Neutralizing anti-SARS-CoV-2 antibodies and methods of use thereof

Information

  • Patent Grant
  • 11634477
  • Patent Number
    11,634,477
  • Date Filed
    Wednesday, April 28, 2021
    3 years ago
  • Date Issued
    Tuesday, April 25, 2023
    a year ago
Abstract
This disclosure provides novel broadly neutralizing anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof. The disclosed anti-SARS-CoV-2 antibodies constitute a novel therapeutic strategy in protection from SARS-CoV-2 infections.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 8, 2021, is named 070413_20615_SL.txt and is 3,009,383 bytes in size.


FIELD OF THE INVENTION

The present invention relates to antibodies directed to epitopes of SARS-CoV-2 Coronavirus 2 (“SARS-CoV-2”). The present invention further relates to the preparation and use of broadly neutralizing antibodies directed to the SARS-CoV-2 spike (S) glycoproteins for the prevention and treatment of SARS-CoV-2 infection.


BACKGROUND OF THE INVENTION

SARS-CoV-2 is the virus that causes coronavirus disease 2019 (COVID-19). It contains four structural proteins, including spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Among them, S protein plays the most important roles in viral attachment, fusion, and entry, and it serves as a target for development of antibodies, entry inhibitors, and vaccines. The S protein mediates viral entry into host cells by first binding to a host receptor through the receptor-binding domain (RBD) in the S1 subunit and then fusing the viral and host membranes through the S2 subunit. SARS-CoV and MERS-CoV RBDs recognize different receptors. SARS-CoV recognizes angiotensin-converting enzyme 2 (ACE2) as its receptor, whereas MERS-CoV recognizes dipeptidyl peptidase 4 (DPP4) as its receptor. Similar to SARS-CoV, SARS-CoV-2 also recognizes ACE2 as its host receptor binding to viral S protein.


As of Apr. 25, 2020, a total of 2.84 million confirmed cases of COVID-19 were reported, including 199,000 deaths, in the United States and at least 85 other countries and/or territories. Currently, the intermediate host of SARS-CoV-2 is still unknown, and no effective prophylactics or therapeutics are available. This calls for the immediate development of vaccines and antiviral drugs for prevention and treatment of COVID-19.


In addition, due to the ability of SARS-CoV-2 to be spread through an airborne route, SARS-CoV-2 presents a particular threat to the health of large populations of people throughout the world. Accordingly, methods to immunize people before infection, diagnose infection, immunize people during infection, and treat infected persons infected with SARS-CoV-2 are urgently needed.


SUMMARY OF THE INVENTION

This disclosure addresses the need mentioned above in a number of aspects by providing broadly neutralizing anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof.


In one aspect, this disclosure provides an isolated anti-SARS-CoV-2 antibody or antigen-binding fragment thereof that binds specifically to a SARS-CoV-2 antigen. In some embodiments, the SARS-CoV-2 antigen comprises a Spike (S) polypeptide, such as a S polypeptide of a human or an animal SARS-CoV-2. In some embodiments, the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide. In some embodiments, the RBD comprises amino acids 319-541 of the S polypeptide.


In some embodiments, the antibody or antigen-binding fragment thereof is capable of neutralizing a plurality of SARS-CoV-2 strains.


In some embodiments, the antibody or antigen-binding fragment thereof comprises three heavy chain complementarity determining regions (HCDRs) (HCDR1, HCDR2, and HCDR3) of a heavy chain variable region having an amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; and three light chain CDRs (LCDR1, LCDR2, and LCDR3) of a light chain variable region having the amino acid sequence of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 comprise respective amino acid sequences of (i) SEQ ID NOs: 2878, 2880, 2882, 2890, 2892, and 2894; or (ii) SEQ ID NOs: 2902, 2904, 2906, 2914, 2916, and 2918.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; or (ii) a light chain variable region having an amino acid sequence with at least 75% identity to SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; and (ii) a light chain variable region having an amino acid sequence with at least 75% identity to SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having the amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; or (ii) a light chain variable region having the amino acid sequence of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having the amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; and (ii) a light chain variable region having the amino acid sequence of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22, 23-24, 25-26, 27-28, 29-30, 31-32, 33-34, 35-36, 37-38, 39-40, 41-42, 43-44, 45-46, 47-48, 49-50, 51-52, 53-54, 55-56, 57-58, 59-60, 61-62, 63-64, 65-66, 67-68, 69-70, 71-72, 73-74, 75-76, 77-78, 79-80, 81-82, 83-84, 85-86, 87-88, 89-90, 91-92, 93-94, 95-96, 97-98, 99-100, 101-102, 103-104, 105-106, 107-108, 109-110, 111-112, 113-114, 115-116, 117-118, 119-120, 121-122, 123-124, 125-126, 127-128, 129-130, 131-132, 133-134, 135-136, 137-138, 139-140, 141-142, 143-144, 145-146, 147-148, 149-150, 151-152, 153-154, 155-156, 157-158, 159-160, 161-162, 163-164, 165-166, 167-168, 169-170, 171-172, 173-174, 175-176, 177-178, 179-180, 181-182, 183-184, 185-186, 187-188, 2876 and 2888, or 2900 and 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 1-2; 13-14; 25-26; 49-50, 55-56, 57-58, 65-66, 81-82, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain/light chain sequence pair of SEQ ID NOs: 2886/2898, 2887/2899, 2910/2921, or 2911/2922.


In some embodiments, the antibody or antigen-binding fragment thereof is a multivalent antibody that comprises (a) a first target binding site that specifically binds to an epitope within the S polypeptide, and (b) a second target binding site that binds to a different epitope on the S polypeptide or a different molecule. In some embodiments, the multivalent antibody is a bivalent or bispecific antibody.


In some embodiments, the antibody or the antigen-binding fragment thereof further comprises a variant Fc constant region. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a chimeric antibody, a humanized antibody, or a humanized monoclonal antibody. In some embodiments, the antibody is a single-chain antibody, Fab or Fab2 fragment.


In some embodiments, the antibody or antigen-binding fragment thereof is detectably labeled or conjugated to a toxin, a therapeutic agent, a polymer, a receptor, an enzyme or a receptor ligand. In some embodiments, the polymer is polyethylene glycol (PEG).


For example, an antibody of the invention may be coupled to a toxin. Such antibodies may be used to treat animals, including humans, that are infected with the virus that is etiologically linked to SARS-CoV-2. For example, an antibody that binds to the spike protein of the coronavirus that is etiologically linked to SARS-CoV-2 may be coupled to a tetanus toxin and administered to an animal suffering from infection by the aforementioned virus. The toxin-coupled antibody is thought to bind to a portion of a spike protein presented on an infected cell, and then kill the infected cell.


An antibody of the invention may be coupled to a detectable tag. Such antibodies may be used within diagnostic assays to determine if an animal, such as a human, is infected with SARS-CoV-2. Examples of detectable tags include fluorescent proteins (i.e., green fluorescent protein, red fluorescent protein, yellow fluorescent protein), fluorescent markers (i.e., fluorescein isothiocyanate, rhodamine, texas red), radiolabels (i.e., 3H, 32P, 125I), enzymes (i.e., β-galactosidase, horseradish peroxidase, β-glucuronidase, alkaline phosphatase), or an affinity tag (i.e., avidin, biotin, streptavidin).


In another aspect, this disclosure provides a pharmaceutical composition comprising: the antibody or antigen-binding fragment thereof of any one of the preceding claims and optionally a pharmaceutically acceptable carrier or excipient.


In some embodiments, the pharmaceutical comprises two or more of the antibody or antigen-binding fragment thereof of described above, such as any combinations of the antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain that comprise the respective amino acid sequences of SEQ ID NOs: 1-2; 13-14; 25-26; 49-50, 55-56, 57-58, 65-66, 81-82, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912.


In some embodiments, the two or more of the antibody or antigen-binding fragment thereof comprise: (1) a first antibody set comprising: (i) a first antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 57-58; and (ii) a second antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 1-2, 55-56, 57-58, 65-66, 81-82, or 85-86; or (2) a second antibody set comprising: (a) a third antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of of SEQ ID NOs: 13-14, 49-50, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912; and (b) a fourth antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of of SEQ ID NOs: 13-14, 49-50, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912, wherein the third antibody is different from the fourth antibody.


In some embodiments, the pharmaceutical composition further comprises a second therapeutic agent. In some embodiments, the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound. In some embodiments, the antiviral compound comprises: a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase. In some embodiments, the antiviral compound may include: acyclovir, gancyclovir, vidarabine, foscarnet, cidofovir, amantadine, ribavirin, trifluorothymidine, zidovudine, didanosine, zalcitabine or an interferon. In some embodiments, the interferon is an interferon-α or an interferon-β.


Also within the scope of this disclosure is use of the pharmaceutical composition, as described above, in the preparation of a medicament for the diagnosis, prophylaxis, treatment, or combination thereof of a condition resulting from a SARS-CoV-2.


In another aspect, this disclosure also provides (i) a nucleic acid molecule encoding a polypeptide chain of the antibody or antigen-binding fragment thereof described above; (ii) a vector comprising the nucleic acid molecule as described; and (iii) a cultured host cell comprising the vector as described. Also provided is a method for producing a polypeptide, comprising: (a) obtaining the cultured host cell as described; (b) culturing the cultured host cell in a medium under conditions permitting expression of a polypeptide encoded by the vector and assembling of an antibody or fragment thereof; and (c) purifying the antibody or fragment from the cultured cell or the medium of the cell.


In another aspect, this disclosure provides a kit comprising a pharmaceutically acceptable dose unit of the antibody or antigen-binding fragment thereof of or the pharmaceutical composition as described above. Also within the scope of this disclosure is a kit for the diagnosis, prognosis or monitoring the treatment of SARS-CoV-2 in a subject, comprising: the antibody or antigen-binding fragment thereof as described; and a least one detection reagent that binds specifically to the antibody or antigen-binding fragment thereof.


In yet another aspect, this disclosure further provides a method of neutralizing SARS-CoV-2 in a subject, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof or a therapeutically effective amount of the pharmaceutical composition, as described above.


In yet another aspect, this disclosure additionally provides a method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof or a therapeutically effective amount of the pharmaceutical composition, as described above.


In some embodiments, the method of neutralizing SARS-CoV-2 in a subject comprises administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of the antibody or antigen-binding fragment or a therapeutically effective amount of the pharmaceutical composition described above, as described above, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity.


In some embodiments, the method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of the antibody or antigen-binding fragment or a therapeutically effective amount of the pharmaceutical composition described above, as described above, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity. In some embodiments, the first antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second antibody or antigen-binding fragment thereof.


In some embodiments, the first antibody or antigen-binding fragment thereof and the second antibody or antigen-binding fragment thereof can be any combinations of the antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain that comprise the respective amino acid sequences of SEQ ID NOs: 1-2; 13-14; 25-26; 49-50, 55-56, 57-58, 65-66, 81-82, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912.


In some embodiments, the first antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 57-58 and the second antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 1-2, 55-56, 57-58, 65-66, 81-82, or 85-86.


In some embodiments, the first antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 13-14, 49-50, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912, and the second antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 13-14, 49-50, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912, wherein the first antibody and the second antibody are different.


In some embodiments, the method comprises administering to the subject a therapeutically effective amount of a second therapeutic agent or therapy. In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 57-58; and the second therapeutic agent or therapy comprises an antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 1-2, 55-56, 57-58, 65-66, 81-82, or 85-86.


In some embodiments, the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound. In some embodiments, the antiviral compound comprises a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase. In some embodiments, the antiviral compound may include: acyclovir, gancyclovir, vidarabine, foscarnet, cidofovir, amantadine, ribavirin, trifluorothymidine, zidovudine, didanosine, zalcitabine or an interferon. In some embodiments, the interferon is an interferon-α or an interferon-β.


In some embodiments, the antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second therapeutic agent or therapy. In some embodiments, the antibody or antigen-binding fragment thereof is administered to the subject intravenously, subcutaneously, or intraperitoneally. In some embodiments, the antibody or antigen-binding fragment thereof is administered prophylactically or therapeutically.


In another aspect, this disclosure further provides a method for detecting the presence of SARS CoV-2 in a sample comprising the steps of: (i) contacting a sample with the antibody or antigen-binding fragment thereof described above; and (ii) determining binding of the antibody or antigen-binding fragment to one or more SARS CoV-2 antigens, wherein binding of the antibody to the one or more SARS CoV-2 antigens is indicative of the presence of SARS CoV-2 in the sample. In some embodiments, the sample is a blood sample.


In some embodiments, the SARS-CoV-2 antigen comprises a S polypeptide, such as a S polypeptide of a human or an animal SARS-CoV-2. In some embodiments, the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide. In some embodiments, the RBD comprises amino acids 319-541 of the S polypeptide.


In some embodiments, the antibody or antigen-binding fragment thereof is conjugated to a label. In some embodiments, the step of detecting comprises contacting a secondary antibody with the antibody or antigen-binding fragment thereof and wherein the secondary antibody comprises a label. In some embodiments, the label includes a fluorescent label, a chemiluminescent label, a radiolabel, and an enzyme.


In some embodiments, the step of detecting comprises detecting fluorescence or chemiluminescence. In some embodiments, the step of detecting comprises a competitive binding assay or ELISA.


In some embodiments, the method further comprises binding the sample to a solid support. In some embodiments, the solid support includes microparticles, microbeads, magnetic beads, and an affinity purification column.


The foregoing summary is not intended to define every aspect of the disclosure, and additional aspects are described in other sections, such as the following detailed description. The entire document is intended to be related as a unified disclosure, and it should be understood that all combinations of features described herein are contemplated, even if the combination of features are not found together in the same sentence, or paragraph, or section of this document. Other features and advantages of the invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the disclosure, are given by way of illustration only, because various changes and modifications within the spirit and scope of the disclosure will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A and 1B are a set of graphs showing the results of monoclonal antibodies for neutralization of SARS-CoV-2 pseudovirus expressing nanoluciferase.



FIGS. 2A and 2B (collectively “FIG. 2”) are a set of graphs showing the results of monoclonal antibodies in ELISA for binding to the Receptor Binding Domain (RBD) of the virus Spike protein.



FIGS. 3A, 3B, 3C, 3D, 3E, 3F, 3G, and 3H (collectively “FIG. 3”) are a set of graphs showing results of ELISAs measuring plasma reactivity to RBD (FIGS. 3A and 3B) and S protein (FIGS. 3C and 3D). Left shows optical density units at 450 nm (OD, Y axis) and reciprocal plasma dilutions (X axis). Negative controls in black; individuals 21, and 47 in blue and red lines and arrowheads, respectively. Right shows normalized area under the curve (AUC) for 8 controls and each of 149 individuals in the cohort. FIG. 3E shows symptom (Sx) onset to time of sample collection in days (X axis) plotted against normalized AUC for IgM binding to RBD (Y axis); r=0.5517 and p=<0.0001. FIG. 3F shows participant age in years (X axis) plotted against normalized AUC for IgG binding to RBD (Y axis); r=0.1827 and p=0.0258. The r and p values for the correlations in FIGS. 3E and 3F were determined by two-tailed Spearman's. FIG. 3G shows normalized AUC of anti-RBD IgG ELISA for outpatients (n=138) and hospitalized (n=11) individuals; p=0.0178. FIG. 3H shows normalized AUC of anti-RBD IgG ELISA for males (n=83) and females (n=66); p=0.0063. For FIGS. 3G and 3H, horizontal bars indicate median values. Statistical significance was determined using two-tailed Mann-Whitney U test.



FIGS. 4A, 4B, 4C, 4D, 4E, and 4F (collectively “FIG. 4”) are a set of graphs showing neutralization of SARS-CoV-2 pseudovirus by plasma. FIG. 4A shows normalized relative luminescence values (RLU, Y axis) in cell lysates of 293 TACE2 cells 48 hours after infection with nanoluc-expressing SARS-CoV-2 pseudovirus in the presence of increasing concentrations of plasma (X axis) derived from 149 participants (grey, except individuals 21 and 47 in blue and red lines, bars and arrowheads, respectively) and 3 negative controls (black lines). Mean of duplicates; representative of two independent experiments. FIG. 4B shows ranked average half-maximal inhibitory plasma neutralizing titer (NT50) for the 59 of 149 individuals with NT50s>500 and individual 107. Asterisks indicate donors from which antibody sequences were derived. FIG. 4C shows normalized AUC for anti-RBD IgG ELISA (X axis) plotted against NT50 (Y axis); r=0.6432, p=<0.0001. FIG. 4D shows normalized AUC for anti-S IgG ELISA (X axis) plotted against NT50 (Y axis); r=0.6721, p=<0.0001. The r and p values for the correlations in FIGS. 4C and 4D were determined by two-tailed Spearman's. FIG. 4E shows NT50 for outpatients (n=138) and hospitalized (n=11) individuals; p=0.0495. FIG. 4F shows NT50 for males (n=83) and females (n=66) in the cohort; p=0.0031. Statistical significance in e and f was determined using two-tailed Mann-Whitney U test and horizontal bars indicate median values. Dotted lines in FIGS. 4E and 4F (NT50=5) represents lower limit of detection (LLOD). Samples with neutralizing titers below 1:50 were plotted at LLOD.



FIGS. 5A, 5B, 5C, and 5D (collectively “FIG. 5”) are a set of graphs showing activities of anti-SARS-CoV-2 RED antibodies. FIG. 5A shows representative flow cytometry plots displaying dual AF647- and PE-RBD binding B cells in control and 6 study individuals (for gating strategy see FIG. 12). Percentages of antigen specific B cells are indicated. Control is a healthy control sample obtained pre-COVID-19. FIG. 5B is a set of pie charts depicting the distribution of antibody sequences from 6 individuals. The number in the inner circle indicates the number of sequences analyzed for the individual denoted above the circle. White indicates sequences isolated only once, and grey or colored pie slices are proportional to the number of clonally related sequences. Red, blue, orange, and yellow pie slices indicate clones that share the same IGHV and IGLV genes. FIG. 5C is circos plot showing sequences from all 6 individuals with clonal relationships depicted as in FIG. 5B. Interconnecting lines indicate the relationship between antibodies that share V and J gene segment sequences at both IGH and IGL. Purple, green, and gray lines connect related clones, clones and singles, and singles to each other, respectively. FIG. 5D shows sample sequence alignment for antibodies originating from different individuals that display highly similar IGH V(D)J and IGL VJ sequences including CDR3s. Amino acid differences in CDR3s to the bolded reference sequence above are indicated in red and dots represent identities. FIG. 5D discloses SEQ ID NOS 598, 602, 1434, 1438, 2445, 2449, 578, 582, 586, 1754, 1758, 600, 600, 1436, 600, 2487, 600, 580, 584, 580, 580, and 580, respectively, in order of column.



FIGS. 6A, 6B, 6C, 6D, 6E, 6F, 6G, 6H, 6I, 6J, 6K, 6L, 6M, 6N, 6O, 6P, 6Q, and 6R (collectively “FIG. 6”) are a set of graphs showing anti-SARS-CoV-2 RBD antibody reactivity. FIG. 6A is a graph showing the results of ELISA assays measuring monoclonal antibody binding to RBD. Optical density units at 450 nm (OD, Y axis) vs. antibody concentrations (X axis); 94 samples and 1 isotype control. C121, C135 C144 and isotype control in red, green, purple, and black respectively, in all panels. FIG. 6B is a graph showing normalized relative luminescence values (RLU, Y axis) in cell lysates of 293TACE2 cells 48 hours after infection with SARS-CoV-2 pseudovirus in the presence of increasing concentrations of monoclonal antibodies (X axis). 89 samples and 1 isotype control. FIG. 6C shows normalized RLU for SARS-CoV-2 pseudovirus neutralization (Y axis) vs. titration of monoclonal antibodies C121, C135 and C144. FIG. 6D shows SARS-CoV-2 real virus neutralization assay. Normalized infected cells (Y axis, determined by dividing the amount of infection per well by the average of control wells infected in the absence of antibodies) vs. titration of monoclonal antibodies C121, C135, and C144. FIGS. 6A, 6B, 6C, and 6D show a representative of two independent experiments. In FIG. 6B and FIG. 6C is mean of duplicates and in FIG. 6D is mean with a standard deviation of triplicates. FIG. 6E shows IC50s for antibodies assayed in FIGS. 6B and 6D, the average value of at least two experiments is shown. Samples with IC50s above 1 mg/ml were plotted at 1 μg/ml; n=89 (pseudovirus) and n=3 (virus), respectively. FIG. 6F is a diagrammatic representation of biolayer interferometry experiment. FIG. 6G is a graph showing binding of C144, C101, C121, C009, C135, and CR3022 to RBD. FIGS. 6H, 6I, 6J, 6K, 6L, 6M, and 6N shows secondary antibody binding to preformed IgG-RBD complexes (Ab1). The table displays the shift in nanometers after second antibody (Ab2) binding to the antigen in the presence of the first antibody (Ab1). Values are normalized by the subtraction of the autologous antibody control. Representative of two experiments. FIGS. 6O, 6P, and 6Q show representative 2D-class averages and 3D reconstructed volumes for SARS-CoV-S 2P trimers complexed with C002, C119, and C121 Fabs. 2D class averages with observable Fab density are boxed. FIG. 6R shows overlay of S-Fab complexes with fully-occupied C002 (blue), C121 (magenta) and C119 (orange) Fabs. The SARS-CoV-2 S model from PDB 6VYB was fit into the density and the SARS-CoV mAb S230 (PDB 6NB6) is shown as a reference (green ribbon).



FIGS. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K, and 7L (collectively “FIG. 7”) are a set of graphs showing clinical correlates. FIG. 7A shows summary of the cohort's characteristics. FIG. 7B shows age distribution (Y axis) for all males (n=83) and females (n=66) in the cohort; p=0.2074. FIG. 7C shows duration of symptoms in days (Y axis) for all males (n=83) and females (n=66) in the cohort; p=0.8704. FIG. 7D shows time between symptom onset and plasma collection (Y axis) for all males (n=83) and females (n=66) in the cohort; p=0.5514. FIG. 7E shows subjective symptom severity on a scale of 0-10 (Y axis) for all males (n=83) and females (n=66) in the cohort; p=0.1888. FIG. 7F shows age distribution (Y axis) for all cases (n=111) and contacts (n=38) in the cohort; p=0.0305. FIG. 7G shows duration of symptoms in days (Y axis) for all cases (n=111) and contacts (n=38) in the cohort; p=0.1241. FIG. 7H shows time between symptom onset and plasma collection in days (Y axis) for all cases (n=111) and contacts (n=38) in the cohort; p=0.1589. FIG. 7I shows symptom severity (Y axis) for all cases (n=111) and contacts (n=38) in the cohort; p=0.0550. FIG. 7J shows age distribution (Y axis) for all outpatient (n=138) and hospitalized (n=11) participants; p=0.0024. FIG. 7K shows duration of symptoms in days (Y axis) for all outpatient (n=138) and hospitalized (n=11) participants in the cohort; p=<0.0001. FIG. 7L shows time between symptom onset and plasma collection in days (Y axis) for all outpatient (n=138) and hospitalized (n=11) participants in the cohort; p=0.0001. Horizontal bars indicate median values. Statistical significance was determined using two-tailed Mann-Whitney U test.



FIGS. 8A, 8B, 8C, 8D, 8E, 8F, 8G, 8H, 8I, and 8J (collectively “FIG. 8”) are a set of graphs showing clinical correlates of plasma antibody titers. FIG. 8A shows normalized AUC for IgG anti-RBD (Y axis) for all cases (n=111) and contacts (n=38) in the cohort; p=0.0107. FIG. 8B shows normalized AUC for IgM anti-RBD (Y axis) for all cases (n=111) and contacts (n=38) in the cohort; p=0.5371. FIG. 8C shows normalized AUC for IgG anti-S (Y axis) for all cases (n=111) and contacts (n=38) in the cohort; p=0.0135. FIG. 8D shows normalized AUC for IgM anti-S(Y axis) for all cases (n=111) and contacts (n=38) in the cohort; p=0.7838. FIG. 8E shows normalized AUC for IgM anti-RBD (Y axis) for all males (n=83) and females (n=66) in the cohort; p=0.9597. FIG. 8F shows normalized AUC for IgG anti-S (Y axis) for all males (n=83) and females (n=66) in the cohort; p=0.0275. FIG. 8E shows normalized AUC for IgM anti-S (Y axis) for all males (n=83) and females (n=66) in the cohort; p=0.5363. FIG. 8H shows normalized AUC for IgM anti-RBD (Y axis) for all outpatient (=138) and hospitalized (n=11) participants in the cohort; p=0.0059. FIG. 8I shows normalized AUC for IgG anti-S (Y axis) for all outpatient (=138) and hospitalized (=11) participants in the cohort; p=0.0623. FIG. 8J shows normalized AUC for IgM anti-S (Y axis) for all outpatient (=138) and hospitalized (=11) participants in the cohort; p=0.2976. Horizontal bars indicate median values. Statistical significance was determined using two-tailed Mann-Whitney U test.



FIGS. 9A, 9B, 9C, 9D, 9E, 9F, 9G, 9H, 9I, 9J, 9K, 9L, 9M, and 9N (collectively “FIG. 9”) are a set of graphs showing additional clinical correlates of plasma antibody titers. FIG. 9A shows time between symptom onset and plasma collection in days (X axis) plotted against normalized AUC for IgG anti-RBD (Y axis); r=−0.0261 p=0.7533. FIG. 9B shows time between symptom onset and plasma collection in days (X axis) plotted against normalized AUC for IgG anti-S(Y axis); r=−0.1495 p=0.0697. FIG. 9C shows time between symptom onset and plasma collection in days (X axis) plotted against normalized AUC for IgM anti-S (Y axis); r=0.1496 p=0.0695. FIG. 9D shows age (X axis) plotted against AUC for IgM anti-RBD (Y axis); r=0.0172 p=0.8355. FIG. 9E shows age (X axis) plotted against normalized AUC for IgG anti-S (Y axis); r=0.1523 p=0.0638. FIG. 9F shows age (X axis) plotted against normalized AUC for IgM anti-S (Y axis); r=0.0565 p=0.4934. FIG. 9G shows duration of symptoms in days (X axis) plotted against normalized AUC for IgG anti-RBD (Y axis); r=0.1525, p=0.0633. FIG. 9H shows duration of symptoms in days (X axis) plotted against normalized AUC for IgM anti-RBD (Y axis); r=−0.3187, p=<0.0001. FIG. 9I shows duration of symptoms in days (X axis) plotted against normalized AUC for IgG anti-S (Y axis); r=0.0329, p=0.6904. FIG. 9J shows duration of symptoms in days (X axis) plotted against normalized AUC for IgM anti-S (Y axis); r=0.0824, p=0.3177. FIG. 9K shows severity of symptoms (X axis) plotted against normalized AUC for IgG anti-RBD (Y axis); r=0.2679 p=0.0010. FIG. 9L shows severity of symptoms (X axis) plotted against normalized AUC for IgM anti-RBD (Y axis); r=−0.1943 p=0.0176. FIG. 9M shows severity of symptoms (X axis) plotted against normalized AUC for IgG anti-S (Y axis); r=0.1187 p=0.1492. FIG. 9N shows severity of symptoms (X axis) plotted against normalized AUC for IgM anti-S (Y axis); r=0.1597 p=0.0517. All correlations were analyzed by two-tailed Spearman's.



FIGS. 10A, 10B, and 10C (collectively “FIG. 10”) show a diagrammatic representation of the SARS-CoV2-Strunc luciferase assay. FIG. 10A shows that co-transfection of pNL4-3ΔEnv-nanoluc and pSARS-CoV-2 spike vectors into 293T cells (ATCC) leads to production of SARS-CoV-2 Spike-pseudotyped HIV-1 particles (SARS-CoV-2 pseudovirus) carrying the Nanoluc gene. FIG. 10B shows that SARS-CoV-2 pseudovirus was incubated for 1 h at 37° C. with plasma or monoclonal antibody dilutions. The virus-antibody mixture is used to infect ACE2-expressing 293T cells, which will express nanoluc Luciferase upon infection. FIG. 10C shows relative luminescence units (RLU) reads from lysates of ACE2-expressing 293T cells infected with increasing amounts of SARS-CoV-2 pseudovirus. Error bars represent standard deviation of triplicates, two experiments.



FIGS. 11A, 11B, 11C, 11D, 11E, and 11F (collectively “FIG. 11”) are a set of graphs showing clinical correlates of neutralization. FIG. 11A shows normalized AUC for anti-RBD IgM (X axis) plotted against NT50 (Y axis); r=0.3119, p=0.0001. FIG. 11B shows normalized AUC for anti-S IgM (X axis) plotted against NT50 (Y axis); r=0.3211, p=<0.0001. FIG. 11C shows duration of symptoms in days (X axis) plotted against NT50 (Y axis); r=0.1997, p=0.0146. FIG. 11D shows time between symptom onset and plasma collection in days (X axis) plotted against NT50 (Y axis); r=−0.1344, p=0.1033. FIG. 11E shows symptom severity (X axis) plotted against NT50 (Y axis); r=0.2234, p=0.0062. FIG. 11F shows age (X axis) plotted against NT50 (Y axis); r=0.3005, p=0.0002. All correlations were analyzed by two-tailed Spearman's. Dotted line (NT50=5) represents lower limit of detection (LLOD) of pseudovirus neutralization assay. Samples with neutralizing titers below 1:50 were plotted at LLOD.



FIG. 12 shows the results of flow cytometry and gating strategy used for cell sorting. Gating was on singlets that were CD20+ and CD3CD8CD16Ova. Sorted cells were RBD-PE+ and RBD-AF647+.



FIG. 13 shows frequency distributions of human V genes. The two-tailed t test with unequal variance was used to compare the frequency distributions of human V genes of anti-SARS-CoV-2 antibodies from this study to Sequence Read Archive SRP010970 (Rubelt, F. et al. PLoS One).



FIGS. 14A, 14B, and 14C (collectively “FIG. 14”) show the analysis of antibody somatic hypermutation and CDR3 length. FIG. 14A shows that for each individual, the number of somatic nucleotide mutations (Y axis) at the IGVH and IGVL are shown on the left panel, and the amino acid length of the CDR3s (Y axis) are shown on the right panel. The horizontal bars indicate the mean. The number of antibody sequences (IGVH and IGVL) evaluated in each participant are n=118 (COV107), n=127 (COV21), n=79 (COV47), n=54 (COV57), n=78 (COV72), n=78 (COV96). FIG. 14B is the same as in FIG. 14A but for all antibodies combined (n=534 for both IGVH and IGVL). FIG. 14C shows distribution of the hydrophobicity GRAVY scores at the IGH CDR3 in antibody sequences from this study compared to a public database (see Methods for statistical analysis in EXAMPLE 1). The box limits are at the lower and upper quartiles, the center line indicates the median, the whiskers are 1.5× interquartile range, and the dots represent outliers.



FIGS. 15A, 15B, 15C, 15D, and 15E (collectively “FIG. 15”) show Binding of the monoclonal antibodies to the RBD of SARS-CoV-2 and cross-reactivity to SARS-CoV. FIG. 15A shows EC30 values for binding to the RBD of SARS-CoV-2. Average of two or more experiments; n=89. FIGS. 15B and 15C show binding curves and EC30 values (average of two experiments) for binding to the RBD of SARS-CoV; n=20 and n=17 (excluding isotype and CR3022), respectively. FIGS. 15D and 15E show SARS-CoV pseudovirus neutralization curves and IC50 values. Shown in FIG. 15D are the standard deviations of duplicates for one representative experiment and in FIG. 15E is the average of two experiments (n=10, excluding CR3022). Samples with IC50s above 1 μg/ml were plotted at 1 μg/ml.



FIG. 16 shows the results of the biolayer interferometry experiment that depicts binding of antibodies C144, C101, C002, C121, C009, C119. Graphs show secondary antibody binding to preformed C121 IgG-RBD complexes. The table displays the shift in nanometers after second antibody (Ab2) binding to the antigen in the presence of the first antibody (Ab1). Values are normalized by the subtraction of the autologous antibody control.



FIGS. 17A, 17B, and 17C (collectively “FIG. 17”) are a set of diagrams depicting that coronavirus S proteins show localized regions of conservation and variability. FIG. 17A is a schematic of SARS-CoV-2 S protein domain architecture. The 51 and S2 subunits are indicated, with scissors representing the locations of proteolytic cleavage sites required for S priming prior to fusion. UH=upstream helix, FP=fusion peptide, HR1=heptad repeat 1, CH=central helix, BH=β-hairpin, HR2=heptad repeat 2, TM=transmembrane region, CT=cytoplasmic tail. FIG. 17B shows phylogenetic trees of selected coronaviruses based on protein sequences of S proteins and RBD/S1B domains. FIG. 17C shows sequence conservation of 7 human coronaviruses plotted as a surface. The sequence alignment was generated using SARS-CoV-2 (GenBank MN985325.1), SARS-CoV (AAP13441.1), MERS-CoV (JX869059.2), HCoV-OC43 (AAT84362.1), HCoV-229E (AAK32191.1), HCoV-NL63 (AAS58177.1), and HCoV-HKU1 (QOZME7.1). Conservation was calculated by ConSurf Database (Landau et al., 2005) and displayed using a surface representation of the structure of the SARS-CoV-2 S protein (PDB code 6VXX).



FIGS. 18A, 18B, and 18C (collectively “FIG. 18”) are a set of diagrams showing that plasma Fabs bind to SARS-CoV-2 S protein. FIG. 18A shows a schematic of polyclonal IgG and Fab purification from human plasma for nsEMPEM protocol. FIG. 18B shows an SEC profile of Fabs (left) and SDS-PAGE of purified IgGs and Fabs (right) from COV21, COV57, and COV107 plasma samples. FIG. 18C shows SEC demonstration that plasma-derived Fabs from COV21 and COV57 shift the SARS-CoV-2 S protein trimer to a higher apparent molecular weight. No shift was observed when Fabs from COV107 were analyzed by SEC with S protein. Fractions pooled and concentrated for nsEMPEM are boxed. See also FIG. 24.



FIGS. 19A, 19B, 19C, 19D, 19E, 19F, 19G, and 19H (collectively “FIG. 19”) show convalescent plasma IgG and Fab binding properties demonstrating recognition of diverse coronaviruses and effects of avidity. Results from ELISAs assessing binding of IgGs and Fabs purified from plasmas from 10 COVID-19 individuals (X-axis) presented as area under the curve (AUC; shown as mean±S.D. of values derived from experiments conducted in triplicate). FIGS. 19A, 19B, 19C, 19D, 19E, and 19F show that binding was assessed against S and RBD proteins for SARS-CoV-2 (FIG. 19A), SARS-CoV (FIG. 19B), MERS-CoV (FIG. 19C), HCoV-NL63 (FIG. 19D), HCoV-OC43 (FIG. 19E), and HCoV-229E (FIG. 19F). Polyclonal IgGs or Fabs were evaluated at a top concentration of 50 μg/mL and 7 additional 4-fold serial dilutions. Binding of the IgG and Fab from IOMA, an antibody against HIV-1 (Gristick et al., 2016), was used as a control in each assay. FIG. 19G shows in vitro neutralization assays comparing the potencies of purified plasma IgGs and purified plasma Fabs. COV21, COV57, and COV107 plasma Fabs and IgGs are highlighted in the indicated colors; curves for 10 other plasmas (listed in FIG. 19H) are gray. FIG. 19H shows molar IC50 values for purified plasma IgGs and Fabs for the indicated plasmas are listed with the molar ratio for IC50 (Fab) to IC50 (IgG) shown in the right column. See also FIGS. 25 and 26.



FIGS. 20A, 20B, and 20C (collectively “FIG. 20”) show the results of the EM study that reveals distinct predominant epitopes targeted by convalescent plasma antibodies. FIG. 20A shows side and top views for representative 3D reconstructions of four nsEMPEM datasets (S protein alone, S+COV21 Fabs, S+COV57 Fabs, S+COV107 Fabs). Bound Fabs observed in reconstructions from COV21 and COV57 plasmas are highlighted with false coloring as orange and green, respectively. No Fabs were observed in the reconstruction of COV107 Fabs plus S protein. Refined 3D models for SARS-CoV-2 S trimer-polyclonal Fab complexes from COV21 (panel B), and COV57 (panel C) were rigid-body fit with reference structures in Chimera (Goddard et al., 2007; Pettersen et al., 2004), displayed as cartoons (S1A: blue, S1B: red, S2: gray). FIG. 20B shows that for COV21, the volume was best-fitted with PDB 6VYB (SARS-CoV-2, one “up” S1B conformation, inset). Overlay of PDB 6NB6 showed similarities in S1B epitope targeting of COV21 Fab (orange) and the human SARS-CoV neutralizing antibody, S230 (magenta, cartoon). FIG. 20C shows that COV57 was fitted with PDB 6VXX (closed, prefusion conformation, inset). Fab density (green) was focused on the S1A domain. See also FIG. 27.



FIGS. 21A, 21B, 21C, 21D, 21E, and 21F (collectively “FIG. 21”) show a cryo-EM structure of a monoclonal Fab-S protein complex that resembles the COV21 Fab(s)-S reconstruction. FIG. 21A shows reconstructed volumes for mAb C105 bound to SARS-CoV-2 S trimers in state 1 (two “up” RBDs, two bound Fabs) and state 2 (three “up” RBDs, three bound Fabs). FIG. 21B shows cartoon representation of VH-VL domains of C105 bound to an RBD (left panel) and CDR loops of C105 overlaid on surface representation of the RBD (shown as a gray surface) (right panel). FIG. 21C shows RBD surface showing contacts by C105 VH-VL (contacts defined as an RBD residue within 7 Å of a VH or VL residue Ca atom). FIG. 21D shows RBD surface fitted with volume representing the variable domains of the COV21 Fab(s) nsEMPEM reconstruction. FIG. 21E shows CDR loops of B38 mAb overlaid on surface representation of the RBD (from PDB code 7BZ5). FIG. 21F shows RBD surface showing contacts by ACE2 (contacts defined as an RBD residue within 7 Å of an ACE2 residue Ca atom) (from PDB code 6VW1). See also FIGS. 29 and 30.



FIGS. 22A, 22B, and 22C (collectively “FIG. 22”) show identified S mutations that are unlikely to affect epitopes revealed by nsEMPEM and single-particle cryo-EM. FIGS. 22A and 22B show the refined 3D model of SARS-CoV-2 S trimer alone that was fitted with a reference structure (PDB 6VYB; gray cartoon) with locations of mutations observed in circulating SARS-CoV-2 isolates (Table 17) highlighted (red spheres). Residues affected by mutations that are disordered in the SARS-CoV-2 S structure (V483A) or in regions that are not included in the S ectodomain (signal sequence or cytoplasmic tail) are not shown. Densities corresponding to Fabs were separated, colored, and displayed on the same 3D volume. FIG. 22C shows C105-RBD interaction from the cryo-EM structure of the C105-S complex (FIG. 21), showing locations of RBD mutations. V483 is ordered in this structure. See also Table 17.



FIGS. 23A, 23B, and 23C (collectively “FIG. 23”) show S protein epitopes that offer different possibilities for avidity effects during IgG and receptor binding. FIG. 23A, left panel, shows a model of two adjacent S trimers separated by ˜15 nm, as seen on coronaviruses by cryo-electron tomography (Neuman et al., 2011), demonstrating that the orientation of COV21 Fab(s) on S could accommodate inter-spike crosslinking by a single IgG. The Fc portion of the IgG (PDB code 1IGT) was modeled assuming flexibility between the Fabs and the Fc (Sandin et al., 2004) and with the hinge region indicated by a dotted line since it is disordered in crystal structures of intact IgGs (Harris et al., 1992; Harris et al., 1998; Saphire et al., 2001). FIG. 23A, right panel, shows an example of a model of two adjacent S trimers with bound Fab(s) in the orientation observed in the COV57 Fab(s)-S reconstruction demonstrating that inter-spike crosslinking is unlikely due to the “downward” orientation of the Fab(s), which does not permit linking by an Fc region, and predicted steric clashes between adjacent Fabs. Inter-spike crosslinking is also not possible for other orientations of two adjacent COV57 Fab(s)-S complexes (not shown). FIG. 23B show a model of S trimers with two RBDs in an “up” position based on a cryo-EM structure of SARS-CoV S trimer (Kirchdoerfer et al., 2018) (PDB code 6CRX) interacting with full-length ACE2 receptors from the cryo-EM structure of soluble SARS-CoV-2 RBDs bound to the dimeric membrane form of ACE2 (Yan et al., 2020) (PDB code 6M17). Inter-spike crosslinking is possible if ACE2 dimers cluster in the membrane. FIG. 23C shows a model of intra-spike crosslinking between dimeric ACE2 and an S protein trimer with two RBDs in an “up” position. The RBDs were rotated by ˜180 about their long axes to allow binding of the ACE2 ectodomains. Rotation of the RBD is a possibility since its position is flexible with respect to the remaining part of the S trimer (Walls et al., 2019). In this model, RBDs from a single S trimer could bind the ACE2 dimer in the same configuration as seen in the BoAT1-ACE2-SARS-CoV-2 RBD structure (PDB code 6M17).



FIGS. 24A, 24B, 24C, 24D, 24E, 24F, 24G, 24H, 24I, 24J, 24K, and 24L (collectively “FIG. 24”) show SEC-MALS characterization of purified proteins (related to FIGS. 18 and 19). FIGS. 24A, 24B, 24C, 24G, 24H, 24I show the SEC-MALS results of CoV S trimers, and FIGS. 24D, 24E, 24F, 24J, 24K, and 24L show corresponding representative nsEM. Scale bar on micrographs represents 50 nm.



FIGS. 25A, 25B, 25C, 25D, 25E, and 25F (collectively “FIG. 25”) show SARS-CoV-2, SARS-CoV, MERS-CoV and common cold coronavirus ELISA curves (related to FIG. 19). Anti-S IgG (left panel), Anti-S Fab (middle left panel), Anti-RBD/S1B IgG (middle right panel), and Anti-RBD/S1B Fab (right panel) ELISA binding data for (FIG. 25A) SARS-CoV-2, (FIG. 25B) SARS-CoV, (FIG. 25C) MERS-CoV, (FIG. 25D) HCoV-NL63, (FIG. 25E) HCoV-OC43, and (FIG. 25F) HCoV-229E. COV21: red curves; COV57: green curves; COV107: magenta curves. Curves for other plasmas are in gray. Each curve represents the average of three independent experiments. Binding of the IgG and Fab from IOMA, an antibody against HIV-1 (Gristick et al., 2016), was used as a control in each assay.



FIGS. 26A, 26B, 26C, 26D, 26E, and 26F (collectively “FIG. 26”) show RBD adsorption experiments to assess degrees of cross-reactive RBD recognition by plasma IgGs (related to FIG. 19). Purified IgGs from COVID-19 plasmas (indicated by numbers) and control plasmas (indicated as “con”) were adsorbed with one of two resins: a SARS-CoV-2 RBD resin (IgGs remaining after RBD adsorption; light gray bars) and a 2G12 mAb control resin (IgGs remaining after control adsorption; dark gray bars). IgGs remaining after adsorption were evaluated in ELISAs against the indicated RBD (or S1B) domains. Binding of IgGs after adsorption to IOMA, an antibody against HIV-1 (Gristick et al., 2016), was used as a control in each assay. Results are presented as area under the curve (AUC; shown as mean of experiments conducted in duplicate).



FIGS. 27A, 27B, 27C, 27D, 27E, and 27F (collectively “FIG. 27”) show representative 2D class-averages and 3D models from nsEMPEM of human convalescent plasma (related to FIG. 20). FIGS. 27A, 27C, and 27E show representative reference-free 2D class-averages obtained from EM data collections of (FIG. 27A) SARS-CoV-2 S trimers alone, (FIG. 27C) SARS-CoV-2 S complexed with COV21 polyclonal Fabs, and (FIG. 27E) SARS-CoV-2 S complexed with COV57 polyclonal Fabs. For COV21 and COV57, class-averages demonstrating extra density beyond the S trimer core are highlighted (red boxes). For COV107, no extra density was observed in class averages or a 3D construction. FIGS. 27B, 27D, and 27F show refined 3D models after iterative rounds of 2D and 3D classification. Features corresponding to Fabs are denoted.



FIGS. 28A, 28B, and 28C (collectively “FIG. 28”) show data collection and processing pipeline for the cryo-EM structure of the C105-SARS-CoV-2 S complex (related to FIG. 21). FIG. 28A shows a representative micrograph of C105-S complex in vitreous ice. Power spectrum of micrograph determined during CTF estimation showing Thon rings to 3.2 Å is shown in the inset. FIG. 28B shows reference-free 2D classification of extracted particles. FIG. 28C shows workflow for classification and refinement of selected particles. Briefly, after selection of good 2D class averages, an ab initio model was generated, which was then homogeneously refined before further 3D classification. To improve features at the SARS-CoV-2 RBD-C105 Fab interface, particles from states 1 and 2 were combined and used for nonuniform, focused refinement to yield a state 1-like reconstruction to an FSC=0.143 resolution of 3.4 Å.



FIGS. 29A, 29B, 29C, 29D, and 29E (collectively “FIG. 29”) show cryo-EM structure validation (related to FIG. 21). FIG. 29A shows fourier shell correlation (FSC) plots calculated from half-maps of state 1 (black), state 1 after focused refinement (blue) and state 2 (red). Dotted lines for FSC values of 0.5 and 0.143 are shown. FIGS. 29B and 29C show 2D angular distribution plot for state 1 (FIG. 29B) and state 2 (FIG. 29C) reconstructions. FIG. 29D shows local resolution estimations for states 1 and 2 and at the RBD-C105 Fab interface. FIG. 29E shows representative density from S trimer and Fab regions of the state 1 reconstructed volume. Maps are contoured at 6σ.



FIGS. 30A and 30B (collectively “FIG. 30”) show CDRH3 length distributions (related to FIG. 21). FIG. 30A shows the CDRH3 lengths (IMGT definition) (Lefranc et al., 2015) of anti-SARS-CoV-2 RBD-binding mAbs (Robbiani et al., 2020) are shown in three groups: all 534 mAbs (dark gray), those derived from VH3-53 (red), and those derived from VH3-66 (green). For comparison, the CDRH3 length distribution from the human antibody repertoire (Briney et al., 2019) is also shown (normalized to the same total count as the set of 534). The CDRH3 length of mAb B38 is indicated with an arrow. FIG. 30B shows the length of CDRH3s in human antibodies versus predicted clashes with SARS-CoV-2 RBD if binding in the orientation observed for the mAbs B38 and C105. The VH domains of 1364 human antibody structures with resolutions of ≤3.5 Å downloaded from SAbDab (Dunbar et al., 2014) were aligned to the B38 VH domain in complex with SARS-CoV-2 RBD (PDB code 7BZ5) (Wu et al., 2020c). In cases in which there was more than one Fab in the crystallographic asymmetric unit, each VH was evaluated and enumerated separately. CDRH3 clashes were defined if any CDRH3 atom was within 2.0 Å of an atom in the RBD, a stringent criterion devised to account for not allowing CDR flexibility or different side chain rotamer conformations.



FIGS. 31A, 31B, 31C, and 31D are a set of diagrams showing SARS-CoV-2 pseudovirus neutralization of C135 and C144′. FIGS. 31A and 31B show the titration curves (FIG. 31A) and IC50 and IC90 values (FIG. 31B) of C135 and C144′ from different lots (also see Table 14 for the sequences). FIG. 31C shows the titration curves of C135, C144′, and C135 combined with C144′ from the GMP lots, with the IC50 and IC90 values summarized in FIG. 31D.





DETAILED DESCRIPTION OF THE INVENTION

SARS-CoV-2 represents a serious public health concern. Methods to diagnose and treat persons who are infected with SARS-CoV-2 provide the opportunity to either prevent or control further spread of infection by SARS-CoV-2. These methods are especially important due to the ability of SARS-CoV-2 to infect persons through an airborne route.


This invention is based, at least in part, on unexpected broadly neutralizing activities of the disclosed anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof. These antibodies and antigen-binding fragments constitute a novel therapeutic strategy in protection from SARS-CoV-2 infections.


A. BROADLY NEUTRALIZING ANTI-SARS-COV-2 ANTIBODIES

a. Antibodies


The invention disclosed herein involves broadly neutralizing anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof. These antibodies refer to a class of neutralizing antibodies that neutralize multiple SARS-CoV-2 virus strains. The antibodies are able to protect a subject prophylactically and therapeutically against a lethal challenge with a SARS-CoV-2 virus.


In one aspect, this disclosure provides an isolated anti-SARS-CoV-2 antibody or antigen-binding fragment thereof that binds specifically to a SARS-CoV-2 antigen. In some embodiments, the SARS-CoV-2 antigen comprises a portion of a Spike (S) polypeptide, such as a S polypeptide of a human or an animal SARS-CoV-2. In some embodiments, the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide. In some embodiments, the RBD comprises amino acids 319-541 of the S polypeptide. In some embodiments, the antibody or antigen-binding fragment thereof is capable of neutralizing a plurality of SARS-CoV-2 strains.


In some embodiments, the antibody or antigen-binding fragment thereof is capable of neutralizing a SARS-CoV-2 virus at an IC50 concentration of less than 50 μg/ml.


The spike protein is important because it is present on the outside of intact SARS-CoV-2. Thus, it presents a target that can be used to inhibit or eliminate an intact virus before the virus has an opportunity to infect a cell. A representative amino acid sequence is provided below:









(Accession ID: NC_045512.2; SEQ ID NO: 2927)


MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHS





TQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNI





IRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNK





SWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGY





FKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLT





PGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETK





CTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASV





YAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSF





VIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN





YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT





NGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTG





VLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITP





GTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCL





IGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLG





AENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECS





NLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGF





NFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLI





CAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAM





QMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQD





VVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGR





LQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLM





SFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT





HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKE





ELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL





QELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSC





GSCCKFDEDDSEPVLKGVKLHYT






Listed below in TABLES 4-5 and 7-14 are amino acid sequences of the heavy chain (HC) variable regions and light chain (LC) variable regions of exemplary antibodies.


In some embodiments, the antibody or antigen-binding fragment thereof comprises three heavy chain complementarity determining regions (HCDRs) (HCDR1, HCDR2, and HCDR3) of a heavy chain variable region having an amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; and three light chain CDRs (LCDR1, LCDR2, and LCDR3) of a light chain variable region having the amino acid sequence of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 comprising respective amino acid sequences of (i) SEQ ID NOs: 2878, 2880, 2882, 2890, 2892, and 2894; or (ii) SEQ ID NOs: 2902, 2904, 2906, 2914, 2916, and 2918.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; or (ii) a light chain variable region having an amino acid sequence with at least 75% identity to SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having an amino acid sequence with at least 75% identity to SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; and (ii) a light chain variable region having an amino acid sequence with at least 75% identity to SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having the amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; or (ii) a light chain variable region having the amino acid sequence of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises: (i) a heavy chain variable region having the amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 2876, or 2900; and (ii) a light chain variable region having the amino acid sequence of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 2888, or 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprise the respective amino acid sequences of SEQ ID NOs: 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22, 23-24, 25-26, 27-28, 29-30, 31-32, 33-34, 35-36, 37-38, 39-40, 41-42, 43-44, 45-46, 47-48, 49-50, 51-52, 53-54, 55-56, 57-58, 59-60, 61-62, 63-64, 65-66, 67-68, 69-70, 71-72, 73-74, 75-76, 77-78, 79-80, 81-82, 83-84, 85-86, 87-88, 89-90, 91-92, 93-94, 95-96, 97-98, 99-100, 101-102, 103-104, 105-106, 107-108, 109-110, 111-112, 113-114, 115-116, 117-118, 119-120, 121-122, 123-124, 125-126, 127-128, 129-130, 131-132, 133-134, 135-136, 137-138, 139-140, 141-142, 143-144, 145-146, 147-148, 149-150, 151-152, 153-154, 155-156, 157-158, 159-160, 161-162, 163-164, 165-166, 167-168, 169-170, 171-172, 173-174, 175-176, 177-178, 179-180, 181-182, 183-184, 185-186, 187-188, 2876 and 2888, or 2900 and 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain and a light chain that comprise the respective amino acid sequences of SEQ ID NOs: 1-2; 13-14; 25-26; 49-50, 55-56, 57-58, 65-66, 81-82, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912.


In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain/light chain sequence pair of SEQ ID NOs: 2886/2898, 2887/2899, 2910/2921, or 2911/2922.


In some embodiments, the antibody or antigen-binding fragment thereof comprises (a) a first target binding site that specifically binds to an epitope within the S polypeptide, and (b) a second target binding site that binds to a different epitope on the S polypeptide or on a different molecule. In some embodiments, the multivalent antibody is a bivalent or bispecific antibody.


In some embodiments, the antibody or the antigen-binding fragment thereof further comprises a variant Fc constant region. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a chimeric antibody, a humanized antibody, or a humanized monoclonal antibody. In some embodiments, the antibody is a single-chain antibody, Fab or Fab2 fragment.


In some embodiments, the antibody or the antigen-binding fragment thereof further comprises a variant Fc constant region. The antibody can be a monoclonal antibody. In some embodiments, the antibody can be a chimeric antibody, a humanized antibody, or humanized monoclonal antibody. In some embodiments, the antibody can be a single-chain antibody, Fab or Fab2 fragment.


In some embodiments, the antibody or antigen-binding fragment thereof can be detectably labeled or conjugated to a toxin, a therapeutic agent, a polymer (e.g., polyethylene glycol (PEG)), a receptor, an enzyme or a receptor ligand. For example, an antibody of the present invention may be coupled to a toxin (e.g., a tetanus toxin). Such antibodies may be used to treat animals, including humans, that are infected with the virus that is etiologically linked to SARS-CoV-2. The toxin-coupled antibody is thought to bind to a portion of a spike protein presented on an infected cell, and then kill the infected cell.


In another example, an antibody of the present invention may be coupled to a detectable tag. Such antibodies may be used within diagnostic assays to determine if an animal, such as a human, is infected with SARS-CoV-2. Examples of detectable tags include: fluorescent proteins (i.e., green fluorescent protein, red fluorescent protein, yellow fluorescent protein), fluorescent markers (i.e., fluorescein isothiocyanate, rhodamine, texas red), radiolabels (i.e., 3H, 32P, 125I), enzymes (i.e., β-galactosidase, horseradish peroxidase, β-glucuronidase, alkaline phosphatase), or an affinity tag (i.e., avidin, biotin, streptavidin). Methods to couple antibodies to a detectable tag are known in the art. Harlow et al., Antibodies: A Laboratory Manual, page 319 (Cold Spring Harbor Pub. 1988).


b. Fragment


In some embodiments, an antibody provided herein is an antibody fragment. Antibody fragments include, but are not limited to, Fab, Fab′, Fab′-SH, F(ab′)2, Fv, and single-chain Fv (scFv) fragments, and other fragments described below, e.g., diabodies, triabodies tetrabodies, and single-domain antibodies. For a review of certain antibody fragments, see Hudson et al., Nat. Med. 9:129-134 (2003). For a review of scFv fragments, see, e.g., Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., (Springer-Verlag, New York), pp. 269-315 (1994); see also WO 93/16185; and U.S. Pat. Nos. 5,571,894 and 5,587,458. For discussion of Fab and F(ab′)2 fragments comprising salvage receptor binding epitope residues and having increased in vivo half-life, see U.S. Pat. No. 5,869,046.


Diabodies are antibody fragments with two antigen-binding sites that may be bivalent or bispecific. See, for example, EP 404,097; WO 1993/01161; Hudson et al., Nat. Med. 9:129-134 (2003); and Hollinger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993). Triabodies and tetrabodies are also described in Hudson et al., Nat. Med. 9:129-134 (2003).


Single-domain antibodies are antibody fragments comprising all or a portion of the heavy chain variable domain or all or a portion of the light chain variable domain of an antibody. In some embodiments, a single-domain antibody is a human single-domain antibody (DOMANTIS, Inc., Waltham, Mass.; see, e.g., U.S. Pat. No. 6,248,516).


Antibody fragments can be made by various techniques, including but not limited to proteolytic digestion of an intact antibody as well as production by recombinant host cells (e.g., E. coli or phage), as described herein.


c. Chimeric and Humanized Antibodies


In some embodiments, an antibody provided herein is a chimeric antibody. Certain chimeric antibodies are described, e.g., in U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). In one example, a chimeric antibody comprises a non-human variable region (e.g., a variable region derived from a mouse, rat, hamster, rabbit, or non-human primate, such as a monkey) and a human constant region. In a further example, a chimeric antibody is a “class switched” antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.


In some embodiments, a chimeric antibody is a humanized antibody. Typically, a non-human antibody is humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody. Generally, a humanized antibody comprises one or more variable domains in which HVRs, e.g., CDRs, (or portions thereof) are derived from a non-human antibody, and FRs (or portions thereof) are derived from human antibody sequences. A humanized antibody optionally will also comprise at least a portion of a human constant region. In some embodiments, some FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody (e.g., the antibody from which the HVR residues are derived), e.g., to restore or improve antibody specificity or affinity.


Humanized antibodies and methods of making them are reviewed, e.g., in Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008), and are further described, e.g., in Riechmann et al., Nature 332:323-329 (1988); Queen et al., Proc. Nat'l Acad. Sci. USA 86:10029-10033 (1989); U.S. Pat. Nos. 5,821,337, 7,527,791, 6,982,321, and 7,087,409; Kashmiri et al., Methods 36:25-34 (2005) (describing specificity determining region (SDR) grafting); Padlan, Mol. Immunol. 28:489-498 (1991) (describing “resurfacing”); Dall'Acqua et al., Methods 36:43-60 (2005) (describing “FR shuffling”); and Osbourn et al., Methods 36:61-68 (2005) and Klimka et al., Br. J. Cancer, 83:252-260 (2000) (describing the “guided selection” approach to FR shuffling).


Human framework regions that may be used for humanization include but are not limited to: framework regions selected using the “best-fit” method (see, e.g., Sims et al. J. Immunol. 151:2296 (1993)); framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions (see, e.g., Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992); and Presta et al. J. Immunol., 151:2623 (1993)); human mature (somatically mutated) framework regions or human germline framework regions (see, e.g., Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008)); and framework regions derived from screening FR libraries (see, e.g., Baca et al., J. Biol. Chem. 272:10678-10684 (1997) and Rosok et al., J. Biol. Chem. 271:22611-22618 (1996)).


d. Human Antibodies


In some embodiments, an antibody provided herein is a human antibody. Human antibodies can be produced using various techniques known in the art or using techniques described herein. Human antibodies are described generally in van Dijk and van de Winkel, Curr. Opin. Pharmacol. 5: 368-74 (2001) and Lonberg, Curr. Opin. Immunol. 20:450-459 (2008).


Human antibodies may be prepared by administering an immunogen to a transgenic animal that has been modified to produce intact human antibodies or intact antibodies with human variable regions in response to antigenic challenge. Such animals typically contain all or a portion of the human immunoglobulin loci, which replace the endogenous immunoglobulin loci, or which are present extrachromosomally or integrated randomly into the animal's chromosomes. In such transgenic mice, the endogenous immunoglobulin loci have generally been inactivated. For review of methods for obtaining human antibodies from transgenic animals, see Lonberg, Nat. Biotech. 23:1117-1125 (2005). See also, e.g., U.S. Pat. Nos. 6,075,181 and 6,150,584 describing XENOMOUSE technology; U.S. Pat. No. 5,770,429 describing HUMAB technology; U.S. Pat. No. 7,041,870 describing K-M MOUSE technology, and U.S. Patent Application Publication No. US 2007/0061900, describing VELOCIMOUSE technology). Human variable regions from intact antibodies generated by such animals may be further modified, e.g., by combining with a different human constant region.


Human antibodies can also be made by hybridoma-based methods. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described. (See, e.g., Kozbor J. Immunol., 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol., 147: 86 (1991).) Human antibodies generated via human B-cell hybridoma technology are also described in Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006). Additional methods include those described, for example, in U.S. Pat. No. 7,189,826 (describing production of monoclonal human IgM antibodies from hybridoma cell lines) and Ni, Xiandai Mianyixue, 26(4):265-268 (2006) (describing human-human hybridomas). Human hybridoma technology (Trioma technology) is also described in Vollmers and Brandlein, Histology and Histopathology, 20(3):927-937 (2005) and Vollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27(3):185-91 (2005).


Human antibodies may also be generated by isolating Fv clone variable domain sequences selected from human-derived phage display libraries. Such variable domain sequences may then be combined with a desired human constant domain. Techniques for selecting human antibodies from antibody libraries are described below.


Antibodies of the invention may be isolated by screening combinatorial libraries for antibodies with the desired activity or activities. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics. Such methods are reviewed, e.g., in Hoogenboom et al., in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., 2001) and further described, e.g., in the McCafferty et al., Nature 348:552-554; Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1992); Marks and Bradbury, in Methods in Molecular Biology 248:161-175 (Lo, ed., Human Press, Totowa, N.J., 2003); Sidhu et al., J. Mol. Biol. 338(2): 299-310 (2004); Lee et al., J. Mol. Biol. 340(5): 1073-1093 (2004); Fellouse, Proc. Natl. Acad. Sci. USA 101(34): 12467-12472 (2004); and Lee et al., J. Immunol. Methods 284(1-2): 119-132 (2004).


In certain phage display methods, repertoires of VH and VL genes are separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be screened for antigen-binding phage as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994). Phage typically display antibody fragments, either as scFv fragments or as Fab fragments. Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas. Alternatively, the naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self-antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993). Finally, naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992). Patent publications describing human antibody phage libraries include, for example, U.S. Pat. No. 5,750,373, and US Patent Publication Nos. 2005/0079574, 2005/0119455, 2005/0266000, 2007/0117126, 2007/0160598, 2007/0237764, 2007/0292936, and 2009/0002360. Antibodies or antibody fragments isolated from human antibody libraries are considered human antibodies or human antibody fragments herein.


e. Variants


In some embodiments, amino acid sequence variants of the antibodies provided herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of an antibody may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g., antigen binding.


Substitution, Insertion, and Deletion Variants


In some embodiments, antibody variants having one or more amino acid substitutions are provided. Sites of interest for substitutional mutagenesis include the HVRs and FRs. Conservative substitutions are defined herein. Amino acid substitutions may be introduced into an antibody of interest and the products screened for a desired activity, e.g., retained/improved antigen binding, decreased immunogenicity, or improved antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC).


Accordingly, an antibody of the invention can comprise one or more conservative modifications of the CDRs, heavy chain variable region, or light variable regions described herein. A conservative modification or functional equivalent of a peptide, polypeptide, or protein disclosed in this invention refers to a polypeptide derivative of the peptide, polypeptide, or protein, e.g., a protein having one or more point mutations, insertions, deletions, truncations, a fusion protein, or a combination thereof. It substantially retains the activity to of the parent peptide, polypeptide, or protein (such as those disclosed in this invention). In general, a conservative modification or functional equivalent is at least 60% (e.g., any number between 60% and 100%, inclusive, e.g., 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99%) identical to a parent. Accordingly, within the scope of this invention are heavy chain variable region or light variable regions having one or more point mutations, insertions, deletions, truncations, a fusion protein, or a combination thereof, as well as antibodies having the variant regions.


As used herein, the percent homology between two amino acid sequences is equivalent to the percent identity between the two sequences. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology=# of identical positions/total # of positions×100), taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm, as described in the non-limiting examples below.


The percent identity between two amino acid sequences can be determined using the algorithm of E. Meyers and W. Miller (Comput. Appl. Biosci., 4:11-17 (1988)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (J. Mol. Biol. 48:444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.


Additionally or alternatively, the protein sequences of the present invention can further be used as a “query sequence” to perform a search against public databases to, for example, identify related sequences. Such searches can be performed using the XBLAST program (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the antibody molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. (See www.ncbi.nlm.nih.gov).


As used herein, the term “conservative modifications” refers to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into an antibody of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include: (i) amino acids with basic side chains (e.g., lysine, arginine, histidine), (ii) acidic side chains (e.g., aspartic acid, glutamic acid), (iii) uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), (iv) nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), (v) beta-branched side chains (e.g., threonine, valine, isoleucine), and (vi) aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).


Non-conservative substitutions will entail exchanging a member of one of these classes for another class.


An exemplary substitutional variant is an affinity matured antibody, which may be conveniently generated, e.g., using phage display-based affinity maturation techniques such as those described in, e.g., Hoogenboom et al., in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., (2001). Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue. Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g., for ADEPT) or a polypeptide which increases the serum half-life of the antibody.


Glycosylation Variants


In some embodiments, an antibody provided herein is altered to increase or decrease the extent to which the antibody is glycosylated. Addition or deletion of glycosylation sites to an antibody may be conveniently accomplished by altering the amino acid sequence such that one or more glycosylation sites are created or removed.


For example, an aglycoslated antibody can be made (i.e., the antibody lacks glycosylation). Glycosylation can be altered to, for example, increase the affinity of the antibody for antigen. Such carbohydrate modifications can be accomplished by, for example, altering one or more sites of glycosylation within the antibody sequence. For example, one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site. Such aglycosylation may increase the affinity of the antibody for antigen. Such an approach is described in further detail in U.S. Pat. Nos. 5,714,350 and 6,350,861 by Co et al.


Glycosylation of the constant region on N297 may be prevented by mutating the N297 residue to another residue, e.g., N297A, and/or by mutating an adjacent amino acid, e.g., 298 to thereby reduce glycosylation on N297.


