT




P1_IGG_

VKGRFTISREDAKNSLYLQMNSLRAGDTAVY

YYYYFD
Kappa-

QSGVPSRFSGSGSGTDFTLTISSLQPED

HM




A11-

YCARGHHSPICSSSRCSYYYYFDVWGQGTAV

V
A11-

FATYYCQQSYTTHMYTFGQGTKLEIK

YT




P1369

TVSS


P1389










6.2M
COV096_
3203
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRY
3204
ARGGLQ
COV096_
3205
DIQMTQSPSSLSASVGDRVTITCRASQ
3206
QQS
KAPPA



6mo_

DMHWVRQGTGKGLEWVSAIGTSGDTYYPDS

TTTWLFD
6mo_P1_

SISRYLNWYQQKPGKAPKLLIYAASS

YSN




P1_IGG_

VKGRFTISRENAKNSLYLQMNSLRAGDTAVY

Y
Kappa-

LQSGVPSRFSGSGAGTDFTLTISSLQPE

PPIT




A2-

YCARGGLQTTTWLFDYWGQGTLVTVSS


A2-

DFAIYYCQQSYSNPPITFGQGTRLEIK






P1369




P1389










6.2M
COV096_
3207
EVQLLESGGSLVQPGGSLRLSCAASGFTFSSY
3208
AKTSSTY
COV096_
3209
EIVLTQSPATLSLSPGERATLSCRASQS
3210
QQ
KAPPA



6mo_

AMSWVRQAPGKGLEWVSTISGGGDSTYYAD

YDTLTGE
6mo_P1_

ISNYLAWYQQRPGQAPRLLIYDASTR

RY




P1_IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAGDTAV

VNFDY
Kappa-

ATGIPARFSGSGSGTDFTLTISSLEPED

NW




A4-

YYCAKTSSTYYDTLTGEVNFDYWGQGTLVT


A4-

FAVYYCQQRYNWPLTFGGGTKVEIK

PLT




P1369

FAVYYCQQRYNWPLTFGGGTKVEIK


P1389










VSS













6.2M
COV096_
3211
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSY 
3212
AREGAPP
COV096_
3213
EIVLTQSPGTLSLSPGERATLSCRTSQT
3214
QQ
KAPPA



6mo_

NMNWVRQAPGKGLEWVSLISSTSSHIYYADS

YCSGGSC
6mo_P1_

VSSSYLAWYQQKPGQAPRLLIYGASS

YG




P1_IGG_

VKGRFTISRDNAKNSLYLQMDSLRAEDTAVY

YSLYYD
Kappa-

RATGIPDRFSGSGSGTDFTLTISRLEPE

GSP




A9-

YCAREGAPPYCSGGSCYSLYYDDACDIWGQG

DACDI
A9-

DFAVYYCQQYGGSPRTFGQGTKVEIK

RT




P1369

TRVTVSS


P1389










6.2M
COV096_
3215
EVQLVQSGAEVKKPGESLKISCKGSGYRFTSY
3216
ARCSSSS
COV096_
3217
DIQMTQSPSSLSASVGDRVTITCRASQ
3218
QQT
KAPPA



6mo_

WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPS

GRSFHQY
6mo_P1_

SISTFLNWYQQKPGKAPKLLIYTASSL

DSN




P1_IGG_

FQGQVTISADKSISTAYLQWSSLKASDTAMY

SMDV
Kappa-

QSGVPSRFSGSGSGTDFTLTIRSLQPED

PPH




B12-

YCARCSSSSGRSFHQYSMDVWGQGTTVTVSP


B12-

FATYYCQQTDSNPPHSFGQGTKLEI

S




P1369




P1389










6.2M
COV096_
3219
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3220
AKVCGGI
COV096_
3221
EIVLTQSPATLSLSPGERATLSCRASQS
3222
QQ
KAPPA



6mo_

YDMHWVRQAPGKGLEWVSGISWNSGNIGYA

LPENRW
6mo_P1_

VSNFLAWYQQKPGQAPRLLIYDASNR

RRN




P1_IGG_

DSVKGRFTISRDNAKNSLYLQMSSLRAEDTA

GYTGYD
Kappa-

ATGIPARFSGSGSGTDFTLTISSLEPED

WL




B4-

LYYCAKVCGGILPENRWGYTGYDHSPCSDY

HSPCSDY
B4-

FAVYYCQQRRNWLTFGGGTKVEIK

T




P1369

WGQGTLVTVSS


P1389










6.2M
COV096_
3223
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSR
3224
AREDFIL
COV096_
3225
EIVLTQSPGTLSLSPGERATLSCRASQS
3226
QQ
KAPPA



6mo_

HVISWVRQAPGQGLEWMGGIIPMFGTANYA

VSAPIRE
6mo_P1_

VSSNYLAWYQQKPGQAPRLLIYDASS

YG




P1_IGG_

QKFQGRVTITADESTSTAYMELSSLRSEDTAV

NSYYYY
Kappa-

RATGIPDRFSGSGSGTDFTLTISRLEPE

GSP




B7-

YYCAREDFILVSAPIRENSYYYYGMDVVVGQG

GMDV
B7-

DFAVYYCQQYGGSPRTFGQGTKVEIK

RT




P1369

TTVTVSS


P1389










6.2M
COV096_
3227
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNY
3228
AKTGPSQ
COV096_
3229
DIVMTQSPDSLAVSLGERATINCKSSQ
3230
QQ
KAPPA



6mo_

VMNWVRQAPGKGLEWVSAISGSAGATNYAD

GDY
6mo_P1_

SLLYSSNNKNYLAWYQQKPGQPPKR

YYS




P1_IGG_

SVMGRFTISRDNSKNTLYLQMNGLRAEDTAV


Kappa-

LIYWASTRESGVPDRFSGSGSGTDFTL

WC




B8-

YFCAKTGPSQGDYWGLGTLVSVSS


B8-

TISSLQAEDVAVYYCQQYYSWCSFGQ

S




P1369




P1389

GTKLEIK








6.2M
COV096_
3231
EVQLVESGGGLVQPGGSLRVSCAASGLTVSY
3232
ARESYGL
COV096_
3233
EIVLTQSPGTLSLSPGERATLSCRASQ
3234
QLY
KAPPA



6mo_

NYMTWVRQIPGKGLDWVSVIYPGGSTFYAD

DV
6mo_P1_

GISSNYLAWYQQKPGQAPRLLIYGAS

GSS




P1_IGG_

AVRGRFTISRDNSKNTLYLQMNGLRVEDTAV


Kappa-

SRATGIPDRFSGSGSGTDFTLTISRLEP

SGY




C10-

YYCARESYGLDVWGQGTTVTVSS


C10-

EDFAVYYCQLYGSSSGYTFGQGTKLE

T




P1369




P1389

IK








6.2M
COV096_
3235
EVQLVESGGGLIQPGGSLRLSCAASGITVSSN
3236
ARDLDY
COV096_
3237
DIQLTQSPSFLSASVGDRVTITCRASQ
3238
QQL
KAPPA



6mo_

YMTWVRQAPGKGLEWVSLIYAGGSTFYAES

YGMDV
6mo_P1_

GISSYLAWYQQKPGKAPKLLIYAAST

GSS




P1_IGG_

VKGRFIISRDNSNNTVYLQMNSLRADDTAVY


Kappa-

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PVC




C12-

YCARDLDYYGMDVWGQGTTVTVSS


C12-

DFATYYCQQLGSSPVCFGPGTKLDI






P1369




P1389










6.2M
COV096_
3239
EVQLVESGGGLVQPGGSLRLSCAASGFTFRN
3240
ARDREIS
COV096_
3241
DIQMTQSPSSLSASVGDRVTITCRASQ
3242
QQS
KAPPA



6mo_

YDMHWVRQVAGKGLEWVSGIGTAGDTYYP

GWTGWY
6mo_P1_

TIHNYLNWYHQIPGKPPRLLIYTTNNL

YST




P1_IGG_

DSVKGRFTISRENAKNSVYLQMNNLRAGDTA

FDL
Kappa-

QSGVPSRFSGSGSGTDFTLTITGLQPE

PPIT




C1-

VYFCARDREISGWTGWYFDLWGRGTLVIVSS


C1-

DFATYYCQQSYSTPPITFGQGTRLEIK






P1369




P1389










6.2M
COV096_
3243
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSS
3244
ARDTPGG
COV096_
3245
DIQMTQSPSSLSASVGDRVTITCRSSQ
3246
QHS
KAPPA



6mo_

GMHWVRQAPGKGLEWVAVISYDGSNKYYE

DDIMTG
6mo_P1_

SISRYLNWYQHKPGKAPKLLIYAAISL

YST




P1_IGG_

DSVKGRFTISRDNSKNTLYLQLNNLRVEDTA

WGLYGM
Kappa-

QSGVPSRFSGDGSGTDFTLTISSLQLE

PST




C5-

VYYCARDTPGGDDIMTGWGLYGMDVWGQG

DV
C5-

DXAHSSCQHSYSTPSTFGQGHKGAI






P1369

TTVTVSS


P1389










6.2M
COV096_
3247
EVQLVESGGGLVQPGGSLRLSCAASGFTFRN
3248
VRDREIS
COV096_
3249
DIQMTQSPSSLSASVGDRVTITCRASQ
3250
QQS
KAPPA



6mo_

YDMHWLLQVAGKGLEWVSAIGTSGDTYYPD

GWTGWY
6mo_P1_

TIHNYLNWYQQIPGKAPRLLIYATNTL

YST




P1_IGG_

SVKGRFTISRENAKNSVYLQMNNLRAGDTAV

FDL
Kappa-

QSGVPSRFSGSGSGTDFTLTITGLQPE

PPIT




C8-

YFCVRDREISGWTGWYFDLWGRGTLVIVSS


C8-

DFATYYCQQSYSTPPITFGQGTRLEIK






P1369




P1389










6.2M
COV096_
3251
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
3252
ATDDGG
COV096_
3253
DIQMTQSPSSLSASVGDRVTITCRASQ
3254
QQS
KAPPA



6mo_

YYIHWVRQAPGQGLEWMGWINPKTGGINFA

SWSGSS
6mo_P1_

SISSDLNWYRQKPGKAPRLLIYAASSL

YST




P1_IGG_

QKFQGRVTMTRDSSITTVYMELSRLTSDDTAI 

WFDP
Kappa-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPF




D11-

YYCATDDGGSWSGSSWFDPWGQGTLVTVSS


D11-

FATYYCQQSYSTPPFTFGPGTKVDIK

T




P1369




P1389










6.2M
COV096_
3255
QVQLVESGGGVVQPGRSLRLSCAASGFTFST
3256
AKALSST
COV096_
3257
DIQMTQSPSTLSASVGDRVTITCRASQ
3258
QQ
KAPPA



6mo_

YGMNWVRQAPGKGLEWVALILYDGSDKYY

YYYDAS
6mo_P1_

SISSWLAWYQQKPGKAPKLLIYKASSI

YNS




P1_IGG_

ADSVKSRFTISRDNSRNTLYLQMTSLRAEDTA

GPDAFDI
Kappa-

ESGVPPRFSGSGSGTEFTLTISSLQPDD

YSY




D12-

VYYCAKALSSTYYYDASGPDAFDIWGQGTM


D12-

FATYYCQQYNSYSYTFGQGTKLEIK

T




P1369

VTVSA


P1389










6.2M
COV096_
3259
EVQLLESGGGLVQPGGSLRLSCAASGFSFSNY
3260
AKSPLVY
COV096_
3261
EIVLTQSPATLSLSPGERATLSCRTSQS
3262
QQ
KAPPA



6mo_

AMSWVRQAPGKGLEWVSSISGSGGSPYYADS

APHIFFD
6mo_P1_

VSSSLAWYQQKPGQAPRLLIYDASNR

HSN




P1_IGG_

VKGRFTISRDSSKSTLYLQMNSLSAEDTAVYY

C
Kappa-

ATAVPARFSGSGSGTDFTLTISSLEPED

WL




D1-

CAKSPLVYAPHIFFDCWGQGTLVTVSS


D1-

FAVYYCQQHSNWLTFGGGTKVEIK

T




P1369




P1389










6.2M
COV096_
3263
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNY
3264
ARQGGQ
COV096_
3265
DIQMTQSPSSLSASVGDRATITCRASQ
3266
QQS
KAPPA



6mo_

SMHWVRQAPGKGLEWVSYISSSSSTIYYADS

QLSYYY
6mo_P1_

SIGSYLNWYQHKPGKAPKLLIYAASS

YST




P1_IGG_

VKGRFTISRDNAKNSLYLQLNSLRDEDTAVY

YGMDV
Kappa-

LQSGVPSGFSGSGSGTDFTLTISSLQPE

PGT




D5-

YCARQGGQQLSYYYYGMDVWGQGTTVTVS


D5-

DFATYYCQQSYSTPGTFGQGTKVEIK






P1369

S


P1389










6.2M
COV096_
3267
EVQLVESGGALVQPGRSLRLSCAASGFTFDD
3268
ARGLDGS
COV096_
3269
DIQMTQSPSSVSASVGDRVTITCRASQ
3270
QQ
KAPPA



6mo_

YAMHWVRQAPGKGLEWVSSISWNGVSIGYA

SSASPDS
6mo_P1_

GIGSWLAWYQQKPGKAPKLLIYLASS

GNS




P1_IGG_

DSVRGRFTISRDNAKNSLYLQMNSLKIGDTAF


Kappa-

LQSGVPSRFSGSGSGTYFTLTISGLQPE

FPL




D6-

YYCARGLDGSSSASPDSWGQGTLVTVSS


D6-

DFATYYCQQGNSFPLTFGGGTKVEIK

T




P1369




P1389










6.2M
COV096_
3271
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
3272
AKDFGAF
COV096_
3273
EIVMTQSPATLSVSPGERATLSCRASQ
3274
QQ
KAPPA



6mo_

AMSWVRQAPGKGLEWVSAISGSGDGTFYAD

IIGDWFD
6mo_P1_

TVRSNLAWYQQKPGQAPRLLIYGAST

YN




P1_IGG_

SVKGRFTISRDNSKNTMYLQMNSLRAEDTAV

P
Kappa-

RATGIPARFSGSGSGTEFTLTISSLQSE

NW




E12-

YYCAKDFGAFIIGDWFDPWGQGTLVTVSS


E12-

DFAVYYCQQYNNWPPITFGQGTRLEI

PPIT




P1369




P1389

K








6.2M
COV096_
3275
EVQLLESGGGLVHPGGSLRLSCAASGFTFSTY
3276
ATERIAV
COV096_
3277
DIQMTQSPSSLSASVGDRVTLTCRASQ
3278
QQS
KAPPA



6mo_

AMHWVRQAPGKGLEWVSAISGSGTGTFYAD

SDTRMY
6mo_P1_

GISTYLNWYQQKPGKAPNLLIYAASS

YSA




P1_IGG_

SVKGRFSISRDNSKNTLYLQMNSLRAEDTAV

NWFDP
Kappa-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

PPW




E5-

YYCATERIAVSDTRMYNWFDPWGQGTLVTV


E5-

DFATYYCQQSYSAPPWTFGQGTKVEI

T




P1369

SS


P1389

K








6.2M
COV096_
3279
QLQLQESGPGLVKPSETLSLTCTVSGGAISSRN
3280
ARLETSG
COV096_
3281
DIQMTQSPSSLSASVGDRVTITCRASQ
3282
QRS
KAPPA



6mo_

YHWGWIRQPPGKGLEWIGSIYYSGSTYYSPSL

WYTEDV
6mo_P1_

SISSYLNWYQQKPGKAPKLLIYAASSL

YSA




P1_IGG_

KSRVTISVDTSKNQFSLRLSSVTAADTAVYYC

FDI
Kappa-

QSGVPSRFSGSGSGTDFTLTISSLLPED

MY




E7-

ARLETSGWYTEDVFDIWGQGTMVTVSS


E7-

FATYYCQRSYSAMYTFGQGTRLEIQ

T




P1369




P1389










6.2M
COV096_
3283
QVQLVESGGGVVQPGRSLRLSCATSGFTFSN
3284
AREGWH
COV096_
3285
DIVMTQTPLSLPVSLGDQASISCRSSQ
3286
SQS
KAPPA



6mo_

YGMHWVRQAPGKGLEWVAVIWFDGSSEYY

YDSSYYR
6mo_P1_

SLVHSDGNTYLHWYLQKPGQSPKLLI

THV




P1_IGG_

ADSVKGRFTISRDNSKKTLYLQVNNLRGEDS

EYDDLDI
Kappa-

YKVSNRFSGVPDRFSGSGSGTDFTLTI

PPW




E9-

AVYYCAREGWHYDSSYYREYDDLDIWGQGT


E9-

SRVEAEDLGVYFCSQSTHVPPWTFGG

T




P1369

MVTVSS


P1389

GTRLEIK








6.2M
COV096_
3287
EVQLVESGGGLVQPGGSLRLSCAASGLTVTS
3288
ARETLGR
COV096_
3289
DIQMTQSPSSLSASVGDRVTITCQASQ
3290
QQ
KAPPA



6mo_

NYMSWVRQAPGRGLEWVSLIYPGGTTYYAD

GGDC
6mo_P1_

DISNFLNWYQQKPGKAPKLLIYDASN

YD




P1_IGG_

SVKGRFTVSRDNSKNTLYLQMDSLRAEDTGV


Kappa-

LETGVPSRFSGSRSGTDFTFTIS

NLP




F11-

YYCARETLGRGGDCWGQGTLVTVSS


F11-

DIATYYCQQYDNLPRSFGQGTKLEIK

RS




P1369




P1389










6.2M
COV096_
3291
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTY
3292
ARDRETS
COV096_
3293
DIQMTQSPSSLSASVGDRVTVTCRAS
3294
QQS
KAPPA



6mo_

DMHWVRQTTEKSLEWVSAIGTAGDTYYPDS

GWYGW
6mo_P1_

QSIRNFLNWYQQKPGKAPKLLIYTTST

YST




P1_IGG_

VKGRFIVSRENAKNSLYLQMNNLRAGDTAV

YFDL
Kappa-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

PPIT




F11-

YYCARDRETSGWYGWYFDLWGRGTLVTVS


F11-

DFATYYCQQSYSTPPITFGQGTRLDM






P1369




P1389

K








6.2M
COV096_
3295
QVQLVESGGGVVQPGRSLRLSCTASGFTFSTA
3296
AKDTPG
COV096_
3297
DIQMTQSPSSLSASVGDRVTITCRASQ
3298
QQS
KAPPA



6mo_

GMHWVRQAPGKGLEWVAVISYDGSNKDYA

GDDIMTG
6mo_P1_

SISSYLNWYHQKPGKAPKLLIYAAISL

YST




P1_IGG_

DSVKGRFTISRDNSKSTLYLQMNSLRPEDTAV

WGLYGM
Kappa-

QSGVPSRFSGSGFGTDFTLTISSLQPED

PW




F7-

YYCAKDTPGGDDIMTGWGLYGMDVWGQGT

DV
F7-

FAIYYCQQSYSTPWTFDQGTKVEIK

T




P1369

TVIASS


P1389










6.2M
COV096_
3299
QVQLVQSGAEVKKPGASVKVSCKASGYTFSD
3300
ARDIVLV
COV096_
3301
EIVLTQSPATLSLSPGERATLSCRASQS
3302
QQ
KAPPA



6mo_

YYIHWVRQAPGQGLEWMGIINPSGGSTAYAQ

PAAYGM
6mo_P1_

ISTYLAWYQQKPGQAPRLLIYDASNR

RN




P1_IGG_

KFQGRVTMTGDASTSTVYMELNSLRSEDTAV

DV
Kappa-

ATGIPARFSGSGSGTDFTLTISSLEPED

NW




F9-

YYCARDIVLVPAAYGMDVWGQGTTVIVSS


F9-

FAVYYCQQRNNWPPLTFGGGTKVEV

PPL




P1369




P1389

K

T






6.2M
COV096_
3303
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAY
3304
VRGDML
COV096_
3305
DIQMTQSPSSLSASVGDRVTITCRASQ
3306
QQS
KAPPA



6mo_

DMHWVRQVTGKGLEWVSAIGTAGDTYYPD

TGSSQYY
6mo_P1_

SISRYLNWYQQKPGKAPKLLIYAASS

YSS




P1_IGG_

DTFDPDSVKGRFTVSRENAKNSLYLQMNSLR

YIMDV
Kappa-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

MY




G11-

AGDTAVYYCVRGDMLTGSSQYYYIMDVWG


G11-

DFATYSCQQSYSSMYTFGQGTKLEIK

T




P1369

QGTTVTVSS


P1389










6.2M
COV096_
3307
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3308
ARDGIPF
COV096_
3309
DIQMTQSPSTLSASVGDRVTITCRASQ
3310
QH
KAPPA



6mo_

GMHWVRQAPGKGLEWVALIGYDGTDKYYA

RYGMDV
6mo_P1_

SIDIWLAWYQQKPGKAPKFLIHKAST

YHS




P1_IGG_

ENVKGRFTISRDNSKNTLFLQMNSLRGGDTA


Kappa-

LESGVPSRFSGSGSGTEFTLTISSLQPD

YSG




G12-

VYLCARDGIPFRYGMDVWGQGTTVTVSS


G12-

DFATYYCQHYHSYSGTFGQGTKVEIK

T




P1369




P1389










6.2M
COV096_
3311
EVQLVESGGGLVQPGGSLRLSCVASGFSFSDY
3312
ARHWGP
COV096_
3313
DIQMTQSPSSLSASVGDRVTVTCRAS
3314
QQS
KAPPA



6mo_

SMNWVRQAPGKGLEWVSYISSSSSTIYYADS

QKSYYY
6mo_P1_

QSINSYLNWYQQKPGKAPKLLIYGAS

YST




P1_IGG_

VKGRFTMSRDNAKNSLFLQMNSLRDEDTAV

YGMDV
Kappa-

NLQSGVPSRFSGSESTEFTLTISSLQP

PPA




G2-

YYCARHWGPQKSYYYYGMDVWGPGTTVTV


G2-

EDFATYYCQQSYSTPPAFGQGTKVEI






P1369

SS


P1389










6.2M
COV096_
3315
QVQLVQSGAEVKKPGASVKLSCKASGYSFTS
3316
ARDTGDS
COV096_
3317
DIQMTQSPSSLSASVGDRVTITCRASQ
3318
LQH
KAPPA



6mo_

YYILWVRQAPGQGLEWMGIINPSGGATSFAQ

SGWYPPP
6mo_P1_

GIRNDLGWYQQKPGKAPKRLIYAASS

NSY




P1_IGG_

KFQGRVTLTRDTSTSTVYMELSSLRSEDTALY

ILKYNYY
Kappa-

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PRT




G4-

YCARDTGDSSGWYPPPILKYNYYYYGMDVW

YYGMDV
G4-

DFATYYCLQHNSYPRTFGQGTKVEIK






P1369

GQGTTVTVSS


P1389










6.2M
COV096_
3319
EVQLVESGGGLVQPGRSLRLSCVATGFTFDDF
3320
VKGYRY
COV096_
3321
DIQLTQSPSFLSASVGDRVTITCRASQ
3322
QQL
KAPPA



6mo_

AMHWVRQAPGKGLEWVSGISWNGGIIGYVD

YYDILTG
6mo_P1_

GISSYLAWYQQKPGKAPKLLIYPASTL

ND




P1_IGG_

SVKGRFTISRDNAKNSLYLQMNSLRPEDTAL

YYNDAG
Kappa-

QSGVPSGFSGSGSGTEFTLTISSLQPED

YPF




H10-

YYCVKGYRYYYDILTGYYNDAGAFDYWGQ

AFDY
H10-

FATYYCQQLNDYPFTFGPGTKVDIK

T




P1369

GTLVTVSS


P1389










6.2M
COV096_
3323
QLQLQESGPGLVKPSETLSLTCTVSGGSISSRN
3324
ARLETSG
COV096_
3325
DIQMTQSPSSLSASVGDRVTITCRASQ
3326
QRS
KAPPA



6mo_

YHWGWIRQTPGKGLEWIGSIYYSGSTYYNPS

WYTGDV
6mo_P1_

SISSYLNWYQQKPGKAPKLLIYAAVS

YSA




P1_IGG_

LKSRVTISVDTSKNQFSLKMRSVTAADTALYF

FDI
Kappa-

LQSGVPSRFSGSGSGTDFTLTINSLQPE

MY




H4-

CARLETSGWYTGDVFDIWGQGTMVTVSS


H4-

DFATYYCQRSYSAMYSFGQGTRLEIQ

S




P1369




P1389










6.2M
COV096_
3327
EVQLVESGGRLVQPGRSLRLSCAASGFTFDD
3328
AKGLDSS
COV096_
3329
DIQMTQSPSSVSASVGDRVTITCRASQ
3330
QQ
KAPPA



6mo_

YAIHWVRQAPGKGLEWVSGISWNSGSIGYAD

SSASPDY
6mo_P1_

DISSWLAWYQQKPGKAPKLLIYLASS

GNS




P1_IGG_

SVRGRFTISRDNAKNSLYLQMNSLRAEDTAL


Kappa-

LQSGVPSRFSGSGSGTDFILTISSLQPE

FPL




H5-

YYCAKGLDSSSSASPDYWGQGTLVTVS


H5-

DFGTYYCQQGNSFPLTFGGGTKVEIK

T




P1369




P1389










6.2M
COV096_
3331
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3332
ARDALT
COV096_
3333
DIQMTQSPSSLSASVGDRVTITCRASQ
3334
QQS
KAPPA



6mo_

SIHWVRQAPGKGLEWVAVISDDASMKFYAD

AISVRFD
6mo_P1_

SISRYLNWYQQKPGKAPKLLIYDASSF

YST




P1_IGG_

SVKGRFTISRDNSKNTLFLQMNSLSPEDTAVY

Y
Kappa-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PSV




H6-

YCARDALTAISVRFDYWGQGTLVTVSS


H6-

FATYYCQQSYSTPSVTFGGGTKVEIK

T




P1369




P1389










6.2M
COV096_
3335
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
3336
TRDAGFI
COV096_
3337
EIVLTQSPGTLSLSPGERATLSCRASQS
3338
QQ
KAPPA



6mo_

FYMHWVRQAPGQGLEWMGIINPSGGATTYA

PTDNWF
6mo_P2_

VSSSYLAWYQQKPGQAPRLLIYGASS

YG




P2_IGG_

QKFQGRVTMTSDASTSTLYMELSSLRSDDTA

DP
Kappa-

RATGIPDRFSGSGSGTDFTLTISRLEPE

RSA




H8-

VYYCTRDAGFIPTDNWFDPWGQGTLVTVS


H8-

DFAVYYCQQYGRSALGMCSFGQGTK

LG




P1369




P1389

LEIK

MC













S






6.2M
COV096_
3339
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3340
ARDPPGE
COV096_
3341
DIQMTQSPSSLAASVGDRVTITCRASQ
3342
QQS
KAPPA



6mo_

DMHWVRQAPGKGLEWVVISXDGSSKFYAD

ISTTPVLD
6mo_P2_

SISNYLNWYQQKPGKAPNLLIYAASS

PPL




P2_IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

Y
Kappa-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

T




A10-

YYCARDPPGEISTTPVLDYWGQGTLVTVS


A10-

DFATYYCQQSYSTPPLTFGGGTKVEIK






P1369




P1389










6.2M
COV096_
3343
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA
3344
STSDLIY
COV096_
3345
DIQMTQSPSTLSASVGDRVTITCRASQ
3346
QQ
KAPPA



6mo_

WMSWVRQAPGKGLEWVGHIKSKTDGGTTD

YYSYGM
6mo_P2_

SISSWLAWYQQKPGKAPKLLIYKAST

YNS




P2_IGG_

YATPVKGRFTISRDDSKNTLYLQMNSLKSEDT

DV
Kappa-

LQSGVPSRFSGSGSGTEFTLTISSLQPD

YSS




A1-

AVYFCSTSDLIYYYSYGMDVWGQGTTVTVSS


A1-

DFATYYCQQYNSYSSYTFGQGTKLEI

YT




P1369




P1389

K








6.2M
COV096_
3347
QVQLVQSGAEVKKPGSSVRVSCKASGGTFSR
3348
AREDFIL
COV096_
3349
EIVLTQSPGTLSLSPGERATLSCRASQS
3350
QQ
KAPPA



6mo_

NVISWVRQAPGQGLEWMGGIIPMFATANYA

VSAPIRE
6mo_P2_

VSSNYLAWYQQKPGQAPRLLIYDASS

YG




P2_IGG_

QKFQGRVTITADESSSTAYMELSSLRSEDTAV

NSYYYY
Kappa-

RATGIPDRFSGSGSGTDFTLTISRLEPE

GSP




A5-

YYCAREDFILVSAPIRENSYYYYGMDVWGQG

GMDV
A5-

DFAVYYCQQYGGSPRTFGQGTKVEIK

RT




P1369

TTVTVSS


P1389










6.2M
COV096_
3351
EVQLVESGGGLVKPGGSLRLSCAASGFPFTNA
3352
STVGSYY
COV096_
3353
DIVMTQSPDSLAMSLGERATINCKSSQ
3354
QQ
KAPPA



6mo_

WMSWVRQAPGKGLEWVGHIKDYTDGGTTD

YDSRGPT
6mo_P2_

SVLYSSNKKNYLAWYRQKPGQPPKL

YYS




P2_IGG_

YAAPVKGRFTISRDDSKNTLYLHMNSLK1ED

SDAFDI
Kappa-

LIYWASTRESGVPDRFSGSGSGTDFTL

TPY




B8-

TAVYYCSTVGSYYYDSRGPTSDAFDIWGQGT


B8-

TISSLQAEDVAVYYCQQYYSTPYTFG

T




P1369

MVTVSS


P1389

QGTKLEIK








6.2M
COV096_
3355
QVQLVQSGAEVKKPGSSVKVSCKASGGTFNS
3356
ARVGAP
COV096_
3357
DIVMTQSPLSLPVTPGEPASISCRSSQS
3358
MQ
KAPPA



6mo_

YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ

MSRVRG
6mo_P2_

LLQSNGNSFLDWYLQKPGQSPQLLIY

ALQ




P2_IGG_

KFQGRVTITADESTGMAYMELSSLRSEDTAV

YYYYYG
Kappa-

LGSNRASGVPDRFSGSGSGTDFTLKIS

RCS




C10-

YYCARVGAPMSRVRGYYYYYGMDVWGPGT

MDV
C10-

RVEAEDVGVYYCMQALQRCSFGQGT






P1369

TVTVSS


P1389

KLEIK








6.2M
COV096_
3359
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
3360
AKDVPIE
COV096_
3361
DIQMTQSPSSLSASVGDRVTITCRASQ
3362
QQS
KAPPA



6mo_

AMNWVRQAPGKGLEWVSAISGSGGGTYYAD

QQLVPTF
6mo_P2_

SISRYLNWYQQKPGKAPKLLIYGASS

YST




P2_IGG_

SVKGRFTISRDNSKNTLYLQMDSLRAEDTAV

DY
Kappa-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

LSI




C12-

YYCAKDVPIEQQLVPTFDYWGQGALVTVSS


C12-

DFATYWCQQSYSTLSITFGQGTRLEIK

T




P1369




P1389










6.2M
COV096_
3363
EVQLLESGGGLVQPGGSLRLSCAASGFTFNN
3364
AKVLSPT
COV096_
3365
DIQMTQSPSTLSASVGDRVTITCRASQ
3366
QQ
KAPPA



6mo_

YAMNWVRQAPGRGLEWVSGISGSGANTYYA

YYDSWS
6mo_P2_

TISPWLAWYQQKPGKAPNLLIYKASS

YNS




P2_IGG_

DSVKGRFTISRDNPKNTLSLQMNSLRAEDTAL

GPDAFDF
Kappa-

LESGVPSRFSGSGSGTEFTLTISSLQPD

YSS




C1-

YYCAKVLSPTYYDSWSGPDAFDFWGQGTMV


C1-

DFATYYCQQYNSYSSWTFGQGTKVEI

WT




P1369

TVTS


P1389

K








6.2M
COV096_
3367
QVQLQESGPGLVKSSETLSLSCTVSGGSISSHY
3368
AREPNYH
COV096_
3369
DIQMTQSPSSVSASVGDRVTITCRASQ
3370
QQ
KAPPA



6mo_

WSWIRQPAGKALEWIGRLYTSGSTAYNPSLK

YHGMDV
6mo_P2_

GISSWLAWYQQKPGKAPKLLIYAASS

GNS




P2_IGG_

SRVTMSVDTSKNQFSLKLTSVTAADTAVYYC


Kappa-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

FLL




D10-

AREPNYHYHGMDVWGQGTTVTVS


D10-

DFATYYCQQGNSFLLTFGGGTKVEIK

T




P1369




P1389










6.2M
COV096_
3371
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
3372
ARDAFYI
COV096_
3373
EIVLTQSPGTLSLSPGERATLSCRASQS
3374
QQ
KAPPA