Additionally or alternatively, an antibody can be made that has an altered type of glycosylation, such as a hypofucosylated antibody having reduced amounts of fucosyl residues or an antibody having increased bisecting GlcNac structures. Such altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies. Such carbohydrate modifications can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies described herein to thereby produce an antibody with altered glycosylation. For example, EP 1,176,195 by Hanai et al. describes a cell line with a functionally disrupted FUT8 gene, which encodes a fucosyltransferase, such that antibodies expressed in such a cell line exhibit hypofucosylation. PCT Publication WO 03/035835 by Presta describes a variant Chinese Hamster Ovary cell line, Led 3 cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields, R. L. et al. (2002) J. Biol. Chem. 277:26733-26740). PCT Publication WO 99/54342 by Umana et al. describes cell lines engineered to express glycoprotein-modifying glycosyltransferases (e.g., beta(1,4)-N-acetylglucosaminyltransferase III (GnTIII)) such that antibodies expressed in the engineered cell lines exhibit increased bisecting GlcNac structures which result in increased ADCC activity of the antibodies (see also Umana et al. (1999) Nat. Biotech. 17: 176-180).


Fc Region Variants


The variable regions of the antibody described herein can be linked (e.g., covalently linked or fused) to an Fc, e.g., an IgG1, IgG2, IgG3 or IgG4 Fc, which may be of any allotype or isoallotype, e.g., for IgG1: Glm, Glm1(a), Glm2(x), Glm3(f), Glm17(z); for IgG2: G2m, G2m23(n); for IgG3: G3m, G3m21(g1), G3m28(g5), G3m11(b0), G3m5(b1), G3m13(b3), G3m14(b4), G3m10(b5), G3m15(s), G3m16(t), G3m6(c3), G3m24(c5), G3m26(u), G3m27(v); and for K: Km, Km1, Km2, Km3 (see, e.g., Jefferies et al. (2009) mAbs 1: 1). In some embodiments, the antibodies variable regions described herein are linked to an Fc that binds to one or more activating Fc receptors (FcγI, FcγIIa or FcγIIIa), and thereby stimulate ADCC and may cause T cell depletion. In some embodiments, the antibody variable regions described herein are linked to an Fc that causes depletion.


In some embodiments, the antibody variable regions described herein may be linked to an Fc comprising one or more modifications, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity. Furthermore, an antibody described herein may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation, to alter one or more functional properties of the antibody. The numbering of residues in the Fc region is that of the EU index of Kabat.


The Fc region encompasses domains derived from the constant region of an immunoglobulin, preferably a human immunoglobulin, including a fragment, analog, variant, mutant or derivative of the constant region. Suitable immunoglobulins include IgG1, IgG2, IgG3, IgG4, and other classes such as IgA, IgD, IgE and IgM, The constant region of an immunoglobulin is defined as a naturally-occurring or synthetically-produced polypeptide homologous to the immunoglobulin C-terminal region, and can include a CH1 domain, a hinge, a CH2 domain, a CH3 domain, or a CH4 domain, separately or in combination. In some embodiments, an antibody of this invention has an Fc region other than that of a wild type IgA1. The antibody can have an Fc region from that of IgG (e.g., IgG1, IgG2, IgG3, and IgG4) or other classes such as IgA2, IgD, IgE, and IgM. The Fc can be a mutant form of IgA1.


The constant region of an immunoglobulin is responsible for many important antibody functions, including Fc receptor (FcR) binding and complement fixation. There are five major classes of heavy chain constant region, classified as IgA, IgG, IgD, IgE, IgM, each with characteristic effector functions designated by isotype. For example, IgG is separated into four subclasses known as IgG1, IgG2, IgG3, and IgG4.


Ig molecules interact with multiple classes of cellular receptors. For example, IgG molecules interact with three classes of Fcγ receptors (FcγR) specific for the IgG class of antibody, namely FcγRI, FcγRII, and FcγRIIL. The important sequences for the binding of IgG to the FcγR receptors have been reported to be located in the CH2 and CH3 domains. The serum half-life of an antibody is influenced by the ability of that antibody to bind to an FcR.


In some embodiments, the Fc region is a variant Fc region, e.g., an Fc sequence that has been modified (e.g., by amino acid substitution, deletion and/or insertion) relative to a parent Fc sequence (e.g., an unmodified Fc polypeptide that is subsequently modified to generate a variant), to provide desirable structural features and/or biological activity. For example, one may make modifications in the Fc region in order to generate an Fc variant that (a) has increased or decreased ADCC, (b) increased or decreased CDC, (c) has increased or decreased affinity for Clq and/or (d) has increased or decreased affinity for an Fc receptor relative to the parent Fc. Such Fc region variants will generally comprise at least one amino acid modification in the Fc region. Combining amino acid modifications is thought to be particularly desirable. For example, the variant Fc region may include two, three, four, five, etc. substitutions therein, e.g., of the specific Fc region positions identified herein.


A variant Fc region may also comprise a sequence alteration wherein amino acids involved in disulfide bond formation are removed or replaced with other amino acids. Such removal may avoid reaction with other cysteine-containing proteins present in the host cell used to produce the antibodies described herein. Even when cysteine residues are removed, single chain Fc domains can still form a dimeric Fc domain that is held together non-covalently. In other embodiments, the Fc region may be modified to make it more compatible with a selected host cell. For example, one may remove the PA sequence near the N-terminus of a typical native Fc region, which may be recognized by a digestive enzyme in E. coli such as proline iminopeptidase. In other embodiments, one or more glycosylation sites within the Fc domain may be removed. Residues that are typically glycosylated (e.g., asparagine) may confer cytolytic response. Such residues may be deleted or substituted with unglycosylated residues (e.g., alanine). In other embodiments, sites involved in interaction with complement, such as the Clq binding site, may be removed from the Fc region. For example, one may delete or substitute the EKK sequence of human IgG1. In some embodiments, sites that affect binding to Fc receptors may be removed, preferably sites other than salvage receptor binding sites. In other embodiments, an Fc region may be modified to remove an ADCC site. ADCC sites are known in the art; see, for example, Molec. Immunol. 29 (5): 633-9 (1992) with regard to ADCC sites in IgG1. Specific examples of variant Fc domains are disclosed, for example, in WO 97/34631 and WO 96/32478.


In one embodiment, the hinge region of Fc is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased. This approach is described further in U.S. Pat. No. 5,677,425 by Bodmer et al. The number of cysteine residues in the hinge region of Fc is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody. In one embodiment, the Fc hinge region of an antibody is mutated to decrease the biological half-life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcal protein A (SpA) binding relative to native Fc-hinge domain SpA binding. This approach is described in further detail in U.S. Pat. No. 6,165,745 by Ward et al.


In yet other embodiments, the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector function(s) of the antibody. For example, one or more amino acids selected from amino acid residues 234, 235, 236, 237, 297, 318, 320 and 322 can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the CI component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260, both by Winter et al.


In another example, one or more amino acids selected from amino acid residues 329, 331 and 322 can be replaced with a different amino acid residue such that the antibody has altered Clq binding and/or reduced or abolished CDC. This approach is described in further detail in U.S. Pat. No. 6,194,551 by Idusogie et al.


In another example, one or more amino acid residues within amino acid positions 231 and 239 are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication WO 94/29351 by Bodmer et al.


In yet another example, the Fc region may be modified to increase ADCC and/or to increase the affinity for an Fcγ receptor by modifying one or more amino acids at the following positions: 234, 235, 236, 238, 239, 240, 241, 243, 244, 245, 247, 248, 249, 252, 254, 255, 256, 258, 262, 263, 264, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 299, 301, 303, 305, 307, 309, 312, 313, 315, 320, 322, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 433, 434, 435, 436, 437, 438 or 439. Exemplary substitutions include 236A, 239D, 239E, 268D, 267E, 268E, 268F, 324T, 332D, and 332E. Exemplary variants include 239D/332E, 236A/332E, 236A/239D/332E, 268F/324T, 267E/268F, 267E/324T, and 267E/268F7324T. Other modifications for enhancing FcγR and complement interactions include but are not limited to substitutions 298A, 333A, 334A, 326A, 2471, 339D, 339Q, 280H, 290S, 298D, 298V, 243L, 292P, 300L, 396L, 3051, and 396L. These and other modifications are reviewed in Strohl, 2009, Current Opinion in Biotechnology 20:685-691.


Fc modifications that increase binding to an Fcγ receptor include amino acid modifications at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 279, 280, 283, 285, 298, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 312, 315, 324, 327, 329, 330, 335, 337, 3338, 340, 360, 373, 376, 379, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in abat (WO00/42072).


Other Fc modifications that can be made to Fcs are those for reducing or ablating binding to FcγR and/or complement proteins, thereby reducing or ablating Fc-mediated effector functions such as ADCC, antibody-dependent cellular phagocytosis (ADCP), and CDC. Exemplary modifications include but are not limited substitutions, insertions, and deletions at positions 234, 235, 236, 237, 267, 269, 325, and 328, wherein numbering is according to the EU index. Exemplary substitutions include but are not limited to 234G, 235G, 236R, 237K, 267R, 269R, 325L, and 328R, wherein numbering is according to the EU index. An Fc variant may comprise 236R/328R. Other modifications for reducing FcγR and complement interactions include substitutions 297A, 234A, 235A, 237A, 318A, 228P, 236E, 268Q, 309L, 330S, 331S, 220S, 226S, 229S, 238S, 233P, and 234V, as well as removal of the glycosylation at position 297 by mutational or enzymatic means or by production in organisms such as bacteria that do not glycosylate proteins. These and other modifications are reviewed in Strohl, 2009, Current Opinion in Biotechnology 20:685-691.


Optionally, the Fc region may comprise a non-naturally occurring amino acid residue at additional and/or alternative positions known to one skilled in the art (see, e.g., U.S. Pat. Nos. 5,624,821; 6,277,375; 6,737,056; 6,194,551; 7,317,091; 8,101,720; WO00/42072; WO01/58957; WO02/06919; WO04/016750; WO04/029207; WO04/035752; WO04/074455; WO04/099249; WO04/063351; WO05/070963; WO05/040217, WO05/092925 and WO06/020114). Fc variants that enhance affinity for an inhibitory receptor FcγRIIb may also be used. Such variants may provide an Fc fusion protein with immune-modulatory activities related to FcγRIIb cells, including, for example, B cells and monocytes. In one embodiment, the Fc variants provide selectively enhanced affinity to FcγRIIb relative to one or more activating receptors. Modifications for altering binding to FcγRIIb include one or more modifications at a position selected from the group consisting of 234, 235, 236, 237, 239, 266, 267, 268, 325, 326, 327, 328, and 332, according to the EU index. Exemplary substitutions for enhancing FcγRIIb affinity include but are not limited to 234D, 234E, 234F, 234W, 235D, 235F, 235R, 235Y, 236D, 236N, 237D, 237N, 239D, 239E, 266M, 267D, 267E, 268D, 268E, 327D, 327E, 328F, 328W, 328Y, and 332E. Exemplary substitutions include 235Y, 236D, 239D, 266M, 267E, 268D, 268E, 328F, 328W, and 328Y. Other Fc variants for enhancing binding to FcγRllb include 235Y/267E, 236D/267E, 239D/268D, 239D/267E, 267E/268D, 267E/268E, and 267E/328F.


The affinities and binding properties of an Fc region for its ligand may be determined by a variety of in vitro assay methods (biochemical or immunological based assays) known in the art including but not limited to, equilibrium methods (e.g., ELISA, or radioimmunoassay), or kinetics (e.g., BIACORE analysis), and other methods such as indirect binding assays, competitive inhibition assays, fluorescence resonance energy transfer (FRET), gel electrophoresis and chromatography (e.g., gel filtration). These and other methods may utilize a label on one or more of the components being examined and/or employ a variety of detection methods including but not limited to chromogenic, fluorescent, luminescent, or isotopic labels. A detailed description of binding affinities and kinetics can be found in Paul, W. E., ed., Fundamental Immunology, 4th Ed., Lippincott-Raven, Philadelphia (1999), which focuses on antibody-immunogen interactions.


In some embodiments, the antibody is modified to increase its biological half-life. Various approaches are possible. For example, this may be done by increasing the binding affinity of the Fc region for FcRn. For example, one or more of the following residues can be mutated: 252, 254, 256, 433, 435, 436, as described in U.S. Pat. No. 6,277,375. Specific exemplary substitutions include one or more of the following: T252L, T254S, and/or T256F. Alternatively, to increase the biological half-life, the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Pat. Nos. 5,869,046 and 6,121,022 by Presta et al. Other exemplary variants that increase binding to FcRn and/or improve pharmacokinetic properties include substitutions at positions 259, 308, 428, and 434, including for example 2591, 308F, 428L, 428M, 434S, 434H, 434F, 434Y, and 434M. Other variants that increase Fc binding to FcRn include: 250E, 250Q, 428L, 428F, 250Q/428L (Hinton et al, 2004, J. Biol. Chem. 279(8): 6213-6216, Hinton et al. 2006 Journal of Immunology 176:346-356), 256A, 272A, 286A, 305A, 307A, 307Q, 311A, 312A, 376A, 378Q, 380A, 382A, 434A (Shields et al, Journal of Biological Chemistry, 2001, 276(9):6591-6604), 252F, 252T, 252Y, 252W, 254T, 256S, 256R, 256Q, 256E, 256D, 256T, 309P, 311S, 433R, 433S, 4331, 433P, 433Q, 434H, 434F, 434Y, 252Y/254T/256E, 433K/434F/436H, 308T/309P/311S (Dall Acqua et al. Journal of Immunology, 2002, 169:5171-5180, Dall'Acqua et al., 2006, Journal of Biological Chemistry 281:23514-23524). Other modifications for modulating FcRn binding are described in Yeung et al., 2010, J Immunol, 182:7663-7671. In some embodiments, hybrid IgG isotypes with particular biological characteristics may be used. For example, an IgG1/IgG3 hybrid variant may be constructed by substituting IgG 1 positions in the CH2 and/or CH3 region with the amino acids from IgG3 at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed that comprises one or more substitutions, e.g., 274Q, 276K, 300F, 339T, 356E, 358M, 384S, 392N, 397M, 4221, 435R, and 436F. In other embodiments described herein, an IgG1/IgG2 hybrid variant may be constructed by substituting IgG2 positions in the CH2 and/or CH3 region with amino acids from IgG1 at positions where the two isotypes differ. Thus a hybrid variant IgG antibody may be constructed chat comprises one or more substitutions, e.g., one or more of the following amino acid substitutions: 233E, 234L, 235L, 236G (referring to an insertion of a glycine at position 236), and 321 h.


Moreover, the binding sites on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn have been mapped and variants with improved binding have been described (see Shields, R. L. et al. (2001) J. Biol. Chem. 276:6591-6604). Specific mutations at positions 256, 290, 298, 333, 334, and 339 were shown to improve binding to FcγRIII Additionally, the following combination mutants were shown to improve FcγRIII binding: T256A/S298A, S298A/E333A, S298A/K224A, and S298A/E333A/K334A, which has been shown to exhibit enhanced FcγRIIIa binding and ADCC activity (Shields et al., 2001). Other IgG1 variants with strongly enhanced binding to FcγRIIIa have been identified, including variants with S239D/I332E and S239D/I332E/A330L mutations which showed the greatest increase in affinity for FcγRIIIa, a decrease in FcγRIIb binding, and strong cytotoxic activity in cynomolgus monkeys (Lazar et al., 2006). Introduction of the triple mutations into antibodies such as alemtuzumab (CD52-specific), trastuzumab (HER2/neu-specific), rituximab (CD20-specific), and cetuximab (EGFR-specific) translated into greatly enhanced ADCC activity in vitro, and the S239D/I332E variant showed an enhanced capacity to deplete B cells in monkeys (Lazar et al., 2006). In addition, IgG1 mutants containing L235V, F243L, R292P, Y300L and P396L mutations which exhibited enhanced binding to FcγRIIIa and concomitantly enhanced ADCC activity in transgenic mice expressing human FcγRIIIa in models of B cell malignancies and breast cancer have been identified (Stavenhagen et al., 2007; Nordstrom et al., 2011). Other Fc mutants that may be used include: S298A/E333A/L334A, S239D/I332E, S239D/I332E/A330L, L235V/F243L/R292P/Y300L/P396L, and M428L/N434S.


In some embodiments, an Fc is chosen that has reduced binding to FcγRs. An exemplary Fc, e.g., IgGl Fc, with reduced FcγR binding, comprises the following three amino acid substitutions: L234A, L235E, and G237A.


In some embodiments, an Fc is chosen that has reduced complement fixation. An exemplary Fc, e.g., IgG1 Fc, with reduced complement fixation, has the following two amino acid substitutions: A330S and P331S.


In some embodiments, an Fc is chosen that has essentially no effector function, i.e., it has reduced binding to FcγRs and reduced complement fixation. An exemplary Fc, e.g., IgGl Fc, that is effectorless, comprises the following five mutations: L234A, L235E, G237A, A330S, and P331S.


When using an IgG4 constant domain, it is usually preferable to include the substitution S228P, which mimics the hinge sequence in IgG1 and thereby stabilizes IgG4 molecules.


f. Multivalent Antibodies


In one embodiment, the antibodies of the invention may be monovalent or multivalent (e.g., bivalent, trivalent, etc.). As used herein, the term “valency” refers to the number of potential target binding sites associated with an antibody. Each target binding site specifically binds one target molecule or specific position or locus on a target molecule. When an antibody is monovalent, each binding site of the molecule will specifically bind to a single antigen position or epitope. When an antibody comprises more than one target binding site (multivalent), each target binding site may specifically bind the same or different molecules (e.g., may bind to different ligands or different antigens, or different epitopes or positions on the same antigen). See, for example, U.S.P.N. 2009/0129125. In each case, at least one of the binding sites will comprise an epitope, motif or domain associated with a DLL3 isoform.


In one embodiment, the antibodies are bispecific antibodies in which the two chains have different specificities, as described in Millstein et al., 1983, Nature, 305:537-539. Other embodiments include antibodies with additional specificities such as trispecific antibodies. Other more sophisticated compatible multispecific constructs and methods of their fabrication are set forth in U.S.P.N. 2009/0155255, as well as WO 94/04690; Suresh et al., 1986, Methods in Enzymology, 121:210; and WO96/27011.


As stated above, multivalent antibodies may immunospecifically bind to different epitopes of the desired target molecule or may immunospecifically bind to both the target molecule as well as a heterologous epitope, such as a heterologous polypeptide or solid support material. In some embodiments, the multivalent antibodies may include bispecific antibodies or trispecific antibodies. Bi specific antibodies also include cross-linked or “heteroconjugate” antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.


In some embodiments, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences, such as an immunoglobulin heavy chain constant domain comprising at least part of the hinge, CH2, and/or CH3 regions, using methods well known to those of ordinary skill in the art.


g. Antibody Derivatives


An antibody provided herein may be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available. The moieties suitable for derivatization of the antibody include but are not limited to water-soluble polymers.


Non-limiting examples of water-soluble polymers include, but are not limited to, PEG, copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1,3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, and mixtures thereof. Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water. The polymer may be of any molecular weight and may be branched or unbranched. The number of polymers attached to the antibody may vary, and if more than one polymer is attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody to be improved, whether the antibody derivative will be used in a therapy under defined conditions, etc.


In another embodiment, conjugates of an antibody and nonproteinaceous moiety that may be selectively heated by exposure to radiation are provided. In one embodiment, the nonproteinaceous moiety is a carbon nanotube (Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-11605 (2005)). The radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the antibody-nonproteinaceous moiety are killed.


Another modification of the antibodies described herein is pegylation. An antibody can be pegylated to, for example, increase the biological (e.g., serum) half-life of the antibody. To pegylate an antibody, the antibody, or fragment thereof, typically is reacted with PEG, such as a reactive ester or aldehyde derivative of PEG, under conditions in which one or more PEG groups become attached to the antibody or antibody fragment. Preferably, the pegylation is carried out via an acylation reaction or an alkylation reaction with a reactive PEG molecule (or an analogous reactive water-soluble polymer). As used herein, the term “polyethylene glycol” is intended to encompass any of the forms of PEG that have been used to derivatize other proteins, such as mono (CI-CIO) alkoxy- or aryloxy-polyethylene glycol or polyethylene glycol-maleimide. In some embodiments, the antibody to be pegylated is an aglycosylated antibody. Methods for pegylating proteins are known in the art and can be applied to the antibodies described herein. See, for example, EP 0 154 316 by Nishimura et al. and EP0401384 by Ishikawa et al.


The present invention also encompasses a human monoclonal antibody described herein conjugated to a therapeutic agent, a polymer, a detectable label or enzyme. In one embodiment, the therapeutic agent is a cytotoxic agent. In one embodiment, the polymer is PEG.


h. Nucleic Acids, Expression Cassettes, and Vectors


The present invention provides isolated nucleic acid segments that encode the polypeptides, peptide fragments, and coupled proteins of the invention. The nucleic acid segments of the invention also include segments that encode for the same amino acids due to the degeneracy of the genetic code. For example, the amino acid threonine is encoded by ACU, ACC, ACA, and ACG and is therefore degenerate. It is intended that the invention includes all variations of the polynucleotide segments that encode for the same amino acids. Such mutations are known in the art (Watson et al., Molecular Biology of the Gene, Benjamin Cummings 1987). Mutations also include alteration of a nucleic acid segment to encode for conservative amino acid changes, for example, the substitution of leucine for isoleucine and so forth. Such mutations are also known in the art. Thus, the genes and nucleotide sequences of the invention include both the naturally occurring sequences as well as mutant forms.


The nucleic acid segments of the invention may be contained within a vector. A vector may include, but is not limited to, any plasmid, phagemid, F-factor, virus, cosmid, or phage in a double- or single-stranded linear or circular form which may or may not be self transmissible or mobilizable. The vector can also transform a prokaryotic or eukaryotic host either by integration into the cellular genome or exist extra-chromosomally (e.g., autonomous replicating plasmid with an origin of replication).


Preferably the nucleic acid segment in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in vitro or in a host cell, such as a eukaryotic cell, or a microbe, e.g., bacteria. The vector may be a shuttle vector that functions in multiple hosts. The vector may also be a cloning vector that typically contains one or a small number of restriction endonuclease recognition sites at which foreign DNA sequences can be inserted in a determinable fashion. Such insertion can occur without loss of essential biological function of the cloning vector. A cloning vector may also contain a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Examples of marker genes are tetracycline resistance or ampicillin resistance. Many cloning vectors are commercially available (Stratagene, New England Biolabs, Clonetech).


The nucleic acid segments of the invention may also be inserted into an expression vector. Typically an expression vector contains prokaryotic DNA elements coding for a bacterial replication origin and an antibiotic resistance gene to provide for the amplification and selection of the expression vector in a bacterial host; regulatory elements that control initiation of transcription such as a promoter; and DNA elements that control the processing of transcripts such as introns, or a transcription termination/polyadenylation sequence.


Methods to introduce nucleic acid segment into a vector are available in the art (Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (2001)). Briefly, a vector into which a nucleic acid segment is to be inserted is treated with one or more restriction enzymes (restriction endonuclease) to produce a linearized vector having a blunt end, a “sticky” end with a 5′ or a 3′ overhang, or any combination of the above. The vector may also be treated with a restriction enzyme and subsequently treated with another modifying enzyme, such as a polymerase, an exonuclease, a phosphatase or a kinase, to create a linearized vector that has characteristics useful for ligation of a nucleic acid segment into the vector. The nucleic acid segment that is to be inserted into the vector is treated with one or more restriction enzymes to create a linearized segment having a blunt end, a “sticky” end with a 5′ or a 3′ overhang, or any combination of the above. The nucleic acid segment may also be treated with a restriction enzyme and subsequently treated with another DNA modifying enzyme. Such DNA modifying enzymes include, but are not limited to, polymerase, exonuclease, phosphatase or a kinase, to create a nucleic acid segment that has characteristics useful for ligation of a nucleic acid segment into the vector.


The treated vector and nucleic acid segment are then ligated together to form a construct containing a nucleic acid segment according to methods available in the art (Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (2001)). Briefly, the treated nucleic acid fragment, and the treated vector are combined in the presence of a suitable buffer and ligase. The mixture is then incubated under appropriate conditions to allow the ligase to ligate the nucleic acid fragment into the vector.


The invention also provides an expression cassette which contains a nucleic acid sequence capable of directing expression of a particular nucleic acid segment of the invention, either in vitro or in a host cell. Also, a nucleic acid segment of the invention may be inserted into the expression cassette such that an anti-sense message is produced. The expression cassette is an isolatable unit such that the expression cassette may be in linear form and functional for in vitro transcription and translation assays. The materials and procedures to conduct these assays are commercially available from Promega Corp. (Madison, Wis.). For example, an in vitro transcript may be produced by placing a nucleic acid sequence under the control of a T7 promoter and then using T7 RNA polymerase to produce an in vitro transcript. This transcript may then be translated in vitro through use of a rabbit reticulocyte lysate. Alternatively, the expression cassette can be incorporated into a vector allowing for replication and amplification of the expression cassette within a host cell or also in vitro transcription and translation of a nucleic acid segment.


Such an expression cassette may contain one or a plurality of restriction sites allowing for placement of the nucleic acid segment under the regulation of a regulatory sequence. The expression cassette can also contain a termination signal operably linked to the nucleic acid segment as well as regulatory sequences required for proper translation of the nucleic acid segment. The expression cassette containing the nucleic acid segment may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. The expression cassette may also be one that is naturally occurring but has been obtained in a recombinant form useful for heterologous expression. Expression of the nucleic acid segment in the expression cassette may be under the control of a constitutive promoter or an inducible promoter, which initiates transcription only when the host cell is exposed to some particular external stimulus.


The expression cassette may include in the 5′-3′ direction of transcription, a transcriptional and translational initiation region, a nucleic acid segment and a transcriptional and translational termination region functional in vivo and/or in vitro. The termination region may be native with the transcriptional initiation region, may be native with the nucleic acid segment, or may be derived from another source.


The regulatory sequence can be a polynucleotide sequence located upstream (5′ non-coding sequences), within, or downstream (3′ non-coding sequences) of a coding sequence, and which influences the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences can include, but are not limited to, enhancers, promoters, repressor binding sites, translation leader sequences, introns, and polyadenylation signal sequences. They may include natural and synthetic sequences as well as sequences, which may be a combination of synthetic and natural sequences. While regulatory sequences are not limited to promoters, some useful regulatory sequences include constitutive promoters, inducible promoters, regulated promoters, tissue-specific promoters, viral promoters, and synthetic promoters.


A promoter is a nucleotide sequence that controls the expression of the coding sequence by providing the recognition for RNA polymerase and other factors required for proper transcription. A promoter includes a minimal promoter, consisting only of all basal elements needed for transcription initiation, such as a TATA-box and/or initiator that is a short DNA sequence comprised of a TATA-box and other sequences that serve to specify the site of transcription initiation, to which regulatory elements are added for control of expression. A promoter may be derived entirely from a native gene, or be composed of different elements derived from different promoters found in nature, or even be comprised of synthetic DNA segments. A promoter may contain DNA sequences that are involved in the binding of protein factors that control the effectiveness of transcription initiation in response to physiological or developmental conditions.


The invention also provides a construct containing a vector and an expression cassette. The vector may be selected from, but not limited to, any vector previously described. Into this vector may be inserted an expression cassette through methods known in the art and previously described (Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (2001)). In one embodiment, the regulatory sequences of the expression cassette may be derived from a source other than the vector into which the expression cassette is inserted. In another embodiment, a construct containing a vector and an expression cassette is formed upon insertion of a nucleic acid segment of the invention into a vector that itself contains regulatory sequences. Thus, an expression cassette is formed upon insertion of the nucleic acid segment into the vector. Vectors containing regulatory sequences are available commercially, and methods for their use are known in the art (Clonetech, Promega, Stratagene).


In another aspect, this disclosure also provides (i) a nucleic acid molecule encoding a polypeptide chain of the antibody or antigen-binding fragment thereof described above; (ii) a vector comprising the nucleic acid molecule as described; and (iii) a cultured host cell comprising the vector as described. Also provided is a method for producing a polypeptide, comprising: (a) obtaining the cultured host cell as described; (b) culturing the cultured host cell in a medium under conditions permitting expression of a polypeptide encoded by the vector and assembling of an antibody or fragment thereof; and (c) purifying the antibody or fragment from the cultured cell or the medium of the cell.


i. Methods of Production


Antibodies may be produced using recombinant methods and compositions, e.g., as described in U.S. Pat. No. 4,816,567. In one embodiment, an isolated nucleic acid encoding an antibody described herein is provided. Such nucleic acid may encode an amino acid sequence comprising the VL and/or an amino acid sequence comprising the VH of the antibody (e.g., the light and/or heavy chains of the antibody). In a further embodiment, one or more vectors (e.g., expression vectors) comprising such nucleic acid are provided. In a further embodiment, a host cell comprising such nucleic acid is provided. In one such embodiment, a host cell comprises (e.g., has been transformed with): (1) a vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and an amino acid sequence comprising the VH of the antibody, or (2) a first vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and a second vector comprising a nucleic acid that encodes an amino acid sequence comprising the VH of the antibody. In one embodiment, the host cell is eukaryotic, e.g., a Chinese Hamster Ovary (CHO) cell or lymphoid cell (e.g., Y0, NS0, Sp20 cell). In one embodiment, a method of making an antibody is provided, wherein the method comprises culturing a host cell comprising a nucleic acid encoding the antibody, as provided above, under conditions suitable for expression of the antibody, and optionally recovering the antibody from the host cell (or host cell culture medium).


For recombinant production of an antibody, a nucleic acid encoding an antibody, e.g., as described above, is isolated and inserted into one or more vectors for further cloning and/or expression in a host cell. Such nucleic acid may be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).


Suitable host cells for cloning or expression of antibody-encoding vectors include prokaryotic or eukaryotic cells described herein. For example, antibodies may be produced in bacteria, in particular when glycosylation and Fc effector function are not needed. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. Pat. Nos. 5,648,237, 5,789,199, and 5,840,523. (See also Charlton, Methods in Molecular Biology, Vol. 248 (B. K. C. Lo, ed., Humana Press, Totowa, N.J., 2003), pp. 245-254, describing expression of antibody fragments in E. coli.) After expression, the antibody may be isolated from the bacterial cell paste in a soluble fraction and can be further purified.


In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for antibody-encoding vectors, including fungi and yeast strains whose glycosylation pathways have been “humanized,” resulting in the production of an antibody with a partially or fully human glycosylation pattern. See Gerngross, Nat. Biotech. 22:1409-1414 (2004), and Li et al., Nat. Biotech. 24:210-215 (2006).


Suitable host cells for the expression of glycosylated antibody are also derived from multicellular organisms (invertebrates and vertebrates). Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains have been identified, which may be used in conjunction with insect cells, particularly for transfection of Spodoptera frugiperda cells.


Plant cell cultures can also be utilized as hosts. See, e.g., U.S. Pat. Nos. 5,959,177, 6,040,498, 6,420,548, 7,125,978, and 6,417,429 (describing PLANTIBODIES technology for producing antibodies in transgenic plants).


Vertebrate cells may also be used as hosts. For example, mammalian cell lines that are adapted to grow in suspension may be useful. Other examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7); human embryonic kidney line (293 or 293 cells as described, e.g., in Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK); mouse sertoli cells (TM4 cells as described, e.g., in Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1); African green monkey kidney cells (VERO-76); human cervical carcinoma cells (HELA); canine kidney cells (MDCK; buffalo rat liver cells (BRL 3A); human lung cells (W138); human liver cells (Hep G2); mouse mammary tumor (MMT 060562); TRI cells, as described, e.g., in Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982); MRC 5 cells; and FS4 cells. Other useful mammalian host cell lines include CHO cells, including DHFR-CHO cells (Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); and myeloma cell lines such as Y0, NS0, and Sp2/0. For a review of certain mammalian host cell lines suitable for antibody production, see, e.g., Yazaki and Wu, Methods in Molecular Biology, Vol. 248 (B. K. C. Lo, ed., Humana Press, Totowa, N.J.), pp. 255-268 (2003).


B. COMPOSITIONS AND FORMULATIONS

The antibodies of this invention represent an excellent way for the development of antiviral therapies either alone or in antibody cocktails with additional anti-SARS-CoV-2 virus antibodies for the treatment of human SARS-CoV-2 infections in humans.


In another aspect, the present invention provides a pharmaceutical composition comprising the antibodies of the present invention described herein formulated together with a pharmaceutically acceptable carrier. The composition may optionally contain one or more additional pharmaceutically active ingredients, such as another antibody or a therapeutic agent.


In some embodiments, the pharmaceutical comprises two or more of the antibody or antigen-binding fragment thereof of described above, such as any combinations of the antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain that comprise the respective amino acid sequences of SEQ ID NOs: 1-2; 13-14; 25-26; 49-50, 55-56, 57-58, 65-66, 81-82, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912.


In some embodiments, the two or more of the antibody or antigen-binding fragment thereof comprise: (1) a first antibody set comprising: (i) a first antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 57-58; and (ii) a second antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 1-2, 55-56, 57-58, 65-66, 81-82, or 85-86; or (2) a second antibody set comprising: (a) a third antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of of SEQ ID NOs: 13-14, 49-50, 85-86113-114, 125-126, 2876 and 2888, or 2900 and 2912; and (b) a fourth antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of of SEQ ID NOs: 13-14, 49-50, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912, wherein the third antibody is different from the fourth antibody.


The pharmaceutical compositions of the invention also can be administered in a combination therapy with, for example, another immune-stimulatory agent, an antiviral agent, or a vaccine, etc. In some embodiments, a composition comprises an antibody of this invention at a concentration of at least 1 mg/ml, 5 mg/ml, 10 mg/ml, 50 mg/ml, 100 mg/ml, 150 mg/ml, 200 mg/ml, 1-300 mg/ml, or 100-300 mg/ml.


In some embodiments, the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound. In some embodiments, the antiviral compound comprises: a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase. In some embodiments, the antiviral compound may include: acyclovir, gancyclovir, vidarabine, foscarnet, cidofovir, amantadine, ribavirin, trifluorothymidine, zidovudine, didanosine, zalcitabine or an interferon. In some embodiments, the interferon is an interferon-α or an interferon-β.


Also within the scope of this disclosure is use of the pharmaceutical composition in the preparation of a medicament for the diagnosis, prophylaxis, treatment, or combination thereof of a condition resulting from a SARS-CoV-2.


The pharmaceutical composition can comprise any number of excipients. Excipients that can be used include carriers, surface-active agents, thickening or emulsifying agents, solid binders, dispersion or suspension aids, solubilizers, colorants, flavoring agents, coatings, disintegrating agents, lubricants, sweeteners, preservatives, isotonic agents, and combinations thereof. The selection and use of suitable excipients is taught in Gennaro, ed., Remington: The Science and Practice of Pharmacy, 20th Ed. (Lippincott Williams & Wilkins 2003), the disclosure of which is incorporated herein by reference.


Preferably, a pharmaceutical composition is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound can be coated in a material to protect it from the action of acids and other natural conditions that may inactivate it. The phrase “parenteral administration” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion. Alternatively, an antibody of the present invention described herein can be administered via a non-parenteral route, such as a topical, epidermal or mucosal route of administration, e.g., intranasally, orally, vaginally, rectally, sublingually or topically.


The pharmaceutical compositions of the invention may be prepared in many forms that include tablets, hard or soft gelatin capsules, aqueous solutions, suspensions, and liposomes and other slow-release formulations, such as shaped polymeric gels. An oral dosage form may be formulated such that the antibody is released into the intestine after passing through the stomach. Such formulations are described in U.S. Pat. No. 6,306,434 and in the references contained therein.


Oral liquid pharmaceutical compositions may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid pharmaceutical compositions may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), or preservatives.


An antibody can be formulated for parenteral administration (e.g., by injection, for example, bolus injection or continuous infusion) and may be presented in unit dosage form in ampules, prefilled syringes, small volume infusion containers or multi-dose containers with an added preservative. The pharmaceutical compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical compositions suitable for rectal administration can be prepared as unit dose suppositories. Suitable carriers include saline solution and other materials commonly used in the art.


For administration by inhalation, an antibody can be conveniently delivered from an insufflator, nebulizer or a pressurized pack or other convenient means of delivering an aerosol spray. Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount.


Alternatively, for administration by inhalation or insufflation, an antibody may take the form of a dry powder composition, for example, a powder mix of a modulator and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form in, for example, capsules or cartridges or, e.g., gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator. For intra-nasal administration, an antibody may be administered via a liquid spray, such as via a plastic bottle atomizer.


Pharmaceutical compositions of the invention may also contain other ingredients such as flavorings, colorings, anti-microbial agents, or preservatives. It will be appreciated that the amount of an antibody required for use in treatment will vary not only with the particular carrier selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient. Ultimately the attendant health care provider may determine proper dosage. In addition, a pharmaceutical composition may be formulated as a single unit dosage form.


The pharmaceutical composition of the present invention can be in the form of sterile aqueous solutions or dispersions. It can also be formulated in a microemulsion, liposome, or other ordered structure suitable to high drug concentration.


An antibody of the present invention described herein can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. In general, human antibodies show the longest half-life, followed by humanized antibodies, chimeric antibodies, and nonhuman antibodies. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably, until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime.


The amount of active ingredient that can be combined with a carrier material to produce a single dosage form will vary depending upon the subject being treated and the particular mode of administration and will generally be that amount of the composition, which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.01% to about 99% of active ingredient, preferably from about 0.1% to about 70%, most preferably from about 1% to about 30% of active ingredient in combination with a pharmaceutically acceptable carrier.


Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus can be administered, several divided doses can be administered over time or the dose can be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Alternatively, the antibody can be administered as a sustained release formulation, in which case less frequent administration is required. For administration of the antibody, the dosage ranges from about 0.0001 to 800 mg/kg, and more usually 0.01 to 5 mg/kg, of the host body weight. For example dosages can be 0.3 mg/kg body weight, 1 mg/kg body weight, 3 mg/kg body weight, 5 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg. An exemplary treatment regime entails administration once per week, once every two weeks, once every three weeks, once every four weeks, once a month, once every 3 months or once every three to 6 months. Preferred dosage regimens for an antibody of the invention include 1 mg/kg body weight or 3 mg/kg body weight via intravenous administration, with the antibody being given using one of the following dosing schedules: (i) every four weeks for six dosages, then every three months; (ii) every three weeks; (iii) 3 mg/kg body weight once followed by 1 mg/kg body weight every three weeks. In some methods, dosage is adjusted to achieve a plasma antibody concentration of about 1-1000 μg/ml and in some methods about 25-300 μg/ml. A “therapeutically effective dosage” of an antibody of the invention preferably results in a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. For example, for the treatment of SARS-CoV-2 infection in a subject, a “therapeutically effective dosage” preferably inhibits SARS-CoV-2 virus replication or uptake by host cells by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects. A therapeutically effective amount of a therapeutic compound can neutralize SARS-CoV-2 virus, or otherwise ameliorate symptoms in a subject, which is typically a human or can be another mammal.


The pharmaceutical composition can be a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.


Therapeutic compositions can be administered via medical devices such as (1) needleless hypodermic injection devices (e.g., U.S. Pat. Nos. 5,399,163; 5,383,851; 5,312,335; 5,064,413; 4,941,880; 4,790,824; and 4,596,556); (2) micro-infusion pumps (U.S. Pat. No. 4,487,603); (3) transdermal devices (U.S. Pat. No. 4,486,194); (4) infusion apparati (U.S. Pat. Nos. 4,447,233 and 4,447,224); and (5) osmotic devices (U.S. Pat. Nos. 4,439,196 and 4,475,196); the disclosures of which are incorporated herein by reference.


In some embodiments, the human monoclonal antibodies of the invention described herein can be formulated to ensure proper distribution in vivo. For example, to ensure that the therapeutic compounds of the invention cross the blood-brain barrier, they can be formulated in liposomes, which may additionally comprise targeting moieties to enhance selective transport to specific cells or organs. See, e.g., U.S. Pat. Nos. 4,522,811; 5,374,548; 5,416,016; and 5,399,331; V. V. Ranade (1989) Clin. Pharmacol. 29:685; Umezawa et al., (1988) Biochem. Biophys. Res. Commun. 153:1038; Bloeman et al. (1995) FEBS Lett. 357:140; M. Owais et al. (1995) Antimicrob. Agents Chemother. 39:180; Briscoe et al. (1995) Am. Physiol. 1233:134; Schreier et al. (1994). Biol. Chem. 269:9090; Keinanen and Laukkanen (1994) FEBS Lett. 346:123; and Killion and Fidler (1994) Immunomethods 4:273.


In some embodiments, the initial dose may be followed by administration of a second or a plurality of subsequent doses of the antibody or antigen-binding fragment thereof in an amount that can be approximately the same or less than that of the initial dose, wherein the subsequent doses are separated by at least 1 day to 3 days; at least one week, at least 2 weeks; at least 3 weeks; at least 4 weeks; at least 5 weeks; at least 6 weeks; at least 7 weeks; at least 8 weeks; at least 9 weeks; at least 10 weeks; at least 12 weeks; or at least 14 weeks.


Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor-mediated endocytosis (see, e.g., Wu et al. (1987) J. Biol. Chem. 262:4429-4432). Methods of introduction include, but are not limited to, intradermal, transdermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. The pharmaceutical composition can also be delivered in a vesicle, in particular, a liposome (see, for example, Langer (1990) Science 249: 1527-1533).


The use of nanoparticles to deliver the antibodies of the present invention is also contemplated herein. Antibody-conjugated nanoparticles may be used both for therapeutic and diagnostic applications. Antibody-conjugated nanoparticles and methods of preparation and use are described in detail by Arruebo, M., et al. 2009 (“Antibody-conjugated nanoparticles for biomedical applications” in J. Nanomat. Volume 2009, Article ID 439389), incorporated herein by reference. Nanoparticles may be developed and conjugated to antibodies contained in pharmaceutical compositions to target cells. Nanoparticles for drug delivery have also been described in, for example, U.S. Pat. No. 8,257,740, or U.S. Pat. No. 8,246,995, each incorporated herein in its entirety.


In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In one embodiment, a pump may be used. In another embodiment, polymeric materials can be used. In yet another embodiment, a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose.


The injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous, intracranial, intraperitoneal and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known. For example, the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared is preferably filled in an appropriate ampoule.


A pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe. In addition, with respect to subcutaneous delivery, a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention. Such a pen delivery device can be reusable or disposable. A reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused. In a disposable pen delivery device, there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded.


Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention. Examples include, but certainly are not limited to AUTOPEN™ (Owen Mumford, Inc., Woodstock, UK), DISETRONIC™ pen (Disetronic Medical Systems, Burghdorf, Switzerland), HUMALOG MIX 75/25™ pen, HUMALOG™ pen, HUMALIN 70/30™ pen (Eli Lilly and Co., Indianapolis, Ind.), NOVOPEN™ I, II and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIOR™ (Novo Nordisk, Copenhagen, Denmark), BD™ pen (Becton Dickinson, Franklin Lakes, N.J.), OPTIPEN™, OPTIPEN PRO™, OPTIPEN STARLET™, and OPTICLIK™ (Sanofi-Aventis, Frankfurt, Germany), to name only a few. Examples of disposable pen delivery devices having applications in subcutaneous delivery of a pharmaceutical composition of the present invention include, but certainly are not limited to the SOLOSTAR™ pen (Sanofi-Aventis), the FLEXPEN™ (Novo Nordisk), and the KWIKPEN™ (Eli Lilly), the SURECLICK™ Autoinjector (Amgen, Thousand Oaks, Calif.), the PENLET™ (Haselmeier, Stuttgart, Germany), the EPIPEN (Dey, L. P.) and the HUMIRA™ Pen (Abbott Labs, Abbott Park, Ill.), to name only a few.


Advantageously, the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients. Such dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc. The amount of the antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, it is preferred that the antibody is contained in about 5 to about 300 mg and in about 10 to about 300 mg for the other dosage forms.


C. METHODS AND USES

a. Methods of Treatment


The antibodies, compositions, and formulations described herein can be used to neutralize SARS-CoV-2 virus and thereby treating or preventing SARS-CoV-2 infections.


Accordingly, in one aspect, this disclosure further provides a method of neutralizing SARS-CoV-2 in a subject, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof or a therapeutically effective amount of the pharmaceutical composition, as described above.


In another aspect, this disclosure additionally provides a method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of the antibody or antigen-binding fragment thereof or a therapeutically effective amount of the pharmaceutical composition, as described above.


The neutralizing of the SARS-CoV-2 virus can be done via (i) inhibiting SARS-CoV-2 virus binding to a target cell; (ii) inhibiting SARS-CoV-2 virus uptake by a target cell; (iii) inhibiting SARS-CoV-2 virus replication; and (iv) inhibiting SARS-CoV-2 virus particles release from infected cells. One skilled in the art possesses the ability to perform any assay to assess neutralization of SARS-CoV-2 virus.


Notably, the neutralizing properties of antibodies may be assessed by a variety of tests, which all may assess the consequences of (i) inhibition of SARS-CoV-2 virus binding to a target cell; (ii) inhibition of SARS-CoV-2 virus uptake by a target cell; (iii) inhibition of SARS-CoV-2 virus replication; and (iv) inhibition of SARS-CoV-2 virus particles release from infected cells. In other words, implementing different tests may lead to the observation of the same consequence, i.e., the loss of infectivity of the SARS-CoV-2 virus. Thus, in one embodiment, the present invention provides a method of neutralizing SARS-CoV-2 virus in a subject comprising administering to the subject a therapeutically effective amount of the antibody of the present invention described herein.


Another aspect of the present invention provides a method of treating a SARS-CoV-2-related disease. Such a method includes therapeutic (following SARS-CoV-2 infection) and prophylactic (prior to SARS-CoV-2 exposure, infection or pathology). For example, therapeutic and prophylactic methods of treating an individual for a SARS-CoV-2 infection include treatment of an individual having or at risk of having a SARS-CoV-2 infection or pathology, treating an individual with a SARS-CoV-2 infection, and methods of protecting an individual from a SARS-CoV-2 infection, to decrease or reduce the probability of a SARS-CoV-2 infection in an individual, to decrease or reduce susceptibility of an individual to a SARS-CoV-2 infection, or to inhibit or prevent a SARS-CoV-2 infection in an individual, and to decrease, reduce, inhibit or suppress transmission of a SARS-CoV-2 from an infected individual to an uninfected individual. Such methods include administering an antibody of the present invention or a composition comprising the antibody disclosed herein to therapeutically or prophylactically treat (vaccinate or immunize) an individual having or at risk of having a SARS-CoV-2 infection or pathology. Accordingly, methods can treat the SARS-CoV-2 infection or pathology, or provide the individual with protection from infection (e.g., prophylactic protection).


In one embodiment, a method of treating a SARS-CoV-2-related disease comprises administering to an individual in need thereof an antibody or therapeutic composition disclosed herein in an amount sufficient to reduce one or more physiological conditions or symptoms associated with a SARS-CoV-2 infection or pathology, thereby treating the SARS-CoV-2-related disease.


In one embodiment, an antibody or therapeutic composition disclosed herein is used to treat a SARS-CoV-2-related disease. Use of an antibody or therapeutic composition disclosed herein treats a SARS-CoV-2-related disease by reducing one or more physiological conditions or symptoms associated with a SARS-CoV-2 infection or pathology. In aspects of this embodiment, administration of an antibody or therapeutic composition disclosed herein is in an amount sufficient to reduce one or more physiological conditions or symptoms associated with a SARS-CoV-2 infection or pathology, thereby treating the SARS-CoV-2-based disease. In other aspects of this embodiment, administration of an antibody or therapeutic composition disclosed herein is in an amount sufficient to increase, induce, enhance, augment, promote or stimulate SARS-CoV-2 clearance or removal; or decrease, reduce, inhibit, suppress, prevent, control, or limit transmission of SARS-CoV-2 to another individual.


One or more physiological conditions or symptoms associated with a SARS-CoV-2 infection or pathology will respond to a method of treatment disclosed herein. The symptoms of SARS-CoV-2 infection or pathology vary, depending on the phase of infection.


In some embodiments, the method of neutralizing SARS-CoV-2 in a subject comprises administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of the antibody or antigen-binding fragment or a therapeutically effective amount of the pharmaceutical composition, as described above, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity.


In some embodiments, the method of preventing or treating a SARS-CoV-2 infection, comprising administering to a subject in need thereof a therapeutically effective amount of a first antibody or antigen-binding fragment thereof and a second antibody or antigen-binding fragment thereof of the antibody or antigen-binding fragment or a therapeutically effective amount of the pharmaceutical composition, as described above, wherein the first antibody or antigen-binding fragment thereof and the second antibody or antigen binding fragment thereof exhibit synergistic activity. In some embodiments, the first antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second antibody or antigen-binding fragment thereof.


In some embodiments, the first antibody or antigen-binding fragment thereof and the second antibody or antigen-binding fragment thereof can be any combinations of the antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain that comprise the respective amino acid sequences of SEQ ID NOs: 1-2; 13-14; 25-26; 49-50, 55-56, 57-58, 65-66, 81-82, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912.


In some embodiments, the first antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 57-58 and the second antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 1-2, 55-56, 57-58, 65-66, 81-82, or 85-86.


In some embodiments, the first antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 13-14, 49-50, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912, and the second antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 13-14, 49-50, 85-86, 113-114, 125-126, 2876 and 2888, or 2900 and 2912, wherein the first antibody and the second antibody are different.


In some embodiments, the method comprises administering to the subject a therapeutically effective amount of a second therapeutic agent or therapy. In some embodiments, the antibody or antigen-binding fragment thereof comprises a heavy chain variable region and a light chain variable region comprising the respective amino acid sequences of SEQ ID NOs: 57-58; and the second therapeutic agent or therapy comprises an antibody or antigen-binding fragment thereof comprising a heavy chain variable region and a light chain variable region that comprise the respective amino acid sequences of SEQ ID NOs: 1-2, 55-56, 57-58, 65-66, 81-82, or 85-86.


In some embodiments, the second therapeutic agent comprises an anti-inflammatory drug or an antiviral compound. In some embodiments, the antiviral compound comprises: a nucleoside analog, a peptoid, an oligopeptide, a polypeptide, a protease inhibitor, a 3C-like protease inhibitor, a papain-like protease inhibitor, or an inhibitor of an RNA dependent RNA polymerase. In some embodiments, the antiviral compound may include: acyclovir, gancyclovir, vidarabine, foscarnet, cidofovir, amantadine, ribavirin, trifluorothymidine, zidovudine, didanosine, zalcitabine or an interferon. In some embodiments, the interferon is an interferon-α or an interferon-β.


In some embodiments, the antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second therapeutic agent or therapy. In some embodiments, the antibody or antigen-binding fragment thereof is administered to the subject intravenously, subcutaneously, or intraperitoneally. In some embodiments, the antibody or antigen-binding fragment thereof is administered prophylactically or therapeutically.


The antibodies described herein can be used together with one or more of other anti-SARS-CoV-2 virus antibodies to neutralize SARS-CoV-2 virus and thereby treating SARS-CoV-2 infections.


b. Combination Therapies


Combination therapies may include an anti-SARS-CoV-2 antibody of the invention and any additional therapeutic agent that may be advantageously combined with an antibody of the invention or with a biologically active fragment of an antibody of the invention. The antibodies of the present invention may be combined synergistically with one or more drugs or therapy used to treat a disease or disorder associated with a viral infection, such as a SARS-CoV-2 infection. In some embodiments, the antibodies of the invention may be combined with a second therapeutic agent to ameliorate one or more symptoms of said disease. In some embodiments, the antibodies of the invention may be combined with a second antibody to provide synergistic activity in ameliorating one or more symptoms of said disease. In some embodiments, the first antibody or antigen-binding fragment thereof is administered before, after, or concurrently with the second antibody or antigen-binding fragment thereof.


For example, the antibody described herein can be used in various detection methods for use in, e.g., monitoring the progression of a SARS-CoV-2 infection; monitoring patient response to treatment for such an infection, etc. The present disclosure provides methods of detecting a neuraminidase polypeptide in a biological sample obtained from an individual. The methods generally involve: a) contacting the biological sample with a subject anti-neuraminidase antibody; and b) detecting binding, if any, of the antibody to an epitope present in the sample. In some instances, the antibody comprises a detectable label. The level of neuraminidase polypeptide detected in the biological sample can provide an indication of the stage, degree, or severity of a SARS-CoV-2 infection. The level of the neuraminidase polypeptide detected in the biological sample can provide an indication of the individual's response to treatment for a SARS-CoV-2 infection.


In some embodiments, the second therapeutic agent is another antibody to a SARS-COV-2 protein or a fragment thereof. It is contemplated herein to use a combination (“cocktail”) of antibodies with broad neutralization or inhibitory activity against SARS-COV-2. In some embodiments, non-competing antibodies may be combined and administered to a subject in need thereof. In some embodiments, the antibodies comprising the combination bind to distinct non-overlapping epitopes on the protein. In some embodiments, the second antibody may possess longer half-life in human serum.


As used herein, the term “in combination with” means that additional therapeutically active component(s) may be administered prior to, concurrent with, or after the administration of the anti-SARS-COV-2 antibody of the present invention. The term “in combination with” also includes sequential or concomitant administration of an anti-SARS-COV-2 antibody and a second therapeutic agent.


The additional therapeutically active component(s) may be administered to a subject prior to administration of an anti-SARS-COV-2 antibody of the present invention. For example, a first component may be deemed to be administered “prior to” a second component if the first component is administered 1 week before, 72 hours before, 60 hours before, 48 hours before, 36 hours before, 24 hours before, 12 hours before, 6 hours before, 5 hours before, 4 hours before, 3 hours before, 2 hours before, 1 hour before, 30 minutes before, 15 minutes before, 10 minutes before, 5 minutes before, or less than 1 minute before administration of the second component. In other embodiments, the additional therapeutically active component(s) may be administered to a subject after administration of an anti-SARS-COV-2 antibody of the present invention. For example, a first component may be deemed to be administered “after” a second component if the first component is administered 1 minute after, 5 minutes after, 10 minutes after, 15 minutes after, 30 minutes after, 1 hour after, 2 hours after, 3 hours after, 4 hours after, 5 hours after, 6 hours after, 12 hours after, 24 hours after, 36 hours after, 48 hours after, 60 hours after, 72 hours after administration of the second component. In yet other embodiments, the additional therapeutically active component(s) may be administered to a subject concurrent with administration of an anti-SARS-COV-2 antibody of the present invention. “Concurrent” administration, for purposes of the present invention, includes, e.g., administration of an anti-SARS-COV-2 antibody and an additional therapeutically active component to a subject in a single dosage form, or in separate dosage forms administered to the subject within about 30 minutes or less of each other. If administered in separate dosage forms, each dosage form may be administered via the same route (e.g., both the anti-SARS-COV-2 antibody and the additional therapeutically active component may be administered intravenously, etc.); alternatively, each dosage form may be administered via a different route (e.g., the anti-SARS-COV-2 antibody may be administered intravenously, and the additional therapeutically active component may be administered orally). In any event, administering the components in a single dosage from, in separate dosage forms by the same route, or in separate dosage forms by different routes are all considered “concurrent administration,” for purposes of the present disclosure. For purposes of the present disclosure, administration of an anti-SARS-COV-2 antibody “prior to,” “concurrent with,” or “after” (as those terms are defined hereinabove) administration of an additional therapeutically active component is considered administration of an anti-SARS-COV-2 antibody “in combination with” an additional therapeutically active component.


The present invention includes pharmaceutical compositions in which an anti-SARS-COV-2 antibody of the present invention is co-formulated with one or more of the additional therapeutically active component(s) as described elsewhere herein.


c. Administration Regimens


According to certain embodiments, a single dose of an anti-SARS-COV-2 antibody of the invention (or a pharmaceutical composition comprising a combination of an anti-SARS-COV-2 antibody and any of the additional therapeutically active agents mentioned herein) may be administered to a subject in need thereof. According to certain embodiments of the present invention, multiple doses of an anti-SARS-COV-2 antibody (or a pharmaceutical composition comprising a combination of an anti-SARS-COV-2 antibody and any of the additional therapeutically active agents mentioned herein) may be administered to a subject over a defined time course. The methods according to this aspect of the invention comprise sequentially administering to a subject multiple doses of an anti-SARS-COV-2 antibody of the invention. As used herein, “sequentially administering” means that each dose of anti-SARS-COV-2 antibody is administered to the subject at a different point in time, e.g., on different days separated by a predetermined interval (e.g., hours, days, weeks or months). The present invention includes methods which comprise sequentially administering to the patient a single initial dose of an anti-SARS-COV-2 antibody, followed by one or more secondary doses of the anti-SARS-COV-2 antibody, and optionally followed by one or more tertiary doses of the anti-SARS-COV-2 antibody.


The terms “initial dose,” “secondary doses,” and “tertiary doses,” refer to the temporal sequence of administration of the anti-SARS-COV-2 antibody of the invention. Thus, the “initial dose” is the dose which is administered at the beginning of the treatment regimen (also referred to as the “baseline dose”); the “secondary doses” are the doses which are administered after the initial dose; and the “tertiary doses” are the doses which are administered after the secondary doses. The initial, secondary, and tertiary doses may all contain the same amount of anti-SARS-COV-2 antibody, but generally may differ from one another in terms of frequency of administration. In some embodiments, however, the amount of anti-SARS-COV-2 antibody contained in the initial, secondary and/or tertiary doses varies from one another (e.g., adjusted up or down as appropriate) during the course of treatment. In some embodiments, two or more (e.g., 2, 3, 4, or 5) doses are administered at the beginning of the treatment regimen as “loading doses” followed by subsequent doses that are administered on a less frequent basis (e.g., “maintenance doses”).


In certain exemplary embodiments of the present invention, each secondary and/or tertiary dose is administered 1 to 48 hours (e.g., 1, 1½, 2, 2½, 3, 3½, 4, 4½, 5, 5½, 6, 6½, 7, 7½, 8, 8½, 9, 9½, 10, 10½, 11, 11½, 12, 12½, 13, 13½, 14, 14½, 15, 15½, 16, 16½, 17, 17½, 18, 18½, 19, 19½, 20, 20½, 21, 21½, 22, 22½, 23, 23½, 24, 24½, 25, 25½, 26, 26½, or more) after the immediately preceding dose. The phrase “the immediately preceding dose,” as used herein, means, in a sequence of multiple administrations, the dose of anti-SARS-COV-2 antibody, which is administered to a patient prior to the administration of the very next dose in the sequence with no intervening doses.


The methods, according to this aspect of the invention, may comprise administering to a patient any number of secondary and/or tertiary doses of an anti-SARS-COV-2 antibody. For example, In some embodiments, only a single secondary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) secondary doses are administered to the patient. Likewise, In some embodiments, only a single tertiary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) tertiary doses are administered to the patient.


In some embodiments of the invention, the frequency at which the secondary and/or tertiary doses are administered to a patient can vary over the course of the treatment regimen. The frequency of administration may also be adjusted during the course of treatment by a physician depending on the needs of the individual patient following clinical examination.


d. Diagnostic Uses of the Antibodies


The anti-SARS-COV-2 antibodies of the present invention may be used to detect and/or measure SARS-COV-2 in a sample, e.g., for diagnostic purposes. Some embodiments contemplate the use of one or more antibodies of the present invention in assays to detect a SARS-COV-2-associated-disease or disorder. Exemplary diagnostic assays for SARS-COV-2 may comprise, e.g., contacting a sample, obtained from a patient, with an anti-SARS-COV-2 antibody of the invention, wherein the anti-SARS-COV-2 antibody is labeled with a detectable label or reporter molecule or used as a capture ligand to selectively isolate SARS-COV-2 from patient samples. Alternatively, an unlabeled anti-SARS-COV-2 antibody can be used in diagnostic applications in combination with a secondary antibody, which is itself detectably labeled. The detectable label or reporter molecule can be a radioisotope, such as H, C, P, S, or I; a fluorescent or chemiluminescent moiety such as fluorescein isothiocyanate, or rhodamine; or an enzyme such as alkaline phosphatase, β-galactosidase, horseradish peroxidase, or luciferase. Specific exemplary assays that can be used to detect or measure SARS-COV-2 in a sample include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (MA), and fluorescence-activated cell sorting (FACS).


In another aspect, this disclosure further provides a method for detecting the presence of SARS CoV-2 in a sample comprising the steps of: (i) contacting a sample with the antibody or antigen-binding fragment thereof described above; and (ii) determining binding of the antibody or antigen-binding fragment to one or more SARS CoV-2 antigens, wherein binding of the antibody to the one or more SARS CoV-2 antigens is indicative of the presence of SARS CoV-2 in the sample.


In some embodiments, the SARS-CoV-2 antigen comprises a S polypeptide, such as a S polypeptide of a human or an animal SARS-CoV-2. In some embodiments, the SARS-CoV-2 antigen comprises the receptor-binding domain (RBD) of the S polypeptide. In some embodiments, the RBD comprises amino acids 319-541 of the S polypeptide.


In some embodiments, the antibody or antigen-binding fragment thereof is conjugated to a label. In some embodiments, the step of detecting comprises contacting a secondary antibody with the antibody or antigen-binding fragment thereof and wherein the secondary antibody comprises a label. In some embodiments, the label includes a fluorescent label, a chemiluminescent label, a radiolabel, and an enzyme.


In some embodiments, the step of detecting comprises detecting fluorescence or chemiluminescence. In some embodiments, the step of detecting comprises a competitive binding assay or ELISA.


In some embodiments, the method further comprises binding the sample to a solid support. In some embodiments, the solid support includes microparticles, microbeads, magnetic beads, and an affinity purification column.


Samples that can be used in SARS-COV-2 diagnostic assays according to the present invention include any tissue or fluid sample obtainable from a patient, which contains detectable quantities of either SARS-COV-2 protein, or fragments thereof, under normal or pathological conditions. Generally, levels of SARS-COV-2 protein in a particular sample obtained from a healthy patient (e.g., a patient not afflicted with a disease associated with SARS-COV-2) will be measured to initially establish a baseline, or standard, level of SARS-COV-2. This baseline level of SARS-COV-2 can then be compared against the levels of SARS-COV-2 measured in samples obtained from individuals suspected of having a SARS-COV-2-associated condition, or symptoms associated with such condition.


The antibodies specific for SARS-COV-2 protein may contain no additional labels or moieties, or they may contain an N-terminal or C-terminal label or moiety. In one embodiment, the label or moiety is biotin. In a binding assay, the location of a label (if any) may determine the orientation of the peptide relative to the surface upon which the peptide is bound. For example, if a surface is coated with avidin, a peptide containing an N-terminal biotin will be oriented such that the C-terminal portion of the peptide will be distal to the surface.


D. KITS

In another aspect, this disclosure provides a kit comprising a pharmaceutically acceptable dose unit of the antibody or antigen-binding fragment thereof of or the pharmaceutical composition as described above. Also within the scope of this disclosure is a kit for the diagnosis, prognosis or monitoring the treatment of SARS-CoV-2 in a subject, comprising: the antibody or antigen-binding fragment thereof as described; and a least one detection reagent that binds specifically to the antibody or antigen-binding fragment thereof.


In some embodiments, the kit also includes a container that contains the composition and optionally informational material. The informational material can be descriptive, instructional, marketing or other material that relates to the methods described herein and/or the use of the agents for therapeutic benefit. In an embodiment, the kit also includes an additional therapeutic agent, as described above. For example, the kit includes a first container that contains the composition and a second container for the additional therapeutic agent.


The informational material of the kits is not limited in its form. In some embodiments, the informational material can include information about production of the composition, concentration, date of expiration, batch or production site information, and so forth. In one embodiment, the informational material relates to methods of administering the composition, e.g., in a suitable dose, dosage form, or mode of administration (e.g., a dose, dosage form, or mode of administration described herein), to treat a subject in need thereof. In one embodiment, the instructions provide a dosing regimen, dosing schedule, and/or route of administration of the composition or the additional therapeutic agent. The information can be provided in a variety of formats, including printed text, computer-readable material, video recording, or audio recording, or information that contains a link or address to substantive material.


The kit can include one or more containers for the composition. In some embodiments, the kit contains separate containers, dividers or compartments for the composition and informational material. For example, the composition can be contained in a bottle or vial, and the informational material can be contained in a plastic sleeve or packet. In other embodiments, the separate elements of the kit are contained within a single, undivided container. For example, the composition is contained in a bottle or vial that has attached thereto the informational material in the form of a label. In some embodiments, the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms (e.g., a dosage form described herein) of the agents.


The kit optionally includes a device suitable for administration of the composition or other suitable delivery device. The device can be provided pre-loaded with one or both of the agents or can be empty, but suitable for loading. Such a kit may optionally contain a syringe to allow for injection of the antibody contained within the kit into an animal, such as a human.


E. DEFINITIONS

To aid in understanding the detailed description of the compositions and methods according to the disclosure, a few express definitions are provided to facilitate an unambiguous disclosure of the various aspects of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.


The term “antibody” as referred to herein includes whole antibodies and any antigen-binding fragment or single chains thereof. Whole antibodies are glycoproteins comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The heavy chain variable region CDRs and FRs are HFR1, HCDR1, HFR2, HCDR2, HFR3, HCDR3, HFR4. The light chain variable region CDRs and FRs are LFR1, LCDR1, LFR2, LCDR2, LFR3, LCDR3, LFR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies can mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (CIq) of the classical complement system.


The term “antigen-binding fragment or portion” of an antibody (or simply “antibody fragment or portion”), as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., a Spike or S protein of SARS-CoV-2 virus). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term “antigen-binding fragment or portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fab′ fragment, which is essentially a Fab with part of the hinge region (see, FUNDAMENTAL IMMUNOLOGY (Paul ed., 3rd ed. 1993)); (iv) a Fd fragment consisting of the VH and CHI domains; (v) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (vi) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; (vii) an isolated CDR; and (viii) a nanobody, a heavy chain variable region containing a single variable domain and two constant domains. Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv or scFv); see, e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Such single chain antibodies are also intended to be encompassed within the term “antigen-binding fragment or portion” of an antibody. These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.


An “isolated antibody,” as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds to a Spike or S protein of SARS-CoV-2 virus is substantially free of antibodies that specifically bind antigens other than the neuraminidase). An isolated antibody can be substantially free of other cellular material and/or chemicals.