6mo_

SYMHWVRQAPGQGLEWMGIINPSGGSTTYA

PAGGWF
6mo_P2_

VSSSYFAWYQQKPGQAPRLLIYGASS

YGS




P2_IGG_

QKFQGRVTMTRDTSTSKVYMELSSLRSEDTA

DP
Kappa-

RATGIPDRFSGSGSGTDFTLTISRLEPE

SSR




D2-

VYYCARDAFYIPAGGWFDPWGQGTLVTVS


D2-

DVAVYYCQQYGSSSRTFGQGTKVEIK

T




P1369




P1389










6.2M
COV096_
3375
QVQLVQSGAEVKKPGASVKVSCKASGYTFSD
3376
ARDIVFV
COV096_
3377
EIVLTQSPATLSLSPGERATLSCRASQS
3378
QQ
KAPPA



6mo_

HYIYWVRQAPGQGLEWMGIINPSAGSTSYAQ

PATMAM
6mo_P2_

VSRYLAWYQQKPGQAPRLLIYDASN

RSN




P2_IGG_

KFQGRVTMTRDTSTSTVYMELSSLRSEDTAV

DV
Kappa-

RATGIPARFSGSGSGTDFTLTISSLEPE

WL




D4-

YYCARDIVFVPATMAMDVWGLGTTVTVSS


D4-

DFAVYYCQQRSNWLFTFGPGTKVDIK

FT




P1369




P1389










6.2M
COV096_
3379
QVQLVQSGAEVKKPGSSVKVSCKASGDTSSS
3380
ARDPGY
COV096_
3381
DIQMTQSPSSLSASVGDRVTITCRASQ
3382
QQ
KAPPA



6mo_

YGINWVRQAPGQGLEWMGEIIPMFETTNYAQ

GNHDLD
6mo_P2_

GISSWLAWYQQKPGKAPKLLIYSASS

ART




P2_IGG_

KFQGRVTITADESTSTAYMELSSLRSEDTAVY

F
Kappa-

LQSGVPSRFSGSGSGTNFTLTISSLQPE






D5-

YCARDPGYGNHDLDFWGQGTLVTVSS


D5-

DFATYYCQQARTFGPGTKVDIK






P1369




P1389










6.2M
COV096_
3383
EVQLVESGGGLVQPGGSLRLSCTASGFIVSSN
3384
ARDLRGP
COV096_
3385
DIQMTQSPSSLSASVGDRVTITCQASQ
3386
QQ
KAPPA



6mo_

YMSWVRQAPGKGLEWVSVLYSGGSTFYADS

GKFDY
6mo_P2_

GISNSLNWYQQKPGKAPKLLIYDASN

YD




P2_IGG_

VKGRFTISRDNSKNTLYLQMNSLRSDDTAVY


Kappa-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




D6-

YCARDLRGPGKFDYWGQGTLVSVSS


D6-

DIATYYCQQYDNLPEVTFGQGTRLEI

EVT




P1369




P1389

K








6.2M
COV096_
3387
QVQLQESGPGLVKPSETLSLTCSVSGGSIFTHC
3388
ARALTY
COV096_
3389
DIQMTQSPSSLSASVGDRVTITCRASQ
3390
LQH
KAPPA



6mo_

WSWIRQPPGKGLEWIGNIYFSGKTNYNASLK

NDILTGG
6mo_P2_

DIRNDLGWYHQKPGKAPRRLIYAASS

NSY




P2_IGG_

SRVTISVDTSKNQFSLKLSSVTTADTAVYYCA

EYFNGM
Kappa-

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PW




D7-

RALTYNDILTGGEYFNGMDVWGQGTTVTVS

DV
D7-

DFATYYCLQHNSYPWTFGQGTKVEIK

T




P1369

S


P1389










6.2M
COV096_
3391
EVQLVESGGGLIQPGGSLRLSCAASGVIVRSN
3392
ARDLIVY
COV096_
3393
DIQLTQSPSFLSASVGDRVTITCRASQ
3394
QQL
KAPPA



6mo_

YMSWVRQAPGKGLEWVALIYSGGTTDYADS

GMDV
6mo_P2_

GISSFLAWYQQKPGKAPKLLIYGASTL

NSY




P2_IGG_

VKGRFTISRDNSKNTLYLQMDSLRAEDTAVY


Kappa-

QSGVPSRFSGSGSGTEFTLTISSLQPED

PM




E10-

YCARDLIVYGMDVWGQGTTVTVSS


E10-

FATYYCQQLNSYPMCSFGQGTKLEIK

CS




P1369




P1389










6.2M
COV096_
3395
QVQLVQSGAEVKKPGASVKVSCKASGYPFSR
3396
ARPLLPG
COV096_
3397
DIQMTQSPSSLSASVGDRVTITCRASQ
3398
QQS
KAPPA



6mo_

YYIHWVRQAPGQGLEWMGIINPSGGSTTYAQ

ETGNLNR
6mo_P2_

SISSYLNWYQQKPGIAPXLLIYGAS

YST




P2_IGG_

RFQGRVTMTRDTSASTVYLDLSSLGSEDSAV

LDY
Kappa-

QSGVPSRFSGSGSGTDFTLTISSVQPD

LW




E2-

YYCARPLLPGETGNLNRLDYWGQGTLVTVSS


E2-

DFATYYCQQSYSTLWTFGQGTKVEIK

T




P1369




P1389










6.2M
COV096_
3399
EVQLVESGGGLVQPGGSLRLSCAASGIIVSSN
3400
ARDFREG
COV096_
3401
DIQLTQSPSFLSASVGDRVTITCRASQ
3402
QQL
KAPPA



6mo_

YMNWVRQVPGKGLEWVSVLYSGGSTFYADS

AFDI
6mo_P2_

GISSYLAWYQQKPGKAPNLLIYAAST

NSY




P2_IGG_

VRGRFTISRDNSKNTLFLQMNSLRPEDTAVYY


Kappa-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

SPL




E5-

CARDFREGAFDIWGQGTMVTV


E5-

DFATYYCQQLNSYSPLFGQGTRLEIK






P1369




P1389










6.2M
COV096_
3403
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSG
3404
ARDRPN
COV096_
3405
DIVMTQSPDSLAVSLGERATINCKSGQ
3406
QQ
KAPPA



6mo_

GYYWSWIRQHPGKGLEWIGYIYYSGSGSTYY

YYFDSRD
6mo_P2_

SLLYSSNNKNYLAWYQQKPGQPPKL

YYS




P2_IGG_

NPSLKSRVIISVDTSKNHFSLKLNSVTAADTA

AFDI
Kappa-

LIYWASTRESGVPDQFSGSGSGTDFTL

TPR




E8-

VYYCARDRPNYYFDSRDAFDIWGQGTMVTV


E8-

TISSLQAEDVAVYYCQQTPRYYSTPRTFG

T




P1369

SS


P1389

QGTKVEIK








6.2M
COV096_
3407
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3408
ARGVEYS
COV096_
3409
DIQMTQSPSSVSASVGDRVTITCRASQ
3410
QQT
KAPPA



6mo_

YALHWVRQAPGKGLEWVSGISWNGDSIGYA

SSSNCDF
6mo_P2_

GISSWLAWYQQKPGKAPKLLIYAASS

NSF




P2_IGG_

DSVKGRFTISRDNAKNSLSLQMNSLTAEDTAF


Kappa-

LQSGVPSRFSGSGSETDFTLTISSLQPE

PLT




F10-

YYCARGVEYSSSSNCDFWGQGTLVTVSS


F10-

DFATYYCQQTNSFPLTFGGGTKVEI






P1369




P1389










6.2M
COV096_
3411
EVQLVESGGGLAQPGRSLRLSCAASGFMFDD
3412
VREEVG
COV096_
3413
DIVMTQTPLSLPVSLGDQASISCRSSQ
3414
SQS
KAPPA



6mo_

YTMHWVRQAPGKGLEWVSGISWNSENIGYA

GWFDP
6mo_P2_

SLVHSDGNTYLHWYLQKPGQSPKLLI

THV




P2_IGG_

DSVKGRFTISRDNAKNSLFLQINSLRADDTAF


Kappa-

YKVSNRFSGVPDRFSGSGSGTDFTLTI

PPW




F12-

YYCVREEVGGWFDPWGQGTLVAVSS


F12-

SRVEAEDLGVYFCSQSTHVPPWTFGG

T




P1369




P1389

GTRLEIK








6.2M
COV096_
3415
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3416
ARDSNV
COV096_
3417
DIQMTQSPSSLSASVGDRVTITCRASQ
3418
QQS
KAPPA



6mo_

GMHWVRQAPGKGLEWVAVIWYDGSYKHYA

DTVMVT
6mo_P2_

SISSYLNWYQQKPGKAPKLLIYVASSL

YST




P2_IGG_

DSVKGRFAISRDNSKNTLHLQMNSLRAEDTA

WFDY
Kappa-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




F1-

VYYCARDSNVDTVMVTWFDYWGQGTLVTV


F1-

FATYYCQQSYSTPPWTFGQGTKVEI

T




P1369

SS


P1389










6.2M
COV096_
3419
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSD
3420
ARGVITS
COV096_
3421
DIQMTQSPSSLSASVGDRVTITCRASQ
3422
QQS
KAPPA



6mo_

DMHWVRQATGKGLEWVSAIGTSGDTYYSGS

LDGNYY
6mo_P2_

NIRFYLNWYQQKPGKAPNLLIYAASN

YSS




P2_IGG_

VKGRFTISRENAKNSFYLQMNSLRAGDTAVY

YYMDV
Kappa-

LQSGVPSRFSGGGSGTDFTLTISSLQPE

PPW




F2-

YCARGVITSLDGNYYYYMDVWGQGTTVTVS


F2-

DFATYYCQQSYSSPPWTFGPGTKVEI

T




P1369

S


P1389

K








6.2M
COV096_
3423
QVQLVQSGAELKKPGSSLKVSCKASGGTFSSS
3424
AKGPRLH
COV096_
3425
DIVMTQTPLSLPVTPGEPASISCRSSQS
3426
MQ
KAPPA



6mo_

AISWVRQAPGQGLEWMGGIIPSLTTANYAQR

DSLWGSF
6mo_P2_

LLDSDYGNTYLDWYLQKPGQSPQLLI

RM




P2_IGG_

FQDKVTITADISTSTVYMELSSLRSEDTAIYYC

RFDAFDI
Kappa-

YTLSYRASGVPDRFSGSGSGTDFTLKI

DFP




F3-

AKGPRLHDSLWGSFRFDAFDIWGQGTMVTVS


F3-

SRVEAEDVGVYYCMQRMDFPYSFGQ

YS




P1369

S


P1389

K








6.2M
COV096_
3427
EVQLVESGGGLVKPGGSLRLSCAASGFPFTNA
3428
STVGSYY
COV096_
3429
DIVMTQSPDSLAVSLGERATINCKSSQ
3430
QQ
KAPPA



6mo_

WMSWVRQAPGKGLEWVGHIKDYTDGGTTD

YDSRGPT
6mo_P2_

SVLYSSNKKNYLAWYRQKPGQPPKL

YYS




P2_IGG_

YAAPVKGKFTISRDDSKNTLYLHMNSLK1ED

SDAFDI
Kappa-

LIYWASTRESGVPDRFSGSGSGTDFTL

TPY




F7-

TAVYYCSTVGSYYYDSRGPTSDAFDIWGQGT


F7-

TISSLQAEDVAVYYCQQYYSTPYTFG

T




P1369

MVTVSS


P1389

QGTKLEIK








6.2M
COV096_
3431
QVQLVESGGGMVQPGRSLRLSCAASGFTFNN
3432
AKDSVGI
COV096_
3433
DIQMTQSPSSLSASVGDRVTITCRASQ
3434
QQS
KAPPA



6mo_

YAMHWVRQALGKGPEWVAAISSDGRTKTYT

VDYFDY
6mo_P2_

IISNYLNWYQQKPGKAPKLLIFAASSL

YST




P2_IGG_

DSVKGRFTISRDNSENTLYLQMNSVRAEDTA


Kappa-

QSGVPSRFSASGSGTDFTLTISSLQPED

PPY




F9-

LYYCAKDSVGIVDYFDYWGQGTLVTVSS


F9-

FATYYCQQSYSTPPYTFGQGTKLEIK

T




P1369




P1389










6.2M
COV096_
3435
EVQLVQSGAEVKKPGESLKISCKGSGYRFTN
3436
ARLSER
COV096_
3437
EIVMTQSPATLSVSPGERATLSCRASQ
3438
QQ
KAPPA



6mo_

YWIGWVRQMPGKGLEWIGNIFPGDSDSRYSP

WYSPFDS
6mo_P2_

SNLAWYQQKPGQAPRLLIYGAST

YN




P2_IGG_

SFQGQVTISVDMSITTAYLHWSSLKASDTAIY


Kappa-

RATGFPARFSGSGSGTEFTLTISSLQSE

NW




G11-

YCARLSERWYSPFDSWGQGTLVTVSS


G11-

DFAVYFCQQYNNWPPGGFTFGPGTK

PPG




P1369




P1389

VDIK

GFT






6.2M
COV096_
3439
EVQLVESGGGLVKPGGSLRLSCAASGLTFSH
3440
TTDCFW
COV096_
3441
DIQMTQSPSSLSASVGDRVTITCRASQ
3442
QQS
KAPPA



6mo_

AWMSWVRQAPGKGLEWVGRIKSKIDGGTTD

RLRGTSC
6mo_P2_

TIASFLNWYQQKPGKAPKLLIYAASSL

YNS




P2_IGG_

YAAPVKGRFTISRDDSKSTQYLQMNSLKTED

YEHDAF
Kappa-

QSGVPSRFSGSGSGTDFTLTISSLQPED

LH




G1-

TAVYYCTTDCFWRLRGTSCYEHDAFDIWGQ

DI
G1-

FATYYCQQSYNSLHFGGGTQVEIK






P1369

GTMVTVSS


P1389










6.2M
COV096_
3443
EVQLVQSGAEVKKPGESLKISCKVSGYTFTNY
3444
ARVPSSS
COV096_
3445
DIQMTQSPSSLSASVGDRVTITCRASQ
3446
QQS
KAPPA



6mo_

WIGWVRQMPGKGLEWMGIIFPGDSDTRYSPS

DYGDYG
6mo_P2_

TITIYLNWYQQKPGKAPKLLIYAASSL

YST




P2_IGG_

FQGQVTISADRSITTAYLQWRSLKASDTAMY

GFEY
Kappa-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PCS




G2-

YCARVPSSSDYGDYGGFEYWGQGTLVTVSS


G2-

FATYYCQQSYSTPCSFGQGTKLEIK






P1369




P1389










6.2M
COV096_
3447
QVQLVESGGGVVQPGKSLRLSCAASGFTFRS
3448
ARDSNV
COV096_
3449
DIQMTQSPSSLSASVGDRVTITCRASQ
3450
QQS
KAPPA



6mo_

YAMHWVRQAPGKGLEWVAVIWDDGSSKHY

DTVMVT
6mo_P2_

SISNYLNWYQQKPGKAPNLLIYTASSL

YST




P2_IGG_

SDSVKGHFTISRDNSKNTLYLQMNSLRAEDT

WFDY
Kappa-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




G4-

AVYYCARDSNVDTVMVTWFDYWGQGTLVT


G4-

FATYYCQQSYSTPPWTFGQGTKVEIK

T




P1369

VSS


P1389










6.2M
COV096_
3451
QVQLQQWGAGLLKPSATLSLTCAVYGASFSG
3452
ATTRSEL
COV096_
3453
DIQMTQSPSSLSASVEDRVTITCRASQ
3454
LQY
KAPPA



6mo_

YSWSWIRQPPGRGLEWVGEINHSGGTNYNPS

RYFGYN
6mo_P2_

GIRNDLGWYQQKPGKAPKRLIYAASS

NTY




P2_IGG_

LKSRVTISADTSKNQFSLKLSSVTAADTAVYY

YYGVDV
Kappa-

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PRT




G9-

CATTRSELRYFGYNYYGVDVWGQGTAVSVS


G9-

DSATYYCLQYNTYPRTFGQGTKVEIK






P1369

S


P1389










6.2M
COV096_
3455
QVQLVESGGGVVLPGRSLRLSCAASGLTF
3456
AKDFFM
COV096_
3457
DIQMTQSPSSLSASLGDRVTITCQASQ
3458
QQ
KAPPA



6mo_

GMHWVRQAPGKGLEWVAVISNDGSNKYYA

YYSGWY
6mo_P2_

DISNFLNWYQQKPGRAPKLLIYDASN

YD




P2_IGG_

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA

RYYIDY
Kappa-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




H11-

LYYCAKDFFMYYSGWYRYYIDYWGQGTLVT


H11-

DIATYYCQQYDNLPLTFGGGTKVEIK

LT




P1369

VSS


P1389










6.2M
COV096_
3459
EVQLVESGGGLIQRGGSLRLSCAASGLTVSSN
3460
ARDRGES
COV096_
3461
DIQMTQSPSFVSASVGDRVTITCRASQ
3462
QQ
KAPPA



6mo_

YMTWVRQAPGTGLEWVSVIYSGGSTFYADS

GLDV
6mo_P2_

GISRWLAWYQQKPGKAPKLLIYAASS

ANS




P2_IGG_

VKGRFTISRDNSKNTLYLQMNSLRPEDTAVY


Kappa-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

FPL




H4-

YCARDRGESGLDVWGQGTTVTVSS


H4-

DFATYYCQQANSFPLFGGGTKVEIK






P1369




P1389










6.2M
COV096_
3463
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
3464
ARFGSG
COV096_
3465
DIQMTQSPSSLSASVGDRVTITCQASQ
3466
QQ
KAPPA



6mo_

SYMHWVRQAPGQGLEWMGWINPNSGGTNY

WQWLGK
6mo_P2_

DISTYLNWYQQKPGKAPKLLIYDASN

YD




P2_IGG_

AQKFQGRVTMTRDTSISTAYMELSSLRSDDT

TDV
Kappa-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




H8-

AVYFCARFGSGWQWLGKTDVWGQGTTVTV


H8-

DIATYYCQQYDNLPQYTFGQGTKLEI

QYT




P1369

SS


P1389

K








6.2M
COV096_
3467
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3468
AKGVEY
COV096_
3469
DIQMTQSPSSVSASVGDRVTITCRASQ
3470
QQT
KAPPA



6mo_

YALHWVRQAPGKGLEWVSGISWNGDSIGYA

SSSSNCD
6mo_P2_

DISSWLAWYQQKPGKAPKLLISLASG

NSF




P2_IGG_

DSVKGRFTISRDNAKNSLSLQMNSLTAEDTAL

Y
Kappa-

LQSGVPSRFSGSGSETDFTLTISSLQPE

PLT




H9-

YYCAKGVEYSSSSNCDYWGQGTLVTVSS


H9-

DFATYYCQQTNSFPLTFGGGTKVEI






P1369




P1389










1.3M
COV096_
3471
EVQLLESGGGLEQPGGSLRLSCAASGFTFSTY
3472
ARESDCG
COV096_
3473
DIQMTQSPSSLSASVGDRVTITCRASQ
3474
QQS
KAPPA



HC_

AMSWVRQAPGKGLEWVSAISGSGAGTFYAD

STSCYQV
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




100-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

GWFDP
100-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P1369

YYCARESDCGSTSCYQVGWFDPWGQGTLVT


P1389

FATYYCQQSYSTPPWTFGQGTKVEIK

T






VSS













1.3M
COV096_
3475
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3476
AKGVEY
COV096_
3477
DIQMTQSPSSVSASVGDRVTITCRASQ
3478
QQT
KAPPA



HC_

YAMHWVRQAPGKGLEWVSGISWNSDSIGYA

SSSSNFD
KC_

GISSWLAWYQQKPGKAPKLLIYTASG

NSF




106-

DSVKGRFTISRDNAKNSLYLQMNSLTAEDTA

Y
106-

LQSGVPSRFSGSGSETDFTLTISSLQPE

PLT




P1369

LYYCAKGVEYSSSSNFDYWGQGTLVTVSS


P1389

DFATYYCQQTNSFPLTFGGGTKVEI








1.3M
COV096_
3479
QVQLVQSGAEVKKPGASVKVSCKASGHTFTS
3480
ARGPERG
COV096_
3481
EIVLTQSPGTLSLSPGERATLSCRASQS
3482
QQ
KAPPA



HC_

YYMHWVRQAPGQGLEWMGIINPSGGSTSYA

IVGATDY
KC_

VSSSYLAWYQQKPGQAPRLLIYGASS

YVS




113-

QKFQGRVTMTRDTSTSTVYMELSSLRSEDTA

FDY
113-

RATGIPDRFSGSGSGTDFTLTISRLEPE

SPW




P1369

VYYCARGPERGIVGATDYFDYWGQGTLVTV


P1389

DFAVYYCQQYVSSPWTFGQGTKVEIK

T






SS













1.3M
COV096_
3483
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSN
3484
ARDTLGR
COV096_
3485
DIQMTQSPSSLSASVGDRVTITCQASQ
3486
QQ
KAPPA



HC_

YMSWVRQAPGKGLEWVSLIYSGGSTYYAD

GGDY
KC_

DISNYLNWYQQKPGKAPKLLIYDASN

YD




115-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


115-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




P1369

YCARDTLGRGGDYWGQGTLVTVSS


P1389

DIATYYCQQYDNLPRSFGQGTKLEIK

RS






1.3M
COV096_
3487
QVQLVESGGGVVQPGRSLRLSCAASGFTFSN
3488
ARDMGT
COV096_
3489
DIQMTQSPSSLSASVGDRVTITCRASQ
3490
QQS
KAPPA



HC_

YGMHWVRQAPGKGLEWVAVIWYDGSNKHY

LVTHFDY
KC_

SISSYLNWYQQKPGKAPKLLIYAASN

YSS




122-

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDT


122-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

PPW




P1369

AEYYCARDMGTLVTHFDYWGQGTLVTVSS


P1389

DFATYYCQQSYSSPPWTFGQGTKVEI

T











K








1.3M
COV096_
3491
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSY
3492
ARGDYNI
COV096_
3493
DIQMTQSPSSLSASVGDRVTITCRASQ
3494
QQS
KAPPA



HC_

DMHWVRQATGKGLEWVSTIGTAGDTYYPDS

LTGYYFD
KC_

SISSYLNWYQQKPGKAPNLLIYAAS

YNT




123-

VKGRFTISRENAKNSLYLQMNSLRAGDTAVY

Y
123-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PQV




P1369

YCARGDYNILTGYYFDYWGQGTLVTVSS


P1389

FATYYCQQSYNTPQVTFGGGTKVESK

T






1.3M
COV096_
3495
EVQLVQSGAEVKKPGESLKISCKVSGYTFTNY
3496
ARVPSSS
COV096_
3497
DIQMTQSPSSLSASVGDRVTITCRASQ
3498
QQS
KAPPA



HC_

WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPS

DYGDYG
KC_

SISSYLNWYQQKPGKAPKLLIYAAS

YST




124-

FQGQVTISADKSIITAYLQWSSLKASDTAMYY

GFEY
124-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PCS




P1369

CARVPSSSDYGDYGGFEYWGQGTLVTVSS


P1389

FATYYCQQSYSTPCSFGQGTKLEIK








1.3M
COV096_
3499
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
3500
TRDDSS
COV096_
3501
DIQMTQSPSSLSASVGDRVTIPCRASQ
3502
QQS
KAPPA



HC_

WMHWVRQAPGKGLVWVSRINSDGSRRAYA

WPHFFD
KC_

NIDNYLNWYQQKPGKAPKLLIFAASG

YIS




126-

TSVKGRFTISRDNAKNTLYLQMDSLRDEDTA

N
126-

LQDEAPSRFSGVGSGTDFTLTISSLQPE

PYT




P1369

VYYCTRDDSSWPHFFDNWGQGTLVTVSS


P1389

DSATYYCQQSYISPYTFGRGTKLEIK








1.3M
COV096_
3503
QVQLVQSGAEVKKPGASVKVSCKASGYTFTY
3504
ARPLLPG
COV096_
3505
DIQMTQSPSSLSASVGDRVTITCRASQ
3506
QQS
KAPPA



HC_

YYMHWVRQAPGQGLEWMGIINPSGGSTSYA

ETGSLNR
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




127-

QKFQGRVTMTRDTSTSTVYMELSSLRSEDTA

LDY
127-

QSGVPSRFSGSGSGTDFTLTISSLQPED

LW




P1369

VYYCARPLLPGETGSLNRLDYWGQGTLVTVS


P1389

FATYYCQQSYSTLWTFGQGTKVEIK

T






S













1.3M
COV096_
3507
EVQLVQSGAEVKKPGESLKISCKGSGYRFTN
3508
ARLSDR
COV096_
3509
EIVMTQSPATLSVSPGERATLSCRASQ
3510
QQ
KAPPA



HC_

YWIGWVRQMPGKGLEWMGIIYPGDSDTRYS

WYSPFDP
KC_

SVSSNLAWYQQKPGQAPRLLIYGAST

YN




12-

PSFQGQVTISADKSITTAYLQWSSLKASDTAM


12-

RATGIPARFSGSGSGTEFTLTISSLQSE

NW




P1369

YYCARLSDRWYSPFDPWGQGTLVTVSS


P1389

DFAVYYCQQYNNWPPGGFTFGPGTK

PPG











VDIK

GFT






1.3M
COV096_
3511
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3512
VKGVEY
COV096_
3513
DIQMTQSPSSVSASVGDRVTITCRASQ
3514
QQT
KAPPA



HC_

YAMHWVRQAPGKGLEWVSGISWNSGSIGYA

SSSSNFD
KC_

GISSWLAWYQQKPGKAPKLLIYTASG

NSF




132-

DSVKGRFTISRDNAKNSLYLQMNSLRAEDTA

Y
132-

LQSGVPSRFSGSGSETDFTLTISSLQPE

PLT




P1369

LYYCVKGVEYSSSSNFDYWGQGTLVTVSS


P1389

DFATYYCQQTNSFPLTFGGGTKVEI








1.3M
COV096_
3515
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSN
3516
ARDTFGR
COV096_
3517
DIQMTQSPSSLSASVGDRVTITCQASQ
3518
QQ
KAPPA



HC_

YMSWVRQAPGKGLEWVSLIYSGGSTYYADS

GGDY
KC_

DISNYLNWYQQKPGKAPKLLIYDASN

YD




133-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


133-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




P1369

YCARDTFGRGGDYWGQGTLVTVSS


P1389

DIATYYCQQYDNLPRSFGQGTKLEIK

RS






1.3M
COV096_
3519
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSN
3520
ARDLMA
COV096_
3521
DIQLTQSPSFLSASVGDRVTITCRASQ
3522
QQL
KAPPA



HC_

YMSWVRQAPGKGLEWVSVIYSGGSTFYADS

YGMDV
KC_

GISSYLAWYQQKPGKAPKLLIYAAST

NSY




134-

VKGRFTFSRDNSKNTLYLQMNSLRAEDTAVY


134-

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PQG




P1369

YCARDLMAYGMDVWGQGTTVTVSS


P1389

DFATYYCQQLNSYPQGTFGGGTKVEI

T











K








1.3M
COV096_
3523
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
3524
ARGDSGS
COV096_
3525
DIQMTQSPSSLSASVGDRVTITCRASQ
3526
QQS
KAPPA



HC_

DMHWVRQATGKGLEWVSAIGTAGDTYYPGS

YLGVWY
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YSS




137-

VKGRFTISRENAKNSLYLQMNSLRAGDTAVY

FDL
137-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPIT




P1369

YCARGDSGSYLGVWYFDLWGRGTLVTVSS


P1389

FATYYCQQSYSSPPITFGPGTKVDIK








1.3M
COV096_
3527
EVQLVESGGGLVKPGGSLRLSCAASGFTVRS
3528
AKEEYY
COV096_
3529
DIQMTQSPSSLSASVGDRVTITCRASQ
3530
QQ
KAPPA



HC_

YSMNWVRQAPGKGLEWVSCMTSSGSYLYYA

GMDV
KC_

DISSWLAWYQQKPGKAPKLLIYAASN

AN




140-

DSVKGRFTISRDNAKNSLYLQMNSLRDEDTA


140-

LQSGVPSRFSGSGSGTHFTLTISSLQPE

RFP




P1369

VYYCAKEEYYGMDVWGQGATVTVSS


P1389

DFVTYYCQQANRFPITFGQGTRLEIK

IT






1.3M
COV096_
3531
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
3532
ASEWEIF
COV096_
3533
DIQMTQSPSSLSASVGDRVTITCRASQ
3534
QQS
KAPPA



HC_

NAISWVRQAPGQGLEWMGGITPIFGTVNYAQ

GFDY
KC_

SISRYLNWYQQKSGKAPKLLIYAASS

YST




153-

KFQGRVTITADESTSTAYMELSSLRSEDTAVY


153-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

PW




P1369

YCASEWEIFGFDYWGQGTLVTVSS


P1389

DFATYYCQQSYSTPWTFGQGTKVEIK

T






1.3M
COV096_
3535
QVQLVESGGGLVKPGGSLRLSCAASGFTFSD
3536
ARDLPPR
COV096_
3537
DIQMTQSPSSLSASVGDRVTITCQASQ
3538
QQF
KAPPA



HC_

YYMSWIRQAPGKGLEWVSYISSSGSTIYYADS

RFDI
KC_

DISNYLNWYQQKPGKAPKLLIYDASN

DNL




156-

VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY


156-

LETGVPSRFSGSGSGTDFTFTISSLQPE

PIT




P1369

YCARDLPPRRFDIWGQGTMVTVSS


P1389

DIATYYCQQFDNLPITFGQGTRLEIK








1.3M
COV096_
3539
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
3540
AKEPIGQ
COV096_
3541
EIVLTQSPATLSLSPGERATLSCRASQS
3542
QQ
KAPPA



HC_

AMSWVRQAPGKGLEWVSAISGSGGSTYYAD

PLLWWD
KC_

VSSYLAWYQQKPGQAPRLLIYDASNR

RSN




158-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

Y
158-

ATGIPARFSGSGSGTDFTLTISSLEPED

WP




P1369

YYCAKEPIGQPLLWWDYWGQGTLVTVSS


P1389

FAVYYCQQRSNWPRGFGQGTKVEIK

RG






1.3M
COV096_
3543
EVQLLESGGGLVQPGTSLRLSCAASGFTFSSY
3544
ATERIAV
COV096_
3545
DIQMTQSPSSLSASVGDRVTLTCRASQ
3546
QQS
KAPPA



HC_

AMSWVRQAPGKGLEWVSAISSSGGSTYYADS

AGTRMY
KC_

SISSYLNWYQQKPGKAPNLLIYAASSL

YSA




164-

VKGRFTISRDNSKNTLYLHMNSLRAEDTAVY

NWFDP
164-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P1369

YCATERIAVAGTRMYNWFDPWGQGTLVTVS


P1389

FATYYCQQSYSAPPWTFGQGTKVEIK

T






S













1.3M
COV096_
3547
EVQLVESGGGLVKPGGSLRVSCAASGFSFSY
3548
TTLSDYG
COV096_
3549
DIQMTQSPSSLSASVGDRVTITCRASQ
3550
QQS
KAPPA



HC_

AWMSWVRQAPGKGLEWVGRIKSKTDGGTT

DLSSVY
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




166-

DCAAPVKGRFTISRDDSKNTLYLQMNSLKTE


166-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PLT




P1369

DTAVYYCTTLSDYGDLSSVYWGQGTLVTVSS


P1389

FATYYCQQSYSTPLTFGGGTKVEIK








1.3M
COV096_
3551
EVQLVESGGGLIQPGGSLRLSCAASGLTVSRN
3552
ARESYG
COV096_
3553
EIVLTQSPGTLSLSPGERATLSCRASQS
2554
QQ
KAPPA



HC_

YMNWVRQAPGKGLEWVSVMYSGGSTFYAD

MDV
KC_

FSSTYLAWYQQKPGQAPRLLIYGASS

YVT




183-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV


183-

RATGIPDRFSGSGSGTDFTLTISRLEPE

SPW




P1369

YYCARESYGMDVWGQGTTVTVSS


P1389

DFAVYYCQQYVTSPWTFGQGTKVEI

T











K








1.3M
COV096_
3555
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3556
AKDTPG
COV096_
3557
DIQMTQSPSSLSASVGDRVTITCRASQ
3558
QQS
KAPPA



HC_

GMHWVRQAPGKGLEWVAVISYDGSNKYYA

GDDILTG
KC_

SISSYLNWYQQKPGKAPKLLIYAAFSL

YST




21-

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA

WGLYGM
21-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PW




P1369

VYYCAKDTPGGDDILTGWGLYGMDVWGQG

DV
P1389

FATYYCQQSYSTPWTFGQGTKVEIK

T






TTVTVSS













1.3M
COV096_
3559
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
3560
ASEEDYS
COV096_
3561
DIQMTQSPSSLSASVGDRVTITCRASQ
3562
QQS
KAPPA



HC_

AMSWVRQAPGKGLEWVSAITDSGDGTFYAD

NYVGWF
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




25-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

DP
25-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P1369

YYCASEEDYSNYVGWFDPWGQGTLVTVS


P1389

FATYYCQQSYSTPPWTFGQGTKVEIK

T






1.3M
COV096_
3563
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
3564
ARMVTS
COV096_
3565
AIQLTQSPSSLSASVGDRVTITCRASQ
3566
QQF
KAPPA



HC_

WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPS

GTYYYD
KC_

GISSALAWYQQKPGKAPKLLIYDASS

NN




28-

FQGQVTISADKSISTAYLQWSSLKASDTAMY

NSGYSSS
28-

LESGVPSRFSGSGSGTDFTLTISSLQPE






P1369

YCARMVTSGTYYYDNSGYSSSGPFDYWGQG

GPFDY
P1389

DFATYYCQQFNNFGPGTKVDIK








TLVTVSS













1.3M
COV096_
3567
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSN
3568
ARDTLGR
COV096_
3569
DIQMTQSPSSLSASVGDRVTITCQASQ
3570
QQ
KAPPA



HC_

YMSWVRQAPGKGLEWVSLIYSGGSTYYADS

GGDY
KC_

DISNYLNWYQQKPGKAPKVLIYDASN

YD




34-

VKGRFTISRDNSKNTLYLQMNTLRAEDTAVY


34-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




P1369

YCARDTLGRGGDYWGQGTLVTVSS


P1389

DIATYFCQQYDNLPRSFGQGTKLEIK

RS






1.3M
COV096_
3571
EVQLVESGGGLVQPGRSLRLSCTASGFTFGDY
3572
TRDLSYY
COV096_
3573
EIVMTQSPATLSVSPGERATLSCRASQ
3574
QQ
KAPPA



HC_

AMNWFRQAPGKGLEWVGFIRSKAYGGTTEY

YDSSGRG
KC_

SVSSNLAWYQQKPGQAPRLLIYGAST

YN




3-

AASVRGRFTISRDDSESIAYLQMNSLKTEDTA

SHLFDY
3-

RATGIPARFSGSGSGTEFTLTISSLQSE

NW




P1369

VYYCTRDLSYYYDSSGRGSHLFDYWGQGTL


P1389

DFAVYYCQQYNNWWTFGQGTKVEIK

WT






VTVSS













1.3M
COV096_
3575
QVQLVQSGAEVKKPGSSVKVSCKASGGTISS
3576
ARDDGQ
COV096_
3577
DIVMTQSPDSLAVSLGERATINCKSSQ
3578
QQ
KAPPA



HC_

YAISWVRQAPGQGLEWMGGIIPIFGTTNYAQ

QLWSYF
KC_

SVLYSSNNKSYLAWYQQKPGQPPKLL

YYS




42-

KFQGRVTITADESTSTAYMELSSLRSEDTALY

DY
42-

IYWASTRESGVPDRFSGSGSGTDFTLT

TLP




P1369

YCARDDGQQLWSYFDYWGQGTLVTVSS


P1389

ISSLQAEDVAVYYCQQYYSTLPLTFG

LT











GGTKVEIK








1.3M
COV096_
3579
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3580
AKQLYY
COV096_
3581
DIQMTQSPSSLSASVGDRVTITCQASQ
3582
QQ
KAPPA



HC_

GMHWVRQAPGKGLEWVAVISYDGSNKYYA

YGSGSYV
KC_

DIRNFLNWYQQKPGKAPKLLIYDASN

YD




43-

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA

FDY
43-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




P1369

VYFCAKQLYYYGSGSYVFDYWGQGTLVTVS


P1389

DIATYYCQQYDNLPLTFGGGTKVEIK

LT






S













1.3M
COV096_
3583
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
3584
TRDDSS
COV096_
3585
DIQMTQSPSSLSASVGDRVTITCQASQ
3586
QQ
KAPPA



HC_

WMHWVRQAPGKGLVWVSRINSDGSRRAYA

WPHFFD
KC_

DISNYLNWYQQKPGKAPKLLIYDASN

YD




45-

TSVKGRFTISRDNAKNTLYLQMDSLRDEDTA

N
45-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




P1369

VYYCTRDDSSWPHFFDNWGQGTLVAVSS


P1389

DIATYYCQQYDNLPPKLTFGGGTKVE

PKL











IK

T






1.3M
COV096_
3587
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
3588
ARASGLR
COV096_
3589
DIQMTQSPSSLSASVGDRVTITCRASQ
3590
QQS
KAPPA



HC_

SMNWVRQAPGKGLEWVSYISSSSSTIYYADS

SYYYYG
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




48-

VKGRFTISRDNAKNSLYLQMNSLRDEDTAVY

MDV
48-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PAT




P1369

YCARASGLRSYYYYGMDVWGQGTTVTVSS


P1389

FATYYCQQSYSTPATFGQGTKVEIK








1.3M
COV096_
3591
QVQLVQSGAEVKKPGASVKVSCKASGSTFTG
3592
AREKVA
COV096_
3593
EIVLTQSPATLSLSPGERATLSCRASQS
3594
QQ
KAPPA



HC_

YYMHWVRQAPGQGLEWMGWINPNSGGTNY

TMFALPP
KC_

VSSYLAWYQQKPGQTPRLLIYDASNR

RSN




4-

AQKFQGWVTMTRDTSISTAYMELSRLRSDDT

YGMDV
4-

ATGIPARFSGSGSGTDFTLTISSLEPED

WPP




P1369

AVYYCAREKVATMFALPPYGMDVWGQGTT


P1389

FAVYYCQQRSNWPPIAFGQGTRLEIK

IA






VTVSS













1.3M
COV096_
3595
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
3596
TSGQGA
COV096_
3597
DIVMTQSPDSLAVSLGERATINCKSSQ
3598
QQ
KAPPA



HC_

YAISWVRQAPGQGLEWMGGIIPIFGTTNHAQ

GVNRGV
KC_

SVLYSSNNKNYLAWYQQKPGQPPKL

YYS




55-

KFQGRVTITADESTSTAYMELSSLRSEDTAVY

VITTLGY
55-

LIYWASTRESGVPDRFSGSGSGTDFTL

TPC




P1369

YCTSGQGAGVNRGVVITTLGYWGQGTLVTV


P1389

TISSLQAEDVAVYYCQQYYSTPCSFG

S






SS




QGTKLEIK








1.3M
COV096_
3599
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
3600
ARDRDSS
COV096_
3601
DIQMTQSPSSLSASVGDRVTITCRASQ
3602
QQS
KAPPA



HC_

DMHWVRQATGKGLQWVSAIGTAGDTYYPDS

WSFDY
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




65-

VKGRFTISRENAKNSLYLQMNSLRAGDTAVY


65-

QSGVPSRFSGGGSGADFTLTISSLQPE

PPIT




P1369

YCARDRDSSWSFDYWGQGTLVTVSS


P1389

DFATYYCQQSYSTPPITFGQGTRLEIK








1.3M
COV096_
3603
EVQLVESGGGLIQPGGSLRLSCAASGVIVSSN
3604
ARDGGH
COV096_
3605
DIQLTQSPSFLSASVGDRVTITCRASQ
3606
QQL
KAPPA



HC_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

YGMDV
KC_

GISSYLAWYQQKPGKAPKLLIYAAST

NSY




68-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


68-

LQSGVPSRFSGSGSGTEFTLTISSLQPE

PPA




P1369

YCARDGGHYGMDVWGQGTTVTVSS


P1389

DFATYYCQQLNSYPPAFGQGTRLEIK








1.3M
COV096_
3607
EVQLVESGGGLVQPGRSLRLSCAASGFTFDD
3608
VKGVEY
COV096_
3609
DIQMTQSPSSVSASVGDRVTITCRASQ
3610
QQ
KAPPA



HC_

YAMHWVRQAPGKGLEWVSGISWNSGSIGYA

SSSSNFD
KC_

GISSWLAWYQQKPGKAPKLLIYVESS

ANS




6-

DSVKGRFTISRDNAKNSLYLQMNSLRAEDTA

Y
6-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

FPL




P1369

LYYCVKGVEYSSSSNFDYWGQGTLVTVSS


P1389

DFATYYCQQANSFPLTFGGGTKVEIK

T






1.3M
COV096_
3611
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
3612
ARRPRDY
COV096_
3613
DIQMTQSPSSLSASVGDRVTITCQASQ
3614
QQ
KAPPA



HC_

YGISWVRQAPGQGLEWMGWISAYNGNTNYA

YDRSGY
KC_

DISNYLNWYQQKPGKAPKLLIYDASN

YD




72-

QKLQGRVTMTTDTSTSTAYMELRSLRSDDTA

YYVPGYF
72-

LETGVPSRFSGSGSGTDFTFTISSLQPE

NLP




P1369

VYYCARRPRDYYDRSGYYYVPGYFDYWGQ

DY
P1389

DIATYYCQQYDNLPLTFGGGTKVEIK

LT






GTLVTVSS













1.3M
COV096_
3615
EVQLVESGGGLVQPGGSLRLSCAASGFIVSSN
3616
ARDYGD
COV096_
3617
EIVMTQSPATLSVSPGERATLSCRASQ
3618
QQ
KAPPA



HC_

YMSWVRQAPGKGLEWVSVIYSGGSTYYADS

FYFDY
KC_

SVSSNLAWYQQKPGQAPRLLIYGAST

YN




74-

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


74-

RATGIPARFSGSGSG1EFTLTISSLQSE

NW




P1369

YCARDYGDFYFDYWGQGTLVTVSS


P1389

DFAVYYCQQYNNWPRTFGQGTKVEI

PRT











K








1.3M
COV096_
3619
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
3620
ARDRGSS
COV096_
3621
DIQMTQSPSSLSASVGDRVTITCRASQ
3622
QQS
KAPPA



HC_

DMHWVRQATGKGLEWVSAIGTAGDTYYPDS

GWYGW
KC_

SISSYLNWYQQKPGKAPKLLIYVASSL

YST




75-

VKGRFTISRENAKNSLYLQMNSLRAGDTAVY

YFDL
75-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPIT




P1369

YCARDRGSSGWYGWYFDLWGRGTLVTVSS


P1389

FATYYCQQSYSTPPITFGQGTRLEIK













K








1.3M
COV096_
3623
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSY
3624
AKEPIGQ
COV096_
3625
EIVLTQSPATLSLSPGERATLSCRASQ
3626
QQ
KAPPA



HC_

AMSWVRQAPGKGLEWVSAISGSGGSTYYAD

PLLWWD
KC_

VSSYLAWYQQKPGQAPRLLIYDASNR

RSN




78-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

Y
78-

ATGIPARFSGSGSGTDFTLTISSLEPED

WP




P1369

YYCAKEPIGQPLLWWDYWGQGTLVTVSS


P1389

FAVYYCQQRSNWPRGFGQGTKVEIK

RG






1.3M
COV096_
3627
EVQLVESGGGLVQPGGSLRLSCAASGFTFTN
3628
ARVVGS
COV096_
3629
DIQMTQSPSSLSASVGDRVTITCRASQ
3630
QQS
KAPPA



HC_

YNMNWVRQAPGKGLEWVSYISSSSSTIYYAD

GSYYYY
KC_

SISSYLNWYQQKPGKAPKLLIYGAS

YST




79-

SVKGRFTISRDNAKNSLYLQMNSLRDEDTAV

GMDV
79-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PAT




P1369

YYCARVVGSGSYYYYGMDVWGQGTTVTVS


P1389

FATYYCQQSYSTPATFGQGTKLEIK








S













1.3M
COV096_
3631
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
3632
ARGTFFY
COV096_
3633
DIQMTQSPSSLSASVGDRVTITCRASQ
3634
QQS
KAPPA



HC_

DMHWVRQASGKGLEWVSAIGTSGDTYYPGS

GSGSYN
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




81-

VKGRFTISRENAKNSLYLQMNSLRAGDTAVY

WFDP
81-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P1369

YCARGTFFYGSGSYNWFDPWGQGTLVTVS


P1389

FATYYCQQSYSTPPWTFGQGTKVEIK

T






1.3M
COV096_
3635
EVQLVQSGAEVKKPGESLKISCKGSGYTFTSY
3636
ARPVTYD
COV096_
3637
DIQMTQSPSSVSASLGDRVTITCRASQ
3638
QQ
KAPPA



HC_

WIGWVRQMPGKGLEWMGFIYPGDSDTRYSP

WYFDL
KC_

GISSWLAWYQQKPGKAPKVLIYAASS

ANS




8-

SFQGQVTISADKSISTAYLQWSSLKASDTAMY


8-

LQSGVPSRFSGSGSGTDFTLTISSLQPE

FPIT




P1369

YCARPVTYDWYFDLWGRGTLVTVSS


P1389

DFATYYCQQANSFPITFGQGTRLEIK








1.3M
COV096_
3639
EVQLLESGGGLEQPGGSLRLSCAASGFTFSTY
3640
ARESDCG
COV096_
3641
DIQMTQSPSSLSASVGDRVTITCRASQ
3642
QQS
KAPPA



HC_

AMSWVRQAPGKGLEWVSAISGSGAGTFYAD

STSCYQV
KC_

SISSYLNWYQQKPGKAPKLLIYAASSL

YST




91-

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV

GWFDP
91-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P1369

YYCARESDCGSTSCYQVGWFDPWGQGTLVT


P1389

FATYYCQQSYSTPPWTFGQGTKVEIK

T






VSS













1.3M
COV096_
3643
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3644
ARDVGR
COV096_
3645
DIQMTQSPSSLSASVGDRVTITCRASQ
3646
QQS
KAPPA



HC_

GMHWVRQAPGKGLEWVAAIWYDGSNKHYA

VTTWFDP
KC_

SISSYLTWYQQKPGKAPKLLIYAASSL

YST




98-

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTA


98-

QSGVPSRFSGSGSGTDFTLTISSLQPED

PPW




P1369

VYYCARDVGRVTTWFDPWGQGTLVTVSS


P1389

FATYYCQQSYSTPPWTFGQGTKVEIK

T














Heavy Chain
Light Chain





















SEQ

SEQ


SEQ

SEQ





SEQUENCE_
ID

ID

SEQUENCE_
ID

ID





ID
NO
aa
NO
cdr3_aa
ID
NO
aa
NO
cdr3_aa






COV107_
3647
QVQLVQSGAEVKKPGASVKVSCKASGYTFTA
3648
ARDLK   
COV107_
3649
QSVLTQPASVSGSPGQSITISCTGTSSDV
3650
FSY
LAMBDA



6mo_P1_

YYIHWVRQAPGQGLEWMGWISPISGGTKYAQ

AVAISG
6mo_P1_

ESYNLVSWYQQYPGKAPKLMIYEGSKR

AGS




IGG_

KFQGRVTMTRDTSITTTYMDLSRLRSDDTAVY

DIDY
Lambda_

PSGLSNRFSGSKSGNTASLTISGLQAEDE

NTW




A10-

YCARDLKAVAISGDIDYWGQGTLVTVSS


A10-

ADYYCFSYAGSNTWVFGGGTKLTVL

V




P1369




P1409











COV107_
3651
EVQLVQSGAEVKRPGESLKISCKTSGYSFTSHW
3652
SRRQGS
COV107_
3653
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3654
QV
LAMBDA



6mo_P1_

IGWVRQMPGKGLEWMGIIYPGDYDTRYNPSFQ

YPPYFD
6mo_P1_

KRVHWYQQKPGQAPVLVISYDSDRPSGI

WDS




IGG_

GQVTISADKSINTAFLQWSSLKASDSAIYYCSR

Y
Lambda_

PERFSGSNSGNTATLTISRVEAGDEADY

NSD




A11-

RQGSYPPYFDYWGQGALVTVSS


A11-

YCQVWDSNSDYYVFGTGTKVTVL

YYV




P1369




P1409











COV107_
3655
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
3656
ARYKG
COV107_
3657
SYVLTQPPSVSVSPGQTASITCSGDKLRN
3658
QA
LAMBDA



6mo_P1_

YFNHWVRQAPGQGLEWMGWINPNSGGTNSA

TTVNTN
6mo_P1_

KYACWYQQKAGQSPMLVIYQDTKRPS

WDI




IGG_

QKFQGRVTMTRDTSITTVYMELSRLRSDDTAV

YYYGM
Lambda_

GIPERFSGSNSGNTATLTISGTQAMDEA

STV




A3-

YYCARYKGTTVNTNYYYGMDVWGQGTTVTV

DV
A3-

DYYCQAWDISTVVFGGGTKLTVL

V




P1369

SS


P1409











COV107_
3659
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
3660
ARNGM
COV107_
3661
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3662
ATW
LAMBDA



6mo_P1_

WIGWVRQMPGKGLEWMGIFFPGNSDARYSP

HYGSGS
6mo_P1_

GSNTVNWYQQLPGTAPKLLIHSNNQRPS

DDS




IGG_

QGQVIMSADKSISTAYLQWSSLRASDTAMYYC

YYNGF
Lambda_

GVPDRFSGSKSGTSASLAISGLQSEDEGD

LSG




A5-

ARNGMHYGSGSYYNGFDPWGQGTLVTV

DP
A5-

YYCATWDDSLSGVVFGGGAKVTVL

VV




P1369




P1409











COV107_
3663
QVQLVESGGGVVQPGRSLRLSCAASGFIFSSYG
3664
AKDQG
COV107_
3665
QSALTQPPSVSGSPGQSVTISCTGTSSDV
3666
SSY
LAMBDA



6mo_P1_

MHWVRQAPGKGLEWVAVISYDGSKKYYADS

YGDFY
6mo_P1_

GSYNRVSWYQQPPGTAPKLMIYEVTNR

TSSS




IGG_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVHY

YYFGM
Lambda_

PSGVPDRFSGSKSGNTASLTISGLQAEDE

LI




A8-

CAKDQGYGDFYYYFGMDVWGQGTTVTVSS

DV
A8-

ADYYCSSYTSSSLIFGGGTKLTVL






P1369




P1409











COV107_
3667
QVQLQESGPGLVKPSETLSLTCTVSGDSISSYF
3668
ARCAW
COV107_
3669
NFMLTQPHSVSESPGKTVTISCTGSSGSI
3670
QSY
LAMBDA



6mo_P1_

WSWIRQPPGRGLEWIGYIHDSVNTNYNPSLKS

LRGSFD
6mo_P1_

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DFS




IGG_

RVTISVDTSKSQFSLRLSSVTAADTAVYYCARC

Y
Lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

SHY




B11-

AWLRGSFDYWGQGTMVTVSS


B11-

ADYYCQSYDFSSHYVFGTGTKVTVL

V




P1369




P1409











COV107_
3671
EVQLVESGGGLVQPGGSLRLSCAASGFIFSRYW
3672
ARDLEY
COV107_
3673
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
3674
QSY
LAMBDA



6mo_P1_

MHWVRQAPGKGLVWVSRINSDGSNTTYADSV

YDFWS
6mo_P1_

GAGYDVQWYQQLPGTAPKLLIYGNSNR

DSS




IGG_

KGRFTISRDNAKNTLYLQMNSLRAEDTAVYYC

GLSGD
Lambda_

PSGVPDRFSGSKSGTSASLAITGLQAEDE

LEV




B1-

ARDLEYYDFWSGLSGDWSFDLWGRGTLVTVS

WSFDL
B1-

ASYYCQSYDSSLEVFGTGTKVTVL






P1369

S


P1409











COV107_
3675
EVQLVQSGAEVKKPGESLKISCKGSGYRFTSY
3676
ARLLHY
COV107_
3677
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
3678
QSY
LAMBDA



6mo_P1_

WIGWVRQMPGKGLEWMAIIFPGDSETRYSPSF

YDRSGY
6mo_P1_

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




IGG_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC

SGATDD
Lambda_

GVPDRFSGSKSGTSASLAITGLQAEDE

LSG




B9-

ARLLHYYDRSGYSGATDDAFDIWGQGTMVTV

AFDI
B9-

ADYYCQSYDSSLSGLVLFGGGTKLTVL

LVL




P1369

SS


P1409











COV107_
3679
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYV
3680
AKDGDI
COV107_
3681
SYVLTQPPSVSVAPRKTARITCGGHNIGS
3682
QV
LAMBDA



6mo_P1_

MSWVRQAPGKGLEWVSGISGSGGSPYYADSV

VVALN
6mo_P1_

KNVHWYQQRPGQAPVLVIYSDSDRPSGI

WD




IGG_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

DGFDI
Lambda_

PERFSGSNSGNTATLTISRIEAGDEADYY

GSS




C12-

AKDGDIVVALNDGFDIWGQGTMVTVSS


C12-

CQVWDGSSDHPVIFGGGTKLTVL

DHP




P1369




P1409



VI







COV107_
3683
EVQLVESGGGLIQPGGSLKLSCVVSGFTVSRNY
3684
ARGDG
COV107_
3685
QSVLTQPPSVSGAPGQRVTIVCTGTSSNI
3686
QSY
LAMBDA



6mo_P1_

ISWVRQAPGKGLEWVSVLFAGGSTFYADSVKG

ELIFDQ
6mo_P1_

GAGYDVHWYQQLPGRAPKVLVSGNNI

DSN




IGG_

RFAISRDNSNNTLFLQMNSLRVEDTAIYYCARG


Lambda_

RPSEVPDRFSGSRSGTSASLAITSLQPED

LYA




C9-

DGELIFDQWGQGTLVTVSS


C9-

EAQYYCQSYDSNLYAVFGGGTKLTVL

V




P1369




P1409











COV107_
3687
EVQLVESGGGLIQPGGSLRLSCAASGFSVSSNF
3688
ARTLG
COV107_
3689
QSVLTQPPSVSGVPRQRVTISCSGSNSNI
3690
AA
LAMBDA



6mo_P1_

MSWVRQAPGKGLEWVSLIYTGGSTYYADSVK

WWELD
6mo_P1_

GNNAVNWYQQLPGKAPKLLIYYNDLLP

WD




IGG_

GRFTISRDNSNNTLYLQMNSLRADDTAVYYCA

P
Lambda_

SGFSDRFSGSKSGTSASLAISGLQSEDEA

DSL




D1-

RTLGWWELDPWGQGTLVTVSS


D1-

DYYCAAWDDSLNGPVFGGGTKVTVL

NGP




P1369




P1409



V







COV107_
3691
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
3692
ARFDVF
COV107_
3693
QFVLTQPRSVSGSPGQSVTISCTGTSSDV
3694
CSY
LAMBDA



6mo_P1_

YHWSWIRQHPGKGLEWIGYIYYSGNTYYNPSL

IPADAF
6mo_P1_

GGYNYVSWYQQHPGKVPKLLTYDVSK

AGT




IGG_

KSRVTMSLDTSKSQFSLNLSSVTAADTAVYYC

DI
Lambda_

RPSGVPDRFSGSKSGNTASLTISGLQAED






D8-

ARFDVFIPADAFDIWGQGTLVTVSS


D8-

EADYYCCSYAGTYTVVFGGGTKVTV






P1369




P1409











COV107_
3695
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSND
3696
ARLIRY
COV107_
3697
QSVLTQPASVSGSPGQSITISCTGTTSDV
3698
CSY
LAMBDA



6mo_P1_

YWGWIRQPPGKGLEWIGSIFYSGITYYNPSLES

CSTTSC
6mo_P1_

GSYNLVSWYQQHPGKAPKVMIFEVDKR

VGS




IGG_

RVTISVDTSKNQFSLKLSSVTAADTAVFYCARL

YSFDF
Lambda_

PSGVSNRFSGSKSGNTASLTISGLQAEDE

SSVI




E2-

IRYCSTTSCYSFDFWGQGTLVTVSS


E2-

ADYYCCSYVGSSSVIFGGGTKLTVL






P1369




P1409











COV107_
3699
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
3700
ARAIVV
COV107_
3701
NFMLTQPHSVSESPGKTVTISCTGSSGSI
3702
QSY
LAMBDA



6mo_P1_

YYWTWIRQYPGEGLEWIGYIYHSGSAYYNPSL

VTLNW
6mo_P1_

ASNYVQWYQQRPGSAPTAVIYEDNQRP

DSS




IGG_

KSRVTMSVDTSKNQFSLKLSSVTAADTAVYYC

FDP
Lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NPV




E3-

ARAIVVVTLNWFDPWGQGTLVSVSS


E3-

ADYYCQSYDSSNPVVFGGGTKLTVL

V




P1369




P1409











COV107_
3703
QVQLVESGGGLVKPGGSLRLSCAVSGIDFTDYF
3704
ASAPWL
COV107_
3705
NFMLTQPHSVSESPGKTVTISCTGSSGSI
3706
QSF
LAMBDA



6mo_P1_

MSWVRQAPGKGLEWISYIRSGNSYTDYADSVK

RGHFDY
6mo_P1_

ASNYVHWYQQRPGSAPTTVIYEDNQRP

DSN




IGG_

GRFTISTDNAKNSLYLQMNSLRAEDTAVYYCA


Lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTDDE

TGR




E8-

SAPWLRGHFDYWGQGALVTVSS


E8-

ADYYCQSFDSNTGRVFGGGTKLTVL

V




P1369




P1409











COV107_
3707
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
3708
ARAPLY
COV107_
3709
QSVLTQPASVSGSPGQSITISCTGTSSDV
3710
SSY
LAMBDA



6mo_P1_

YMHWVRQAPGQGLEWMGIINPTGGTTRYAQK

YDILTG
6mo_P1_

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




IGG_

FQGRVTMTRDTSTSTVYMELSSLRSEDTAVYY

YYPGA
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TVV




F10-

CARAPLYYDILTGYYPGAYDYWGQGTLVTVSS

YDY
F10-

EADYYCSSYTSSSTVVFGGGTKLTVL






P1369




P1409











COV107_
3711
QVQLVESGGGVVQPGRSLRVSCAASGFTFSTF
3712
QHRYN
COV107_
3713
NFMLTQPHSMSESPGKTVTISCTGSGGSI
3714
QSY
LAMBDA



6mo_P1_

AMHWVRQAPGKGLEWVAVISYDGGNRFYVD

WLT
6mo_P1_

ALNYVEWYQQRPGSAPTTVIYEDNQRP

DGT




IGG_

SVEGRFTISRDNSKNTLSLQMNSLRTEDTAVYY


Lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

TRG




F11-

CARGGFGGLWFGQGTLVTVSS


F11-

ADYYCQSYDGTTRGHVVFGGGTKLTVL

HVV




P1369




P1409











COV107_
3715
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYR
3716
AREVH
COV107_
3717
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3718
QV
LAMBDA



6mo_P1_

MHWVRQAPGKGPVWVSRINSDESNISYADSV

NEPGDY
6mo_P1_

KSVHWYQQKPGQAPVLVIYYDSDRP

WDS




IGG_

KGRFTISRDNAKNTLYLQMNSLRAEDTAVYYC

FDY
Lambda_

IPERFSGSNSGNTATLTISRVEAGDEADY

SGD




F4-

AREVHNEPGDYFDYWGQGTLVSVS


F4-

YCQVWDSSGDHWVFGGGTKLTVL

HW




P1369




P1409



V







COV107_
3719
QVQLQESGPGLVKPSETLSLTCTVSGGSVFSGT
3720
ARGSRS
COV107_
3721
QSVLTQPPSVSAAPGQKVTISCSGSSSNI
3722
GTW
LAMBDA



6mo_P1_

YYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSL

SYYFDY
6mo_P1_

GNNYVSWYQQLPGTAPKLLIYEDNKRP

DSS




IGG_

KSRVTISIDPSKNQFSLNLSSVTAADTAVYYCA


Lambda_

SGIPDRFSGSKSGTSATLGIAGLQTGDEA

LSV




G12-

RGSRSSYYFDYWGQGALVTVSS


G12-

DYYCGTWDSSLSVPFVFGTGTKVTV

PFV




P1369




P1409











COV107_
3723
QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGD
3724
ARAMIT
COV107_
3725
QSVLTQPPSASGSPGQSVTISCTGTSTDV
3726
SSY
LAMBDA



6mo_P1_

YYWTWIRQPPGKGLEWIGYIYYSGNTYYNLSL

FGGVIV
6mo_P1_

GGYNFVSWYQQHPGKAPKLMIYEVSKR

AGS




IGG_

RSRITISEDTSKNQFSLKLRSVTAADTAVYYCA

VLDY
Lambda_

PSGVPDRFSGSKSGNTASLTVSGLQAED

NIL




G2-

RAMITFGGVIVVLDYWGQGTLVTVSS


G2-

EADYYCSSYAGSNILYVFGTGTKVTVL

YV




P1369




P1409











COV107_
3727
QVQLVESGGGVVQPGRSLRLSCSASGFTFSSYA
3728
ARDLG
COV107_
3729
SYVLTQPPSVSVSPGQTARISCSGGALPK
3730
QSA
LAMBDA



6mo_P1_

FHWVRQAPGKGLEWVAVVSHDGNNKFYADS

VVLPGP
6mo_P1_

QYGYWYQQKPGQAPVLVIYKDSERPSG

DRS




IGG_

VKGRLAIYRDNSKNTLYLQMISLQAEDTALYY

ADDYF
Lambda_

IPERFSGSSSGTAVTLTISGVQAEDEADY

GMS




G3-

CARDLGVVLPGPADDYFYFYGMDVWGLGTTV

YFYGM
G3-

YCQSADRSGMSRVFGGGTKLTVL

RV




P1369

TVSS

DV
P1409











COV107_
3731
QVQLQESGPGLVKPSGTLSLTCAVSGGSISTVN
3732
ARDGG
COV107_
3733
QSVLTQPASVSGSPGQSITISCTGTSSDV
3734
NSY
LAMBDA



6mo_P1_

WWSWVRQPPGKGLEWIGEIHHSGNTNHNPSL

RPGDAF
6mo_P1_

GGYNYVSWYQQHPGKVPKVMIYDVSN

RSN




IGG_

RSRVTISVDKSKNQFSLKLRSVTAADTAVYYC

DL
Lambda_

RPSGISNRFSGSKSGNTASLTISGLQAED

STR




G7-

ARDGGRPGDAFDLWGQGTMVTVSS


G7-

EADYYCNSYRSNSTRVFGTGTKVTV

V




P1369




P1409











COV107_
3735
QVQLQESGPGLVKPSQTLSLTCTVSGGSISRYY
3736
ARVPVG
COV107_
3737
SYVLTQPPSVSVAPGKTARVTCGGNNIG
3738
QV
LAMBDA



6mo_P1_

WSWLRQHPGKGLEWIGCIYDSGSTNYNPSLKS

WEPPGF
6mo_P1_

SKSVHWYQQKPGQAPVLVIYYDTDRPS

WDS




IGG_

RLTISVDTSQNQLSLKLASVTAADAAVYYCAR

DL
Lambda_

GIPERFSGSNSGNTATLTISRVEAGDEAD

SSD




G9-

VPVGWEPPGFDLWGQGTTVTVSS


G9-

YYCQVWDSSSDHPVFGGGTKLTV

HPV




P1369




P1409











COV107_
3739
EVQLVQSGAEVKKPGESLKISCKGSGYTFTNY
3740
AIGALQ
COV107_
3741
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3742
AA
LAMBDA