The terms “monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.


The term “human antibody” is intended to include antibodies having variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. Furthermore, if the antibody contains a constant region, the constant region also is derived from human germline immunoglobulin sequences. The human antibodies of the invention can include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo). However, the term “human antibody,” as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.


The term “human monoclonal antibody” refers to antibodies displaying a single binding specificity, which have variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. In one embodiment, the human monoclonal antibodies can be produced by a hybridoma that includes a B cell obtained from a transgenic nonhuman animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a light chain transgene fused to an immortalized cell.


The term “recombinant human antibody,” as used herein, includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as (a) antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom (described further below), (b) antibodies isolated from a host cell transformed to express the human antibody, e.g., from a transfectoma, (c) antibodies isolated from a recombinant, combinatorial human antibody library, and (d) antibodies prepared, expressed, created or isolated by any other means that involve splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable regions in which the framework and CDR regions are derived from human germline immunoglobulin sequences. In some embodiments, however, such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.


The term “isotype” refers to the antibody class (e.g., IgM or IgG1) that is encoded by the heavy chain constant region genes. The phrases “an antibody recognizing an antigen” and “an antibody specific for an antigen” are used interchangeably herein with the term “an antibody which binds specifically to an antigen.”


The term “human antibody derivatives” refers to any modified form of the human antibody, e.g., a conjugate of the antibody and another agent or antibody. The term “humanized antibody” is intended to refer to antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences. Additional framework region modifications can be made within the human framework sequences.


The term “chimeric antibody” is intended to refer to antibodies in which the variable region sequences are derived from one species, and the constant region sequences are derived from another species, such as an antibody in which the variable region sequences are derived from a mouse antibody, and the constant region sequences are derived from a human antibody. The term can also refer to an antibody in which its variable region sequence or CDR(s) is derived from one source (e.g., an IgA1 antibody) and the constant region sequence or Fc is derived from a different source (e.g., a different antibody, such as an IgG, IgA2, IgD, IgE or IgM antibody).


The invention encompasses isolated or substantially purified nucleic acids, peptides, polypeptides or proteins. In the context of the present invention, an “isolated” nucleic acid, DNA or RNA molecule or an “isolated” polypeptide is a nucleic acid, DNA molecule, RNA molecule, or polypeptide that exists apart from its native environment and is therefore not a product of nature. An isolated nucleic acid, DNA molecule, RNA molecule or polypeptide may exist in a purified form or may exist in a non-native environment such as, for example, a transgenic host cell. A “purified” nucleic acid molecule, peptide, polypeptide or protein, or a fragment thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. In one embodiment, an “isolated” nucleic acid is free of sequences that naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. A protein, peptide or polypeptide that is substantially free of cellular material includes preparations of protein, peptide or polypeptide having less than about 30%, 20%, 10%, or 5% (by dry weight) of contaminating protein. When the protein of the invention, or biologically active portion thereof, is recombinantly produced, preferably culture medium represents less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-protein-of-interest chemicals.


The terms polypeptide, peptide, and protein are used interchangeably herein.


The terms “polypeptide,” “peptide,” and “protein” are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, pegylation, or any other manipulation, such as conjugation with a labeling component. As used herein, the term “amino acid” includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics.


A peptide or polypeptide “fragment” as used herein refers to a less than full-length peptide, polypeptide or protein. For example, a peptide or polypeptide fragment can have is at least about 3, at least about 4, at least about 5, at least about 10, at least about 20, at least about 30, at least about 40 amino acids in length, or single unit lengths thereof. For example, fragment may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or more amino acids in length. There is no upper limit to the size of a peptide fragment. However, in some embodiments, peptide fragments can be less than about 500 amino acids, less than about 400 amino acids, less than about 300 amino acids or less than about 250 amino acids in length. Preferably the peptide fragment can elicit an immune response when used to inoculate an animal. A peptide fragment may be used to elicit an immune response by inoculating an animal with a peptide fragment in combination with an adjuvant, a peptide fragment that is coupled to an adjuvant, or a peptide fragment that is coupled to arsanilic acid, sulfanilic acid, an acetyl group, or a picryl group. A peptide fragment can include a non-amide bond and can be a peptidomimetic.


As used herein, the term “conjugate” or “conjugation” or “linked” as used herein refers to the attachment of two or more entities to form one entity. A conjugate encompasses both peptide-small molecule conjugates as well as peptide-protein/peptide conjugates.


The term “recombinant,” as used herein, refers to antibodies or antigen-binding fragments thereof of the invention created, expressed, isolated or obtained by technologies or methods known in the art as recombinant DNA technology which include, e.g., DNA splicing and transgenic expression. The term refers to antibodies expressed in a non-human mammal (including transgenic non-human mammals, e.g., transgenic mice), or a cell (e.g., CHO cells) expression system or isolated from a recombinant combinatorial human antibody library.


A “nucleic acid” or “polynucleotide” refers to a DNA molecule (for example, but not limited to, a cDNA or genomic DNA) or an RNA molecule (for example, but not limited to, an mRNA), and includes DNA or RNA analogs. A DNA or RNA analog can be synthesized from nucleotide analogs. The DNA or RNA molecules may include portions that are not naturally occurring, such as modified bases, modified backbone, deoxyribonucleotides in an RNA, etc. The nucleic acid molecule can be single-stranded or double-stranded.


The term “substantial identity” or “substantially identical,” when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or GAP, as discussed below. A nucleic acid molecule having substantial identity to a reference nucleic acid molecule may, in certain instances, encode a polypeptide having the same or substantially similar amino acid sequence as the polypeptide encoded by the reference nucleic acid molecule.


As applied to polypeptides, the term “substantial similarity” or “substantially similar” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 90% sequence identity, even more preferably at least 95%, 98% or 99% sequence identity. Preferably, residue positions, which are not identical, differ by conservative amino acid substitutions. A “conservative amino acid substitution” is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. See, e.g., Pearson (1994) Methods Mol. Biol. 24: 307-331, which is herein incorporated by reference. Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine, and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartate and glutamate, and 7) sulfur-containing side chains: cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine. Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Science 256: 1443 45, herein incorporated by reference. A “moderately conservative” replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.


Sequence similarity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions, and other modifications, including conservative amino acid substitutions. For instance, GCG software contains programs such as GAP and BESTFIT, which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1. FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) supra). Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. See, e.g., Altschul et al. (1990) J. Mol. Biol. 215: 403-410 and (1997) Nucleic Acids Res. 25:3389-3402, each of which is herein incorporated by reference.


As used herein, the term “affinity” refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity, which reflects a 1:1 interaction between members of a binding pair (e.g., antibody and antigen). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (KD). Affinity can be measured by common methods known in the art, including those described herein.


The term “specifically binds,” or “binds specifically to,” or the like, refers to an antibody that binds to a single epitope, e.g., under physiologic conditions, but which does not bind to more than one epitope. Accordingly, an antibody that specifically binds to a polypeptide will bind to an epitope that present on the polypeptide, but which is not present on other polypeptides. Specific binding can be characterized by an equilibrium dissociation constant of at least about 1×10-8 M or less (e.g., a smaller KD denotes a tighter binding). Methods for determining whether two molecules specifically bind are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. As described herein, antibodies have been identified by surface plasmon resonance, e.g., BIACORE™, which bind specifically to a Spike or S protein of SARS-CoV-2 virus.


Preferably, the antibody binds to a Spike or S protein with “high affinity,” namely with a KD of 1×10−7 M or less, more preferably 5×10−8 M or less, more preferably 3×10−8 M or less, more preferably 1×10−8 M or less, more preferably 5×10−9 M or less or even more preferably 1×10−9 M or less, as determined by surface plasmon resonance, e.g., BIACORE. The term “does not substantially bind” to a protein or cells, as used herein, means does not bind or does not bind with a high affinity to the protein or cells, i.e., binds to the protein or cells with a KD of 1×10−6 M or more, more preferably 1×10−5 M or more, more preferably 1×10−4 M or more, more preferably 1×10−3 M or more, even more preferably 1×10−2 M or more.


The term “Kassoc” or “Ka,” as used herein, is intended to refer to the association rate of a particular antibody-antigen interaction, whereas the term “Kdis” or “Kd,” as used herein, is intended to refer to the dissociation rate of a particular antibody-antigenn interaction. The term “KD,” as used herein, is intended to refer to the dissociation constant, which is obtained from the ratio of Kd to Ka (i.e., Kd/Ka) and is expressed as a molar concentration (M). KD values for antibodies can be determined using methods well established in the art. A preferred method for determining the KD of an antibody is by using surface plasmon resonance, preferably using a biosensor system such as a BIACORE system.


Antibodies that “compete with another antibody for binding to a target” refer to antibodies that inhibit (partially or completely) the binding of the other antibody to the target. Whether two antibodies compete with each other for binding to a target, i.e., whether and to what extent one antibody inhibits the binding of the other antibody to a target, may be determined using known competition experiments. In some embodiments, an antibody competes with, and inhibits binding of another antibody to a target by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%. The level of inhibition or competition may be different depending on which antibody is the “blocking antibody” (i.e., the cold antibody that is incubated first with the target). Competition assays can be conducted as described, for example, in Ed Harlow and David Lane, Cold Spring Harb Protoc; 2006 or in Chapter 11 of “Using Antibodies” by Ed Harlow and David Lane, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA 1999. Competing antibodies bind to the same epitope, an overlapping epitope or to adjacent epitopes (e.g., as evidenced by steric hindrance). Other competitive binding assays include: solid phase direct or indirect radioimmunoassay (MA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see Stahli et al., Methods in Enzymology 9:242 (1983)); solid phase direct biotin-avidin EIA (see Kirkland et al., J. Immunol. 137:3614 (1986)); solid phase direct labeled assay, solid phase direct labeled sandwich assay (see Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Press (1988)); solid phase direct label RIA using 1-125 label (see Morel et al., Mol. Immunol. 25(1):7 (1988)); solid phase direct biotin-avidin EIA (Cheung et al., Virology 176:546 (1990)); and direct labeled RIA. (Moldenhauer et al., Scand. J. Immunol. 32:77 (1990)).


The term “epitope” as used herein refers to an antigenic determinant that interacts with a specific antigen-binding site in the variable region of an antibody molecule known as a paratope. A single antigen may have more than one epitope. Thus, different antibodies may bind to different areas on an antigen and may have different biological effects. The term “epitope” also refers to a site on an antigen to which B and/or T cells respond. It also refers to a region of an antigen that is bound by an antibody. Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction. Epitopes may also be conformational, that is, composed of non-linear amino acids. In some embodiments, epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or sulfonyl groups, and, In some embodiments, may have specific three-dimensional structural characteristics, and/or specific charge characteristics. An epitope typically includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acids in a unique spatial conformation. Methods for determining what epitopes are bound by a given antibody (i.e., epitope mapping) are well known in the art and include, for example, immunoblotting and immune-precipitation assays, wherein overlapping or contiguous peptides from a Spike or S protein are tested for reactivity with a given antibody. Methods of determining spatial conformation of epitopes include techniques in the art and those described herein, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance (see, e.g., Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66, G. E. Morris, Ed. (1996)).


The term “epitope mapping” refers to the process of identification of the molecular determinants for antibody-antigen recognition.


The term “binds to an epitope” or “recognizes an epitope” with reference to an antibody or antibody fragment refers to continuous or discontinuous segments of amino acids within an antigen. Those of skill in the art understand that the terms do not necessarily mean that the antibody or antibody fragment is in direct contact with every amino acid within an epitope sequence.


The term “binds to the same epitope” with reference to two or more antibodies means that the antibodies bind to the same, overlapping or encompassing continuous or discontinuous segments of amino acids. Those of skill in the art understand that the phrase “binds to the same epitope” does not necessarily mean that the antibodies bind to or contact exactly the same amino acids. The precise amino acids that the antibodies contact can differ. For example, a first antibody can bind to a segment of amino acids that is completely encompassed by the segment of amino acids bound by a second antibody. In another example, a first antibody binds one or more segments of amino acids that significantly overlap the one or more segments bound by the second antibody. For the purposes herein, such antibodies are considered to “bind to the same epitope.”


As used herein, the term “immune response” refers to a biological response within a vertebrate against foreign agents, which response protects the organism against these agents and diseases caused by them. An immune response is mediated by the action of a cell of the immune system (for example, a T lymphocyte, B lymphocyte, natural killer (NK) cell, macrophage, eosinophil, mast cell, dendritic cell or neutrophil) and soluble macromolecules produced by any of these cells or the liver (including antibodies, cytokines, and complement) that results in selective targeting, binding to, damage to, destruction of, and/or elimination from the vertebrate's body of invading pathogens, cells or tissues infected with pathogens, cancerous or other abnormal cells, or, in cases of autoimmunity or pathological inflammation, normal human cells or tissues. An immune reaction includes, e.g., activation or inhibition of a T cell, e.g., an effector T cell or a Th cell, such as a CD4+ or CD8+ T cell, or the inhibition of a Treg cell.


The term “detectable label” as used herein refers to a molecule capable of detection, including, but not limited to, radioactive isotopes, fluorescers, chemiluminescers, chromophores, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, chromophores, dyes, metal ions, metal sols, ligands (e.g., biotin, avidin, streptavidin or haptens), intercalating dyes and the like. The term “fluorescer” refers to a substance or a portion thereof that is capable of exhibiting fluorescence in the detectable range.


In many embodiments, the terms “subject” and “patient” are used interchangeably irrespective of whether the subject has or is currently undergoing any form of treatment. As used herein, the terms “subject” and “subjects” may refer to any vertebrate, including, but not limited to, a mammal (e.g., cow, pig, camel, llama, horse, goat, rabbit, sheep, hamsters, guinea pig, cat, dog, rat, and mouse, a non-human primate (for example, a monkey, such as a cynomolgus monkey, chimpanzee, etc.) and a human). The subject may be a human or a non-human. In more exemplary aspects, the mammal is a human. As used herein, the expression “a subject in need thereof” or “a patient in need thereof” means a human or non-human mammal that exhibits one or more symptoms or indications of disorders (e.g., neuronal disorders, autoimmune diseases, and cardiovascular diseases), and/or who has been diagnosed with inflammatory disorders. In some embodiments, the subject is a mammal. In some embodiments, the subject is human.


As used herein, the term “disease” is intended to be generally synonymous and is used interchangeably with, the terms “disorder” and “condition” (as in medical condition), in that all reflect an abnormal condition (e.g., inflammatory disorder) of the human or animal body or of one of its parts that impairs normal functioning, is typically manifested by distinguishing signs and symptoms, and causes the human or animal to have a reduced duration or quality of life.


As used herein, the term “treating” or “treatment” of any disease or disorder refers in one embodiment, to ameliorating the disease or disorder (i.e., arresting or reducing the development of the disease or at least one of the clinical symptoms thereof). In another embodiment, “treating” or “treatment” refers to ameliorating at least one physical parameter, which may not be discernible by the patient. In yet another embodiment, “treating” or “treatment” refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In yet another embodiment, “treating” or “treatment” refers to preventing or delaying the onset or development or progression of the disease or disorder.


The terms “prevent,” “preventing,” “prevention,” “prophylactic treatment” and the like refer to reducing the probability of developing a disorder or condition in a subject, who does not have, but is at risk of or susceptible to developing a disorder or condition.


The terms “decrease,” “reduced,” “reduction,” “decrease,” or “inhibit” are all used herein generally to mean a decrease by a statistically significant amount. However, for avoidance of doubt, “reduced,” “reduction” or “decrease” or “inhibit” means a decrease by at least 10% as compared to a reference level, for example, a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease (e.g., absent level as compared to a reference sample), or any decrease between 10-100% as compared to a reference level.


As used herein, the term “agent” denotes a chemical compound, a mixture of chemical compounds, a biological macromolecule (such as a nucleic acid, an antibody, a protein or portion thereof, e.g., a peptide), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues. The activity of such agents may render it suitable as a “therapeutic agent,” which is a biologically, physiologically, or pharmacologically active substance (or substances) that acts locally or systemically in a subject.


As used herein, the terms “therapeutic agent,” “therapeutic capable agent,” or “treatment agent” are used interchangeably and refer to a molecule or compound that confers some beneficial effect upon administration to a subject. The beneficial effect includes enablement of diagnostic determinations; amelioration of a disease, symptom, disorder, or pathological condition; reducing or preventing the onset of a disease, symptom, disorder, or condition; and generally counteracting a disease, symptom, disorder or pathological condition.


The term “therapeutic effect” is art-recognized and refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance.


The term “effective amount,” “effective dose,” or “effective dosage” is defined as an amount sufficient to achieve or at least partially achieve a desired effect. A “therapeutically effective amount” or “therapeutically effective dosage” of a drug or therapeutic agent is any amount of the drug that, when used alone or in combination with another therapeutic agent, promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. A “prophylactically effective amount” or a “prophylactically effective dosage” of a drug is an amount of the drug that, when administered alone or in combination with another therapeutic agent to a subject at risk of developing a disease or of suffering a recurrence of disease, inhibits the development or recurrence of the disease. The ability of a therapeutic or prophylactic agent to promote disease regression or inhibit the development or recurrence of the disease can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.


Doses are often expressed in relation to bodyweight. Thus, a dose which is expressed as [g, mg, or other unit]/kg (or g, mg etc.) usually refers to [g, mg, or other unit] “per kg (or g, mg etc.) bodyweight,” even if the term “bodyweight” is not explicitly mentioned.


As used herein, the term “composition” or “pharmaceutical composition” refers to a mixture of at least one component useful within the invention with other components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical composition facilitates administration of one or more components of the invention to an organism.


As used herein, the term “pharmaceutically acceptable” refers to a material, such as a carrier or diluent, which does not abrogate the biological activity or properties of the composition, and is relatively non-toxic, i.e., the material may be administered to an individual without causing undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.


As used herein, the term “pharmaceutically acceptable carrier” includes a pharmaceutically acceptable salt, pharmaceutically acceptable material, composition or carrier, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a compound(s) of the present invention within or to the subject such that it may perform its intended function. Typically, such compounds are carried or transported from one organ, or portion of the body, to another organ, or portion of the body. Each salt or carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject. Some examples of materials that may serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose, and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol, and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; diluent; granulating agent; lubricant; binder; disintegrating agent; wetting agent; emulsifier; coloring agent; release agent; coating agent; sweetening agent; flavoring agent; perfuming agent; preservative; antioxidant; plasticizer; gelling agent; thickener; hardener; setting agent; suspending agent; surfactant; humectant; carrier; stabilizer; and other non-toxic compatible substances employed in pharmaceutical formulations, or any combination thereof. As used herein, “pharmaceutically acceptable carrier” also includes any and all coatings, antibacterial and antifungal agents, and absorption delaying agents, and the like that are compatible with the activity of one or more components of the invention, and are physiologically acceptable to the subject. Supplementary active compounds may also be incorporated into the compositions.


“Combination” therapy, as used herein, unless otherwise clear from the context, is meant to encompass administration of two or more therapeutic agents in a coordinated fashion and includes, but is not limited to, concurrent dosing. Specifically, combination therapy encompasses both co-administration (e.g., administration of a co-formulation or simultaneous administration of separate therapeutic compositions) and serial or sequential administration, provided that administration of one therapeutic agent is conditioned in some way on the administration of another therapeutic agent. For example, one therapeutic agent may be administered only after a different therapeutic agent has been administered and allowed to act for a prescribed period of time. See, e.g., Kohrt et al. (2011) Blood 117:2423.


As used herein, the term “co-administration” or “co-administered” refers to the administration of at least two agent(s) or therapies to a subject. In some embodiments, the co-administration of two or more agents/therapies is concurrent. In other embodiments, a first agent/therapy is administered prior to a second agent/therapy. Those of skill in the art understand that the formulations and/or routes of administration of the various agents/therapies used may vary.


As used herein, the term “contacting,” when used in reference to any set of components, includes any process whereby the components to be contacted are mixed into the same mixture (for example, are added into the same compartment or solution), and does not necessarily require actual physical contact between the recited components. The recited components can be contacted in any order or any combination (or sub-combination) and can include situations where one or some of the recited components are subsequently removed from the mixture, optionally prior to addition of other recited components. For example, “contacting A with B and C” includes any and all of the following situations: (i) A is mixed with C, then B is added to the mixture; (ii) A and B are mixed into a mixture; B is removed from the mixture, and then C is added to the mixture; and (iii) A is added to a mixture of B and C.


“Sample,” “test sample,” and “patient sample” may be used interchangeably herein. The sample can be a sample of serum, urine plasma, amniotic fluid, cerebrospinal fluid, cells, or tissue. Such a sample can be used directly as obtained from a patient or can be pre-treated, such as by filtration, distillation, extraction, concentration, centrifugation, inactivation of interfering components, addition of reagents, and the like, to modify the character of the sample in some manner as discussed herein or otherwise as is known in the art. The terms “sample” and “biological sample” as used herein generally refer to a biological material being tested for and/or suspected of containing an analyte of interest such as antibodies. The sample may be any tissue sample from the subject. The sample may comprise protein from the subject.


As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, etc., rather than within a multi-cellular organism.


As used herein, the term “in vivo” refers to events that occur within a multi-cellular organism, such as a non-human animal.


As used herein, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


As used herein, the terms “including,” “comprising,” “containing,” or “having” and variations thereof are meant to encompass the items listed thereafter and equivalents thereof as well as additional subject matter unless otherwise noted.


As used herein, the phrases “in one embodiment,” “in various embodiments,” “in some embodiments,” and the like are used repeatedly. Such phrases do not necessarily refer to the same embodiment, but they may unless the context dictates otherwise.


As used herein, the terms “and/or” or “/” means any one of the items, any combination of the items, or all of the items with which this term is associated.


As used herein, the word “substantially” does not exclude “completely,” e.g., a composition which is “substantially free” from Y may be completely free from Y. Where necessary, the word “substantially” may be omitted from the definition of the invention.


As used herein, the term “each,” when used in reference to a collection of items, is intended to identify an individual item in the collection but does not necessarily refer to every item in the collection. Exceptions can occur if explicit disclosure or context clearly dictates otherwise.


As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In some embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value). Unless indicated otherwise herein, the term “about” is intended to include values, e.g., weight percents, proximate to the recited range that are equivalent in terms of the functionality of the individual ingredient, the composition, or the embodiment.


As disclosed herein, a number of ranges of values are provided. It is understood that each intervening value, to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


All methods described herein are performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. In regard to any of the methods provided, the steps of the method may occur simultaneously or sequentially. When the steps of the method occur sequentially, the steps may occur in any order, unless noted otherwise. In cases in which a method comprises a combination of steps, each and every combination or sub-combination of the steps is encompassed within the scope of the disclosure, unless otherwise noted herein.


Each publication, patent application, patent, and other reference cited herein is incorporated by reference in its entirety to the extent that it is not inconsistent with the present disclosure. Publications disclosed herein are provided solely for their disclosure prior to the filing date of the present invention. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates, which may need to be independently confirmed.


It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.


F. EXAMPLES
Example 1

This example describes the materials, methods, and instrumentation used in EXAMPLE 2.


Study participants. Study participants were recruited at the Rockefeller University Hospital in New York from April 1 through May 8, 2020. Eligible participants were adults aged 18-76 years who were either diagnosed with SARS-CoV-2 infection by RT-PCR and were free of symptoms of COVID-19 for at least 14 days (cases), or who were close contacts (e.g., household, co-workers, members of the same religious community) with someone who had been diagnosed with SARS-CoV-2 infection by RT-PCR and were free of symptoms suggestive of COVID-19 for at least 14 days (contacts). Exclusion criteria included the presence of symptoms suggestive of active SARS-CoV-2 infection, or hemoglobin <12 g/dL for males and <11 g/dL for females.


Most study participants were residents of the Greater New York City tri-state region and were enrolled sequentially according to eligibility criteria. Participants were first interviewed by phone to collect information on their clinical presentation and subsequently presented to the Rockefeller University Hospital for a single blood sample collection. Participants were asked to rate the highest severity of their symptoms on a numeric rating scale ranging from 0 to 10. The score was adapted from the pain scale chart, where 0 was the lack of symptoms, 4 were distressing symptoms (e.g., fatigue, myalgia, fever, cough, shortness of breath) that interfered with daily living activities, 7 were disabling symptoms that prevented the performance of daily living activities, and 10 were unimaginable/unspeakable discomfort (in this case, distress due to shortness of breath). All participants provided written informed consent before participation in the study, and the study was conducted in accordance with Good Clinical Practice, and clinical data collection and management was with software iRIS by iMedRIS. The study was performed in compliance with all relevant ethical regulations, and the protocol for human subject studies was approved by the Institutional Review Board (IRB) of the Rockefeller University.


Blood samples processing and storage. Peripheral Blood Mononuclear Cells (PBMCs) were obtained by gradient centrifugation and stored in liquid nitrogen in the presence of FCS and DMSO. Heparinized plasma and serum samples were aliquoted and stored at −20° C. or less. Prior to experiments, aliquots of plasma samples were heat-inactivated (56C for 1 hour) and then stored at 4C.


Cloning, expression, and purification of recombinant coronavirus proteins. Codon-optimized nucleotide sequences encoding the SARS-CoV-2 S ectodomain (residues 16-1206) and receptor-binding domain (RBD; residues 331-524) were synthesized and subcloned into the mammalian expression pTwist-CMV BetaGlobin vector by Twist Bioscience Technologies based on an early SARS-CoV-2 sequence isolate (GenBank MN985325.1). The SARS-CoV-2 RBD construct included an N-terminal human IL-2 signal peptide and dual C-terminal tags ((GGGGS)2-HHHHHHHH (SEQ ID NO: 3233) (octa-histidine), and GLNDIFEAQKIEWHE (SEQ ID NO: 3234) (AviTag)). In addition, the corresponding S1B or receptor binding domains for SARS-CoV (residues 318-510; GenBank AAP13441.1), MERS-CoV (residues 367-588; GenBank JX869059.2), HCoV-NL63 (residues 481-614; GenBank AAS58177.1), HCoV-OC43 (residues 324-632; GenBank AAT84362.1), and HCoV-229E (residues 286-434; GenBank AAK32191.1) were synthesized with the same N- and C-terminal extensions as the SARS-CoV-2 RBD construct and subcloned into the mammalian expression pTwist-CMV BetaGlobin vector (Twist Bioscience Technologies). The SARS-CoV-2 S ectodomain was modified as previously described (Walls, A. C. et al. Cell 181, 281-292 e286 (2020).). Briefly, the S ectodomain construct included an N-terminal mu-phosphatase signal peptide, 2P stabilizing mutations (K986P and V987P), mutations to remove the S1/S2 furin cleavage site (682RRAR685 (SEQ ID NO: 3235) to GSAS (SEQ ID NO: 3236)), a C-terminal extension (IKGSG-RENLYFQG (SEQ ID NO: 3237) (TEV protease site), GGGSG-YIPEAPRDGQAYVRKDGEWVLLSTFL (SEQ ID NO: 3238) (foldon trimerization motif), G-HHHHHHHH (SEQ ID NO: 3239) (octa-histidine tag), and GLNDIFEAQKIEWHE (SEQ ID NO: 3234) (AviTag)). The SARS-CoV-2 S 2P ectodomain and RBD constructs were produced by transient transfection of 500 mL of Expi293F cells (Thermo Fisher) and purified from clarified transfected cell supernatants four days post-transfection using Ni2+-NTA affinity chromatography (GE Life Sciences). Affinity-purified proteins were concentrated and further purified by size-exclusion chromatography (SEC) using a Superdex200 16/60 column (GE Life Sciences) running in 1×TBS (20 mM Tris-HCl pH 8.0, 150 mM NaCl, and 0.02% NaN3). Peak fractions were analyzed by SDS-PAGE, and fractions corresponding to soluble S 2P trimers or monomeric RBD proteins were pooled and stored at 4° C.


ELISAs. Validated ELISAs to evaluate antibodies binding to SARS-CoV-2 RBD and trimeric spike proteins, and to SARS-CoV RBD, were performed by coating of high binding 96 half well plates (Corning #3690) with 50 μL per well of a 1 μg/mL protein solution in PBS overnight at 4° C. (Amanat, F. et al. Nat Med, doi:10.1038/s41591-020-0913-5 (2020); Grifoni, A. et al. Cell, doi:10.1016/j.cell.2020.05.015 (2020)). Plates were washed 6 times with washing buffer (1×PBS with 0.05% Tween 20 (Sigma-Aldrich)) and incubated with 170 μL per well blocking buffer (1×PBS with 2% BSA and 0.05% Tween20 (Sigma)) for 1 hour at room temperature (RT). Immediately after blocking, monoclonal antibodies or plasma samples were added in PBS and incubated for 1 hr at RT. Plasma samples were assayed at a 1:200 starting dilution and seven additional 3-fold serial dilutions. Monoclonal antibodies were tested at 10 μg/ml starting concentration and 10 additional 4-fold serial dilutions. Plates were washed 6 times with washing buffer and then incubated with anti-human IgG or IgM secondary antibody conjugated to horseradish peroxidase (HRP) (Jackson Immuno Research 109-036-088 and 109-035-129) in blocking buffer at a 1:5000 dilution. Plates were developed by addition of the HRP substrate, TMB (ThermoFisher) for 10 minutes, then the developing reaction was stopped by adding 50 μl 1M H2SO4 and absorbance was measured at 450 nm with an ELISA microplate reader (FluoStar Omega, BMG Labtech) with Omega and Omega MARS software for analysis. For plasma samples, a positive control (plasma from patient COV21, diluted 200-fold in PBS) and negative control historical plasma samples were added in duplicate to every assay plate for validation. The average of its signal was used for normalization of all the other values on the same plate with Excel software prior to calculating the area under the curve using Prism 8 (GraphPad). For monoclonal antibodies, the half-maximal effective concentration (EC50) was determined using 4-parameter nonlinear regression (GraphPad Prism).


293TACE2 cells. For constitutive expression of ACE2 in 293T cells, a cDNA encoding ACE2, carrying two inactivating mutations in the catalytic site (H374N & H378N), was inserted into CSIB 3′ to the SFFV promoter (Kane, M. et al. Cell Host Microbe 20, 392-405 (2016).). 293TACE2 cells were generated by transduction with CSIB based virus followed by selection with 5 μg/ml Blasticidin.


SARS-CoV-2 and SARS-CoV pseudotyped reporter viruses. A plasmid expressing a C-terminally truncated SARS-CoV-2 S protein (pSARS-CoV2-Strunc) was generated by insertion of a human-codon optimized cDNA encoding SARS-CoV-2 S lacking the C-terminal 19 codons (GENEART) into pCR3.1. The S ORF was taken from “Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1” (NC_045512). For expression of full-length SARS-CoV S protein, “Human SARS coronavirus Spike glycoprotein Gene ORF cDNA clone expression plasmid (Codon Optimized)” (here referred to as pSARS—CoV-S) was obtained from SinoBiological (Cat: VG40150-G-N). An env-inactivated HIV-1 reporter construct (pNL4-3ΔFnv-nanoluc) was generated from pNL4-3 by introducing a 940 bp deletion 3′ to the vpu stop-codon, resulting in a frameshift in env (Adachi, A. et al. J Virol 59, 284-291 (1986).). The human codon-optimized nanoluc Luciferase reporter gene (Nluc, Promega) was inserted in place of nucleotides 1-100 of the nef-gene. To generate pseudotyped viral stocks, 293T cells were transfected with pNL4-3ΔEnv-nanoluc and pSARS-CoV2-Strunc or pSARS—CoV-S using polyethyleneimine. Co-transfection of pNL4-3ΔFnv-nanoluc and S-expression plasmids leads to production of HIV-1-based virions carrying either the SARS-CoV-2 or SARS-CoV spike protein on the surface. Eight hours after transfection, cells were washed twice with PBS, and fresh media was added. Supernatants containing virions were harvested 48 hours post transfection, filtered, and stored at −80° C. Infectivity of virions was determined by titration on 293TACE2 cells. See also https://www.biorxiv.org/content/10.1101/2020.06.08.140871v1.


Pseudotyped virus neutralization assay. Five-fold serially diluted plasma from COVID-19 convalescent individuals and healthy donors or four-fold serially diluted monoclonal antibodies were incubated with the SARS-CoV-2 or SARS-CoV pseudotyped virus for 1 hour at 37° C. degrees. The mixture was subsequently incubated with 293TACE2 cells for 48 hours, after which cells were washed twice with PBS and lysed with Luciferase Cell Culture Lysis 5× reagent (Promega). Nanoluc Luciferase activity in lysates was measured using the Nano-Glo Luciferase Assay System (Promega) with Modulus II Microplate Reader User interface (TURNER BioSystems). Relative luminescence units obtained were normalized to those derived from cells infected with SARS-CoV-2 or SARS-CoV pseudotyped virus in the absence of plasma or monoclonal antibodies. The half-maximal inhibitory concentration for plasma (NT50) or monoclonal antibodies (IC50) was determined using 4-parameter nonlinear regression (GraphPad Prism).


Cell lines, virus, and virus titration. VeroE6 kidney epithelial cells (Chlorocebus sabaeus; ATCC) and Huh-7.5 hepatoma cells (H. sapiens; Dr. Charles Rice, Laboratory of Virology and Infectious Disease, The Rockefeller University) were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 1% nonessential amino acids (NEAA) and 10% fetal bovine serum (FBS) at 37° C. and 5% CO2. All cell lines have been tested negative for contamination with mycoplasma and were obtained from the ATCC (with the exception for Huh-7.5). SARS-CoV-2, strain USA-WA1/2020, was obtained from BEI Resources and amplified in VeroE6 cells at 33° C. Viral titers were measured on Huh-7.5 cells by standard plaque assay (PA). Briefly, 500 μL of serial 10-fold virus dilutions in Opti-MEM were used to infect 400,000 cells seeded the day prior in a 6-well plate format. After 90 min adsorption, the virus inoculum was removed, and cells were overlayed with DMEM containing 10% FBS with 1.2% microcrystalline cellulose (Avicel). Cells were incubated for five days at 33° C., followed by fixation with 3.5% formaldehyde and crystal violet staining for plaque enumeration. All experiments were performed in a biosafety level 3 laboratory.


Microscopy-based neutralization assay of authentic SARS-CoV-2. The day prior to infection, VeroE6 cells were seeded at 12,500 cells/well into 96-well plates. Antibodies were serially diluted in BA-1, mixed with a constant amount of SARS-CoV-2 (grown in VeroE6), and incubated for 60 min at 37° C. The antibody-virus-mix was then directly applied to VeroE6 cells (MOI of ˜0.1 PFU/cell). Cells were fixed 18 hours post infection by adding an equal volume of 7% formaldehyde to the wells, followed by permeabilization with 0.1% Triton X-100 for 10 min. After extensive washing, cells were incubated for 1 hour at room temperature with blocking solution of 5% goat serum in PBS (catalog no. 005-000-121; Jackson ImmunoResearch). A rabbit polyclonal anti-SARS-CoV-2 nucleocapsid antibody (catalog no. GTX135357; GeneTex) was added to the cells at 1:500 dilution in blocking solution and incubated at 4° C. overnight. A goat anti-rabbit AlexaFluor 594 (catalog no. A-11012; Life Technologies) at a dilution of 1:2,000 was used as a secondary antibody. Nuclei were stained with Hoechst 33342 (catalog no. 62249; Thermo Scientific) at a 1:1,000 dilution. Images were acquired with a fluorescence microscope and analyzed using ImageXpress Micro XLS and MetaXpress software (Molecular Devices, Sunnyvale, Calif.). All statistical analyses were done using Prism 8 software (GraphPad).


Biotinylation of viral protein for use in flow cytometry. Purified and Avi-tagged SARS-CoV-2 RBD was biotinylated using the Biotin-Protein Ligase-BIRA kit according to manufacturer's instructions (Avidity). Ovalbumin (Sigma, A5503-1G) was biotinylated using the EZ-Link Sulfo-NHS-LC-Biotinylation kit according to the manufacturer's instructions (Thermo Scientific). Biotinylated Ovalbumin was conjugated to streptavidin-BV711 (BD biosciences, 563262) and RBD to streptavidin-PE (BD biosciences, 554061) and streptavidin-Alexa Fluor 647 (AF647, Biolegend, 405237) respectively (Wang, Z. et al. J Immunol Methods 478, 112734, (2020)).


Single cell sorting by flow cytometry. PBMCs were enriched for B cells by negative selection using a pan B cell isolation kit according to the manufacturer's instructions (Miltenyi Biotec, 130-101-638). The enriched B cells were incubated in FACS buffer (1×Phosphate-buffered Saline (PBS), 2% calf serum, 1 mM EDTA) with the following anti-human antibodies (all at 1:200 dilution): anti-CD20-PECy7 (BD Biosciences, 335793), anti-CD3-APC-eFluro 780 (Invitrogen, 47-0037-41), anti-CD8-APC-eFluro 780 (Invitrogen, 47-0086-42), anti-CD16-APC-eFluro 780 (Invitrogen, 47-0168-41), anti-CD14-APC-eFluro 780 (Invitrogen, 47-0149-42), as well as Zombie NIR (BioLegend, 423105), and fluorophore-labeled RBD and Ovalbumin for 30 minutes on ice (Wang, Z. et al. J Immunol Methods 478, 112734 (2020).). Single CD3CD8CD16CD20+OvaRBD-PE+RBD-AF647+ B cells were sorted into individual wells of 96-well plates containing 4 μl of lysis buffer (0.5×PBS, 10 mM DTT, 3000 units/mL RNasin Ribonuclease Inhibitors (Promega, N2615) per well using a FACS Aria III and FACSDiva software (Becton Dickinson) for acquisition and FlowJo for analysis. The sorted cells were frozen on dry ice, and then stored at −80° C. or immediately used for subsequent RNA reverse transcription. Although cells were not stained for IgG expression, they are memory B cells based on the fact that they are CD20+ (a marker absent in plasmablasts) and they express IgG (since antibodies were amplified from these cells using IgG-specific primers).


Antibody sequencing, cloning, and expression. Antibodies were identified and sequenced as described previously (Robbiani, D. F. et al. Cell 169, 597-609 e511 (2017); Tiller, T. et al. J Immunol Methods 329, 112-124 (2008); von Boehmer, L. et al. Nat Protoc 11, 1908-1923 (2016)). Briefly, RNA from single cells was reverse-transcribed (SuperScript III Reverse Transcriptase, Invitrogen, 18080-044) and the cDNA stored at −20° C. or used for subsequent amplification of the variable IGH, IGL and IGK genes by nested PCR and Sanger sequencing (Tiller, T. et al. J Immunol Methods 329, 112-124 (2008)). Anti-Zika virus monoclonal antibody Z021 (Robbiani, D. F. et al. Cell 169, 597-609 e511 (2017)) was used as isotype control. Sequence analysis was with MacVector. Amplicons from the first PCR reaction were used as templates for Sequence- and Ligation-Independent Cloning (SLIC) into antibody expression vectors. Recombinant monoclonal antibodies and Fabs were produced and purified as previously described (Klein, F. et al. J Exp Med 211, 2361-2372 (2014); Schoofs, T. et al. Immunity 50, 1513-1529 (2019)).


Biolayer interferometry. BLI assays were performed on the Octet Red instrument (ForteBio) at 30° C. with shaking at 1,000 r.p.m. Epitope binding assays were performed with protein A biosensor (ForteBio 18-5010), following the manufacturer's protocol “classical sandwich assay.” (1) Sensor check: sensors immersed 30 sec in buffer alone (buffer ForteBio 18-1105). (2) Capture 1st Ab: sensors immersed 10 min with Ab1 at 40 μg/mL. (3) Baseline: sensors immersed 30 sec in buffer alone. (4) Blocking: sensors immersed 5 min with IgG isotype control at 50 μg/mL. (6) Antigen association: sensors immersed 5 min with RBD at 100 μg/mL. (7) Baseline: sensors immersed 30 sec in buffer alone. (8) Association Ab2: sensors immersed 5 min with Ab2 at 40 μg/mL. Curve fitting was performed using the Fortebio Octet Data analysis software (ForteBio).


Computational analyses of antibody sequences. Antibody sequences were trimmed based on quality and annotated using Igblastn v1.14.0 (Ye, J., et al. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41, W34-40 (2013)) with IMGT domain delineation system. Annotation was performed systematically using Change-0 toolkit v.0.4.5 (Gupta, N. T. et al. Bioinformatics 31, 3356-3358 (2015).). Heavy and light chains derived from the same cell were paired, and clonotypes were assigned based on their V and J genes using in-house R and Perl scripts (FIGS. 5B and 5C). All scripts and the data used to process antibody sequences are publicly available on GitHub (https://github.com/stratust/igpipeline).


The frequency distributions of human V genes in anti-SARS-CoV-2 antibodies from this study were compared to Sequence Read Archive SRP010970 (Rubelt, F. et al. PLoS One 7, e49774 (2012).). The V(D)J assignments were done using IMGT/High V-Quest, and the frequencies of heavy and light chain V genes were calculated for 14 and 13 individuals, respectively, using sequences with unique CDR3 s. The two-tailed t test with unequal variances was used to determine statistical significance (FIG. 13).


Nucleotide somatic hypermutation and CDR3 length were determined using in-house R and Perl scripts. For somatic hypermutations, IGHV and IGLV nucleotide sequences were aligned against their closest germlines using Igblastn, and the number of differences was considered nucleotide mutations. The average mutations for V genes were calculated by dividing the sum of all nucleotide mutations across all patients by the number of sequences used for the analysis. To calculate the GRAVY scores of hydrophobicity (Kyte, J. & Doolittle, R. F. J Mol Biol 157, 105-132 (1982).) we used Guy H. R. Hydrophobicity scale based on free energy of transfer (kcal/mole) (Guy, H. R. Biophys J 47, 61-70 (1985).) implemented by the R package Peptides available in the Comprehensive R Archive Network repository (https://journal.r-project.org/archive/2015/RJ-2015-001/RJ-2015-001.pdf). We used 533 heavy chain CDR3 amino acid sequences from this study (sequence COV047_P4_IgG_51-P1369 lacks CDR3 amino acid sequence) and 22,654,256 IGH CDR3 sequences from the public database of memory B-cell receptor sequences (DeWitt, W. S. et al. PLoS One 11, e0160853 (2016).). The Shapiro-Wilk test was used to determine whether the GRAVY scores are normally distributed. The GRAVY scores from all 533 IGH CDR3 amino acid sequences from this study were used to perform the test, and 5000 GRAVY scores of the sequences from the public database were randomly selected. The Shapiro-Wilk p-values were 6.896×10−3 and 2.217×10′ for sequences from this study and the public database, respectively, indicating the data are not normally distributed. Therefore, we used the Wilcoxon non-parametric test to compare the samples, which indicated a difference in hydrophobicity distribution (p=5×10′; FIG. 14).


Negative-stain EM Data Collection and Processing. Purified Fabs (C002, C119, and C121) were complexed with SARS-CoV-2 S trimer at a 2-fold molar excess for 1 min and diluted to 40 μg/mL in TBS immediately before adding 3 μL to a freshly-glow discharged ultrathin, 400 mesh carbon-coated copper grid (Ted Pella, Inc.). Samples were blotted after a 1 min incubation period and stained with 1% uranyl formate for an additional minute before imaging. Micrographs were recorded on a Thermo Fisher Talos Arctica transmission electron microscope operating at 200 keV using a K3 direct electron detector (Gatan, Inc) and SerialEM automated image acquisition software (Mastronarde, D. N. J Struct Biol 152, 36-51 (2005).). Images were acquired at a nominal magnification of 28,000× (1.44 Å/pixel size) and a −1.5 to −2.0 μm defocus range. Images were processed in cryoSPARC, and reference-free particle picking was completed using a gaussian blob picker (Punjani, A., et al. Nat Methods 14, 290-296 (2017).). Reference-free 2D class averages and ab initio volumes were generated in cryoSPARC, and subsequently 3D-classified to identify classes of S-Fab complexes, that were then homogenously refined. Figures were prepared using UCSF Chimera (Goddard, T. D., et al. J Struct Biol 157, 281-287 (2007).). The resolutions of the final single particle reconstructions were ˜17-20 Å calculated using a gold-standard FSC (0.143 cutoff) and ˜24-28 Å using a 0.5 cutoff.


Example 2

During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives. Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S). Although there is no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-2 (Graham, R. L., et al. Nat Rev Microbiol 11, 836-848 (2013); Gralinski, L. E. & Baric, R. S. J Pathol 235, 185-195 (2015); Hoffmann, M. et al. Cell 181, 271-280 e278 (2020); Walls, A. C. et al. Cell 181, 281-292 (2020); Jiang, S., et al. Trends Immunol (2020).). This disclosure reports on 149 COVID-19 convalescent individuals. Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titers: less than 1:50 in 33% and below 1:1000 in 79%, while only 1% showed titers >1:5000. Antibody sequencing revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals. Despite low plasma titers, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50s) as low as single-digit ng/mL. Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.


Between Apr. 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 (70.7%) were individuals diagnosed with SARS-CoV-2 infection by RT-PCR (cases), and 46 (29.3%) were close contacts of individuals diagnosed with SARS-CoV-2 infection (contacts). While inclusion criteria allowed for enrollment of asymptomatic participants, 8 contacts that did not develop symptoms were excluded from further analyses. The 149 cases and contacts were free of symptoms suggestive of COVID-19 for at least 14 days at the time of sample collection. Participant demographics and clinical characteristics are shown in Tables 2 and 3 and FIG. 7A. Only one individual who tested positive for SARS-CoV-2 infection by RT-PCR remained asymptomatic. The other 148 participants reported symptoms suggestive of COVID-19 with an average onset of approximately 39 days (range 17 to 67 days) before sample collection. In this cohort, symptoms lasted for an average of 12 days (0-35 days), and 11 (7%) of the participants were hospitalized. The most common symptoms were fever (83.9%), fatigue (71.1%), cough (62.4%), and myalgia (61.7%), while baseline comorbidities were infrequent (10.7%) (Tables 2 and 3). There were no significant differences in duration or severity (see Methods) of symptoms, or in time from onset of symptoms to sample collection between genders or between cases and contacts. There was no age difference between females and males in our cohort (FIG. 7).


Plasma samples were tested for binding to the SARS-CoV-2 RBD and trimeric spike (S) proteins by a validated ELISA using anti-IgG or -IgM secondary antibodies for detection (FIG. 7, Table 2, FIGS. 8 and 9) (Amanat, F. et al. Nat Med (2020); Grifoni, A. et al. Cell (2020).). Eight independent negative controls and the positive control plasma sample from participant 21 (COV21) were included for normalization of the area under the curve in all experiments (AUC). Overall, 78% and 70% of the plasma samples tested showed anti-RBD and anti-S IgG AUCs that were at least 2 standard deviations above the control (FIGS. 7A and 7B). In contrast, only 15% and 34% of the plasma samples showed IgM responses to anti-RBD and anti-S that were at least 2 standard deviations above control, respectively (FIGS. 7C and 7D). There was no positive correlation between anti-RBD or -S IgG or IgM levels and duration of symptoms or the timing of sample collection relative to the onset of symptoms (FIG. 3E and FIGS. 9A-9C and 9G-9J). On the contrary, as might be expected, anti-RBD IgM titers were negatively correlated with duration of symptoms and the timing of sample collection (FIG. 3E and FIG. 9H). Anti-RBD IgG levels were modestly correlated to age and the severity of symptoms including hospitalization (FIGS. 3F-3G and FIG. 9K). Interestingly, females had lower anti-RBD and -S IgG titers than males (FIG. 3H and FIG. 8F).


To measure the neutralizing activity in convalescent plasmas, we used HIV-1-based virions carrying a nanoluc luciferase reporter that was pseudotyped with the SARS-CoV-2 spike (SARS-CoV-2 pseudovirus, see Methods, FIG. 4 and FIG. 10). Negative (historical) and positive (COV21) controls were included in all experiments. The overall level of neutralizing activity in the cohort, as measured by the half-maximal neutralizing titer (NT50) was generally low, with 33% less than 50 and 79% below 1,000 (FIGS. 4A and 4B). The geometric mean NT50 was 121 (arithmetic mean=714), and only 2 individuals reached NT50s above 5,000 (FIGS. 4A and 4B and Table 2).


Notably, levels of anti-RBD- and -S IgG antibodies correlated strongly with NT50 (FIGS. 4C and 4D). The neutralizing activity also correlated with age, duration of symptoms, and symptom severity (FIG. 11). Consistent with this observation, hospitalized individuals with longer symptom duration showed slightly higher average levels of neutralizing activity than non-hospitalized individuals (p=0.0495, FIG. 4E). Finally, a significant difference in neutralizing activity between males and females (p=0.0031, FIG. 4F) was observed. The difference between males and females was consistent with higher anti-RBD and -S IgG titers in males, and could not be attributed to age, severity, timing of sample collection relative to the onset of symptoms or duration of symptoms (FIG. 3H and FIGS. 8A-8D and 8F).


To determine the nature of the antibodies elicited by SARS-CoV-2 infection, flow cytometry was used to isolate individual B lymphocytes with receptors that bound to RBD from the blood of 6 selected individuals, including the 2 top and 4 high to intermediate neutralizers (FIG. 5). The frequency of antigen-specific B cells, identified by their ability to bind to both Phycoerythrin (PE)- and AF647-labeled RBD, ranged from 0.07 to 0.005% of all circulating B cells in COVID-19 convalescents but they were undetectable in pre-COVID-19 controls (FIG. 5A and FIG. 12). 534 paired IgG heavy and light chain (IGH and IGL) sequences were obtained by reverse transcription and subsequent PCR from individual RBD-binding B cells from the 6 convalescent individuals (see Methods and Tables 4-5 and 7-14). When compared to the human antibody repertoire, several IGHV and IGLV genes were significantly over-represented (FIG. 13). The average number of V genes nucleotide mutations for IGH and IGL was 4.2 and 2.8, respectively (FIG. 14), which is lower than in antibodies cloned from individuals suffering from chronic infections such as Hepatitis B or HIV-1, and similar to antibodies derived from primary malaria infection or non-antigen-enriched circulating IgG memory cells (Scheid, J. F. et al. Nature 458, 636-640 (2009); Tiller, T. et al. Immunity 26, 205-213 (2007); Murugan, R. et al. Sci Immunol 3 (2018); Wang, Q. et al. Cell Host Microbe, doi:10.1016/j.chom.2020.05.010 (2020).). Among other antibody features, IGH CDR3 length was indistinguishable from the reported norm, and hydrophobicity was below average (FIG. 14) (Briney, B., et al. Nature 566, 393-397 (2019).).


As is the case with other human pathogens, there were expanded clones of viral antigen binding B cells in all COVID-19 individuals tested (see Methods and FIGS. 5B and 5C). Overall, 32.2% of the recovered IGH and IGL sequences were from clonally expanded B cells (range 21.8-57.4% across individuals, FIG. 5B). Antibodies that shared specific combinations of IGHV and IGLV genes in different individuals comprised 14% of all the clonal sequences (colored pie slices in FIGS. 5B and 5C). Remarkably, the amino acid sequences of some antibodies found in different individuals were nearly identical (FIGS. 5D and 5E). For example, antibodies expressed by clonally expanded B cells with IGHV1-58/IGKV3-20 and IGHV3-30-3/IGKV1-39 found repeatedly in different individuals had amino acid sequence identities of up to 99% and 92%, respectively (FIG. 5D and Table 4). It was concluded that the IgG memory response to the SARS-CoV-2 RBD is rich in recurrent and clonally expanded antibody sequences.


To examine the binding properties of anti-SARS-CoV-2 antibodies, 94 representative antibodies, 67 from clones and 27 from singlets (Tables 4 and 5), were expressed. ELISA assays showed that 95% (89 out of 94) of the antibodies tested including clonal and unique sequences bound to the SARS-CoV-2 RBD with an average half-maximal effective concentration (EC50) of 6.9 ng/mL (FIG. 6A and FIG. 15A). A fraction of these (7 out of 77 that were tested, or 9%) cross-reacted with the RBD of SARS-CoV with EC50s below 1 mg/mL (FIGS. 15B and 15C). No significant cross-reactivity was noted to the RBDs of MERS, HCoV-OC43, HCoV-229E or HCoV-NL63.


To determine whether the monoclonal antibodies have neutralizing activity, we tested them against the SARS-CoV-2 pseudovirus (FIG. 6 and Table 6). Among 89 RBD binding antibodies tested, it was found 52 that neutralized SARS-CoV-2 pseudovirus with nanogram per milliliter half-maximal inhibitory concentrations (IC50s) ranging from 3 to 709 (FIGS. 6B, 6C, and 6E; Table 6). A subset of the most potent of these antibodies was also tested against authentic SARS-CoV-2 and neutralized with IC50s of less than 5 ng/ml (FIGS. 6D and 6E). Only two of the antibodies which cross-reacted with the RBD of SARS-CoV showed significant neutralizing activity against SARS-CoV pseudovirus (FIGS. 15D and 15E).


Potent neutralizing antibodies were found in individuals irrespective of their plasma NT50s. For example, C121, C144, and C135 with IC50s of 1.64, 2.55 and 2.98 ng/mL against authentic SARS-CoV-2, respectively, were obtained from individuals COV107, COV47, and COV72 whose plasma NT50 values were of 297, 10,433 and 3,138, respectively (FIG. 4B and FIG. 6). Finally, clones of antibodies with shared IGHV and IGLV genes were among the best neutralizers, e.g., antibody C002 composed of IGHV3-30/IGKV1-39 is shared by the 2 donors with the best plasma neutralizing activity (red pie slice in FIGS. 5B and 6). It was concluded that even individuals with modest plasma neutralizing activity harbor rare IgG memory B cells that produce potent SARS-CoV-2 neutralizing antibodies.


To determine whether human anti-SARS-CoV-2 monoclonal antibodies with neutralizing activity can bind to distinct domains on the RBD, we performed bilayer interferometry experiments in which a preformed antibody-RBD immune complex was exposed to a second monoclonal. The antibodies tested comprised 3 groups, all of which differ in their binding properties from CR3022, an antibody that neutralizes SARS-CoV and binds to, but does not neutralize SARS-CoV-2 (ter Meulen, J. et al. PLoS Med 3, e237(2006); Yuan, M. et al. Science 368, 630-633 (2020).). Representatives of each of the 3 groups include: C144 and C101 in Group 1; C121 and C009 in Group 2; C135 in Group 3. All of these antibodies can bind after CR3022. Groups 1 and 2 also bind after Group 3, and Groups 1 and 2 differ in that Group 1 can bind after Group 2 but not vice versa (FIGS. 6F-6N). It was concluded that similar to SARS-CoV, there are multiple distinct neutralizing epitopes on the RBD of SARS-CoV-2.


To further define the binding characteristics of Groups 1 and 2 antibodies, SARS-CoV-2 S-Fab complexes were imaged by negative stain electron microscopy (nsEM) using C002 (Group 1, an IGHV3-30/IGKV1-39 antibody, which is clonally expanded in 2 donors), C119 and C121 (both in Group 2) Fabs (FIGS. 6F-6R and FIG. 16). Consistent with the conformational flexibility of the RBD, 2D class averages showed heterogeneity in both occupancy and orientations of bound Fabs for both groups (FIGS. 40-6Q). The low resolution of NS EM reconstructions precludes detailed binding interpretations, but the results are consistent with Fabs from both groups being able to recognize “up” and “down” states of the RBD, as previously described for some antibodies targeting this epitope (Walls, A. C. et al. Cell 176, 1026-1039 (2019); Pinto, D. et al. Nature, doi:10.1038/s41586-020-2349-y (2020).). The 3D reconstructions are also consistent with competition measurements indicating that Groups 1 and 2 antibodies bind a RBD epitope distinct from antibody CR3022 (FIGS. 6F-6N) and with a single-particle cryo-EM structure of a C105-S complex (https://www.biorxiv.org/content/10.1101/2020.05.28.121533v1.full.pdf). In addition, the structures suggest that the antibodies bind the RBD with different angles of approach, with Group 1 antibodies more similar to the approach angle of the SARS-CoV antibody S230 (Zhu, Z. et al. Proc Natl Acad Sci USA 104, 12123-12128 (2007).) (FIG. 6R).


Human monoclonal antibodies with neutralizing activity against pathogens ranging from viruses to parasites have been obtained from naturally infected individuals by single cell antibody cloning. Several have been shown to be effective in protection and therapy in model organisms and in early phase clinical studies, but only one antiviral monoclonal is currently in clinical use (Salazar, G., et al. NPJ Vaccines 2, 19 (2017).). Antibodies are relatively expensive and more difficult to produce than small molecule drugs. However, they differ from drugs in that they can engage the host immune system through their constant domains that bind to Fc gamma receptors on host immune cells (Bournazos, S. & Ravetch, J. V. Immunol Rev 275, 285-295 (2017).). These interactions can enhance immunity and help clear the pathogen or infected cells, but they can also lead to disease enhancement during Dengue (Feinberg, M. B. & Ahmed, R. Science 358, 865-866 (2017)) and possibly coronavirus infections (Iwasaki, A. & Yang, Y. Nat Rev Immunol, doi:10.1038/s41577-020-0321-6 (2020).). This problem has impeded Dengue vaccine development but would not interfere with the clinical use of potent neutralizing antibodies that can be modified to prevent Fc gamma receptor interactions and remain protective against viral pathogens (Van Rompay, K. K. A. et al. Proc Natl Acad Sci USA 117, 7981-7989 (2020).).


Antibodies are essential elements of most vaccines and will likely be a crucial component of an effective vaccine against SARS-CoV-2 (Plotkin, S. A. Clin Vaccine Immunol 17, 1055-1065 (2010); Yu, J. et al. Science, doi:10.1126/science.abc6284 (2020); Chandrashekar, A. et al. Science, doi:10.1126/science.abc4776 (2020).). Recurrent antibodies have been observed in other infectious diseases and vaccinal responses (Wang, Q. et al. Cell Host Microbe, doi:10.1016/j.chom.2020.05.010 (2020); Scheid, J. F. et al. Science 333, 1633-1637 (2011); Robbiani, D. F. et al. Cell 169, 597-609 e511(2017); Ehrhardt, S. A. et al. Nat Med 25, 1589-1600 (2019); Pappas, L. et al. Nature 516, 418-422 (2014).). The observation that plasma neutralizing activity is low in most convalescent individuals, but that recurrent anti-SARS-CoV-2 RBD antibodies with potent neutralizing activity can be found in individuals with unexceptional plasma neutralizing activity suggests that humans are intrinsically capable of generating anti-RBD antibodies that potently neutralize SARS-CoV-2. Thus, vaccines that selectively and efficiently induce antibodies targeting the SARS-CoV-2 RBD may be especially effective.


Example 3

This example describes the materials, methods, and instrumentation used in EXAMPLE 4.


Human subjects. Samples of peripheral blood were obtained upon written consent from community participants under protocols approved by the Institutional Review Board of the Rockefeller University (DRO-1006). Details on the demographics of the cohort are provided in (Robbiani et al., 2020).


Cell lines. HEK293T cells for pseudovirus production and HEK293TACE2 cells for pseudovirus neutralization experiments were cultured at 37° C. and 5% CO2 in Dulbecco's modified Eagle's medium (DMEM, Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Sigma-Aldrich) and 5 μg/ml Gentamicin (Sigma-Aldrich). The medium for the 293TAce2 cells additionally contained 5 μg/ml Blasticidin (Gibco). For constitutive expression of ACE2 in 293T cells, a Cdna encoding ACE2, carrying two inactivating mutations in the catalytic site (H374N & H378N), was inserted into CSIB 3′ to the SFFV promoter (Kane et al., 2016). 293TACE2 cells were generated by transduction with CSIB based virus followed by selection with 5 μg/ml Blasticidin (Gibco). Expi293F cells (Gibco) for protein expression were maintained at 37° C. and 8% CO2 in Expi293 Expression medium (Gibco), transfected using Expi293 Expression System Kit (Gibco) and maintained under shaking at 130 rpm. The gender of the HEK293T, HEK293TACE2 and Expi293F cell lines is female. Cell lines were not specifically authenticated.


Bacteria. E. coli DH5α (Zymo Research) for propagation of expression plasmids were cultured at 37° C. in LB broth (Sigma-Aldrich) with shaking at 250 rpm.


Viruses. To generate pseudotyped viral stocks, HEK293T cells were transfected with pNL4-3ΔEnv-nanoluc and pSARS-CoV2-Strunc (Robbiani et al., 2020) using polyethyleneimine, leading to production of HIV-1-based virions carrying the SARS-CoV-2 S protein at the surface. Eight hours after transfection, cells were washed twice with PBS and fresh media was added. Supernatants containing virions were harvested 48 hours post transfection, filtered and stored at −80° C. Infectivity of virions was determined by titration on 293TACE2 cells.


Collection of human samples. Convalescent and healthy donor plasma samples were collected and processed as described (Robbiani et al., 2020). The convalescent plasma samples used for nsEMPEM were from residents in the State of New York: COV21 (a 54-year-old male Hispanic, collection 27 days after symptom onset), COV57 (a 66-year-old male Caucasian, collection 21 days after symptom onset), and COV107 (a 53-year-old female Caucasian, collection 29 days after symptom onset). An analysis of SARS-CoV-2 genomes in the GISAID database with sample collection dates in March 2020 (contemporaneous with the infections of individuals COV21, COV57, and COV107) was performed to identify any viral spike mutations likely to have been present. For SARS-CoV-2 genomes of New York State residents from March 2020, 468 of 475 contained the D614G mutation. Thus, based on state-level mutant frequencies, these individuals were likely to have been infected with D614G-containing viruses. All other spike mutations in these genomes had a frequency below 2%. All participants provided written informed consent before sample collection at the Rockefeller University Hospital and the study was conducted in accordance with Good Clinical Practice. Anti-coagulated plasma was heat-inactivated (56° C. for 1 hour) prior to shipment to Caltech and stored at 4° C. thereafter (Robbiani et al., 2020).


Phylogenetic trees. Sequence alignments of S proteins and RBD/S1B domains were made with Clustal Omega (Sievers et al., 2011). Phylogenetic trees were calculated from these amino acid alignments using PhyML 3.0 (Guindon et al., 2010) and visualized with PRESTO (http://www.atgc-montpellier.fr/presto).


Cloning and expression of recombinant CoV proteins. Codon-optimized nucleotide sequences encoding the SARS-CoV-2 S ectodomain (residues 161206 of an early SARS-CoV-2 sequence isolate; GenBank MN985325.1, which has an Asp at position 614, so does not include the D614G mutation described as possibly more transmissible in (Korber et al., 2020)), SARS-CoV S (residues 12-1193; GenBank AAP13441.1), MERS-CoV S (residues 19-1294; GenBank JX869059.2), HCoV-OC43 (residues 15-1263; GenBank AAT84362.1), HCoV-NL63 (residues 16-1291; GenBank AAS58177.1), and HCoV-229E (residues 17-1113; GenBank AAK32191.1) were synthesized and subcloned into the mammalian expression pTwist-CMV BetaGlobin vector by Twist Bioscience Technologies. The S proteins were modified as previously described (Li et al., 2019; Tortorici et al., 2019; Walls et al., 2020). Briefly, the S ectodomain constructs included an N-terminal mu-phosphatase signal peptide, 2P stabilizing mutations (Pallesen et al., 2017) and a C-terminal extension (GSG-RENLYFQG (SEQ ID NO: 3240) (TEV protease site), GGGSG-YIPEAPRDGQAYVRKDGEWVLLSTFL (SEQ ID NO: 3238) (foldon trimerization motif), G-HHHHHHH (SEQ ID NO: 3239) (octa-histidine tag), and GLNDIFEAQKIEWHE (SEQ ID NO: 3234) (AviTag)). For SARS-CoV-2, MERS-CoV, HCoV-NL63 and HCoV-OC43 mutations to remove the S1/S2 furin cleavage site were introduced.


Codon-optimized nucleotide sequences encoding the receptor binding domain (RBD) for SARS-CoV-2 (residues 331-524) SARS-CoV S (residues 318-510), MERS-CoV S (residues 367-588), HCoV-NL63 (residues 481-614), and corresponding S1B domains for HCoV-OC43 (residues 324-632), and HCoV-229E (residues 286-434) were synthesized and subcloned into the mammalian expression pTwist-CMV BetaGlobin vector by Twist Bioscience Technologies. The RBD/S1B constructs included an N-terminal human IL-2 signal peptide and dual C-terminal tags (G-HHHHHHH (SEQ ID NO: 3239) (octa-histidine), and GLNDIFEAQKIEWHE (SEQ ID NO: 3234) (AviTag)).


The S protein and RBD/S1B constructs were expressed by transient transfection of Expi293F cells (Gibco) and purified from clarified transfected cell supernatants four days post-transfection using HisTrap FF and HisTrap HP columns (GE Healthcare Life Sciences). After concentration, affinity-purified proteins were further purified by size-exclusion chromatography (SEC) using a HiLoad 16/600 Superdex 200 pg column (GE Healthcare Life Sciences) in 1×TBS (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.02% NaN3). Peak fractions were analyzed by SDS-PAGE, and fractions corresponding to S trimers or monomeric RBD/S1B proteins were pooled and stored at 4° C.


SEC-MALS. Purified CoV-S trimers were concentrated to 1 mg/mL and loaded onto a Superose 6 Increase 10/300 GL column (GE Healthcare Life Sciences) and passed through a Wyatt DAWN coupled to a Wyatt UT-rEX differential refractive index detector (Wyatt Technology). Data were analyzed using Astra 6 software (Wyatt Technology) to determine glycoprotein molecular weights.