6mo_P1_

WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF

MATIID
6mo_P1_

GGNAVNWYQQLPGTAPKLLIYTNNQRP

WD




IGG_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC

AFDI
Lambda_

SGVPDRFSGSKSGTSASLSISGLQSEDEA

DSL




H4-

AIGALQMATIIDAFDIWGQGTMVTVSS


H4-

DYYCAAWDDSLNGVVFGGGTKLTAL

NGV




P1369




P1409











COV107_
3743
EVQLVESGGGLIQPGGSLRLSCAASGLTVSRNY
3744
ARDLA
COV107_
3745
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
3746
QSY
LAMBDA



6mo_P1_

MTWVRQAPGKGLEWVSVIYSGGTTHYADSVK

VYGMD
6mo_P1_

GAGSDVHWYQKLPGTAPKVLVYGYSN

DTS




IGG_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

V
Lambda_

RPSGVPDRFSGSKSGTSASLAITGLQAED

LRV




H6-

RDLAVYGMDVWGQGTTVTVSS


H6-

EADYYCQSYDTSLRVLFGGGTKLTV

L




P1369




P1409











COV107_
3747
QVQLVQSGAEVKKPGASVMLSCKASGYTFTSY
3748
ARAMA
COV107_
3749
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3750
AA
LAMBDA



6mo_P2_

GISWVRQAPGQGLEWMGWISAYNGNTNYAQ

VAGTSG
6mo_P2_

GSNTVNWYQQLPGTAPKLLIYSNNQRPS

WD




IGG_

KLQGRVSMTTDTSTSTAYMELRSLRSDDTAVY

DFDY
Lambda_

GVPDRFSGSKSGTSASLAISGLQSEDEAD

DSL




A11-

YCARAMAVAGTSGDFDYWGQGTLVTVSS


A11-

YYCAAWDDSLNGHVVFGGGTKLTVL

NGH




P1369




P1409



VV







COV107_
3751
QVQLVQSGAEVKKSGSSVKVSCKASGGSFSSY
3752
ASRWE
COV107_
3753
QSVLTQPASVSGSPGQSITISCTGTRSDV
3754
CSY
LAMBDA



6mo_P2_

AISWVRQAPGQGLEWMGGIIPIFGTAKYAQKF

QLNGGS
6mo_P2_

GRNNLVSWYQHHPGKAPKVMIYEGSK

AGS




IGG_

QGRVTITADESTSTAYMELSSLRSEDTAVYYCA

WHYFD
Lambda_

RPSGVSTRFSGSKSGNTASLTISGLQAED

STFE




A6-

SRWEQLNGGSWHYFDYWGQGTLVTVSS

Y
A6-

EADYYCCSYAGSSTFEGVFGGGTKLTV

GV




P1369




P1409

L









COV107_
3755
EVQLVQSGAEVKKAGESLKISCNSSGYSFTNY
3756
ARGGPP
COV107_
3757
QSVLTQPPSASGTPGQRVTISCSGSNSNI
3758
AA
LAMBDA



6mo_P2_

WIAWVRQVPGKGLEWMGIIYLGDSDTRYSPSF

GGVKLE
6mo_P2_

GDNTVHWYQQLPGTAPKLLIFNNNQRP

WD




IGG_

QGRVTISADKSISAAYLHWSSLKASDTAIYYCA

LTDF
Lambda_

SGVPDRFSGSKSGTSASLAISGLQSDDEA

DSL




A8-

RGGPPGGVKLELTDFWGQGTLVTVSS


A8-

DYYCAAWDDSLDGPVVFGGGTKLTVL

DGP




P1369




P1409



VV







COV107_
3759
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGF
3760
ARSNDI
COV107_
3761
SYVLTQPPSVSVAPGKTARITCGGKNFG
3762
QV
LAMBDA



6mo_P2_

FIHWVRQAPGQGLEWMGWINPISGGTNYAQK

VAASTF
6mo_P2_

SKSVHWYQQKPGQAPVLVIYYDTDRPS

WYS




IGG_

FQGRVTVTRDTSITTVYVEVSSLRSDDTAVYYC

YFHF
Lambda_

GIPERFSGSNSGNTATLTISGVEAGDEAD

SSD




B12-

ARSNDIVAASTFYFHFWGQGTLVTVSS


B12-

YYCQVWYSSSDGVFGGGTKLTVL

GV




P1369




P1409











COV107_
3763
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
3764
ARELTH
COV107_
3765
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
3766
QSY
LAMBDA



6mo_P2_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

DVTPYF
6mo_P2_

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




IGG_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DY
Lambda_

PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSG




B1-

RELTHDVTPYFDYWGQGTLVTVSS


B1-

ADYYCQSYDSSLSGWGVFGGGTKLTVL

WG




P1369




P1409



V







COV107_
3767
EVQLVQSGAEVKKPGESLRISCKGSGYSFSSYW
3768
ARHWG
COV107_
3769
QSVLTQPPSVSGAPGQKVTISCTGSS
3770
QSY
LAMBDA



6mo_P2_

ITWVRQRPGKGLEWMGKIDPSDSYLNYSPSFQ

RFGEGD
6mo_P2_

GAGYNLHWYQQLPGAAPKLLIDANGN

DSS




IGG_

GHVTISADKSTRTAYLQWSSLKASDTAMYYCA

Y
Lambda_

RPSGVPDRFSGSKSGTSASLAITGLQAED

LVP




B3-

RHWGRFGEGDYWGQGTLVTVSS


B3-

EADYYCQSYDSSLVPSWVFGGGTKLTV

SWV




P1369




P1409

L









COV107_
3771
QVQLQESGPGLVKPSETLSLTCTVSGGSVINGS
3772
ATGSKS
COV107_
3773
QSVLTQPPSVSAAPGQKVTISCSGSSSNI
3774
GTW
LAMBDA



6mo_P2_

YYWSWIRQPPGKGLEWIGFVYYSGSTNYNPSL

SYYFDY
6mo_P2_

GNNYVSWYQQLPGAAPKLLIYENNMRP

DSS




IGG_

KSRVTISVDTSKNQFSLNLNSVTAADTAVYYC


Lambda_

SGIPDRFSGSKSGTSATLGITGLQTGDEA

LSV




B5-

ATGSKSSYYFDYWGQGTLVTVSS


B5-

DYYCGTWDSSLSVPYVFGTGTRVTVL

PYV




P1369




P1409











COV107_
3775
QVQLVESGGGVVQPGRSLRLSCVASGFTFSYF
3776
AKPVD
COV107_
3777
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3778
QV
LAMBDA



6mo_P2_

DMHWVRQAPGKGLEWVALISHDGSTTFYGDS

AAMFD
6mo_P2_

KSVHWYQQRPGQAPVLVIYYDSDRPSGI

WDR




IGG_

ARGRFTISRDNSRNTLDLQMNSLRPEDTAVYFC

F
Lambda_

PERFSGSNSGNTATLTISRVEAGDEADF

STN




B6-

AKPVDAAMFDFWGQGTLVTVS


B6-

YCQVWDRSTNHLVVFGGGTQLTVL

HLV




P1369




P1409



V







COV107_
3779
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
3780
ARRGSA
COV107_
3781
QSVLTQPPSASGTPGQRVTISCSGSTSNI
3782
AA
LAMBDA



6mo_P2_

WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF

WEIDY
6mo_P2_

GSNTVNWYQQLPGTAPKLLIYNNNQRP

WD




IGG_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC


Lambda_

SGVPDRMSGSKSGTSASLAISGLQSEDE

DSL




B7-

ARRGSAWEIDYWGQGTLVTVSS


B7-

ADYYCAAWDDSLNGYVFGTGTKVTVL

NGY




P1369




P1409



V







COV107_
3783
QVQLVQSGAEVKKPGASVKVSCRASGYTFPNY
3784
ARGRA
COV107_
3785
QSVLTQPASVSGSPGQSITISCTGTSSDV
3786
CSY
LAMBDA



6mo_P2_

DLNWVRQATGQGLEWMGWMNPNSGNTGYA

NWNSN
6mo_P2_

GGYNLVSWYQQYPGNVPKLMIYEDAK

AGS




IGG_

QKFQGRITMTRITSISTAYMELSSLRSEDTAVY

FLLDS
Lambda_

RPSGVSNRFSGSKSANTASLTISGLQAED

STR




B8-

YCARGRANWNSNFLLDSWGQGTLVTVSS


B8-

EADYYCCSYAGSSTRYVFGTGTKVTVL

YV




P1369




P1409











COV107_
3787
QVQLVQSGAEVKKPGASVKVSCKASGYIFTGY
3788
ARDLAF
COV107_
3789
QSVLTQPASVSGSPGQSITISCTGTSSDV
3790
CSY
LAMBDA



6mo_P2_

YMHWVRQAPGQGLEWIGWINPNSGGTNSTQK

SMVRG
6mo_P2_

GSYNLVSWYQQHPGKAPKLMIYEGSK

AGS




IGG_

FQGRVTMTRDKSISTVYMELSRLRSDDTAVYY

VFDH
Lambda_

WPSGVSNRFSGSKSGNTASLTISGLQAE

NSW




C11-

CARDLAFSMVRGVFDHWGQGTLVTVSS


C11-

DEADYYCCSYAGSNSWVFGGGTKLTVL

V




P1369




P1409











COV107_
3791
QVQLVQSGAEVKKPGASVKVSCEASGYTLSTY
3792
VRNIGG
COV107_
3793
QSVLTQPPSVSAAPGQKVTISCSGSSSNI
3794
GTW
LAMBDA



6mo_P2_

DINWVRQATGQGLEWMGWMKPSSGHTGYAQ

YGFGG
6mo_P2_

ENNYVSWYQQLPGTAPQLLIYDNNKRP

DRS




IGG_

KFQGRVTMTRNTSISTAYMELSGLRSEDTAVY

GYNWF
Lambda_

SGIPGRFSGSKSGTSATLGITGLQTGDEA

LSA




C1-

YCVRNIGGYGFGGGYNWFDPWGQGTLVTVS

DP
C1-

EYYCGTWDRSLSAYVFGTGTKVTVL

YV




P1369




P1409











COV107_
3795
QLQLQESGPGLVKPSETLSLTCTVSGGSISTSSY
3796
ARLHQP
COV107_
3797
SYVLTQPPSVSVAPGKTASITCGGNDIGS
3798
QV
LAMBDA



6mo_P2_

FWGWIRQPPEKGLEWIGSIYSSGSTYYNPSLKS

PEGDWF
6mo_P2_

KSVHWYQQKPGQAPVLVIYYDSDRPSG

WDS




IGG_

RLTISVDTSKNQLSLKLSSVTAADTAVYYCARL

DP
Lambda_

IPERFSGSNSGNTATLTISRVEGGDEADY

TSD




C5-

HQPPEGDWFDPWGQGTLVTVSS


C5-

YCQVWDSTSDRPLYVFGTGTKVTVL






P1369




P1409











COV107_
3799
EVQLVQSGAEVKKPGESLKISCRGSGYSFTNY
3800
ATRGSG
COV107_
3801
QSVLTQPASVSGSPGQSITISCTGTSSDV
3802
CSY
LAMBDA



6mo_P2_

WIGWVRQMPGKGLEWMGIIYPGDSDTRYNPSF

NLIFDY
6mo_P2_

GSYNLVSWYQQYPGKAPKLMIYEGSKR

AGS




IGG_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC


Lambda_

PSGISNRFSGSNSGNTASLTISGLQPEDE

TTL




C6-

ATRGSGNLIFDYWGQGTLVTVSS


C6-

ADYYCCSYAGSTTLWVFGGGTKLTVL

WV




P1369




P1409











COV107_
3803
QVQLQESGPGLVKPSETLSLTCTVSGGSVSGGS
3804
ARGLY
COV107_
3805
QSVLTQSPSASASLGASVTLTCTLSSGYS
3806
GAD
LAMBDA



6mo_P2_

FYWSWIRRPPGKGLEWIGYIHYSGSANHNPSL

YYDSG
6mo_P2_

NYNVDWYQQRPGTGPRFVMRVGTGGI

HGS




IGG_

KSRVSMSVDTSKNQFSLKLSSVTAADTAVYFC

GYLGG
Lambda_

VGSKGYGIPDRFSVLGSGLNRYLTIKNIQ

GSN




C7-

ARGLYYYDSGGYLGGDFDSWGQGTLVTVSS

DFDS
C7-

EEDESDYHCGADHGSGSNFVVVFGGGT

FVV




P1369




P1409

RLTVL

V







COV107_
3807
EVQLVESGGGLVQPGRSLRLSCVASGFTFEDY
3808
AKIPSA
COV107_
3809
QSVLTQPPSSSGTPGQRVTISCSGSSSNIG
3810
AA
LAMBDA



6mo_P2_

AMHWVRQVPGKGLEWVSGMSWNSGTIGYAD

SYDFGS
6mo_P2_

SSYVYWFQQLPGTAPKLLIYRNNQRP

WY




IGG_

SVKGRFIISRDNAQNSLYLQMRNLR1EDTALY

GHDVF
Lambda_

VPDRFSGSKSGTSASLAISGLRSEDEADY

DSL




C8-

YCAKIPSASYDFGSGHDVFDIWGQGTMVTVSS

DI
C8-

YCAAWYDSLSGVVFGGGTKLTVL

SGV




P1369




P1409



V







COV107_
3811
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
2812
AKDPLP
COV107_
3813
QSVLTQPASVSGSPGQSITISCTGTSSDV
3814
SSY
LAMBDA



6mo_P2_

GMHLVRQAPGKGLEWVAIISYDGSNKYYADS

FRDYYY
6mo_P2_

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




IGG_

VKGRFTISRDSSKNTLYLQMNNLRAEDTAVYY

YYMDV
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TLG




D7-

CAKDPLPFRDYYYYYMDVWGKGTTVTVS


D7-

EADYYCSSYTSSSTLGVFGTGTKVTVL

V




P1369




P1409











COV107_
3815
QVQLQESGPGLVKPSQTLSLTCTVSGGSINNGS
3816
ASLIRA
COV107_
3817
QSVLTQPPAASGTPGQRVTISCSGSSSNI
3818
AA
LAMBDA



6mo_P2_

YYWTWIRQHPGKGLEWIGYIYYTGDTYYNPPL

HTFGGV
6mo_P2_

GRNYVYWYQQLPGMAPKLLIYRNNQR

WD




IGG_

MSRLTVSVDTSKNQLSLKLSSVTAADTAVYYC

IVNPYF
Lambda_

PSGVPDRFSGSKSGPSASLAISGLRSEDE

DSL




E11-

ASLIRAHTFGGVIVNPYFDYWGQGILVTVSS

DY
E11-

AAYYCAAWDDSLSGVLFGGGTNLAVL

SGV




P1369




P1409



L







COV107_
3819
QVQLVESGGGVVQPGRSLRLSCAASGFSFSRYP
3820
AREAPG
COV107_
3821
SYVLTQPPSVSVAPGRTARITCGGNNIGS
3822
QV
LAMBDA



6mo_P2_

MSWVRQAPGKGLEWVAVISNDGSNKDYADSV

VVPKLF
6mo_P2_

KSVHWYQQKPGQAPVLVIYYDSDRPSG

WDS




IGG_

KGRFTVSRDNSKNTVYLQMNSLRPEDTAVFYC

DS
Lambda_

IPERFSGSNSGNTATLTISRVEAGDEADY

SAD




E4-

AREAPGVVPKLFDSWGQGTLVTVSS


E4-

SCQVWDSSADHPVFGGGTKLTVL

HPV




P1369




P1409











COV107_
3823
QVQLVESGGGVVQPGRSLRLSCAASGFSFSTY
3824
AKVVV
COV107_
3825
SYVLTQPPSVSVSPGQTASITCSGDKLGD
3826
QA
LAMBDA



6mo_P2_

GMHWVRQAPGKGLEWVAVISFDGSQKYYGDS

RGVIISL
6mo_P2_

KSACWYQQKPGQSPVLVIYQDNKRPSGI

WDS




IGG_

VKGRFTISRDNPKNTLDLQMNSLRAEDTAVYY

YYGMD
Lambda_

SGSNSGNTATLTISGTQAMDEADY

STA




E6-

CAKVVVRGVIISLYYGMDVWGQGTTVTVSS

V
E6-

YCQAWDSSTAVFGGGTKLTVL

V




P1369




P1409











COV107_
3827
EVQLVQSGAEVKKPGESLKISCQGSGYSFISYW
3828
ARLSSV
COV107_
3829
QSVLTQPPSASGPPGQRVTISCSGSSSNI
3830
AA
LAMBDA



6mo_P2_

IGWVRHMPGKGLEWMGVIHPGDSDTRYSPSFQ

TMGWF
6mo_P2_

GSNSVSWYHHLPGTAPKLLIFNNNQRPS

WD




IGG_

GQVTISADKSITTAYLQWSSLKASDTATYYCA

DP
Lambda_

GVPDRVSGSKSGTSASLAISGLQSEDEA

DSL




E7-

RLSSVTMGWFDPWGQGTLVSVTT


E7-

DYYCAAWDDSLDGVVFGGGTKLTVL

DGV




P1369




P1409



V







COV107_
3831
EVQLLESGGGLVQPGGSLRLSCAASGFTFPIFA
3832
AKHPD
COV107_
3833
SYVLTQPPSVSVVPGQTARITCGGNNIG
3834
QV
LAMBDA



6mo_P2_

MSWVRQAPGKGLKWVSGISGSEGTTYSADSV

GYISGW
6mo_P2_

GKSVNWYQQKPGQAPVLVIYYDGDRPS

WD




IGG_

KGRFTISRDNSKNTLYLQMNSLRAEDTATYYC

YLF
Lambda_

GIPERFSGSNSGNTATLTISRVEAGDEAD

ASS




E8-

AKHPDGYISGWYLFWGQGTLVTVSS


E8-

YYCQVWDASSDPMVFGGGTKVTV

DPM




P1369




P1409



V







COV107_
3835
EVQLVESGGGLVKPGGSLRLSCAASGFTFSXYS
3836
ARDPAG
COV107_
3837
QSVLTQPASVSGSPGQSITISCTGTSSDV
3888
SSY
LAMBDA



6mo_P2_

MNWXRXVPGKGVEWVSSSSSSNSYIYEAXSLK

YSYGQ
6mo_P2_

GAYNYVSWYQHHPGKAPKLMIFDVTN

TRS




IGG_

XGFTXSRDNAKNSLYLQMNSLRAEDTAVYYC

YYYYY
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

SPL




F12-

ARDPAGYSYGQYYYYYMDVWGKGTTVTVSS

MDV
F12-

EADYYCSSYTRSSPLYVFGTGTKVTVL

YV




P1369




P1409











COV107_
3839
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
3840
AKDLG
COV107_
3841
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
3842
QSY
LAMBDA



6mo_P2_

AMHWVRQAPGKGLEWVSGISWNSGTIGYAD

YDFRTS
6mo_P2_

GAGYDVHWYQQLPGTAPKLLIYANNN

DSS




IGG_

VKGRFTISRDNAKNSLSLQMNSLRYEDTALYY

YNYYD
Lambda_

RPSGVPDRFSGSKSGTSASLAITGLQAED

LSQ




F3-

CAKDLGYDFRTSYNYYDYWGQGTLVTVSS

Y
F3-

EADYYCQSYDSSLSQVFGTGTKVTVL

V




P1369




P1409











COV107_
3843
QVQLVQSGAEIKKPGASVKVACKASGFTFSGY
3844
ARDDST
COV107_
3845
QSVLTQPPSVSAAPGQKVTVSCSGSNSN
3846
GTW
LAMBDA



6mo_P2_

YIHWVRQAPGQGLEWMGWIIPDSGGANYAQK

GYPNPN
6mo_P2_

IGNNFVSWYQQLPGTAPKLLIYENNKRP

DSS




IGG_

FQGRVTMTRDTSITTAYMELSSLRSDDTAMYY

DAFDI
Lambda_

SGIPDRFSGSKSGTSATLVITGLQTGDEA

LSV




G9-

CARDDSTGYPNPNDAFDIWGQGTLVTVS


G9-

DYYCGTWDSSLSVGWVFGGGTRLTVL

GW




P1369




P1409



V







COV107_
3847
QVQLQESGPGLVKSSQTLSLNCSVFGASISSGG
3848
ARAIVV
COV107_
3849
NFMLTQPHSVSESPGKTVTISCSGSGGSI
3850
QSY
LAMBDA



6mo_P2_

YYWTWIRQHPGKGLEWIGYIHYRGTYYNPSLK

VTLNW
6mo_P2_

ASNYVQWYQQRPGSAPTAVIYEDNQRP

DTS




IGG_

SRVTMSVDTSKNQFSLKVRSVSAADTAIYYCA

FDL
Lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NPVI




H2-

RAIVVVTLNWFDLWGQGTLVTVSS


H2-

ADYYCQSYDTSNPVIFGGGTKLTV






P1369




P1409











COV107_
3851
QVQLVQSGAEVKKPGASVKVSCKASGYTFTD
3852
ARDVIV
COV107_
3853
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3854
AA
LAMBDA



Plate1_

YYIHWVRQAPGQGLEWMGWINPNSGGTNYA

SMVRG
Plate1_

GSNTVNWYQQLPGTAPKLLIYSNNQRPS

WD




HC_

QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV

VIFRMD
Lambda_

GVPDRFSVSKSGTSASLAISGLQSEDEAD

DSL




13-

YYCARDVIVSMVRGVIFRMDVWGQGTTVTVS

V
13-

YYCAAWDDSLNGVVFGGGTKLTVL

NGV




P1369

S


P1409



V







COV107_
3855
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSH
3856
AREDY
COV107_
3857
QSALTQPASVSGSPGQSITISCTGTSSDV
3858
SSY
LAMBDA



Plate1_

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

YDSSGS
Plate1_

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TWV




22-

YCAREDYYDSSGSFDYWGQGTLVTVSS


22-

EADYYCSSYTSSSTWVFGGGTKLTVL






P1369




P1409











COV107_
3859
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY
3860
AGGTNP
COV107_
3861
QSALTQPASVSGSPGQSITISCTGTSSDV
3862
SSY
LAMBDA



Plate1_

YWGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKS

QWLDS
Plate1_

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAG

TFDY
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TYV




25-

GTNPQWLDSTFDYWGQGTLVTVSS


25-

EADYYCSSYTSSSTYVFGTGTKVTVL






P1369




P1409











COV107_
3863
EVQLVQSGAEVKKPGESLKISCKGSGYSFISYW
3864
ARRPSS
COV107_
3865
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3866
AA
LAMBDA



Plate1_

IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

YSGWF
Plate1_

GSNTVNWYQQLPGTAPKLLIYNNNQRP

WD




HC_

GQVTISADKSISTAYLQWSSLKASDTAMYYCA

DP
Lambda_

SGVPDRFSGSKSGTSASLAISGLQSEDEA

DSL




26-

RRPSSYSGWFDPWGQGTLVTVSS


26-

DYYCAAWDDSLNGLVFGGGTKLTVL

NGL




P1369




P1409



V







COV107_
3867
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
3868
ATAHPR
COV107_
3869
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3870
AA
LAMBDA



Plate1_

YYMHWVRQAPGQGLEWMGWINPNSGGTNYA

RIQGVF
Plate1_

GSNTVNWYQQLPGTAPKLLIYSNNQRPS

WD




HC_

QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV

FLGPGV
Lambda_

GVPDRFSGSKSGTSASLAISGLQSEDEAD

DSL




27-

YYCATAHPRRIQGVFFLGPGVWGQGTTVTVSS


27-

YYCAAWDDSLNGVVFGGGTKLTVL

NGV




P1369




P1409



V







COV107_
3871
QVQLVQSGAEVKKPGSSVKVSCKASGGTFRSY
3872
ARDSSG
COV107_
3873
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
3874
QSY
LAMBDA



Plate1_

AISWVRQAPGQGLEWMGGIIPIFGTTNYAQKF

YYYVS
Plate1_

GAGYDVHWYQQLPGTAPNLLIYDNINR

DSS




HC_

QGRVTITADESTSRAYMELSSLRSEDTAVYYC

NWFDP
Lambda_

PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSG




28-

ARDSSGYYYVSNWFDPWGQGTLVTVSS


28-

ADYYCQSYDSSLSGVVFGGGTKLTVL

VV




P1369




P1409











COV107_
3875
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
3876
ARGEG
COV107_
3877
QSALTQPPSASGSPGQSVTISCTGTSSDV
3888
SSY
LAMBDA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

WDLPY
Plate1_

GGYNYVSWYQQHPGKAPKLMIYEVSK38

AGS




HC_

GRFTISRDNSKNTLYLQMHSLRAEDTAVYYCA

DY
Lambda_

RPSGVPDRFSGSKSGNTASLTVSGLQAE

NNF




29-

RGEGWDLPYDYWGQGTLVTVSS


29-

DEADYYCSSYAGSNNFVVFGGGTKLTV

VV




P1369




P1409

L









COV107_
3879
EVQLVESGGGLVQPGGSLRLSCADSGFTFSSY
3880
AVQLW
COV107_
3881
NFMLTQPHSVSESPGKTVTISCTGSSGSI
3882
QSY
LAMBDA



Plate1_

WMSWVRQAPGKGLEWVANIKQDGSEKYYVD

LRGNFD
Plate1_

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSS




HC_

SVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY

Y
Lambda_

SGVPDRFSGSIDSSSNSASLAISGLKTEDE

NHV




32-

YCAVQLWLRGNFDYWGQGTLVTVSS


32-

ADYYCQSYDSSNHVVFGGGTKLTVL

V




P1369




P1409











COV107_
3883
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
3884
ARGEG
COV107_
3885
QSVLTQPPSASGSPGQSVTISCTGTSSDV
3886
SSY
LAMBDA



Plate1_

MSWVRQAPGKGLEWVSVIYTGGSTFYADSVK

WDLPY
Plate1_

GGYNYVSWYQQHPGKAPKLMIYEVRK

AGS




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAMYYCA

DY
Lambda_

RPSGVPDRFSGSKSGNTASLTVSGLQAE

NNF




35-

RGEGWDLPYDYWGQGTLVTVSS


35-

DEADYYCSSYAGSNNFVLFGGGTKLTV

VL




P1369




P1409

L









COV107_
3887
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYY
3888
ARDPQR
COV107_
3889
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3890
QV
LAMBDA



Plate1_

MNWVRQAPGKGLEWVSYISSSSSTIYYADSVK

DPADYF
Plate1_

KSVHWYQQKPGQAPVLVIYYDSDRPSG

WDS




HC_

GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCA

DY
Lambda_

IPERFSGSNSGNTATLTISRVEAGDEADY

SRV




41-

RDPQRDPADYFDYWGQGTLVTVSS


41-

YCQVWDSSRVFGGGTKLTVL






P1369




P1409











COV107_
3891
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSTN
3892
VRDGG
COV107_
3893
QSALTQPASVSGSPGQSITISCTGTSSDV
3894
NSY
LAMBDA



Plate1_

WWSWVRQPPGKGLEWIGEIYHTGSTNYNPSLK

RPGDAF
Plate1_

GGYNFVSWYQQHPGKAPKLMIYDVSN

TSSS




HC_

SRVTISVDKSKNQFSLKLSSVTAADTAVYYCV

DI
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TRV




46-

RDGGRPGDAFDIWGQGTMVTVSS


46-

EADYYCNSYTSSSTRVFGTGTKVTVL






P1369




P1409











COV107_
3895
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGS
3896
ATRGG
COV107_
3897
QSALTQPASVSGSPGQSITISCTGTSSDV
3898
SSY
LAMBDA



Plate1_

YYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSL

YYDSSG
Plate1_

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA

YYALAF
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TVW




48-

TRGGYYDSSGYYALAFDIWGQGTMVTVSS

DI
48-

EADYYCSSYTSSSTVWVFGGGTKLTVL

V




P1369




P1409











COV107_
3899
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
3900
AKEEVL
COV107_
3901
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3902
QV
LAMBDA



Plate1_

MSWVRQAPGKGLEWVSGISDSGGSTYYADSV

PAVEYF
Plate1_

KSVHWYQQKPGQAPVLVISYDSDRPSGI

WD




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

QH
Lambda_

PERFSGSNSGNTATLTISRVEAGDAADY

GSS




49-

AKEEVLPAVEYFQHWGQGTLVTVSS


49-

YCQVWDGSSDHHVVFGGGTKLTVL

DHH




P1369




P1409



VV







COV107_
3903
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
3904
ARAIAV
COV107_
3905
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3906
AA
LAMBDA



Plate1_

GFSWVRQAPGQGLEWLGWISAYNGNTNYAQK

AGTSGE
Plate1_

GSNTVNWYQQLPGTAPKLLIYSNNQRPS

WD




HC_

LQGRVTMTTDTSTSTAYMELRSLRSDDTAVYY

FDY
Lambda_

GVPDRFSGSKSGTSASLAISGLQSEDEAD

DSL




52-

CARAIAVAGTSGEFDYWGQGTLVTVSS


52-

YYCAAWDDSLNGHVVFGGGTKLTVL

NGH




P1369




P1409



VV







COV107_
3907
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
3908
ARSQG
COV107_
3909
NFMLTQPHSVSESPGKTVTISCTGSSGSI
3910
QSY
LAMBDA



Plate1_

GISWVRQAPGQGLEWMGWISAYNGNTNYAQ

WLQLN
Plate1_

ASNYVQWYQQRPGSAPTTMIYEDNQRP

DSS




HC_

KLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY

DY
Lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

TPN




58-

YCARSQGWLQLNDYVVGQGTLVTVSS


58-

ADYYCQSYDSSTPNCVFGGGTKLTVL

CV




P1369




P1409











COV107_
3911
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
3912
ARELIA
COV107_
3913
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3914
QV
LAMBDA