Purification of plasma IgGs and Fabs. IgGs were purified from plasma samples using 5-mL HiTrap MabSelect SuRe columns (GE Healthcare Life Sciences). Heat-inactivated plasma was diluted 10-fold with cold PBS, and samples were applied to prepacked columns at 1 mL/min. Bound IgGs were washed with 10 column volumes (CV) PBS and eluted with 5 CV 0.1M glycine, 100 mM NaCl, pH 3.0 directly into 10% v/v 1M Tris-HCl, pH 8. To produce polyclonal Fab fragments, IgGs were buffer exchanged into PBS by centrifugation with 30 kDa MWCO membrane centrifugal filter units (Millipore). Fabs were generated by papain digestion using crystallized papain (Sigma-Aldrich) in 50 mM sodium phosphate, 2 mM EDTA, 10 mM L-cysteine, pH 7.4 for 30-60 min at 37° C. at a 1:100 enzyme:IgG ratio. To remove undigested IgGs and Fc fragments, digested products were applied to a 1-mL HiTrap MabSelect SuRe column (GE Healthcare Life Sciences) and the flow-through containing cleaved Fabs was collected. Fabs were further purified by SEC using a Superdex 200 Increase 10/300 column (GE Healthcare Life Sciences) in TBS, before concentrating and storage at 4° C.


To evaluate binding of purified polyclonal IgGs or Fabs to CoV proteins, purified S1B/RBD or S proteins were biotinylated using the Biotin-Protein Ligase-BIRA kit according to manufacturer's instructions (Avidity). Biotinylated-CoV proteins were captured on streptavidin coated 96-well plates (Thermo Scientific) by incubating with 100 pL of 2 pg/mL protein solution in TBS overnight at 4° C. Plates were washed 3× in washing buffer (1×TBST: 20 mM Tris, 150 mM NaCl, 0.05% Tween20, pH 8.0) and blocked with 200 pL blocking buffer (TBST-MS: 1×TBST+1% w/v milk, 1% v/v goat serum (Gibco) for 1 h at RT. Immediately after blocking, polyclonal IgGs or Fabs were assayed for binding at a 50 pg/mL starting concentration and seven 4-fold serial dilutions in blocking buffer. After 2 h incubation at RT, plates were washed 5 times with washing buffer and incubated with goat-anti-human IgG or goat-anti-human IgG(H+L) secondary antibody conjugated to horseradish peroxidase (HRP) (SouthernBiotech) in blocking buffer at a 1:4000 or 1:2000 dilution, respectively. Plates were washed 5 times with washing buffer and developed by addition of 100 pL 1-Step™ Ultra TMB-ELISA Substrate Solution (Thermo Scientific) for 3 min. The developing reaction was quenched by addition of 100 pl 1N HCl and absorbance was measured at 450 nm using Gen5 software on a Synergy Neo2 Reader (BioTek).


RBD Adsorption ELISAs. Plasmids for SARS-CoV-2 RBD 6×HisTag constructs (residues 319-541, GenBank: MN908947.3) were a gift from the lab of Florian Krammer (Mount Sinai) (“6×HisTag” disclosed as SEQ ID NO: 3241). SARS-CoV-2 RBD 6×HisTag constructs (“6×HisTag” disclosed as SEQ ID NO: 3241) were expressed by transient transfection of Expi293F cells (Gibco) and purified using HisTrap FF and HisTrap HP columns (GE Healthcare Life Sciences), followed by SEC using a HiLoad 16/600 Superdex 200 pg column (GE Healthcare Life Sciences) against 1×TBS (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.02% NaN3). Purified protein was concentrated and buffer exchanged into 100 mM Sodium Bicarbonate pH 8.3, 500 mM NaCl using a gravity-flow chromatography with a PD-10 desalting column (GE Healthcare Life Sciences). Buffer-exchanged RBD was concentrated to 5 mL and covalently coupled to a 5 mL HiTrap NETS-activated Sepharose column (GE Healthcare Life Sciences) according to the manufacturer's protocol. Control resin was made using the same procedure to covalently couple 2G12, an HIV-1 mAb, as described (Scharf et al., 2015).


For RBD-absorption ELISA experiments to evaluate binding of purified polyclonal IgGs to CoV S1B/RBD proteins after absorption of SARS-CoV-2 RBD-specific antibodies, biotinylated-S1B/RBD proteins were captured on high-capacity streptavidin coated 96-well plates (Thermo Scientific) by incubating with 100 μL of 2 μg/mL protein solution in TBS overnight at 4° C. Plates were washed 3× in washing buffer and blocked as described above. For absorption of RBD-specific antibodies, 100 μL of SARS-CoV-2 RBD-coupled resin or 2G12 control resin was incubated with 100 μL of purified IgGs diluted to −1 mg/mL for 1 h at RT with agitation. After incubation, SARS-CoV-2 RBD-coupled resin was gently centrifuged at 250×g for 2 min, and non-absorbed IgGs were removed by careful pipetting of the aqueous layer above the pelleted RBD-coupled resin. Unadsorbed and absorbed IgG samples were assayed at a 50 μg/mL starting concentration and seven 4-fold serial dilutions as described above.


Pseudotyped virus neutralization assays. Pseudoviruses based on HIV lentiviral particles were prepared as described (Robbiani et al., 2020). Four-fold serially diluted purified polyclonal IgGs and Fabs from COVID-19 plasmas were incubated with SARS-CoV-2 pseudotyped virus for 1 hour at 37° C. After incubation with 293TACE2 cells for 48 hours at 37° C., cells were washed twice with PBS, lysed with Luciferase Cell Culture Lysis 5× reagent (Promega), and NanoLuc Luciferase activity in lysates was measured using the Nano-Glo Luciferase Assay System (Promega). Relative luminescence units (RLUs) were normalized to values derived from cells infected with pseudotyped virus in the absence of purified plasma IgGs or Fabs. Half-maximal inhibitory concentrations (IC50 values) for purified plasma IgGs and Fabs were determined as molar concentrations (to account for the IgG versus Fab difference in molecular weight) using 4-parameter nonlinear regression (Prism, GraphPad).


Negative-stain electron microscopy (nsEM). Purified CoV-S trimers were adsorbed to freshly-glow discharged PureC 300 mesh carbon-coated copper grids (EMD Sciences) for 1 min followed by 2% uranyl formate staining. Micrographs were recorded using Digital Micrograph software on a 120 kV FEI Tecnai T12 equipped with a Gatan Ultrascan 2 k×2 k CCD at a 52,000× nominal magnification.


nsEMPEM. Methods were adapted from (Bianchi et al., 2018). To form polyclonal Fab-S complexes, 30 μg of SARS-CoV-2 S trimers were incubated overnight at RT with 30-50 mg/mL Fabs in 100 μL total volume (corresponding to ˜1000× the EC50 values for ELISAs using purified polyclonal Fabs), and the complexes were purified by SEC on a Superose 6 increase 10/300 GL column (GE Healthcare Life Sciences). Fractions containing complexes were pooled and concentrated to 50 μg/mL and passed through a 0.1 μm filter before deposition on 300 mesh carbon-coated copper grids (source?) and stained with 1% (w/v) uranyl formate (source?). Grids were imaged at 300 keV using a Titan Krios transmission electron microscope (Thermo Fisher) operating at RT, equipped with a K3 direct electron detector (Gatan) using SerialEM 3.7? (Mastronarde, 2005). Images were processed in cryoSPARC v 2.14, and a reference-free particle stack was generated using a Gaussian blob picker (Punjani et al., 2017). Particles corresponding to S-Fab complexes were identified by extensive 2D classification to identify class averages that displayed structural elements interpreted as Fab density and also represented different views. Extracted particles were used to generate ab initio models in cryoSPARC that were further processed by 3D classification to separate out complexes and S trimer structures alone. Figures were prepared using UCSF Chimera (Goddard et al., 2007; Pettersen et al., 2004).


X-ray crystallography. The Fab from the C105 monoclonal IgG was expressed, purified, and stored as described (Scharf et al., 2015; Schoofs et al., 2019). Crystallization trials were performed at room temperature using the sitting drop vapor diffusion method by mixing equal volumes of C105 Fab and reservoir using a TTP LabTech Mosquito robot and commercially-available screens (Hampton Research). After optimization of initial hits, crystals were obtained in 0.15 M lithium sulfate, 0.1 M citric acid pH 3.5, 18% v/v PEG 6000 at 20° C. Crystals were transferred stepwise to 20% glycerol cryoprotectant before being cryopreserved in liquid nitrogen.


X-ray diffraction data were collected for C105 Fab at the Stanford Synchroton Radiation Lightsource (SSRL) beamline 12-1 on a Pilatus 6M pixel detector (Dectris). Data from a single crystal were indexed and integrated in XDS (Kabsch, 2010) and merged using AIMLESS in CCP4 (Winn et al., 2011) (Table 16). The structure of C105 Fab was determined by molecular replacement in PHASER (McCoy et al., 2007) using the B38 Fab coordinates from PDB code 7BZ5 after removal of CDR loops as a search model. The C105 Fab coordinates were refined using Phenix (Adams et al., 2010) and cycles of manual building in Coot (Emsley et al., 2010) (Table 16).


Cryo-EM Sample Preparation. Purified C105 Fab was incubated with SARS-CoV-2 S trimer at a 2:1 molar ratio per protomer on ice for 30 minutes prior to purification by SEC on a Superose 6 Increase 10/300 GL column (GE Healthcare Life Sciences). Fab-S complexes were concentrated to 1.6 mg/ml in Tris-buffered saline (TB S). Immediately before deposition onto a 300 mesh, 1.2/1.3 AuUltraFoil grid (Electron Microscopy Sciences) that had been freshly glow-discharged for 1 min at 20 mA using a PELCO easiGLOW (Ted Pella), 3 μL of complex was mixed with 0.5 μL of a 0.5% w/v octyl-maltoside solution (Anatrace). Samples were vitrified in 100% liquid ethane using a Mark IV Vitrobot (Thermo Fisher) after blotting for 3 s with Whatman No. 1 filter paper at 22° C. and 100% humidity.


Cryo-EM Data Collection and Processing. For the C105-S trimer complex, micrographs were collected on a Titan Krios transmission electron microscope (Thermo Fisher) operating at 300 kV using SerialEM automated data collection software (Mastronarde, 2005). Movies were obtained on a Gatan K3 Summit direct electron detector operating in counting mode at a nominal magnification of 105,000× (super-resolution 0.418 Å/pixel) using a defocus range of −1 to −2.5 μm. Movies were collected with an 1.9 s exposure time with a rate of 22 eipix/s, which resulted in a total dose of ˜60 e−/Å2 over 40 frames. The 5,940 cryo-EM movies were patch motion corrected for beam-induced motion including dose-weighting within cryoSPARC v2.15 (Punjani et al., 2017) after binning super resolution movies by 2 (0.836 Å/pixel). The non-dose-weighted images were used to estimate CTF parameters using CTFFIND4 (Rohou and Grigorieff, 2015), and micrographs with power spectra that showed poor CTF fits or signs of crystalline ice were discarded, leaving 5,316 micrographs. Particles were picked in a reference-free manner using Gaussian blob picker in cryoSPARC (Punjani et al., 2017). An initial 565,939 particle stack was extracted, binned ×2 (1.68 Å/pixel), and subjected to iterative rounds of reference-free 2D classification to identify class averages corresponding to intact S-trimer complexes with well-defined structural features. This routine resulted in a new particle stack of 71,289 particles, which were unbinned (0.836 Å/pixel) and re-extracted using a 352 box size. Two ab initio volumes were generated, with one class of 61,737 particles revealing an S-trimer complexed with two C105 Fabs.


Particles were further 3D classified (k=3) and heterogeneously refined to reveal two distinct states of the C105-S trimer complex. State 1 (37,615 particles) displaying 2 “up” RBD conformations bound by 2 C105 Fabs, and state 2 (14,119 particles) that displayed 3 “up” RBD conformations bound by 3 C105 Fabs. Particles from states 1 and 2 were separately refined using non-uniform 3D refinement imposing either C1 or C3 symmetry, respectively, to final resolutions of 3.6 Å (state 1; 37,615 particles) and 3.7 Å (state 2; 14,119 particles) according to the gold-standard FSC (Bell et al., 2016). Given that the RBD “up” conformations with C105 Fabs bound were similar in both states 1 and 2, improvements to the resolution at the RBD-C105 Fab interface were achieved by combining the entire particle stack (˜52 k particles) for a focused, non-uniform 3D refinement. A soft mask was generated from the state 1 volume (5-pixel extension, 10-pixel soft cosine edge) for the S1 subunits and C105 Fab variable domains. These efforts resulted in a modest improvement in the RBD-C105 Fab interface (FIG. 29D), and an overall resolution of 3.4 Å according to the gold-standard FSC.


Cryo-EM Structure Modeling and Refinement. Initial coordinates were generated by docking individual chains from reference structures into cryo-EM density using UCSF Chimera (Goddard et al., 2007). The following coordinates were used: SARS-CoV-2 S trimer: PDB code 6VYB, “up” RBD conformations: PDB code 7BZ5, C105 Fab: this study. These initial models were then refined into cryo-EM maps using one round of rigid body refinement followed by real space refinement. Sequence-updated models were built manually in Coot (Emsley et al., 2010) and then refined using iterative rounds of refinement in Coot and Phenix (Adams et al., 2010). Glycans were modeled at possible N-linked glycosylation sites (PNGSs) in Coot using ‘blurred’ maps processed with a variety of B-factors (Terwilliger et al., 2018). Validation of model coordinates was performed using MolProbity (Chen et al., 2010) and is reported in Table 17.


Structural Analyses. Structural figures were made using PyMOL (Version 1.8.2.1 Schrodinger, LLC) or UCSF Chimera (Goddard et al., 2007). Local resolution maps were calculated using cryoSPARC v 2.15 (Punjani et al., 2017).


Example 4

A newly-emergent betacoronavirus, SARS-CoV-2, resulted in a pandemic in 2020, causing the respiratory disease COVID-19 (Wu et al., 2020b; Zhou et al., 2020). SARS-CoV-2 is the third zoonotic betacoronavirus to infect humans this century, following SARS-CoV and MERS-CoV (Middle East Respiratory Syndrome) infections in 2003 and 2012, respectively (de Wit et al., 2016). In addition, four globally-distributed human coronaviruses, HCoV-OC43, HCoV-HKU1 (beta coronaviruses), and HCoV-NL63, HCoV-229E (alpha coronaviruses), contribute to 15-30% of common colds (Fung and Liu, 2019). The neutralizing antibody response to coronaviruses is primarily directed against the trimeric spike glycoprotein (S) on the viral membrane envelope, which serves as the machinery to fuse the viral and host cell membranes (Fung and Liu, 2019). Coronavirus S proteins contain three copies of an S1 subunit comprising the S1A through S1D domains, which mediates attachment to target cells, and three copies of an S2 subunit, which contains the fusion peptide and functions in membrane fusion (FIG. 17A). Neutralizing antibody responses against SARS-CoV-2, SARS-CoV, and MERS-CoV S proteins often target the receptor-binding domain (RBD; also called the S1B domain) (Hwang et al., 2006; Pinto et al., 2020; Prabakaran et al., 2006; Reguera et al., 2012; Rockx et al., 2008; Walls et al., 2020; Walls et al., 2019; Widjaja et al., 2019; Wrapp and McLellan, 2019; Wrapp et al., 2020).


The S proteins of SARS-CoV-2 (1273 residues, strain Wuhan-Hu-1) and SARS-CoV (1255 residues, strain Urbani) share 77.5% amino acid sequence identity, while the S proteins of SARS-CoV-2 and MERS-CoV (1353 residues, strain EMC2012) are more distantly related, sharing only 31% identity (FIGS. 17B and 17C). Sequence identities between SARS-CoV-2 and common cold coronavirus S proteins are even lower, varying between 25% and 30%. Phylogenetic analyses confirm that SARS-CoV-2 and SARS-CoV are more closely related to each other than to other human coronaviruses (FIG. 1B). The RBD/S1B domains show varying degrees of sequence identity, ranging from 13% (SARS-CoV-2 and HCoV-NL63) to 74% (SARS-CoV-2 and SARS-CoV). Nevertheless, the 3D structures of S protein trimer ectodomains are similar to each other and to other coronavirus S structures, including the finding of flexible RBDs (S1B domains) that can be in various “up” conformations or in the “down” conformation of the closed pre-fusion trimer (Kirchdoerfer et al., 2016; Li et al., 2019; Walls et al., 2020; Walls et al., 2016; Wrapp et al., 2020; Yuan et al., 2017). Primary amino acid sequence differences in the RBDs of SARS-CoV-2 and SARS-CoV compared with MERS-CoV (FIG. 1B,C) result in binding to different host receptors: angiotensin-converting enzyme 2 (ACE2) for SARS-CoV-2 and SARS-CoV (Hoffmann et al., 2020; Li et al., 2003; Zhou et al., 2020) and dipeptidyl peptidase 4 for MERS-CoV (Raj et al., 2013). One of the common cold coronaviruses, HCoV-NL63, also uses its RBD (S1B) to bind ACE2, although its interactions differ structurally from RBD-ACE2 interactions of SARS-CoV-2 and SARS-CoV (Tortorici and Veesler, 2019), whereas HCoV-OC43 and HCoV-HKU1 uses their S1A domains to bind host receptors including 9-O-acetylated sialic acids (Tortorici et al., 2019).


Understanding the antibody response to SARS-CoV-2 S protein is of critical importance because correlates of protection for vaccines usually involve antibodies (Plotkin, 2001, 2008, 2010). Moreover, antibodies are being considered as therapeutics for COVID-19 patients (Zhou and Zhao, 2020). Relatively little is known about antibody recognition of SARS-CoV-2 S compared with other coronavirus S proteins (Graham et al., 2013; Gralinski and Baric, 2015; Wan et al., 2020). However, structures of S trimer, RBD-Fab, RBD-ACE2, and S trimer-Fab complexes for SARS-CoV-2 and other coronaviruses are informative for interpreting and understanding the antibody response to SARS-CoV-2 (Gui et al., 2017; Kirchdoerfer et al., 2020; Kirchdoerfer et al., 2016; Kirchdoerfer et al., 2018; Pallesen et al., 2017; Pinto et al., 2020; Shang et al., 2020; Shang et al., 2018; Walls et al., 2016; Walls et al., 2017; Walls et al., 2019; Wang et al., 2020; Xiong et al., 2018; Yuan et al., 2020).


Here, we analyzed purified IgG and Fabs from the plasmas of 10 COVID-19 convalescent individuals (Robbiani et al., 2020) for binding to trimeric S and monomeric RBD/S1B domains of six human coronaviruses and for neutralization of SARS-CoV-2 pseudoviruses. To better understand the binding mechanism of polyclonal antibodies, we further characterized plasma Fabs from two individuals using negative-stain electron microscopy polyclonal epitope mapping (nsEMPEM), showing that the polyclonal landscape includes antibodies that target epitopes in both SARS-CoV-2 S1A and RBD domains. In addition, we solved a 3.4 Å single-particle cryo-EM structure of an S trimer bound to a neutralizing monoclonal antibody (mAb), which targeted an epitope on an “up” RBD that overlapped with the RBD epitope identified by nsEMPEM and would sterically block ACE2 receptor binding. The epitopes we found represent binding classes defined by distinct VH gene segments, suggesting that these recurring classes are commonly represented in neutralizing antibodies against SARS-CoV-2 and provide criteria for evaluating neutralizing antibodies raised by infection or vaccination. Finally, we used modeling to suggest that distinct binding orientations allow for differential avidity effects, demonstrating the potential for inter-spike crosslinking that would increase effective affinities for some anti-S IgGs on SARS-CoV-2 virions.


Convalescent plasma IgG and Fab binding properties demonstrate recognition of diverse coronaviruses and effects of avidity. Convalescent plasma samples were collected from individuals who had recovered from COVID-19 at Rockefeller University Hospital (Robbiani et al., 2020). We isolated polyclonal IgGs from 10 convalescent plasmas (FIG. 18), most of which had high neutralizing titers (Robbiani et al., 2020), and compared binding of their IgGs to purified S proteins from SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-NL63, and HCoV-229E (FIG. 24) by ELISA (FIGS. 18 and 26). Purified plasma IgGs recognized S proteins from all coronaviruses evaluated, with weaker binding observed for most samples to MERS-CoV (FIG. 19C) and common cold coronavirus S proteins (FIGS. 19D-F).


Amongst the plasmas (COV21, COV57, and COV107) chosen for further analysis based on ELISA EC50 values and strong neutralization potencies (Robbiani et al., 2020), IgGs from COV21 and COV57 showed the strongest binding to the S proteins from SARS-CoV-2 and SARS-CoV, with only the COV57 IgGs showing measurable binding to MERS-CoV S protein. The COV107 IgGs showed intermediate binding to SARS-CoV-2 and SARS-CoV and no binding to MERS-CoV S proteins (FIGS. 19A-C).


ELISAs against RBD (or S1B domain for two of the common cold coronavirus S proteins) showed the strongest binding to SARS-CoV-2 RBD for COV21, followed by COV57 and then COV107 IgGs, with the proportion of RBD versus S binding from COV21, COV72, and COV47 suggesting that the majority of the IgG responses from these plasmas were focused on the RBD, often a target of neutralizing antibodies in coronavirus infections (Hwang et al., 2006; Pinto et al., 2020; Prabakaran et al., 2006; Reguera et al., 2012; Rockx et al., 2008; Walls et al., 2020; Walls et al., 2019; Widjaja et al., 2019; Wrapp et al., 2020). The only appreciable reactivity with SARS-CoV and MERS-CoV RBDs was exhibited by COV21 IgG, which bound to SARS-CoV RBD (FIG. 19B). Although we cannot determine whether the same IgGs are binding all three S proteins, the potential for cross-reactive binding of SARS-CoV antibodies was demonstrated for a mAb that was isolated from a SARS-infected individual, which was shown to recognize SARS-CoV and SARS-CoV-2 RBDs (Pinto et al., 2020). No reactivity with MERS-CoV RBD was observed for any of the polyclonal IgGs (FIG. 19C). For most of the plasma IgGs, binding to the RBD was substantially weaker than binding to the counterpart S protein, with the exception of the strong COV21 and COV72 responses to the SARS-CoV-2 RBD. Most of the plasma IgGs exhibited stronger binding to the common cold S1B/RBDs than to the counterpart S protein trimers (FIGS. 19D-F).


To assess the degree to which cross-reactive recognition contributed to binding of plasma IgGs to RBD/S1B domains, we repeated the ELISAs before and after adsorption with SARS-CoV-2 RBD-coupled resin or a control resin for five plasma IgG samples (FIG. 26). As a positive control, purified IgGs incubated with the RBD resin showed little or no SARS-CoV-2 RBD binding (FIG. 26A). Binding to SARS-CoV RBD was also reduced for the IgGs remaining after SARS-CoV-2 RBD adsorption (FIG. 26B), suggesting cross-reactive recognition consistent with the 78% sequence conservation and structural homology of SARS-CoV-2 RBD and SARS-CoV RBD (Walls et al., 2020). By contrast, adsorption of plasma IgGs with SARS-CoV-2 RBD resins had only a modest effect on binding to common cold coronavirus RBDs (FIGS. 26D-F), consistent with little to no cross-reactive antibody recognition, likely due to the low conservation between the SARS-CoV-2 RBD and mild coronavirus RBDs (Premkumar et al., 2020). We also note that IgGs from control plasmas collected from individuals not exposed to SARS-CoV-2 exhibited binding to common cold coronavirus RBDs that was not affected by SARS-CoV-2 RBD adsorption (FIG. 26), again consistent with pre-exposure to mild coronaviruses rather than cross-reactivity with SARS-CoV-2 RBD.


Taken together, these results indicate: (i) The binding strengths and patterns of different coronavirus S protein recognition were diverse across COVID-19 individual plasma samples, (ii) Convalescent COVID-19 individuals harbor antibodies to the SARS-CoV-2 S protein, and to a lesser extent, the RBD/S1B, as well as reactivity to other coronaviruses, which likely represents previous exposure to common cold viruses, (iii) Polyclonal IgGs from individual plasma samples that bind to S proteins from MERS-CoV and/or SARS-CoV may display cross-reactive recognition, since the plasma donors were unlikely to have been infected with either of these coronaviruses, and (iv) Compared to the COV57 and COV107 plasmas, the COV21 IgG response had a higher proportion of IgGs that recognized the SARS-CoV-2 RBD.


We also evaluated the degree to which avidity effects contributed to the strength of binding of plasma IgGs to S proteins and RBDs by comparing the binding of bivalent polyclonal IgGs to monovalent Fabs, prepared by proteolytic cleavage of purified polyclonal IgGs (FIGS. 18B and 18C). Differential effects were evident in IgG to Fab comparisons: most of the SARS-CoV-2 anti-S response was reduced by at least 50% in the case of monovalent Fabs for all plasmas except for COV57 (FIG. 19A). Recognition of the other coronavirus S proteins was also diminished for Fabs compared to intact IgGs (FIGS. 19B-F). For the three plasma IgGs that were further evaluated, the largest relative differences in IgG versus Fab binding to SARS-CoV-2 S protein was observed for COV21 and COV107; the IgG versus Fab binding difference for COV57 was less pronounced (FIG. 19A). Notably, the SARS-CoV-2 S protein and RBD ELISAs showed that a higher fraction of the COV21 plasma IgGs were RBD-specific compared with the COV57 IgGs (FIGS. 19A and 19B) (Robbiani et al., 2020).


In summary, the ELISA data indicate that IgGs in plasma samples differ in their degree of focus upon epitopes within the S protein RBD/S1B domain, their relative amounts of reactivity with SARS-CoV, MERS-CoV, and common cold coronaviruses, and the extent to which avidity effects contribute to the tighter binding of polyclonal bivalent IgGs as compared with monovalent Fab s.


Plasma IgGs are more potent neutralizers than plasma Fabs. To investigate whether the bivalent architecture or larger size of IgGs compared with Fabs resulted in increased neutralization potencies, we measured the potencies of purified plasma IgGs and Fabs using in vitro neutralization assays (FIG. 19G). SARS-CoV-2 pseudoviruses were constructed as described (Robbiani et al., 2020), and the concentrations of IgGs and Fabs at which 50% neutralization was achieved (IC50 values) were calculated. All tested plasma IgGs neutralized pseudoviruses at lower molar concentrations than their Fab counterparts, with increased potencies ranging from 6- to 100-fold (FIG. 19H). The increased potency of the IgGs compared to Fabs was statistically significant (p=0.0003), even when accounting for two Fabs per IgG. We conclude that bivalent IgGs more effectively neutralize SARS-CoV-2 pseudoviruses than monovalent Fabs.


EM reveals distinct predominant epitopes targeted by convalescent plasma antibodies. We next used negative stain polyclonal electron microscopy (nsEMPEM) (Bianchi et al., 2018; Nogal et al., 2020) to map epitopes from Fabs isolated from convalescent COVID-19 plasma IgGs onto the SARS-CoV-2 S protein. In this method, Fabs that bind to an antigenic target are separated from non-binding Fabs in a polyclonal mixture by size-exclusion chromatography (SEC), Fab-antigen complexes are imaged by EM, and 2D/3D classification were used to identify predominant epitopes (Bianchi et al., 2018; Nogal et al., 2020) (FIGS. 18A-C). Typically, Fabs are incubated at 1000-2000× above EC50 values calculated from binding assays (Bianchi et al., 2018; Nogal et al., 2020). For most COVID-19 plasmas, Anti-S Fab EC50 values were estimated to be >50 μg/mL (FIG. 25). However, purified polyclonal Fabs from COV21 and COV57 plasmas, which had approximate EC50s ranging from 20-50 μg/mL, showed stable binding by SEC after incubation with SARS-CoV-2 S trimers (FIG. 18D), and 2D class averages showed evidence of bound Fabs (FIG. 28). By contrast, purified Fabs from COV107 (EC50>50 μg/mL) showed no evidence of binding to S by SEC (data not shown) or in a 3D reconstruction (FIG. 20A).


In order to verify that extra densities in nsEMPEM 3D reconstructions corresponded to bound Fab(s), we first solved a 3D reconstruction of SARS-CoV-2 S alone, revealing the expected low-resolution structure of the closed, prefusion S trimer (FIG. 20A). A 3D reconstruction of COV21 Fabs complexed with S showed recognizable density for the S trimer with a single extending density at the apex of the trimer corresponding to a Fab or mixture of Fabs bound to a similar epitope (FIG. 20A). The density could be fit to an S trimer with a Fab bound to a single RBD in an “up” position using coordinates from SARS-CoV-2 S trimer structures (Walls et al., 2020; Wrapp et al., 2020), consistent with ELISA results mapping the COV21 response to the SARS-CoV-2 RBD (FIG. 19A). The complex structure and the position of the COV21 Fab(s) closely resembled a structure of SARS-CoV S bound to a Fab from the S230 mAb isolated from a SARS-CoV-infected individual, whose epitope overlaps with the binding site for the ACE2 receptor (Walls et al., 2019) (FIG. 20B). Interestingly, S230 binding was shown to functionally mimic ACE2 binding, allowing cleavage of the SARS-CoV S protein to promote fusogenic conformational rearrangements (Walls et al., 2019). While the COV21 Fab complex reconstruction showed occupancy for one S-protomer with an RBD in an “up” position (FIG. 20A), COV21 Fab(s) could also bind analogous to the S230 Fab-SARS-Cov S complex, where classes of S trimer structures were found with two “up”/one “down” and three “up” RBD conformations (Walls et al., 2019).


Moreover, antibody S230, whose binding orientation resembles the position observed in the COV21 Fab(s) reconstruction (FIG. 20B), appears to be a member of a class of recurrent anti-SARS mAbs. It belongs to a set of 10 non-clonally-related VH3-30-derived mAbs isolated from an individual infected with SARS-CoV, which represented 40% of the clones isolated from this individual (Pinto et al., 2020). Notably, these clones contained similar 9 amino acid CDRL3 sequences (consensus sequence MQGTHWPPT (SEQ ID NO: 3656)), suggesting that this group of mAbs has a common mode of binding, partially dependent on VH3-30-derived features. RBD residues 473 and 475 contacted by the antibody heavy chain in the S230 Fab-SARS-CoV structure (Walls et al., 2019) are conserved between SARS-CoV and SARS-CoV-2, and these residues are in the vicinity of antibody heavy chain residues N57 and K58. The only VH gene segments encoding the N57/K58 pair are VH3-30, VH3-30-3, and VH3-33 (Lefranc et al., 2015). When mAbs were isolated after single B cell sorting using SARS-CoV-2 RBD as a bait, COV21 antibodies included heavy chains derived from IGHV3-30, which were also found in sequenced antibodies from five other donor plasmas (Robbiani et al., 2020). The similarity in binding orientation of COV21 Fab(s) with S230 (FIG. 20B) suggests that COV21 Fab(s) may be members of the S230 recurrent class. Consistent with this hypothesis, 38 of 127 sequenced antibodies from the COV21 donor were derived from VH3-30 or from the closely-related VH3-30-3 or VH3-33 VH gene segments (Robbiani et al., 2020).


The COV57 Fab(s)-S structure also showed recognizable density for both the S trimer and a single bound Fab(s) (FIG. 20C). However, in this complex, the S trimer appeared closed with no RBDs in an “up” position, and the Fab density was not associated with an RBD, but rather with one of the S1A subunits. In the complex, the Fab(s) pointed downwards (i.e., towards the viral membrane) rather that upwards (away from the viral membrane), as seen for the COV21 Fab(s). The COV57 Fab(s) density was in the vicinity of loops on the S1A domain that were disordered in SARS-CoV-2 S trimer structures (Walls et al., 2020; Wrapp et al., 2020). Such flexibility could explain the diffuse nature of the COV57 Fab(s) density in this reconstruction. Interestingly, characterization of COV57 neutralization showed less correlation with RBD-specific antibodies relative to COV21 (Robbiani et al., 2020), consistent with the ELISAs (FIG. 19A) and nsEMPEM characterizations (FIG. 20C) reported here. This suggests that targeting S1 regions outside of the RBD may represent alternative modes for potent neutralization of SARS-CoV-2, as found for neutralizing antibodies isolated after vaccination against MERS-CoV in nonhuman primates (Wang et al., 2015).


A cryo-EM structure of a monoclonal Fab-S protein complex resembles the COV21 Fab(s)-S reconstruction. Although we could not resolve densities for bound Fabs in the COV107-S nsEMPEM reconstruction (FIG. 20A), RBD-binding mAbs isolated from the COV107 individual were potently neutralizing (Robbiani et al., 2020). We determined a 3.4 Å single-particle cryo-EM structure of the complex of one such antibody (C105; IC50 for neutralization of SARS-CoV-2 pseudovirus=26.1 ng/mL) (Robbiani et al., 2020) bound to the SARS-CoV-2 S protein using a 1.8 Å crystal structure of the unbound C105 Fab for fitting to the cryo-EM density (FIGS. 21, 28, and 29; Tables 15 and 16).


We found two populations of C105 Fab-S complexes: an asymmetric S trimer with two “up” RBDs (state 1; 3.4 Å resolution), each of which was complexed with a Fab, and a symmetric trimer with three RBDs in the same “up” conformation (state 2; 3.7 Å resolution), again with each RBD complexed with a Fab (FIG. 21A). A subset of complexes in the cryo-EM structure of the S230 mAb bound to SARS-CoV S trimer were also found with three “up” RBDs bound to three Fabs (Walls et al., 2019), although in that structure, as in the C105-S structure, the majority of complexes had their RBDs in a two “up,” one “down” configuration.


The C105-RBD interfaces were similar across the five examples in the state 1 and state 2 complex structures (FIG. 28), thus we describe the interface for one of the Fab-RBD complexes in the state 1 complex in which the resolution at the interface was improved by performing a focused refinement (Punjani et al., 2017) on the C105 Fab-RBD portion of the complex (FIG. 28). The C105 Fab uses its three heavy chain complementarity determining regions (CDRH1, CDRH2, and CDRH3) and two of its light chain CDRs (CDRL1 and CDRL3) to rest against the receptor-binding ridge of the RBD (FIGS. 21B and 21C). The majority of the antibody contacts are made by CDRH1, CDRH2, and CDRL1, with CDRH3 and CDRL3 playing minor roles. The C105 epitope overlaps with the COV21 epitope defined by nsEMPEM, which also rests against the receptor-binding ridge in the RBD, although the Fab(s) in the COV21 reconstruction are predicted to adopt a different angle of approach (FIG. 21D). Interestingly, the C105-RBD interaction closely resembles the RBD interaction of another COVID-19 donor-derived neutralizing mAb, B38 (FIG. 21E), as reported in a recent Fab-RBD crystal structure (Wu et al., 2020c). The heavy chains of both B38 and C105 are derived from the VH3-53 gene segment, whereas the light chain gene segments differ: KVJ-9 for B38 (Wu et al., 2020c) and LV2-8 for C105 (Robbiani et al., 2020). Accordingly, the CDRH1 and CDRH2 loops of both neutralizing antibodies share similar conformations and contribute more to the antibody-RBD interface than their CDRH3 loops (FIGS. 21B and 21E).


The common epitope of C105 and B38 overlaps with the binding site for ACE2 (FIG. 21F), rationalizing their potent neutralizing activities (Robbiani et al., 2020; Wu et al., 2020c). Given that COV21 was one of the more potent neutralizing plasmas of the 149 that were collected (Robbiani et al., 2020), the overlap in the C105/B38 neutralizing epitope with the nsEMPEM-defined predominant COV21 epitope suggests that recognition of the COV21 epitope by S230-like antibodies would also be neutralizing.


CDRH3 length is a characteristic of the recurring VH3-53/VH3-66 class of anti-SARS-CoV-2 RBD neutralizing antibodies. The shared binding mode of B38 and C105, both VH3-53-derived mAbs, defines a recurrent class of anti-SARS-CoV-2 mAbs. Among a large set (n=534) of cloned anti-SARS-CoV-2 mAbs against the RBD, those derived from VH3-53 and VH3-66 were over-represented (Robbiani et al., 2020). Other studies have also reported anti-SARS-CoV-2 mAbs derived from these genes (Brouwer et al., 2020; Cao et al., 2020; Chi et al., 2020; Ju et al., 2020; Rogers et al., 2020; Seydoux et al., 2020; Wu et al., 2020c; Zost et al., 2020). These VH gene segments encode V regions that differ in only one amino acid position, which is not in a CDR. Thus, in terms of V-gene-determined mAb classes, they are functionally equivalent. When grouping VH3-53 and VH3-66, over-representation of VH3-53/VH3-66-derived mAbs is significant (p=0.035). A notable characteristic of the VH3-53/VH3-66-derived subset (75 mAbs) within the 534 anti-RBD mAbs (Robbiani et al., 2020) was a bias towards shorter CDRH3s (as defined by IMGT) (Lefranc et al., 2015): 75% had lengths between 9 and 12 residues, which is significantly different from the human repertoire and from the entire set of 534 anti-SARS-CoV-2 RBD mAbs (two sample Kolmogorov-Smirnov test, p<0.001) (FIG. 30A).


Superposition of VH domains from unrelated antibodies with longer CDRH3s suggests that RBD residues 456-457 and/or 484-493 present a steric barrier limiting the CDRH3 loop lengths that are compatible with this binding orientation (FIG. 30B). A recent report identified a clonally-unrelated group of VH3-53/VH3-66 anti-SARS-CoV-2 mAbs based on CDRH3 sequence similarity to the anti-SARS-CoV mAb m396 (derived from VH1-69) (Cao et al., 2020). The structure of a SARS-CoV RDB complex with m396 (PDB code 2DD8) (Prabakaran et al., 2006) shows that mAb m396 does not share the B38/C105 binding mode. We suggest that the key feature of the VH3-53/VH3-66 mAbs identified based on CDRH3 sequence similarity to m396 (Cao et al., 2020) is their CDRH3 length (11 residues), and that these mAbs will share the B38/C105 binding mode, not the m396 binding mode.


Identified S mutations are unlikely to affect epitopes revealed by nsEMPEM and single-particle cryo-EM. A recent report suggested that a mutation in the S protein (D614G) increases transmissibility of SARS-CoV-2 (Korber et al., 2020), and it has been speculated that this substitution, or others found in different S protein sequences, could affect antibody recognition. In cryo-EM structures of the prefusion S trimer (Walls et al., 2020; Wrapp et al., 2020) and in our C105-S complex (FIG. 21), S protein residue D614 is located in S1D, where it makes contact with an adjacent protomer. To address whether the D614G mutation could affect binding of antibodies in COV21 and COV57 plasma samples, we marked the location of the D614 residues and other residues that were reported to mutate (Korber et al., 2020) on the COV21 and COV57 nsEMPEM reconstructions (FIGS. 22A and 22B) and on the C105-S cryo-EM structure (FIG. 22C). The RBD-binding COV21 Fab(s) and the C105 Fab are distant from residue D614 (FIGS. 22A and 22C). Therefore, if the COV21 reconstruction reflects the predominant epitope in the COV21 plasma, it is unlikely that antibodies elicited in the COV21 individual would be sensitive to the D614G substitution. Indeed, in the absence of large conformational changes, all anti-RBD antibodies, including C105 (Robbiani et al., 2020) and B38 (Wu et al., 2020c), would be unaffected by this substitution. Mutations in the SARS-CoV-2 RBD identified by genome sequencing also include N439K, V483A, and V367F (Tables S3,S4), but the affected residues are not within the epitopes of the COV21 Fab(s) (FIGS. 22A and 22B) or the C105 Fab (FIG. 22C), and residue 483 is disordered in unliganded S protein structures (Walls et al., 2020; Wrapp et al., 2020). The predominant epitope in the COV57 plasma is closer to S protein D614, but this residue appears to be outside of the binding interface. In addition, mutations in the S1A domain identified by genome sequencing (Tables S3,S4) reside outside of the COV57 Fab(s) epitope (FIGS. 22A and 22B). Thus in the absence of a major conformational change induced by mutation, the observed substitutions, particularly the D614G mutation, are unlikely to affect antibodies elicited in the COV21 or COV57 individuals or in RBD-binding antibodies such as C105.


S protein epitopes offer different possibilities for avidity effects during IgG and receptor binding. IgGs contain two identical antigen-binding Fabs, thus offering the opportunity to bind pathogens with regularly-spaced antigen sites using avidity effects, either through inter-spike crosslinking (binding the same epitope on adjacent spikes) and/or intra-spike crosslinking (binding the same epitope on identical subunits of a single multimeric spike) (Klein and Bjorkman, 2010).


To address whether inter-spike crosslinking by anti-SARS-CoV-2 IgGs could occur, we modeled adjacent S proteins on a virion membrane assuming a minimum inter-spike separation distance of ˜15 nm, as observed from cryo-electron tomography analyses of SARS-CoV and other coronaviruses (Neuman et al., 2011). By including a bound Fab on each S trimer in the position of the COV21 Fab(s) from the nsEMPEM reconstruction, we addressed whether the Fabs from a single IgG could bind to two adjacent S trimers. The modeling predicts that inter-spike crosslinking could occur for the COV21 epitope (FIG. 23A). By contrast, the downward-pointing Fab(s) in the COV57-S nsEMPEM reconstruction appear unlikely to participate in inter-spike crosslinking by an IgG due to the Fab orientations being unable to accommodate an Fc in a position that could join two Fabs (FIG. 23A). These predictions are consistent with ELISA results demonstrating diminished binding for COV21 Fabs compared with their IgG counterparts, but less pronounced differences for the Fab versus IgG comparison for COV57 (FIG. 18).


We also used modeling to predict whether avidity effects could influence the interaction between ACE2, an integral membrane protein that dimerizes on the target cell surface (Yan et al., 2020), with viral S trimers. Starting with a cryo-EM structure of dimeric full-length ACE2 associated with the integral membrane protein BOAT1 bound to monomeric SARS-CoV-2 RBDs, we modeled bound S trimers from a cryo-EM structure of SARS-CoV S trimers with two RBDs in an “up” position (Kirchdoerfer et al., 2018). Assuming that there are adjacent ACE2-BOAT1 complexes in the host cell membrane, the modeling predicts that inter-spike crosslinking is possible (FIG. 23B). Assuming rotation of the RBDs in a two “up”/one “down” S trimer, intra-spike cross-linking could also occur (FIG. 23C). If S trimers can indeed crosslink adjacent ACE2 receptors or bind as a single trimer to both ACE2 subunits in an ACE2 dimer, they could take advantage of avidity effects to bind more tightly than predicted from affinity measurements involving the interactions of monomeric ACE2 ectodomains to monomeric coronavirus RBDs (Shang et al., 2020; Walls et al., 2020; Wrapp et al., 2020).


The possibility of avidity effects during the interactions of SARS-CoV-2 S with ACE2 dimers has implications for interpretation of pseudovirus assays to measure coronavirus infectivity in the presence and absence of potential inhibitors such as antibodies. In vitro neutralization assays for SARS-CoV-2 include pseudoviruses based on HIV lentiviral particles (Chen et al., 2020; Crawford et al., 2020; Ou et al., 2020; Robbiani et al., 2020; Wu et al., 2020a), murine leukemia virus retroviral particles (Pinto et al., 2020; Quinlan et al., 2020), and vesicular stomatitis virus (Hoffmann et al., 2020; Nie et al., 2020; Xiong et al., 2020). Each of these pseudovirus types could potentially incorporate different numbers of spikes, in which case the overall spike density would alter sensitivity to antibody avidity. In any case, the effects of avidity on IgG binding to a tethered antigen are a complicated mixture of intrinsic Fab-antigen affinity, kinetics, input concentration, and incubation time (Klein and Bjorkman, 2010; Wu et al., 2005), thus neutralization potencies of some, but not all, IgGs could be affected in in vitro neutralization assays. In addition, when considering therapeutic applications of convalescent plasma or purified antibodies, avidity effects would be difficult to predict given uncertainties about antibody concentrations, viral titers, and potentially different S trimer spacings and densities on infectious virions.


The results, as presented above, provide a glimpse into diverse antibody responses in neutralizing plasmas from donors who recovered from COVID-19. We characterized polyclonal plasma IgGs that exhibited different degrees of cross-reactive binding between S proteins from SARS-CoV-2, SARS-CoV, and MERS-CoV and showed that the plasma IgGs also included non-cross-reactive antibodies against common cold virus RBDs. By mapping SARS-CoV-2 S epitopes targeted by convalescent plasma IgGs, we not only observed the expected targeting of the S protein RBD, but also discovered an epitope outside of the RBD, which may represent an alternative binding site for neutralizing antibodies. The RBD-binding Fab(s) from COV21 plasma resembled binding of S230, a VH3-30 mAb isolated from a SARS-CoV patient that blocks ACE2 receptor binding (Rockx et al., 2008). We found another type of ACE2 receptor-blocking anti-SARS-CoV-2 antibody in our analysis of a neutralizing mAb derived from the COV107 individual. In a 3.4 cryo-EM structure SARS-CoV-2 S protein bound to this mAb, C105, we observed an epitope on the RBD that overlapped with the binding site for COV21 Fab(s) and closely resembled the binding of another mAb, B38 (Wu et al., 2020c). Like C105, B38 is also derived from the VH3-53 VH gene segment. Our structural studies support the hypothesis that recurrent classes of anti-SARS-CoV-2 neutralizing antibodies derived from the VH3-53/VH3-66 and VH3-30 gene segments use the distinct RBD-binding modes of the B38/C105 and S230 mAbs, respectively, providing valuable information for evaluating antibodies raised by infection or vaccination by sequences alone. Finally, the RBD and S1A epitopes we mapped by nsEMPEM and single-particle cryo-EM are unlikely to be affected by common mutations in different SARS-CoV-2 isolates, offering hope that antibody therapeutics and/or a vaccine might be effective in combatting the current pandemic.









TABLE 1







Cohort characteristics


















Average duration
Average
ELISA binding (AUC)



















Average
Case/
Sx
Sx onset
Sx Severity
RBD
S
Neutralization


















Gender
n
age
Contact
total
to visit
(0-10)
IgG
IgM
IgG
IgM
(NT50)





Male
83
45
65/18
12
39
5.8
2.44
1.61
4.65
1.62
867




(19-76)

(0-31)
(21-63)
(0-10)







Female
66
42
46/20
12
38
5.4
1.99
1.58
4.36
1.86
522




(19-75)

(1-35)
(17-67)
(1-9)





Sx = symptoms













TABLE 2







Individual participant demographics and clinical characteristics






















Duration

ELISA








g p
(days)
Sx
binding (AUC)























p p
Case/
Sx
Sx onset
Severity
RBD
S
Neutralization




















ID
Age
Gender
Race
Ethnicity
Contact
total
to visit
(0-10)
IgG
IgM
IgG
IgM
(NT50)























5
43
M
White
Non-Hispanic
Case
9
41
9
2.52
2.35
5.51
2.43
5.0


7
40
M
White
Non-Hispanic
Case
11
30
6
2.92
2.54
7.39
2.37
2730.4


8
37
M
White
Non-Hispanic
Case
3
57
5
2.11
0.81
4.46
0.88
5.0


9
35
F
White
Non-Hispanic
Case
12
54
5
2.90
1.07
4.44
2.80
5.0


12
27
F
White
Non-Hispanic
Contact
7
24
3
1.47
1.71
4.31
1.23
5.0


13
28
M
White
Non-Hispanic
Case
5
25
3
1.97
4.10
3.95
1.38
173.2


18
55
M
White
Non-Hispanic
Case
16
28
6
2.57
1.75
3.92
1.31
410.3


20
26
F
White
Non-Hispanic
Case
2
17
5
1.80
2.00
4.49
1.68
5.0


21
54
M
White
Hispanic
Contact
11
27
7
5.60
2.88
7.60
2.47
5052.7


24
34
M
White
Non-Hispanic
Case
15
30
4
2.29
1.97
4.36
1.45
280.7


26
66
M
White
Non-Hispanic
Case
2
35
3
1.67
1.86
4.00
1.58
276.1


27
26
M
White
Non-Hispanic
Case
9
32
4
1.79
1.64
4.41
1.30
739.3


28
26
M
White
Non-Hispanic
Case
7
21
4
2.39
2.25
4.93
1.66
888.9


29
26
F
White
Non-Hispanic
Contact
5
35
4
1.69
1.54
3.93
1.97
5.0


30
30
M
White
Non-Hispanic
Contact
3
35
4
3.07
2.55
4.86
1.34
5.0


31
51
M
White
Non-Hispanic
Case
9
33
3
1.29
1.60
4.69
1.20
192.3


32
46
F
White
Non-Hispanic
Case
8
32
3
1.30
2.18
3.79
0.83
47.4


37
27
M
White
Non-Hispanic
Case
6
26
6
2.13
1.52
4.11
1.04
286.3


38
57
F
White
Non-Hispanic
Case
10
38
4
1.87
2.02
4.30
1.12
518.9


40
44
M
White
Non-Hispanic
Case
7
23
5
1.72
1.50
3.81
1.47
42.1


41
35
M
White
Non-Hispanic
Contact
10
29
8
2.13
1.67
4.15
0.98
302.5


42
40
M
White
Non-Hispanic
Contact
20
36
8
2.37
1.50
5.82
1.43
627.1


45
55
F
White
Non-Hispanic
Case
7
46
6
1.95
0.97
3.53
0.75
5.0


46
39
M
White
Non-Hispanic
Case
6
30
2
2.68
1.45
4.14
1.29
59.2


47
43
F
White
Non-Hispanic
Case
11
33
5
3.02
2.30
6.23
2.66
10433.3


46
37
F
White
Non-Hispanic
Case
7
21
5
1.51
1.85
3.47
1.51
173.4


50
27
F
White
Non-Hispanic
Contact
7
28
4
1.64
2.32
5.42
1.45
924.7


51
21
M
White
Non-Hispanic
Contact
8
31
5
1.76
1.69
3.94
1.03
1499.2


54
40
F
White
Non-Hispanic
Contact
3
24
3
1.80
2.10
4.99
1.42
5.0


55
36
M
White
Non-Hispanic
Case
3
49
2
1.43
1.23
3.90
2.09
5.0


56
75
F
White
Non-Hispanic
Case
22
40
3
1.79
1.81
5.89
1.47
1388.4


57
66
M
White
Non-Hispanic
Case
6
21
5
1.54
2.10
4.33
1.00
2048.9


58
64
F
White
Non-Hispanic
Contact
1
32
2
1.20
1.71
3.95
1.21
5.0


64
28
F
White
Non-Hispanic
Contact
11
32
6
2.36
2.06
4.48
1.66
776.7


67
19
F
N/A
Hispanic
Case
5
29
6
2.56
1.98
5.48
1.32
2052.9


71
45
F
White
Non-Hispanic
Case
12
48
7
1.55
2.04
3.86
1.53
33.3


72
42
M
White
Non-Hispanic
Case
16
35
8
4.05
3.58
6.05
2.59
3136.2


75
46
F
White
Non-Hispanic
Case
10
36
4
1.64
2.37
3.98
1.20
271.5


76
49
F
White
Non-Hispanic
Case
28
34
4
1.88
1.65
5.17
0.97
219.8


77
37
M
White
Non-Hispanic
Contact
6
33
4
1.33
1.83
3.56
1.16
5.0


81
44
F
White
Non-Hispanic
Contact
3
35
2
1.58
1.73
3.82
1.10
5.0


82
46
M
N/A
Non-Hispanic
Case
0

0
2.19
1.92
5.41
1.81
130.7


88
41
M
White
Non-Hispanic
Case
7
23
4
1.82
3.32
4.97
1.37
424.7


95
44
M
White
Non-Hispanic
Case
9
36
6
2.61
1.62
6.03
1.62
961.9


96
48
F
White
Non-Hispanic
Case
9
30
3
3.93
1.93
6.25
2.26
927.7


97
39
M
White
Non-Hispanic
Case
9
31
3
1.58
1.61
4.03
2.33
202.7


98
35
F
White
Non-Hispanic
Case
2
24
4
1.78
1.47
5.38
1.22
249.0


99
36
F
White
Non-Hispanic
Case
13
29
5
2.50
3.27
4.38
2.49
1127.6


107
53
F
White
Non-Hispanic
Contact
10
29
4
1.74
1.41
4.66
0.90
297.5


108
75
M
White
Non-Hispanic
Case
16
41
7
1.37
0.88
3.47
1.36
557.5


110
27
M
White
Non-Hispanic
Case
1
25
1
1.30
1.60
4.00
0.93
5.0


114
30
F
White
Non-Hispanic
Case
15
36
7
1.65
1.92
3.53
1.55
110.9


115
65
F
White
Non-Hispanic
Contact
20
41
6
2.10
3.28
4.32
3.27
1127.7


119
56
M
White
Non-Hispanic
Case
13
48
3
1.36
1.26
4.41
1.59
650.3


120
56
F
White
Non-Hispanic
Case
26
48
6
0.99
0.97
3.65
1.21
100.6


121
19
M
White
Non-Hispanic
Contact
3
42
2
0.85
0.87
3.56
1.26
5.0


122
21
F
White
Non-Hispanic
Contact
3
36
1
1.44
0.94
3.39
1.22
5.0


123
26
M
White
Non-Hispanic
Contact
12
34
6
0.94
0.95
3.39
1.40
5.0


124
63
F
Asian
Non-Hispanic
Contact
4
37
3
1.58
2.06
3.49
1.32
5.0


125
51
F
White
Non-Hispanic
Case
10
26
3
1.92
3.49
3.86
1.24
126.5


127
24
F
White
Non-Hispanic
Case
10
43
6
1.80
2.50
4.37
2.41
883.5


130
39
M
White
Non-Hispanic
Contact
7
26
5
1.24
1.72
3.91
1.34
5.0


131
39
M
White
Non-Hispanic
Case
5
25
4
1.46
1.38
4.44
1.03
7.8


132
36
M
White
Non-Hispanic
Contact
10
50
6
2.15
1.76
4.84
1.97
5.0


134
27
F
White
Non-Hispanic
Contact
16
22
5
2.51
2.18
6.84
1.94
2700.6


135
62
F
White
Non-Hispanic
Case
8
31
6
2.20
2.02
3.80
1.13
350.0


140
63
F
White
Non-Hispanic
Case
28
47
1
1.05
1.24
3.58
1.28
52.4


149
41
M
White
Non-Hispanic
Contact
17
28
6
1.68
2.02
3.67
1.09
494.9


150
50
F
White
Non-Hispanic
Contact
12
45
7
1.15
0.43
3.18
1.82
5.0


154
66
M
Asian
Non-Hispanic
Case
16
30
9
3.19
2.19
4.85
1.29
928.2


157
50
M
White
Non-Hispanic
Case
10
32
8
2.40
2.86
3.90
2.06
741.7


166
28
F
White
Non-Hispanic
Case
13
45
2
1.27
0.66
3.45
0.94
5.0


167
50
F
White
Non-Hispanic
Contact
11
41
6
1.43
3.71
3.93
8.74
5.0


172
36
F
White
Non-Hispanic
Case
6
22
9
1.71
2.58
4.29
1.20
301.1


173
47
M
White
Non-Hispanic
Case
5
47
7
2.57
4.14
4.78
4.48
646.9


178
26
F
White
Non-Hispanic
Case
6
24
4
1.54
1.59
3.66
1.02
5.0


179
39
M
White
Non-Hispanic
Contact
10
37
3
1.89
2.25
3.83
1.73
370.1


182
44
F
White
Non-Hispanic
Contact
10
38
6
3.80
1.77
5.36
8.05
1503.7


183
43
F
White
Non-Hispanic
Case
13
44
8
1.56
1.02
3.88
1.55
240.1


185
54
M
White
Non-Hispanic
Case
11
44
8
3.51
1.39
5.55
2.11
1806.8


186
38
F
N/A
N/A
Case
8
26
2
1.73
2.47
4.37
1.23
296.9


190
54
F
White
Non-Hispanic
Case
18*
63
9
3.24
1.24
7.38
1.42
598.1


195
24
M
White
Non-Hispanic
Case
18
42
5
2.74
2.55
5.01
2.33
1315.1


200
60
F
White
Non-Hispanic
Case
17
39
7
2.40
1.00
4.38
1.51
1014.4


201
50
M
White
Non-Hispanic
Contact
15
33
6
4.37
2.57
6.15
1.57
3897.4


202
57
M
White
Non-Hispanic
Case
21
34
7
2.10
2.08
5.07
1.17
257.9


205
64
M
White
Non-Hispanic
Case
7
36
4
4.51
0.70
6.12
1.69
924.4


222
28
M
Asian
Non-Hispanic
Case
11
29
7
1.28
0.69
3.94
3.46
5.0


229
45
M
White
Non-Hispanic
Case
10
63
4
2.92
1.42
4.90
1.58
1272.9


230
50
M
White
Non-Hispanic
Case
18
33
7
3.80
0.47
3.48
0.88
5.0


232
38
F
White
Non-Hispanic
Case
13
43
7
1.57
0.70
4.24
5.70
94.3


233
55
M
White
Non-Hispanic
Case
20
41
3
2.07
2.11
4.51
1.07
173.2


241
36
M
White
Non-Hispanic
Case
12
30
7
2.27
2.66
4.54
1.46
923.1


242
59
M
White
Non-Hispanic
Case
10
42
6
4.91
1.94
4.81
2.16
1353.0


243
30
F
Asian
Non-Hispanic
Case
6
26
5
2.92
2.57
5.06
1.14
1300.2


246
44
F
White
Non-Hispanic
Case
10
38
7
2.05
2.79
6.09
1.32
566.0


255
33
M
White
Non-Hispanic
Case
14
44
6
2.14
0.70
4.20
1.24
172.5


256
63
F
White
Non-Hispanic
Case
27
42
6
1.72
1.96
4.26
7.79
141.6


258
52
M
White
Non-Hispanic
Contact
14
48
6
2.64
1.20
4.52
1.85
4145.9


279
41
M
White
Non-Hispanic
Case
7
38
8
1.68
2.13
3.77
1.90
308.9


280
59
M
White
Non-Hispanic
Case
6
32
7
2.53
3.07
4.61
1.19
1072.1


302
47
F
White
Non-Hispanic
Case
35*
49
7
1.48
0.97
4.06
1.26
5.0


310
34
F
White
Non-Hispanic
Case
17
35
5
3.95
1.24
9.44
3.07
485.5


314
46
M
White
Non-Hispanic
Case
11
38
7
2.12
0.88
4.56
1.51
667.1


315
29
F
White
Non-Hispanic
Case
15
42
8
3.02
0.69
3.98
1.03
376.5


319
50
M
White
Non-Hispanic
Case
5
38
6
3.71
2.28
3.79
1.05
5.0


323
39
F
White
Non-Hispanic
Case
7
45
7
1.05
1.03
3.53
1.42
5.0


325
52
M
White
Non-Hispanic
Case
16
38
8
2.25
1.47
4.83
2.28
1603.3


343
21
F
White
Non-Hispanic
Case
16
49
5
1.63
0.94
3.37
1.70
5.0


352
44
M
White
Non-Hispanic
Case
16
43
4
3.54
0.92
4.50
1.07
519.2


353
60
M
White
Non-Hispanic
Case
14
49
6
5.38
1.12
5.69
1.05
855.5


356
22
F
White
Non-Hispanic
Contact
16
38
3
1.37
0.61
2.98
1.09
5.0


357
27
F
White
Non-Hispanic
Contact
34
56
5
7.49
1.10
2.77
1.13
5.0


364
29
M
White
Non-Hispanic
Contact
14
49
6
0.97
0.58
2.90
0.89
5.0


366
41
F
White
Non-Hispanic
Contact
9
34
7
0.98
0.52
3.51
1.19
5.0


373
35
F
White
Non-Hispanic
Case
12
51
7
1.69
1.26
5.14
1.69
5.0


388
47
F
White
Non-Hispanic
Contact
14
41
9
1.57
1.06
3.61
1.69
5.0


393
69
M
White
Non-Hispanic
Case
23*
54
9
1.28
1.74
3.81
2.65
715.4


394
48
F
Multiple
Hispanic
Case
7
67
4
2.05
0.87
4.34
2.02
1281.5


397
52
M
White
Non-Hispanic
Case
22
45
8
3.32
0.59
5.01
0.87
1516.9


403
52
M
Asian
Non-Hispanic
Case
18*
39
10
5.36
1.09
10.01
1.36
3887.8


406
65
M
White
Non-Hispanic
Case
20
56
8
4.69
0.90
7.51
1.15
1288.7


410
34
M
White
Non-Hispanic
Case
12
46
8
1.06
0.56
3.95
0.76
5.0


421
62
F
White
Non-Hispanic
Contact
12
43
9
0.95
1.07
3.34
1.35
5.0


426
65
M
White
Non-Hispanic
Case
18
51
6
2.07
0.55
3.95
1.49
804.8


437
43
F
Asian
Non-Hispanic
Case
14
34
7
2.54
0.47
4.30
1.44
698.8


460
36
M
White
Non-Hispanic
Case
11
39
6
2.94
3.18
5.51
2.80
1906.7


461
49
M
White
Non-Hispanic
Case
7
39
5
3.38
0.94
4.67
2.02
1076.6


462
28
F
White
Non-Hispanic
Case
16
45
5
1.36
0.38
3.07
1.11
5.0


470
28
F
White
Non-Hispanic
Case
17
51
4
1.26
0.86
3.97
1.50
5.0


478
31
M
White
Non-Hispanic
Case
16
52
4
1.43
0.93
3.70
1.97
263.2


481
28
F
Asian
Non-Hispanic
Case
15
43
8
1.70
0.39
3.46
1.24
5.0


486
64
F
White
Non-Hispanic
Case
11
41
10
1.70
1.00
3.68
1.29
5.0


500
46
M
White
Non-Hispanic
Case
12
53
5
1.10
0.82
3.49
1.34
5.0


501
32
M
Asian
Non-Hispanic
Case
18*
53
10
2.62
0.65
4.51
1.21
718.8


502
52
M
White
Non-Hispanic
Case
16*
53
9
5.10
0.61
5.10
1.62
2171.8


506
46
M
White
Non-Hispanic
Case
12
59
9
0.84
0.81
3.13
1.21
5.0


507
39
M
White
Non-Hispanic
Case
15
60
8
1.92
0.96
4.56
1.52
5.0


509
36
M
White
Non-Hispanic
Case
11
50
5
1.99
1.01
3.99
1.45
5.0


526
49
M
Asian
Non-Hispanic
Case
11
34
7
3.36
1.45
5.88
1.57
4193.3


537
52
M
White
Non-Hispanic
Case
15
45
6
1.47
0.95
3.65
1.58
923.3


539
73
F
White
Non-Hispanic
Case
19*
54
10
2.82
0.63
4.46
1.45
487.9


547
59
M
White
Non-Hispanic
Case
15*
36
9
2.97
1.53
5.08
2.59
2900.6


587
54
M
PI
N/A
Case
17*
51
8
3.22
0.60
4.01
1.49
473.1


632
38
M
White
Non-Hispanic
Contact
10
43
6
2.49
0.86
4.50
1.63
572.3


633
39
M
White
Non-Hispanic
Contact
8
57
4
1.25
1.04
3.38
1.73
5.0


652
76
M
White
Non-Hispanic
Case
18*
56
10
4.75
1.46
8.96
3.80
2324.0


664
45
F
White
Non-Hispanic
Case
17*
42
10
1.68
0.43
3.93
1.32
5.0


675
47
M
White
Non-Hispanic
Contact
31
47
5
0.79
0.93
2.94
1.38
5.0





*hospitalized,


Sx = symptoms





















q y y p












Participants




Symptom
(n = 149)
%







Fever
125
83.9



Fatigue
106
71.1



Cough
 93
62.4



Myalgia
 92
61.7



Shortness of breath
 66
44.3



Headache
 63
42.3



Loss of smell/taste
 50
33.3



Sore throat
 38
25.3



Diarrhea
 32
21.3



Presence of
 16
10.7



comorbidities (HTN,





CAD, DM, COPD,





asthma, cancer)







HTN (hypertension),



CAD (coronary artery disease),



DM (diabetes mellitus),



COPD (chronic obstructive pulmonary disease)













TABLE 4







Representative amino acid sequences of cloned recombinant antibodies













Old
SEQ

SEQ



Antibody
antibody
ID

ID



ID
ID
NO
IGH VDJ (aa)
NO
IGL VJ (aa)