Plate1_

YSMHWVRQAPGQGLEWMGWINPNSGGTNYA

VAGIFD
Plate1_

KNVHWYQQKPGQAPVLVIYYDSDRP

WDS




HC_

QKFQGRVTMTRDTSISTAYMELNRLRSDDTAV

Y
Lambda_

IPERFSGSNSGNTATLTISRVEAGDEADY

SWV




5-

YYCARELIAVAGIFDYWGQGTLVTVSS


5-

YCQVWDSSWVFGGGTKLTVL






P1369




P1409











COV107_
3915
QVQLVQSGAEVKKPGASVMLSCKASGYTFTG
3916
ARDLAF
COV107_
3917
QSALTQPASVSGSPGQSITISCTGTSSDV
3918
CSY
LAMBDA



Plate1_

YYMHWVRQAPGQGLEWMGWINPNSGGTNYA

SMVRAP
Plate1_

GSYNLVSWYQQHPGKAPKLMIYEGSKR

AGS




HC_

QKFQGRVTMTRDTSITTTYMELSRLRSDDTAV

GDY
Lambda_

PSGVSNRFSGSKSGNTASLTISGLQAEDE

STW




60-

YYCARDLAFSMVRAPGDYWGQGTLVTVSS


60-

ADYYCCSYAGSSTWVFGGGTKLTVL

V




P1369




P1409











COV107_
3919
EVQLVESGGGLIQPGGSLKLSCVVSGFTVSKNY
3920
ARGDG
COV107_
3921
QSVLTQPPSVSGAPGQRVTISCTGTSSNI
3922
QSY
LAMBDA



Plate1_

ISWVRQAPGKGLEWVSVIFAGGSTFYADSVKG

ELFFDH
Plate1_

GAGYDVHWYQQLPGRAPKVLISGNNIR

DSS




HC_

RFAISRDNSNNTLFLQMNSLRVEDTAIYYCARG


Lambda_

PSEVPDRFSGSRSGTSASLAITSLQPEDE

LY




62-

DGELFFDHWGQGTLVTVSS


62-

AQYYCQSYDSSLYAVFGGGTKLTVL






P1369




P1409











COV107_
3923
QVQLVQSGAEVKKPGASVRVSCKASGYTFTSY
3924
ARGEA
COV107_
2925
QSVLTQPPSASGTPGQRVTISCSGSSSNI
2926
QQ
LAMBDA



Plate1_

GFSWVRQAPGQGLEWMGWISAYNGNTNFAQ

VAGTTG
Plate1_

GSNYVYWYQQLPGTAPKLLIYRNNQRP

WD




HC_

KLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY

FFDY
Lambda_

SGVPDRFSGSKSGTSASLAISGLRSEDEA

DSL




63-

YCARGEAVAGTTGFFDYWGQGTLVTVSS


63-

DYYCAAWDDSLSGFVVFGGGTKLTVL

SGF




P1369




P1409



VV







COV107_
3927
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSH
3928
ASAPYL
COV107_
3929
QSVLTQPASVSGSPGQSITISCTGTSSDV
3930
SSY
LAMBDA



Plate1_

YWGWIRQPPGKGLEWIGTIYYSGSTYYNPSLK

NWNDW
Plate1_

GGYNYVSWYQQHPGEAPKLMIHDVSN

TSSS




HC_

SRVTISVDTSKNQFSLRLSSVTAADTAVYYCAS

IFDY
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TLV




64-

APYLNWNDWIFDYWGQGTLVTVSS


64-

EADYYCSSYTSSSTLVFGGGTKLTVL






P1369




P1409











COV107_
3931
QVQLVQSGAEVKKPGASVRVSCKASGYTFTSY
3932
ARGEA
COV107_
3933
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3934
QQ
LAMBDA



Plate1_

GFSWVRQAPGQGLEWMGWISAYNGNTNFAQ

VAGTTG
Plate1_

GSNYVYWYQQLPGTAPKLLIYRNNQRP

WD




HC_

KLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY

FFDY
Lambda_

SGVPDRFSGSKSGTSASLAISGLRSEDEA

DSL




68-

YCARGEAVAGTTGFFDYWGQGTLVTVSS


68-

DYYCAAWDDSLSGFVVFGGGTKLTVL

SGF




P1369




P1409



VV







COV107_
3935
EVQLVESGGGLIQPGGSLKLSCVVSGFTVSKNY
3936
ARGDG
COV107_
3937
QSVLTQPPSVSGAPGQRVTISCTGTSSNI
3938
QSY
LAMBDA



Plate1_

ISWVRQAPGKGLEWVSVIFAGGSTFYADSVKG

ELFFDQ
Plate1_

GAGYDVHWYQQLPGRAPKVLISGNNIR

DSS




HC_

RFAISRDNSNNTLFLQMNSLRVEDTAIYYCARG


Lambda_

PSEVPDRFSGSRSGTSASLAITSLQPEDE

LYA




73-

DGELFFDQWGQGTLVTVSS


73-

AQYYCQSYDSSLYAVFGGGTKLTVL

V




P1369




P1409











COV107_
3939
QVQLQESGPGLVKPSETLSLTCTVSGASVSSGS
3940
ARERPG
COV107_
3941
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3942
QV
LAMBDA



Plate1_

YYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSL

GTYSNT
Plate1_

KSVHWYQQKPGQAPVLVIYFDSDRPSGI

WDS




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA

WYTPT
Lambda_

PERFSGSNSGNTATLTISRVEAGDEADY

SRD




77-

RERPGGTYSNTWYTPTDTNWFDTWGQGTLVT

DTNWF
77-

YCQVVVDSSRDHVVFGGGTKLTVL

HVV




P1369

VSS

DT
P1409











COV107_
3943
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
3944
ARANH
COV107_
3945
QSVLTQPASVSGSPGQSITISCTGTSSDV
3946
SSY
LAMBDA



Plate1_

YMHWVRQAPGQGLEWMGIINPSGGSTSYAQK

ETTMDT
Plate1_

GGYKYVSWYQRHPGKAPKLMIYDVSN

TSSS




HC_

LQGRVTMTRDTSTSTVYMELSSLRSEDTAVYY

YYYYY
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TSV




79-

CARANHETTMDTYYYYYYMDVVVGKGTTVTV

YMDV
79-

EADYYCSSYTSSSTSVVFGGGTQLTVL

V




P1369

SS


P1409











COV107_
3947
QVQLVQSGAEVKKPGASVKVSCKASGYILTDY
3948
ARYKG
COV107_
3949
SYVLTQPPSVSVSPGQTASITCSGDKLGD
3950
QA
LAMBDA



Plate1_

FIHWVRQAPGQGLEWMGWINPNSGGTNYAQK

TTVNTN
Plate1_

KYACWYQQKAGQSPVLVIYQDSKRPSG

WDS




HC_

FQGRVTMTRDTSISTAYMELSRLRSDDTAVYH

YYYGM
Lambda_

IPERFSGSKSGNTATLTISGTQAMDEAD

STV




83-

CARYKGTTVNTNYYYGMDVWGQGTTVTVSS

DV
83-

YYCQAWDSSTVVFGGGTKLTVL

V




P1369




P1409











COV107_
3951
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
3952
ARANH
COV107_
3953
QSALTQPASVSGSPGQSITISCTGTSSDV
3954
SSY
LAMBDA



Plate1_

YMHWVRQAPGQGLEWMGIINPSGGSTSYAQK

ETTMDT
Plate1_

GGYKYVSWYQRHPGKAPKLMIYDVSN

TSSS




HC_

LQGRVTMTRDTSTSTVYMELSSLRSEDTAVYY

YYYYY
Lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TSV




91-

CARANHETTMDTYYYYYYMDVWGKGTTVTV

YMDV
91-

EADYYCSSYTSSSTSVVFGGGTQLTVL

V




P1369

SS


P1409











COV107_
3955
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
3956
ARLHPT
COV107_
3957
QSALTQPASVSGSPGQSITISCTGTSSDV
3958
CLY
LAMBDA



Plate1_

WIGWVRQMPGKGLEWMGILYPGDSDTTYSPS

YYDILT
Plate1_

GSYNLVSWYQQHPGKAPKLMIYEG

AFS




HC_

FQGQVTISADKSISTAYLQWSSLKASDTAMYY

GYYIDY
Lambda_

PSGVSNRFSGSKSGNTASLTISGLQAEDE

SIV




92-

CARLHPTYYDILTGYYIDYWGQGTLVTVSS


92-

ADYYCCLYAFSSIVFGGGTKLTVL






P1369




P1409











COV107_
3959
QVQLQESGPGLVKPSETLSLTCTVSGGSISNYY
3960
ARILRG
COV107_
3961
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3962
QV
LAMBDA



Plate2_

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR

VAENW
Plate2_

KSVHWYQQKPGQAPVLVIYYDTDRPSG

WD




HC_

VTISVDTSKNQFSLKLTSVTAADTAVYYCARIL

FDP
lambda_

IPERFSGSNSGNTATLTISRVEAGDEADY

NNS




10-

RGVAENWFDPWGQGTLVTVSS


10-

YCQVWDNNSDHRGVFGGGTRLTVL

DHR




P1369




P1409



GV







COV107_
3963
EVQLVQSGAEVKKPGESLKISCKGSGYRFTSY
3964
ARGGPP
COV107_
3965
QSVLTQPPSASGTPGQRVTISCSGSSSNI
3966
AA
LAMBDA



Plate2_

WIAWVRQMPGKGLEWMGIIYPGDSDTRYSPSF

GGVKLE
Plate2_

GSNTVNWYQQLPGTAPQLLIYNNYQRP

WD




HC_

QGQVTISADQSISTAYLQWSSLKASDTAMYYC

LTDY
lambda_

SGVPDRFSGSKSGTSASLAISGLQSEDEA

DSL




1-

ARGGPPGGVKLELTDYWGQGALVTVSS


1-

DYYCAAWDDSLNGPVVFGGGTKLTVL

VV




P1369




P1409











COV107_
3967
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY
3968
AGMYY
COV107_
3969
QSVLTQPASVSGSPGQSITISCTGTSSDV
3970
CSY
LAMBDA



Plate2_

YWGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKS

DILTGY
Plate2_

GSYNLVSWYQQHPGKAPKLMIYEGSKR

AGS




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAG

SEGAFD
lambda_

PSGVSNRFSGSKSGNTASLTISGLQAEDE

STW




20-

MYYDILTGYSEGAFDIWGQGTMVTVSS

I
20-

ADYYCCSYAGSSTWVFGGGTKLTVL

V




P1369




P1409











COV107_
3971
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3972
AKGGY
COV107_
3973
QSVLTQPPSVSAAPGQRVTISCSGSSSNI
3974
GTW
LAMBDA



Plate2_

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

YYYNS
Plate2_

GNNYVSWYQQLPGTAPKLLIYENNKRP

DSS




HC_

SVKGRFTISRDNSKNTLDLQMNSLRAEDTAVY

DSYQAE
lambda_

SGIPDRFSGSKSGTSATLGITGLQTGDEA

LSA




22-

YCAKGGYYYYNSDSYQAEIDYWGQGTLVTVS

IDY
22-

DYYCGTWDSSLSAFVFGTGTKVTVL

FV




P1369




P1409











COV107_
3975
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3976
ARDFYH
COV107_
3977
NFMLTQPHSVSESPGKTVTISCTGSSGSI
3978
QSY
LAMBDA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

NWFDP
Plate2_

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY


lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NQ




24-

YCARDFYHNWFDPWGQGTLVTVSS


24-

ADYYCQSYDSSNQWVVFGGGTKLTVL

WV




P1369




P1409



V







COV107_
3979
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
3980
AKDDR
COV107_
3981
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3982
QV
LAMBDA



Plate2_

AMHWVRQAPGKGLEWVSGISWNSGSRGYADS

EGFGDY
Plate2_

KSVHWYQQKPGQAPVLVIYYDSVRPSG

WDS




HC_

VKGRFTISRDNAKNSLYLLMNSLRAEDTAFYY

FDY
lambda_

IPERFSGSNSGNTATLTISRVEAGDEADY

SSD




25-

CAKDDREGFGDYFDYWGQGTLVTVSS


25-

YCQVVVDSSSDHYVFGTGTKVTVL

HYV




P1369




P1409











COV107_
3983
QVQLQESGPGLVKPSETLSLSCAVSGGSIGSYF
3984
ARLQW
COV107_
3985
NFMLTQPHSVSESPGKTVTISCTGSSGSI
3986
QSY
LAMBDA



Plate2_

WSWIRQPPGKGLEWIGYLHYSGSTNYNPSLKS

LRGAFD
Plate2_

ASNYVQWYQQRPGSAPTTVINEDNQRP

DSS




HC_

RVTISVDTSKNQFSLKLSSVTAADTAVYYCARL

I
lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NLV




28-

QWLRGAFDIWGQGTMVTVSS


28-

ADYYCQSYDSSNLVFGGGTKLTVL






P1369




P1409











COV107_
3987
QVQLQESGPRLVKPSENLSLTCTVSGGSISSYY
3988
ARATTP
COV107_
3989
NFMLTQPHSVSESPGKTVTISCTGSSGSI
3990
QSY
LAMBDA



Plate2_

WSWIRQPPGKGLEWIGYIYYTGSTKYNPSLKSR

FSGVDY
Plate2_

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DTS




HC_

VTISVDTSKNQFSLKLSSVTAADTAVFYCARAT


lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NW




2-

TPFSGVDYWGQGTLVTVSS


2-

ADYYCQSYDTSNWVFGGGTKLTVL

V




P1369




P1409











COV107_
3991
QVQLVESGGGVVQPGRSLRLSCAASGLTFSSY
3992
ARDRGL
COV107_
3993
QSVLTQPASVSGSPGQSITISCPGTSSDV
3994
SSY
LAMBDA



Plate2_

GMHWVRQAPGKGLEWVAVIWYDGINKYYAD

RLGGPK
Plate2_

GGYNYVSWYQQHPGKAPKLMIYDVST

TSSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

YYFDY
lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

VV




34-

YCARDRGLRLGGPKYYFDYWGQGTLVTVSS


34-

EADYYCSSYTSSSVVFGGGTKLTVL






P1369




P1409











COV107_
3995
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
3996
ARETQG
COV107_
3997
SYVLTQPPSVSVAPGKTARITCGGNNIGS
3998
QV
LAMBDA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

GYYGS
Plate2_

KSVHWYQQKPGQAPVLVIYYDSDRPSG

WDS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

GSYYAS
lambda_

IPERFSGSNSGNTATLTISRVEAGDEADY

SSD




35-

YCARETQGGYYGSGSYYASPFDPWGQGTLVT

PFDP
35-

YCQVVVDSSSDHPVVFGGGTKLTVL

HPV




P1369




P1409



V







COV107_
3999
QVQLQESGPGLVKPSETLSLTCTVSGGSISNYY
4000
ARVED
COV107_
4001
QSVLTQPPSVSEAPRQRVTISCSGSSSNIG
4002
AA
LAMBDA



Plate2_

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR

WGYCS
Plate2_

NNAVNWYQQLPGKAPKLLIYYDDLLPS

WD




HC_

VTISVDTSKNQFSLKLSSVTAADTAVYYCARV

STNCYS
lambda_

GVSDRFSGSKSGTSASLAISGLQSEDEAD

DSL




36-

EDWGYCSSTNCYSGAFDIWGQGTMVTVSS

GAFDI
36-

YYFAAWDDSLNGAWVFGGGTKLTVL

NGA




P1369




P1409



WV







COV107_
4003
QVQLVQSGAEVKKPGASVKVSCKASGYSFTSY
4004
ARDPSPI
COV107_
4005
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
4006
QSY
LAMBDA



Plate2_

YMHWVRQAPGQGLEWMGIINPSGGSTSYAQK

IARPGM
Plate2_

GAGYDVHWYQHLPGTAPKLLIYGNNN

DSS




HC_

FQGRVTMTRDTSTSTVYMELSSLRSEDTAVYY

GYWFD
lambda_

RPSGVPDRFSGSRSGTSASLAITGLQAED

LSA




40-

CARDPSPIIARPGMGYWFDPWGQGTLVTVSS

P
40-

EADYYCQSYDSSLSAVVFGGGTKLTVL

VV




P1369




P1409











COV107_
4007
QVQLVESGGGLVQPGRSLRLSCAASGFTFSTY
4008
ARDPIW
COV107_
4009
QSVLTQPPSVSAAPGQKVTISCSGSSSNI
4010
GTW
LAMBDA



Plate2_

AMHWVRQAPGKGLKWVAVISYDGGNKYYAD

FGELLS
Plate2_

GNNYVSWYQQLPGTAPKLLIYENNKRP

DSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

PPFVHF
lambda_

SGIPDRFSGSKSGTSATLGITGLQTGDEA

LSA




42-

YCARDPIWFGELLSPPFVHFDYWGQGTLVTVS

DY
42-

DYYCGTWDSSLSAGGVYVFGTGTTVTV

GGV




P1369




P1409



YV







COV107_
4011
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
4012
ARGHD
COV107_
4013
QSVLTQPASVSGSPGQSITISCTGTSSDV
4014
SSY
LAMBDA



Plate2_

YYMHWVRQAPGQGLEWMGWINPNSGGTKYA

YVWGS
Plate2_

GGYNYVSWYQQHPGKAPKVMIYDVSN

TSSS




HC_

QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV

YRYHN
lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TLL




45-

YYCARGHDYVWGSYRYHNVWGQGTLVTVSS

V
45-

EADYYCSSYTSSSTLLFGGGTKLTXL






P1369




P1409











COV107_
4015
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSY
4016
AIQLWL
COV107_
4017
QSVLTQPPSASGSPGQSVTISCTGTSSDV
4018
SSY
LAMBDA



Plate2_

WMSWVRQAPGKGLEWVANIKQDGSEKYYVD

RGGYD
Plate2_

GGYNYVSWYQQHPGKAPKLMIYEVTK

AGS




HC_

SVKGRFTISGDNAKNSLYLHMNSLRAEDTAVY

Y
lambda_

RPSGVPDRFSGSKSGNTASLTVSGLQAE

NNY




46-

YCAIQLWLRGGYDYWGQGTLVTVSS


46-

DEADYYCSSYAGSNNYVVFGGGTKLTV

VV




P1369




P1409











COV107_
4019
EVQLVESGGGLVKPGGSLRVSCAASGFTFSSYS
4020
TRGSRG
COV107_
4021
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
4022
QSY
LAMBDA



Plate2_

MNWVRQAPGKGLEWVSSISSSKNYIYYADSVK

YYDRSG
Plate2_

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




HC_

GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCT

YYTPLD
lambda_

PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSG




47-

RGSRGYYDRSGYYTPLDPYYGMDVWGQGTTV

PYYGM
47-

ADYYCQSYDSSLSGSYVFGTGTKVTVL

SYV




P1369

TVSS

DV
P1409











COV107_
4023
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
4024
ASGYTG
COV107_
4025
QSVLTQSPSASASLGASVKLTCTLSSGHS
4026
QTW
LAMBDA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGSNXYYAD

YDYFVR
Plate2_

SYAIAWHQQQPEKGPRYLMKLNTDGSH

GTG




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAIYY

GDYYG
lambda_

SKGDGIPDRFSGSSSGAERYLTISSLQSE

ILV




49-

CASGYTGYDYFVRGDYYGLDVWGQGTTVTVS

LDV
49-

DEADYYCQTWGTGILVFGGGTKLTVL






P1369

S


P1409











COV107_
4027
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4028
ARGEG
COV107_
4029
QSVLTQPPSASGSPGQSVTISCTGTSSDV
4030
SSY
LAMBDA



Plate2_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

WELPY
Plate2_

GGYKYVSWYQQHPGKAPKLMIYEVSK

EGS




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DY
lambda_

RPSGVPDRFSGSKSGNTASLTVSGLQAE

NNF




4-

RGEGWELPYDYWGQGTLVTVSS


4-

DEADYYCSSYEGSNNFVVFGGGTKLTV

VV




P1369




P1409











COV107_
4031
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
4032
AKDSLV
COV107_
4033
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
4034
QSY
LAMBDA



Plate2_

AMHWVRQAPGKGLEWVSGISWNSGSIGYADS

RRNFYY
Plate2_

GAGYDVHWYQQLPGTAPKLLIYGNSDR

DSS




HC_

VKGRFTISRDNAKSSLYLQMKSLRVEDTALYY

YYMDV
lambda_

GVPDRFSGSKSGTSASLAITGLQAEDE

LSG




54-

CAKDSLVRRNFYYYYMDVWGKGTTVTVSS


54-

ADYYCQSYDSSLSGVVFGGGTKLTXL

VV




P1369




P1409











COV107_
4035
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
4036
ARGQLL
COV107_
4037
NFMLTQPHSVSESPGKTVTISCAGSSGSI
4038
QSY
LAMBDA



Plate2_

MNWVRQAPGKGLEWVSSISSSSSYIYYADSVK

PFADY
Plate2_

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSS




HC_

GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA


lambda_

SGVPDRFSGSIDSSSNSASLTISGLK1EDE

KSW




55-

RGQLLPFADYWGQGTLVTVSS


55-

ADYYCQSYDSSKSWVFGGGTKLTVL

V




P1369




P1409











COV107_
4039
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSTN
4040
VRDGG
COV107_
4041
QSVLTQPASVSGSPGQSITISCTGTSSDV
4042
NSY
LAMBDA



Plate2_

WWSWVRQPPGKGLEWIGEIYHTGSTNYNPSLK

RPGDAF
Plate2_

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




HC_

SRVTISVDKSKNQFSLKLSSVTAADTAVYYCV

DI
lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TRV




57-

RDGGRPGDAFDIWGQGTMVTVSS


57-

EADYYCNSYTSSSTRVFGTGTKVTVL






P1369




P1409











COV107_
4043
QVQLQESGPGLVKPSETLSLTCTVSGGSISGYY
4044
ARYGW
COV107_
4045
QSVLTQPASVSGSPGQSITISCTGTSSDV
4046
CSY
LAMBDA



Plate2_

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR

GYDSSG
Plate2_

GSYNLVSWYQEHPGKAPKLMIYEGSKR

AGS




HC_

VTISVDTSKNQFSLKLSSVTAADTAVYYCARY

YYFDY
lambda_

PSGVSNRFSGSKSGNTASLTISGLQAEDE

STW




58-

GWGYDSSGYYFDYWGQGTLVTVSS


58-

ADYYCCSYAGSSTWVFGGGTKLTVL

V




P1369




P1409











COV107_
4047
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
4048
ARVED
COV107_
4049
QSVLTQPPSVSEAPRQRVTISCSGSSSNIG
4050
AA
LAMBDA



Plate2_

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR

WGYCS
Plate2_

NNAVNWYQQVPGKAPKLLIYYDDLLPS

WD




HC_

VTISVDTSKNQFSLKLSSVTAADTAVYYCARV

STNCYS
lambda_

GVSDRFSGSKSGTSASLAISGLQSEDEAD

DSL




71-

EDWGYCSSTNCYSGAFDIWGQGTMVTVSS

GAFDI
71-

YYCAAWDDSLNGAWVFGGGTKLTVL

NGA




P1369




P1409



WV







COV107_
4051
QVQLQESGPGLVKPSETLSLTCTVSGASVSSGS
4052
ARERPG
COV107_
4053
SYVLTQPPSVSVAPGKTARITCGGNNIGS
4054
QV
LAMBDA



Plate2_

YYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSL

GTYSNT
Plate2_

KSVHWYQQKPGQAPVLVIYFDSDRPSGI

WDS




HC_

KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA

WYTPT
lambda_

PERFSGSNSGNTATLTISRVEAGDEADY

SRD




72-

RERPGGTYSNTWYTPTDTNWFDTWGQGTLVT

DTNWF
72-

YCQVWDSSRDHVVFGGGTKLTVL

HVV




P1369

VSS

DT
P1409











COV107_
4055
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4056
ASGYTG
COV107_
4057
QSVLTQSPSASASLGASVKLTCTLSSGHS
4058
QTW
LAMBDA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

YDYFV
Plate2_

SYAIAWHQQQPEKGPRYLMKLNSDGSH

GTG




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

GGDYY
lambda_

SKGDGIPDRFSGSSSGAERYLTISSLQSE

ILV




72-

YCASGYTGYDYFVGGDYYGMDVWGQGTTVT

GMDV
72-

DEADYYCQTWGTGILVFGGGTKLTVL






P1369

VSS


P1409











COV107_
4059
EVQLVQSGAEVKQPGESLKISCKALGYTFTTS
4060
ATETNS 
COV107_
4061
QSVLTQPPSASGTPGQRVTIACSGSSSNI
4062
AA
LAMBDA



Plate2_

WISWVRQMPGKGLEWMGRIDPSDSYTKYSPSF

ETTDMF
Plate2_

GSSPVKWYKQLPGTGPKLLIYSSNQRPS

WD




HC_

QGHVTISVDKSITTAYLQWSSLKASDSAVYYC

TGYSFD
lambda_

GVPDRFSGSKSGTSASLAISGLQSEDEAD

DSL




87-

ATETNSETTDMFTGYSFDPWGQGTLVTVS

P
87-

YYCAAWDDSLSGYVFGTGTKVTVL

SGY




P1369




P1409



V







COV107_
4063
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRH
4064
AREDY
COV107_
4065
QSVLTQPASVSGSPGQSITISCTGTSSDV
4066
SSY
LAMBDA



Plate2_

AMHWVRQAPGKGLEWVAVISYDGSNKYYAD

YDSSGS
Plate2_

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TWV




88-

YCAREDYYDSSGSFDYWGQGTLVTVSS


88-

EADYYCSSYTSSSTWVFGGGTKLTVL






P1369




P1409











COV107_
4067
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTY
4068
ARDPIW
COV107_
4069
QSVLTQPPSVSAAPGQKVTISCSGSSSNI
4070
GA
LAMBDA



Plate2_

AMHWVRQAPGEGLEWVAVISYDGSNTYYADS

FGELLS
Plate2_

GNNLVSWYQQLPGTAPKLLIYENNKRP

WDS




HC_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY

PPFVHF
lambda_

SGIPDRFSGSKSGTSATLGITGLQTGDEA

SLS




89-

CARDPIWFGELLSPPFVHFDYWGQGTLVTVSS

DY
89-

DYYCGAWDSSLSAGGVYVFGTGTKVT

AGG




P1369




P1409

VL

VYV







COV107_
4071
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSSG
4072
AKDPLP
COV107_
4073
QSALTQPASVSGSPGQSITISCTGTSSDV
4074
SSY
LAMBDA



Plate2_

MHWVRQAPGKGLEWVAIISYDGSNKYYADSV

FRDFFY
Plate2_

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




HC_

KGRFTISRDNSKNTLSLQMNSLRAEDTAVYYC

YYMDV
lambda_

RPSGVSNRFSGSKSGNTASLTISGLQAED

TLG




91-

AKDPLPFRDFFYYYMDVWGKGTTVTVS


91-

EADYYCSSYTSSSTLGVFGTGTKVTVL

V




P1369




P1409











COV107_
4075
QVQLLESGGGLVKPGGSLRLSCAASGFTFSDY
4076
ATYRSY
COV107_
4077
NFMLTQPHSVSESPGKTVTISCTGSSGSI
4078
QSY
LAMBDA



Plate2_

YMSWIRQAPGKGLEWVSYISSRSSYTNYADSV

LPLVQV
Plate2_

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSS




HC_

KGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC

DY
lambda_

SGVPDRFSGSIDSSSNSASLTISGLKTEDE

KHA




92-

ATYRSYLPLVQVDYWGQGTLVTVSS


92-

ADYYCQSYDSSKHAVFGGGTQLTVL

V




P1369




P1409











COV107_
4079
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
4080
ARAPLF
COV107_
4081
QSVLTQPASVSGSPGQSITISCTGTSSDV
4082
CSY
LAMBDA



Plate2_

YYMHWVRQAPGQGLEWMGWISPVSGGTNYA

PTGVLA
Plate2_

GSYNLVSWYQQHPGKAPKLMIYEGSKR

AGS




HC_

QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV

GDYYY
lambda_

PSGVSNRFSGSKSGNTASLTISGLQAEDE

STL




94-

YYCARAPLFPTGVLAGDYYYYGMDVWGQGT

YGMDV
94-

ADYYCCSYAGSSTLVFGGGTKLTVL

V




P1369

TVTVSS


P1409











COV107_
4083
QVQLVQSGAEVKKPGASVKVSCKTSGYNFPSY
4084
ARDGY
COV107_
4085
DIQMTQSPSSLSASVGDRVTITCRASQSI
4086
QQS
KAPPA



6mo_P1_

GISWVRQAPGEGLEWMGWINPYNDNTNYAQR

GDYRA
6mo_P1_

SSYLNWYQQKPGKAPKLLIYAASSLQSG

FITP




IGG_

VQGRVTMTTDTSTGTAYMEVKSLRSDDTAVY

YDY
Kappa_

VPSRFGGSGSGTDFTLTISSLQPEDFATY

RT




A1-

YCARDGYGDYRAYDYWGLGTLVTVSS


A1-

FCQQSFITPRTFGQGTKVEIK






P1369




P1389











COV107_
4087
QVQLVQSGAEVKTPGASVKVSCKASGYTFTSY
4088
ARVEY
COV107_
4089
EIVMTQSPATLSVSPGERATLSCRASQSI
4090
QQY
KAPPA



6mo_P1_

GISWVRQAPGQGLEWMGWVSSYNGNTNYAQ

YYDSSG
6mo_P1_

SSNVAWYQQKPGQAPRFLLYGASTRAT

DD




IGG_

KFQGRVTMTTDTSTNTVHMELWNLRSDDTAV

TYYFDH
Kappa_

GIPARFSGSGSGTEFTLTITSLQSEDFAVY

WPP




A2-

YYCARVEYYYDSSGTYYFDHWGQGTLVTVSS


A2-

YCQQYDDWPPKWTFGQGTKVEIK

KWT




P1369




P1389











COV107_
4091
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4092
AVRGFR
COV107_
4093
DIQMTQSPSSLSASVGDRVTITCQASQDI
4094
QHY
KAPPA



6mo_P1_

MTWARQAPGKGLEWVSVIYSGGTTYYADSVK

ELYYPH
6mo_P1_

TNYLNWYQQKPGKAPKLLIYDASTLEA

ENL




IGG_

GRFTISRDKSKSTLYLQMSSLRAEDTAVYYCA

GMEV
Kappa_

GVPSRFSGSGSGTEFTFTISSLQPEDIATY

PPG




B10-

VRGFRELYYPHGMEVWGQGTTVTVSS


B10-

YCQHYENLPPGFGPGTRVDF






P1369




P1389











COV107_
4095
QVQLVESGGGVVQPGGSLRLSCAASAFTFSSY
4096
ARDLEN
COV107_
4097
DIQMTQSPSSLSASVGDRVTITCRASQSI
4098
QQS
KAPPA



6mo_P1_

AMHWIRQSPGKGLEWVAVISSDGSSKFYADSV

VLIEVA
6mo_P1_

NSYLNWYQQKPGKAPKLLIYAASSLHS

YTT




IGG_

KGRFTISRDNSKNTLYLQMNSLSAEDTAVYYC

LQD
Kappa_

GVPSRFSGSGSGTDFTLTISSLQPEDFAT

LAL




B12-

ARDLENVLIEVALQDWGQGTLVTVSS


B12-

YYCQQSYTTLALTFGGGTKVEIK

T




P1369




P1389











COV107_
4099
EVQLVESGGGLIQPGGSLRLSCAASILTVSRNY
4100
ARPVVG
COV107_
4101
DIQMTQSPSSLSASVGDRVTITCQASQDI
4102
LHN
KAPPA



6mo_P1_

MSWVRQAPGKGLEWVSSIYSGGTTYYADSVK

GRAGM
6mo_P1_

NKYLNWYQQKPGKAPKLLIYDASNLET

DNP




IGG_

GRFTISRDDSKNTLYLQMNSLRAEDTAVYYCA

DV
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIGTF

PLT




B2-

RPVVGGRAGMDVWGQGTTVTVSS


B2-

YCLHNDNPPLTFGGGTKVEIK






P1369




P1389











COV107_
4103
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGD
4104
ARDAIG
COV107_
4105
EIVLTQSPGTLSLSPGERATLSCRASQSV
4106
QQY
KAPPA