C002
A-C002
  1
EVQLVESGGGVVQPGRSLRLSCA
  2
DIQLTQSPSSLSASVGDRVTITCRA





ASGFTFSIYGMHWVRQAPGKGLE

SQSISSYLNWYQQKPGKAPKLLIY





WAVISYDGSNKYYADSVKGRFTI

AASSLQSGVPSRFSGSGSGTDFTL





SRDNSKNTLYLQMNSLRAEDTAV

TISSLQPEDFATYYCQQSYSTPRT





YYCAKEGRPSDIVVVVAFDYWGQ

FGQGTKVEIK





GTLVTVSS







C003
A-C003
  3
EVQLVESGGGLIQPGGSLRLSCA
  4
EIVLTQSPGTLSLSPGERATLSCRA





ASGFTVSSNYMSWVRQAPGKGL

SQSVSSTYLAWYQQKPGQAPRLLI





EWVSVIYSGGSTYYADSVKGRFTI

YGASSRATGIPDRFSGSGSGTDFT





SRDNSKNTLYLQMNSLRAGDTAV

LTISRLEPEDFAVYYCQQYGSSPR





YYCARDYGDFYFDYWGQGTLVT

TFGQGTKLEIK





VSS







C004
A-C004
  5
QVQLVQSGAEVKKPGASVKVSCK
  6
AIRMTQSPSSLSASVGDRVTITCQ





ASGYTFTGYYMHWVRQAPGQGL

ASQDISNYLNWYQQKPGKAPKLLI





EWMGWINPISGGTNYAQKFQGR

YDASNLETGVPSRFSGSGSGTDFT





VTMTRDTSISTAYMELSRLRSDDT

FTISSLQPEDIATYYCQQYDNLPITF





AVYYCASPASRGYSGYDHGYYYY

GQGTRLEIK





MDVWGKGTTVTVSS







C005
A-C005
  7
QVQLVQSGPEVKKPGTSVKVSCK
  8
EIVLTQSPGTLSLSPGERATLSCRA





ASGFTFTSSAVQWVRQARGQRL

SQSVRSSYLAWYQQKPGQAPRLLI





EWIGWIVVGSGNTNYAQKFQERV

YGASSRATGIPDRFSGSGSGTDFT





TITRDMSTSTAYMELSSLRSEDTA

LTISRLEPEDFAVYYCQQYGSSPW





VYYCAAPHCSGGSCLDAFDIWGQ

TFGQGTKVEIK





GTMVTVSS







C006
A-C006
  9
QVQLVESGGGLVKPGGSLRLSCA
 10
QSVLTQPPSASGTPGQRVTVSCS





ASGFIFSDYCMSWIRRAPGKGLE

GSSSNIGSNTVNWYQQLPGTAPKL





WLSYISNSGTTRYYADSVKGRFTI

LIYSNNQRPSGVPDRFSGSKSGTS





SRDNGRNSLYLQMDSLSAEDTAV

ASLAISGLQSEDEADYFCAAWDDS





YYCARRGDGSSSIYYYNYMDVW

LNGPVFGGGTKLTVL





GKGTTVTVSS







C008
A-C008
 11
EVQLVESGGGVVQPGRSLRLSCA
 12
DIQMTQSPSTLSASVGDRVTITCR





ASGFTFSSYGMHWVRQAPGKGL

ANQSISSWLAWYQQKPGKAPKLLI





EWVTVISYDGRNKYYADSVKGRF

YKASSLESGVPSRFSGSGSGTEFT





TISRDNSKNTLYLQMNSLRAEDTA

LTISSLQPDDFATYYCQQYNSYWT





VYYCAREFGDPEWYFDYWGQGT

FGQGTKVEIK





LVTVSS







C009
A-C009
 13
QVQLVQSGAEVKKPGASVKVSC
 14
QSALTQPPSASGSPGQSVTISCTG





MASGYTFTGYYMHWVRQAPGQG

TSSDVGGYNYVSWYQQHPGKAPK





LEWMGWINPNSGGTNYAQKFQG

LMIYEVSKRPSGVPDRFSGSKSGN





RVTMTRDTSISTAYMELSRLRSDD

TASLTVSGLQAEDEAEYYCSSDAG





TAVYYCARDSPFSALGASNDYWG

SNNVVFGGGTKLTVL





QGTLVTVSS







C010
A-C010
 15
EVQLVESGGGVVQPGRSLRLSCA
 16
DIQLTQSPSSLSASVGDRVTITCRA





ASGFTFSSYAMHWVRQAPAKGLE

SQSISTYLNWYQQKPGKAPKLLIYA





WVAVILYDGSGKYYADSVKGRFTI

ASSLQSGVPSRFSGSGSGTDFTLT





SRDNSKNTLYLQMNSLRAEDTAV

ISSLQPEDFATYYCQQSYSTPPWT





YYCARDGIVDTALVTWFDYWGQG

FGQGTKVEIK





TLVTVSS







C013
A-C013
 17
QVQLVQSGAEVKKPGSSVKVSCK
 18
EIVLTQSPATLSLSPGERATLSCRA





ASGGTFSSYAISWVRQAPGQGLE

SQSVSSYLAWYQQKPGQAPRLLIY





WMGGIIPIFGTANYAQKFQGRVTI

DASNRATGIPARFSGSGSGTDFTL





TADESTSTAYMELSSLRSEDTAVY

TISSLEPEDFAVYYCQQRSNWPLT





YCARGNRLLYCSSTSCYLDAVRQ

FGGGTKVEIK





GYYYYYYMDVWGKGTTVTVSS







C016
A-C016
 19
EVQLVESGGGVVQPGRSLRLSCA
 20
AIRMTQSPSSLSASVGDRVTITCQ





ASGFTFSRYGMHWVRQAPGKGL

ASQDISNYLNWYQQKPGKAPKLLI





EWVAVISYDGSNKYYADSVKGRF

YDASNLETGVPSRFSGSGSGTDFT





TISRDNSKNTLYLQMNSLRAEDTA

FTINSLQPEDIATYYCQQYDNLPPT





VYYCAKVTAPYCSGGSCYGGNFD

FGGGTKVEIK





YWGQGTLVTVSS







C017
A-C017
 21
EVQLVESGGGLVQPGRSLRLSCA
 22
EIVLTQSPATLSLSPGERATLSCRA





ASGFTFDDYAMHWVRQAPGKGL

SQSVSSYLAWYQQKPGQAPRLLIY





EWVSGISWNSGTIGYADSVKGRF

DASNRATGIPARFSGSGSGTDFTL





TISRDNAKNSLYLQMNSLRAEDTA

TISSLEPEDFAVYYCQQRITFGQGT





FYYCAKAGVRGIAAAGPDLNFDH

RLEIK





WGQGTLVTVSS







C018
A-C018
 23
EVQLVESGGGVVQPGRSLRLSCA
 24
DIQLTQSPSSLSASVGDRVTITCRA





ASGFTFSNYAIHWVRQAPGKGLE

SQSIRSYLNWYQQKPGKAPKLLIY





WVAVISYDGSNKYYADSVKGRFTI

AASSLQSGVPSRFSGSGSGTDFTL





SRDNSKNTLYLQMNSLRAEDTAV

TISSLQPDDFATYYCQQSYSTPPA





YYCARDFDDSSFWAFDYWGQGT

TFGQGTKLEIK





LVTVSS







C019
A-C019
 25
QVQLVQSGAEVKKPGASVKVSCK
 26
SYELTQPPSVSVAPGKTARITCGE





ASGYTFTSYYMHWVRQAPGQGL

NNIGSKSVHWYQQKPGQAPVLVIY





EWMGIINPSGGSTSYAQKFQGRV

YDSDRPSGIPERFSGSNSGNTATL





TMTRDTSTSTVYMELSSLRSEDT

TINRVEAGDEADYYCQVWDSSSD





AVYYCARVPREGTPGFDPWGQG

HVVFGGGTKLTVL





TLVTVSS







C021
A-C021
 27
QVQLQESGPGLVKPSQTLSLTCT
 28
DIVMTQSPLSLPVTPGEPASISCRS





VSGGSISSGGYYWSWIRQHPGK

SQSLLHSNGYNYLDWYLQKPGQS





GLEWIGYIYYSGSTYYNPSLKSRV

PQLLIYLGSNRASGVPDRFSGSGS





TISVDTSKNQFSLKLSSVTAADTA

GTDFTLKISRVEAEDVGVYYCMQA





VYYCARVWQYYDSSGSFDYWGQ

LQTPFTFGPGTKVDIK





GTLVTVSS







C022
A-C022
 29
QVQLQESGPGLVKPSETLSVTCT
 30
DIQMTQSPSTLSASVGDSVTITCRA





VSGGSISSSRYYWGWIRQPPGKG

SQSISSWLAWYQQKPGKAPKLLIY





LEWIGSIYYSGSTYYNPSLKSRVTI

KASSLESGVPSRFSGSGSGTEFTL





SVDTSKNQFSLKLSSVTAADTAVY

TISSLQPDDFATYYCQQYNNYRYT





YCARHAAAYYDRSGYYFIEYFQH

FGQGTKLEIK





WGQGTLVTVSS







C027
A-C027
 31
EVQLVESGGGVVQPGRSLRLSCA
 32
DIQMTQSPSTLSASVGDRVTITCR





ASGFTFSSYGMHWVRQAPGKGL

ASQSISSWLAWYQQKPGKAPKLLI





EWVAVISYDGSNKYYADSVKGRF

YKASSLESGVPSRFSGSGSGTEFT





TISRDNSKNTLYLQMNSLRAEDTA

LTISSLQPDDFATYYCQQYNSYST





VYYCAKASGIYCSGGDCYSYYFD

FGQGTKVEIK





YWGQGTLVTVSS







C029
A-C029
 33
QVQLQESGPGLVKPSQTLSLTCT
 34
DIVMTQSPLSLPVTPGEPASISCRS





VSGGSISSGGYYWSWIRQHPGK

SQSLLHSNGYNYLDWYLQKPGQS





GLEWIGYIYYSGSTYYNPSLKSRV

PQLLIYLGSNRASGVPDRFSGSGS





TISVDTSKNQFSLKLSSVTAADTA

GTDFTLKISRVEAEDVGVYYCMQA





VYYCARTMYYYDSSGSFDYWGQ

LQTPHTFGGGTKVEIK





GTLVTVSS







C030
A-C030
 35
EVQLVESGGGVVQPGRSLRLSCA
 36
DIQMTQSPSTLSASVGDRVTITCR





ASGFTFSSYGMHVWRQAPGKGL

ASQSISSWLAWYQQKPGKAPKLLI





EWVAVISYDGSNKYYADSVKGRF

YKASSLESGVPSRFSGSGSGTEFT





TISRDNSKNTLYLQMNSLRAEDTA

LTISSLQPDDFATYYCQQYNSYST





VYYCAKASGIYCSGGNCYSYYFD

FGQGTKVEIK





YWGQGTLVTVSS







C031
A-C031
 37
EVQLVESGGGLVQPGGSLRLSCA
 38
DIQMTQSPSSLSASVGDRVTITCR





ASGFTFSSYDMHWVRQATGKGL

ASQSISSYLNWYQQKPGKAPKVLI





EWVSAIGTAGDTYYPGSVKGRFTI

YAASSLQSGVPSRFSGSGSGTDF





SRENAKNSLYLQMNSLRAGDTAV

TLTISSLQPEDFATYYCQQSYSTPP





YYCARVGYDSSGYSGWYFDLWG

LTFGGGTKVEIK





RGTLVTVSS







C032
A-C032
 39
EVQLVQSGAEVKKPGESLKISCK
 40
QSVLTQPPSVSGAPGQRVTISCTG





GSGYSFTSYWIGWVRQMPGKGL

SSSNIGAGYDVHWYQQLPGTAPK





EWMGIIYPGDSDTRYSPSFQGQV

LLIYGNSNRPSGVPDRFSGSKSGT





TISADKSISTAYLQWSSLKASDTA

SASLAITGLQAEDEADYYCQSYDS





MYYCARGVAVDWYFDLWGRGTL

SLSALYVFGTGTKVTVL





VTVSS







C036
A-C036
 41
QVQLQQWGAGLLKPSETLSRTCA
 42
DIVMTQSPLSLPVTPGEPASISCRS





VFGGSFTNYYWSWIRQSPGKGLE

SQSLLHRNGYNYLDWYLQKPGQS





WIGEINDSGITNYNPSLKSRVTISV

PQLLIYLGSNRASGVPDRFRGSGS





DTSKNQFSLSLRSVTAADTAVYYC

GTDFTLKISRVEAEDVGVYYCMQA





ARRRSFSRPSSIDYWGQGTLVTV

LQTLTFGQGTRLEIK





SS







C037
A-C037
 43
QLVQSGPEVKKPGTSVKVSCKAS
 44
EIVLTQSPGTLSLSPGERATLSCRA





GFTFTSSAMQWVRQARGQRLEW

SQSVSSSYLAWYQQKPGQAPRLLI





IGWIVVGSGNTNYAQKFQERVTIT

YGASSRATGIPDRFSGSGSGTDFT





RDMSTSTAYMELSSLRSEDTAVY

LTISRLEPEDFAVYYCQQYGSSPW





YCAAPYCSGGSCNDAFDIWGQG

TFGQGTKVEIK





TMVTVSS







C038
A-C038
 45
VQLVESGGGVVQPGRSLRLSCAA
 46
NFMLTQPHSVSESPGKTVTISCTG





SGFTFNRIAMYWVRQAPGKGLE

SSGSIASNYVQWYQQRPGSAPTT





WVAVISFDGSYEYYAESVKGRFAI

VIYEDTQRPSGVPDRFSGSIDSSS





SRDNSKNTLYLQMNSLRAEDTAV

NSASLTISGLKTEDEADYYCQSYDI





YYCAKSPMGYCTNGVCYPDSWG

NSRWVFGGGTKLTVL





QGTLVTVSS







C040
A-C040
 47
EVQLVESGGGLVKPGGSLRLSCA
 48
SYELTQPPSVSVAPGQTARITCGG





ASGFTFSNAWMSWVRQAPGKGL

NNIGSKSVHWYQQKPGQAPVLVV





EWVGRIKSKTDGGTTDYAAPVKG

YDDSDRPSGIPERFSGSNSGNTAT





RFTISRDDSKNTLYLQMNSLKTED

LTISRVEAGDEADYYCQVWDSSSD





TAVYYCTTDPHCSSTSCPIFYYYY

QGVFGGGTKLTVL





MDVWGKGTTVTVSS







C101
V-C001
 49
QVQLVESGGGLIQPGGSLRLSCA
 50
EIVLTQSPGTLSLSPGERATLSCRA





ASGFIVSSNYMSWVRQAPGKGLE

SQSVSSSYLAWYQQKPGQAPRLLI





WVSVIYSGGSTFYTDSVKGRFTIS

YGASSRATGIPDRFSGGGSETDFT





RDNSKNTLYLQMNSLRAEDTAVY

LTISRLEPEDCAVYYCQQYGSSPR





YCVRDYGDFYFDYWGQGTLVTV

TFGQGTKVEIK





SS







C102
V-C002
 51
QVQLVESGGGLIQPGGSLRLSCA
 52
EIVLTQSPGTLSLSPGERATLSCRA





ASGFIVSSNYMSWVRQAPGKGLE

SQSVSSSYLAWYQQKPGQAPRLLI





WVSVIYSGGSTFYADSVKGRFTIS

YGASSRATGIPDRFSGSGSGTDFT





RDNSKNTLYLQMNSLRAEDTAVY

LTISRLEPEDFAVYYCQQYGSSPR





YCARDYGDYYFDYWGQGTLVTV

TFGQGTKVEIK





SS







C103
V-C003
 53
QVQLQQWGAGLLKPSETLSLTCA
 54
EIVLTQSPGTLSLSPGERATLSCRA





VSGGSLSGFYWTWIRQPPGKGLE

SQTVTANYLAWYQQKPGQAPRLLI





WIGETNHFGSTGYKPSLKSRVTIS

YGASKRATGIPDRFSGSGSGTDFT





VDMSRNQFSLKVTSVTAADTAVY

LSISRLEPEDFAVYYCQQYTTTPRT





YCARKPLLYSDFSPGAFDIWGQG

FGGGTKVEIK





TMVTVSS







C104
V-C004
 55
QVQLQQWGAGLLKPSETLSLSCA
 56
EIVLTQSPGTVSLSPGERATLSCW





VYGGSLSGYYWSWIRQPPGKGL

ASQSVSASYLAWYQQKPGQAPRL





EWIGEINHFGSTGYNPSLKSRVTI

LIYGASSRATGIPDRFSGSGSGTD





SVDTSKSQFSVKLSSVTAADTAVY

FTLTISRLEPEDFAVYYCQQYGTTP





YCARKPLLYSNLSPGAFDIWGQG

RTFGGGTKVEIK





TMVTVSS







C105
V-C005
 57
QVQLVESGGGLIQPGGSLRLSCA
 58
QSALTQPPSASGSPGQSVTISCTG





ASGFTVSSNYMSWVRQAPGKGL

TSSDVGGYKYVSWYQQHPGKAPK





EWVSVIYSGGSTYYADSVKGRFTI

LMIYEVSKRPSGVPDRFSGSKSGN





SRDNSKNTLYLQMNSLRAEDTAV

TASLTVSGLQAEDEADYYCSSYEG





YYCARGEGWELPYDYWGQGTLV

SNNFVVFGGGTKLTVL





TVSS







C106
V-C006
 59
QLQLQESGPGLVKPSETLSLTCTV
 60
SYELTQPPSVSVAPGKTARITCGG





SGASVSSGSYYWSWIRQPPGKG

NNIGSKSVHWYQQKPGQAPVLVIY





LEWIGYIYYSGSTNYNPSLKSRVTI

FDSDRPSGIPERFSGSNSGNTATL





SVDTSKNQFSLKLSSVTAADTAVY

TISRVEAGDEADYYCQVWDSSRD





YCARERPGGTYSNTWYTPTDTN

HVVFGGGTKLTVL





WFDTWGQGTLVTVSS







C107
V-C007
 61
QVQLVQSGAEVKKPGASVRVSCK
 62
QSVLTQPPSASGTPGQRVTISCSG





ASGYTFTSYGFSWVRQAPGQGL

SSSNIGSNYVYWYQQLPGTAPKLL





EWMGWISAYNGNTNFAQKLQGR

IYRNNQRPSGVPDRFSGSKSGTSA





VTMTTDTSTSTAYMELRSLRSDD

SLAISGLRSEDEADYYCAAWDDSL





TAVYYCARGEAVAGTTGFFDYWG

SGFVVFGGGTKLTVL





QGTLVTVSS







C108
V-C008
 63
QVQLQESGPGLVKPSGTLSLTCA
 64
QSALTQPASVSGSPGQSITISCTGT





VSGGSISSTNWWSWVRQPPGKG

SSDVGGYNYVSWYQQHPGKAPKL





LEWIGEIYHTGSTNYNPSLKSRVTI

MIYDVSNRPSGVSNRFSGSKSGN





SVDKSKNQFSLKLSSVTAADTAVY

TASLTISGLQAEDEADYYCNSYTS





YCVRDGGRPGDAFDIWGQGTMV

SSTRVFGTGTKVTVL





TVSS







C110
V-C010
 65
QVQLQQSGAEVKKPGESLKISCK
 66
DIQMTQSPSTLSASVGDRVTITCR





GSGYSFTSYWIGWVRQMPGKGL

ASQSISYWLAWYQQKPGKAPKLLI





EWMGIIYPGDSDTRYSPSFQGQV

YQASSLESGVPSRFSGSESGTEFT





TISADKSISTAYMQWSSLKASDTA

LTISSLQPDDFATYYCQQYNSYPY





MYYCARSFRDDPRIAVAGPADAF

TFGQGTKLEIK





DIWGQGTMVTVSS







C112
V-C012
 67
QVQLVESGGGVVQPGRSLRLSCA
 68
QSALTQPASVSGSPGQSITISCTGT





ASGFTFSSHAMHWVRQAPGKGL

SSDVGGYNYVSWYQQHPGKAPKL





EWVAVISYDGSNKYYADSVKGRF

MIYDVSNRPSGVSNRFSGSKSGN





TISRDNSKNTLYLQMNSLRAEDTA

TASLTISGLQAEDEADYYCSSYTSS





VYYCAREDYYDSSGSFDYWGQG

STWVFGGGTKLTVL





TLVTVSS







C113
V-C013
 69
QVQLVESGGGVVQPGRSLRLSCA
 70
DIQMTQSPSTLSASVGDRVTITCR





ASGFTFSNFGMHWVRQAPGKGL

ASQSMSSWLAWYQQKPGNAPKLL





EWVAVIWYDGSNKYYADSVKGRF

IYKASSLESGVPSRFSGSGSGTEF





TISRDNSKNTLYLQMNSLRAEDTA

TLTISSLQPDDFATYYCQQHNSSP





VYYCARGVNPDDILTGVDAFDIW

LTFGGGTKVEIK





GQGTMVTVSS







C114
V-C014
 71
QVQLVESGGGLIQPGGSLKLSCV
 72
QSVLTQPPSVSGAPGQRVTISCTG





VSGFTVSKNYISWVRQAPGKGLE

TSSNIGAGYDVHWYQQLPGRAPK





WVSVIFAGGSTFYADSVKGRFAIS

VLISGNNIRPSEVPDRFSGSRSGT





RDNSNNTLFLQMNSLRVEDTAIYY

SASLAITSLQPEDEAQYYCQSYDS





CARGDGELFFDQWGQGTLVTVSS

SLYAVFGGGTKLTVL





C115
V-C015
 73
QVQLVESGGGLIKPGRSLRLSCTA
 74
DIVMTQSPLSLSVTPGEPASISCRS





SGFTFGDYAMTWFRQAPGKGLE

SQSLLHSNGNNYFDWYLQKPGQS





WVGFIRSKAYGGTTGYAASVKYR

PQLLIYLGSNRASGVPDRFSGSGS





FTISRDDSKSIAYLQMDSLKTEDT

GTDFTLKISRVEAEDVGVYYCMQV





AVYYCTRWDGWSQHDYWGQGT

LQIPYTFGQGTKLEIK





LVTVSS







C116
V-C016
 75
QVQLVESGGGVVQPGRSLRLSCA
 76
NFMLTQPHSVSESPGKTVTISCTG





ASGFTYSTYAMHWVRQAPGKGL

SSGSIASNYVQWYQQRPGSAPTT





EWVAFISYDGSNKYYADSVKGRF

VIYEDNQRPSGVPDRFSGSIDRSS





TISRDNSKNTLYLQMNSLRAEDTA

NSASLTISGLKTEDEADYYCQSYD





VYYCARDFYHNWFDPWGQGTLV

SGNHWVVFGGGTRLTVL





TVSS







C117
V-C017
 77
QVQLVESGGGVVQPGRSLRLSCA
 78
QSVLTQPPSVSAAPGQKVTISCSG





ASGFTFSTYAMHWVRQAPGEGL

SSSNIGNNLVSWYQQLPGTAPKLLI





EWVAVISYDGSNTYYADSVKGRF

YENNKRPSGIPDRFSGSKSGTSAT





TISRDNSKNTLYLQMNSLRAEDTA

LGITGLQTGDEADYYCGAWDSSLS





VYYCARDPIWFGELLSPPFVHFDY

AGGVYVFGTGTKVTVL





WGQGTLVTVSS







C118
V-C018
 79
QVQLVESGGGVVQPGRSLRLSCA
 80
QPVLTQSPSASASLGASVKLTCTL





ASGFTFSNYAMHWVRQAPGKGL

SSGHSSYAIAWHQQQPEKGPRYL





EWVAVISYDGSNKYYADSVKGRF

MKLNTDGSHSKGDGIPDRFSGSS





TISRDNSKNTLYLQMNSLRAEDTA

SGAERYLTISSLQSEDEADYYCQT





IYYCASGYTGYDYFVRGDYYGLD

WGTGILVFGGGTKLTVL





VWGQGTTVTVSS







C119
V-C019
 81
QVQLVQSGAEVKKPGASVKVSCK
 82
QSALTQPASVSGSPGQSITISCTGT





ASGYTFTSYYMHWVRQAPGQGL

SSDVGGYKYVSWYQRHPGKAPKL





EWMGIINPSGGSTSYAQKLQGRV

MIYDVSNRPSGVSNRFSGSKSGN





TMTRDTSTSTVYMELSSLRSEDT

TASLTISGLQAEDEADYYCSSYTSS





AVYYCARANHETTMDTYYYYYYM

STSVVFGGGTQLTVL





DVWGKGTTVTVSS







C120
V-C020
 83
EVQLVESGGGLIQPGGSLRLSCA
 84
AIRMTQSPSSLSASVGDTVTITCQA





ASGFTVSSNYMTWVRQAPGKGL

SQDISKYLNWYQQKPGKAPKLLIY





EWVSLIYPGGSTYYADSVKGRFTI

DASNLETGVPSRFSGSGSGTDFTF





SRDNSKNTLYLQMNSLRAEDTAV

TISSLQPEDIATYYCQQYDNLPQTF





YYCAREGMGMAAAGTWGQGTLV

GGGTKVEIK





TVSS







C121
V-C021
 85
QVQLVQSGAEVKKPGASVKVSCK
 86
QSALTQPASVSGSPGQSITISCTGT





ASGYTFTGYYMHWVRQAPGQGL

SSDVGSYNLVSWYQQHPGKAPKL





EWMGWISPVSGGTNYAQKFQGR

MIYEGSKRPSGVSNRFSGSKSGN





VTMTRDTSISTAYMELSRLRSDDT

TASLTISGLQAEDEADYYCCSYAG





AVYYCARAPLFPTGVLAGDYYYY

SSTLVFGGGTKLTVL





GMDVWGQGTTVTVSS







C122
V-C022
 87
EVQLVESGGGLIQPGGSLRLSCA
 88
DIQLTQSPSFLSASVGDRVTITCRA





ASGLTVSSNYMSWVRQAPGKGL

SQGISSYLAWYQQKPGKAPKLLIY





EWVSVLYSGGSSFYADSVKGRFT

AASTLQSGVPSRFSGSGSGTEFTL





ISRDNSKNTLYLQMNSLRAEDTAV

TISSLQPEDFATYYCQQLNSDSYT





YYCARESGDTTMAFDYWGQGTL

FGQGTKLEIK





VTVSS







C123
V-C023
 89
EVQLVESGGGLIQPGGSLRLSCA
 90
DIQLTQSPSFLSASVGDRVTITCRA





ASGVTVSRNYMSWVRQAPGKGL

SQGISSYLAWYQQKPGKAPKLLIY





EWVSVIYSGGSTYYADSVKGRFTI

AASTLQSGVPSRFSGSGSGTEFTL





SRDNSKNTLYLQMNSLRAEDTAV

TISSLQPEDFATYYCQQLNSYPPA





YYCARDLSAAFDIWGQGTMVTVSS

FGQGTRLEIK





C124
V-C024
 91
EVQLVESGGGLVQPGGSLRLSCA
 92
EIVLTQSPATLSLSPGERATLSCRA





ASGFTFSGYSMNWVRQAPGKGP

SQSFSSYLAWYQQKPGQAPRLLIY





EWVSYISRSSSTIYYADSVKGRFTI

DASNRATGIPARFSGSGSGTDFTL





SRDNAKNSLYLQMNSLRDEDTAV

TISSLEPEDFAVYYCQQRNNWPPE





YYCAREGARVGATYDTYYFDYW

WTFGQGTKVEIK





GQGTLVTVSS







C125
V-C025
 93
QVQLVQSGPEVKKPGTSVKVSCK
 94
EIVLTQSPGTLSLSPGERATLSCRA





ASGFTFTSSAVQWVRQARGQRL

SQSVSSSYLAWYQQKPGQAPRLLI





EWIGWIVVGSGNTNYAQKFQERV

YGASSRATGIPDRFSGSGSGTDFT





TITRDMSTSTAYMELSSLRSEDTA

LTISRLEPEDFAVYYCQQYGSSPW





VYYCAAPYCSGGSCSDAFDIWGQ

TFGQGTKVEIK





GTMVTVSS







C126
V-C026
 95
QVQLQESGPGLVKPSETLSLSCA
 96
NFMLTQPHSVSESPGKTVTISCTG





VSGGSIGSYFWSWIRQPPGKGLE

SSGSIASNYVQWYQQRPGSAPTT





WIGYLHYSGSTNYNPSLKSRVTIS

VINEDNQRPSGVPDRFSGSIDSSS





VDTSKNQFSLKLSSVTAADTAVYY

NSASLTISGLKTEDEADYYCQSYD





CARLQWLRGAFDIWGQGTMVTV

SSNLVFGGGTKLTVL





SS







C127
V-C027
 97
QVQLVQSGAEVKKPGASVKVSCK
 98
QSVLTQPPSASGTPGQRVTISCSG





ASGYTFTGYYMHWVRQAPGQGL

SSSNIGSNTVNWYQQLPGTAPKLL





EWMGWINPNSGGTNYAQKFQGR

IYSNNQRPSGVPDRFSGSKSGTSA





VTMTRDTSISTAYMELSRLRSDDT

SLAISGLQSEDEADYYCAAWDDSL





AVYYCATAHPRRIQGVFFLGPGV

NGVVFGGGTKLTVL





WGQGTTVTVSS







C128
V-C028
 99
EVQLLESGGGLVQPGGSLRLSCA
100
EIVLTQSPGTLSLSPGERATLSCRA





ASGFTFSTYAMSWVRQAPGKGLE

SQSVNSRQLAWYQQKPGQAPRLL





WVSTITGSGRDTYYADSVKGRFTI

IYGASSRATGIPERFSGSGSGTDF





SRDNSKNTLFLQLNSLRAEDAAVY

TLTISRLESEDFAVYHCQQYGSSR





SCANHPLASGDDYYHYYMDVWG

ALTFGGGTKVEIK





KGTTVTVSS







C129
V-C029
101
QVQLVESGGGVVQPGRSLRLSCA
102
DIQMTQSPSSLSASVGDRVTITCQ





ASGFTFSSYGMNWVRQAPGKGL

ASQDISNYLNWYQQKPGKAPKLLI





EWVAVISYDGSNTYYTDSVKGRF

YDASNLETGVPSRFSGSESGTDFT





TISRDNSKNTLYLQMNSLRVDDTA

FTISSLQPEDIATYYCQQYDNLPITF





TYYCAKGPRFGWSYRGGSGFDI

GQGTRLEIK





WGQGTMVTVSS







C130
V-C030
103
QVQLVQSGAEVKKPGASVKVSCK
104
SYELTQPPSVSVAPGKTARITCGG





ASGYTFTNYYMHWVRQAPGQGL

NNIGSKSVHWYQQKPGQAPVLVIY





EWMGIINPSGGSTGYAQKFQGRV

YDSDRPSGIPERFSGSNSGNTATL





TMTRDTSTSTVYMELSSLRSEDT

TISRVEAGDEADYYCQVWDSSSD





AVYYCARSRPTPDWYFDLWGRG

HPGVVFGGGTKLTVL





TLVTVSS







C131
V-C031
105
QVQLVQSGSEVKKPGSSVKVSCK
106
EIVMTQSPATLSVSPGERATLSCR





ASGGTFSSYAFSWVRQAPGQGL

ASQSVSSNLAWYQQKPGQAPRLLI





EWMGRIIPILALANYAQKFQGRVTI

YGASTRATGIPARFSGSGSGTEFT





TADKSTSTAYMELSSLRSEDTAVY

LTISSLQSEDFAVYYCQQYNNWPI





YCARVNQAVTTPFSMDVWGQGT

TFGQGTRLEIK





TVTVSS







C132
V-C032
107
QVQLQESGPGLVKPSGTLSLTCA
108
QSALTQPASVSGSPGQSITISCTGT





VSGGSISSNNWWSCVRQPPGKG

SSDVGGYNYVSWYQQHPGKAPKL





LEWIGEIYHSGSTNYNPSLKSRVTI

MIYDVSNRPSGVSNRFSGSKSGN





SVDKSKNQFSLKLSSVTAADTAVY

TASLTISGLQAEDEADYYCSSYTSS





YCARGGDTAMGPEYFDYWGQGT

STLLFGGGTKLTVL





LVTVSS







C133
V-C033
109
QVQLVESGGGVVQPGRSLRLSCA
110
DIQMTQSPSSLSASVGDRVTITCR





ASGFTFSSYAMHWVRQAPGKGL

ASQSISSYLNWYQQKPGKAPKLLI





EWVAVILYDGSNKYYADSVKGRF

YAASSLQSGVPSRFSGSGSGTDF





TISRDNSKNTLYLQMNSLRAEDTA

TLTISSLQPEDFATYYCQQSYSTPP





VYYCARDSDVDTSMVTWFDYWG

WTFGQGTKVEIK





QGTLVTVSS







C134
V-C034
111
EVQLLESGGGLVQPGGSLRLSCA
112
SYELTQPPSVSVAPGKTARITCGG





ASGFTFSNYAMSWVRQAPGKGL

NNIGSKSVHWYQQKPGQAPVLVIY





EWVSAISGSDGSTYYAGSVKGRF

YDSDRPSGIPERFSGSNSGNTATL





TISRDNSKNTLYLQMNSLRAEDTA

TISRVEAGDEAEYHCQVWDSSSD





VYYCAKDPLITGPTYQYFHYWGQ

RPGVVFGGGTKLTVL





GTLVTVSS







C135
V-C035
113
QVQLVESGGGVVQPGRSLRLSCA
114
DIQMTQSPSTLSASVGDRVTITCR





ASGFTFSSYAMHWVRQAPGKGL

ASQSISNWLAWFQQKPGKAPKLLI





EWVAVIPFDGRNKYYADSVTGRF

YEASSLESGVPSRFSGSGSGTEFT





TISRDNSKNTLYLQMNSLRAEDTA

LTISSLQPDDFATYYCQQYNSYPW





VYYCASSSGYLFHSDYWGQGTLV

TFGQGTKVEIK





TVSS







C138
V-C038
115
EVQLVESGGGLVQPGGSLRLSCA
116
NFMLTQPHSVSESPGKTVTISCTG





ASGFTFSTYWMSWVRQPPGKGL

SSGSIASNYVQWYQQRPGSAPTT





EWVANIKQDGSEKYYVDSVKGRF

VIYEDNQRPSGVPDRFSGSIDSSS





TISRDNAKNSLYLQMNSLRADDTA

NSASLTISGLKTEDEADYYCQSYD





VYYCAGGTWLRSSFDYWGQGTL

SSNWVFGGGTKLTVL





VTVSS







C139
V-C039
117
EVQLVESGGGVVQPGRSLRLSCA
118
DIQMTQSPSSLSASVGDRVTITCQ





ASGFTFSSYAMHWVRQAPGKGL

ASQDISNYLNWYQQKPGKAPKLLI





EWVAVISYDGSNKYSADSVKGRF

YDASNLETGVPSRFSGSGSGTDFT





TISRDNSKNTLYLQMNSLRAEDTA

FTISSLQPEDIATYYCQQYDNLPLT





VYYCAKGGAYSYYYYMDVWGKG

FGGGTKVEIK





TTVTVSS







C140
V-C040
119
EVQLVESGGGLVQPGGSLRLSCA
120
DIQLTQSPSFLSASVGDRVTITCRA





ASGVTVSSNYMSWVRQAPGKGL

SQGISSYLAWYQQKPGKAPKLLIY





EWVSLIYSGGSTFYADSVKGRFTI

AASTLQSGVPSRFSGSGSGTEFTL





SRDNSENTLYLQMNTLRAEDTAV

TISSLQPEDFATYYCQQLNSYSYTF





YYCARDLYYYGMDVWGQGTTVT

GQGTKLEIK





VSS







C141
V-C041
121
EVQLVESGGGWQPGRSLRLSCA
122
NFMLTQPHSVSESPGKTVTISCTG





ASGFTFSSYAMFWVRQAPGKGLE

SSGSIASNYVQWYQQRPGSAPTT





WVAVISYDGSNKYYADSVKGRFTI

VIYEDNQRPSGVPDRFSGSIDSSS





SRDNSKNTLYLQMNSLRAEDTAV

NSASLTISGLKTEDEADYYCQSYD





YYCARADLGYCTNGVCYVDYWG

SSNWVFGGGTKLTVL





QGTLVTVSS







C143
V-C043
123
EVQLVESGGGLVQPGGSLRLSCA
124
QSALTQPASVSGSPGQSITISCTGT





ASGFSVSTKYMTWVRQAPGKGL

SNDVGSYTLVSWYQQYPGKAPKL





EWVSVLYSGGSDYYADSVKGRFT

LIFEGTKRSSGISNRFSGSKSGNTA





ISRDNSKNALYLQMNSLRVEDTG

SLTISGLQGEDEADYYCCSYAGAS





VYYCARDSSEVRDHPGHPGRSV

TFVFGGGTKLTVL





GAFDIWGQGTMVTVSS







C144
V-C044
125
EVQLVESGGGLIQPGGSLRLSCA
126
QSALTQPASVSGSPGQSITISCTGT





ASGFTVSNNYMSWVRQAPGKGL

SSDVGGYNYVSWYQQHPGKAPKL





EWVSVIYSGGSTYYADSVKGRFTI

MIYDVSNRPSGVSNRFSGSKSGN





SRDKSKNTLYLQMNRLRAEDTAV

TASLTISGLQAEDEADYYCSSYTSS





YYCAREGEVEGYNDFWSGYSRD

STRVFGTGTKVTVL





RYYFDYWGQGTLVTVSS







C145
V-C045
127
EVQLVESGGGLIQPGGSLRLSCA
128
QSALTQPASVSGSPGQSITISCTGT





ASGFSVSSNYMSWVRQAPGKGL

SSDVGGYNYVSWYQQHPGKAPKL





EWVSVIYSGGSTYYADSVKGRFTI

MIYDVSNRPSGVSNRFSGSKSGN





SRDNSKNTLYLQMNSLRAEDTAV

TASLTISGLQAEDEADYYCSSYTSS





YYCAREGEVEGYYDFWSGYSRD

TTRVFGTGTRVTVL





RYYFDYWGQGTLVTVSS







C146
V-C046
129
EVQLVESGGGLVKPGGSLRLSCA
130
QSALTQPASVSGSPGQSITISCTGT





ASGLTFTAYRMNWVRQAPGKGL

SSDIGVYNYISWSQQHPGKAPKVM





EWLSSISNTNGDIYYADSVKGRFT

IYDVTNRPSGVSNRFSGSKSGNTA





ISRDNAKNSLYLQMNSLRADDTAV

SLTISGLQAEDEADYYCSSYRGSS





YYCARDVASNYAYFDLWGQGTLV

TPYVFGTGTKVTVL





TVSS







C147
V-C047
131
EVQLVQSGAEVKKPGESLKISCK
132
QAVVTQEPSLTVSPGGTVTLTCGS





GSGYRFTNYWIGWVRQMPGKGL

STGAVTSGHYPYWFQQKSGQAPR





EWMGIIYPGDSDTRYSPSFQGQV

TLIYETSIKHSWTPARFSGSLLGGK





TISADKSITTAYLQWSSLKASDTA

AALTLSGAQPEDEADYYCLLSYSG





MYYCARLSDRWYSPFDPWGQGT

ARPVFGGGTKLTVL





LVTVSS







C148
V-C048
133
EVQLVESGGGLVQPGGSQRLSC
134
EIVMTQSPATLSVSPGERATLSCR





AASGFTVSSNYMSWIRQAPGKGL

ASQSVSSHLAWYQQKPGQAPRLLI





EWVSVIYSGGSAYYVDSVKGRFTI

YGASTRATGIPTRFSGSGSGTEFT





SRDNSKNTLYLQMNSLRPEDTAV

LTISSLQSEDFAVYYCQQYNNWPP





YYCARIANYMDVWGKGTTVTVSS

LTFGGGTKVEIK





C149
V-C049
135
QVQLVESGGGVVQPGRSLRLSCA
136
DIQMTQSPSSLSASVGDRVTITCR





ASGFTFSTYGMHWVRQAPGKGL

ASQSISSYLNWYQQKPGKVPKLLI





EWVAVISYDGSNKYFADSVKGRF

YAASSLQSGVPSRFSGSGSGTDF





TISRDNSKNTLYLQMNSLRPEDTA

TLTISSLQPEDFATYYCQQSYRTPL





VYYCAKVGMEYSSGWYGEEIDF

TFGGGTKVEIK





WGQGTLVTVSS







C150
V-C050
137
EVQLVESGGGLVQPGGSLRLSCV
138
QSALTQPASVSGSPGQSITISCTGT





ASGFTFSSYWMHWVRQVPGKGP

SSDVGYYNFVSWYQQHPGKAPKL





VWVSHINSEGSSTNYADSVRGRF

MIYEVSNRPSGVSNRFSGSKSGNT





TISRDNAKDTLYLQMNNLRAEDTA

ASLIISGLQAEDEADYYCSSYRSSS





VYYCARPTAVAAAGNYFYYYGMD

TLVFGGGTKLTVL





VWGQGTTVTVSS







C151
V-C051
139
EVQLVESGGGLVKPGGSLRLSCA
140
NFMLTQPHSVSESPGKTVTISCTG





ASGFTFSSYNMNWVRQAPGKGL

SSGSIASNYVQWYQQRPGSAPTT





EWVSCISSSSSYIYYADSVKGRFTI

VIYEDNQRPSGVPDRFSGSIDSSS





SRDNAKNSLYLQMNSLRAEDTAV

NSASLTISGLKTEDEADYYCQSYD





YYCARERGYDGGKTPPFLGGQG

SSNYWVFGGGTKLTVL





TLVTVSS







C152
V-C052
141
QVQLVQSGAEVKKPGASVKVSCK
142
DIQMTQSPSSLSASVGDRVTITCR





ASGYTFTSYGISWVRQAPGQGLE

ASQGISNYLAWYQQRPGKVPKLLI





WMGWISAYNGNTNYAQKLQGRV

FAASTLQSGVPSRFSGSGSGTDFT





TMTTDTSTSTAYMELRSLRSDDT

LTISSLQPEDVATYYCQKYNSAPR





AVFYCARDRGGHDFWSGYGFYY

TFGQGTKVEIK





YYGMDVWGQGTTVTVSS







C153
V-C053
143
EVQLVESGGGLIQPGGSLRLSCA
144
QSALTQPASVSGSPGQSITISCTGT





ASGFTVSSNYMSVWRQAPGKGL

SSDVGSYNLVSWYQQHPGKAPKL





EWVSVIYSGYSTYYVDSVKGRFTI

MIYEGSKRPSGVSNRFSGSKSGN





SRDNSKNTLYLQMNSLRAEDTAV

TASLTISGLQAEDEADYYCCSYAG





YYCARVGGAHSGYDGSFDYWGQ

SSTWVFGGGTKLTVL





GTLVTVSS







C154
V-C054
145
QVQLVESGGGVVQPGRSLRLSCA
146
DIQMTQSPSSLSASVGDRVTITCQ





ASGFTFSRYGMHWVRQAPGKGL

ASQGISNYLNWYQQKPGKAPKLLI





EWVAVMSYDGSSKYYADSVKGR

YDASNLETGVPSRFSGSGSGTDFT





FTISRDNSKNTLCLQMNSLRAEDT

FTISSLQPEDIATYYCQQYDNLPITF





AVYYCAKQAGPYCSGGSCYSAPF

GQGTRLEIK





DYWGQGTLVTVSS







C155
V-C055
147
EVQLVESGGGLIQPGGSLRLSCA
148
EIVMTQSPATLSVSPGERATLSCR





ASGFIVSSNYMSWVRQAPGKGLE

ASQSVSSNLAWYQQKPGQAPRLLI





WVSVIYSGGSTFYADSVKGRFTIS

YGASTRATAIPARFSGSGSGTEFT





RDNSKNTLYLQMNSLRAEDTAVY

LTISSLQSEDFAVYYCQQYNNWPR





YCARDFGEFYFDYWGQGTLVTVSS

TFGQGTKVEIK





C156
V-C056
149
QVQLVESGGGVVQPGRSLRLSCA
150
SYELTQPPSVSVAPGQTARISCGG





ASGFTFSNYGMHWVRQAPGKGL

NNIGSKNVHWYQQKPGQAPVLVV





EWVAVISYDGNNKYYADSVKGRF

YDDSDRPSGIPERFSGSNSGNTAT





TISRDNSKNTLYLQMNSLRAEDTA

LTISRVEAGDEADYYCQVWDSSSD





VYYCAKDPFPLAVAGTGYFDYWG

PWVFGGGTKLTVL





QGTLVTVSS







C160
V-C060
151
QVQLVQSGAEVKKPGASVKVSCK
152
SYELTQPPSVSVSPGQTARITCSG





ASGYTFTSYGISWVRQAPGQGLE

DALPKQYAYWYQQKPGQAPVLVIY





WMGWISAYNGNTNYAQKLQGRV

KDSERPSGIPERFSGSSSGTTVTL





TMTTDTSTSTAYMELRSLRSDDT

TISGVQAEDEADYYCQSADSSGTL





AVYYCARVPASYGDDDYYYYYG

VWFGGGTKLTVL





MDVWGQGTTVTVSS







C161
V-C061
153
QVQLQQWGAGLLKPSETLSLTCA
154
EIVLTQSPGTLSLSPGERATLSCRA





VSGGSLSGFYWTWIRQPPGKGLE

SQTLTANYLAWYQQKPGQAPRLLI





WIGETNHFGSTDYKPSLKSRVTIS

YGASKRATGIPDRFSGSGSGTDFT





VDMSRNQFSLIMTSVTAADTAVYY

LSISRLEPEDFAVYYCQQYGTTPR





CARKTLLFSDFSPGAFDIWGQGT

TFGGGTKVEI





MVTVSS







C162
V-C062
155
QVQLQQWGAGLLKPSETLSLTCA
156
EIVLTQSPGTLSLSPGERATLSCRA





VSGGSLSGFYWTWIRQPPGKGLE

SQTLTANYLAWYQQKPGQAPRLLI





WIGETNHFGSTDYKASLKSRVTIS

YGASKRAAGIPDRFSGSGSGTDFT





VGMSRNQFSLKVTSLTAADTAVY

LSITRLEPEDFAVYYCQQYHTTPRT





YCARKPLLYSDFSPGAFDVWGQG

FGGGTKVEI





TMVTVSS







C163
V-C063
157
QVQLQQWGAGLLKPSETLSLTCA
158
EIVLTQSPGTLSLSPGERATLSCRA





VSGGSLSGFYWTWIRQPPGKGLE

SQTVSANYLAWYQQKAGQAPRLLI





WIGETNHFGSTDYKPSLKSRVTIS

YGASKRATGIPDRFSGSGSGTDFT





VDMSRNQFSLKVTSVTAADTAVY

LSISRLEPEDFAVYYCQQYVTTPRT





YCARKPLLHSDLSPGAFDIWGQG

FGGGTKVEI





TMVTVSS







C164
V-C064
159
EVQLVESGGGLVQPGGSLRLSCA
160
QSALTQPASVSGSPGQSITISCTGT





ASGFSVSTKYMTWVRQAPGKGL

SNDVGSYTLVSWYQQYPGKAPKL





EWVSVLYSGGSDYYADSVKGRFT

LIFEVTKRSSGISNRFSGSKSGNTA





ISRDNSKNALYLQMNSLRVEDTG

SLTISGLQGEDEADYYCCSYAGAS





VYYCARDSSEVRDHPGHPGRSV

TFVFGGGTKLTVL





GAFDIWGQGTMVTVSS







C165
V-C065
161
QVQLVQSGAEVKKPGSSVKVSCK
162
EIVLTQSPGTLSLSPGERATLSCRA





ASGGTFSSYAINWVRQAPGQGLE

SQSVSSTYLAWYQQKPGQAPRLLI





WMGRHPIVGIANYAQKFQGRVTIT

YGASSRATGIPDRFSGSGSGTDFT





ADKSSSTAYMELSSLRSEDTAVY

LTISRLEPEDFAVYYCQQYGSSPW





YCARDLLDPQLDDAFDIWGQGTM

TFGQGTKVEIK





VTVSS







C201
M-C001
163
EVQLVESGGGLVQPGRSLRLSCA
164
IRMTQSPSSVSASVGDRVTITCRA





ASGFTFDDYAMHWVRQAPGKGL

SQGISSWLAWYQQKPGKAPKLLIY





EWVSGISWNSGSIGYADSVKGRF

VESSLQSGVPSRFSGSGSGTDFTL





TISRDNAKNSLYLQMNSLRAEDTA

TISSLQPEDFATYYCQQANSFPLTF





LYYCVKGVEYSSSSNFDYWGQG

GGGTKVEIK





TLVTVSS







C202
M-C002
165
EVQLVESGGGLVQPGGSLRLSCA
166
DIQLTQSPSSLSASVGDRVTITCQA





ASGFTVSSNYMSWVRQAPGKGL

SQDISNYLNWYQQKPGKAPKLLIY





EWVSLIYSGGSTYYADSVKGRFTI

DASNLETGVPSRFSGSGSGTDFTF





SRDNSKNTLYLQMNSLRAEDTAV

TISSLQPEDIATYYCQQYDNLPRSF





YYCARDTLGRGGDYWGQGTLVT

GQGTKLEIK





VSS







C204
M-C004
167
EVQLLESGGGLEQPGGSLRLSCA
168
DIQLTQSPSSLSASVGDRVTITCRA





ASGFTFSTYAMSWVRQAPGKGLE

SQSISSYLNWYQQKPGKAPKLLIY





WVSAISGSGAGTFYADSVKGRFTI

AASSLQSGVPSRFSGSGSGTDFTL





SRDNSKNTLYLQMNSLRAEDTAV

TISSLQPEDFATYYCQQSYSTPPW





YYCARESDCGSTSCYQVGWFDP

TFGQGTKVEIK





WGQGTLVTVSS







C205
M-C005
169
QVQLVQSGAEVKKPGASVKVSCK
170
EIVLTQSPGTLSLSPGERATLSCRA





ASGHTFTSYYMHWVRQAPGQGL

SQSVSSSYLAWYQQKPGQAPRLLI





EWMGIINPSGGSTSYAQKFQGRV

YGASSRATGIPDRFSGSGSGTDFT





TMTRDTSTSTVYMELSSLRSEDT

LTISRLEPEDFAVYYCQQYVSSPW





AVYYCARGPERGIVGATDYFDYW

TFGQGTKVEIK





GQGTLVTVSS







C207
M-C007
171
EVQLLESGGGLVQPGGSLRLSCA
172
EIVLTQSPATLSLSPGERATLSCRA





ASGFTFSSYAMSWVRQAPGKGL

SQSVSSYLAWYQQKPGQAPRLLIY





EWVSAISGSGGSTYYADSVKGRF

DASNRATGIPARFSGSGSGTDFTL





TISRDNSKNTLYLQMNSLRAEDTA

TISSLEPEDFAVYYCQQRSNWPRG





VYYCAKEPIGQPLLWWDYWGQG

FGQGTKVEIK





TLVTVSS







C208
M-C008
173
EVQLVQSGAEVKKPGESLKISCK
174
EIVLTQSPGTLSLSPGERATLSCRA





GSGYSFTSYWIGWVRQMPGKGL

SQSVSGSYLAWYQQRPGQAPRLL





EWMGIIYPGDSDTRYSPSFQGQV

IYGASSRATGIPDRFSGSGSGTDF





TISADKSISTAYLKWSSLKASDSA

TLTISRLEPEDFAVYYCQQYGSSLT





MYYCARGPNLQNWFDPWGQGTL

FGGGTKVEIK





VTVSS







C209
M-C009
175
QVQLVQSGAEVKKSGASVKVSCK
176
SYELTQPPSVSVAPGKTARITCGG





ASGYTFTSYDINWVRQATGQGLE

NNIGSKSVHWYQQKPGHAPVLVV





WMGWMNPNSGNTGYAQKFQGR

YDDSDRPSGIPERFSGSNSGNTAT





VTMTRNTSISTAYMXLSSLXSXXT

LTISRVEAGDEADYYCQVWDSTG





AVYYCAXGFSLTWYFDLWGRGXL

GHPDVVFGGGTKLTVL





VTXSS







C210
M-C010
177
EVQLVESGGGLIQPGGSLRLSCA
178
DIQLTQSPSFLSASVGDRVTITCRA





ASGFTVSSNYMSWVRQAPGKGL

SQGISSYLAWYQQKPGKAPKLLIY





EWVSVIYSGGSTFYADSVKGRFT

AASTLQSGVPSRFSGSGSGTEFTL





FSRDNSKNTLYLQMNSLRAEDTA

TISSLQPEDFATYYCQQLNSYPQG





VYYCARDLMAYGMDVWGQGTTV

TFGGGTKVEIK





TVSS







C211
M-C011
179
EVQLVESGGGLVQPGGSLRLSCA
180
EIVMTQSPATLSVSPGERATLSCR





ASEFTVSSNYMSWVRQAPGKGL

ASQSVSSNLAWYQQKPGQGPRLL





EWVSVIYSGGSTFYADSVKGRFTI

IYGASTRATGIPARFSGSGSGTEFT





SRDNSKNTLYLQMNSLRPEDTAV

LTISSLQSEDFAVYYCQQYNNWPR





YYCARDYGDFYFDFWGQGTLVTV

TFGQGTKVEIK





SS







C212
M-C012
181
QVQLVQSGAEVKKPGASVKVSCK
182
LTQPASVSGSPGQSITISCTGTSSD





ASGYTVTGYYIHWVRQAPGQGLE

VGSYNLVSWYQQHPGKAPKLMIY





WMGWISPNSGGTNYAQKFQGWV

EDSKRPSGVSNRFSGSKSGNTAS





TMTRDMSITTAYMELSRLRSDDTA

LTISGLQAEDEADYYCCSYAGSST





VYYCARERYFDLGGMDVWGQGT

RLFGGGTKLTVL





TVTVSS







C214
M-C014
183
QVQLVESGGGVVQPGRSLRLSCA
184
DIQLTQSPSSLSASVGDRVTITCRA





ASGFTFSSYGMHWVRQAPGKGL

SQSISSYLTWYQQKPGKAPKLLIYA





EWVAAIWYDGSNKHYADSVKGRF

ASSLQSGVPSRFSGSGSGTDFTLT





TISRDNSKNTLYLQMNSLRAEDTA

ISSLQPEDFATYYCQQSYSTPPWT





VYYCARDVGRVTTWFDPWGQGT

FGQGTKVEIK





LVTVSS







C215
M-C015
185
EVQLLESGGGLVQPGGSLRLSCA
186
DIQLTQSPSSLSASVGDRVTITCRA





ASGFTFSSYAMSWVRQAPGKGL

SQSISSYLNWYQQKPGKAPKLLIY





EWVSAITDSGDGTFYADSVKGRF

AASSLQSGVPSRFSGSGSGTDFTL





TISRDNSKNTLYLQMNSLRAEDTA

TISSLQPEDFATYYCQQSYSTPPW





VYYCASEEDYSNYVGWFDPWGQ

TFGQGTKVEIK





GTLVTVSS







C216
M-C016
187
EVQLVESGGGLVQPGGSLRLSCA
188
DIQLTQSPSSLSASVGDRVTITCRA





ASGFTFSSYDMHWVRQATGKGL

SQSISSYLNWYQQKPGKAPKLLIY





EWVSAIGTAGDTYYPDSVKGRFTI

VASSLQSGVPSRFSGSGSGTDFTL





SRENAKNSLYLQMNSLRAGDTAV

TISSLQPEDFATYYCQQSYSTPPIT





YYCARDRGSSGWYGWYFDLWG

FGQGTRLEIK





RGTLVTVSS
















TABLE 5







Representative nucleotide sequences of cloned recombinant antibodies













Old

SEQ

SEQ


Antibody
antibody

ID

ID


ID
ID
IGH VDJ (nt)
NO
IGL VJ (nt)
NO





C002
A-C002
GAGGTGCAGCTGGTGGAGTCTGGGGG
189
GACATCCAGTTGACCCAGTCTCCATCCTC
190




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTCAGTATCTATGGCATGCACT

AGCAGCTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCAGTTATATCATAT

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





GATGGAAGTAATAAATACTATGCAGAC

CATCAAGGTTCAGTGGCAGTGGATCTGGG





TCCGTGAAGGGCCGATTCACCATCTCC

ACAGATTTCACTCTCACCATCAGCAGTCTG





AGAGACAATTCCAAGAACACGCTGTAT

CAACCTGAAGATTTTGCAACTTACTACTGT





CTGCAAATGAACAGCCTGAGAGCTGAG

CAACAGAGTTACAGTACCCCTCGGACGTT





GACACGGCTGTGTATTACTGTGCGAAA

CGGCCAAGGGACCAAGGTGGAAATCAAAC





GAGGGGAGACCATCTGATATTGTAGTG







GTGGTGGCCTTTGACTACTGGGGCCA







GGGAACCCTGGTCACCGTCTCCTCAG








C003
A-C003
GAGGTGCAGCTGGTGGAGTCTGGAGG
191
GAAATTGTGTTGACGCAGTCTCCAGGCAC
192




AGGCTTGATCCAGCCTGGGGGGTCCC

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCACCGTCAGTAGCAACTACATGAGCT

AGCAGCACCTACTTAGCCTGGTACCAGCA





GGGTCCGCCAGGCTCCAGGCAAGGGG

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





CTGGAGTGGGTCTCAGTTATTTATAGC

TCTATGGTGCATCCAGCAGGGCCACTGGC





GGTGGTAGCACATACTACGCAGACTCC

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





GTGAAGGGCCGATTCACCATCTCCAGA

TGGGACAGACTTCACTCTCACCATCAGCA





GACAATTCCAAGAACACGCTGTATCTT

GACTGGAGCCTGAAGATTTTGCAGTGTATT





CAAATGAACAGCCTGAGAGCCGGGGA

ACTGTCAGCAGTATGGTAGCTCACCTAGG





CACGGCCGTGTATTACTGTGCGAGGG

ACTTTTGGCCAGGGGACCAAGCTGGAGAT





ATTACGGTGACTTCTACTTTGACTACTG

CAAAC





GGGCCAGGGAACCCTGGTCACCGTCT







CCTCAG








C004
A-C004
CAGGTGCAGCTGGTGCAGTCTGGGGC
193
GCCATCCGGATGACCCAGTCTCCATCCTC
194




TGAGGTGAAGAAGCCTGGGGCCTCAG

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAAGGTCTCCTGCAAGGCTTCTGGAT

CCATCACTTGCCAGGCGAGTCAGGACATT





ACACCTTCACCGGCTACTATATGCACT

AGCAACTATTTAAATTGGTATCAGCAGAAA





GGGTGCGACAGGCCCCTGGACAAGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTTGAGTGGATGGGATGGATCAACCCT

CGATGCATCCAATTTGGAAACAGGGGTCC





ATCAGTGGTGGCACAAACTATGCACAG

CATCAAGGTTCAGTGGAAGTGGATCTGGG





AAGTTTCAGGGCAGGGTCACCATGACC

ACAGATTTTACTTTCACCATCAGCAGCCTG





AGGGACACGTCCATCAGCACAGCCTAC

CAGCCTGAAGATATTGCAACATATTACTGT





ATGGAGCTGAGCAGGCTGAGATCTGA

CAACAGTATGATAATCTCCCTATCACCTTC





CGACACGGCCGTGTATTACTGTGCGAG

GGCCAAGGGACACGACTGGAGATTAAAC





CCCAGCATCACGTGGATATAGTGGCTA







CGATCATGGGTACTACTACTACATGGA







CGTCTGGGGCAAAGGGACCACGGTCA







CCGTCTCCTCA








C005
A-C005
CAGGTGCAGCTGGTGCAGTCTGGGCC
195
GAAATTGTGTTGACGCAGTCTCCAGGCAC
196




TGAGGTGAAGAAGCCTGGGACCTCAG

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAAGGTCTCCTGCAAGGCTTCTGGAT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCACCTTTACTAGCTCTGCTGTGCAGT

AGAAGCAGCTACTTAGCCTGGTACCAGCA





GGGTGCGACAGGCTCGTGGACAACGC

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





CTTGAGTGGATAGGATGGATCGTCGTT

TCTATGGTGCATCCAGCAGGGCCACTGGC





GGCAGTGGTAACACAAACTACGCACAG

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





AAGTTCCAGGAAAGAGTCACCATTACC

TGGGACAGACTTCACTCTCACCATCAGCA





AGGGACATGTCCACAAGCACAGCCTAC

GACTGGAGCCTGAAGATTTTGCAGTGTATT





ATGGAGCTGAGCAGCCTGAGATCCGA

ACTGTCAGCAGTATGGTAGCTCACCGTGG





GGACACGGCCGTGTATTACTGTGCGG

ACGTTCGGCCAAGGGACCAAGGTGGAAAT





CTCCCCATTGTAGCGGTGGTAGCTGCC

CAAAC





TTGATGCTTTTGATATCTGGGGCCAAG







GGACAATGGTCACCGTCTCTTCAG








C006
A-C006
CAGGTGCAGCTGGTGGAGTCTGGGGG
197
CAGTCTGTGCTGACTCAGCCACCCTCAGC
198




AGGCTTGGTCAAGCCTGGAGGGTCCC

GTCTGGGACCCCCGGACAGAGGGTCACC





TGAGACTCTCCTGTGCAGCCTCTGGAT

GTCTCTTGTTCTGGAAGCAGCTCCAACATC





TCATCTTCAGTGACTACTGCATGAGCT

GGAAGCAATACTGTAAACTGGTACCAGCA





GGATCCGCCGGGCTCCAGGGAAGGGG

GCTCCCAGGAACGGCCCCCAAACTCCTCA





CTGGAATGGCTTTCATATATTAGTAATA

TCTATAGTAATAATCAGCGGCCCTCAGGG





GTGGTACCACCAGATACTACGCAGACT

GTCCCTGACCGATTCTCTGGCTCCAAGTC





CTGTGAAGGGCCGATTCACCATCTCCA

TGGCACCTCAGCCTCCCTGGCCATCAGTG





GGGACAACGGCAGGAACTCACTGTATC

GGCTCCAGTCTGAGGATGAGGCTGATTAT





TGCAAATGGACAGCCTGAGCGCCGAA

TTCTGTGCAGCATGGGATGACAGCCTGAA





GACACGGCCGTTTATTACTGTGCGAGA

TGGTCCGGTATTCGGCGGAGGGACCAAG





AGGGGGGACGGTAGCAGCTCGATCTA

CTGACCGTCCTAG





CTACTACAACTACATGGACGTCTGGGG







CAAAGGGACCACGGTCACCGTCTCCTCA








C008
A-C008
GAGGTGCAGCTGGTGGAGTCTGGGGG
199
GACATCCAGATGACCCAGTCTCCTTCCAC
200




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCCAATCAGAGTATT





TCACCTTCAGTAGCTATGGCATGCACT

AGTAGCTGGTTGGCCTGGTATCAGCAGAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

ACCAGGGAAAGCCCCTAAGCTCCTGATCT





CTGGAGTGGGTGACAGTTATTTCATAT

ATAAGGCGTCTAGTTTAGAAAGTGGGGTC





GATGGAAGGAATAAATACTATGCAGAC

CCATCAAGGTTCAGCGGCAGTGGATCTGG





TCCGTGAAGGGCCGATTCACCATCTCC

GACAGAATTCACTCTCACCATCAGCAGCC





AGAGACAACTCCAAGAACACGCTGTAT

TGCAGCCTGATGATTTTGCAACTTATTACT





CTGCAAATGAACAGCCTGAGAGCTGAG

GCCAACAGTATAATAGTTATTGGACGTTCG





GACACGGCTGTGTATTACTGTGCGAGA

GCCAAGGGACCAAGGTGGAAATCAAAC





GAATTCGGTGACCCCGAGTGGTACTTT







GACTACTGGGGCCAGGGAACCCTGGT







CACCGTCTCCTCAG








C009
A-C009
CAGGTGCAGCTGGTGCAGTCTGGGGC
201
CAGTCTGCCCTGACTCAGCCTCCCTCCGC
202




TGAGGTGAAGAAGCCTGGGGCCTCAG

GTCCGGGTCTCCTGGACAGTCAGTCACCA





TGAAGGTCTCCTGCATGGCTTCTGGAT

TCTCCTGCACTGGAACCAGCAGTGACGTT





ACACCTTCACCGGCTACTATATGCACT

GGTGGTTATAACTATGTCTCCTGGTACCAA





GGGTGCGACAGGCCCCTGGACAAGGG

CAGCACCCAGGCAAAGCCCCCAAACTCAT





CTTGAGTGGATGGGATGGATCAACCCT

GATTTATGAGGTCAGTAAGCGGCCCTCAG





AACAGTGGTGGCACAAACTATGCACAG

GGGTCCCTGATCGCTTCTCTGGCTCCAAG





AAGTTTCAGGGCAGGGTCACCATGACC

TCTGGCAACACGGCCTCCCTGACCGTCTC





AGGGACACGTCCATCAGCACAGCCTAC

TGGGCTCCAGGCTGAGGATGAGGCTGAG





ATGGAGCTGAGCAGGCTGAGATCTGA

TATTACTGCAGCTCAGATGCAGGCAGCAA





CGACACGGCCGTGTATTACTGTGCGAG

CAATGTGGTATTCGGCGGAGGGACCAAGC





AGACTCCCCATTTAGTGCTTTAGGGGC

TGACCGTCCTAG





CTCCAATGACTACTGGGGCCAGGGAA







CCCTGGTCACCGTCTCCTCAG








C010
A-C010
GAGGTGCAGCTGGTGGAGTCTGGGGG
203
GACATCCAGTTGACCCAGTCTCCATCCTC
204




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTCAGTAGCTATGCTATGCACT

AGCACCTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGCCAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCAGTTATATTATAT

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





GATGGAAGCGGTAAATACTACGCAGAC

CATCAAGGTTCAGTGGCAGTGGATCTGGG





TCCGTGAAGGGCCGATTCACCATCTCC

ACAGATTTCACTCTCACCATCAGCAGTCTG





AGAGACAATTCCAAGAACACGTTGTAT

CAACCTGAAGATTTTGCAACTTACTACTGT





CTGCAAATGAACAGCCTGAGAGCTGAG

CAACAGAGTTACAGTACCCCTCCGTGGAC





GACACGGCTGTGTATTACTGTGCGAGA

GTTCGGCCAAGGGACCAAGGTGGAGATCA





GACGGGATCGTGGATACAGCTCTGGTT

AAC





ACGTGGTTTGACTACTGGGGCCAGGG







AACCCTGGTCACCGTCTCCTCAG








C013
A-C013
CAGGTGCAGCTGGTGCAGTCTGGGGC
205
GAAATTGTGTTGACACAGTCTCCAGCCAC
206




TGAGGTGAAGAAGCCTGGGTCCTCGG

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAAGGTCTCCTGCAAGGCTTCTGGAG

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





GCACCTTCAGCAGCTATGCTATCAGCT

AGCAGCTACTTAGCCTGGTACCAACAGAA





GGGTGCGACAGGCCCCTGGACAAGGG

ACCTGGCCAGGCTCCCAGGCTCCTCATCT





CTTGAGTGGATGGGAGGGATCATCCCT

ATGATGCATCCAACAGGGCCACTGGCATC





ATCTTTGGTACAGCAAACTACGCACAG

CCAGCCAGGTTCAGTGGCAGTGGGTCTG





AAGTTCCAGGGCAGAGTCACGATTACC

GGACAGACTTCACTCTCACCATCAGCAGC





GCGGACGAATCCACGAGCACAGCCTA

CTAGAGCCTGAAGATTTTGCAGTTTATTAC





CATGGAGCTGAGCAGCCTGAGATCTGA

TGTCAGCAGCGTAGCAACTGGCCCCTCAC





GGACACGGCCGTGTATTACTGTGCGA

TTTCGGCGGAGGGACCAAGGTGGAGATCA





GAGGGAATCGACTACTTTATTGTAGTA

AAC





GTACCAGCTGCTATCTAGATGCGGTTA







GGCAGGGGTACTACTACTACTACTACA







TGGACGTCTGGGGCAAAGGGACCACG







GTCACCGTCTCCTCA








C016
A-C016
GAGGTGCAGCTGGTGGAGTCTGGGGG
207
GCCATCCGGATGACCCAGTCTCCATCCTC
208




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCAGGCGAGTCAGGACATT





TCACCTTCAGTAGATATGGCATGCACT

AGCAACTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCAGTTATATCATAT

CGATGCATCCAATTTGGAAACAGGGGTCC





GATGGAAGTAATAAATACTATGCAGAC

CATCAAGGTTCAGCGGAAGTGGATCTGGG





TCCGTGAAGGGCCGATTCACCATCTCC

ACAGATTTTACTTTCACCATCAACAGCCTG





AGAGACAATTCCAAGAACACGCTGTAT

CAGCCTGAAGATATTGCAACATATTACTGT





CTGCAAATGAACAGCCTGAGAGCTGAG

CAACAGTATGATAATCTCCCTCCTACTTTC





GACACGGCTGTGTATTACTGTGCGAAA

GGCGGAGGGACCAAGGTGGAGATCAAAC





GTGACCGCCCCTTATTGTAGTGGTGGT







AGCTGCTACGGAGGTAACTTTGACTAC







TGGGGCCAGGGAACCCTGGTCACCGT







CTCCTCAG








C017
A-C017
GAAGTGCAGCTGGTGGAGTCTGGGGG
209
GAAATTGTGTTGACACAGTCTCCAGCCAC
210




AGGCTTGGTACAGCCTGGCAGGTCCC

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCACCTTTGATGATTATGCCATGCACTG

AGCAGCTACTTAGCCTGGTACCAACAGAA





GGTCCGGCAAGCTCCAGGGAAGGGCC

ACCTGGCCAGGCTCCCAGGCTCCTCATCT





TGGAGTGGGTCTCAGGTATTAGTTGGA

ATGATGCATCCAACAGGGCCACTGGCATC





ATAGTGGTACCATAGGCTATGCGGACT

CCAGCCAGGTTCAGTGGCAGTGGGTCTG





CTGTGAAGGGCCGATTCACCATCTCCA

GGACAGACTTCACTCTCACCATCAGCAGC





GAGACAACGCCAAGAACTCCCTGTATC

CTAGAGCCTGAAGATTTTGCAGTTTATTAC





TGCAAATGAACAGTCTGAGAGCTGAGG

TGTCAGCAGCGTATCACCTTCGGCCAAGG





ACACGGCCTTTTATTACTGTGCAAAAG

GACACGACTGGAGATTAAAC





CGGGCGTAAGGGGTATAGCAGCAGCT







GGTCCCGACCTCAACTTCGACCACTGG







GGCCAGGGAACCCTGGTCACCGTCTC







CTCAG








C018
A-C018
GAGGTGCAGCTGGTGGAGTCTGGGGG
211
GACATCCAGTTGACCCAGTCTCCATCCTC
212




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCGTCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTCAGTAACTATGCTATACACTG

CGCAGCTATTTAAATTGGTATCAACAGAAA





GGTCCGCCAGGCTCCAGGCAAGGGGC

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





TGGAGTGGGTGGCAGTTATATCATATG

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





ATGGAAGCAATAAATACTACGCAGACT

CTTCAAGGTTCAGTGGCAGTGGATCTGGG





CCGTGAAGGGCCGATTCACCATCTCCA

ACAGATTTCACTCTCACCATCAGCAGTCTG





GAGACAATTCCAAGAACACGCTGTATC

CAACCTGATGATTTTGCAACTTACTACTGT





TGCAAATGAACAGCCTGAGAGCTGAGG

CAACAGAGTTACAGTACCCCTCCGGCCAC





ACACGGCTGTGTATTACTGTGCGAGAG

TTTTGGCCAGGGGACCAAGCTGGAGATCA





ATTTTGACGATAGTTCGTTCTGGGCGT

AAC





TTGACTACTGGGGCCAGGGAACCCTG







GTCACCGTCTCCTCAG








C019
A-C019
CAGGTGCAGCTGGTGCAGTCTGGGGC
213
TCCTATGAGCTGACACAGCCACCCTCAGT
214




TGAGGTGAAGAAGCCTGGGGCCTCAG

GTCAGTGGCCCCAGGAAAGACGGCCAGG





TGAAGGTTTCCTGCAAGGCATCTGGAT

ATTACCTGTGGGGAAAACAACATTGGAAG





ACACCTTCACCAGTTACTATATGCACTG

TAAAAGTGTGCACTGGTACCAGCAGAAGC





GGTGCGACAGGCCCCTGGACAAGGGC

CAGGCCAGGCCCCTGTGCTGGTCATCTAT





TTGAGTGGATGGGAATAATCAACCCTA

TATGATAGCGACCGGCCCTCAGGGATCCC





GTGGTGGTAGCACAAGCTACGCACAG

TGAGCGATTCTCTGGCTCCAACTCTGGGA





AAGTTCCAGGGCAGAGTCACCATGACC

ACACGGCCACCCTGACCATCAACAGGGTC





AGGGACACGTCCACGAGCACAGTCTA

GAAGCCGGGGATGAGGCCGACTATTACTG





CATGGAGCTGAGCAGCCTGAGATCTGA

TCAGGTGTGGGATAGTAGTAGTGATCATG





GGACACGGCCGTGTATTACTGTGCTAG

TGGTATTCGGCGGAGGGACCAAGCTGACC





AGTGCCCCGTGAGGGGACCCCAGGGT

GTCCTAG





TCGACCCCTGGGGCCAGGGAACCCTG







GTCACCGTCTCCTCAG








C021
A-C021
CAGGTGCAGCTGCAGGAGTCGGGCCC
215
GATATTGTGATGACTCAGTCTCCACTCTCC
216




AGGACTGGTGAAGCCTTCACAGACCCT

CTGCCCGTCACCCCTGGAGAGCCGGCCT





GTCCCTCACCTGCACTGTCTCTGGTGG

CCATCTCCTGCAGGTCTAGTCAGAGCCTC





CTCCATCAGCAGTGGTGGTTACTACTG

CTGCATAGTAATGGATACAACTATTTGGAT





GAGCTGGATCCGCCAGCACCCAGGGA

TGGTACCTGCAGAAGCCAGGGCAGTCTCC





AGGGCCTGGAGTGGATTGGGTACATCT

ACAGCTCCTGATCTATTTGGGTTCTAATCG





ATTACAGTGGGAGCACCTACTACAACC

GGCCTCCGGGGTCCCTGACAGGTTCAGT





CGTCCCTCAAGAGTCGAGTTACCATAT

GGCAGTGGATCAGGCACAGATTTTACACT





CAGTAGACACGTCTAAGAACCAGTTCT

GAAAATCAGCAGAGTGGAGGCTGAGGATG





CCCTGAAGCTGAGCTCTGTGACTGCCG

TTGGGGTTTATTACTGCATGCAAGCTCTAC





CGGACACGGCCGTGTATTACTGTGCGA

AAACTCCATTCACTTTCGGCCCTGGGACC





GAGTTTGGCAATACTATGATAGTAGTG

AAAGTGGATATCAAAC





GTTCCTTTGACTACTGGGGCCAGGGAA







CCCTGGTCACCGTCTCCTCAG








C022
A-C022
CAGGTGCAGTTGCAGGAGTCGGGCCC
217
GACATCCAGATGACCCAGTCTCCTTCCAC
218




AGGACTGGTGAAGCCTTCGGAGACCC

CCTGTCTGCATCTGTAGGAGACAGCGTCA





TGTCCGTCACTTGCACTGTCTCTGGTG

CCATCACTTGCCGGGCCAGTCAGAGTATT





GCTCCATCAGCAGTAGTAGGTACTACT

AGTAGCTGGTTGGCCTGGTATCAGCAGAA





GGGGCTGGATCCGCCAGCCCCCAGGG

ACCAGGGAAAGCCCCTAAGCTCCTGATCT





AAGGGGCTGGAGTGGATTGGGAGTAT

ATAAGGCGTCTAGTTTAGAAAGTGGGGTC





CTATTATAGTGGGAGCACCTACTACAA

CCATCAAGGTTCAGCGGCAGTGGATCTGG





CCCGTCCCTCAAGAGTCGAGTCACCAT

GACAGAATTCACTCTCACCATCAGCAGCC





ATCCGTGGACACGTCCAAGAACCAGTT

TGCAGCCTGATGATTTTGCAACTTATTACT





CTCCCTGAAGCTGAGCTCTGTGACCGC

GCCAACAGTATAATAATTACCGGTACACTT





CGCAGACACGGCTGTGTATTACTGTGC

TTGGCCAGGGGACCAAGCTGGAGATCAAAC





GAGACATGCGGCAGCATACTATGATAG







AAGTGGTTATTATTTCATCGAATACTTC







CAGCACTGGGGCCAGGGCACCCTGGT







CACCGTCTCCTCAG








C027
A-C027
GAGGTGCAGCTGGTGGAGTCTGGGGG
219
GACATCCAGATGACCCAGTCTCCTTCCAC
220




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCCAGTCAGAGTATT





TCACCTTCAGTAGCTATGGCATGCACT

AGTAGCTGGTTGGCCTGGTATCAGCAGAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

ACCAGGGAAAGCCCCTAAGCTCCTGATCT





CTGGAGTGGGTGGCAGTTATATCATAT

ATAAGGCGTCTAGTTTAGAAAGTGGGGTC





GATGGAAGTAATAAATACTATGCAGAC

CCATCAAGGTTCAGCGGCAGTGGATCTGG





TCCGTGAAGGGCCGATTCACCATCTCC

GACAGAATTCACTCTCACCATCAGCAGCC





AGAGACAATTCCAAGAACACGCTGTAT

TGCAGCCTGATGATTTTGCAACTTATTACT





CTGCAAATGAACAGCCTGAGAGCTGAG

GCCAACAGTATAATAGTTATTCGACGTTCG





GACACGGCTGTGTATTACTGTGCGAAA

GCCAAGGGACCAAGGTGGAAATCAAAC





GCAAGTGGAATTTATTGTAGTGGTGGA







GACTGCTACTCATACTACTTTGACTACT







GGGGCCAGGGAACCCTGGTCACCGTC







TCCTCAG








C029
A-C029
CAGGTGCAGCTGCAGGAGTCGGGCCC
221
GATATTGTGATGACTCAGTCTCCACTCTCC
222




AGGACTGGTGAAGCCTTCACAGACCCT

CTGCCCGTCACCCCTGGAGAGCCGGCCT





GTCCCTCACCTGCACTGTCTCTGGTGG

CCATCTCCTGCAGGTCTAGTCAGAGCCTC





CTCCATCAGCAGTGGTGGTTACTACTG

CTGCATAGTAATGGATACAACTATTTGGAT





GAGCTGGATCCGCCAGCACCCAGGGA

TGGTACCTGCAGAAGCCAGGGCAGTCTCC





AGGGCCTGGAGTGGATTGGGTACATCT

ACAGCTCCTGATCTATTTGGGTTCTAATCG





ATTACAGTGGGAGCACCTACTACAACC

GGCCTCCGGGGTCCCTGACAGGTTCAGT





CGTCCCTCAAGAGTCGAGTTACCATAT

GGCAGTGGATCAGGCACAGATTTTACACT





CAGTAGACACGTCTAAGAACCAGTTCT

GAAAATCAGCAGAGTGGAGGCTGAGGATG





CCCTGAAGCTGAGCTCTGTGACTGCCG

TTGGGGTTTATTACTGCATGCAAGCTCTAC





CGGACACGGCCGTGTATTACTGTGCGA

AAACTCCTCACACTTTCGGCGGAGGGACC





GAACAATGTATTACTATGATAGTAGTGG

AAGGTGGAGATCAAAC





TTCCTTTGACTACTGGGGCCAGGGAAC







CCTGGTCACCGTCTCCTCAG








C030
A-C030
GAGGTGCAGCTGGTGGAGTCTGGGGG
223
GACATCCAGATGACCCAGTCTCCTTCCAC
224




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCCAGTCAGAGTATT





TCACCTTCAGTAGCTATGGCATGCACT

AGTAGCTGGTTGGCCTGGTATCAGCAGAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

ACCAGGGAAAGCCCCTAAGCTCCTCATCT





CTGGAGTGGGTGGCAGTTATATCATAT

ATAAGGCGTCTAGTTTAGAAAGTGGGGTC





GATGGAAGTAATAAATACTATGCAGAC

CCATCAAGGTTCAGCGGCAGTGGATCTGG





TCCGTGAAGGGCCGATTCACCATCTCC

GACAGAATTCACTCTCACCATCAGCAGCC





AGAGACAATTCCAAGAACACGCTGTAT

TGCAGCCTGATGATTTTGCAACTTATTACT





CTGCAAATGAACAGCCTGAGAGCTGAG

GCCAACAGTATAATAGTTATTCGACGTTCG





GACACGGCTGTGTATTACTGTGCGAAA

GCCAAGGGACCAAGGTGGAAATCAAAC





GCAAGTGGAATATATTGTAGTGGTGGT







AACTGCTACTCATACTACTTTGACTACT







GGGGCCAGGGAACCCTGGTCACCGTC







TCCTCAG








C031
A-C031
GAGGTGCAGCTGGTGGAGTCTGGGGG
225
GACATCCAGATGACCCAGTCTCCATCCTC
226




AGGCTTGGTACAGCCTGGGGGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTCAGTAGCTACGACATGCACT

AGCAGCTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAAGCTACAGGAAAAGGT

CCAGGGAAAGCCCCTAAGGTCCTGATCTA





CTGGAGTGGGTCTCAGCTATTGGTACT

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





GCTGGTGACACATACTATCCAGGCTCC

CATCAAGGTTCAGTGGCAGTGGATCTGGG





GTGAAGGGCCGATTCACCATCTCCAGA

ACAGATTTCACTCTCACCATCAGCAGTCTG





GAAAATGCCAAGAACTCCTTGTATCTTC

CAACCTGAAGATTTTGCAACTTACTACTGT





AAATGAACAGCCTGAGAGCCGGGGAC

CAACAGAGTTACAGTACCCCTCCGCTCAC





ACGGCTGTGTATTACTGTGCAAGAGTA

TTTCGGCGGAGGGACCAAGGTGGAGATCA





GGGTATGATAGTAGTGGTTATTCGGGC

AAC





TGGTACTTCGATCTCTGGGGCCGTGGC







ACCCTGGTCACCGTCTCCTCAG








C032
A-C032
GAGGTGCAGCTGGTGCAGTCTGGAGC
227
CAGTCTGTGCTGACTCAGCCGCCCTCAGT
228




AGAGGTGAAAAAGCCCGGGGAGTCTC

GTCTGGGGCCCCAGGGCAGAGGGTCACC





TGAAGATCTCCTGTAAGGGTTCTGGAT

ATCTCCTGCACTGGGAGCAGCTCCAACAT





ACAGCTTTACCAGCTACTGGATCGGCT

CGGGGCAGGTTATGATGTACACTGGTACC





GGGTGCGCCAGATGCCCGGGAAAGGC

AGCAGCTTCCAGGAACAGCCCCCAAACTC





CTGGAGTGGATGGGGATCATCTATCCT

CTCATCTATGGTAACAGCAATCGGCCCTC





GGTGACTCTGATACCAGATACAGCCCG

AGGGGTCCCTGACCGATTCTCTGGCTCCA





TCCTTCCAAGGCCAGGTCACCATCTCA

AGTCTGGCACCTCAGCCTCCCTGGCCATC





GCCGACAAGTCCATCAGCACCGCCTAC

ACTGGGCTCCAGGCTGAGGATGAGGCTG





CTGCAGTGGAGCAGCCTGAAGGCCTC

ATTATTACTGCCAGTCCTATGACAGCAGCC





GGACACCGCCATGTATTACTGTGCGAG

TGAGTGCCCTTTATGTCTTCGGAACTGGG





AGGGGTAGCAGTGGACTGGTACTTCG

ACCAAGGTCACCGTCCTAG





ATCTCTGGGGCCGTGGCACCCTGGTC







ACCGTCTCCTCAG








C036
A-C036
CAGGTGCAGCTACAGCAGTGGGGCGC
229
GATATTGTGATGACTCAGTCTCCACTCTCC
230




AGGACTGTTGAAGCCTTCGGAGACCCT

CTGCCCGTCACCCCTGGAGAGCCGGCCT





GTCCCGCACCTGCGCTGTCTTTGGTGG

CCATCTCCTGCAGGTCTAGTCAGAGCCTC





GTCCTTCACTAATTACTACTGGAGTTG

CTGCATAGAAATGGATACAACTATTTGGAT





GATCCGCCAGTCCCCAGGGAAGGGGC

TGGTACCTGCAGAAGCCAGGGCAGTCTCC





TGGAGTGGATTGGGGAAATCAATGATA

ACAGCTCCTGATCTATTTGGGTTCCAATCG





GTGGAATCACCAACTACAACCCGTCCC

GGCCTCCGGGGTCCCTGACAGGTTCAGG





TCAAGAGTCGAGTCACCATCTCAGTAG

GGCAGTGGATCAGGCACAGATTTCACACT





ACACGTCCAAGAACCAGTTCTCCCTGA

GAAAATCAGCAGAGTGGAGGCTGAGGATG





GCCTGAGGTCTGTGACCGCCGCGGAC

TTGGGGTTTATTACTGCATGCAAGCTCTAC





ACGGCTGTGTATTACTGTGCCAGAAGG

AAACTCTCACCTTCGGCCAAGGGACACGA





AGGTCCTTCTCTCGTCCTTCGTCTATC

CTGGAGATTAAAC





GACTACTGGGGCCAGGGAACCCTGGT







CACCGTCTCCTCAG








C037
A-C037
TGCAGCTGGTGCAGTCTGGGCCTGAG
231
GAAATTGTGTTGACGCAGTCTCCAGGCAC
232




GTGAAGAAGCCTGGGACCTCAGTGAA

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





GGTCTCCTGCAAGGCTTCTGGATTCAC

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





CTTTACTAGCTCTGCTATGCAGTGGGT

AGCAGCAGCTACTTAGCCTGGTACCAGCA





GCGACAGGCTCGTGGACAACGCCTTG

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





AGTGGATAGGATGGATCGTCGTTGGCA

TCTATGGTGCATCCAGCAGGGCCACTGGC





GTGGTAACACAAACTACGCACAGAAGT

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





TCCAGGAAAGAGTCACCATTACCAGGG

TGGGACAGACTTCACTCTCACCATCAGCA





ACATGTCCACAAGCACAGCCTACATGG

GACTGGAGCCTGAAGATTTTGCAGTGTATT





AGCTGAGCAGCCTGAGATCCGAGGAC

ACTGTCAGCAGTATGGTAGCTCACCGTGG





ACGGCCGTGTATTACTGTGCGGCCCCA

ACGTTCGGCCAAGGGACCAAGGTGGAAAT





TATTGTAGTGGTGGTAGCTGCAATGAT

CAAAC





GCTTTTGATATCTGGGGCCAAGGGACA







ATGGTCACCGTCTCTTCAG








C038
A-C038
AGGTGCAGCTGGTGGAGTCTGGGGGA
233
AATTTTATGCTGACTCAGCCCCACTCTGTG
234




GGCGTGGTCCAGCCTGGGAGGTCCCT

TCGGAGTCTCCGGGGAAGACGGTTACCAT





GAGACTCTCCTGTGCAGCCTCTGGATT

CTCCTGCACCGGCAGCAGTGGCAGCATTG





CACCTTCAATAGAATTGCCATGTACTG

CCAGCAACTATGTGCAGTGGTACCAGCAG





GGTCCGCCAGGCTCCAGGCAAGGGGC

CGCCCGGGCAGTGCCCCCACCACTGTGA





TGGAATGGGTGGCAGTTATATCATTTG

TCTATGAAGATACCCAAAGACCCTCTGGG





ATGGAAGTTATGAATACTATGCAGAGT

GTCCCTGATCGGTTCTCTGGCTCCATCGA





CCGTGAAGGGCCGGTTCGCCATCTCC

CAGCTCCTCCAATTCTGCCTCCCTCACCAT





AGAGACAATTCCAAGAACACGCTGTAT

CTCTGGACTGAAGACTGAGGACGAGGCTG





CTACAGATGAACAGCCTGAGAGCTGAG

ACTACTACTGTCAGTCTTATGATATCAACA





GACACGGCTGTCTATTACTGTGCGAAA

GTCGTTGGGTGTTCGGCGGAGGGACCAA





AGTCCGATGGGTTATTGCACTAATGGT

GCTGACCGTCCTA





GTATGCTATCCTGACTCCTGGGGCCAG







GGAACCCTGGTCACCGTCTCCTCAG








C040
A-C040
GAGGTGCAGCTGGTGGAGTCTGGGGG
235
TCCTATGAGCTGACTCAGCCACCCTCGGT
236




AGGCTTGGTAAAGCCTGGGGGGTCCC

GTCAGTGGCCCCAGGACAGACGGCCAGG





TTAGACTCTCCTGTGCAGCCTCTGGAT

ATTACCTGTGGGGGAAACAACATTGGAAG





TCACTTTCAGTAACGCCTGGATGAGCT

TAAAAGTGTGCACTGGTACCAGCAGAAGC





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAGGCCAGGCCCCTGTGCTGGTCGTCTAT





CTGGAGTGGGTTGGCCGTATTAAAAGC

GATGATAGCGACCGGCCCTCAGGGATCCC





AAAACTGATGGTGGGACAACAGACTAC

TGAGCGATTCTCTGGCTCCAACTCTGGGA





GCTGCACCCGTGAAAGGCAGATTCACC

ACACGGCCACCCTGACCATCAGCAGGGTC





ATCTCAAGAGATGATTCAAAAAACACG

GAAGCCGGGGATGAGGCCGACTATTACTG





CTGTATCTGCAAATGAACAGCCTGAAA

TCAGGTGTGGGATAGTAGTAGTGATCAGG





ACCGAGGACACAGCCGTGTATTACTGT

GGGTATTCGGCGGAGGGACCAAGCTGAC





ACCACAGATCCCCATTGTAGTAGTACC

CGTCCTAG





AGCTGCCCCATTTTTTACTACTACTACA







TGGACGTCTGGGGCAAAGGGACCACG







GTCACCGTCTCCTCAG








C101
V-C001
CAGGTGCAGCTGGTGGAGTCTGGAGG
237
GAAATTGTGTTGACGCAGTCTCCAGGCAC
238




AGGCTTGATCCAGCCTGGGGGGTCCC

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCATCGTCAGTAGCAACTACATGAGCT

AGCAGCAGCTACTTAGCCTGGTACCAGCA





GGGTCCGCCAGGCTCCAGGGAAGGGG

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





CTGGAGTGGGTCTCAGTTATTTATAGC

TCTATGGTGCATCCAGCAGGGCCACTGGC





GGTGGTAGCACATTCTACACAGACTCC

ATCCCAGACAGGTTCAGTGGCGGTGGGTC





GTGAAGGGCCGATTCACCATCTCCAGA

TGAGACAGACTTCACTCTCACCATCAGCA





GACAATTCCAAGAACACTCTGTATCTTC

GACTGGAGCCTGAAGATTGTGCAGTGTAT





AAATGAACAGCCTGAGAGCCGAGGAC

TACTGTCAGCAGTATGGTAGCTCACCCCG





ACGGCCGTGTATTACTGTGTGCGGGAC

GACGTTCGGCCAAGGGACCAAGGTGGAA





TACGGTGACTTCTACTTTGACTACTGG

ATCAAAC





GGCCAGGGAACCCTGGTCACCGTCTC







CTCAG








C102
V-C002
CAGGTGCAGCTGGTGGAGTCTGGAGG
239
GAAATTGTGTTGACGCAGTCTCCAGGCAC
240




AGGCTTGATCCAGCCTGGGGGGTCCC

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCATCGTCAGTAGCAACTACATGAGCT

AGCAGCAGCTACTTAGCCTGGTACCAGCA





GGGTCCGCCAGGCTCCAGGGAAGGGG

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





CTGGAGTGGGTCTCAGTTATTTATAGC

TCTATGGTGCATCCAGCAGGGCCACTGGC





GGTGGTAGCACATTCTACGCAGACTCC

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





GTGAAGGGCCGATTCACCATCTCCAGA

TGGGACAGACTTCACTCTCACCATCAGCA





GACAATTCCAAGAACACGCTGTATCTT

GACTGGAGCCTGAAGATTTTGCAGTCTATT





CAAATGAACAGCCTGAGAGCCGAGGA

ACTGTCAGCAGTATGGTAGCTCACCTCGG





CACGGCCGTGTATTACTGTGCGAGGG

ACGTTCGGCCAAGGGACCAAGGTGGAAAT





ACTACGGTGACTACTACTTTGACTACT

CAAAC





GGGGCCAGGGAACCCTGGTCACCGTC







TCCTCAG








C103
V-C003
CAGGTGCAGCTACAGCAGTGGGGCGC
241
GAAATTGTGTTGACGCAGTCTCCAGGCAC
242




AGGACTGTTGAAGCCTTCGGAGACCCT

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





GTCCCTCACCTGCGCTGTCTCTGGTGG

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





GTCACTCAGTGGTTTCTACTGGACCTG

ACCGCCAACTACTTAGCCTGGTACCAGCA





GATCCGCCAGCCCCCAGGAAAGGGGC

GAAACCTGGCCAGGCTCCCAGACTCCTCA





TGGAGTGGATTGGGGAAACCAATCATT

TCTATGGTGCATCCAAGAGGGCCACTGGC





TTGGAAGCACCGGCTACAAGCCGTCC

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





CTCAAGAGTCGAGTCACCATATCAGTA

TGGGACAGACTTCACTCTCAGCATCAGCA





GACATGTCCAGGAACCAGTTCTCCCTG

GACTGGAGCCTGAAGATTTTGCAGTGTATT





AAGGTGACCTCTGTGACCGCCGCGGA

ACTGTCAGCAGTATACTACTACACCTCGGA





CACGGCTGTGTATTACTGTGCGAGAAA

CTTTCGGCGGAGGGACCAAGGTGGAGAT





GCCCCTCCTCTACAGTGACTTCTCTCC

CAAAC





TGGTGCTTTTGATATCTGGGGCCAAGG







GACAATGGTCACCGTCTCTTCAG








C104
V-C004
CAGGTGCAGCTACAGCAGTGGGGCGC
243
GAAATTGTGTTGACGCAGTCTCCAGGCAC
244




AGGACTGTTGAAGCCTTCGGAGACCCT

CGTGTCTTTGTCTCCAGGGGAAAGAGCCA





GTCCCTCTCCTGCGCTGTCTATGGTGG

CCCTCTCCTGCTGGGCCAGTCAGAGTGTT





GTCCCTCAGTGGTTACTACTGGAGCTG

AGCGCCAGCTACTTAGCCTGGTACCAGCA





GATCCGCCAGCCCCCAGGGAAGGGGC

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





TGGAGTGGATTGGGGAGATCAATCATT

TCTATGGTGCATCCAGCAGGGCCACTGGC





TTGGAAGCACCGGCTACAACCCGTCCC

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





TCAAGAGTCGAGTCACCATCTCCGTGG

TGGGACAGACTTCACTCTCACCATCAGTA





ACACGTCCAAGAGCCAGTTCTCCGTGA

GACTGGAGCCTGAAGATTTTGCAGTATATT





AGCTGAGCTCTGTGACCGCCGCGGAC

ACTGTCAGCAGTACGGTACTACACCTCGG





ACGGCTGTCTATTACTGCGCGAGAAAG

ACTTTCGGCGGAGGGACCAAGGTGGAGAT





CCCCTCCTCTACAGTAACTTATCCCCT

CAAAC





GGTGCTTTTGATATCTGGGGCCAAGGG







ACAATGGTCACCGTCTCTTCAG








C105
V-C005
CAGGTGCAGCTGGTGGAGTCTGGAGG
245
CAGTCTGCCCTGACTCAGCCTCCCTCCGC
246




AGGCTTGATCCAGCCTGGGGGGTCCC

GTCCGGGTCTCCTGGACAGTCAGTCACCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

TCTCCTGCACTGGAACCAGCAGTGACGTT





TCACCGTCAGTAGCAACTACATGAGCT

GGTGGTTATAAGTATGTCTCCTGGTACCAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAGCACCCAGGCAAAGCCCCCAAACTCAT





CTGGAGTGGGTCTCAGTTATTTATAGC

GATTTATGAGGTCAGTAAGCGGCCCTCAG





GGTGGTAGTACATACTACGCAGACTCC

GGGTCCCTGATCGCTTCTCTGGCTCCAAG





GTGAAGGGCCGATTCACCATCTCCAGA

TCTGGCAACACGGCCTCCCTGACCGTTTC





GACAATTCCAAGAACACGCTGTATCTT

TGGGCTCCAGGCTGAGGATGAGGCTGATT





CAAATGAACAGCCTGAGAGCCGAGGA

ATTACTGCAGCTCATATGAAGGCAGCAAC





CACGGCCGTGTATTACTGTGCGAGAG

AATTTTGTGGTATTCGGCGGAGGGACCAA





GCGAGGGGTGGGAGCTACCATACGAC

GCTGACCGTCCTAG





TACTGGGGCCAGGGAACCCTGGTCAC







CGTCTCCTCAG








C106
V-C006
CAGCTGCAGCTGCAGGAGTCGGGCCC
247
TCCTATGAGCTGACACAGCCACCCTCAGT
248




AGGACTGGTGAAGCCTTCGGAGACCC

GTCAGTGGCCCCAGGAAAGACGGCCAGG





TGTCCCTCACCTGCACTGTCTCTGGTG

ATTACCTGTGGGGGAAACAACATTGGAAG





CCTCCGTCAGCAGTGGTAGTTACTACT

TAAAAGTGTGCACTGGTACCAGCAGAAGC





GGAGCTGGATCCGGCAGCCCCCAGGG

CAGGCCAGGCCCCTGTGCTGGTCATCTAT





AAGGGACTGGAATGGATTGGGTATATC

TTTGATAGCGACCGGCCCTCAGGGATCCC





TATTACAGTGGGAGCACCAACTACAAC

TGAGCGATTCTCTGGCTCCAACTCTGGGA





CCCTCCCTCAAGAGTCGAGTCACCATA

ACACGGCCACCCTGACCATCAGCAGGGTC





TCAGTGGACACGTCCAAGAACCAGTTC

GAAGCCGGGGATGAGGCCGACTATTACTG





TCCCTGAAGCTGAGCTCTGTGACCGCT

TCAGGTGTGGGATAGTAGTCGTGATCATG





GCGGACACGGCCGTGTATTACTGTGC

TGGTATTCGGCGGAGGGACCAAGCTGACC





GAGAGAGCGGCCCGGTGGAACGTATA

GTCCTAG





GCAACACCTGGTACACCCCAACCGATA







CCAACTGGTTCGACACCTGGGGCCAG







GGAACCCTGGTCACCGTCTCCTCAG








C107
V-C007
CAGGTTCAGCTGGTGCAGTCTGGAGCT
249
CAGTCTGTGCTGACTCAGCCACCCTCAGC
250




GAGGTGAAGAAGCCTGGGGCCTCAGT

GTCTGGGACCCCCGGGCAGAGGGTCACC





GAGGGTCTCCTGCAAGGCTTCTGGTTA

ATCTCTTGTTCTGGAAGCAGCTCCAACATC





CACCTTTACCAGCTATGGTTTCAGCTG

GGAAGTAATTATGTATACTGGTACCAGCAG





GGTGCGACAGGCCCCTGGACAAGGGC

CTCCCAGGAACGGCCCCCAAACTCCTCAT





TTGAGTGGATGGGATGGATCAGCGCTT

CTATAGGAATAATCAGCGGCCCTCAGGGG





ACAATGGTAACACAAACTTTGCACAGA

TCCCTGACCGATTCTCTGGCTCCAAGTCT





AGCTCCAGGGCAGAGTCACCATGACC

GGCACCTCAGCCTCCCTGGCCATCAGTGG





ACAGACACATCCACGAGCACAGCCTAC

GCTCCGGTCCGAGGATGAGGCTGATTATT





ATGGAGCTGAGGAGCCTGAGATCTGA

ACTGTGCAGCATGGGATGACAGCCTGAGT





CGACACGGCCGTGTATTACTGTGCGAG

GGTTTTGTGGTATTCGGCGGAGGGACCAA





AGGGGAAGCAGTGGCTGGTACAACCG

GCTGACCGTCCTAG





GTTTTTTTGACTACTGGGGCCAGGGAA







CCCTGGTCACCGTCTCCTCAG








C108
V-C008
CAGGTGCAGCTGCAGGAGTCGGGCCC
251
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
252




AGGACTGGTGAAGCCTTCGGGGACCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGTCCCTCACCTGCGCTGTCTCTGGTG

TCTCCTGCACTGGAACCAGCAGTGACGTT





GCTCCATCAGCAGTACTAACTGGTGGA

GGTGGTTATAACTATGTCTCCTGGTACCAA





GTTGGGTCCGCCAGCCCCCAGGGAAG

CAACACCCAGGCAAAGCCCCCAAACTCAT





GGGCTGGAGTGGATTGGGGAAATCTAT

GATTTATGATGTCAGTAATCGGCCCTCAG





CATACTGGGAGCACCAACTACAACCCG

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





TCCCTCAAGAGTCGAGTCACCATATCA

CTGGCAACACGGCCTCCCTGACCATCTCT





GTAGACAAGTCCAAGAACCAGTTCTCC

GGGCTCCAGGCTGAGGACGAGGCTGATT





CTGAAGCTGAGCTCTGTGACCGCCGC

ATTACTGCAACTCATATACAAGCAGCAGCA





GGACACGGCCGTGTATTACTGTGTGAG

CTCGAGTCTTCGGAACTGGGACCAAGGTC





AGATGGAGGACGACCCGGGGATGCTT

ACCGTCCTAG





TTGATATCTGGGGCCAAGGGACAATGG







TCACCGTCTCTTCAG








C110
V-C010
CAGGTACAGCTGCAGCAGTCTGGAGC
253
GACATCCAGATGACCCAGTCTCCTTCCAC
254




AGAGGTGAAAAAGCCCGGGGAGTCTC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAAGATCTCCTGTAAGGGTTCTGGAT

CCATCACTTGCCGGGCCAGTCAGAGTATT





ACAGCTTTACCAGCTACTGGATCGGCT

AGTTACTGGTTGGCCTGGTATCAGCAGAA





GGGTGCGCCAGATGCCCGGGAAAGGC

ACCAGGGAAAGCCCCTAAGCTCCTGATCT





CTGGAGTGGATGGGGATCATCTATCCT

ATCAGGCGTCTAGTTTAGAAAGTGGGGTC





GGTGACTCTGATACCAGATACAGCCCG

CCGTCAAGGTTCAGCGGCAGTGAGTCTGG





TCCTTCCAAGGCCAGGTCACCATCTCA

GACAGAATTCACTCTCACCATCAGCAGCC





GCCGACAAGTCCATCAGCACCGCCTAC

TGCAGCCTGATGATTTTGCAACTTATTACT





ATGCAGTGGAGCAGCCTGAAGGCCTC

GCCAACAGTATAATAGTTACCCGTACACTT





GGACACCGCCATGTATTACTGTGCGAG

TTGGCCAGGGGACCAAGCTGGAGATCAAAC





ATCGTTCCGGGACGACCCCCGTATAGC







AGTGGCTGGCCCGGCTGATGCTTTTGA







TATCTGGGGCCAAGGGACAATGGTCAC







CGTCTCTTCAG








C112
V-C012
CAGGTGCAGCTGGTGGAGTCTGGGGG
255
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
256




AGGCGTGGTCCAGCCTGGGAGGTCCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

TCTCCTGCACCGGAACCAGCAGTGACGTT





TCACCTTCAGTAGCCATGCTATGCACT

GGTGGTTATAACTATGTCTCCTGGTACCAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CAACACCCAGGCAAAGCCCCCAAACTCAT





CTGGAGTGGGTGGCAGTTATATCATAT

GATTTATGATGTCAGTAATCGGCCCTCAG





GATGGAAGCAATAAATACTACGCAGAC

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





TCCGTGAAGGGCCGATTCACCATCTCC

CTGGCAACACGGCCTCCCTGACCATCTCT





AGAGACAATTCCAAGAACACGCTGTAT

GGGCTCCAGGCTGAGGACGAGGCTGATT





CTGCAAATGAACAGCCTGAGAGCTGAG

ATTACTGCAGCTCATATACAAGCAGCAGCA





GACACGGCTGTGTATTACTGTGCGAGA

CTTGGGTGTTCGGCGGAGGGACCAAGCT





GAGGATTACTATGATAGTAGTGGTTCTT

GACCGTCCTAG





TTGACTACTGGGGCCAGGGAACCCTG







GTCACCGTCTCCTCAG








C113
V-C013
CAGGTGCAGCTGGTGGAGTCTGGGGG
257
GACATCCAGATGACCCAGTCTCCTTCCAC
258




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCCAGTCAGAGTATG





TCACCTTCAGTAACTTTGGCATGCACT

AGTAGCTGGTTGGCCTGGTATCAGCAGAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

ACCAGGGAACGCCCCTAAGCTCCTGATCT





CTGGAGTGGGTGGCAGTTATATGGTAT

ATAAGGCGTCTAGTTTAGAAAGTGGGGTC





GATGGAAGTAATAAATACTATGCAGAC

CCATCAAGGTTCAGCGGCAGTGGATCTGG





TCCGTGAAGGGCCGATTCACCATCTCC

GACAGAATTCACTCTCACCATCAGCAGCC





AGAGACAATTCCAAGAACACGCTGTAT

TGCAGCCTGATGATTTTGCAACTTATTACT





CTGCAAATGAACAGCCTGAGAGCCGA

GCCAACAGCATAATAGTTCCCCGCTCACTT





GGACACGGCTGTGTATTACTGTGCGAG

TCGGCGGAGGGACCAAGGTGGAGATCAA





AGGAGTAAACCCCGACGATATTTTGAC

AC





TGGCGTAGATGCTTTTGATATCTGGGG







CCAAGGGACAATGGTCACCGTCTCTTC







AG








C114
V-C014
CAGGTGCAGCTGGTGGAGTCTGGAGG
259
CAGTCTGTGCTGACTCAGCCGCCCTCAGT
260




AGGGTTGATCCAGCCTGGGGGGTCCC

GTCTGGGGCCCCAGGGCAGAGGGTCACC





TGAAACTCTCCTGTGTAGTCTCTGGGT

ATCTCCTGCACTGGGACCAGTTCCAACAT





TCACCGTCAGTAAGAACTACATCAGTT

CGGGGCAGGTTATGATGTGCACTGGTACC





GGGTCCGCCAGGCTCCAGGCAAGGGG

AGCAACTTCCTGGAAGAGCCCCCAAAGTC





CTGGAATGGGTCTCAGTTATTTTTGCC

CTCATCTCTGGAAACAACATTCGGCCCTCA





GGTGGTAGTACATTCTACGCAGACTCC

GAGGTCCCTGACCGATTCTCTGGCTCCAG





GTTAAGGGCCGATTCGCCATCTCCAGA

GTCTGGCACCTCAGCCTCCCTGGCCATCA





GACAACTCCAACAACACGCTGTTTCTT

CTAGTCTCCAGCCTGAGGATGAGGCTCAA





CAAATGAACAGCCTGAGAGTCGAGGAC

TATTACTGTCAGTCTTATGACAGCAGTCTC





ACGGCCATTTATTACTGTGCGAGAGGG

TATGCGGTGTTCGGCGGAGGGACCAAGCT





GACGGGGAGTTATTCTTTGACCAATGG

GACCGTCCTA





GGCCAGGGAACCCTGGTCACCGTCTC







CTCAG








C115
V-C015
CAGGTGCAGCTGGTGGAGTCTGGGGG
261
GATATTGTGATGACTCAGTCTCCACTCTCC
262




AGGCTTGATAAAGCCAGGGCGGTCCC

CTGTCCGTCACCCCTGGAGAGCCGGCCTC





TGAGACTCTCTTGTACAGCCTCTGGAT

CATCTCCTGCAGGTCTAGTCAGAGCCTCC





TCACCTTTGGTGATTATGCTATGACCTG

TGCATAGTAATGGAAACAACTATTTCGATT





GTTCCGCCAGGCTCCAGGGAAGGGGC

GGTACCTGCAGAAGCCAGGGCAGTCTCCA





TGGAGTGGGTAGGTTTCATTAGAAGTA

CAGCTCCTGATCTATTTGGGTTCTAATCGG





AAGCTTATGGTGGGACAACAGGATACG

GCCTCCGGGGTCCCTGACAGGTTCAGTG





CCGCGTCTGTGAAATACAGATTTACCA

GCAGTGGATCAGGCACAGATTTTACACTG





TCTCAAGAGATGATTCCAAAAGCATCG

AAGATCAGCAGAGTGGAGGCTGAGGATGT





CCTATCTGCAAATGGACAGCCTGAAAA

TGGGGTTTATTACTGCATGCAAGTTCTACA





CCGAGGACACAGCCGTGTATTACTGTA

AATTCCGTACACTTTTGGCCAGGGGACCA





CTAGGTGGGACGGGTGGAGTCAACAT

AGCTGGAGATCAAAC





GACTATTGGGGCCAGGGAACCCTGGT







CACCGTCTCCTCAG








C116
V-C016
CAGGTGCAGCTGGTGGAGTCTGGGGG
263
AATTTTATGCTGACTCAGCCCCACTCTGTG
264




AGGCGTGGTCCAGCCTGGGAGGTCCC

TCGGAGTCTCCGGGGAAGACGGTAACCAT





TGAGACTCTCCTGTGCAGCCTCTGGAT

CTCCTGCACCGGCAGCAGTGGCAGCATTG





TCACCTACAGTACCTATGCTATGCACT

CCAGCAACTATGTGCAGTGGTACCAGCAG





GGGTCCGCCAGGCTCCAGGCAAGGGG

CGCCCGGGCAGTGCCCCCACCACTGTGA





CTGGAGTGGGTGGCATTTATATCATAT

TCTATGAGGATAACCAAAGACCCTCTGGG





GATGGAAGCAATAAATACTACGCAGAC

GTCCCTGATCGGTTCTCTGGCTCCATCGA





TCCGTGAAGGGCCGATTCACCATCTCC

CAGGTCCTCCAACTCTGCCTCCCTCACCA





AGAGACAATTCCAAGAACACGCTGTAT

TCTCTGGACTGAAGACTGAGGACGAGGCT





CTGCAAATGAACAGCCTGAGAGCTGAG

GACTACTACTGTCAGTCTTATGATAGCGGC





GACACGGCTGTGTATTACTGTGCGAGA

AATCATTGGGTGGTATTCGGCGGAGGGAC





GATTTCTACCATAACTGGTTCGACCCC

CAGGCTGACCGTCCTAG





TGGGGCCAGGGAACCCTGGTCACCGT







CTCCTCAG








C117
V-C017
CAGGTGCAGCTGGTGGAGTCTGGGGG
265
CAGTCTGTGCTGACTCAGCCGCCCTCAGT
266




AGGCGTGGTCCAGCCTGGGAGGTCCC

GTCTGCGGCCCCAGGACAGAAGGTCACC





TGAGACTCTCCTGTGCAGCCTCTGGAT

ATCTCCTGCTCTGGAAGCAGCTCCAACATT





TCACCTTCAGTACCTATGCTATGCACT

GGGAATAATTTGGTATCCTGGTACCAGCA





GGGTCCGCCAGGCTCCAGGCGAGGG

GCTCCCAGGAACAGCCCCCAAACTCCTCA





GCTGGAGTGGGTGGCAGTTATTTCATA

TCTATGAAAATAATAAGCGACCCTCAGGGA





TGATGGAAGCAATACATACTACGCAGA

TTCCTGACCGATTCTCTGGCTCCAAGTCTG





CTCCGTGAAGGGCCGATTCACCATCTC

GCACGTCAGCCACCCTGGGCATCACCGG





CAGAGACAATTCCAAGAACACGCTGTA

ACTCCAGACTGGGGACGAGGCCGATTATT





TCTGCAAATGAACAGCCTGAGAGCTGA

ACTGCGGAGCATGGGATAGCAGCCTGAGT





AGACACGGCTGTGTATTACTGTGCGAG

GCTGGCGGGGTTTATGTCTTCGGAACTGG





AGATCCCATATGGTTCGGGGAGTTATT

GACCAAGGTCACCGTCCTAG





ATCTCCTCCTTTTGTTCACTTTGACTAC







TGGGGCCAGGGAACCCTGGTCACCGT







CTCCTCAG








C118
V-C018
CAGGTGCAGCTGGTGGAGTCTGGGGG
267
CAGCCTGTGCTGACTCAATCGCCCTCTGC
268




AGGCGTGGTCCAGCCTGGGAGGTCCC

CTCTGCCTCCCTGGGAGCCTCGGTCAAGC





TGAGACTCTCCTGTGCAGCCTCTGGAT

TCACCTGCACTCTGAGCAGTGGGCACAGC





TCACCTTCAGTAACTATGCTATGCACTG

AGCTACGCCATCGCATGGCATCAGCAGCA





GGTCCGCCAGGCTCCAGGCAAGGGGC

GCCAGAGAAGGGCCCTCGGTACTTGATGA





TGGAGTGGGTGGCAGTTATATCATATG

AGCTTAACACTGATGGCAGCCACAGCAAG





ATGGAAGCAATAAATACTACGCAGACT

GGGGACGGGATCCCTGATCGCTTCTCAGG





CCGTGAAGGGCCGATTCACCATCTCCA

CTCCAGCTCTGGGGCTGAGCGCTACCTCA





GAGACAATTCCAAGAACACGCTGTATC

CCATCTCCAGCCTCCAGTCTGAGGATGAG





TGCAAATGAACAGCCTGAGAGCTGAGG

GCTGACTATTACTGTCAGACCTGGGGCAC





ACACGGCTATTTATTACTGTGCGAGTG

TGGCATTCTCGTATTCGGCGGAGGGACCA





GATATACTGGCTACGATTATTTTGTGCG

AGCTGACCGTCCTAG





GGGGGACTACTACGGTCTGGACGTCT







GGGGCCAAGGGACCACGGTCACCGTC







TCCTCA








C119
V-C019
CAGGTCCAGCTGGTACAGTCTGGGGC
269
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
270




TGAGGTGAAGAAGCCTGGGGCCTCAG

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAAGGTTTCCTGCAAGGCATCTGGAT

TCTCCTGCACTGGAACCAGCAGTGACGTT





ACACCTTCACCAGCTACTATATGCACT

GGTGGTTATAAGTATGTCTCCTGGTACCAA





GGGTGCGACAGGCCCCTGGACAAGGG

CGGCACCCAGGCAAAGCCCCCAAACTCAT





CTTGAGTGGATGGGAATAATCAACCCT

GATATATGATGTCAGTAATCGGCCCTCAG





AGTGGTGGTAGCACAAGCTACGCACA

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





GAAGTTACAGGGCAGAGTCACCATGAC

CTGGCAACACGGCCTCCCTGACCATCTCT





CAGGGACACGTCCACGAGCACAGTCT

GGGCTCCAGGCTGAGGACGAGGCTGATT





ACATGGAGCTGAGCAGCCTGAGATCTG

ATTACTGCAGCTCATACACAAGCAGCAGC





AGGACACGGCCGTGTATTACTGTGCGA

ACTTCTGTGGTGTTCGGCGGAGGGACCCA





GAGCCAATCATGAAACAACTATGGACA

GCTGACCGTCCTAG





CTTACTACTACTACTACTACATGGACGT







CTGGGGCAAAGGGACCACGGTCACCG







TCTCCTCA








C120
V-C020
GAGGTGCAGCTGGTGGAGTCTGGAGG
271
GCCATCCGGATGACCCAGTCTCCATCCTC
272




AGGCTTGATCCAGCCTGGGGGGTCCC

CCTGTCTGCATCTGTAGGAGACACAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

CCATCACTTGCCAGGCGAGTCAGGACATT





TCACCGTCAGTAGCAACTACATGACCT

AGCAAGTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTCTCACTTATTTATCCC

CGATGCATCCAATTTGGAAACAGGGGTCC





GGTGGTAGCACATACTACGCAGACTCC

CATCAAGGTTCAGTGGAAGTGGATCTGGG





GTGAAGGGCCGATTCACCATCTCCAGA

ACAGATTTTACTTTCACCATCAGCAGCCTG





GACAATTCCAAGAACACGCTGTATCTT

CAGCCTGAAGATATTGCAACATATTACTGT





CAAATGAACAGCCTGAGAGCCGAGGA

CAACAGTATGATAATCTCCCTCAGACTTTC





CACGGCCGTCTATTACTGTGCGAGAGA

GGCGGAGGGACCAAGGTGGAGATCAAAC





GGGTATGGGTATGGCAGCAGCTGGTA







CGTGGGGCCAGGGAACCCTGGTCACC







GTCTCCTCAG








C121
V-C021
CAGGTGCAGCTGGTGCAGTCTGGGGC
273
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
274




TGAGGTGAAGAAGCCTGGGGCCTCAG

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAAGGTCTCCTGCAAGGCTTCTGGAT

TCTCCTGCACTGGAACCAGCAGTGATGTT





ACACCTTCACCGGCTACTATATGCACT

GGGAGTTATAACCTTGTCTCCTGGTACCAA





GGGTGCGACAGGCCCCTGGACAAGGG

CAGCACCCAGGCAAAGCCCCCAAACTCAT





CTTGAGTGGATGGGATGGATCAGCCCT

GATTTATGAGGGCAGTAAGCGGCCCTCAG





GTCAGTGGTGGCACAAACTATGCACAG

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





AAGTTTCAGGGCAGGGTCACCATGACC

CTGGCAACACGGCCTCCCTGACAATCTCT





AGGGACACGTCCATCAGCACAGCCTAC

GGACTCCAGGCTGAGGACGAGGCTGATTA





ATGGAGCTGAGCAGGCTGAGATCTGA

TTACTGCTGCTCATATGCAGGTAGTAGCAC





CGACACGGCCGTGTATTACTGTGCGAG

TTTGGTATTCGGCGGAGGGACCAAGCTGA





AGCCCCACTGTTCCCCACAGGGGTGC

CCGTCCTAG





TAGCTGGGGACTACTACTACTACGGTA







TGGACGTCTGGGGCCAAGGGACCACG







GTCACCGTCTCCTCA








C122
V-C022
GAGGTGCAGCTGGTGGAGTCTGGAGG
275
GACATCCAGTTGACCCAGTCTCCATCCTTC
276




AGGCTTGATCCAGCCTGGGGGGTCCC

CTGTCTGCATCTGTAGGAGACAGAGTCAC





TGAGACTCTCCTGTGCAGCCTCTGGGC

CATCACTTGCCGGGCCAGTCAGGGCATTA





TCACCGTCAGTAGCAACTACATGAGCT

GCAGTTATTTAGCCTGGTATCAGCAAAAAC





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAGGGAAAGCCCCTAAGCTCCTGATCTAT





CTGGAGTGGGTCTCAGTTCTTTATAGC

GCTGCATCCACTTTGCAAAGTGGGGTCCC





GGTGGTAGCTCATTCTACGCAGACTCC

ATCAAGGTTCAGCGGCAGTGGATCTGGGA





GTGAAGGGCCGATTCACCATCTCCAGA

CAGAATTCACTCTCACAATCAGCAGCCTG





GACAATTCCAAGAACACGCTGTATCTT

CAGCCTGAAGATTTTGCAACTTATTACTGT





CAAATGAACAGCCTGAGAGCCGAAGAC

CAACAGCTTAATAGTGACTCGTACACTTTT





ACGGCCGTGTATTACTGTGCGAGAGAA

GGCCAGGGGACCAAGCTGGAGATCAAAC





AGTGGGGATACAACTATGGCCTTTGAC







TACTGGGGCCAGGGAACCCTGGTCAC







CGTCTCCTCAG








C123
V-C023
GAGGTGCAGCTGGTGGAGTCTGGAGG
277
GACATCCAGTTGACCCAGTCTCCATCCTTC
278




AGGCTTGATCCAGCCTGGGGGGTCCC

CTGTCTGCATCTGTAGGAGACAGAGTCAC





TGAGACTCTCCTGTGCAGCCTCTGGGG

CATCACTTGCCGGGCCAGTCAGGGCATTA





TCACCGTCAGTAGGAACTACATGAGCT

GCAGTTATTTAGCCTGGTATCAGCAAAAAC





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAGGGAAAGCCCCTAAGCTCCTGATCTAT





CTGGAGTGGGTCTCAGTTATTTATAGC

GCTGCATCCACTTTGCAAAGTGGGGTCCC





GGTGGTAGCACATACTACGCAGACTCC

ATCAAGGTTCAGCGGCAGTGGATCTGGGA





GTGAAGGGCCGATTCACCATCTCCAGA

CAGAATTCACTCTCACAATCAGCAGCCTG





GACAATTCCAAGAACACGCTGTATCTT

CAGCCTGAAGATTTTGCAACTTATTACTGT





CAAATGAACAGCCTGAGAGCCGAGGA

CAACAGCTTAATAGTTACCCTCCAGCCTTC





CACGGCCGTGTATTACTGTGCGAGAGA

GGCCAAGGGACACGACTGGAGATTAAAC





TCTATCTGCTGCTTTTGATATCTGGGG







CCAAGGGACAATGGTCACCGTCTCTTC







AG








C124
V-C024
GAGGTGCAGCTGGTGGAGTCTGGGGG
279
GAAATTGTGTTGACACAGTCTCCAGCCAC
280




AGGCTTGGTACAGCCTGGGGGGTCCC

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCCTCTCCTGCAGGGCCAGTCAGAGTTTT





TCACCTTCAGTGGCTATAGCATGAACT

AGCAGCTACTTAGCCTGGTACCAACAGAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

ACCTGGCCAGGCTCCCAGGCTCCTCATCT





CCGGAGTGGGTTTCATACATTAGTAGG

ATGATGCATCCAACAGGGCCACTGGCATC





AGTAGTAGTACCATATACTACGCAGAC

CCAGCCAGGTTCAGTGGCAGTGGGTCTG





TCTGTGAAGGGCCGATTCACCATCTCC

GGACAGACTTCACTCTCACCATCAGCAGC





AGAGACAATGCCAAGAACTCACTGTAT

CTAGAGCCTGAAGATTTTGCAGTTTATTAC





CTGCAAATGAACAGCCTGAGAGACGAG

TGTCAGCAGCGTAACAACTGGCCTCCCGA





GACACGGCTGTGTATTACTGTGCGAGA

GTGGACGTTCGGCCAAGGGACCAAGGTG





GAAGGGGCTAGAGTGGGAGCTACATA

GAAATCAAAC





TGACACGTACTACTTTGACTACTGGGG







CCAGGGAACCCTGGTCACCGTCTCCTC







AG








C125
V-C025
CAGGTGCAGCTGGTGCAGTCTGGGCC
281
GAAATTGTGTTGACGCAGTCTCCAGGCAC
282




TGAGGTGAAGAAGCCTGGGACCTCAG

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAAGGTCTCCTGCAAGGCTTCTGGAT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCACCTTTACTAGCTCTGCTGTGCAGT

AGCAGCAGCTACTTAGCCTGGTACCAGCA





GGGTGCGACAGGCTCGTGGACAACGC

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





CTTGAGTGGATAGGATGGATCGTCGTT

TCTATGGTGCATCCAGCAGGGCCACTGGC





GGCAGTGGTAACACAAACTACGCACAG

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





AAGTTCCAGGAAAGAGTCACCATTACC

TGGGACAGACTTCACTCTCACCATCAGCA





AGGGACATGTCCACAAGCACAGCCTAC

GACTGGAGCCTGAAGATTTTGCAGTGTATT





ATGGAGCTGAGCAGCCTGAGATCCGA

ACTGTCAGCAGTATGGTAGCTCACCGTGG





GGACACGGCCGTGTATTACTGTGCGG

ACGTTCGGCCAAGGGACCAAGGTGGAAAT





CACCTTATTGTAGTGGTGGTAGCTGCT

CAAAC





CTGATGCTTTTGATATCTGGGGCCAAG







GGACAATGGTCACCGTCTCTTCAG








C126
V-C026
CAGGTGCAGCTGCAGGAGTCGGGCCC
283
AATTTTATGCTGACTCAGCCCCACTCTGTG
284




AGGACTGGTGAAGCCTTCGGAGACCC

TCGGAGTCTCCGGGGAAGACGGTAACCAT





TGTCCCTCTCCTGCGCTGTCTCTGGTG

CTCCTGCACCGGCAGCAGTGGCAGCATTG





GCTCCATCGGTAGTTACTTCTGGAGCT

CCAGCAACTATGTGCAGTGGTACCAGCAG





GGATCCGGCAGCCCCCAGGGAAGGGA

CGCCCGGGCAGTGCCCCCACCACTGTGA





CTGGAGTGGATTGGATATCTCCATTAC

TCAATGAAGATAACCAAAGACCCTCTGGG





AGTGGGAGCACCAACTACAACCCCTCC

GTCCCTGATCGGTTCTCTGGCTCCATCGA





CTGAAGAGTCGAGTCACCATATCAGTA

CAGCTCCTCCAACTCTGCCTCCCTCACCA





GACACGTCCAAGAATCAGTTCTCCCTG

TCTCTGGACTGAAGACTGAGGACGAGGCT





AAGCTGAGCTCTGTGACCGCTGCGGA

GACTACTACTGTCAGTCTTATGATAGCAGC





CACGGCCGTGTATTACTGTGCGAGATT

AATTTGGTATTCGGCGGAGGGACCAAGCT





GCAGTGGCTACGCGGAGCTTTTGATAT

GACCGTCCTAG





CTGGGGCCAAGGGACAATGGTCACCG







TCTCTTCAG








C127
V-C027
CAGGTGCAGCTGGTGCAGTCTGGGGC
285
CAGTCTGTGCTGACTCAGCCACCCTCAGC
286




TGAGGTGAAGAAGCCTGGGGCCTCAG

GTCTGGGACCCCCGGGCAGAGGGTCACC





TGAAGGTCTCCTGCAAGGCTTCTGGAT

ATCTCTTGTTCTGGAAGCAGCTCCAACATC





ACACCTTCACCGGCTACTATATGCACT

GGAAGTAATACTGTAAACTGGTACCAGCA





GGGTGCGACAGGCCCCTGGACAAGGG

GCTCCCAGGAACGGCCCCCAAACTCCTCA





CTTGAGTGGATGGGATGGATCAACCCT

TCTATAGTAATAATCAGCGGCCCTCAGGG





AACAGTGGTGGCACAAACTATGCACAG

GTCCCTGACCGATTCTCTGGCTCCAAGTC





AAGTTTCAGGGCAGGGTCACCATGACC

TGGCACCTCAGCCTCCCTGGCCATCAGTG





AGGGACACGTCCATCAGCACAGCCTAC

GGCTCCAGTCTGAGGATGAGGCTGATTAT





ATGGAGCTGAGCAGGCTGAGATCTGA

TACTGTGCAGCATGGGATGACAGCCTGAA





CGACACGGCCGTGTATTACTGTGCGAC

TGGCGTGGTATTCGGCGGAGGGACCAAG





GGCGCACCCCCGGAGGATCCAAGGGG

CTGACCGTCCTAG





TATTTTTTTTGGGGCCGGGCGTCTGGG







GCCAAGGGACCACGGTCACCGTCTCC







TCA








C128
V-C028
GAGGTGCAGCTGTTGGAGTCTGGGGG
287
GAAATTGTGTTGACGCAGTCTCCAGGCAC
288




AGGCTTGGTACAGCCTGGGGGGTCCC

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCACCTTTAGCACCTATGCCATGAGTT

AACAGCAGGCAGTTAGCCTGGTACCAGCA





GGGTCCGCCAGGCTCCAGGGAAGGGG

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





CTGGAGTGGGTCTCAACTATTACTGGT

TCTATGGTGCGTCCAGCAGGGCCACTGGC





AGTGGTCGTGACACATACTACGCAGAC

ATCCCAGAGAGGTTCAGTGGCAGTGGATC





TCCGTGAAGGGCCGGTTCACCATCTCC

TGGGACAGACTTCACTCTCACCATCAGCA





AGAGACAATTCCAAGAACACGCTGTTT

GACTGGAGTCTGAAGATTTTGCAGTGTATC





CTGCAACTGAACAGCCTGAGAGCCGA

ACTGTCAGCAATATGGTAGCTCAAGGGCG





GGACGCGGCCGTGTATTCCTGTGCGA

CTCACTTTCGGCGGAGGGACCAAGGTGGA





ACCACCCTCTGGCATCAGGCGACGACT

GATCAAAC





ACTACCACTACTACATGGACGTCTGGG







GCAAAGGGACCACGGTCACCGTCTCC







TCA








C129
V-C029
CAGGTGCAGCTGGTGGAGTCTGGGGG
289
GACATCCAGATGACCCAGTCTCCATCCTC
290




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCAGGCGAGTCAGGACATT





TCACCTTCAGTAGCTATGGCATGAACT

AGCAACTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCAGTTATATCATAT

CGATGCATCCAATTTGGAAACAGGGGTCC





GATGGAAGTAATACATACTATACAGACT

CATCAAGGTTCAGTGGAAGTGAATCTGGG





CCGTGAAGGGCCGATTCACCATCTCCA

ACAGATTTTACTTTCACCATCAGCAGCCTG





GAGACAATTCCAAGAACACGCTGTATC

CAGCCTGAAGATATTGCAACATATTACTGT





TGCAAATGAACAGCCTGAGAGTTGACG

CAACAGTATGATAATCTCCCGATCACCTTC





ACACGGCTACATATTACTGTGCGAAAG

GGCCAAGGGACACGACTGGAGATTAAAC





GGCCCCGGTTTGGCTGGAGCTATAGA







GGGGGGTCTGGTTTTGATATCTGGGG







CCAAGGGACAATGGTCACCGTCTCTTC







AG








C130
V-C030
CAGGTGCAGCTGGTGCAGTCTGGGGC
291
TCCTATGAGCTGACACAGCCACCCTCAGT
292




TGAGGTGAAGAAGCCTGGGGCCTCAG

GTCAGTGGCCCCAGGAAAGACGGCCAGG





TGAAGGTTTCCTGCAAGGCATCTGGAT

ATTACCTGTGGGGGAAACAACATTGGAAG





ACACCTTCACCAACTACTATATGCACTG

TAAAAGTGTGCACTGGTACCAGCAGAAGC





GGTGCGACAGGCCCCTGGACAAGGGC

CAGGCCAGGCCCCTGTGCTGGTCATCTAT





TTGAGTGGATGGGAATAATCAACCCTA

TATGATAGCGACCGGCCCTCAGGGATCCC





GTGGTGGTAGCACAGGCTACGCACAG

TGAGCGATTCTCTGGCTCCAACTCTGGGA





AAGTTCCAGGGCAGAGTCACCATGACC

ACACGGCCACCCTGACCATCAGCAGGGTC





AGGGACACGTCCACGAGCACAGTCTA

GAAGCCGGGGATGAGGCCGACTATTACTG





CATGGAGCTGAGCAGCCTGAGATCTGA

TCAGGTGTGGGATAGTAGTAGTGATCATC





GGACACGGCCGTGTATTACTGTGCGA

CGGGGGTGGTATTCGGCGGAGGGACCAA





GATCCCGACCGACTCCTGACTGGTACT

GCTGACCGTCCTAG





TCGATCTCTGGGGCCGTGGCACCCTG







GTCACCGTCTCCTCAG








C131
V-C031
CAGGTGCAGCTGGTGCAGTCTGGGTC
293
GAAATAGTGATGACGCAGTCTCCAGCCAC
294




TGAGGTGAAGAAGCCTGGGTCCTCGG

CCTGTCTGTGTCTCCAGGGGAAAGAGCCA





TGAAGGTCTCCTGCAAGGCTTCTGGAG

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





GCACCTTCAGCAGCTATGCTTTCAGCT

AGCAGCAACTTAGCCTGGTACCAGCAGAA





GGGTGCGACAGGCCCCTGGACAAGGG

ACCTGGCCAGGCTCCCAGGCTCCTCATCT





CTTGAGTGGATGGGAAGGATCATCCCT

ATGGTGCATCCACCAGGGCCACTGGTATC





ATCCTTGCTTTAGCAAACTACGCACAG

CCAGCCAGGTTCAGTGGCAGTGGGTCTG





AAGTTCCAGGGCAGAGTCACGATTACC

GGACAGAGTTCACTCTCACCATCAGCAGC





GCGGACAAATCCACGAGCACAGCCTA

CTGCAGTCTGAAGATTTTGCAGTTTATTAC





CATGGAGCTGAGCAGCCTGAGATCTGA

TGTCAGCAGTATAATAACTGGCCGATCAC





GGACACGGCCGTGTATTACTGTGCGA

CTTCGGCCAAGGGACACGACTGGAGATTA





GAGTCAATCAAGCAGTAACTACTCCCT

AAC





TCTCCATGGACGTCTGGGGCCAAGGG







ACCACGGTCACCGTCTCCTCA








C132
V-C032
CAGGTGCAGCTGCAGGAGTCGGGCCC
295
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
296