6mo_P1_

YYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSL

SASYGV
6mo_P1_

SSRYLAWYQQKPGQAPRLLIYGASSRAT

GSS




IGG_

RSRVTISVDTSKNQFSLRLRSVTAADTAVYYCA

EYFQH
Kappa_

GIPDRFSGSGSGTEFTLTISRLEPEDFAVY

PPY




B3-

AIGSASYGVEYFQHWGQGTLVTVSS


B3-

YCQQYGSSPPYTFGQGTKLEIK   

T




P1369




P1389











COV107_
4107
QVQLVESGGGVVQPGRSLRLSCAASGFSFSTY
4108
AKDIGG
COV107_
4109
DIQMTQSPSSLSAFVGDRVTITCQASQDI
4110
QQY
KAPPA



6mo_P1_

GMHWVRQAPGKGLEWVAVISYDGSNKYSADS

SYYLM
6mo_P1_

GNYLNWYQQKPGKPPKLLIYDASNLEA

DILP




IGG_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY

YYFDY
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PIT




B6-

CAKDIGGSYYLMYYFDYWGQGTLVTVSS


B6-

YCQQYDILPPITFGQGTRLEIK






P1369




P1389











COV107_
4111
QVQLVESGGGLVKPGGSLRLSCAASGFTFSEY
4112
AREQQL
COV107_
4113
EIVLTQSPATLSLSPGERATLSCRASQSV
4114
QQR
KAPPA



6mo_P1_

YMSWIRQAPGKGAEVGLCGSSSRTWRIXADFV

PINWFD
6mo_P1_

SSYLAWYQQKPGQAPRLLIYDASNRAT

SNW




IGG_

XSLWXXXQDNAKNSLYLQMNSLRAEDTAVY

T
Kappa_

GIPARFSGSGSGTDFTLTITSLEPEDFAVY

PST




B7-

YCAREQQLPINWFDTWGQGTLVTVSS


B7-

YCQQRSNWPSTFGGGTKVEIK






P1369




P1389











COV107_
4115
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYD
4116
ARGDH
COV107_
4117
DIQMTQSPSSLSASVGDRVTVTCRASQSI
4118
QQS
KAPPA



6mo_P1_

MHWVRQPTGKGLEWVSAIGSGGDTYYAGSVK

KSGWSE
6mo_P1_

STYLNWYQLKPGKAPNLLIYGTSSLQVG

YITT




IGG_

GRFTISRESAKNSLYLQMNSLTAGDTAVYYCA

HRSFYF
Kappa_

VPSRFIGSGSGTDFTLTISSVQPEDFATY

AYT




C10-

RGDHKSGWSEHRSFYFYYMDVWGKGTTVTVS

YYMDV
C10-

YCQQSYITTAYTFGQGTKLEIK






P1369




P1389











COV107_
4119
QVQLVESGGGVVQPGRSLRLSCAASGITFSHY
4120
AKDLG
COV107_
4121
DIQMTQSPSSLSASVGDRVTITCQASQD
4122
LQY
KAPPA



6mo_P1_

GMHWVRQAPGKGLEWVALISSDGSKKYYADS

YYYGPP
6mo_P1_

VSNSLNWYQQKPGKAPKLLIYGASNLE

DNF




IGG_

VKGRFTISRDNSKNTVYLQMNSLRAEDTALYY

YGPDY
Kappa_

TGVPSRFSGSGSGTDFSFTISSLQPEDIAT

SMY




C1-

CAKDLGYYYGPPYGPDYWGQGTLVTVS


C1-

YYCLQYDNFSMYTFGQGTKLEIK

T




P1369




P1389











COV107_
4123
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
4124
AKQTAP
COV107_
4125
DIQMTQSPSSLSASVGDRVTITCRASQSI
4126
QQS
KAPPA



6mo_P1_

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

YCSGGN
6mo_P1_

SSYLNWYOOKPGKAPRLLIYAASYLHS

YSA




IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVF

CYSGYF
Kappa_

GVPSRFSGSGSATDFTLTISSLQPEDFAT

PPG




C2-

YCAKQTAPYCSGGNCYSGYFDYWGQGTLVTV

DY
C2-

YYCQQSYSAPPGPYTFGQGTKLEIK

PYT




P1369

SS


P1389











COV107_
4127
EVQLVESGGGLIQPGGSPRLSCAASGITVSSNY
4128
ARAVW
COV107_
4129
DIQLTQSPSFLSASVGDRVTITCRASQGIS
4130
QHL
KAPPA



6mo_P1_

MSWVRQAPGKGLEWISVIYSGGSTFYADSVKG

DAFDI
6mo_P1_

SYLAWYQQKPGKAPKLLIYTASTLQSG

NSY




IGG_

RFTISRDDSKNTLYLQMHSLRADDTAMYYCAR


Kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

PSP




C3-

AVWDAFDIWGQGTMVTVSS


C3-

YCQHLNSYPSPNTFGQGTKLEIK

NT




P1369




P1389











COV107_
4131
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTY
4132
AKSISP
COV107_
4133
DIQMTQSPSSLSASVGDRVTITCQASQDI
4134
LQY
KAPPA



6mo_P1_

GMHWVRQAPGKGLEWVTVISYDGSNKYYSDS

YTSGW
6mo_P1_

SNYLNWYQQKPGKVPKLLIYDASSLET

NNL




IGG_

VKGRFTISRDNSQNTLYLQMNSLSAEDTAVYY

YYFDY
Kappa_

GVPSRFSGSGSGTNFTFTISSLQPEDIATY

PLT




C4-

CAKSISPYTSGWYYFDYWGQGTLVTVSS


C4-

YCLQYNNLPLTFGGGTKVEIK






P1369




P1389











COV107_
4135
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4136
ARDGPP
COV107_
4137
DIQMTQSPSSLSASVGDRVTITCRASQSI
4138
QQS
KAPPA



6mo_P1_

GMHWVRQAPGKGLEWVAVILSDGSGKLYADS

TSLVTC
6mo_P1_

GSYLNWYQQKPGKAPKLLIYAASSLQS

YST




IGG_

VKGRFTISRDNSKSTLYLQMSSLRAEDSAVYY

PDF
Kappa_

GVPSRFSGSGSGTDFTLTISSLQREDFAT

PPW




C7-

CARDGPPTSLVTCPDFWGQGTLVTVSS


C7-

YYCQQSYSTPPWTFGQGTTVDI

T




P1369




P1389











COV107_
4139
EVQLVESGGGLVQPGGSLRVSCAASGFTFKSY
4140
ARGDM
COV107_
4141
DIQMTQSPSSLSASVGDRVTITCRASQTI
4143
QQS
KAPPA



6mo_P1_

DMHWVRQVTGKGLEWVSVIGTAGDTYYLDS

ATRRPF
6mo_P1_

SRYLNWYQQKPGEAPRLLIFAASTLQSG

YSN




IGG_

VKGRFTISRENAKNSLYLQMNSLTAGDTAIYY

YYYYM
Kappa_

VPTRFSGSGSGTDFTLTITSLQPEDFATY

PNL




D12-

CARGDMATRRPFYYYYMDVWGKGTAVTVSS

DV
D12-

WCQQSYSNPNLTFGGGTKVEIK

T




P1369




P1389











COV107_
4143
EVQLVESGGGLIQPGGSLRLSCAASGLIVSSNY
4144
ARDFSV
COV107_
4145
EIVLTQSPGTLSLSPGERATLSCRASQSL
4146
QQY
KAPPA



6mo_P1_

MNWVRQAPGKGLEWVSLIYSGGSTYYADSVK

VGAFDI
6mo_P1_

PSTYLAWYQQKPGQAPRLLIYGASSRAT

GTS




IGG_

GRFTISRDNSKNTLYLQMNSLRPEDTAVYYCA


Kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PRV




D2-

RDFSVVGAFDIWGQGTVVTVSS


D2-

YYCQQYGTSPRVTFGPGTKVDIK

T




P1369




P1389











COV107_
4147
QVQLVESGGGVVQPGKSLRLSCAASGFTFSRY
4148
AKVSGP
COV107_
4149
DIQMTQSPSSLSASVGDRVTIICQASQDI
4150
QQY
KAPPA



6mo_P1_

GMHWVRRAPGKGLEWVAGISYDGSNKYYAD

YCSGHS
6mo_P1_

SNYLNWYQQKPGKAPKLLIYDASNLET

DHL




IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTALFF

CYSATF
Kappa_

GVPSRFSGSGSGTDFAFTISGLQPEDIAT

PPT




D6-

CAKVSGPYCSGHSCYSATFDYWGQGTLVTVSS

DY
D6-

YYCQQYDHLPPTFGQGTKVEIK






P1369




P1389











COV107_
4151
QVQLVQSGAEVKKPGSSVKVSCKASGDTFSIY
4152
ATFHVA
COV107_
4153
EIVLTQSPGTLSLSPGERATLSCRASQSV
4154
QQY
KAPPA



6mo_P1_

AFSWVRQAPGQGLQWMGAIIPLLGTTNYAQKF

YGDYIP
6mo_P1_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GRS




IGG_

LGRVTITADESTSTTFMELSSLTSEDTAVYHCA

FDS
Kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PTW




E10-

TFHVAYGDYIPFDSWGQGTLVIVSS


E10-

YYCQQYGRSPTWTFGQGTKVEIE

T




P1369




P1389











COV107_
4155
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
4156
ARVPRG
COV107_
4157
EIVLTQSPGTLSLSPGERATLSCRASQSL
4158
QQY
KAPPA



6mo_P1_

ALHWVRQAPGQRLEWMGWINVGNGTTKYSQ

YYDRSG
6mo_P1_

SSNYLAWYQQKPGQAPRLLIYGASSRA

GSS




IGG_

KFQGRVTITRDTSASTAYMELSSLRSDDTAVY

HYHGQ
Kappa_

TAIPDRLSGSGSGTDFTLTISRLEPEDFAV

PIT




E11-

YCARVPRGYYDRSGHYHGQDYFDYWGQGTL

DYFDY
E11-

YYCQQYGSSPITFGQGTRLEIK






P1369

VTVSS


P1389











COV107_
4159
EVQLVESGGGLIQPGGSLRLSCTASGLIVSSNY
4160
ARHPYG
COV107_
4162
DIQMTQSPSSLSASVGDRVTITCQASQDI
4162
QQY
KAPPA



6mo_P1_

MSWIRQAPGKGLEWVSLIYSGGSTFYADSVKG

TDV
6mo_P1_

VKYXNWYQQKSGKAPKLLIHDASNLET

DNL




IGG_

RFTISRDNSKNTLFLHMNSLRAEDTAVYYCAR


Kappa_

GVTSRFSGSGSGTHFTFTISSLQPEDLAT

PIT




E12-

HPYGTDVWGQGTTVTVSS


E12-

YYCQQYDNLPITFGQGTRLEIK






P1369




P1389











COV107_
4163
QVQLVQSGAEVKKPGASVKVSCKASGDTFTSY
4164
VSRRW
COV107_
4165
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
4166
MQA
KAPPA



6mo_P1_

DINWVRQATGQGLEWMGWMNRNSGNTDYA

DPLRFY
6mo_P1_

HSNGYNYLDWFLQKPGQSPQLLIYLGS

LQT




IGG_

QKFQGRVTMTRNTSISTAYMELSSLRSEDTAV

YYMDV
Kappa_

NRASGVPDRFSGSGSGTDFTLKISRVEA

PPT




E1-

YYCVSRRWDPLRFYYYMDVWGKGTTVTVS


E1-

EDVGVYYCMQALQTPPTFGGGTKVEI






P1369




P1389











COV107_
4167
QVQLVESGGGVVQPGGSLRLSCAASGFTFRNY
4168
ARDNEI
COV107_
4169
DVVMTQSPLSLPVTLGQPASISCRSSQSL
4170
MQG
KAPPA



6mo_P1_

GMHWVRQAPGKGLECVAVIWYDGSNKYYGD

TAIDID
6mo_P1_

VHSDGNTYLNWFQQRPGQSPRRLIYKV

THW




IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTALY

Y
Kappa_

SNRDSGVPDRFSGSGSGTYFTLKISRVEA

PGT




E6-

YCARDNEITAIDIDYWGQGTLVTVSS


E6-

EDVGVYYCMQGTHWPGTFGPGTKVDI






P1369




P1389

K









COV107_
4171
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
4172
ASRRW
COV107_
4173
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
4174
MQA
KAPPA



6mo_P1_

DINWVRQAPGQGLEWMGWMNPNSGNTDYAQ

DPLTFY
6mo_P1_

YSNGYNYLDWYLQKPGQSPQLLIYLGS

LQT




IGG_

KFQGRFTMTRNTSISTAYMELSSLRSEDTAVYY 

YYMVV
Kappa_

NRASGVPDRFSGSGSGTDFTLKISRVEA

PPT




E7-

CASRRWDPLTFYYYMVVWGKGTTVTVSS


E7-

EDVGVYFCMQALQTPPTFGGGTKVEIK






P1369




P1389











COV107_
4175
QVQLVESGGGVVQPGRSLRLSCAASGFSFSSY
4176
ARVLGR
COV107_
4177
EIVMTQSPATLSVSPGESATLSCRASQSV
4178
QQY
KAPPA



6mo_P1_

AMHWVRQAPGKGLEWVAVISYDETNKYYGD

GSVAG
6mo_P1_

SSNLAWYQQKPGQAPRLLIYGASTRAT

NN




IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

NIKSTLF
Kappa_

GIPARFSGSGSGTEFTLTISSLQSEDFAVY

WPP




E9-

NCARVLGRGSVAGNIKSTLFGLDAFDIWGQGT

GLDAFD
E9-

YCQQYNNWPPAFTFGPGTKVDIK

AFT




P1369

MVTVSS

I
P1389











COV107_
4179
QMQLVQSGPEVKKPGTSVKVSCKASGFIFSSSA
4180
AAPSCT
COV107_
4181
EIVLTQSPGTLSLSQGERATLSCRASQSV
4182
QHY
KAPPA



6mo_P1_

VQWVRQARGQRLEWIGWIVVGSGNTNYAQKF

STICYD
6mo_P1_

RSSYLAWYQQKPGQAPRLLIYGASIRAT

GGS




IGG_

QERVTISRDMSTSTAYIHLSSLRSEDTAVYYCA

AFNI
Kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

LFT




F12-

APSCTSTICYDAFNIWGQGTMVTVSS


F12-

YYCQHYGGSLFTFGPGTKVDIK






P1369




P1389











COV107_
4183
QVQLVESGGGVVQPGRSLRLSCAASGFTFRSH
4184
ASGLL
COV107_
4185
DIQMTQSPSSLSASVGDRVTITCRASQNI
4186
QQS
KAPPA



6mo_P1_

AMHWVRQAPGKGLEWVAIISSDGFNKYYADS

WFETRE
6mo_P1_

SNFLNWYQQKPGKAPKLLIYAASSLQSG

YST




IGG_

VKGRFTISRDNSKNTLYVHMNSLRVEDTAIYY

ISGAPD
Kappa_

VPSRYSGSGSGTDFTLTISSLQAEDFATY

PLT




F2-

CASGLLWFETREISGAPDYGMAVWGQGATVT

YGMAV
F2-

YCQQSYSTPLTFGGGTKVEIK






P1369

VSS


P1389











COV107_
4187
EVQLVESGGGLIQPGGSLRLSCAASGVTVSSNY
4188
ARESYH
COV107_
4189
DIQLTQSPSFLSASVGDRVTITCRASQGIS
4190
QQL
KAPPA



6mo_P1_

MNWVRQAPGKGLEWVSVIYSGGSTFYADSVK

SAFDI
6mo_P1_

SYLAWYQQKPGKAPKLLIYGASTLQSG

NSY




IGG_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA


Kappa_

VPSRFSGSGSGTEFTLTINSLQSEDFATY

PPR




F5-

RESYHSAFDIWGQGTMVTVSS


F5-

YCQQLNSYPPRDTFGQGTKLEIK

DT




P1369




P1389











COV107_
4191
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSY
4192
ARPPRY
COV107_
4193
EIVLTQSPGTLSLSPGESATLSCRASQSV
4194
QQY
KAPPA



6mo_P1_

WISWVRQMPGKGLEWMGRIDPSDSYTNYSPPF

YYDRSG
6mo_P1_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




IGG_

QGHVTFSADKSISTAYLHWSSLKASDTAIYYCA

YYVWE
Kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PYT




F9-

RPPRYYYDRSGYYVWEDYFDYWGQGTLVTVS

DYFDY
F9-

YYCQQYGSSPYTFGQGTKLEVK






P1369

S


P1389











COV107_
4195
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYD
4196
VRAGYS
COV107_
4197
DIQMTQSPSSLSASVGDRVTITCRASQSI
4198
QQS
KAPPA



6mo_P1_

MHWVRQATGKGLEWVSAIGTAGDKYYPGSV

SGWPLY
6mo_P1_

SSYLNWYQQKPGKAPKFLIYAASSLQSG

YRT




IGG_

KGRFTISRENAKNSLYLQMNSLRAGDTAVYYC

WYFDL
Kappa_

VPSRFSGSGSGTDFTLTISNLQPEDFATY

PPEF




H11-

VRAGYSSGWPLYWYFDLWGRGTLVSVSS


H11-

YCQQSYRTPPEFTFGPGTKVDIK

T




P1369




P1389











COV107_
4199
QVQLVQSGAEVKKPGASVKVSCTASGYTFSSY
4200
GRDEAF
COV107_
4201
DIQMTQSPSSLSASVGDRVTITCRASQGI
4202
LQH
KAPPA



6mo_P1_

YIHWVRQAPGQGLEWMGIINPGAGSTTYAQKF

LPSAIFV 
6mo_P1_

RNDLGWYQQKPGKAPKRLIYAASSLQS

NSY




IGG_

QGRVAMTTDTSTRTVYMELSSLRSDDTAVYY

GDY
Kappa_

GVPSRFSGSGSGTEFTLTISSLQPEDFAT

PHT




H3-

CGRDEAFLPSAIFVGDYWGQGTLVTVSS


H3-

YYCLQHNSYPHTWTFGQGTKVEIK

WT




P1369




P1389











COV107_
4203
QVQLVESGGGLVKPGGSLRLSCAGSGFTFTDY
4204
ARDGG
COV107_
4205
DIQMTQSPSSLSASVGDRVTITCQASQDI
4206
LQY
KAPPA



6mo_P1_

YMAWIRQAPGKGLEWVSYISTSDRFINYADSV

GYDRFD
6mo_P1_

SNLLNWYQQKAGKAPKLLIYDASNLET

DNL




IGG_

KGRFTISRDDAKNSLYLQMNSLRAEDTAVYYC

H
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PLT




H5-

ARDGGGYDRFDHWGQGTLVTVSS


H5-

YCLQYDNLPLTFGQGTRLEIK






P1369




P1389











COV107_
4207
EVQLVESGGGLVQPGGSLRLSCAASGFTFNNY
4208
VRGTTV
COV107_
4209
DIQMTQSPSSLSASVGDRVTITCRASQSI
4210
QQS
KAPPA



6mo_P1_

DMHWVRQGTGKRLQWVSVIGTSGDTYYSDSV

VRGLIE
6mo_P1_

SSYLNWYQQKIGKAPKLLIYAASSLSG

YSN




IGG_

KGRFTISRENAKNSLYLQMNSLRAGDTAVYYC

KYYHY
Kappa_

VPSRFSGSGSGTDFTLTISSLQPEDFATY

PGW




H8-

VRGTTVVRGLIEKYYHYYVMDVWGQGTTVTV

YVMDV
H8-

YCQQSYSNPGWTFGQGTKVEIK

T




P1369

SS


P1389











COV107_
4211
EVQLVESGGGLFQPGGSLKLSCVASGLTVSAN
4212
ARDLV
COV107_
4213
DIQLTQSPSFLSASVGDRVTITCRARQGI
4214
QQL
KAPPA



6mo_P2_

YMNWVRQAPGKGLEWVSVIYSGGSAFYADSV

VYGMD
6mo_P2_

SNFLAWYQQKPGRAPKLLIYGASTLQSG

NSD




IGG_

KGRFTISRDISKNTLFLQMNTLRAEDTAVYYCA

V
Kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

PIT




A12-

RDLVVYGMDVWGQGTTVIVSS


A12-

YCQQLNSDPITFGQGTRLEIK






P1369




P1389











COV107_
4215
EVQLVESGGGLIQPGVSLRLSCAVSGFTVSRNY
4216
ARDFYR
COV107_
4217
DIQMTQSPSSLSASVGDRVTITCQASQDI
4218
HQY
KAPPA



6mo_P2_

MSWVRQAPGKGLEWVSVIYPGGSTFYADSVK

PTTFRG
6mo_P2_

NNYLNWYQQKPGEAPKLLIYDASNLET

DNL




IGG_

GRFTISRDNSKNTLHLQMNSLRAEDTAVYYCA

EAKGD
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PRT




A1-

RDFYRPTTFRGEAKGDYWGQGTLVTVSS

Y
A1-

YCHQYDNLPRTFGQGTKVEIK






P1369




P1389











COV107_
4219
QVQLVESGGALVKPGGSLRLSCAASGFTFSDH
4220
ARDSE
COV107_
4221
EIVLTQSPGTLSLSPGERATLSCRASQSV
4222
QQY
KAPPA



6mo_P2_

YMSWIRQAPGRGLEWVSYISTSSSDTSYADSV

WLQFAS
6mo_P2_

SSSYLAWYQQKPGQAPRLVIYGAISRAA

GSS




IGG_

KGRFTISRDNAKNSLFLQMNSLRAEDTAVYYC

FDY
Kappa_

GIPDRFSGSGSETDFTLTISRLEPEDFAVY

HT




A2-

ARDSEWLQFASFDYWGQGTLVTVS


A2-

YCQQYGSSHTFGQGTRLEIK






P1369




P1389











COV107_
4223
QVQLVESGGGVVQPGRSLRLSCAASGITFSHY
4224
AKDLG
COV107_
4225
DIQMTQSPSSLSASVGDRVTITCQASQD
4226
LQY
KAPPA



6mo_P2_

GMHWVRQAPGKGLEWVALISSDGSKKYYADS

YYYGPP
6mo_P2_

VSNSLNWYQQKPGKAPKLLIYDASNLE

DNF




IGG_

VKGRFTISRDNSKSTLYLQMNSLRAEDTAIYYC

YGPDY
Kappa_

TGVPSRFSGSGSGTDFSFTISSLQPEDIAT

SMY




A7-

AKDLGYYYGPPYGPDYWGQGTLVTVSS


A7-

YYCLQYDNFSMYTFGQGTKLEIK

T




P1369




P1389











COV107_
4227
QVQLVESGGNVVQPGRSLRLSCAASGFTFSNY
4228
AKGGP
COV107_
4229
DIQMTQSPSSLSASVGDRVTITCQASQDI
4230
QQF
KAPPA



6mo_P2_

GMHWIRQAPGKGLEWVAVISYDGSDKYYADS

YGDHV
6mo_P2_

SNYLNWYQQKPGKVPKLLIYDASNLET

HNL




IGG_

VKGRVTISRDNSKNTLYLQMNSLRAEDTAVYY

RSDY
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PLT




B10-

CAKGGPYGDHVRSDYWGLGTLVTVSS


B10-

YCQQFHNLPLTFGQGTKLEIK






P1369




P1389











COV107_
4231
QLQLQESGPGLVKPSETLSLTCAVSGGSISNSPF
4232
ARHFAD
COV107_
4233
EIVLTQSPATLSLSPGERATLSCRASQSV
4234
QQR
KAPPA



6mo_P2_

YWGWIRQPPGKGLECIGSIYYSGSTYYNPSLKS

GSGRVV
6mo_P2_

SSYLAWYQQKPGQAPSLLIYDVSNRAT

INW




IGG_

RVTISVDTSKKQFSLKLSSVTAADTAVYYCAR

DS
Kappa_

GIPARFSGSGSGTDFTLTISSLEPEDFAVY

PLY




B11-

HFADGSGRVVDSWGQGILVTVSS


B11-

YCQQRINWPLYTFGQGTKLEIK

T




P1369




P1389











COV107_
4235
QVQLVQSGAEVKKPGSSVKVSCKASGGDFTTY
4236
ARGRW
COV107_
4237
EIVMTQSPATLSVSPGERVTLSCRASQSV
4238
QQY
KAPPA



6mo_P2_

AITWVRQAPGQGLELMGGLIPLFGTANSAQKF

RAAALS
6mo_P2_

SSNLAWYQQKPGQAPRLLIYGASTRAT

NK




IGG_

QGRVTITADESTSTAYLELSSLSSEDTAVYYCA

TLRTAF
Kappa_

GIPARFSGSGSGTEFTLTISSLQSEDFAIY

WP




C10-

RGRWRAAALSTLRTAFDYWGQGTLLTVSS

DY
C10-

YCQQYNKWPMYTFGQGTKLEIK

MYT




P1369




P1389











COV107_
4239
EVQLVESGGGLVQPGGSLRLSCSASGFTFTTYA
4240
VKDELG
COV107_
4241
DIQMTQSPSSLSASVGDRVTITCRASQSI
4242
QQS
KAPPA



6mo_P2_

MHWVRQAPGKGLEYVSTISSNGDSTYYADSV

GYFGN
6mo_P2_

SSYLNWYQQKPGKAPRLLIYAASYLHS

YSA




IGG_

KGRFTISRDNSKNTLHLQMSSLRTEDTAVYYC

YFDY
Kappa_

GVPSRFSGSGSATDFTLTISSLQPEDFAT

PPG




C2-

VKDELGGYFGNYFDYWGQGTLVTVSS


C2-

YYCQQSYSAPPGPYTFGQGTKLEIK

PYT




P1369




P1389











COV107_
4223
EVQLVESGGGLIKPGRSLRLSCTASGFTFGDYA
4224
TRWDG
COV107_
4225
DIVMTQSPLSLSVTPGEPASISCRSSQSLL
4226
MQV
KAPPA



6mo_P2_

MTWFRQAPGKGLEWVGFIRSKAYGGTTGYAA

WSQHD
6mo_P2_

HSNGNNYFDWYLQKPGQSPQLLIYLAS

LQIP




IGG_

SVKYRFTISRDDSKSIAYLQMDSLKTEDTAVYY

Y
Kappa_

NRASGVPDRFSGSGSGTDFTLKISRVEA

YT




C3-

CTRWDGWSQHDYWGQGTLVTVSS


C3-

EDVGVYYCMQVLQIPYTFGQGTKLEI






P1369




P1389











COV107_
4227
QVQLVQSGAEVKKPGSSVKVSCKASGGSFSTY
4228
ARGGCS
COV107_
4229
DIQMTQSPSSLSASIGNRVTITCQASQDI
4230
QQY
KAPPA



6mo_P2_

AISWVRQAPGQGLEWMGGIIPAFGTANYAQKF

SNSCYA
6mo_P2_

NNYLNWYQQKPGKAPKLLIYDASNLET

DNP




IGG_

QGRVTIAADESTSTAFMELSSLRSEDTAVYYCA

AQYGM
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

ALT




C4-

RGGCSSNSCYAAQYGMDVWGQGTTVTVSS

DV
C4-

YCQQYDNPALTFGGGTKVEIK






P1369




P1389











COV107_
4251
QVQLVQSGAEVKKPGASVKVSCKVSGYNLTE
4252
ATGGLF
COV107_
4253
EIVLTQSPGTLSLSPGERATLSCRASQSIS
4254
QQY
KAPPA



6mo_P2_

LSMYWVRQAPGKGLEWMGGFDPEDGGPIHAQ

MIRGLE
6mo_P2_

YTSLAWYQQKPGQAPRLLIFGASRGAT

GNS




IGG_

KFQGRVTMTEDPSTDTAYMELRSLRSEDTALY

I
Kappa_

GTPDRFSGSWSGTDFTLTISRLEPEDFAV

PRL




D10-

YCATGGLFMIRGLEIWGRGTLVSVSS


D10-

YYCQQYGNSPRLSFGGGTKVEIK

S




P1369




P1389











COV107_
4255
EVQLVESGGGLIQPGGSLRLSCAASGLIVSSNY
4256
ARDLSV
COV107_
4257
EIVLTQSPGTLSLSPGERATLSCRASQSL
4258
QQY
KAPPA



6mo_P2_

MNWVRQAPGKGLEWVSLLYSGGSTYYADSV

VGAFDI
6mo_P2_

PSTYLAWYQQKRGQAPRLLIYGASSRA

GTS




IGG_

KGRFTISRDNSKNTLYLQMNSLRPEDTAVYYC


Kappa_

TGIPDRFSGSGSGTDFTLTISRLEPEDFAV

PRV




D2-

ARDLSVVGAFDIWGQGTVVTVSS


D2-

YYCQQYGTSPRVTFGPGTKVDIK

T




P1369




P1389











COV107_
4259
EVQLVESGGGLIQPGGSLRLSCAASGLTVSNNY
4260
ARLPPH
COV107_
4261
DIQMTQSPSSLSASVGDRVTITCRASQGI
4262
QKY
KAPPA



6mo_P2_

VSWVRQGPGKGLEWVSVIYSDAKTYYADSVK

RGDRD
6mo_P2_

SDYLAWYQQKPGKVPNLLIYAASTLQS

DST




IGG_

GRFSISRDNSKNTVYLQMNSLRAEDTAVYHCA

Y
Kappa_

GVPSRFSGSGSGTDFTLTISGLQPEDVAT

PLT




D4-

RLPPHRGDRDYWGQGTLVTVSS


D4-

YYCQKYDSTPLTFGGGTKVEIK






P1369




P1389











COV107_
4264
QVQLQESGPGLVKPSETLSLTCSVSGGSISSYY
4265
ATYYY
COV107_
4266
DIQMTQSPSSLSASIGDRVTITCRASQSIG
4267
QQT
KAPPA



6mo_P2_

WSWIRQPPGKGLEWIGNIFYSGSTNYNPSLKSR

DSTGYS
6mo_P2_

SYLHWYQQRPGKAPKLLIYAVSNLQSG

YSS




IGG_

VTISIDTSKDQFSLKLSSVTAADTAVYYCATYY

YGMDV
Kappa_

VPSRFSGRGSGTDFTLTVSSLQPEDFATY

PQT




D5-

YDSTGYSYGMDVWGQGTTVTVSS


D5-

YCQQTYSSPQTFGQGTKVDIK






P1369




P1389











COV107_
4267
QVQLVESGGGVVQPGRSLRLSCAASGFMFSSY
4268
AKDGLP
COV107_
4269
DIQMTQSPSSLSASVGDRVTITCRASQSII
4270
QQS
KAPPA



6mo_P2_

GMHWVRQAPGKGLEWVAVIYYDGSNKYYAD

LRGSGS
6mo_P2_

TYLNWYQQKPGKAPKLLIYDASSLQSG

YRT




IGG_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

PYGMD
Kappa_

SRFSGSGSGTDFTLTISNLQPEDFATY

LLT




D6-

YCAKDGLPLRGSGSPYGMDVWGQGTMVTVSS

V
D6-

YCQQSYRTLLTFGGGTKVGIK






P1369




P1389











COV107_
4271
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY
4272
AIINNSG
COV107_
4273
DIQMTQSPSSLSASVGDRVTITCRASQSI
4274
QQS
KAPPA



6mo_P2_

FWSWIRQPPGKGLEWIGEIDHNGVTNYNASLR

WRYDA
6mo_P2_

SSFLNWYQQKPGKAPKLLIYAASSLQSG

YFT




IGG_

SRVTISLDTSKNQFSLNLISLTAADTALYFCAI

FDI
Kappa_

VPSRFSGSGSGTDFTLTIRSLQPEDFATY

PRA




D8-

INNSGWRYDAFDIWGQGTMVTVSS 


D8-

YCQQSYFTPRAFGHGTKVEMK






P1369




P1389











COV107_
4275
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSIY
4276
ARTGRS
COV107_
4277
DIQMTQSPSSLSASVGDRVTITCRASQSI
4278
QQS
KAPPA