AGGACTGGTGAAGCCTTCGGGGACCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGTCCCTCACCTGCGCTGTCTCTGGTG

TCTCCTGCACTGGAACCAGCAGTGACGTT





GCTCCATCAGCAGTAATAACTGGTGGA

GGTGGTTATAACTATGTCTCCTGGTACCAA





GTTGTGTCCGCCAGCCCCCAGGGAAG

CAACACCCAGGCAAAGCCCCCAAACTCAT





GGGCTGGAGTGGATTGGGGAAATCTAT

GATTTATGATGTCAGTAATCGGCCCTCAG





CATAGTGGGAGCACCAACTACAACCCG

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





TCCCTCAAGAGTCGAGTCACCATATCA

CTGGCAACACGGCCTCCCTGACCATCTCT





GTAGACAAGTCCAAGAACCAGTTCTCC

GGGCTCCAGGCTGAGGACGAGGCTGATT





CTGAAGCTGAGCTCTGTGACCGCCGC

ATTACTGCAGCTCATATACAAGCAGCAGCA





GGACACGGCCGTGTATTACTGTGCGA

CTCTTTTGTTCGGCGGAGGGACCAAGCTG





GAGGGGGGGATACAGCTATGGGCCCC

ACCGTCCTAG





GAATACTTTGACTACTGGGGCCAGGGA







ACCCTGGTCACCGTCTCCTCAG








C133
V-C033
CAGGTGCAGCTGGTGGAGTCTGGGGG
297
GACATCCAGATGACCCAGTCTCCATCCTC
298




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTCAGTAGCTATGCTATGCACT

AGCAGCTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCAGTTATATTATAT

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





GATGGAAGCAATAAATACTACGCAGAC

CATCAAGGTTCAGTGGCAGTGGATCTGGG





TCCGTGAAGGGCCGATTCACCATCTCC

ACAGATTTCACTCTCACCATCAGCAGTCTG





AGAGACAATTCCAAGAACACGCTGTAT

CAACCTGAAGATTTTGCAACTTACTACTGT





CTGCAAATGAACAGCCTGAGAGCTGAG

CAACAGAGTTACAGTACCCCTCCGTGGAC





GACACGGCTGTGTATTACTGTGCGAGA

GTTCGGCCAAGGGACCAAGGTGGAAATCA





GATTCGGACGTAGATACATCTATGGTT

AAC





ACTTGGTTCGACTACTGGGGCCAGGG







AACCCTGGTCACCGTCTCCTCAG








C134
V-C034
GAGGTGCAGCTGTTGGAGTCTGGGGG
299
TCCTATGAGCTGACACAGCCACCCTCAGT
300




AGGCTTGGTACAGCCTGGGGGGTCCC

GTCAGTGGCCCCAGGAAAGACGGCCAGG





TGAGACTCTCCTGTGCAGCCTCTGGAT

ATTACCTGTGGGGGAAACAACATTGGAAG





TCACCTTTAGCAACTATGCCATGAGCT

TAAAAGTGTGCACTGGTACCAGCAGAAGC





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAGGCCAGGCCCCTGTGCTGGTCATCTAT





CTGGAGTGGGTCTCAGCTATTAGTGGT

TATGATAGCGACCGGCCCTCAGGGATCCC





AGTGATGGTAGCACATACTACGCAGGC

TGAGCGATTCTCTGGCTCCAACTCTGGGA





TCCGTGAAGGGCCGGTTCACCATCTCC

ACACGGCCACCCTGACCATCAGCAGGGTC





AGAGACAATTCCAAGAACACACTGTAT

GAAGCCGGGGATGAGGCCGAATATCACTG





CTGCAAATGAACAGCCTGAGAGCCGA

TCAGGTGTGGGATAGTAGTAGTGATCGTC





GGACACGGCCGTATATTACTGTGCGAA

CGGGGGTGGTTTTCGGCGGAGGGACCAA





AGATCCCCTTATAACTGGACCTACCTAT

GCTGACCGTCCTAG





CAATACTTTCACTACTGGGGCCAGGGA







ACCCTGGTCACCGTCTCCTCAG








C135
V-C035
CAGGTGCAGCTGGTGGAGTCTGGGGG
301
GACATCCAGATGACCCAGTCTCCTTCCAC
302




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCCAGTCAGAGTATT





TCACCTTCAGTAGCTATGCTATGCACT

AGTAACTGGTTGGCCTGGTTTCAGCAGAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

ACCAGGGAAAGCCCCTAAGCTCCTGATCT





CTGGAGTGGGTGGCAGTTATACCATTT

ATGAGGCGTCTAGTTTAGAAAGTGGGGTC





GATGGAAGAAATAAGTACTACGCAGAC

CCATCAAGGTTCAGCGGCAGTGGATCTGG





TCCGTGACGGGCCGATTCACCATCTCC

GACAGAATTCACTCTCACCATCAGCAGCC





AGAGACAATTCCAAGAACACACTGTAT

TGCAGCCTGATGATTTTGCAACTTATTACT





CTGCAAATGAACAGCCTGAGAGCTGAG

GCCAACAGTATAATAGTTATCCGTGGACGT





GACACGGCTGTGTATTACTGTGCGAGT

TCGGCCAAGGGACCAAGGTGGAGATCAAAC





AGTAGTGGTTATCTTTTCCACTCTGACT







ACTGGGGCCAGGGAACCCTGGTCACC







GTCTCCTCAG








C138
V-C038
GAGGTGCAGCTGGTGGAGTCTGGGGG
303
AATTTTATGCTGACTCAGCCCCACTCTGTG
304




AGGCTTGGTCCAGCCTGGGGGGTCCC

TCGGAGTCTCCGGGGAAGACGGTAACCAT





TGAGACTCTCCTGTGCAGCCTCTGGAT

CTCCTGCACCGGCAGCAGTGGCAGCATTG





TCACCTTTAGTACCTATTGGATGAGCT

CCAGCAACTATGTGCAGTGGTACCAGCAG





GGGTCCGCCAGCCTCCAGGGAAGGGG

CGCCCGGGCAGTGCCCCCACCACTGTGA





CTGGAGTGGGTGGCCAACATAAAGCAA

TCTATGAGGATAACCAAAGACCCTCTGGG





GATGGAAGTGAGAAATACTATGTGGAT

GTCCCTGATCGGTTCTCTGGCTCCATCGA





TCTGTGAAGGGCCGATTCACCATCTCC

CAGCTCCTCCAACTCTGCCTCCCTCACCA





AGAGACAACGCCAAGAACTCACTGTAT

TCTCTGGACTGAAGACTGAGGACGAGGCT





CTGCAAATGAACAGCCTGAGAGCCGAC

GACTACTACTGTCAGTCTTATGATAGCAGC





GACACGGCCGTGTATTACTGTGCCGG

AATTGGGTGTTCGGCGGAGGGACCAAGCT





GGGGACATGGCTACGATCCTCTTTTGA

GACCGTCCTA





CTACTGGGGCCAGGGAACCCTGGTCA







CCGTCTCCTCAG








C139
V-C039
GAGGTGCAGCTGGTGGAGTCTGGGGG
305
GACATCCAGATGACCCAGTCTCCATCCTC
306




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCAGGCGAGTCAGGACATT





TCACCTTCAGTAGCTATGCCATGCACT

AGCAACTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCAGTTATATCATAT

CGATGCATCCAATTTGGAAACAGGGGTCC





GATGGAAGTAATAAATACTCTGCAGAC

CATCAAGGTTCAGTGGAAGTGGATCTGGG





TCCGTGAAGGGCCGATTCACCATCTCC

ACAGATTTTACTTTCACCATCAGCAGCCTG





AGAGACAATTCCAAGAACACGCTGTAT

CAGCCTGAAGATATTGCAACATATTACTGT





CTGCAAATGAACAGCCTGAGAGCTGAG

CAACAGTATGATAATCTCCCGCTCACTTTC





GACACGGCTGTGTATTACTGTGCGAAA

GGCGGAGGGACCAAGGTGGAAATCAAAC





GGGGGGGCCTACAGCTACTACTACTAC







ATGGACGTCTGGGGCAAAGGGACCAC







GGTCACCGTCTCCTCA








C140
V-C040
GAGGTGCAGCTGGTGGAGTCTGGGGG
307
GACATCCAGTTGACCCAGTCTCCATCCTTC
308




AGGCTTGGTCCAGCCTGGGGGGTCCC

CTGTCTGCATCTGTAGGAGACAGAGTCAC





TGAGACTCTCCTGTGCAGCCTCTGGAG

CATCACTTGCCGGGCCAGTCAGGGCATTA





TCACCGTCAGTAGCAACTACATGAGCT

GCAGTTATTTAGCCTGGTATCAGCAAAAAC





GGGTCCGCCAGCCTCCAGGGAAGGGG

CAGGGAAAGCCCCTAAGCTCCTGATCTAT





CTGGAGTGGGTCTCACTTATTTATAGC

GCTGCATCCACTTTGCAAAGTGGGGTCCC





GGTGGTAGCACATTCTACGCAGACTCC

ATCAAGGTTCAGCGGCAGTGGATCTGGGA





GTGAAGGGCAGATTCACCATCTCCAGA

CAGAATTCACTCTCACAATCAGCAGCCTG





GACAATTCCGAGAACACGCTGTATCTT

CAGCCTGAAGATTTTGCAACTTATTACTGT





CAAATGAACACCCTGAGAGCCGAGGA

CAACAGCTTAATAGTTACTCTTACACTTTT





CACGGCTGTGTATTACTGTGCGAGAGA

GGCCAGGGGACCAAGCTGGAGATCAAAC





TCTGTATTACTACGGTATGGACGTCTG







GGGCCAAGGGACCACGGTCACCGTCT







CCTCA








C141
V-C041
GAGGTGCAGCTGGTGGAGTCTGGGGG
309
AATTTTATGCTGACTCAGCCCCACTCTGTG
310




AGGCGTGGTCCAGCCTGGGAGGTCCC

TCGGAGTCTCCGGGGAAGACGGTAACCAT





TGAGACTCTCCTGTGCAGCCTCTGGAT

CTCCTGCACCGGCAGCAGTGGCAGCATTG





TCACCTTCAGTAGCTATGCTATGTTCTG

CCAGCAACTATGTGCAGTGGTACCAGCAG





GGTCCGCCAGGCTCCGGGCAAGGGGC

CGCCCGGGCAGTGCCCCCACCACTGTGA





TGGAGTGGGTGGCAGTTATATCATATG

TCTATGAGGATAACCAAAGACCCTCTGGG





ATGGAAGCAATAAATACTACGCAGACT

GTCCCTGATCGGTTCTCTGGCTCCATCGA





CCGTGAAGGGCCGATTCACCATCTCCA

CAGCTCCTCCAACTCTGCCTCCCTCACCA





GAGACAATTCCAAGAACACGCTGTATC

TCTCTGGACTGAAGACTGAGGACGAGGCT





TGCAAATGAACAGCCTGAGAGCTGAGG

GACTACTACTGTCAGTCTTATGATAGCAGC





ACACGGCTGTGTATTACTGTGCGAGGG

AATTGGGTGTTCGGCGGAGGGACCAAGCT





CGGATTTAGGATATTGTACTAATGGTGT

GACCGTCCTAG





ATGCTATGTTGACTACTGGGGCCAGGG







AACCCTGGTCACCGTCTCCTCA








C143
V-C043
GAGGTGCAGCTGGTGGAGTCTGGGGG
311
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
312




AGGCTTGGTCCAGCCGGGGGGGTCCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

TCTCCTGCACTGGAACCAGCAATGATGTT





TCAGTGTCAGCACCAAGTACATGACAT

GGGAGTTATACCCTTGTCTCCTGGTACCA





GGGTCCGTCAGGCTCCAGGGAAGGGG

ACAGTACCCAGGCAAAGCCCCCAAACTCT





CTGGAGTGGGTCTCAGTTCTTTACAGC

TAATTTTTGAGGGCACTAAGCGGTCCTCA





GGTGGTAGTGATTACTACGCAGACTCC

GGGATTTCTAATCGCTTCTCTGGTTCCAAG





GTGAAGGGCAGATTCACCATCTCCAGA

TCTGGCAACACGGCCTCCCTGACAATCTC





GACAATTCCAAGAACGCTTTATATCTTC

TGGGCTCCAGGGTGAAGACGAGGCTGATT





AAATGAACAGCTTGAGAGTCGAGGACA

ATTATTGCTGCTCATATGCAGGTGCTAGCA





CGGGTGTTTATTACTGTGCCAGAGACT

CTTTCGTGTTCGGCGGAGGGACCAAGCTG





CGTCGGAAGTCCGTGACCACCCCGGG

ACCGTCCTAG





CACCCAGGGCGCTCGGTGGGGGCTTT







TGATATCTGGGGCCAAGGGACAATGGT







CACCGTCTCTTCAG








C144
V-C044
GAGGTGCAGCTGGTGGAGTCTGGAGG
313
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
314




AGGCTTGATCCAGCCTGGGGGGTCCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

TCTCCTGCACTGGAACCAGCAGTGACGTT





TCACCGTCAGTAACAACTACATGAGCT

GGTGGTTATAACTATGTCTCCTGGTACCAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAACACCCAGGCAAAGCCCCCAAACTCAT





CTGGAGTGGGTCTCAGTTATTTATAGC

GATTTATGATGTCAGTAATCGGCCCTCAG





GGTGGTAGCACATACTACGCAGACTCC

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





GTGAAGGGCCGATTCACCATCTCCAGA

CTGGCAACACGGCCTCCCTGACCATCTCT





GACAAATCCAAGAACACGCTGTATCTT

GGGCTCCAGGCTGAGGACGAGGCTGATT





CAAATGAACAGGCTGAGAGCCGAGGA

ATTACTGCAGCTCATATACAAGCAGCAGCA





CACGGCCGTGTATTATTGTGCGAGAGA

CTCGAGTCTTCGGAACTGGGACCAAGGTC





AGGGGAGGTAGAAGGGTATAACGATTT

ACCGTCCTAG





TTGGAGTGGTTATTCTAGAGACCGTTA







CTACTTTGACTACTGGGGCCAGGGAAC







CCTGGTCACCGTCTCCTCAG








C145
V-C045
GAGGTGCAGCTGGTGGAGTCTGGAGG
315
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
316




AGGCTTGATCCAGCCTGGGGGGTCCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

TCTCCTGCACTGGAACCAGCAGTGACGTT





TCAGCGTCAGTAGCAACTACATGAGCT

GGTGGTTATAACTATGTCTCCTGGTACCAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAACACCCAGGCAAAGCCCCCAAACTCAT





CTGGAGTGGGTCTCAGTTATTTATAGC

GATTTATGATGTCAGTAATCGGCCCTCAG





GGTGGTAGTACATACTACGCAGACTCC

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





GTGAAGGGCCGATTCACCATCTCCAGA

CTGGCAACACGGCCTCCCTGACCATCTCT





GACAATTCCAAGAACACGCTGTATCTT

GGGCTCCAGGCTGAGGACGAGGCTGATT





CAAATGAACAGCCTGAGAGCCGAGGA

ATTACTGCAGCTCATATACAAGCAGCACCA





CACGGCCGTGTATTACTGTGCGAGAGA

CTCGAGTCTTCGGAACTGGGACCAGGGTC





AGGGGAGGTAGAAGGGTATTACGATTT

ACCGTCCTAG





TTGGAGTGGTTATTCTAGAGACCGTTA







CTACTTTGACTACTGGGGCCAGGGAAC







CCTGGTCACCGTCTCCTCAG





C146
V-C046
GAGGTGCAGCTGGTGGAGTCTGGGGG
317
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
318




AGGCCTGGTCAAGCCTGGGGGGTCCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAGACTCTCCTGTGCAGCCTCTGGAC

TCTCCTGCACTGGAACCAGCAGTGACATT





TCACCTTCACTGCCTATAGAATGAATTG

GGTGTTTATAACTATATCTCCTGGAGCCAA





GGTCCGCCAGGCTCCAGGGAAGGGGC

CAACACCCAGGCAAAGCCCCCAAAGTCAT





TGGAGTGGCTCTCATCAATTAGTAATA

GATTTATGATGTCACTAATCGGCCCTCAGG





CAAATGGCGACATATACTATGCAGACT

GGTTTCTAATCGCTTCTCTGGCTCCAAGTC





CAGTGAAGGGCCGATTCACCATCTCCA

TGGCAACACGGCCTCCCTGACCATCTCTG





GAGACAACGCCAAGAATTCTCTGTATC

GGCTCCAGGCTGAGGACGAGGCTGATTAT





TGCAAATGAACAGCCTGAGGGCCGAC

TATTGCAGCTCATATAGAGGCAGCAGCAC





GACACGGCTGTATATTACTGTGCGAGA

TCCCTATGTCTTCGGAACTGGGACCAAGG





GATGTTGCATCTAACTACGCTTACTTTG

TCACCGTCCTAG





ACCTTTGGGGCCAGGGAACCCTGGTC







ACCGTCTCCTCAG








C147
V-C047
GAGGTGCAGCTGGTGCAGTCTGGAGC
319
CAGGCTGTGGTGACCCAGGAGCCCTCACT
320




AGAGGTGAAAAAGCCCGGGGAGTCTC

GACTGTGTCCCCAGGAGGGACAGTCACTC





TGAAGATCTCCTGTAAGGGTTCTGGAT

TCACCTGTGGCTCCAGCACTGGAGCTGTC





ACAGATTTACCAACTACTGGATCGGCT

ACCAGTGGTCATTATCCCTACTGGTTCCAG





GGGTGCGCCAGATGCCCGGGAAAGGC

CAGAAGTCTGGCCAAGCCCCCAGGACACT





CTGGAGTGGATGGGGATCATCTATCCT

GATTTATGAAACAAGCATCAAACACTCCTG





GGTGACTCTGATACCAGATACAGCCCG

GACCCCTGCCCGGTTCTCAGGCTCCCTCC





TCCTTCCAAGGCCAGGTCACCATCTCA

TTGGGGGCAAAGCTGCCCTGACCCTTTCG





GCCGACAAGTCCATCACCACCGCCTAC

GGTGCGCAGCCTGAGGATGAGGCTGATTA





CTGCAGTGGAGCAGCCTGAAGGCCTC

TTACTGCTTGCTCTCCTATAGTGGTGCTCG





GGACACCGCCATGTATTACTGTGCGAG

GCCGGTGTTCGGCGGAGGGACCAAGCTG





ACTCAGTGACCGCTGGTACAGTCCGTT

ACCGTCCTAG





CGACCCCTGGGGCCAGGGAACCCTGG







TCACCGTCTCCTCAG








C148
V-C048
GAGGTGCAGCTGGTGGAGTCTGGGGG
321
GAAATAGTGATGACGCAGTCTCCAGCCAC
322




AGGCTTGGTCCAGCCTGGGGGGTCCC

CCTGTCTGTGTCTCCAGGGGAAAGAGCCA





AGAGACTCTCCTGTGCAGCCTCTGGAT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCACCGTCAGTAGCAATTACATGAGCT

AGCAGCCACTTAGCCTGGTACCAGCAGAA





GGATCCGCCAGGCTCCAGGGAAGGGG

ACCTGGCCAGGCTCCCAGGCTCCTCATCT





CTGGAGTGGGTCTCAGTTATTTATAGC

ATGGTGCATCCACCAGGGCCACTGGTATC





GGTGGTAGCGCATACTACGTAGACTCC

CCAACCAGGTTCAGTGGCAGTGGGTCTGG





GTGAAGGGCAGATTCACCATCTCCAGA

GACAGAGTTCACTCTCACCATCAGCAGCC





GACAATTCCAAGAACACCCTGTATCTT

TGCAGTCTGAAGATTTTGCAGTTTATTACT





CAAATGAACAGCCTGAGACCCGAGGA

GCCAGCAGTATAATAACTGGCCTCCGCTC





CACGGCTGTGTATTACTGTGCGAGAAT

ACTTTCGGCGGAGGGACCAAGGTGGAGAT





CGCAAACTACATGGACGTCTGGGGCAA

CAAAC





AGGGACCACGGTCACCGTCTCCTCA








C149
V-C049
CAGGTGCAGCTGGTGGAGTCTGGGGG
323
GACATCCAGATGACCCAGTCTCCATCCTC
324




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTCAGTACCTATGGCATGCACT

AGCAGTTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CCAGGGAAAGTCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCCGTTATATCATAT

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





GATGGAAGTAATAAATACTTTGCAGACT

CATCAAGGTTCAGTGGCAGTGGATCTGGG





CCGTGAAGGGCCGATTCACCATCTCCA

ACAGACTTCACTCTCACCATCAGCAGTCTG





GAGACAATTCCAAGAACACGCTTTATC

CAACCTGAAGATTTTGCAACTTACTACTGT





TGCAAATGAACAGCCTGAGACCTGAGG

CAACAGAGTTACAGAACCCCGCTCACTTT





ACACGGCTGTATATTACTGTGCGAAAG

CGGCGGAGGGACCAAGGTGGAGATCAAAC





TGGGGATGGAGTACAGCAGTGGCTGG







TACGGGGAAGAAATTGACTTCTGGGGC







CAGGGAACCCTGGTCACCGTCTCCTCAG








C150
V-C050
GAGGTGCAGCTGGTGGAGTCCGGGGG
325
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
326




AGGCTTAGTTCAGCCTGGGGGGTCCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAGACTCTCCTGTGTAGCCTCTGGAT

TCTCCTGCACTGGAACCAGCAGTGACGTT





TCACCTTCAGTAGCTACTGGATGCACT

GGTTATTATAACTTTGTCTCCTGGTACCAA





GGGTCCGCCAAGTCCCAGGGAAGGGG

CAACACCCAGGCAAAGCCCCCAAACTCAT





CCGGTGTGGGTCTCACATATTAACAGT

GATTTATGAGGTCAGTAATCGGCCCTCTG





GAAGGGAGTAGCACAAACTACGCGGA

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





CTCCGTGAGGGGCCGATTCACCATCTC

CTGGCAACACGGCCTCCCTGATCATCTCT





CAGAGACAACGCCAAGGACACGCTATA

GGGCTCCAGGCTGAGGACGAGGCTGATT





TCTTCAAATGAACAATCTGAGAGCCGA

ATTACTGCAGCTCATATAGAAGCAGCAGC





GGACACGGCTGTATATTACTGTGCAAG

ACTCTGGTGTTCGGCGGGGGGACCAAGC





ACCGACGGCTGTAGCAGCAGCTGGCA

TGACCGTCCTAG





ATTACTTCTACTACTACGGTATGGACGT







CTGGGGCCAAGGGACCACGGTCACCG







TCTCCTCA








C151
V-C051
CAGGTGCAGCTGGTGGAGTCTGGGGG
327
AATTTTATGCTGACTCAGCCCCACTCTGTG
328




AGGCCTGGTCAAGCCTGGGGGGTCCC

TCGGAGTCTCCGGGGAAGACGGTAACCAT





TGAGACTCTCCTGTGCAGCCTCTGGAT

CTCCTGCACCGGCAGCAGTGGCAGCATTG





TCACCTTCAGTAGCTATAACATGAACTG

CCAGCAACTATGTGCAGTGGTACCAGCAG





GGTCCGCCAGGCTCCAGGGAAGGGGC

CGCCCGGGCAGTGCCCCCACCACTGTGA





TGGAGTGGGTCTCATGCATTAGTAGTA

TCTATGAGGATAACCAAAGACCCTCTGGG





GTAGTAGTTACATATACTACGCAGACT

GTCCCTGATCGGTTCTCTGGCTCCATCGA





CAGTGAAGGGCCGATTCACCATCTCCA

CAGCTCCTCCAACTCTGCCTCCCTCACCA





GAGACAACGCCAAGAACTCACTGTATC

TCTCTGGACTGAAGACTGAGGACGAGGCT





TGCAAATGAACAGCCTGAGAGCCGAG

GACTACTACTGTCAGTCTTATGATAGCAGC





GACACGGCTGTGTATTACTGTGCGAGA

AATTATTGGGTGTTCGGCGGAGGGACCAA





GAGAGGGGGTATGACGGTGGTAAAAC

GCTGACCGTCCTAG





CCCCCCATTTCTTGGGGGCCAGGGAA







CCCTGGTCACCGTCTCCTCAG








C152
V-C052
CAGGTTCAGCTGGTGCAGTCTGGAGCT
329
GACATCCAGATGACCCAGTCTCCATCCTC
330




GAGGTGAAGAAGCCTGGGGCCTCAGT

CCTGTCTGCATCTGTAGGAGACAGAGTCA





GAAGGTCTCCTGCAAGGCTTCTGGTTA

CCATCACTTGCCGGGCGAGTCAGGGCATA





CACCTTTACCAGCTACGGTATCAGCTG

AGCAATTACTTAGCCTGGTATCAGCAGAG





GGTGCGACAGGCCCCTGGACAAGGGC

ACCAGGGAAAGTTCCTAAGCTCCTGATCTT





TTGAGTGGATGGGATGGATCAGCGCTT

TGCTGCATCCACTTTGCAATCAGGGGTCC





ACAATGGTAACACAAACTATGCACAGA

CATCTCGGTTCAGTGGCAGTGGATCTGGG





AGCTCCAGGGCAGAGTCACCATGACC

ACAGATTTCACTCTCACCATCAGCAGCCTG





ACAGACACATCCACGAGCACAGCCTAC

CAGCCTGAAGATGTTGCAACTTATTACTGT





ATGGAGCTGAGGAGCCTGAGATCTGA

CAAAAGTATAACAGTGCCCCTCGGACGTT





CGACACGGCCGTGTTTTACTGTGCGAG

CGGCCAAGGGACCAAGGTGGAAATCAAAC





AGATCGGGGGGGGCACGATTTTTGGA







GTGGTTATGGGTTCTACTACTACTACG







GTATGGACGTCTGGGGCCAAGGGACC







ACGGTCACCGTCTCCTCA








C153
V-C053
GAGGTGCAGCTGGTGGAGTCTGGAGG
331
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
332




AGGCTTGATCCAGCCTGGGGGGTCCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

TCTCCTGCACTGGAACCAGCAGTGATGTT





TCACCGTCAGTAGCAACTACATGAGCT

GGGAGTTATAACCTTGTCTCCTGGTACCAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAGCACCCAGGCAAAGCCCCCAAACTCAT





CTGGAGTGGGTCTCAGTTATTTATAGC

GATTTATGAGGGCAGTAAGCGGCCCTCAG





GGTTATAGCACATACTACGTAGACTCC

GGGTTTCTAATCGCTTCTCTGGCTCCAAGT





GTGAAGGGCCGATTCACCATCTCCAGA

CTGGCAACACGGCCTCCCTGACAATCTCT





GACAATTCCAAGAACACGCTGTATCTT

GGGCTCCAGGCTGAGGACGAGGCTGATT





CAAATGAACAGCCTGAGAGCCGAGGA

ATTACTGCTGCTCATATGCAGGTAGTAGCA





CACGGCCGTGTATTACTGTGCGAGAGT

CTTGGGTGTTCGGCGGAGGGACCAAGCT





GGGGGGAGCACATAGTGGCTACGACG

GACCGTCCTAG





GATCCTTTGACTACTGGGGCCAGGGAA







CCCTGGTCACCGTCTCCTCAG








C154
V-C054
CAGGTGCAGCTGGTGGAGTCTGGGGG
333
GACATCCAGATGACCCAGTCTCCATCCTC
334




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCAGGCGAGTCAGGGCATT





TCACCTTCAGTCGCTATGGCATGCACT

AGCAACTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCAGTTATGTCATAT

CGATGCATCCAATTTGGAAACAGGGGTCC





GATGGAAGTAGTAAATACTATGCAGAC

CATCAAGGTTCAGTGGAAGTGGATCTGGG





TCCGTGAAGGGCCGATTCACCATCTCC

ACAGATTTTACTTTCACCATCAGCAGCCTG





AGAGACAATTCCAAGAACACGCTGTGT

CAGCCTGAAGATATTGCAACATATTACTGT





CTGCAAATGAACAGCCTGAGAGCTGAG

CAACAGTATGATAATCTCCCGATCACCTTC





GACACGGCTGTGTATTACTGTGCGAAA

GGCCAAGGGACACGACTGGAGATTAAAC





CAGGCGGGCCCATATTGTAGTGGTGG







TAGCTGCTACTCCGCGCCCTTTGACTA







CTGGGGCCAGGGAACCCTGGTCACCG







TCTCCTCAG








C155
V-C055
GAGGTGCAGCTGGTGGAGTCTGGAGG
335
GAAATAGTGATGACGCAGTCTCCAGCCAC
336




AGGCTTGATCCAGCCTGGGGGGTCCC

CCTGTCTGTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGGGT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCATCGTCAGTAGCAACTACATGAGCT

AGCAGCAACTTAGCCTGGTACCAGCAGAA





GGGTCCGCCAGGCTCCAGGGAAGGGC

ACCTGGCCAGGCTCCCAGGCTCCTCATCT





CTGGAGTGGGTCTCAGTTATTTATAGC

ATGGTGCATCCACCAGGGCCACTGCTATC





GGTGGTAGCACATTCTACGCAGACTCC

CCAGCCAGGTTCAGTGGCAGTGGGTCTG





GTGAAGGGCCGATTCACCATCTCCAGA

GGACAGAGTTCACTCTCACCATCAGCAGC





GACAATTCCAAGAACACGCTGTATCTT

CTGCAGTCTGAAGATTTTGCAGTTTATTAC





CAAATGAACAGCCTGAGAGCCGAGGA

TGTCAGCAGTATAATAACTGGCCTCGGAC





CACGGCCGTGTATTACTGTGCGAGAGA

GTTCGGCCAAGGGACCAAGGTGGAGATCA





TTTTGGAGAGTTCTACTTTGACTACTGG

AAC





GGCCAGGGAACCCTGGTCACCGTCTC







CTCAG








C156
V-C056
CAGGTGCAGCTGGTGGAGTCTGGGGG
337
TCCTATGAGCTGACTCAGCCACCCTCGGT
338




AGGCGTGGTCCAGCCTGGGAGGTCCC

GTCAGTGGCCCCAGGACAGACGGCCAGG





TGAGACTCTCCTGTGCAGCCTCTGGAT

ATTTCCTGTGGGGGAAACAACATTGGAAG





TCACCTTCAGTAACTATGGCATGCACT

TAAAAATGTGCACTGGTACCAGCAGAAGC





GGGTCCGCCAGGCTCCAGGCAAGGGG

CAGGCCAGGCCCCTGTGCTGGTCGTCTAT





CTGGAGTGGGTGGCAGTTATATCATAT

GATGATAGCGACCGGCCCTCAGGGATCCC





GATGGAAATAATAAATACTATGCAGACT

TGAGCGATTCTCTGGCTCCAACTCTGGGA





CCGTGAAGGGCCGATTCACCATCTCCA

ACACGGCCACCCTGACCATCAGCAGGGTC





GAGACAATTCCAAGAACACGCTGTATC

GAAGCCGGGGATGAGGCCGACTATTACTG





TGCAAATGAACAGCCTGAGAGCTGAGG

TCAGGTGTGGGATAGTAGTAGTGATCCTT





ACACGGCTGTGTATTACTGTGCGAAAG

GGGTGTTCGGCGGAGGGACCAAGCTGAC





ATCCTTTCCCCTTAGCAGTGGCTGGGA

CGTCCTAG





CGGGCTACTTTGACTACTGGGGCCAG







GGAACCCTGGTCACCGTCTCCTCAG








C160
V-C060
CAGGTTCAGCTGGTGCAGTCTGGAGCT
339
TCCTATGAGCTGACACAGCCACCCTCGGT
340




GAGGTGAAGAAGCCTGGGGCCTCAGT

GTCAGTGTCCCCAGGACAGACGGCCAGG





GAAGGTCTCCTGCAAGGCTTCTGGTTA

ATCACCTGCTCTGGAGATGCATTGCCAAA





CACCTTTACCAGCTACGGTATCAGCTG

GCAATATGCTTATTGGTACCAGCAGAAGC





GGTGCGACAGGCCCCTGGACAAGGGC

CAGGCCAGGCCCCTGTGCTGGTGATATAT





TTGAGTGGATGGGATGGATCAGCGCTT

AAAGACAGTGAGAGGCCCTCAGGGATCCC





ACAATGGTAACACAAACTATGCACAGA

TGAGCGATTCTCTGGCTCCAGCTCAGGGA





AGCTCCAGGGCAGAGTCACCATGACC

CAACAGTCACGTTGACCATCAGTGGAGTC





ACAGACACATCCACGAGCACAGCCTAC

CAGGCAGAAGACGAGGCTGACTATTACTG





ATGGAGCTGAGGAGCCTGAGATCTGA

TCAATCAGCAGACAGCAGTGGTACTCTTT





CGACACGGCCGTGTATTACTGTGCGAG

GGGTGTTCGGCGGAGGGACCAAGCTGAC





AGTTCCCGCCTCGTACGGTGACGACG

CGTCCTAG





ATTACTACTACTACTACGGTATGGACGT







CTGGGGCCAAGGGACCACGGTCACCG







TCTCCTCA








C161
V-C061
CAGGTGCAGCTACAGCAGTGGGGCGC
341
GAAATTGTGTTGACGCAGTCTCCAGGCAC
342




AGGACTGTTGAAGCCTTCGGAGACCCT

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





GTCTCTCACCTGCGCTGTCTCTGGTGG

CCCTCTCCTGCAGGGCCAGTCAGACTCTT





GTCACTCAGTGGTTTCTACTGGACCTG

ACCGCCAACTACTTAGCCTGGTACCAGCA





GATCCGCCAGCCCCCCGGAAAGGGGC

GAAACCTGGCCAGGCTCCCAGACTCCTCA





TGGAGTGGATTGGGGAAACCAATCATT

TCTATGGTGCATCCAAGAGGGCCACTGGC





TTGGAAGCACCGACTACAAGCCGTCCC

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





TCAAGAGTCGAGTCACCATATCAGTAG

TGGGACAGACTTCACTCTCAGCATCAGCA





ACATGTCCAGGAACCAATTTTCCCTGA

GACTGGAGCCTGAAGATTTTGCAGTGTATT





TTATGACCTCTGTGACCGCCGCGGACA

ACTGTCAGCAGTATGGTACTACACCTCGG





CGGCTGTGTATTACTGTGCGAGAAAGA

ACTTTCGGCGGAGGGACCAAGGTGGAAAT





CCCTCCTCTTCAGTGACTTTTCTCCTG

CAA





GTGCTTTTGATATCTGGGGCCAAGGGA







CAATGGTCACCGTCTCTTCAG








C162
V-C062
CAGGTGCAGCTACAGCAGTGGGGCGC
343
GAAATTGTGTTGACGCAGTCTCCAGGCAC
344




AGGACTGTTGAAGCCTTCGGAGACCCT

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





GTCCCTCACCTGCGCTGTCTCTGGTGG

CCCTCTCCTGCAGGGCCAGTCAGACTCTT





GTCACTCAGTGGTTTCTACTGGACCTG

ACCGCCAACTACTTAGCCTGGTACCAGCA





GATCCGCCAGCCCCCAGGAAAGGGGC

GAAACCTGGCCAGGCTCCCAGACTCCTCA





TGGAGTGGATTGGGGAAACCAATCATT

TCTATGGTGCATCCAAGAGGGCCGCTGGC





TTGGAAGCACCGACTACAAGGCGTCCC

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





TCAAGAGTCGAGTCACCATATCAGTAG

TGGGACAGACTTCACTCTCAGCATCACCA





GCATGTCCAGGAACCAATTTTCCCTGA

GACTGGAGCCTGAAGATTTTGCAGTGTATT





AGGTGACTTCTCTGACCGCCGCGGAC

ACTGTCAGCAGTATCATACTACACCTCGGA





ACGGCTGTGTATTACTGCGCGAGAAAG

CTTTCGGCGGAGGGACCAAGGTGGAGAT





CCCCTCCTCTACAGTGACTTTTCTCCT

CAA





GGTGCTTTTGATGTCTGGGGCCAAGG







GACAATGGTCACCGTCTCTTCAG








C163
V-C063
CAGGTGCAGCTACAGCAGTGGGGCGC
345
GAAATTGTGTTGACGCAGTCTCCAGGCAC
346




AGGACTGTTGAAGCCTTCGGAGACCCT

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





GTCCCTCACCTGCGCTGTCTCTGGTGG

CCCTCTCCTGCAGGGCCAGTCAGACTGTT





GTCACTCAGTGGTTTCTACTGGACCTG

TCCGCCAACTACTTAGCCTGGTACCAGCA





GATCCGCCAGCCCCCAGGAAAGGGGC

GAAAGCTGGCCAGGCTCCCAGACTCCTCA





TGGAGTGGATTGGGGAAACCAATCATT

TCTATGGTGCATCCAAGAGGGCCACTGGC





TTGGAAGCACCGACTACAAGCCGTCCC

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





TCAAGAGTCGAGTCACCATATCAGTAG

TGGGACAGACTTCACTCTCAGCATCAGCA





ACATGTCCAGGAACCAGTTCTCCCTGA

GACTGGAGCCTGAAGATTTTGCTGTGTATT





AGGTGACCTCTGTGACCGCCGCGGAC

ACTGTCAGCAGTATGTTACTACACCTCGGA





ACGGCTGTTTATTACTGTGCGAGAAAG

CTTTCGGCGGAGGGACCAAGGTGGAAATC





CCCCTCCTCCACAGTGACTTATCTCCT

AA





GGTGCTTTTGATATCTGGGGCCAAGGG







ACAATGGTCACCGTCTCTTCAG








C164
V-C064
GAGGTGCAGCTGGTGGAGTCTGGGGG
347
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
348




AGGCTTGGTCCAGCCGGGGGGGTCCC

GTCTGGGTCTCCTGGACAGTCGATCACCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

TCTCCTGCACTGGAACCAGCAATGATGTT





TCAGTGTCAGCACCAAGTACATGACAT

GGGAGTTATACCCTTGTCTCCTGGTACCA





GGGTCCGTCAGGCTCCAGGGAAGGGG

ACAGTACCCAGGCAAAGCCCCCAAGCTCT





CTGGAGTGGGTCTCAGTTCTTTACAGC

TAATTTTTGAGGTCACTAAGCGGTCCTCAG





GGTGGTAGTGATTACTACGCAGACTCC

GGATTTCTAATCGCTTCTCTGGTTCCAAGT





GTGAAGGGCAGATTCACCATCTCCAGA

CTGGCAACACGGCCTCCCTGACAATCTCT





GACAATTCCAAGAACGCTTTATATCTTC

GGGCTCCAGGGTGAAGACGAGGCTGATTA





AAATGAACAGCTTGAGAGTCGAGGACA

TTATTGCTGCTCATATGCAGGTGCTAGCAC





CGGGTGTTTATTACTGTGCCAGAGACT

TTTCGTGTTCGGCGGAGGGACCAAGCTGA





CGTCGGAAGTCCGTGACCACCCCGGG

CCGTCCTAG





CACCCAGGGCGCTCGGTGGGGGCTTT







TGATATCTGGGGCCAAGGGACAATGGT







CACCGTCTCTTCAG








C165
V-C065
CAGGTGCAGCTGGTGCAGTCTGGGGC
349
GAAATTGTGTTGACGCAGTCTCCAGGCAC
350




TGAGGTGAAGAAGCCTGGGTCGTCGG

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAAGGTCTCCTGCAAGGCTTCTGGAG

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





GCACCTTCAGTAGCTATGCTATCAACT

AGCAGCACCTACTTAGCCTGGTACCAGCA





GGGTGCGACAGGCCCCTGGACAAGGG

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





CTTGAGTGGATGGGAAGGATCATCCCT

TCTATGGTGCATCCAGCAGGGCCACTGGC





ATCGTTGGTATAGCAAACTACGCACAG

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





AAGTTCCAGGGCAGAGTCACGATTACG

TGGGACAGACTTCACTCTCACCATCAGCA





GCGGACAAATCCTCGAGCACAGCCTAC

GACTGGAGCCTGAAGATTTTGCAGTGTATT





ATGGAGCTGAGCAGCCTGAGATCTGA

ACTGTCAGCAGTATGGTAGCTCACCGTGG





GGACACGGCCGTGTATTACTGTGCGA

ACGTTCGGCCAAGGGACCAAGGTGGAAAT





GAGATCTCCTGGACCCCCAGCTAGATG

CAAAC





ATGCTTTTGATATCTGGGGCCAAGGGA







CAATGGTCACCGTCTCTTCAG








C201
M-C001
GAAGTGCAGCTGGTGGAGTCTGGGGG
351
CATCCGGATGACCCAGTCTCCATCTTCTGT
352




AGGCTTGGTACAGCCTGGCAGGTCCC

GTCTGCATCTGTAGGAGACAGAGTCACCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

TCACTTGTCGGGCGAGTCAGGGTATTAGC





TCACCTTTGATGATTATGCCATGCACTG

AGCTGGTTAGCCTGGTATCAGCAGAAACC





GGTCCGGCAAGCTCCAGGGAAGGGCC

AGGGAAAGCCCCTAAGCTCCTGATCTATG





TGGAGTGGGTCTCAGGTATTAGTTGGA

TTGAATCCAGTTTGCAAAGTGGGGTCCCA





ATAGTGGTAGTATAGGCTATGCGGACT

TCAAGGTTCAGCGGCAGTGGATCTGGGAC





CTGTGAAGGGCCGATTCACCATCTCCA

AGATTTCACTCTCACTATCAGCAGCCTGCA





GAGACAACGCCAAGAACTCCCTGTATC

GCCTGAAGATTTTGCAACCTACTATTGTCA





TGCAAATGAACAGTCTGAGAGCTGAGG

ACAGGCTAACAGTTTCCCTCTCACTTTCGG





AC

CGGAGGGACCAAGGTGGAAATCAAAC





ACGGCCTTGTATTACTGTGTAAAAGGG







GTCGAGTATAGCAGCTCGAGCAACTTT







GACTACTGGGGCCAGGGAACCCTGGT







CACCGTCTCCTCAG








C202
M-C002
GAGGTGCAGCTGGTGGAGTCTGGGGG
353
GACATCCAGTTGACCCAGTCTCCATCCTC
354




AGGCTTGGTCCAGCCTGGGGGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TAAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCAGGCGAGTCAGGACATT





TCACCGTCAGTAGCAACTACATGAGCT

AGCAACTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTCTCACTTATTTATAGC

CGATGCATCCAATTTGGAAACAGGGGTCC





GGTGGTAGCACATACTACGCAGACTCC

CATCAAGGTTCAGTGGAAGTGGATCTGGG





GTGAAGGGCCGATTCACCATCTCCAGA

ACAGATTTTACTTTCACCATCAGCAGCCTG





GACAATTCCAAGAACACGCTGTATCTT

CAGCCTGAAGATATTGCAACATATTACTGT





CAAATGAACAGCCTGAGAGCTGAGGAC

CAACAGTATGATAATCTCCCTCGGAGTTTT





ACGGCTGTGTATTACTGTGCGAGAGAT

GGCCAGGGGACCAAGCTGGAGATCAAAC





ACCCTTGGTAGGGGGGGCGACTACTG







GGGCCAGGGAACCCTGGTCACCGTCT







CCTCAG








C204
M-C004
GAGGTGCAGCTGTTGGAGTCTGGGGG
355
GACATCCAGTTGACCCAGTCTCCATCCTC
356




AGGCTTGGAACAGCCTGGGGGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACTTTTAGCACCTATGCCATGAGCT

AGCAGCTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTCTCAGCTATTAGTGGT

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





AGTGGTGCTGGCACATTCTACGCAGAC

CATCAAGGTTCAGTGGCAGTGGATCTGGG





TCCGTGAAGGGCCGGTTCACCATCTCC

ACAGATTTCACTCTCACCATCAGCAGTCTG





AGAGACAATTCCAAGAACACGCTGTAT

CAACCTGAAGATTTTGCAACTTACTACTGT





CTGCAAATGAACAGCCTGAGAGCCGA

CAACAGAGTTACAGTACCCCTCCGTGGAC





GGACACGGCCGTATATTACTGTGCGAG

GTTCGGCCAGGGGACCAAGGTGGAAATCA





AGAGAGCGATTGTGGTAGTACCAGCTG

AAC





CTATCAAGTCGGGTGGTTCGACCCCTG







GGGCCAGGGAACCCTGGTCACCGTCT







CCTCAG








C205
M-C005
CAGGTGCAGCTGGTGCAGTCTGGGGC
357
GAAATTGTGTTGACGCAGTCTCCAGGCAC
358




TGAGGTGAAGAAGCCTGGGGCCTCAG

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAAGGTTTCCTGCAAGGCATCTGGAC

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





ACACCTTCACCAGCTACTATATGCACT

AGCAGCAGCTACTTAGCCTGGTACCAGCA





GGGTGCGACAGGCCCCTGGACAAGGG

GAAACCTGGCCAGGCTCCCAGGCTCCTCA





CTTGAGTGGATGGGAATCATCAACCCT

TCTATGGTGCATCCAGCAGGGCCACTGGC





AGTGGTGGTAGCACAAGCTACGCACA

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





GAAGTTCCAGGGCAGAGTCACCATGAC

TGGGACAGACTTCACTCTCACCATCAGCA





CAGGGACACGTCCACGAGCACAGTCT

GACTGGAGCCTGAAGATTTTGCAGTGTATT





ACATGGAGCTGAGCAGCCTGAGATCTG

ACTGTCAGCAGTATGTTAGCTCACCGTGG





AGGACACGGCTGTGTATTACTGTGCTA

ACGTTCGGCCAAGGGACCAAGGTGGAGAT





GGGGGCCGGAACGGGGTATAGTGGGA

CAAAC





GCTACTGACTACTTTGACTACTGGGGC







CAGGGAACCCTGGTCACCGTCTCCTCAG








C207
M-C007
GAGGTGCAGCTGTTGGAGTCTGGGGG
359
GAAATTGTGTTGACACAGTCTCCAGCCAC
360




AGGCTTGGTACAGCCTGGGGGGTCCC

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCACCTTTAGCAGCTATGCCATGAGCT

AGCAGCTACTTAGCCTGGTACCAACAGAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

ACCTGGCCAGGCTCCCAGGCTCCTCATCT





CTGGAGTGGGTCTCAGCTATTAGTGGT

ATGATGCATCCAACAGGGCCACTGGCATC





AGTGGTGGTAGCACATACTACGCAGAC

CCAGCCAGGTTCAGTGGCAGTGGGTCTG





TCCGTGAAGGGCCGGTTCACCATCTCC

GGACAGACTTCACTCTCACCATCAGCAGC





AGAGACAATTCCAAGAACACGCTGTAT

CTAGAGCCTGAAGATTTTGCAGTTTATTAC





CTGCAAATGAACAGCCTGAGAGCCGA

TGTCAGCAGCGTAGCAACTGGCCCCGGG





GGACACGGCCGTATATTACTGTGCGAA

GGTTCGGCCAAGGGACCAAGGTGGAGAT





AGAACCCATCGGCCAGCCACTGCTATG

CAAAC





GTGGGACTACTGGGGCCAGGGAACCC







TGGTCACCGTCTCCTCAG








C208
M-C008
GAGGTGCAGCTGGTGCAGTCTGGAGC
361
GAAATTGTGTTGACGCAGTCTCCAGGCAC
362




AGAGGTGAAAAAGCCCGGGGAGTCTC

CCTGTCTTTGTCTCCAGGGGAAAGAGCCA





TGAAGATCTCCTGTAAGGGTTCTGGAT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





ACAGCTTTACCAGCTACTGGATCGGCT

AGCGGCAGCTACTTAGCCTGGTACCAGCA





GGGTGCGCCAGATGCCCGGGAAAGGC

GAGACCTGGCCAGGCTCCCAGGCTCCTCA





CTGGAGTGGATGGGGATCATCTATCCT

TCTATGGTGCTTCCAGCAGGGCCACTGGC





GGTGACTCTGATACCAGATACAGCCCG

ATCCCAGACAGGTTCAGTGGCAGTGGGTC





TCCTTCCAAGGCCAGGTCACCATCTCA

TGGGACAGACTTCACTCTCACCATCAGCA





GCCGACAAGTCCATCAGCACCGCCTAC

GACTGGAGCCTGAAGATTTTGCAGTGTATT





CTGAAGTGGAGCAGCCTGAAGGCCTC

ACTGTCAGCAGTATGGTAGCTCGCTCACT





GGACAGCGCCATGTATTACTGTGCGAG

TTCGGCGGGGGGACCAAGGTGGAGATCA





GGGGCCCAACCTCCAGAACTGGTTCG

AAC





ACCCCTGGGGCCAGGGAACCCTGGTC







ACCGTCTCCTCAG








C209
M-C009
CAGGTGCAGCTGGTGCAGTCTGGGGC
363
TCCTATGAGCTGACACAGCCACCCTCGGT
364




TGAGGTGAAGAAGTCTGGGGCCTCAG

GTCAGTGGCCCCAGGAAAGACGGCCAGG





TGAAGGTCTCCTGCAAGGCTTCTGGAT

ATTACCTGTGGGGGAAACAACATTGGAAG





ACACCTTCACCAGTTATGATATCAACTG

CAAAAGTGTGCACTGGTACCAGCAGAAGC





GGTGCGACAGGCCACTGGACAAGGGC

CAGGCCATGCCCCTGTACTGGTCGTCTAT





TTGAGTGGATGGGATGGATGAACCCTA

GATGATAGCGACCGGCCCTCAGGGATCCC





ACAGTGGTAACACAGGCTATGCACAGA

TGAGCGATTCTCTGGCTCCAACTCTGGGA





AGTTCCAGGGCAGAGTCACCATGACCA

ACACGGCCACCCTGACCATCAGCAGGGTC





GGAACACCTCCATAAGCACAGCCTACA

GAAGCCGGGGATGAGGCCGACTATTACTG





TGGANCTGAGCAGCCTGANATCTGANG

TCAGGTGTGGGATAGTACTGGTGGTCATC





ANACGGCCGTGTATTACTGTGCGANAG

CCGATGTGGTGTTCGGCGGAGGGACCAA





GGTTCAGCCTGACTTGGTACTTCGATC

GCTGACCGTCCTAG





TCTGGGGCCGTGGNNCCCTGGTCACC







GNCTCCTCAG








C210
M-C010
GAGGTGCAGCTGGTGGAGTCTGGAGG
365
GACATCCAGTTGACCCAGTCTCCATCCTTC
366




AGGCTTGATCCAGCCTGGGGGGTCCC

CTGTCTGCATCTGTAGGAGACAGAGTCAC





TGAGACTCTCCTGTGCAGCCTCTGGGT

CATCACTTGCCGGGCCAGTCAGGGCATTA





TCACCGTCAGTAGCAACTACATGAGCT

GCAGTTATTTAGCCTGGTATCAGCAAAAAC





GGGTCCGCCAGGCTCCAGGGAAGGGG

CAGGGAAAGCCCCTAAGCTCCTGATCTAT





CTGGAGTGGGTCTCAGTTATTTATAGC

GCTGCATCCACTTTGCAAAGTGGGGTCCC





GGTGGTAGTACATTCTACGCAGACTCC

ATCAAGGTTCAGCGGCAGTGGATCTGGGA





GTGAAGGGCCGATTCACCTTCTCCAGA

CAGAATTCACTCTCACAATCAGCAGCCTG





GACAATTCCAAGAACACGCTGTATCTT

CAGCCTGAAGATTTTGCAACTTATTACTGT





CAAATGAACAGCCTGAGAGCCGAGGA

CAACAGCTTAATAGTTACCCTCAGGGCACT





CACGGCCGTGTATTACTGTGCGAGAGA

TTCGGCGGAGGGACCAAGGTGGAAATCAA





TTTGATGGCCTACGGTATGGACGTCTG

AC





GGGCCAAGGGACCACGGTCACCGTCT







CCTCAG








C211
M-C011
GAGGTGCAGCTGGTGGAGTCTGGGGG
367
GAAATAGTGATGACGCAGTCTCCAGCCAC
368




AGGCTTGGTCCAGCCTGGGGGGTCCC

CCTGTCTGTGTCTCCAGGGGAAAGAGCCA





TGAGACTCTCCTGTGCAGCCTCTGAAT

CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





TCACCGTCAGTAGCAACTACATGAGCT

AGCAGCAACTTAGCCTGGTACCAGCAGAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

ACCTGGCCAGGGTCCCAGGCTCCTCATCT





CTGGAGTGGGTCTCAGTTATTTATAGC

ATGGTGCATCCACCAGGGCCACTGGTATC





GGTGGTAGCACATTCTACGCAGACTCC

CCAGCCAGGTTCAGTGGCAGTGGGTCTG





GTGAAGGGCCGATTCACCATCTCCAGA

GGACAGAGTTCACTCTCACCATCAGCAGC





GACAATTCCAAGAACACGCTGTATCTT

CTGCAGTCTGAAGATTTTGCAGTTTATTAC





CAAATGAACAGCCTGAGACCTGAGGAC

TGTCAGCAGTATAATAACTGGCCCCGGAC





ACGGCTGTGTATTACTGTGCGAGAGAC

GTTCGGCCAAGGGACCAAGGTGGAGATCA





TACGGTGACTTCTACTTTGACTTCTGG

AAC





GGCCAGGGAACCCTGGTCACCGTCTC







CTCAG








C212
M-C012
CAGGTGCAGCTGGTGCAGTCTGGGGC
369
CTGACTCAGCCTGCCTCCGTGTCTGGGTC
370




TGAGGTGAAGAAGCCTGGGGCCTCAG

TCCTGGACAGTCGATCACCATCTCCTGCA





TGAAGGTCTCCTGCAAGGCTTCTGGAT

CTGGAACCAGCAGTGATGTTGGGAGTTAT





ACACCGTCACCGGCTATTATATACACT

AACCTTGTCTCCTGGTACCAACAGCACCC





GGGTGCGACAGGCCCCTGGACAAGGG

AGGCAAAGCCCCCAAACTCATGATTTATGA





CTTGAGTGGATGGGATGGATCAGCCCT

GGACAGTAAGCGGCCCTCAGGGGTTTCTA





AACAGTGGTGGCACAAACTATGCACAG

ATCGCTTCTCTGGCTCCAAGTCTGGCAAC





AAGTTTCAGGGCTGGGTCACCATGACC

ACGGCCTCCCTGACAATCTCTGGGCTCCA





AGGGACATGTCCATCACCACAGCCTAC

GGCTGAGGACGAGGCTGATTATTACTGCT





ATGGAGCTGAGTAGACTGAGATCTGAC

GCTCATATGCAGGTAGTAGCACTCGGCTA





GACACGGCCGTGTATTACTGTGCGAG

TTCGGCGGAGGGACCAAGCTGACCGTCCT





GGAACGATATTTTGACTTGGGTGGTAT

AG





GGACGTCTGGGGCCAAGGGACCACGG







TCACCGTCTCCTCAG








C214
M-C014
CAGGTGCAGCTGGTGGAGTCTGGGGG
371
GACATCCAGTTGACCCAGTCTCCATCCTC
372




AGGCGTGGTCCAGCCTGGGAGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCGTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTCAGTAGCTATGGCATGCACT

AGCAGCTATTTAACTTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGCAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTGGCAGCTATATGGTAT

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





GATGGAAGTAATAAACACTATGCAGAC

CATCAAGGTTCAGTGGCAGTGGATCTGGG





TCCGTGAAGGGCCGATTCACCATCTCC

ACAGATTTCACTCTCACCATCAGCAGTCTG





AGAGACAATTCCAAGAACACGCTGTAT

CAACCTGAAGATTTTGCAACTTACTACTGT





CTGCAAATGAACAGCCTGAGAGCCGA

CAACAGAGTTACAGTACCCCTCCGTGGAC





GGACACGGCTGTGTATTACTGTGCGAG

GTTCGGCCAAGGGACCAAGGTGGAGATCA





AGATGTAGGGCGGGTGACGACCTGGT

AAC





TCGACCCCTGGGGCCAGGGAACCCTG







GTCACCGTCTCCTCAG








C215
M-C015
GAGGTGCAGCTGTTGGAGTCTGGGGG
373
GACATCCAGTTGACCCAGTCTCCATCCTC
374




AGGCTTGGTACAGCCTGGGGGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTTAGCAGCTATGCCATGAGCT

AGCAGCTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAGGCTCCAGGGAAGGGG

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTCTCAGCTATTACTGAT

TGCTGCATCCAGTTTGCAAAGTGGGGTCC





AGTGGTGATGGCACATTCTACGCAGAC

CATCAAGGTTCAGTGGCAGTGGATCTGGG





TCCGTGAAGGGCCGGTTCACCATCTCC

ACAGATTTCACTCTCACCATCAGCAGTCTA





AGAGACAATTCCAAGAACACGCTGTAT

CAACCTGAAGATTTTGCAACTTACTACTGT





CTGCAAATGAACAGCCTGAGAGCCGA

CAACAGAGTTACAGTACCCCTCCGTGGAC





GGACACGGCCGTTTATTACTGTGCGTC

GTTCGGCCAAGGGACCAAGGTGGAAATCA





CGAAGAGGACTACAGTAACTACGTGGG

AAC





GTGGTTCGACCCCTGGGGCCAGGGAA







CCCTGGTCACCGTCTCCTCAG








C216
M-C016
GAGGTGCAGCTGGTGGAGTCTGGGGG
375
GACATCCAGTTGACCCAGTCTCCATCCTC
376




AGGCTTGGTACAGCCTGGGGGGTCCC

CCTGTCTGCATCTGTAGGAGACAGAGTCA





TGAGACTCTCCTGTGCAGCCTCTGGAT

CCATCACTTGCCGGGCAAGTCAGAGCATT





TCACCTTCAGTAGCTACGACATGCACT

AGCAGCTATTTAAATTGGTATCAGCAGAAA





GGGTCCGCCAAGCTACAGGAAAAGGT

CCAGGGAAAGCCCCTAAGCTCCTGATCTA





CTGGAGTGGGTCTCAGCTATTGGTACT

TGTTGCATCCAGTTTGCAAAGTGGGGTCC





GCTGGTGACACATACTATCCAGACTCC

CATCAAGGTTCAGTGGCAGTGGATCTGGG





GTGAAGGGCCGATTCACCATCTCCAGA

ACAGATTTCACTCTCACCATCAGCAGTCTG





GAAAATGCCAAGAACTCCTTGTATCTTC

CAACCTGAAGATTTTGCAACTTACTACTGT





AAATGAACAGCCTGAGAGCCGGGGAC

CAACAGAGTTACAGTACCCCCCCGATCAC





ACGGCTGTGTATTACTGTGCAAGAGAT

CTTCGGCCAAGGGACACGACTGGAGATTA





CGGGGAAGCAGTGGCTGGTACGGCTG

AAC





GTACTTCGATCTCTGGGGCCGTGGCAC







CCTGGTCACCGTCTCCTCAG
















TABLE 6







Effective and inhibitory concentrations of the monoclonal antibodies




















SARS-
SARS-








CoV-2
CoV


Participant
Antibody
SARS-CoV-2
SARS-CoV-2
SARS-CoV-2
SARS-CoV
RB
RBD


ID
ID
IC50 ng/ml
IC80 ng/ml
IC90 ng/ml
IC50 ng/ml
EC50 ng/ml
EC50 ng/ml

















COV21
C002
8.88
21.95
37.61
NT
3.14
>1000


COV21
C003
313.79
992.62
>1000
NT
6.37
>1000


COV21
C004
10.67
41.08
91.71
NT
2.39
>1000


COV21
C005
60.49
130.65
205.20
NT
4.41
>1000


COV21
C006
321.51
>1000
>1000
NT
1.81
>1000


COV21
C008
625.46
>1000
>1000
NT
4.63
>1000


COV21
C009
4.82
14.54
29.34
NT
1.80
>1000


COV21
C010
>1000
>1000
>1000
>1000
5.44
>1000


COV21
C013
42.48
360.59
>1000
NT
2.59
>1000


COV21
C016
>1000
>1000
>1000
NT
7.41
>1000


COV21
C017
72.67
256.18
543.87
NT
1.63
>1000


COV21
C018
>1000
>1000
>1000
NT
1.53
>1000


COV21
C019
>1000
>1000
>1000
NT
11.85
>1000


COV21
C021
>1000
>1000
>1000
NT
1.25
>1000


COV21
C022
73.57
314.71
736.87
168.15
2.40
5.99


COV21
C027
>1000
>1000
>1000
>1000
2.65
696.05


COV21
C029
>1000
>1000
>1000
NT
4.13
>1000


COV21
C030
>1000
>1000
>1000
>1000
2.89
>1000


COV21
C031
>1000
>1000
>1000
NT
22.69
>1000


COV57
C032
>1000
>1000
>1000
NT
99.31
NT


COV57
C036
>1000
>1000
>1000
NT
64.10
NT


COV57
C037
155.78
488.45
>1000
NT
1.93
NT


COV57
C038
>1000
>1000
>1000
NT
4.69
NT


COV57
C040
>1000
>1000
>1000
NT
11.10
NT


COV107
C101
8.20
30.15
65.30
NT
1.51
>1000


COV107
C102
34.03
84.21
143.23
NT
4.54
>1000


COV107
C103
4.38
12.58
23.59
NT
3.77
>1000


COV107
C104
23.31
72.12
140.28
NT
8.31
>1000


COV107
C105
26.09
72.24
133.70
NT
5.20
>1000


COV107
C106
>1000
>1000
>1000
>1000
19.03
106.75


COV107
C107
>1000
>1000
>1000
NT
11.55
>1000


COV107
C108
480.69
>1000
>1000
NT
5.32
>1000


COV107
C110
18.44
45.11
77.28
NT
7.29
>1000


COV107
C112
111.79
701.99
>1000
NT
3.38
>1000


COV107
C113
>1000
>1000
>1000
NT
6.93
>1000


COV107
C114
>1000
>1000
>1000
NT
9.51
>1000


COV107
C115
198.33
958.18
>1000
NT
3.40
>1000


COV107
C116
>1000
>1000
>1000
NT
37.56
>1000


COV107
C117
348.00
>1000
>1000
NT
5.38
>1000


COV107
C118
103.69
417.76
>1000
138.36
3.45
3.82


COV107
C119
9.12
39.45
97.78
NT
3.57
>1000


COV107
C120
13.26
26.73
40.30
NT
1.41
>1000


COV107
C121
6.73
14.31
22.33
NT
2.85
>1000


COV107
C122
22.80
57.77
100.12
NT
2.67
>1000


COV107
C123
149.22
355.47
595.51
NT
1.92
>1000


COV107
C124
341.82
937.26
>1000
NT
2.23
>1000


COV107
C125
43.32
92.54
144.26
NT
1.87
>1000


COV107
C126
>1000
>1000
>1000
NT
4.78
>1000


COV107
C127
68.74
190.96
347.31
NT
2.62
>1000


COV072
C128
101.22
263.35
460.73
NT
1.95
>1000


COV072
C129
10.85
31.48
59.47
NT
1.16
NT


COV072
C130
>1000
>1000
>1000
NT
2.05
>1000


COV072
C131
30.52
178.90
759.11
NT
1.67
>1000


COV072
C132
708.67
>1000
>1000
NT
2.92
>1000


COV072
C133
>1000
>1000
>1000
NT
1.98
>1000


COV072
C134
>1000
>1000
>1000
NT
1.57
>1000


COV072
C135
16.61
32.81
48.90
NT
1.80
>1000


COV072
C138
>1000
>1000
>1000
NT
2.94
>1000


COV072
C139
>1000
>1000
>1000
NT
1.89
>1000


COV072
C140
23.88
66.24
120.69
NT
2.19
>1000


COV072
C141
>1000
>1000
>1000
>1000
1.71
>1000


COV047
C143
>1000
>1000
>1000
NT
3.66
>1000


COV047
C144
6.91
17.28
29.66
NT
3.24
>1000


COV047
C145
3.04
14.51
36.79
NT
3.86
>1000


COV047
C146
>1000
>1000
>1000
NT
>1000
>1000


COV047
C147
>1000
>1000
>1000
NT
>1000
>1000


COV047
C148
>1000
>1000
>1000
NT
64.69
>1000


COV047
C149
45.42
139.99
271.02
NT
1.79
NT


COV047
C150
>1000
>1000
>1000
NT
8.11
>1000


COV047
C151
31.79
363.97
>1000
NT
4.30
>1000


COV047
C152
22.27
122.06
330.67
NT
1.88
NT


COV047
C153
70.71
490.08
>1000
NT
3.17
>1000


COV047
C154
435.50
>1000
>1000
>1000
2.92
10.65


COV047
C155
11.00
35.75
77.01
NT
3.30
>1000


COV047
C156
>1000
>1000
>1000
NT
3.32
>1000


COV047
C160
>1000
>1000
>1000
NT
2.54
NT


COV107
C161
42.32
232.17
581.63
NT
1.63
NT


COV107
C162
14.44
59.81
138.75
NT
1.18
NT


COV107
C163
9.65
29.45
57.97
NT
1.77
NT


COV047
C164
239.15
865.40
>1000
NT
2.06
>1000


COV072
C165
40.81
138.66
297.38
NT
4.25
>1000


COV96
C201
>1000
>1000
>1000
NT
2.98
>1000


COV96
C202
>1000
>1000
>1000
NT
3.40
>1000


COV96
C204
>1000
>1000
>1000
>1000
3.73
9.41


COV96
C205
>1000
>1000
>1000
NT
>1000
>1000


COV96
C207
158.52
960.39
>1000
NT
1.87
>1000


COV96
C208
>1000
>1000
>1000
NT
>1000
>1000


COV96
C209
>1000
>1000
>1000
NT
3.79
>1000


COV96
C210
50.73
155.24
298.90
NT
2.83
>1000


COV96
C211
12.79
34.87
62.89
NT
2.82
>1000


COV96
C212
>1000
>1000
>1000
NT
>1000
>1000


COV96
C214
>1000
>1000
>1000
NT
5.75
>1000


COV96
C215
>1000
>1000
>1000
>1000
5.33
17.94


COV96
C216
>1000
>1000
>1000
NT
9.53
>1000





NT = not tested













TABLE 7





Anti-SARS-CoV-2 IgG antibodies from COV20




















SEQ

SEQ



SEQUENCE_ID
ID NOS
aa
ID NOS
cdr3_aa





COVD20_P1_HC_B6-1369
377
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
378
TRDDSS