6mo_P2_

AINWLRQAPGQGLEWMGGIIPISGTANYEQKL

YYSDNS
6mo_P2_

SNYLNWYQQKPGKAPKLLIYAASSLQS

YRTI




IGG_

QGRLTITADESTSTAYMELSSLRSEDTALYYCA

GYYPYF
Kappa_

GVPSRFSGSGSGTDFTLTISSLQPEDFAT

T




E12-

RTGRSYYSDNSGYYPYFDYWGQGTLVTVSS

DY
E12-

YYCQQSYRTITFGGGTKVEIK






P1369




P1389











COV107_
4279
QVQLVESGGGVVQPGKSLRLSCAASGFTFSVY
4280
AKDHSS
COV107_
42181
EIVMTQSPATLSVSPGERATLSCRAGQN
4282
QQY
KAPPA



6mo_P2_

GLHWVRQAPDKGLEWVATISYDGNNKYYADS

LSGAFG
6mo_P2_

VSSNLAWYQQKPGQAPRLLIYGASTRA

NNR




IGG_

VKGRFTIFRDYSKNTLYLQMNSLRPEDTALYY

DLIGSG
Kappa_

AGIPARFSGSGSGTEFTLTISILQSEDFAV

PRG




E1-

CAKDHSSLSGAFGDLIGSGPVDPWGQGTLVTV

PVDP
E1-

YYCQQYNNRPRGYTFGQGTKLEIK

YT




P1369

SS


P1389











COV107_
4283
EVQLVESGGGWIQPGGSLRLSCAASGITVSSNY
4284
AREIYD
COV107_
4285
DIQLTQSPSSLSASVGDRVTITCRASQGIS
4286
QQL
KAPPA



6mo_P2_

MSWVRQAPGKGLEWVSVIYAGGSTFYADSVK

DVLDT
6mo_P2_

SYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




IGG_

GRFTISRDNSKNTLYLQMNSVRAEDTAVYYCA


Kappa_

VPSRFSGSGSGTEFTLTISSLQPEDLATY

LHT




E2-

REIYDDVLDTWGQGTMVTVSS


E2-

YCQQLNSYLHTFGQGTKLEI






P1369




P1389











COV107_
4287
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNY
4288
ARDLGS
COV107_
4289
DIQMTQSPSSLSASVGDRVTITCRASQSI
4290
QQS
KAPPA



6mo_P2_

DMHWVRQVTGKGLEWVSVIGTEGDTHYSDSV

GWVWV
6mo_P2_

SGYLNWYQQKPGKAPKLLIYAASNLQS

YSN




IGG_

KGRFTISRENAKKSLYLQMNSLRAGDTAVYYC

MDV
Kappa_

GVPSRFSGSGSGTDFTLTISSLQPEDFAT

PPLT




F10-

ARDLGSGWVWVMDVWGQGTTVTVSS


F10-

YYCQQSYSNPPLTFGGGTKVEIK






P1369




P1389











COV107_
4291
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSY
4292
AAAYY
COV107_
4293
EIVLTQSPATLSLSPGERATLSCRASQSV
4294
QHR
KAPPA



6mo_P2_

AIIWVRQAPGQGLEWMGGIIPIFGTANYAQNFQ

YDSSGI
6mo_P2_

SNYLAWYQQKPSQAPRLLIFDASHRAT

YN




IGG_

GRVTITADESTSTAYMELNSLRSEDTALYYCA

LGGDD
Kappa_

GIPARFSGSGSGTDFTLTISSLEPEDFAVY

WLT




F11-

AAYYYDSSGILGGDDYWGQGTLVTVSS

Y
F11-

YCQHRYNWLTFGGGTKVEIK






P1369




P1389











COV107_
4295
QVQLVQSGAEVKKPGSSVKVSCKASGGTFNSY
4296
ATTFQ
COV107_
4297
DIQMTQSPSSLSASVGDRVTITCQASQDI
4298
QQY
KAPPA



6mo_P2_

AISWVRQAPGQGLEWMGGIIPIFGTANYAQKF

WDLLV
6mo_P2_

SNYLNWYQQKPGKAPKLLIYDASNLEIG

DHL




IGG_

QGRVTITADESTSTAYMELSSLRSEDTAVYFCA

Y
Kappa_

VPSRFSGSGSGTDFTFTISSLQPEDIATYY

PI




F4-

TTFQWDLLVYWGQGTLVTVSS


F4-

CQQYDHLPIFTFGPGTKVDVK






P1369




P1389











COV107_
4299
EVQLVESGGGLVQPGGSLKLSCAASGFTFSGSA
4300
TKDIAA
COV107_
4301
EIVLTQSPATLSLSPGERATLSCRASQSV
4302
QQH
KAPPA



6mo_P2_

MHWVRQASGKGLEWVGRIRNKANSYATAYG

GIPALN
6mo_P2_

SSYLAWYQQKPGQAPRLLIYDASNRAT

TNW




IGG_

ASVRGRFTVSRDDSKNTAYLQMNSLKIEDTAV

WFDS
Kappa_

GIPARFSGSGSGTDFTLTISSLEPEDFAVY

PPRI




F6-

YYCTKDIAAGIPALNWFDSWGQGTLVTVSS


F6-

YCQQHTNWPPRITFGGGTKVEIK

T




P1369




P1389











COV107_
4303
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
4304
AKGGP
COV107_
4305
DIQMTQSPSSLSASVGDRVTITCQASQDI
4306
QQY
KAPPA



6mo_P2_

GIHWVRQAPGKGLEWVAVISYDGSDKYYADS

YGDHV
6mo_P2_

SNYLNWYQQKPGKAPKLLIYDASYLET

EILP




IGG_

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY

RSDY
Kappa_

GVPSRFSGSGSGTHFTFTISSLQPEDIATY

LT




F7-

CAKGGPYGDHVRSDYWGQGTLVTVSS


F7-

XSQQYEILPLTFGQGTKM






P1369




P1389











COV107_
4307
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
4308
ARVSYY
COV107_
4309
DIQMTQSPSSLSASVGDRVTITCRASQRI
4310
QQS
KAPPA



6mo_P2_

MHWVRQATGKRLEWVSLIGTAGDTYYPASVK

YGSSGY
6mo_P2_

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YSN




IGG_

GRFTISRENAKNSLYLQMNSLRAGDTAVYYCA

SSYFDL
Kappa_

VPSRFSGSGSGTDFTLTISSLQPEDFATY

PPE




F8-

RVSYYYGSSGYSSYFDLWGRGTLVTVSS


F8-

YCQQSYSNPPEDTFGQGTKLEIK

DT




P1369




P1389











COV107_
4311
QVQLVESGGGLVKPGGSLRLSCTASGFTFSDY
4312
ARVPPP
COV107_
4313
DIQMTQSPSTLSASVGDRVTITCRASQSI
4314
qqy
KAPPA



6mo_P2_

YMTWLRQAPGKGLEWVSYISSTSPYTSYADSV

QRLHPF
6mo_P2_

SSWLAWYQQKPGKAPKLLIYQASSLES

fry




IGG_

KGRFTISRDNARNSVYLQMNSLRAEDTAIYYC

DV
Kappa_

GVPSRFSGSGSGTDFTLTISSLQPDDFAT

swt




F9-

ARVPPPQRLHPFDVWGQGTMVTVSS


F9-

YYCQQYFRYSWTFGQGTKVEI






P1369




P1389











COV107_
4315
QVQLVESGGNVVQPGRSLRLSCAASGFTFSNY
4316
AKGGP
COV107_
4317
DIQMTQSPSSLSASVGDRVTITCQASQDI
4318
QQF
KAPPA



6mo_P2_

GMHWIRQAPGKGLEWVAVISYDGSDKYYADS

YGDHV
6mo_P2_

SNYLNWYQQKPGKVPKLLIYDASNLET

HNL




IGG_

VKGRVTISRDNSKNTLYLQMNSLRAEDTAVYY

RSDY
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PLT




G2-

CAKGGPYGDHVRSDYWGLGTLVTVSS


G2-

YCQQFHNLPLTFGQGTKLEIK






P1369




P1389











COV107_
4319
EVQLVESGGGLVKPGRSLRLSCTASGTASGFIF
4320
TQPPGY
COV107_
4321
EIVMTQSPATLSVSPGERATLSCRASQSV
4322
QQY
KAPPA



6mo_P2_

GDYAVNWFRQAPGKGLEWVGFIRSKPYGGTT

CSGGRC
6mo_P2_

SSNLAWYQQKPGQAPRLLIYDSSTRATG

DN




IGG_

QYAASVRGRFTISRDDSKSTAYLQMNSLKIEDT

YFAS
Kappa_

IPARFSGSGSGTDFILTISGLQSEDFAVYY

WHS




G4-

AVYYCTQPPGYCSGGRCYFASWGQGTLVTVS


G4-

CQQYDNWHSFGQGTKVEIK






P1369




P1389











COV107_
4323
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNY
4324
ARDLEV
COV107_
4325
DIQLTQSPSFLSASVGDRVTITCRASQGIS
4326
QQL
KAPPA



6mo_P2_

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

AGGFDC
6mo_P2_

SYLAWYQQKPGKAPKLLIYAASTLQSG

NDY




IGG_

DRFTISRDNEKNTLYLQMNSLRAEDTAVYYCA


Kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

PSIT




G5-

RDLEVAGGFDCWGQGTLVTVSS


G5-

YCQQLNDYPSITFGQGTRLEIK






P1369




P1389











COV107_
4327
EVQLVQSGAEVKKPGESLKISCEGSGYRFTTY
4328
ARSRSG
COV107_
4329
DIQMTQSPSSLSASVGDRVTITCQASQDI
4330
QQY
KAPPA



6mo_P2_

WIAWVRQMPGKGLEWMGIIYCGDSDTRYNPS

IHDAFD
6mo_P2_

SNYLNWYQQKPGKAPKLLIYDASNLET

DNL




IGG_

FQGEVSISVDKSISTAYLQWSSLKASDTAMYYC

M
Kappa_

GVPSRFSGSGSGTDFTFTITSLQPEDIATY

PL




G6-

ARSRSGIHDAFDMWGQGTMVTVSS


G6-

YCQQYDNLPLFGPGTKVDIK






P1369




P1389











COV107_
4331
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
4332
ARDIGSI
COV107_
4333
DIQMTQSPSSLSASVGDRVTITCRASQYI
4334
QQS
KAPPA



6mo_P2_

MHWVRQTTGKRLEWVSVIGTAGDTYYADSVK

WPQFDP
6mo_P2_

SSYLNWYQQRSGKAPKLLIYAASTLQSG

YTT




IGG_

GRFTISRENAKSSLYLQMNSLRAGDTAVYYCA


Kappa_

VPSRFSGSGSGTDFTLTISSLQAEDFATY

VAL




H11-

RDIGSIWPQFDPWGQGTLVIVSS


H11-

YCQQSYTTVALTFGGGTKVEIK

T




P1369




P1389











COV107_
4335
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
4336
VMRYY
COV107_
4337
DIQMTQSPSSLSASVGDRVTITCQASQDI
4338
QQY
KAPPA



6mo_P2_

MSWVRQAPGKGLEWVSAISGSGDSTYYADSV

DILTGP
6mo_P2_

SNYLNWYQQKPGKAPELLIYDASNLEIG

DNL




IGG_

KGRFTISRDSSKNTLYLQMNSLRAEDTAVYYC

WTPH
Kappa_

VPSRFSGSGSGTDFTFTISSLQPEDIATYY

PPLT




H3-

VMRYYDILTGPWTPHWGQGTLVTVSS


H3-

CQQYDNLPPLTFGGGTKVEIK






P1369




P1389











COV107_
4339
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY
4340
ARDLGR
COV107_
4341
EIVLTQSPATLSLSPGERATLSCRASQSV
4342
QQR
KAPPA



6mo_P2_

WSWIRQPPGKGLEWIGYIFYSGSTNYNPSLRSR

SSGWPD
6mo_P2_

SSYLDWYQQKAGQPPRLLIYDVSNRAT

SNW




IGG_

VTISVDTSKNQFSLKLSSLTAADTAVYYCARDL

AFDI
Kappa_

GIPARFSGSGSGTDFTLTISSLEPEDFAVY

PGT




H5-

GRSSGWPDAFDIWGRGTMVTVSS


H5-

SCQQRSNWPGTFGQGTKLEIK






P1369




P1389











COV107_
4343
QVQLVESGGGVVQAGRSLRLSCAASGFTFSSF
4344
AKSWW
COV107_
4345
EIVMTQSPATLSVSPGERATLSCRASQSV
4346
QQY
KAPPA



6mo_P2_

GLHWVRQAPGKGLEWVAVISDDGANKYYAD

LSENWF
6mo_P2_

RSNLAWYQQKPGQAPRLLIYGASTRAT

NN




IGG_

SVKGRFTISRDNSKNTLYLQMNSLRADDTAKY

DP
Kappa_

GIPARFSGSGSGTDFTLTISSLQSEDFAV

WPL




H6-

YCAKSWWLSENWFDPWGQGTLVTVSS


H6-

YYCQQYNNWPLTFGGGTKVEIK

T




P1369




P1389











COV107_
4347
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS
4348
ARDTGF
COV107_
4349
DIQMTQSPSSLSASVGDRVTITCQASQDI
4350
QHY
KAPPA



6mo_P2_

MNWVRQAPGKGLEWVSYISSSSSTIYYADSVK

WSGNFP
6mo_P2_

SNYLNWYQQKPGKAPKLLIYDASNLET

DTL




IGG_

GRFTISRDTAKNSLYLQMNSLRDEDTAVYYCA

GLFDY
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PPV




H7-

RDTGFWSGNFPGLFDYWGQGTLVTVSS


H7-

YCQHYDTLPPVTFGQGTRLDIK

T




P1369




P1389











COV107_
4351
QVQLVQSGAEVKKPGASVKVSCTASGYTFSSY
4352
ARDEAF
COV107_
4353
DIQMTQSPSSLSASVGDRVTITCRASQGI
4354
LQH
KAPPA



6mo_P2_

YIHWVRQAPGQGLEWMGIINPGAGSTSYAQKF

LPSAIFV
6mo_P2_

RNDLGWYQQKPGKAPKRLIYAASNLQS

STY




IGG_

QGRVAMTTDTSTRTVYMELSSLRSDDTAVYY

GDY
Kappa_

GVPSRFSGSGSGTEFTLTISSLQPEDFAT

PHT




H8-

CARDEAFLPSAIFVGDYWGQGTLVTVSS


H8-

YYCLQHSTYPHTWTFGQGTKVEIK

WT




P1369




P1389











COV107_
4355
QVQLQESGPGLVKPSETLSLTCTVSGASISSYY
4356
ATYYFD
COV107_
4357
DIQMTQSPSSLSASVGDRVTIACRASQSI
4358
QQS
KAPPA



6mo_P2_

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR

NSGYSY
6mo_P2_

SSYLHWYQQQPGKAPKLLIYAVTNLQS

YSL




IGG_

VTISLDTSKNQFSLQLSSVTAADTAVYYCATYY

GLDV
Kappa_

GVPSRFSGSGSGTDFTLTISSLQPEDFAT

PQT




H9-

FDNSGYSYGLDVWGQGTTVTVSS


H9-

YYCQQSYSLPQTFGQGTKVEIK






P1369




P1389











COV107_
4359
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4360
ARDQD
COV107_
4361
DIQMTQSPSSLSASVRDRVTITCRASQSI
4362
QQS
KAPPA



Plate1_

AMHWVRQAPGKGLEWVAVILYDGSNKYYAD

LDTAM
Plate1_

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

VTLFDY
Kappa_

VPSRFSGSGSGTDFTLTISSLQPEDLATY

PPW




10-

YCARDQDLDTAMVTLFDYWGQGTLVTVSS


10-



T




P1369




P1389











COV107_
4363
QVQLQQWGAGLLKPSETLSLTCAVSGGSLSGF
4364
ARKPLL
COV107_
4365
EIVLTQSPGTLSLSPGERATLSCRASQTL
4366
QQY
KAPPA



Plate1_

YWTWIRQPPGKGLEWIGETNHFGSTDYKASLK

YSDFSP
Plate1_

TANYLAWYQQKPGQAPRLLIYGASKRA

HTT




HC_

SRVTISVGMSRNQFSLKVTSLTAADTAVYYCA

GAFDI
Kappa_

AGIPDRFSGSGSGTDFTLSITRLEPEDFA

PRT




11-

RKPLLYSDFSPGAFDIWGQGTMIVVSS


11-

VYYCQQYHTTPRTFGGGTKVEI






P1369




P1389











COV107_
4367
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNY
4368
ARESGD
COV107_
4369
DIQLTQSPSFLSASVGDRVTITCRASQGIS
4370
QQL
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVLYSGGSSFYADSVK

TTMAFD
Plate1_

SYLAWYQQKPGKAPKLLIYAASTLQ

NSD




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

Y
Kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

SYT




15-

RESGDTTMAFDYWGQGTLVTVSS


15-

YCQQLNSDSYTFGQGTKLEIK






P1369




P1389











COV107_
4371
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTY
4372
AKGGL
COV107_
4373
DIQMTQSPSSLSASVGDRVTITCQASQDI
4374
QQY
KAPPA



Plate1_

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

YDSSGY
Plate1_

NNYLNWYQQKPGKAPKVLIYDASNLET

DNL




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

YPHYG
Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDFAT

PLA




16-

YCAKGGLYDSSGYYPHYGMDVWGQGTTVTV

MDV
16-

YYCQQYDNLPLAFGGGTKVEIK






P1369

SS


P1389











COV107_
4375
EVQLVESGGGLIQPGGSLRLSCAASGVTVSRNY
4376
ARDLSA
COV107_
4377
DIQLTQSPSFLSASVGDRVTITCRASQGIS
4378
QQL
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

AFDI
Plate1_

SYLAWYQQKPGKAPKLLIYAASTLQSG

SNY




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA


Kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

PPA




18-

RDLSAAFDIWGQGTMVTVSS


18-

YCQQLNSYPPAFGQGTRLEIK






P1369




P1389











COV107_
4379
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNF
4380
ARGVNP
COV107_
4381
DIQMTQSPSTLSASVGDRVTITCRASQS
4382
QQH
KAPPA



Plate1_

GMHWVRQAPGKGLEWVAVIWYDGSNKYYAD

DDILTG
Plate1_

MSSWLAWYQQKPGNAPKLLIYKASSLE

NSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

VDAFDI
Kappa_

SGVPSRFSGSGSGTEFTLTISSLQPDDFAT

PLT




19-

YCARGVNPDDILTGVDAFDIWGQGTMVTVSS


19-

YYCQQHNSSPLTFGGGTKVEIK






P1369




P1389











COV107_
4383
QVQLVQSGAEVVRPGASVKVSCKASGYTFTTH
4384
ARGPRS
COV107_
4385
DIQMTQSPSSLSASVGDRVTITCRASQSI
4386
QQS
KAPPA



Plate1_

YMHWVRQAPGQGLEWMGIINPSVGSTSYAQK

PSDWCS
Plate1_

SSYLNWYQQKPGKAPKLLIYSASSLQSG

YST




HC_

FQGRVTMTRDTSTSTVYMELSSLISEDTAMYY

GGSCYD
Kappa_

VPSRFSGSGSGTDFTLTISSLQPEDFATY

LIT




21-

CARGPRSPSDWCSGGSCYDDQNWFDPWGQGT

DQNWF
21-

YCQQSYSTLITFGQGTRLEIK






P1369

LVTVSS

DP
P1389











COV107_
4387
QVQLVQSGAEVMKPGASVKVSCKASGYTFTS
4388
ARDFEL
COV107_
4389
EIVMTQSPATLSVSPGERATLSCRASQSV
4390
QQY
KAPPA



Plate1_

YYMHWVRQAPGQGLEWMGIINPTAGSTSYAQ

WFGELR
Plate1_

SSNLAWYQQKPGQAPTLLIYGASTRAT

NN




HC_

KFQGRVTMTRDTSTSTVYMELSSLRSEDTAVY

GWFDP
Kappa_

GIPARFSGSGSGTEFTLTISSLQSEDFAVY

WPP




24-

YCARDFELWFGELRGWFDPWGQGTLVTVSS


24-

YCQQYNNWPPITFGQGTRLEIK

IT




P1369




P1389











COV107_
4391
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGYS
4392
AREGAR
COV107_
4393
EIVLTQSPATLSLSPGERATLSCRASQSFS
4394
QQR
KAPPA



Plate1_

MNWVRQAPGKGPEWVSYISRSSSTIYYADSVK

VGATY
Plate1_

SYLAWYQQKPGQAPRLLIYDASNRATGI

NN




HC_

GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCA

DTYYFD
Kappa_

PARFSGSGSGTDFTLTISSLEPEDFAVYY

WPP




2-

REGARVGATYDTYYFDYWGQGTLVTVSS

Y
2-

CQQRNNWPPEWTFGQGTKVEIK

EWT




P1369




P1389











COV107_
4395
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4396
ARTDIV
COV107_
4397
DIQMTQSPSTLSASVGDRVTITCRASQSI
4398
QQY
KAPPA



Plate1_

MSWVRQAPGKGLEWVSLIYSGGSTYYADSVK

VVPAAR
Plate1_

SSWLAWYQQKPGKAPKLLIYKASSLES

NSY




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

GFYFDY
Kappa_

GVPSRFSGSGSGTEFTLTISSLQPDDFAT

GT




30-

RTDIVVVPAARGFYFDYWGQGTLVTVSS


30-

YYCQQYNSYGTFGQGTKVEIK






P1369




P1389











COV107_
4399
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNY
4400
ARDYG
COV107_
4401
EIVLTQSPGTLSLSPGERATLSCRASQSV
4402
QQY
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

DYYFD
Plate1_

SSSYLAWYQQKPGQAPRLLIYGAFSRAT

GSS




HC_

GRFTISRDNSKNTLYLQMNSLRVEDTAVYYCA

Y
Kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PRT




36-

RDYGDYYFDYWGQGTLVTVSS


36-

YYCQQYGSSPRTFGQGTKVEIK






P1369




P1389











COV107_
4403
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
4404
ALTTVT
COV107_
4405
DVVMTQSPLSLPVTLGQPASISCRSSQSL
4406
MQG
KAPPA



Plate1_

WIGWVRQMPGKDLEWMGIIYPGDSDTRYSPSF

TGRWF
Plate1_

VYSDGNTYLNWFQQRPGQSPRRLIYQV

THW




HC_

QGQVTISADKSISTAYLQWSSLKASDTAMYYC

DP
Kappa_

SNRDSGVPDRFSGSGSGTDFTLKISRVEA

LWT




37-

ALTTVTTGRWFDPWGQGTLVTVSS


37-

EDVGVYYCMQGTHWLWTFGQGTKVEI






P1369




P1389

K









COV107_
4407
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNF
4408
ARGVNP
COV107_
4409
DIQMTQSPSTLSASVGDRVTITCRASQS
4410
QQH
KAPPA



Plate1_

GMHWVRQAPGKGLEWVAVIWYDGSNKYYAD

DDILTG
Plate1_

MSSWLAWYQQKPGNAPKLLIYKASSLE

NSS




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

VDAFDI
Kappa_

SGVPSRFSGSGSGTEFTLTISSLQPDDFAT

PLT




38-

YCARGVNPDDILTGVDAFDIWGQGTMVTVSS


38-

YYCQQHNSSPLTFGGGTKVEIK






P1369




P1389











COV107_
4411
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYY
4412
ARHRHP
COV107_
4413
DIQMTQSPSSLSASVGDRVTITCQASQDI
4414
QQY
KAPPA



Plate1_

ISWVRQMPGKGLEWMGRIDPSDSYTNYSPSFQ

GITMIV
Plate1_

SNYLNWYQQKPGKAPKLLIYDASYLET

DNV




HC_

GHVTISADKSISAAYLQWSSLKASDTAMYYCA

ALDY
Kappa_

GVPSRFTGSASGTDFTFTISSLQPEDIATY

PL




39-

RHRHPGITMIVALDYWGQGTLVTVSS


39-

YCQQYDNVPLFGPGTKVDI






P1369




P1389











COV107_
4415
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4416
ARDWG
COV107_
4417
EIVLTQSPGTLSLSPGERATLSCRASQSV
4418
QQY
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

EYYFDY
Plate1_

TSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA


Kappa_

GIPDRFSGSGSGTDFTLTISRLDPEDFAV 

PRT




40-

RDWGEYYFDYWGQGTLVTVSS


40-

YYCQQYGSSPRTFGQGTKVEIK






P1369




P1389











COV107_
4419
QVQLQQWGAGLLKPSETLSLSCAVYGGSLSGY
4420
ARKPLL
COV107_
4421
EIVLTQSPGTLSLSPGERATLSCWASQSV
4422
QQY
KAPPA



Plate1_

YWSWIRQPPGKGLEWIGEINHFGSTGYNPSLKS

YSNLSP
Plate1_

SASYLAWYQQKPGQAPRLLIYGASSRA

GTT




HC_

RVTISVDTSKSQFSVKLSSVTAADTAVYYCAR

GAFDI
Kappa_

TGIPDRFSGSGSGTDFTLTISRLEPEDFAV 

PRT




42-

KPLLYSNLSPGAFDIWGQGTMVTVSS


42-

YYCQQYGTTPRTFGGGTKVEIK






P1369




P1389











COV107_
4423
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4424
AKAGY
COV107_
4425
DIQMTQSPSTLSASVGDRVTITCRASQSI
4426
QQY
KAPPA



Plate1_

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

SYGYPQ
Plate1_

SSWLAWYQQKPGKAPKLLISEASSLESG

NSY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

QYFDY
Kappa_

VPSRFSGSGSGTEFTLTISSLQPDDFATY

SYT




43-

YCAKAGYSYGYPQQYFDYWGQGTLVTVSS


43-

YCQQYNSYSYTFGQGTKLEIK






P1369




P1389











COV107_
4427
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4428
ARDLRG
COV107_
4429
DIQMTQSPSSLSASVGDRVTITCQASQDI
4430
QQY
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

PGTFDI
Plate1_

SNYLNWYQQKPGKAPKLLIYDASNLET

DNL




HC_

GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCA


Kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PRV




44-

RDLRGPGTFDIWGQGTMVTVSS


44-

YCQQYDNLPRVTFGPGTKVDIK

T




P1369




P1389











COV107_
4431
EVQLVQSGAEVKKPGESLRISCKGSAYIFTTYW
4432
ARHISS
COV107_
4433
DIQMTQSPSSLSASVGDRVTITCQASQDI
4434
QQY
KAPPA



Plate1_

ISWVRQMPGKGLEWMGRIDPSDSYTNYSPSFQ

GWYDY
Plate1_

SNYLNWYQQKPGKAPKLLIYDASNLET

DNL




HC_

GHVTISADKSISTAYLQWSSLKASDTAMYYCA


Kappa_

GVPSRFSGSKSGTDFTFTISSLQPEDIATY

PYT




45-

RHISSGWYDYWGQGTLVTVSS


45-

YCQQYDNLPYTFGQGTKVEI






P1369




P1389











COV107_
4435
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSS
4436
AAPHCS
COV107_
4437
EIVLTQSPGTLSLSPGERATLSCRASQSV
4438
QQY
KAPPA



Plate1_

AVQWVRQARGQRLEWIGWIVVGSGNTNYVQ

STSCFD
Plate1_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GNS




HC_

KFQERVTITRDMSTSTAYMELSSLRSEDTAVYY

PWT
Kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PWT




53-

CAAPHCSSTSCFDAFDIWGQGTMVTVSS


53-

YYCQQYGNSPWTFGQGTKVEIK






P1369




P1389











COV107_
4439
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNY
4440
ARTMD
COV107_
4441
DIQMTQSPSSLSASVGDRVTITCRASQDI
4442
QKY
KAPPA



Plate1_

MSWVRQAPGKGLEWVSIIYSGGSTFYADSVKG

GDYFD
Plate1_

NNYLAWYQQKPGKVPKLLIYAASTLQS

NSA




HC_

RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR

Y
Kappa_

GVPSRFSGSGSGTDFTLTISSLQPEDVAT

PLT




59-

TMDGDYFDYWGQGTLVTVSS


59-

FYCQKYNSAPLTFGGGTKVEIK






P1369




P1389











COV107_
4443
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4444
ARDSPS
COV107_
4445
DIQMTQSPSSLSASVGDRVTITCRASQSI
4446
QQS
KAPPA



Plate1_

AIHWVRQAPGKGLEWVAVISYDGSNKYYADS

QIVVVP
Plate1_

SRYLNWYQQKPGKAPNLLIYAASSLQS

YST




HC_

VKGRFTISRDNSKNTLYLQMNSLRADDTAVYY

VFDY
Kappa_

GVPSRFSGSGSGTDFTLIISSLQPEDFATY

LAL




65-

CARDSPSQIVVVPVFDYWGQGTLVTVSS


65-

YCQQSYSTLALTFGGGTKVEIK

T




P1369




P1389











COV107_
4447
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
4448
AKALSS
COV107_
4449
EIVMTQSPATLSVSPGERATLSCRASQSV
4450
QQY
KAPPA



Plate1_

AMHWVRQAPGKGLEWVSGVSWNSGSIGYAD

TGFLVV
Plate1_

SSNLAWYQQKPGQAPRLLIYGASTRAT

NN




HC_

SVRGRFTISRDNAKNSLYLQMNSLRAEDTALY

YFDY
Kappa_

GIPARFSGSGSGTEFTLTISSLQSEDFAVY

WLS




74-

YCAKALSSTGFLVVYFDYWGRGTLVTVSS


74-

YCQQYNNWLSLTFGGGTKVEIK

LT




P1369




P1389











COV107_
4451
EVQLVQSGAEVKKPGESLKISCKGSGYRFTSY
4452
ARSFRD
COV107_
4453
DIQMTQSPSTLSASVGDRATITCRASQSI
4454
QQY
KAPPA



Plate1_

WIGWVRQMPGKGLEWMGIIYPGDSDATYSPSF

DPRIAV
Plate1_

SYWLAWYQQKPGKAPKLLIYKASSLES

NSY




HC_

QGQVTISADRSISTAYLQWSSLKASDTAMYYC

AGPAD
Kappa_

GVPSRFSGSGSGTEFTLTISSLQPDDSAT

PYT




75-

ARSFRDDPRIAVAGPADAFDIWGQGTMVTVSS

AFDI
75-

YYCQQYNSYPYTFGQGTKLEIK






P1369




P1389











COV107_
4455
QVQLVQSGAEVKKSGSSVKVSCKASGGTFSSY
4456
ARAGLL
COV107_
4457
DIVMTQSPDSLAVSXGERATINCKSSQS
4458
QQY
KAPPA



Plate1_

GISWVRQAPGQGLEWMGGIIPIIGTANYAQKFQ

TKNIVA
Plate1_

VLYSSNNKNYLAWYQQKPGQPPKLLIY

YST




HC_

GRVTITADESMSTAYMELSSLRSEDTAVYYCA

TIGCFD
Kappa_

WASTRESGVPDRFSGSGSGTDFTLTISSL

PLT




78-

RAGLLTKNIVATIGCFDPWGQGTLVTVSS

P
78-

QAEDVAVYYCQQYYSTPLTFGGGTKVE






P1369




P1389

IK









COV107_
4459
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
4460
ARVGH
COV107_
4461
EIVLTQSPGTLSLSPGERATLSCRASQSV
4462
QQY
KAPPA



Plate1_

GITWVRQAPGQGLQWMGWISAYNGNTNYAQ

ARGVIT
Plate1_

SSSYLAWYQQKPGQAPRLLIYGTSSRAT

GSS




HC_

KLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY

GGDYF
Kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PT




7-

YCARVGHARGVITGGDYFYYGMDVWGQGTT

YYGMD
7-

YYCQQYGSSPTFGGGTKVEIK






P1369

VTVSS

V
P1389











COV107_
4463
EVQLLESGGGLVQPGGSLRLSCAASGITFSSYA
4464
VETNL
COV107_
4465
EIVLTQSPGTLSLSPGERATLSCRASQSV
4466
QQY
KAPPA



Plate1_

MTWVRQAPGKGLEWVSTISGSGGGTYYADSV

WFGED
Plate1_

RSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




HC_

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

NYYYY
Kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PPW




80-

VETNLWFGEDNYYYYYGMDVWGQGTTVTVS

YGMDV
80-

YYCQQYGSSPPWTFGQGTKVEIK

T




P1369

S


P1389











COV107_
4467
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNY
4468
ARDYG
COV107_
4469
EIVMTQSPATLSVSPGERATLSCRASQSV
4470
QQY
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

DFYFDY
Plate1_

SSNLAWYQQKPGQAPRLLIYGASTRAT

YN




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA


Kappa_

GIPARFSGSGSGTEFTLTISSLQSEDFAVY

WPR




82-

RDYGDFYFDYWGQGTLVTVSS


82-

YCQQYYNWPRTFGQGTKVEIK

T




P1369




P1389











COV107_
4471
QVQLQQWGAGLLKPSETLSLTCAVSGGSLSGF
4472
ARKTLL
COV107_
4473
EIVLTQSPGTLSLSPGERATLSCRASQTL
4474
QQY
KAPPA



Plate1_

YWTWIRQPPGKGLEWIGETNHFGSTDYKPSLK

FSDFSP
Plate1_

TANYLAWYQQKPGQAPRLLIYGASKRA

GTT




HC_

SRVTISVDMSRNQFSLIMTSVTAADTAVYYCA

GAFDI
Kappa_

TGIPDRFSGSGSGTDFTLSISRLEPEDFAV

PRT




84-

RKTLLFSDFSPGAFDIWGQGTMVVVSS


84-

YYCQQYGTTPRTFGGGTKVEI






P1369




P1389











COV107_
4475
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4476
ATDLTS
COV107_
4477
AIQMTQSPSSLSASVGDRVTITCRASQGI
4478
LQD
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

GRGP
Plate1_

RNDLGWYQQKPGKAPKLLIYAASSLQS

YNY




HC_

GRFTISRDNSKNTLYLQMNSLRADDTAVYYCA


Kappa_

GVPSRFSGSGSGTDFTLTISSLQPEDFAT

PK




86-

TDLTSGRGPWGQGTLVTVSS


86-

YYCLQDYNYPKTFGQGTKVEIK






P1369




P1389











COV107_
4479
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNY
4480
AREVA
COV107_
4481
DIQLTQSPSFLSASVGDRVTITCRASQGIS
4482
QQL
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

AFDI
Plate1_

SYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA


Kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

PPG




88-

REVAAFDIWGQGTMVTVSS


88-

YCQQLNSYPPGFGQGTKVEIK






P1369




P1389











COV107_
4483
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG
4484
AWRYS
COV107_
4485
DIVMTQSPLSLPVTPGEPASISCRSSESLL
4486
MQA
KAPPA



Plate1_

YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL

SSWYTV
Plate1_

HSNGYNYLDWYLQKPGQSPQLLIYLGS

LQT




HC_

KSRVTISVDTXKNQFSLKLSSVTAADTAVYYC

DNKKG
Kappa_

NRASGVPDRFSGSGSGTDFTLKISRVEA

PRT




93-

AWRYSSSWYTVDNKKGDYYFDYWGQGTLVT

DYYFD
93-

EDVGVYYCMQALQTPRTFGQGTKLEIK






P1369

VSS

Y
P1389











COV107_
4487
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY
4488
ARGGR
COV107_
4489
DIQLTQSPSFLSASVGDRVTITCRASQGIS
4490
QQL
KAPPA



Plate1_

DINWVRQATGQGLEWMGWMNPNSGNTGYAQ

YCSSTS
Plate1_

SYLAWFQQKPGKAPKLLIYAASTLQTG

NSY




HC_

KFQGRVTMTRNTSISTAYMELSSLRSEDTAVY

CYSHVG
Kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

PIT




95-

YCARGGRYCSSTSCYSHVGFDPWGQGTLVTVS

FDP
95-

YCQQLNSYPITFGQGTRLEIK






P1369

S


P1389











COV107_
4491
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4492
ARDWG
COV107_
4493
EIVLTQSPGTLSLSPGERATLSCRASQSV
4494
QQY
KAPPA



Plate1_

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

EYYFDY
Plate1_

TSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA


Kappa_

GIPDRFSGSGSGTDFTLTISRLDPEDFAV

PRT




9-

RDWGEYYFDYWGQGTLVTVSS


9-

YYCQQYGSSPRTFGQGTKVEIK






P1369




P1389











COV107_
4495
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS
4496
ARDQG
COV107_
4497
DIQMTQSPSSLSASVGDRVTITCRASQSI
4498
QQS
KAPPA



Plate2_

MNWVRQAPGKGLEWVSYISTSSSTIYYADSVQ

YCSSTS
Plate2_

SSYLNWYQQKPGKAPKLLIYAASSLHSG

YS




HC_

GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCA

CYDGY
kappa_

VPSRFSGSGSGTDFTLTISSLQPEDFATY






11-

RDQGYCSSTSCYDGYYYYMDVWGKGTTVTVS

YYYMD
11-

YCQQSYSAPWTFGQGTKVEIK






P1369

S

V
P1389











COV107_
4499
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNY
4500
ARDYG
COV107_
4501
EIVLTQSPGTLSLSPGERATLSCRASQSV
4502
QQY
KAPPA



Plate2_

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

DYYFD
Plate2_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

Y
kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PRT




13-

RDYGDYYFDYWGQGTLVTVSS


13-

YYCQQYGSSPRTFGQGTKVEIK






P1369




P1389











COV107_
4503
EVQLVESGGGLIKPGRSLRLSCTASGFTFGDYA
4504
TRWDG
COV107_
4505
DIVMTQSPLSLSVTPGEPASISCRSSQSLL
4506
MQV
KAPPA



Plate2_

MTWFRQAPGKGLEWVGFIRSKAYGGTTGYAA

WSQHD
Plate2_

HSNGNNYFDWYLQKPGQSPQLLIYLGS

LQIP




HC_

SVKYRFTISRDDSKSIAYLQMDSLKTEDTAVYY

Y
kappa_

NRASGVPDRFSGSGSGTDFTLKISRVEA

YT




15-

CTRWDGWSQHDYWGQGTLVTVSS


15-

EDVGVYYCMQVLQIPYTFGQGTKLEI






P1369




P1389











COV107_
4507
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSIY
4508
ASFHVA
COV107_
4509
EIVLTQSPGTLSLSPGERATLSCRASQSV
4510
QQY
KAPPA



Plate2_

AISWVRQAPGQGLEWMGGIIPILGTANYAQKF

YGDYIP
Plate2_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GRS




HC_

QGRVTITADESTSTAYMELSSLRSEDTAVYYCA

FDY
kappa_

GIPDRFSGSGSGTDFTLTISRLEREDFAV

PTW




17-

SFHVAYGDYIPFDYWGQGTLVTVSS


17-

YYCQQYGRSPTWTFGQGTKVEIK

T




P1369




P1389











COV107_
4511
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG
4512
AREPQI
COV107_
4513
EIVLTQSPGTLSLSPGERATLSCRASQSV
4514
QQY
KAPPA



Plate2_

YYMHWVRQAPGQGLEWMGWINPNSGGTNYA

NPYYDI
Plate2_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




HC_

QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV

LTGYRA
kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

LT




18-

YYCAREPQINPYYDILTGYRAFDYWGQGTLVT

FDY
18-

YYCQQYGSSLTFGQGTRLEIK






P1369

VSS


P1389











COV107_
4515
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4516
ARDLGT
COV107_
4517
DIQLTQSPSFLSASVGDRVTITCRASQGIS
1548
QQL
KAPPA



Plate2_

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

GLFDY
Plate2_

SYLAWYQQKPGKAPKLLIYAASTLQSG

DSY




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA


kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

PPG




23-

RDLGTGLFDYWGQGTLVTVSS


23-

YCQQLDSYPPGTFGPGTKVDIK

T




P1369




P1389











COV107_
4519
QVQLQQWGAGLLKPSETLSLTCAVSGGSLSGF
4520
ARKPLL
COV107_
4521
EIVLTQSPGTLSLSPGERATLSCRASQTV
4522
QQY
KAPPA



Plate2_

YWTWIRQPPGKGLEWIGETNHFGSTDYKPSLK

HSDLSP
Plate2_

SANYLAWYQQKAGQAPRLLIYGASKRA

VTT




HC_

SRVTISVDMSRNQFSLKVTSVTAADTAVYYCA

GAFDI
kappa_

TGIPDRFSGSGSGTDFTLSISRLEPEDFAV

PRT




31-

RKPLLHSDLSPGAFDIWGQGTMVAVSS


31-

YYCQQYVTTPRTFGGGTKVEI






P1369




P1389











COV107_
4523
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4524
AREGM
COV107_
4525
DIQMTQSPSSLSASVGDTVTITCQASQDI
4526
QQY
KAPPA



Plate2_

MTWVRQAPGKGLEWVSLIYPGGSTYYADSVK

GMAAA
Plate2_

SKYLNWYQQKPGKAPKLLIYDASNLET

DNL




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

GT
kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PQT




32-

REGMGMAAAGTWGQGTLVTVSS


32-

YCQQYDNLPQTFGGGTKVEIK






P1369




P1389











COV107_
4527
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNY
4528
ARVRY
COV107_
4529
DIQMTQSPSSLSASVGDRVTITCRASQSI
4530
QQS
KAPPA



Plate2_

DMHWVRQATGRGLEWVSTIGTAGDTYYPGSV

DSSGYF
Plate2_

SRYLNWYQQKPGKAPKLLIYAASSLQS

YST




HC_

KGRFTISRENAKNSLYLQMNSLRAGDTALYYC

WSLDY
kappa_

GVPSRFSGSGSGTDFTLTISGLQPEDFAT

PQY




38-

ARVRYDSSGYFWSLDYWGQGTLVTVSS


38-

YYCQQSYSTPQYTFGQGTKLEIK

T




P1369




P1389











COV107_
4531
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4532
AKSLGP
COV107_
4533
DIQMTQSPSTLSASVGDRVTITCRASQSI
4534
QQY
KAPPA



Plate2_

GMHWVRQAPGKGLEWVAVILYDGSNKYYAD

YCSGGN
Plate2_

SSWLAWYQQKPGKAPKLLIYEASSLESG

SNY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

CYSSYF
kappa_

VPSRFSGSGSGTEFTLTISSLQPDDFATY

ST




3-

YCAKSLGPYCSGGNCYSSYFDYWGQGTLVTV

DY
3-

YCQQYNSYSTFGPGTKVDIK






P1369

SS


P1389











COV107_
4535
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4536
AKKGG
COV107_
4537
EIVLTQSPGTLSLSPGERATLSCRASQSV
4538
QQY
KAPPA



Plate2_

GMHWVRQAPGKGLEWVAVISYDGSNKYYGD

GAYCG
Plate2_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GT




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

GDCYL
kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAVF






44-

YCAKKGGGAYCGGDCYLGEFDYWGQGTLVT

GEFDY
44-

YCQQYGTSPSTFGQGTKVESK






P1369

VSS


P1389











COV107_
4539
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
4540
AKGLIA
COV107_
4541
EIVLTQSPATLSLSPGERATLSCRASQSV
4542
QQR
KAPPA



Plate2_

AIHWVRQAPEKGLEWVSGINWSSGSIVYADSV

ELVGGG
Plate2_

SSYLAWYQQKPGQAPRLLIYDASNRAT

SNW




HC_

KGRFTISRDNAKNSLYLQMNSLRAEDTALYYC

WYFDY
kappa_

GIPARFSGGGSGTDFTLTISSLEPEDFAV

PP




50-

AKGLIAELVGGGWYFDYWGQGTLVTVSS


50-

YYCQQRSNWPPLTFGQGTKVEIK






P1369




P1389











COV107_
4543
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4544
AKQAG
COV107_
4545
DIQMTQSPSSLSASVGDRVTITCQASQDI
4546
QQY
KAPPA



Plate2_

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

PYCSGG
Plate2_

SNYLNWYQQKPGKAPKLLIYDASNLET

DNV




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

TCYPGT
kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PLT




51-

YCAKQAGPYCSGGTCYPGTLDYWGQGTLVTV

LDY
51-

YCQQYDNVPLTFGPGTKVDIK






P1369

SS


P1389











COV107_
4547
QVQLQQWGAGLLKPSETLSLTCAVSGGSLSGF
4548
ARKPLL
COV107_
4549
EIVLTQSPGTLSLSPGERATLSCRASQTV
4550
QQY
KAPPA



Plate2_

YWTWIRQPPGKGLEWIGETNHFGSTGYKPSLK

YSDFSP
Plate2_

TANYLAWYQQKPGQAPRLLIYGASKRA

TTT




HC_

SRVTISVDMSRNQFSLKVTSVTAADTAVYYCA

GAFDI
kappa_

TGIPDRFSGSGSGTDFTLSISRLEPEDFAV

PRT




53-

RKPLLYSDFSPGAFDIWGQGTMVAVSS


53-

YYCQQYTTTPRTFGGGTKVEI






P1369




P1389











COV107_
4551
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
4552
ARGVSG
COV107_
4553
DIQMTQSPSSLSASVGDRVTITCRASQSI
4554
QQS
KAPPA



Plate2_

MHWVRQATGKGLEWVSTIGTAGDTYYPGSVK

VVRGVI
Plate2_

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YITP




HC_

GRFTISRENAKNSLYLQMNSLRAGDTAVYFCA

RSFYYY
kappa_

VPSRFSGSGSGTDFTLTISSLQPEDFATY

GWT




61-

RGVSGVVRGVIRSFYYYGLDVVVGQGTTVTVSS

GLDV
61-

YCQQSYITPGWTFGQGTKVEIK






P1369




P1389











COV107_
4555
EVQLVESGGDLVQPGGSLRLSCAASGFTFSSYS
4556
ARVAIR
COV107_
4557
EIVLTQSPATLSLSPGERATLSCRASQSFS
4558
QQR
KAPPA



Plate2_

MNWVRQAPGKGLEWVSYISISSSTIYYADSVK

VVVPS
Plate2_

SYLAWYQQKPGQAPRLLIYDASNRATGI

SNW




HC_

GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCA

TYYFDY
kappa_

PARFSGSGSGTDFTLTISSLEPEDFAFYY

PQG




64-

RVAIRVVVPSATYYFDYWGQGTLVTVSS


64-

CQQRSNWPQGFTFGPGTKVDIK

FT




P1369




P1389











COV107_
4559
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4560
ATGGGS
COV107_
4561
DIQMTQSPSSLSASVGDRVTITCQASQDI
4562
QQY
KAPPA



Plate2_

GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

YFSPRIY
Plate2_

SNYLNWYQQKPGKAPKLLIYDASNLET

DNL




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

FDY
kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PPY




68-

YCATGGGSYFSPRIYFDYWGQGTLVTVSS


68-

YCQQYDNLPPYTFGQGTKLEIK

T




P1369




P1389











COV107_
4563
EVQLVESGGGLIKPGRSLRLSCTASGFTFGDYA
4564
TRWDG
COV107_
4565
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
4566
MQV
KAPPA



Plate2_

MTWFRQAPGKGLEWVGFIRSKAYGGTTGYAA

WSQHD
Plate2_

QSNGNNYFDWYLQKPGQSPQLLIYLGS

LQV




HC_

SVRYRFTISRDDSSGIAYLQMDSLKTEDTAVYY

Y
kappa_

NRASGVPDRFSGSGSGTDFTLKISRVEA

PYT




69-

CTRWDGWSQHDYWGQGTLVTVSS


69-

EDVGVYYCMQVLQVPYTFGQGTNLEI






P1369




P1389











COV107_
4567
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4568
AREGM
COV107_
4569
DIQMTQSPSSLSASVGDTVTITCQASQDI
4570
QQY
KAPPA



Plate2_

MSWVRQAPGKGLEWVSLIYPGGSTYFADSVK

GIAAAG
Plate2_

SKYLNWYQQKPGKAPKLLIYDASNLET

DNL




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

T
kappa_

GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PQT




73-

REGMGIAAAGTWGQGTLVTVSS


73-

YCQQYDNLPQTFGGGTKVEIK






P1369




P1389











COV107_
4571
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
4572
AKSWW
COV107_
4573
EIVMTQSPATLSVSPGERATLSCRASQSV
4574
QLL
KAPPA



Plate2_

GMHWVRQAPGKGLEWVAVISDDGSNKYYAD

LSENWF
Plate2_

SSNLAWYQQKPGQAPRLLIYGASTRAT

NSY




HC_

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY

DP
kappa_

GIPARFSGTGSGTEFTLTISSLQSEDFAVY

PYT




76-

YCAKSWWLSENWFDPWGQGTLVTVSS


76-

YCQQYNNWPLTFGGGTKVEIK






P1369




P1389











COV107_
4575
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
4576
ARDLV
COV107_
4577
DIQLTQSPSFLSASVGDRVTITCRASQGIS
4578
QLL
KAPPA



Plate2_

MTWVRQAPGKGLEWVSVIYSGGTTYYADSVK

VWGMD
Plate2_

SYLAWYQQKPGKAPKLLIYAASTLQ

NSY




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

V
kappa_

VPSRFSGSGSGTEFTLTISSLQPEDFATY

PYT




78-

RDLVVWGMDVWGQGTTVTVSS


78-

YCQLLNSYPYTFGQGTKLEIK






P1369




P1389











COV107_
4579
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSS
4580
AAPYCS
COV107_
4581
EIVLTQSPGTLSLSPGERATLSCRASQSV
4582
QQY
KAPPA



Plate2_

AVQWVRQARGQRLEWIGWIVVGSGNTNYAQ

GGSCSD
Plate2_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




HC_

KFQERVTITRDMSTSTAYMELSSLRSEDTAVYY

AFDI
kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PWT




81-

CAAPYCSGGSCSDAFDIWGQGTMVTVSS


81-

YYCQQYGSSPWTFGQGTKVEIK






P1369




P1389











COV107_
4583
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY
4584
ARSFRD
COV107_
4585
DIQMTQSPSTLSASVGDRVTITCRASQSI
4586
QQY
KAPPA



Plate2_

WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF

DPRIAV
Plate2_

SYWLAWYQQKPGKAPKLLIYQASSLES

NSY




HC_

QGQVTISADKSISTAYMQWSSLKASDTAMYYC

AGPAD
kappa_

GVPSRFSGSESGTEFTLTISSLQPDDFAT

PYT




90-

ARSFRDDPRIAVAGPADAFDIWGQGTMVTVSS

AFDI
90-

YYCQQYNSYPYTFGQGTKLEIK






P1369




P1389











COV107_
4587
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNY
4588
VRDYG
COV107_
4589
EIVLTQSPGTLSLSPGERATLSCRASQSV
4590
QQY
KAPPA



Plate2_

MSWVRQAPGKGLEWVSVIYSGGSTFYTDSVK

DFYFDY
Plate2_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCV


kappa_

GIPDRFSGGGSETDFTLTISRLEPEDCAV

PRT




93-

RDYGDFYFDYWGQGTLVTVSS


93-

YYCQQYGSSPRTFGQGTKVEIK






P1369




P1389











COV107_
4591
EVQLVESGGGLIQPGGSLRLSCAASGFTVSYNY
4592
ARDYG
COV107_
4593
EIVLTQSPGTLSLSPGERATLSCRASQSV
4594
QQY
KAPPA



Plate2_

MSWVRQAPGKGLEWVSIIYSGGSTYYADSVK

DLYFDY
Plate2_

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




HC_

GRFTISRDNSKNTLYLQMNSLRAEDTAIYYCAR


kappa_

GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PRT




95-

DYGDLYFDYWGQGTLVTVSS


95-

YYCQQYGSSPRTFGQGTRLEIK






P1369




P1389











COV107_
4595
EVQLVESGGGLVQPGGSLKLSCAASGFTFSGSA
4596
TKPHAH
COV107_
4597
DIQMTQSPSSLSASVGDRVTITCRASQSI
4598
QQS
KAPPA



Plate2_

MHWVRQASGKGLEWVGRIRSKANSYATTYAA

CGGDC
Plate2_

SSYLYWYQQKPGKAPKLLIYAASSLQSG






HC_

SVKGRFTISRDDSKNTAYLQMNSLK1EDTAVY

YSRDW
kappa_

VPSRFSGSGSGTDFTLTISSLQPEDFATY






9-

YCTKPHAHCGGDCYSRDWFDPWGQGTLVTVS

FDP
9-

YCQQSYSTPPFTFGPGTKVDIK






P1369

S


P1389
















TABLE 10







Representative CDR sequences (based on the IMGT methodology)a





















SEQ

SEQ

SEQ

SEQ

SEQ

SEQ




ID

ID

ID

ID

ID

ID



HCDR1
NO
HCDR2
NO
HCDR3
NO
LCDR1
NO
LCDR2
NO
LCDR3
NO





C032
GYSFTS
4600
IYPGDS
4601
ARGVAVDWYFDL
4602
SSNIGA
4603
GNS
4604
QSYDSSLSA
4605



YW

DT



GYD



LYV






C051
GFGVRN
4606
IYSGGT
4607
AREGDVEGFSDLWSG
4608
SSDVGG
4609
DVT
4610
SSFTSSNTR
4611



NY

T

YSRDRYYFDY

YNY



V






C055
GFSVST
4612
LYSGRT
4613
ARDSSEVRDHPGHPGR
4614
SNDVGS
4615
EDS
4616
CSYAGSHTF
4617



KY

D

SVGAFDI

YTL



V






C080
GYSFTIY
4618
IYPGDS
4619
ARGVAVDWYFDL
4620
SSNIGA
4621
GNN
4622
QSSGSVLSD
4623



W

DT



GFD



LYV






C132
GGSISSN
4624
IYHSGS
4625
ARGGDTAMGPEYFDY
4626
SSDVGG
4627
DVS
4628
SSYTSSSTLL
4629



NW

T



YNY










C143
GFSVST
4630
LYSGGS
4631
ARDSSEVRDHPGHPGR
4632
SNDVGS
4633
EGT
4634
CSYAGASTF
4635



KY

D

SVGAFDI

YTL



V






C144
GFTVSN
4636
IYSGGS
4637
AREGEVEGYNDFWSG
4638
SSDVGG
4639
DVS
4640
SSYTSSSTR
4641



NY

T

YSRDRYYFDY

YNY



V






C164
GFSVST
4642
LYSGGS
4643
ARDSSEVRDHPGHPGR
4644
SNDVGS
4645
EVT
4646
CSYAGASTF
4647



KY

D

SVGAFDI

YTL



V






C512
AGSISSN
4648
VYHNG
4649
AKGGDRAMGPEYFDS
4650
SSDVGA
4651
DVN
4652
SSFASSSTLL
4653



NW

NI



NNY










C548
GGTFSS
4654
IIPIFGT
4655
ARREAYGPRDYYYYY
4656
SGYSN
4657
VGTGG
4658
GADQGSGS
4659



YA

A

GMDV



IVG

NFVGV






C549
GGTFSTS
4660
IIPFFGT
4661
ARREPYGPRDYYYFFG
4662
SDYSYY
4663
VGPGG
4664
GADEGSGG
4665



A

P

MDV

K

IVG

TFVGV






aCDR sequences were generated based on the IMGT methodology (https://www.ncbi.nlm.nih.goy/igblast/igblast.cgi).






Claims
  • 1. An isolated anti-SARS-CoV-2 antibody or antigen-binding fragment thereof that binds specifically to a SARS-CoV-2 antigen.
  • 2. The antibody or antigen-binding fragment thereof of claim 1, wherein the SARS-CoV-2 antigen comprises a Spike (S) polypeptide.
  • 3. The antibody or antigen-binding fragment thereof of claim 2, wherein the S polypeptide is an S polypeptide of a human or an animal SARS-CoV-2.
  • 4. The antibody or antigen-binding fragment thereof of claim 1, wherein the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide.
  • 5. The antibody or antigen-binding fragment thereof of claim 4, wherein the RBD comprises amino acids 319-541 of the S-polypeptide.
  • 6. The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody or antigen-binding fragment thereof is capable of neutralizing a plurality of SARS-CoV-2 strains.
  • 7. The antibody or antigen-binding fragment thereof of claim 1, comprising three heavy chain complementarity determining regions (HCDRs) (HCDR1, HCDR2, and HCDR3) of a heavy chain variable region having an amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; and three light chain CDRs (LCDR1, LCDR2, and LCDR3) of a light chain variable region having the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322.
  • 8. The antibody or antigen-binding fragment thereof of claim 7, comprising HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 comprising respective amino acid sequences of (a) SEQ ID NOs: 4600, 4601, 4602, 4603, 4604, and 4605; (b) SEQ ID NOs: 4606, 4607, 4608, 4609, 4610, and 4611; (c) SEQ ID Nos: 4612, 4613, 4614, 4615, 4616, and 4617; (d) SEQ ID NOs: 4618, 4619, 4620, 4621, 4622, and 4623; (e) SEQ ID NOs: 4624, 4625, 4626, 4627, 4628, and 4629; (f) SEQ ID NOs: 4630, 4631, 4632, 4633, 4634, and 4635; (g) SEQ ID NOs: 4636, 4637, 4638, 4639, 4640, and 4641; (h) SEQ ID NOs: 4642, 4643, 4644, 4645, 4646, and 4647; (i) SEQ ID NOs: 4648, 4649, 4650, 4651, 4652, and 4653; (j) SEQ ID NOs: 4654, 4655, 4656, 4657, 4658, and 4659; or (k) SEQ ID NOs: 4660, 4661, 4662, 4663, 4664, and 4665.
  • 9. The antibody or antigen-binding fragment thereof of claim 1, comprising: a heavy chain variable region having an amino acid sequence with at least 75% identity to the amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; or having the amino acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 1173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, or 321; anda light chain variable region having an amino acid sequence with at least 75% identity to the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322; or having the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, or 322.
  • 10. The antibody or antigen-binding fragment thereof of claim 1, comprising a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22, 23-24, 25-26, 27-28, 29-30, 31-32, 33-34, 35-36, 37-38, 39-40, 41-42, 43-44, 45-46, 47-48, 49-50, 51-52, 53-54, 55-56, 57-58, 59-60, 61-62, 63-64, 65-66, 67-68, 69-70, 71-72, 73-74, 75-76, 77-78, 79-80, 81-82, 83-84, 85-86, 87-88, 89-90, 91-92, 93-94, 95-96, 97-98, 99-100, 101-102, 103-104, 105-106, 107-108, 109-110, 111-112, 113-114, 115-116, 117-118, 119-120, 121-122, 123-124, 125-126, 127-128, 129-130, 131-132, 133-134, 135-136, 137-138, 139-140, 141-142, 143-144, 145-146, 147-148, 149-150, 151-152, 153-154, 155-156, 157-158, 159-160, 161-162, 163-164, 165-166, 167-168, 169-170, 171-172, 173-174, 175-176, 177-178, 179-180, 181-182, 183-184, 185-186, 187-188, 189-190, 191-192, 193-194, 195-196, 197-198, 199-200, 201-202, 203-204, 205-206, 207-208, 209-210, 211-212, 213-214, 215-216, 217-218, 219-220, 221-222, 223-224, 225-226, 227-228, 229-230, 231-232, 233-234, 235-236, 237-238, 239-240, 241-242, 243-244, 245-246, 247-248, 249-250, 251-252, 253-254, 255-256, 257-258, 259-260, 261-262, 263-264, 265-266, 267-268, 269-270, 271-272, 273-274, 275-276, 277-278, 279-280, 281-282, 283-284, 285-286, 287-288, 289-290, 291-292, 293-294, 295-296, 297-298, 299-300, 301-302, 303-304, 305-306, 307-308, 309-310, 311-312, 313-314, 315-316, 317-318, 319-320, or 321-322.
  • 11. The antibody or antigen-binding fragment thereof of claim 1, comprising a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 3-4, 11-12, 141-142, 143-144, 189-190, 311-312, 313-314, 315-316, 317-318, 319-320, or 321-322.
  • 12. The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody or antigen-binding fragment thereof is a multivalent antibody comprising (a) a first target binding site that specifically binds to an epitope within the S polypeptide, and (b) a second target binding site that binds to an epitope on a different epitope on the S polypeptide or a different molecule.
  • 13. The antibody or antigen-binding fragment thereof of claim 12, wherein the multivalent antibody is a bivalent or bispecific antibody.
  • 14. The antibody or the antigen-binding fragment thereof of claim 1, further comprising an Fc region or a variant Fc region.
  • 15. The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody is a monoclonal antibody.
  • 16. The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody is a chimeric antibody, a humanized antibody, or humanized monoclonal antibody.
  • 17. The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody is a single-chain antibody, a Fab fragment, or a Fab2 fragment.
  • 18. A pharmaceutical composition comprising the antibody or antigen-binding fragment thereof of claim 1 and optionally a pharmaceutically acceptable carrier or excipient.
  • 19. The pharmaceutical composition of claim 18, wherein the pharmaceutical comprises two or more of the antibody or antigen-binding fragment thereof of claim 1.
  • 20. The pharmaceutical composition of claim 18, further comprising a second therapeutic agent.
  • 21. The pharmaceutical composition of claim 20, wherein the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound.
  • 22. The pharmaceutical composition of claim 21, wherein the antiviral compound comprises: a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase.
  • 23. Use of the antibody or antigen-binding fragment thereof of claim 1 or the pharmaceutical composition of claim 18 in the preparation of a medicament for the diagnosis, prophylaxis, treatment, or combination thereof of a condition resulting from a SARS-CoV-2 infection.
  • 24. A nucleic acid molecule encoding a polypeptide chain of the antibody or antigen-binding fragment thereof of claim 1.
  • 25. A vector comprising the nucleic acid molecule of claim 24.
  • 26. A cultured host cell comprising the vector of claim 25.
  • 27. A method of preparing an antibody, or antigen-binding portion thereof, comprising: obtaining the cultured host cell of claim 26;culturing the cultured host cell in a medium under conditions permitting expression of a polypeptide encoded by the vector and assembling of an antibody or fragment thereof; andpurifying the antibody or fragment from the cultured cell or the medium of the cell.
  • 28. A kit comprising a pharmaceutically acceptable dose unit of the antibody or antigen-binding fragment thereof of claim 1 or the pharmaceutical composition of claim 18.
  • 29. A kit for the diagnosis, prognosis or monitoring the treatment of SARS-CoV-2 infection in a subject, comprising: the antibody or antigen-binding fragment thereof of claim 1; and a least one detection reagent that binds specifically to the antibody or antigen-binding fragment thereof.
  • 30. A method of neutralizing SARS-CoV-2 in a subject, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof of claim 1 or a therapeutically effective amount of the pharmaceutical composition of claim 18.
  • 31. A method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof of claim 1 or a therapeutically effective amount of the pharmaceutical composition of claim 18.
  • 32. A method of neutralizing SARS-CoV-2 in a subject, comprising administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of claim 1; or a therapeutically effective amount of the pharmaceutical composition of claim 18, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity.
  • 33. A method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of claim 1; or a therapeutically effective amount of the pharmaceutical composition of claim 18, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity.
  • 34. The method of claim 30, further comprising administering to the subject a therapeutically effective amount of a second therapeutic agent or therapy.
  • 35. The method of claim 32, wherein the first antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second antibody or antigen-binding fragment thereof.
  • 36. The method of claim 35, wherein the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound.
  • 37. The method of claim 36, wherein the antiviral compound comprises: a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase.
  • 38. The method of claim 30, wherein the antibody or antigen-binding fragment thereof is administered to the subject intravenously, subcutaneously, or intraperitoneally.
  • 39. The method of claim 30, wherein the antibody or antigen-binding fragment thereof is administered prophylactically or therapeutically.
  • 40. A method for detecting the presence of SARS CoV-2 in a sample comprising: contacting a sample with the antibody or antigen-binding fragment thereof of claim 1; anddetermining binding of the antibody or antigen-binding fragment to one or more SARS CoV-2 antigens,wherein binding of the antibody to the one or more SARS CoV-2 antigens is indicative of the presence of SARS CoV-2 in the sample.
  • 41. The method of claim 40, wherein the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide.
  • 42. The method of claim 41, wherein the RBD comprises amino acids 319-541 of the S polypeptide.
  • 43. The method of claim 40, wherein the antibody or antigen-binding fragment thereof is conjugated to a label.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 63/109,567, filed Nov. 4, 2020. The foregoing application is incorporated by reference herein in its entirety.

STATEMENT REGARDING FEDERALLY FUNDED RESEARCH

This invention was made with government support under Grant Nos. P01-AI138398-S1 and 2U19AI111825 awarded by the National Institutes of Health. The government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
63109567 Nov 2020 US