WMHWVRQAPGKGLVWVSRINSDGSRRAYA

WPHFF




TSVKGRFTISRDNAKNTLYLQMDSLRDEDTAV

DN




YYCTRDDSSWPHFFDNWGQGTLVTVSS







COVD20_P1_HC_D9-1369
381
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
382
TRDDSS




WMHWVRQAPGKGLVWVSRISSDGSRRAYAT

WPHFF




SVKGRFTISRDNAKNTLYLQMDSLRDDDTAVY

DN




YCTRDDSSWPHFFDNWGQGTLVTVSS







COVD20_P1_HC_D12-1369
385
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
386
TRDDSS




WMHWVRQAPGKGLVWVSRINSDGSRRAYA

WPHFF




TSVKGRFTISRDNAKNTLYLQMDSLRDEDTAV

DN




YYCTRDDSSWPHFFDNWGQGTLVTVSS







COVD20_P1_HC_E3-1369
389
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
390
TRDDSS




WMHWVRQAPGKGLVWVSRISSDGSRRAYAT

WPHFF




SVKGRFTISRDNAKNTLYLQMDSLRDDDTAVY

DN




YCTRDDSSWPHFFDNWGQGTLVTVSS







COVD20_P1_HC_G12-1369
393
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
394
TRDDSS




WMHWVRQAPGKGLVWVSRINSDGSRRAYA

WPHFF




TSVKGRFTISRDNAKNTLYLQMDSLRDEDTAV

DN




YYCTRDDSSWPHFFDNWGQGTLVTVSS







COVD20_P1_HC_H3-1369
397
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
398
TRDDSS




WMHWVRQAPGKGLVWVSRISSDGSRRAYAT

WPHFF




SVKGRFTISRDNAKNTLYLQMDSLRDDDTAVY

DN




YCTRDDSSWPHFFDNWGQGTLVTVSS







COVD20_P1_HC_H6-1369
401
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
402
TRDDSS




WMHWVRQAPGKGLVWVSRINSDGSRRAYA

WPHFF




TSVKGRFTISRDNAKNTLYLQMDSLRDEDTAV

DN




YFCTRDDSSWPHFFDNWGQGTLVTVSS







COVD20_P1_HC_H7-1369
405
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
406
TRDDSS




WMHWVRQAPGKGLVWVSRINTDGSRRAYA

WPHFF




TSVKGRFTISRDNAKNTVHLQMDSLRDEDTAV

DN




YFCTRDDSSWPHFFDNWGQGTLVTVSS







COVD20_P1_HC_H10-1369
409
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
410
TRDDSS




WMHWVRQAPGKGLVWVSRISSDGSRRAYAT

WPHFF




SVKGRFTISRDNAKNTLYLQMDSLRDDDTAVY

DN




YCTRDDSSWPHFFDNWGQGTLVTVSS







COVID020_Plate2_HC_19-
413
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
414
TRDDSS


P1369

WMHWVRQAPGKGLVWVSRINTDGSRRAYA

WPHFF




TSVKGRFTISRDNAKNTVHLQMDSLRDEDTAV

DN




YFCTRDDSSWPHFFDNWGQGTLVTVSS







COVID020_Plate2_HC_24-
417
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
418
TRDDSS


P1369

WMHWVRQAPGKGLVWVSRINSDGSRRAYA

WPHFF




TSVKGRFTISRDNAKNTLYLQMDSLRDEDTAV

DN




YYCTRDDSSWPHFFDNWGQGTLVTVSS







COVID020_Plate2_HC_36-
421
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
422
TRDDSS


P1369

WMHWVRQAPGKGLVWVSRISSDGSRRAYAT

WPHFF




SVKGRFTISRDNAKNTLYLQMDSLRDDDTAVY

DN




YCTRDDSSWPHFFDNWGQGTLVTVSS







COVID020_Plate2_HC_71-
425
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
426
TRDDSS


P1369

WMHWVRQAPGKGLVWVSRINSDGSRRAYA

WPHFF




TSVKGRFTISRDNAKNTLYLQMDSLRDEDTAV

DN




YFCTRDDSSWPHFFDNWGQGTLVTVSS












HEAVY











COVD20_P1_HC_F7-1369
429
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNY
430
ARGRG




DMHWVRQVTGEGLEWVSAIGTAGDTYYPGS

HCSSIS




VKGRFTISRENAKNSVFLQMNSLRAGDTAVYY

CLHSW




CARGRGHCSSISCLHSWFDSWGQGTLVTVSS

FDS





COVID020_Plate2_HC_48-
433
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNY
434
ARGRG


P1369

DMHWVRQATGEGLEWVSAIGTAGDTYYPGS

HCSSIS




VKGRFTISRENAKNSVFLQMNSLRAGDTAVYY

CLHSW




CARGRGHCSSISCLHSWFDSWGQGTLVTVSS

FDS





COVID020_Plate2_HC_63-
437
EVQLVESGGGLIQPGGSLRLSCAASGFTFNNY
438
ARGRG


P1369

DIHWVRQATGEGLEWVSAIGTAGDTYYPGSV

HCSSIS




KGRFTISRENAKNSVFLQMNSLRAGDTAVYYC

CLHSW




ARGRGHCSSISCLHSWFDSWGQGTLVTVSS

FDS





COVID020_Plate2_HC_66-
441
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNY
442
ARGRG


P1369

DIHWVRQATGEGLEWVSAIGTAGDTYYPGSV

HCSSIS




KGRFTISRENAKNSVFLQMNSLRAGDTAVYYC

CLHSW




ARGRGHCSSISCLHSWFDSWGQGTLVTVSS

FDS





COVD20_P1_HC_A5-1369
445
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
446
AKSGPY




AMHWVRQAPGKGLEWVSGISWNSGSIGYAD

PWAVY




SVKGRFTISRDNAKNSLYLQMNSLRAEDTALYY

YYGMD




CAKSGPYPWAVYYYGMDVWGQGTTVTVSS

V





COVD20_P1_HC_E10-1369
449
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
450
AKSGPY




AMHWVRQAPGKGLEWVSGISWNSGSIGYAD

PWAVY




SVKGRFTISRDNAKNSLYLQMNSLRAEDTALYY

YYGMD




CAKSGPYPWAVYYYGMDVWGQGTTVTVSS

V





COVID020_Plate2_HC_79-
453
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDY
454
AKSGPY


P1369

AMHWVRQAPGKGLEWVSGISWNSGSIGYAD

PWAVY




SVKGRFTISRDNAKNSLYLQMNSLRAEDTALYY

YYGMD




CAKSGPYPWAVYYYGMDVWGQGTTVTVSS

V





COVD20_P1_HC_H8-1369
457
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY
458
ARDLTY




YVHWVRQAPGQGLEWMGWINPNSGGTNYT

GTVFY




QKFQGRVTMTRDRSISTAYMELSGLRSDDTAV

GMDV




YYCARDLTYGTVFYGMDVWGQGTTVTVSS







COVD20_P1_HC_B7-1369
461
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
462
ARGKW




YMSWIRQAPGKGLEWVSSISSSGSTIYYADSVK

LRGSFD




GRFTISRDNAKTSLYLQMNSLRAEDTAVYYCA

Y




RGKWLRGSFDYWGQGTLVTVSS







COVID020_Plate2_HC_33-
3186
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDY
466
ARGPSS


P1369

YMSWIRQAPGKGLEWVSYISSSSPYTNYADSV

THESRP




KGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC

RPFDY




ARGPSSTHESRPRPFDYWGQGTLVTVSS







COVID020_Plate2_HC_23-
3187
EVQLVESGGGLVKPGGSLRVSCAASGFTFTNA
470
TTSRG


P1369

WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY

GDWP




AAPVKGRFTISRDDSKNTLYLQMNSLKTEDTA

VTDY




VYYCTTSRGGDWPVTDYWGQGTLVTVSS







COVID020_Plate2_HC_41-
469
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
474
AKDLEY


P1369

MSWVRQAPGKGLEWVSVISGSGGSTYYADSV

YDSSGY




KGRFTISRDNFKNTLYLQMNSLRAEDTAVYYC

PRPSEY




AKDLEYYDSSGYPRPSEYFQHWGQGTLVTVSS

FQH





COVID020_Plate2_HC_16-
3188
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
478
AKGGP


P1369

MSWVRQAPGKGLEWVSGISGSGGSTYYADSV

DYYDSS




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

GYIRSK




AKGGPDYYDSSGYIRSKPEYFQHWGQGTLVTV

PEYFQ




SS

H





COVID020_Plate2_HC_64-
473
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
482
AKPTH


P1369

GMHWVRQAPGKGLEWVAVILYDGSNKYYAD

PGPSSE




SVKGRFTISRDNAKNTLYLQMNSLRAEDTAVY

YFQH




YCAKPTHPGPSSEYFQHWGQGTLVTVSS







COVD20_P1_HC_E1-1369
477
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
486
AKPTH




GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

PGPSSE




SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY

YFQH




CAKPTHPGPSSEYFQHWGQGTLVTVSS







COVD20_P1_HC_H5-1369
481
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY
490
AKKGG




GMHWVRQAPGKGLEWVAVISYDGSNKYYAD

LYGDYL




SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY

NWFDP




CAKKGGLYGDYLNWFDPWGQGTLVTVSS







COVD20_P1_HC_G1-1369
485
QLQLQESGSGLVKPSQTLSLTCAVXGGSISSGG
3189
ARGPPI




YSWSWIRQPPGKGLEWIGYIYHSGSTYYNPSL

EGWLR




KSRVTISVDRSKNQFSLKLSSVTAADTAVYYCA

LGLGG




RGPPIEGWLRLGLGGGDWYFDLWGRGTLVTV

GDWYF




SS

DL





COVID020_Plate2_HC_83-
489
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYW
3190
ARHDE


P1369

ISWVRQMPGKGLEWMGRIDPSDYYTNYSPSF

VDTAA




QGHVTISADKSISTAYLQWSSLKASDTAMYYC

GGY




ARHDEVDTAAGGYWGQGTLVTVSS






SEQ

SEQ



SEQUENCE_ID
ID NOS
aa
ID NOS
cdr3_aa





COVD20_P1_K_B6-1389
379
DIQMTQSPSSLSAFVGDRVTITCRASQ
380
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGSGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVD20_P1_K_D9-1389
383
DIQMTQSPSSLSAFVGDRVTITCRASQ
384
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGGGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVD20_P1_K_D12-1389
387
DIQMTQSPSSLSAFVGDRVTITCRASQ
388
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGSGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVD20_P1_K_E3-1389
391
DIQMTQSPSSLSAFVGDRVTITCRASQ
392
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGGGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVD20_P1_K_G12-1389
395
DIQMTQSPSSLSAFVGDRVTITCRASQ
396
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGSGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVD20_P1_K_H3-1389
399
DIQMTQSPSSLSAFVGDRVTITCRASQ
400
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGGGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVD20_P1_K_H6-1389
403
DIQMTQSPSSLSASVGDRVTITCRASQ
404
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGSGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVD20_P1_K_H7-1389
407
DIQMTQSPSSLSASVGDRVTITCRASQ
408
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGSGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVD20_P1_K_H10-1389
411
DIQMTQSPSSLSAFVGDRVTITCRASQ
412
QQ




SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGGGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVID020_Plate2_Kappa_19-
415
DIQMTQSPSSLSASVGDRVTITCRASQ
416
QQ


P1389

SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGSGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVID020_Plate2_Kappa_24-
419
DIQMTQSPSSLSASVGDRVTITCRASQ
420
QQ


P1389

SVANYLNWYQKKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGSGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVID020_Plate2_Kappa_36-
423
DIQMTQSPSSLSAFVGDRVTITCRASQ
424
QQ


P1389

SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGGGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T





COVID020_Plate2_Kappa_71-
427
DIQMTQSPSSLSASVGDRVTITCRASQ
428
QQ


P1389

SVANYLNWYQQKPGKAPKLLIYSASSL

SFIT




QSGVPSRFSGSGSGTDFSLTISSLQPED

PW




TATYYCQQSFITPWTFGQGTKVEIK

T










LAMBDA











COVD20_P1_L_F7-1409
431
QSVLTQPPSVSGAPGQRVTISCTGSSS
432
QSY




NIGAGSDVHWYQKLPGIAPKVLIYGYS

DTS




NRPSGVPDRFSGSKSGTSASLAITGLQA

LRV




EDEADYYCQSYDTSLRVVFGGGTKLTV

V





COVID020_Plate2_Lambda_48-
435
QSVLTQPPSVSGAPGQRVTISCTGSSS
436
QSY


P1409

NIGAGSDVHWYQKLPGTAPKVLIYGYS

DTS




NRPSGVPDRFSGSKSGTSASLAITGLQA

LRV




EDEADYYCQSYDTSLRVVFGGGTKLTV

V





COVID020_Plate2_Lambda_63-
439
QSVLTQPPSVSGAPGQRVTISCTGSSS
440
QSY


P1409

NIGAGSDVHWYQKLPGTAPKVLIYGYS

DTS




NRPSGVPDRFSGSKSGTSASLAITGLQA

LRV




EDEADYYCQSYDTSLRVVFGGGTKLTV

V





COVID020_Plate2_Lambda_66-
443
QSVLTQPPSVSGAPGQRVTISCTGSSS
444
QSY


P1409

NIGAGSDVHWYQKLPGTAPKVLIYGY

DTS




NNRPSGVPDRFSGSKSGTSASLAITGL

LRV




QAEDEADYYCQSYDTSLRVVFGGGTKL

V




TV







COVD20_P1_L_A5-1409
447
QSALTQPASVSGSPGQSITISCTGTSSD
448
SSY




VGGYNYVSWYQQHPGKAPKLMIYEVS

TSS




NRPSGVSNRFSGSKSGNTASLTISGLQ

STV




AEDEADYYCSSYTSSSTVFGGGTKLTVL







COVD20_P1_L_E10-1409
451
QSALTQPASVSGSPGQSITISCTGTSSD
452
SSY




VGGYNYVSWYQQHPGKAPKLMIYEVS

TSS




NRPSGVSNRFSGSKSGNTASLTISGLQ

STV




AEDEADYYCSSYTSSSTVFGGGTKLTVL







COVID020_Plate2_Lambda_79-
455
QSALTQPASVSGSPGQSITISCTGTSSD
456
SSY


P1409

VGGYNYVSWYQQHPGKAPKLMIYEVS

TSS




NRPSGVSNRFSGSKSGNTASLTISGLQ

STV




AEDEADYYCSSYTSSSTVFGGGTKLTVL







COVD20_P1_L_H8-1409
459
QSVLTQPPSVSGAPGQRVTISCTGSSS
460
QSY




NIGAGSDVHWYQKLPGTAPKVLIYGYS

DTS




NRPSGVPDRFSGSKSGTSASLAITGLQA

LRV




EDEADYYCQSYDTSLRVVFGGXXQAG

V




PS












KAPPA











COVD20_P1_K_B7-1389
463
EIVLTQSPATLSLSPGERATLSCRASQSV
464
QQ




SSYLAWYQQKPGQAPRLLIYDASNRAT

RSN




GIPARFSGSGSGTDFTLTISSLEPEDFAV

G




YYCQQRSNGFGGGTKVEIK







COVID020_Plate2_Kappa_33-
467
DIMTQSPSTLSASVGDRVTITCRASQ
468
QQ


P1389

SISSWLAWYQQKPGKAPKLLIYKASSLE

YNS




SGVPSRFSGSGSGTEFTLTISSLQPDDF

YSP




ATYYCQQYNSYSPGIFTFGQGTRLEIK

GIF






T










LAMBDA











COVID020_Plate2_Lambda_23-
471
QSVLTQPPSVSEAPRQRVTISCSGSSSN
472
AA


P1409

IGNNAVNWYQQLPGKAPKLLIYYDDLL

WD




PSGVSDRFSGSKSGTSASLAISGLQSED

DSL




EADYYCAAWDDSLNVWVFGGGTKLT

NV




VL

WV





COVID020_Plate2_Lambda_41-
475
QSVLTQPPSVSGAPGQRVTISCTGSSS
476
QSY


P1409

NIGAGYDVHWYQQLPGTAPKLLIYGN

DSS




SNRPSGVPDRFSGSKSGTSASLAITGLQ

LSG




AEDEADYYCQSYDSSLSGYVFGTGTKV

YV




TVL







COVID020_Plate2_Lambda_16-
479
QSVLTQPPSVSGAPGQRVTISCTGSSS
480
QSY


P1409

NIGAGYDVHWYQQLPGTAPKLLIYGN

DSS




SNRPSGVPDRFSGSKSGTSASLAITGLQ

LSV




AEDEADYYCQSYDSSLSVVFGGGTKLT

V




VL












KAPPA











COVID020_Plate2_Kappa_64-
483
AIQLTQSPSSLSASVGDRVTITCRASQG
484
QQ


P1389

ISSALAWYQQKPGKAPKLLIYDASSLES

FNS




GVPSRFSGSGSGTDFTLTISSLQPEDFA

YPL




TYYCQQFNSYPLTFGGGTKVEIK

T





COVD20_P1_K_E1-1389
487
AIQLTQSPSSLSAFVGDRVTITCRASQG
488
QQ




ISSALAWYQQKPGKAPKLLIYDASSLES

FNY




GVPSRFSGSGSGTDFTLTISSLQPEDFA

YPL




TYYCQQFNYYPLTFGGGTKVEIK

T





COVD20_P1_K_H5-1389
491
DIQMTQSPSSLSASVGDRVTITCQASQ
492
QQ




DISNYLNWYQQKPGKAPKLLIYDASNL

YD




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

NLP




ATYYCQQYDNLPLTFGGGTKVEIK

LT










LAMBDA











COVD20_P1_L_G1-1409
495
QSALTQPASVSGSPGQSITISCTGTSSD
496
SSY




VGGYNYVSWYQQHPGKAPKLMIYDV

TSS




SNRPSGVSNRFSGSKSGNTASLTISGLQ

STV




AEDEADYYCSSYTSSSTVVFGGGTKLTV

v




L







COVID020_Plate2_Lambda_83-
499
QSALTQPASVSGSPGQSITISCTGTSSD
500
SSY


P1409

VGGYNYVSWYQQHPGKAPKLMIYEVS

TSS




NRPSGVSNRFSGSKSGNTASLTISGLQ

SSY




AEDEADYYCSSYTSSSSYVFGTGTKVTV

V




L
















TABLE 8





Anti-SARS-CoV-2 IgG antibodies from COV21




















SEQ

SEQ




ID

ID



SEQUENCE_ID
NOS
aa
NOS
cdr3_aa










HEAVY











COVD21_P2_HC_A4-
501
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
502
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P2_HC_B5-
505
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
506
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P2_HC_C12-
509
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
510
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P2_HC_E4-
513
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
514
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P2_HC_F1-
517
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
518
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P1_HC_B7-
521
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
522
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P1_HC_B9-
525
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
526
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P1_HC_E1-
529
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
530
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P1_HC_E11-
533
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
534
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P1_HC_F6-
537
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
538
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P3_HC_A6-
541
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
542
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P3_HC_B12-
545
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
546
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P3_HC_B12-
549
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYG
550
AKEGRPS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DIVVVVA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KEGRPSDIVVVVAFDYWGQGTLVTVSS







COVD21_P2_HC_C8-
553
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
554
ASPASRG


p1369

MHWVRQAPGQGLEWMGWINPISGGTNYAQ

YSGYDHG




KFQGRVTMTRDTSISTAYMELSRLRSDDTAVYY

YYYYMDV




CASPASRGYSGYDHGYYYYMDVWGKGTTVTVS






S







COVD21_P2_HC_F12-
557
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
558
ASPASRG


p1369

MHWVRQAPGQGLEWMGWINPISGGTNYAQ

YSGYDHG




KFQGRVTMTRDTSISTAYMELSRLRSDDTAVYY

YYYYMDV




CASPASRGYSGYDHGYYYYMDVWGKGTTVTVS






S







COVD21_P1_HC_H9-
561
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
562
ASPASRG


p1369

MHWVRQAPGQGLEWMGWINPISGGTNYAQ

YSGYDHG




KFQGRVTMTRDTSISTAYMELSRLRSDDTAVYY

YYYYMDV




CASPASRGYSGYDHGYYYYMDVWGKGTTVTVS






S







COVD21_P1_HC_E5-
565
QVQLVESGGGLVKPGGSLRLSCAASGFIFSDYC
566
ARRGDGS


p1369

MSWIRRAPGKGLEWLSYISNSGTTRYYADSVKG

SSIYYYNY




RFTISRDNGRNSLYLQMDSLSAEDTAVYYCARR

MDV




GDGSSSIYYYNYMDVWGKGTTVTVSS







COVD21_P1_HC_F8-
569
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYC
570
ARRGDGS


p1369

MSWIRQAPGKGLEWLSYISNSGTTRYYADSVK

SSIYYYNY




GRFTISRDNGRNSLYLQMNSLSAEDTAVYYCAR

MDV




RGDGSSSIYYYNYMDVWGKGTTVTVSS







COVD21_P1_HC_G5-
573
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYC
574
ARRGDGS


p1369

MSWIRQAPGKGLEWLSYISNSGTTRYYADSVK

SSIYYYNY




GRFTISRDNGRNSLYLQMNSLSAEDTAVYYCAR

MDV




RGDGSSSIYYYNYMDVWGKGTTVTVSS







COVD21_P2_HC_A11-
577
QVQLVESGGGVVQPGRSLRLSCAASGFTYSGYA
578
ARDGIVD


p1369

MHWVRQAPGKGLEWVAVILDDGSNKYYADSV

TAMVTW




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




RDGIVDTAMVTWFDYWGQGTLVTVSS







COVD21_P2_HC_D1-
581
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
582
ARDQGM


p1369

MHWVRQAPGKGLEWVAVILYDGSNKYYADSV

ATTYFDY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA






RDQGMATTYFDYWGQGTLVTVSS







COVD21_P2_HC_H7-
585
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
586
ARDGIVD


p1369

MHWVRQAPAKGLEWVAVILYDGSGKYYADSV

TALVTWF




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DY




RDGIVDTALVTWFDYWGQGTLVTVSS







COVD21_P1_HC_B5-
589
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
590
ARDSPFS


p1369

MHWVRQAPGQGLEWMGWINPNSGGTNYA

GLGASND




QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY

Y




YCARDSPFSGLGASNDYWGQGTLVTVSS







COVD21_P3_HC_B5-
593
QVQLVQSGAEVKKPGASVKVSCMASGYTFTGY
594
ARDSPFS


p1369

YMHWVRQAPGQGLEWMGWINPNSGGTNYA

ALGASND




QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY

Y




YCARDSPFSALGASNDYWGQGTLVTVSS







COVD21_P2_HC_F9-
597
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSSA
598
AAPHCSG


p1369

VQWVRQARGQRLEWIGWIVVGSGNTNYAQK

GSCLDAF




FQERVTITRDMSTSTAYMELSSLRSEDTAVYYCA

DI




APHCSGGSCLDAFDIWGQGTMVTVSS







COVD21_P1_HC_F10-
601
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSSA
602
AAPHCSG


p1369

VQWVRQARGQRLEWIGWIVVGSGNTNYAQK

GSCYDAF




FQERVTITRDMSTSTAYMELSSLRSEDTAVYYCA

DI




APHCSGGSCYDAFDIWGQGTMVTVSS







COVD21_P2_HC_E9-
605
EVQLVESGGDLVKPGGSLRLSCAASGFTFNNA
606
TTGPHYD


p1369

WMSWVRQAPGKGLEWVGRIKDKSDGETTDY

SSGYSYT




AAPVQGRFTVSRDDSKNTLYLQMNSLKTEDTA

VDS




VYYCTTGPHYDSSGYSYTVDSWGQGTLVTVSS







COVD21_P2_HC_G2-
609
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
610
TTGPHYD


p1369

MNWVRQAPGKGLEWVGRIKDKSDGGTIDYAA

DSGYSYT




PVQGRFTISRDDSKNTLYLQMNSLKTEDTAVYY

VDY




CTTGPHYDDSGYSYTVDYWGQGTLVTVSS







COVD21_P2_HC_G4-
613
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
614
AKASGIY


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

CSGGDCY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

SYYFDY




KASGIYCSGGDCYSYYFDYWGQGTLVTVSS







COVD21_P1_HC_B2-
617
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
618
AKASGIY


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

CSGGNCY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

SYYFDY




KASGIYCSGGNCYSYYFDYWGQGTLVTVSS







COVD21_P2_HC_F2-
621
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
622
AKGRVVY


p1369

MHWVRQAPGKGLEWVSGTSWNSGTIGYADS

AIDPDSV




VKGRFTISRDNAKNSLYLQMNSLRAEDTALYYC

SPFDY




AKGRVVYAIDPDSVSPFDYWGQGTLVTVSS







COVD21_P1_HC_E2-
625
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
626
AKPRKRG


p1369

MHWVRQAPGKGLEWVSGISWNSGSIGYADSV

DYYGSGS




KGRFTISRDNAKNSLYLQMNSLRAEDTALYYCA

YDY




KPRKRGDYYGSGSYDYWGQGTLVTVSS







COVD21_P2_HC_B10-
629
QLQLQESGPGLVKPSETLSVTCTVSGGSISSSRYY
630
ARHAAAY


p1369

WGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKSR

YDRSGYY




VTISVDTSKNQFSLKLSSVTAADTAVYYCARHAA

FIEYFQH




AYYDRSGYYFIEYFQHWGQGTLVTVSS







COVD21_P2_HC_H11-
633
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSNYY
634
ARHAAAY


p1369

WGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKSR

YDRSGYY




VTISVDTSKNQFSLKVSSVTAADTAVYYCARHAA

FIEYFQH




AYYDRSGYYFIEYFQHWGXGTLVTVSS







COVD21_P3_HC_E4-
637
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNY
638
ARTDGTP


p1369

GISWVRQAPGQGLEWMGWNSAYNGNTNYA

AEYFQY




QKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY






YCARTDGTPAEYFQYWGQGTLVTVSS







COVD21_P2_HC_G7-
641
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
642
ARGGQD


p1369

MHWVRQAPGQGLEWMGWINPNSGGTNYA

ELTGAFDI




QKFQGRVTMTRDTSISTAYMELSRLTSDDTAVY






YCARGGQDELTGAFDIWGQGTMVTVSS







COVD21_P1_HC_D10-
645
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
646
AKSPYYY


p1369

MHWVRQAPGQGLEWMGWINPISGGTNSAQ

DSSGYLG




KFQGRVTMTRDTSITTAYMELSSLRSDDTAVYH

GFDY




CAKSPYYYDSSGYLGGFDYWGQGTLVTVSS







COVD21_P1_HC_C7-
649
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
650
ARDLGYS


p1369

MHWVRQAPGQGLEWMGWINPNSGGRNYTQ

YVQGYFD




KFQGRVTMTRDTSISTAYMELSRLRSDDTAVYY

Y




CARDLGYSYVQGYFDYWGXGTLVTVSS







COVD21_P2_HC_B12-
653
QVQLVQSGAEVKKPGASVKVSCKASGYIFTGYY
654
ARDLGFS


p1369

MHWVRQAPGQGLEWMGWINPNSGGTNYA

RLQFLFD




QKFQGRVTMTRDTSISTVYMELSRLRSDDTAVY

Y




YCARDLGFSRLQFLFDYWGQGTLVTVSS







COVD21_P1_HC_F4-
657
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
658
ASTGYYIL


p1369

MHWVRQAPGQGLEWMGWINPNSGGTNYA

TGYEFGA




QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY

MDV




YCASTGYYILTGYEFGAMDVWGQGTTVTVSS







COVD21_P1_HC_D7-
661
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYY
662
ARDRPL


p1369

LHWVRQAPGQGLEWMGWINPTSGGTKYAQK

WFGVEY




FQGRVTMTRDTSITTAYMEVNRLRSDDTAVYY

GMDV




CARDRPLWFGVEYGMDVWGQGTTVTVSS







COVD21_P1_HC_C1-
665
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
666
ATTEGQQ


p1369

MHWVRQAPGQGLEWMGWINPNSGGTNYA

LPHPPYY




QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY

YYYYYMD




YCATTEGQQLPHPPYYYYYYYMDVWGKGTTVT

V




VSS







COVD21_P2_HC_G5-
669
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYY
670
ARDRAET


p1369

MHWVRQAPGQGLEWIVIGIINPSGGSTTYAQK

EGSETYYY




FQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYC

DSSGYYLL




ARDRAETEGSETYYYDSSGYYLLGYWGQGTLVT

GY




VSS







COVD21_P1_HC_D3-
673
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYY
674
ARSSVTG


p1369

MHWVRQAPGQGLEWIVIGIINPSGGSTSYAQKF

TPPFDY




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCA






RSSVTGTPPFDYWGQGTLVTVSS







COVD21_P2_HC_G8-
677
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYY
678
ARVPREG


p1369

MHWVRQAPGQGLEWMGIINPSGGSTSYAQKF

TPGFDP




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCA






RVPREGTPGFDPWGQGTLVTVSS







COVD21_P1_HC_E4-
681
QVQLVQSGAEVKKPGASVKVSCKAXGYTFTRX
682
LVGISTIV


p1369

HMQWVGQAPGQGLEWMGIINXSGGSTSYAQ

VVRPAV




KFQGRVTMARDTSTSSVXMELSSLRXRTRPCIT

WTS




VLVGISTIVVVRPAVWTSGAKGPRSPXX







COVD21_P1_HC_F12-
685
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
686
ARVLYYY


p1369

ISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQ

DSSGYPN




GRVTITADESTSTAYMELSSLRSEDTAVYYCARV

LEYFQH




LYYYDSSGYPNLEYFQHWGQGTLVTVSS







COVD21_P2_HC_B3-
689
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
690
ARGNRLL


p1369

ISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQ

YCSSTSCY




GRVTITADESTSTAYMELSSLRSEDTAVYYCARG

LDAVRQG




NRLLYCSSTSCYLDAVRQGYYYYYYMDVWGKG

YYYYYYM




TTVTVSS

DV





COVD21_P2_HC_B3-
693
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
694
ARGNRLL


p1369

ISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQ

YCSSTSCY




GRVTITADESTSTAYMELSSLRSEDTAVYYCARG

LDAVRQG




NRLLYCSSTSCYLDAVRQGYYYYYYMDVWGKG

YYYYYYM




TTVTVSS

DV





COVD21_P3_HC_C11-
697
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
698
ARVGYYY


p1369

ISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQ

DRSGFPR




GRVTITADKSTSTAYMELSSLRSEDTAVCYCARV

TEDYFDY




GYYYDRSGFPRTEDYFDYWGQGTLVTVSS







COVD21_P1_HC_G6-
701
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
702
ARDEGYC


p1369

ISWVRQAPGQGLEWMGGIIPIFYTANYAQKFQ

SGGSCYG




GRVTITADKSTSTAYMELSSLRSEDTAVYYCARD

YYYGMD




EGYCSGGSCYGYYYGMDVWGQGTTVTVSS

V





COVD21_P2_HC_B2-
705
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
706
ARGNRLL


p1369

ISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQ

YCSSTSCY




GRVTITADESTSTAYMELSSLRSEDTAVYYCARG

LDAVRQG




NRLLYCSSTSCYLDAVRQGYYYYYYMDVWGKG

YYYYYYM




TTVTVSS

DV





COVD21_P1_HC_D2-
709
QVQLVESGGGLVKPGGSLRLSCAASGFIFSDYY
710
ARGLVYT


p1369

MSWIRQAPGKGLEWVSYISSSASTIYYADSVKG

PYRFGY




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARG






LVYTPYRFGYWGQGTLVTVSS







COVD21_P3_HC_B4-
713
QVQLVESGGGLVKPGGSLRLSCAASGFTFIDYY
714
ARGRTW


p1369

MSWIRQAPGKGLEWVSYISSSGSTIYYADSVKG

ELVDY




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARG






RTWELVDYWGQGTLVTVSS







COVD21_P1_HC_A12-
717
QVQLVESGGGLVKPGGSLRLSCAASGFTFIDYY
718
ARGKWL


p1369

MSWIRQAPGKGLEWVSYISSSGSTIYYADSVKG

RGSFDY




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARG






RTWELVDYWGQGTLVTVSS







COVD21_P2_HC_A10-
721
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
722
ARVGYDS


p1369

MHWVRQATGKGLEWVSAIGTAGDTYYPGSVK

SGYSGW




GRFTISRENAKNSLYLQMNSLRAGDTAVYYCAR

YFDL




VGYDSSGYSGWYFDLWGRGTLVTVSS







COVD21_P3_HC_A2-
725
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
726
ARGGGET


p1369

MHWVRQATGKGLEWVSAIGTAGDTYYPDSVK

ITTVFDY




GRFTISRENAKNSLYLQMNSLRAGDTAVYYCAR






GGGETITTVFDYWGQGTLVTVSS







COVD21_P2_HC_D3-
729
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
730
ARGSYSN


p1369

MHWVRQATGKGLEWVSIIGTAGDTYYPGSVK

YVGYMD




GRFTISRENAKNSLYLQMNSLRAGDTAVYYCAR

V




GSYSNYVGYMDVWGKGTTVTVSS







COVD21_P2_HC_D10-
733
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDAW
734
TTDQIYG


p1369

MSWVRQAPGKGLEWVGRLKSKTDGGTTDYAA

DYLRMPV




PVKGRFTISRDDSKNTLSLQMNSLKTEDTAVYYC

PFDY




TTDQIYGDYLRMPVPFDYWGQGTLVTVSS







COVD21_P3_HC_H6-
737
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
738
TTGPQYD


p1369

MNWVRQAPGKGLEWIGRIKSNSDGGTTDYAA

DNGYSYT




PVQGRFTILRDDSKNTLYLQMTSLRTEDTAVYFC

VDY




TTGPQYDDNGYSYTVDYWGRGTLVTVSS







COVD21_P3_HC_D12-
741
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
742
AREVKRV


p1369

MNWVRQAPGKGLEWVSSISSSSSYIYYADSVKG

VAAPEYY




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARE

FDY




VKRVVAAPEYYFDYWGQGXLVTVSS







COVD21_P3_HC_D11-
745
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
746
AREVKRV


p1369

MNWVRQAPGKGLEWVSSISSSSSYIYYADSVKG

VAAPEYY




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARE

FDY




VKRVVAAPEYYFDYWGQGTLVTVSS







COVD21_P2_HC_C3-
749
EVQLVESGGGLVKPGGSLRLSCAASGFTFSTYN
750
ARDRNRY


p1369

MNWVRQAPGKGLEWVSSITSSSSYIYYADSVK

DFWSGYY




GRFTISRDNAENSLYLQMNSLRAEDTAVYYCAR

RLVGFDP




DRNRYDFWSGYYRLVGFDPWGQGTLVTVSS







COVD21_P1_HC_F11-
753
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
754
AKVWSIS


p1369

MSWVRQAPGKGLEWVSGISDSGVSTYNADSV

LDAFDI




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA






KVWSISLDAFDIWGQGTMVTVSS







COVD21_P2_HC_C4-
757
EVQLLESGGGLVQPGGSLRLSCAASGFTFNSYA
758
AKDGGR


p1369

MSWVRQAPGKGLEWVSGISGSGDSTYYADSV

QWLVELL




KGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCA

DY




KDGGRQWLVELLDYWGHGTLVTVSS







COVD21_P2_HC_G9-
761
EVQLLESGGGLVQPGGSLRLSCAASRFTFSNYA
762
AKDRAAA


p1369

MSWVRQAPGKGLEWVSTISGSGGSTYYADSVK

HWATDY




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK






DRAAAHWATDYWGQGTLVTVSS







COVD21_P1_HC_F7-
765
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
766
AKDDSSG


p1369

MSWVRQAPGKGLEWVSAISGSGGSTYYADSV

YHYYFDY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA






KDDSSGYHYYFDYWGQGTLVTVSS







COVD21_P1_HC_D1-
769
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
770
AKDSGTA


p1369

MSWVRQAPGKGLEWVSAISGSGDITYYADSVK

MVEIFDY




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK






DSGTAMVEIFDYWGQGTLVTVSS







COVD21_P3_HC_E1-
773
EVQLLESGGDLVQPGGSLRLSCAASGFTFSSYA
774
AKDLRST


p1369

MSWVRQAPGKGLEWVSAISGSGGSTYYADSV

TFYVYYF




KGRFTISRDNSKSTLYLQMNSLRAEDTAVYYCAK

DY




DLRSTTFYVYYFDYWGQGTLVTVSS







COVD21_P2_HC_F8-
777
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
778
AKVPIHY


p1369

MSWVRQAPGKGLEWVSAISGSGGTTYYADSV

CSNGVCY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




KVPIHYCSNGVCYFDYWGQGTLVTVSS







COVD21_P3_HC_D4-
781
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
782
AKVVGSG


p1369

MSWVRQAPGKGLEWVSAISGSGDSTYFADSVK

TPPDYYY




GRFTISRDNSKNTLYLHMNSLRAEDTAVYYCAK

YYYMDV




VVGSGTPPDYYYYYYMDVWGKGTTVTVSS







COVD21_P1_HC_D4-
785
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG
786
ARATCSG


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYFADSV

GSCLFGQ




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

NAFDI




RATCSGGSCLFGQNAFDIWGQGTMVTVSS







COVD21_P1_HC_G9-
789
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
790
ARDYGSS


p1369

MHWVRQAPGKGLEWVAVISYDGSSKFYADSV

WYQVPD




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

Y




RDYGSSWYQVPDYWGQGTLVTVSS







COVD21_P2_HC_H9-
793
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
794
AREFGDP


p1369

MHWVRQAPGKGLEWVTVISYDGRNKYYADSV

EWYFDY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA






REFGDPEWYFDYWGQGTLVTVSS







COVD21_P1_HC_G8-
797
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
798
AKNQNSY


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

GYLSYFD




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

Y




KNQNSYGYLSYFDYWGQGTLVTVSS







COVD21_P1_HC_E12-
801
QVQLVESGGGVVQPGRSLRLSCAASGFTFRRYG
802
AKASGEY


p1369

IHWVRQAPGKGLEWVAVISYDGSNKYYADSVK

CGGGSCY




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK

RGVFDY




ASGEYCGGGSCYRGVFDYWGQGTLVTVSS







COVD21_P3_HC_H4-
805
QVQLVESGGGVVQPGRSLRLSCATSGFTFSSYG
806
AKVMGP


p1369

LHWVRQAPGKGLEWVALISYDGSDKYYADSVK

YCSGGSC




GRFTISRDTSKNTLFLQMNSLRAEDTAVYYCAKV

YSGYFDY




MGPYCSGGSCYSGYFDYWGQGTLVTVSS







COVD21_P1_HC_C4-
809
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
810
AKAGGPY


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

CSGGSCY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

SSYFDY




KAGGPYCSGGSCYSSYFDYWGQGTLVTVSS







COVD21_P1_HC_G2-
813
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
814
ARDCGG


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYSADSV

DCYPTTD




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

AFDI




RDCGGDCYPTTDAFDIWGQGTMVTVSS







COVD21_P2_HC_H10-
817
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
818
ARDHDY


p1369

MHWVRQAPGKGLEWVAVISYDGSSKYYADSV

GEIVDAF




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DI




RDHDYGEIVDAFDIWGQGTMVTVSS







COVD21_P1_HC_B1-
821
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
822
ARDSEDC


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

SSTSCYLD




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

Y




RDSEDCSSTSCYLDYWGQGTLVTVSS







COVD21_P3_HC_E6-
825
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYV
826
ARGPGW


p1369

MNWVRQAPGKGLAWVAVISFDGSNKYYADSV

QWPELD




KGRFTVSRDNSKNTLYLQMNSLRAEDTALYYCA

Y




RGPGWQWPELDYWGQGTLVTVSS







COVD21_P3_HC_A5-
829
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
830
ATEDYYD


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

SSGSFDY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA






TEDYYDSSGSFDYWGQGTLVTVSS







COVD21_P3_HC_C12-
833
QVQLVESGGGVVQPERSLRLSCAASGFTFSSYA
834
ARSKSYTS


p1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

WGYYHM




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DV




RSKSYTSWGYYHMDVW







COVD21_P1_HC_D8-
837
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
838
ARDGTSI


p1369

IHWVRQAPGKGLEWVAVIWYDGSNKYYADSV

TLITEGDA




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDI




RDGTSITLITEGDAFDIWGQGTMVTVSS







COVD21_P2_HC_B11-
841
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
842
ARDPSVV


p1369

MHWVRQAPGKGLEWVAVIWHDGSNKYYADS

VTAIDFD




VKGRFTISRDNSKNTLYLQMNSLRAEDTALYYC

Y




ARDPSVWTAIDFDYWGQGTLVTVSS







COVD21_P2_HC_C9-
845
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
846
AREHTPT


p1369

MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

DIVVVNV




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

EY




AREHTPTDIVVVNVEYWGQGTLVTVSS







COVD21_P3_HC_H8-
849
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYC
850
AREKDIV


p1369

MHWVRQAPGKGLEWVAVIWYDGNNKYYADS

ATDFDY




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC






AREKDIVATDFDYWGQGTLVTVSS







COVD21_P1_HC_E10-
853
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
854
AREYFYD


p1369

IHWVRQAPGKGLEWVAVIWYDGSNKYYADSV

SSDYYFEY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

YFDY




REYFYDSSDYYFEYYFDYWGQGTLVTVSS







COVD21_P1_HC_A4-
857
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
858
ARDHSLG


p1369

MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

VRGDGY




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

GMDV




ARDHSLGVRGDGYGMDVWGQGTTVTVSS







COVD21_P1_HC_G11-
861
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
862
ARDGAV


p1369

MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

VRFLEWP




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

TVGYYYY




ARDGAVVRFLEWPTVGYYYYYMDVWGKGTTV

YMDV




TVSS







COVD21_P3_HC_G10-
865
QVQLVESGGGVVQPGRSLRLSCAASGFTFTSYG
866
ARDMMI


p1369

MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

RGVAWY




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

YYMDV




ARDMMIRGVAWYYYMDVWGKGTTVTVSS







COVD21_P2_HC_H2-
869
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS
870
ARDSGG


p1369

MNWVRQAPGKGLEWVSYISSSSSTIYYADSVK

DIVVIPAV




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR

NGFDY




DSGGDIVVIPAVNGFDYWGQGTLVT







COVD21_P2_HC_A8-
873
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS
874
AREAHD


p1369

MNWVRQAPGKGLEWVSYISSSSSTIYYADSVK

GALTDYG




GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCAR

DYLNWF




EAHDGALTDYGDYLNWFDPWGQGTLVTVSS

DP





COVD21_P1_HC_A3-
877
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
878
ARDLYSS


p1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

GGTDI




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR






DLYSSGGTDIWGQGTMVTVSS







COVD21_P3_HC_G1-
881
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
882
ARDLYSS


p1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

GGTDI




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR






DLYSSGGTDIWGQGTMVTVSS







COVD21_P1_HC_A2-
885
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
886
ARGYGDY


p1369

MTWVRQAPGKGLEWVSLIYSGGSTFYADSVKG

YFDY




RFTISRDSSKNTLYLQMNSLRAEDTAVYYCARGY






GDYYFDYWGQGTLVTVSS







COVD21_P2_HC_F7-
889
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
890
ARDYGDF


p1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

YFDY




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR






DYGDFYFDYWGQGTLVTVSS







COVD21_P1_HC_C8-
893
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
894
ARDWGD


p1369

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVKG

YYFDY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARD






WGDYYFDYWGQGTLVTVSS







COVD21_P1_HC_A10-
897
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
898
ARDYGDF


p1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

YFDY




GRFTISRDNSKNTLYLQMNSLRAGDTAVYYCAR






DYGDFYFDYWGQGTLVTVSS







COVD21_P1_HC_B12-
901
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
902
ARDLSVF


p1369

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVKG

GMDV




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARD






LSVFGMDVWGQGTTVTVSS







COVD21_P3_HC_C9-
905
EVQLVESGGGLIQPGGSLRVSCAASGFTVSSNY
906
ARDLGER


p1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

GMDV




GRFTISRDNSKNTLSLQMNSLRAEDTAVYYCAR






DLGERGMDVWGQGTTVTVSS







COVD21_P1_HC_H7-
909
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
910
ARYCSGG


p1369

MSWVRQAPGKGLEWVANIKQDGSEKYYVDSV

SCHPPGQ




KGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

WLSDAF




RYCSGGSCHPPGQWLSDAFDIWGQGTMVTVS

DI




S







COVD21_P1_HC_F1-
913
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
914
ARLRWLR


p1369

MSWVRQAPGKGLEWVTNIKLDGSEKYYVDSVK

ADFDY




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR






LRWLRADFDYWGQGTLVTVSS







COVD21_P1_HC_C10-
917
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
918
ARYYDILT


p1369

MSWVRQAPGKGLEWVANIKQDGSEKYYVDSV

GYYVDYY




KGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

YMDV




RYYDILTGYYVDYYYMDVWGXGTTVTVSS







COVD21_P3_HC_H10-
921
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTH
922
TRDDSS


p1369

WMHWVRQAPGKGLVWVSRINSDGSRRAYAT

WPHFFD




SVKGRFTISRDNAKNTLYLQMDSLRDEDTAVYY

N




CTRDDSSWPHFFDNWGQGTLVTVSS







COVD21_P2_HC_D8-
925
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
926
ARAWAM


p1369

MHWVRQAPGKGLVWVSRINSDGSSTSYADSV

RQTTLTP




KGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCA

EWIDY




RAWAMRQTTLTPEWIDYWGQGTLVTVSS







COVD21_P2_HC_D9-
929
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
930
ARAWAM


p1369

MHWVRQAPGKGLVWVSRINSDGSSTSYADSV

RQTTLTP




KGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCA

EWIDY




RAWAMRQTTLTPEWIDYWGQGTLVTVSS







COVD21_P3_HC_G3-
933
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
934
AKGGEGF


p1369

MHWVRQAPGKGLEWVSGVTWNSGSIGYADS

RNWNDG




VKGRFIISRDNAKNSLYLQMNSLRAEDTALYYCA

LDYFDY




KGGEGFRNWNDGLDYFDYWGQGTLVTVSS







COVD21_P1_HC_A5-
937
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
938
AKDGRSG


p1369

MHWVRQAPGKGLEWVSGISWNSGTIGYADSV

DQWPEL




KGRFTISRDNAKNSLHLHMRSLRAEDTALYYCA

YYFDY




KDGRSGDQWPELYYFDYWGQGTLVTVSS







COVD21_P2_HC_E10-
941
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
942
AKAGVR


p1369

MHWVRQAPGKGLEWVSGISWNSGTIGYADSV

GIAAAGP




KGRFTISRDNAKNSLYLQMNSLRAEDTAFYYCA

DLNFDH




KAGVRGIAAAGPDLNFDHWGQGTLVTVSS







COVD21_P3_HC_F9-
945
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
946
AKGSSSS


p1369

MHWVRQAPGKGLEWVSGITWNSGSIAYADSV

YHNWFD




KGRFTISRDNAKNSLYLQMNSLRAEDTALYYCA

P




KGSSSSYHNWFDPWGQGTLVTVSS







COVD21_P1_HC_D6-
949
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
950
AKDGAG


p1369

MHWVRQAPGKGLEWVSGISWNSVSIDYADSV

TENWFD




KGRFTISRDNAKNSLYLQMNSLRAEDTALYYCA

P




KDGAGTENWFDPWGQGTLVTVSS







COVD21_P2_HC_G3-
953
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
954
AKDMLG


p1369

MHWVRQAPGKGLEWVSGISWNSGSIGYAHSV

NYYYYAM




KGRFTISRDNAKNSLYLHMNSLRAEDTALYYCA

VV




KDMLGNYYYYAMVVWGQGTTVTVSS







COVD21_P1_HC_E6-
957
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
958
ARTMYYY


p1369

YWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS

DSSGSFD




RVTISVDTSKNQFSLKLSSVTAADTAVYYCARTM

Y




YYYDSSGSFDYWGQGTLVTVSS







COVD21_P1_HC_G1-
961
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
962
ASGELSA


p1369

YWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLES

FGELFPH




RVTISVDTSKNQFSLKLSSVTAADTAVYYCASGE

DY




LSAFGELFPHDYWGXGTLVTVSS







COVD21_P3_HC_G7-
965
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
966
ARVHVVR


p1369

YWSWIRQHPGKGLEWIGYIYYSGSPYYNPSLKS

GVANYPY




RVTISIDTSKNQFSLKLSSVTAADTAVYYCARVH

FDY




VVRGVANYPYFDYWGQGTLVTVSS







COVD21_P1_HC_D5-
969
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
970
ARGSYSN


p1369

YWGWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS

YNGGLDY




RVTISVDTSKNQFSLKLSSVTAADTAVYYCARGS






YSNYNGGLDYWGQGTLVTVSS







COVD21_P2_HC_A9-
973
QVQLQESGPGLVKPSQTLSLTCTVSGGSFSSGG
974
ARVATDY


p1369

YYWHWIRQHPGKGLEWIGYIYYSGSTYYNPSLK

GDSFDY




SRVTISVDTSKNQFSLKLSSVTAADTAVYYCARV






ATDYGDSFDYWGQGTLVTVSS







COVD21_P3_HC_A8-
977
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
978
ARAPPGD


p1369

SWIRQPAGKGLEWIGRIYTSGSTKYNPSLKSRVT

FYDSSGY




MSVDTSKNQFSLKLSSVTAADTAVYYCARAPPG

FSAFDI




DFYDSSGYFSAFDIWGQGTMVTVSS







COVD21_P1_HC_B6-
981
QVQLQESGPGLVKPSETLSLTCTVSGGSISAYYW
982
ARDNGY


p1369

SWIRQPAGKGLEWIGRIYTSGSTIYNPSLKSRVT

VWGSYR




MSVDTSKNQFSLKLSSVTAADTAVYYCARDNGY

PDAFDI




VWGSYRPDAFDIWGQGTMVTVSS







COVD21_P1_HC_B6-
985
QVQLQESGPGLVKPSETLSLTCTVSGGSISAYYW
986
ARDNGY


p1369

SWIRQPAGKGLEWIGRIYTSGSTIYNPSLKSRVT

VWGSYR




MSVDTSKNQFSLKLSSVTAADTAVYYCARDNGY

PDAFDI




VWGSYRPDAFDIWGQGTMVTVSS







COVD21_P2_HC_D4-
989
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
990
ARVVGYS


p1369

SWIRQPAGKGLEWIGRIYTSGSTNYNPSLESRVT

SRGANYY




MSVDTSKNQFSLKLSSVTAADTAVYYCARVVGY

MDV




SSRGANYYMDVWGKGTTVTVSS







COVD21_P1_HC_H5-
993
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
994
ARVPSVG


p1369

SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

DCSSTSCL




ISVDTSKNQFSLKLSSVTAADTAVYYCARVPSVG

YWYFDL




DCSSTSCLYWYFDLWGRGTLVTVSS







COVD21_P2_HC_F4-
997
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
998
ARYGMG


p1369

SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

ELLTLRSE




ISVDTSKNQFSLKLSSVTAADTAVYYCARYGMG

YYFDY




ELLTLRSEYYFDYWGQGTLVTVSS







COVD21_P3_HC_C4-
1001
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
1002
ARSYDSS


p1369

SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

GLSYNWF




ISVDTSKNQFSLKLSSVTAADTAVYYCARSYDSS

DP




GLSYNWFDPWGQGTLVTVSS







COVD21_P2_HC_E2-
1005
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
1006
ARGGYYY


p1369

SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

DSSGYEY




ISVDTSKNQFSLKLSSVTAADTAVYYCARGGYYY

YYYYGM




DSSGYEYYYYYGMDVWGQGTTVTVSS

DV





COVD21_P1_HC_C5-
1009
QVQLQESGPGLVKPSETLSLTCAVSGGSVSSGN
1010
ARETYYY


p1369

YYWNWIRQPPGKGLEWIGYIYYSGSTNYNPSLK

DSSGYYIS




SRVTISVDTSKNQFSLKLNSVTAADTAVYHCARE

DAFDI




TYYYDSSGYYISDAFDIWGQGTMVTVSS







COVD21_P2_HC_H4-
1013
EVQLVQSGAEVKKPGESLKISCKGSGYSFSSYCIG
1014
ARQWRG


p1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG

YYDRSGY




QVTISVDKSISTAYLQWSSLKASDTAMYYCARQ

YHFDAFD




WRGYYDRSGYYHFDAFDIWGQGTMVTVSS

I





COVD21_P1_HC_C6-
1017
EVQLVQSGAEVKKPGESLKISCKGSGYSFTTYCIG
1018
ARHWYY


p1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG

GDYGNYS




QVTISADKSISTAYLQWSSLKASDTAMYYCARH

YYYLDV




WYYGDYGNYSYYYLDVWGKGTTVTVSS






SEQ

SEQ




ID

ID



SEQUENCE_ID
NOS
aa
NOS
cdr3_aa










KAPPA











COVD21_P1_K_A4-
503
DIQMTQSPSSLSASVGDRVTITCRASQSI
504
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P1_K_B5-
507
DIQMTQSPSSLSASVGDRVTITCRASQSI
508
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P1_K_C12-
511
DIQMTQSPSSLSASVGDRVTITCRASQSI
512
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P1_K_E4-
515
DIQMTQSPSSLSASVGDRVTITCRASQSI
516
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P1_K_F1-
519
DIQMTQSPSSLSASVGDRVTITCRASQSI
520
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P2_K_B7-
523
DIQMTQSPSSLSASVGDRVTITCRASQSI
524
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P2_K_B9-
527
DIQMTQSPXSLSASVGDRVTITCRASQS
528
QQS


p1389

ISSYLNWYQQKPGKAPKLLIYAASSLQS

YST




GVPSRFSGSGSGTDFTLTISSLQPEDFAT

PRT




YYCQQSYSTPRTFGQGTKVEIK







COVD21_P2_K_E1-
531
DIQMTQSPSSLSASVGDRVTITCRASQSI
532
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P2_K_E11-
535
DIQMTQSPSSLSASVGDRVTITCRASQSI
536
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P2_K_F6-
539
DIQMTQSPSSLSASVGDRVTITCRASQSI
540
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P3_K_A6-
543
DIQMTQSPSSLSASVGDRVTITCRASQSI
544
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P3_K_B12-
547
DIQMTQSPSSLSASVGDRVTITCRASQSI
548
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P3_K_B12-
551
DIQMTQSPSSLSASVGDRVTITCRASQSI
552
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PRT




YCQQSYSTPRTFGQGTKVEIK







COVD21_P1_K_C8-
555
DIQMTQSPSSLSASVGDRVTITCQASQD
556
QQY


p1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

DNL




GVPSRFSGSGSGTDFTFTISSLQPEDIAT

PIT




YYCQQYDNLPITFGQGTRLEIK







COVD21_P1_K_F12-
559
DIQMTQSPSSLSASVGDRVTITCQASQD
560
QQY


p1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

DNL




GVPSRFSGSGSGTDFTFTISSLQPEDIAT

PIT




YYCQQYDNLPITFGQGTRLEIK







COVD21_P2_K_H9-
563
DIQMTQSPSSLSASVGDRVTITCQASQD
564
QQY


p1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

DNL




GVPSRFSGSGSGTDFTFTISSLQPEDIAT

PIT




YYCQQYDNLPITFGQGTRLEIK












LAMBDA











COVD21_P2_L_E5-
567
QSVLTQPPSASGTPGQRVTVSCSGSSSN
568
AA


p1409

IGSNTVNWYQQLPGTAPKLLIYSNNQR

WD




PSGVPDRFSGSKSGTSASLAISGLQSEDE

DSL




ADYFCAAWDDSLNGPVFGGGTKLTVX

NGP






V





COVD21_P2_L_F8-
571
QSVLTQPPSASGTPGQRVTVSCSGSSSN
572
AA


p1409

IGSNTVNWYQQLPGTAPKLLIHSNNQR

WD




PSGVPDRFSGSKSGTSASLAISGLQSEDE

DSL




ADYYCAAWDDSLNGPVFGGGTKLTVL

NGP






V





COVD21_P2_L_G5-
575
QSVLTQPPSASGTPGQRVTVSCSGSSSN
576
AA


p1409

IGSNTINWYQQLPGTAPKLLIYSNNQRP

WD




SGVPDRFSGSKSGTSASLAISGLQSEDEA

DSL




NYYCAAWDDSLNGPVFGGGTKLTVL

NGP






V










KAPPA











COVD21_P1_K_A11-
579
DIQMTQSPSSLSASVGDRVTITCRASQSI
580
QQS


p1389

SSYLNWYHQKPGKAPKLLIYTASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PP




YCQQSYSTPPWTFGQGTKVEIK

WT





COVD21_P1_K_D1-
583
DIQMTQSPSSLSASVGDRVTITCRASQSI
584
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YNT




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PP




FCQQSYNTPPWTFGQGTKVEIK

WT





COVD21_P1_K_H7-
587
DIQMTQSPSSLSASVGDRVTITCRASQSI
588
QQS


p1389

STYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PP




YCQQSYSTPPWTFGQGTKVEIK

WT










LAMBDA











COVD21_P2_L_B5-
591
QSVLTQPPSASGSPGQSVTISCTGTSSD
592
SSD


p1409

VGGYNYVSWYQQHPGKAPKLMIYEVS

AGS




KRPSGVPDRFSGSKSGNTASLTVSGLQA

NNV




EDEADYYCSSDAGSNNVVFGGGTKLTV

V




L







COVD21_P3_L_B5-
595
QSALTQPPSASGSPGQSVTISCTGTSSD
596
SSD


p1409

VGGYNYVSWYQQHPGKAPKLMIYEVS

AGS




KRPSGVPDRFSGSKSGNTASLTVSGLQA

NNV




EDEAEYYCSSDAGSNNVVFGGGTKLTVL

V










KAPPA











COVD21_P1_K_F9-
599
EIVLTQSPGTLSLSPGERATLSCRASQSV
600
QQY


p1389

RSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PW




YYCQQYGSSPWTFGQGTKVEIK

T





COVD21_P2_K_F10-
603
EIVLTQSPXSLSLSPGERATLSCRASQSVS
604
QQY


p1389

SSYLAWYQQKPGQAPRLLIYGASSRATG

GSS




IPDRFSGSGSGTDFTLTISRLEPEDFAVYY

PW




CQQYGSSPWTFGQGTKVEIK

T





COVD21_P1_K_E9-
607
DIVMTQSPLSLPVXPGEPASISCRSSQSL
608
MQ


p1389

LHSNGFHFLEWYLQKPGQSPQLLIYSGS

GLQ




NRASGVPDRFSGSGSGTHFTLKISRVEA

TPL




EDVGVYYCMQGLQTPLTFGGGTKVEIK

T





COVD21_P1_K_G2-
611
DIVMTQSPLSLPVTPGEPASISCRSSQSL
612
MQ


p1389

LHSNGFHFLDWYLQKPGQTPQLLIYVG

ALQ




SNRASGVPDRFSGSGSGTDFTLKISRVE

TPL




AEDVGVYYCMQALQTPLTFGGGTKVEI

T




K







COVD21_P1_K_G4-
615
DIQMTQSPSTLSASVGDRVTITCRASQSI
616
QQY


p1389

SSWLAWYQQKPGKAPKLLIYKASSLESG

NSY




VPSRFSGSGSGTEFTLTISSLQPDDFATY

ST




YCQQYNSYSTFGQGTKVEIK







COVD21_P2_K_B2-
619
DIQMTQSPSTLSASVGDRVTITCRASQSI
620
QQY


p1389

SSWLAWYQQKPGKAPKLLIYKASSLESG

NSY




VPSRFSGSGSGTEFTLTISSLQPDDFATY

ST




YCQQYNSYSTFGQGTKVEIK












LAMBDA











COVD21_P1_L_F2-
623
QSVLTQPASVSGSPGQSITISCTGTSSGV
624
SSY


p1409

GGYNFVSWYQQHPGKAPKLMIYDVSN

TSR




RPSGVSNRFSGSKSGNTASLTISGLQAE

STL




DEADYHCSSYTSRSTLGVFGGGTKLTVL

GV





COVD21_P2_L_E2-
627
QSVLTQPASVSGSPGQSITISCTGTSSDV
628
SSY


p1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




RPSGVSNRFSGSKSGNTASLTISGLQAE

TVV




DEADYYCSSYTSSSTVVFGGGTKLTVL












KAPPA











COVD21_P1_K_B10-
631
DIQMTQSPSTLSASVGDSVTITCRASQSI
632
QQY


p1389

SSWLAWYQQKPGKAPKLLIYKASSLESG

NNY




VPSRFSGSGSGTEFTLTISSLQPDDFATY

RYT




YCQQYNNYRYTFGQGTKLEIK







COVD21_P1_K_H11-
635
DIQMTQSPSTLSASVGDRVTITCRASQSI
636
QKY


p1389

SSWLAWYQQKPGKAPKLLIYKASSLESG

NSY




VPSRFSGSGSGTEFTLTISSLQPDDFATY

RYT




YCQKYNSYRYTFGQGTKLEIK












LAMBDA











COVD21_P3_L_E4-
639
QSVLTQPASVSGSPGQSITISCTGTSSDI
640
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV





COVD21_P1_L_G7-
643
SYVLTQPPSVSVAPGKTARITCGGNSIGS
644
QV


p1409

KSVHWYQQKPGQAPVLVIYYDSDRPSG

WD




IPERFSGSNSGNTATLTISRVEAGDEADF

SG




HCQVWDSGWVFGGGTKLTVL

WV





COVD21_P2_L_D10-
647
QSVLTQPASESGSPGQSITISCTGTSSDV
648
CSY


p1409

GTYNLVSWYQQHPGKAPKLMIYEGSKR

AAS




PSGVSNRFSGSKSGNTASLTISGLQAED

STY




EADYYCCSYAASSTYVFGTGTKVTVL

V





COVD21_P2_L_C7-
651
QSALTQPASESGSPGQSITISCTGTSSDV
652
CSY


p1409

GSYNLVSWYQQHPGKAPKLMIYEGSKR

AGS




PSGVSNRFSGSKSGNTASLTISGLQAED

NT




EADYYCCSYAGSNTWVFGGGTKLTVL

WV





COVD21_P1_L_B12-
655
QSVLTQPASVSGSPGQSITISCTGTSSDV
656
CSY


p1409

GSYNLVSWYQQHPGKAPKLMIYEVSKR

AGS




PSGVSNRFSGSKSGNTASLTISGLQAED

SIVV




EADYYCCSYAGSSIVVFGGGTKLTVL







COVD21_P2_L_F4-
659
QSALTQPASVSGSPGQSITISCTGTSSDV
660
SSY


p1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




RPSGVSNRFSGSKSGNTASLTISGLQAE

TV




DEADYYCSSYTSSSTVFGTGTKVTVL







COVD21_P2_L_D7-
663
QSVLTQPASVSGSPGQSITISCTGTNSD
664
SSY


p1409

VGGYNYVSWYQQHPGKAPKLMIYDVG

TSSS




NRPSGVSNRFSGSKSGNTASLTISGLQA

TLV




EDEADYYCSSYTSSSTLVFGGGTKLTVL







COVD21_P2_L_C1-
667
QSVLTQPASVSGSPGQSITISCTGTSSDV
668
SSY


p1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




RPSGVSNRFSGSKSGNTASLTISGLQAE

TYV




DEADYYCSSYTSSSTYVFGTGTKVTVL












KAPPA











COVD21_P1_K_G5-
671
DIQMTQSPSSLSASVGDRVTITCRASQSI
672
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PPS




YCQQSYSTPPSFGQGTKVEIK












LAMBDA











COVD21_P2_L_D3-
675
SYVLTQPPSVSVAPGKTARITCGGNNIG
676
QV


p1409

SKSVHWYQQKPGQAPVLVIYYDSDRPS

WD




GIPERFSGSNSGNTAILTISRVEAGDEAD

SSS




YYCQVWDSSSDHVVFGGGTKLTVL

DHV






V





COVD21_P1_L_G8-
679
SYVLTQPPSVSVAPGKTARITCGENNIGS
680
QV


p1409

KSVHWYQQKPGQAPVLVIYYDSDRPSG

WD




IPERFSGSNSGNTATLTINRVEAGDEAD

SSS




YYCQVWDSSSDHVVFGGGTKLTVL

DHV






V





COVD21_P2_L_E4-
683
QSVLTQPSSHSASSGASVRLTCMLSSGF
684
GT


p1409

SVGDFWIRWYQQKPGNPPRYLLYYHSD

WH




SNKGQGSGVPSRFSGSNDASANAGILRI

SNS




SGLQPEDEADYYCGTWHSNSRVFGGG

RV




TKLTVL












KAPPA











COVD21_P2_K_F12-
687
DIQMTQSPSSLSASVGDRVTITCQASQD
688
QQY


p1389

ISNYLNWYQQKPGKAPKLLIYDASNLEA

DNL




GVPSRFSGSGSGTDFTFTISSLQPEDIAT

PSF




YYCQQYDNLPSFTFGPGTXVDIK

T





COVD21_P1_L_B3-
691
QSVLTQPPSASGTPGQRVTISCSGSSSNI
692
AS


p1409

GSNSVNWFQQLPGTAPKLLIYSNNQRP

WD




SGVPDRFSGSKSGASASLAISGLQSEDE

DSL




ADYYCASWDDSLNGPLFGGGTKLTVL

NGP






L





COVD21_P1_L_B3-
695
QSVLTQPPSASGTPGQRVTISCSGSSSNI
696
AS


p1409

GSNSVNWFQQLPGTAPKLLIYSNNQRP

WD




SGVPDRFSGSKSGASASLAISGLQSEDE

DSL




ADYYCASWDDSLNGPLFGGGTKLTVL

NGP






L





COVD21_P3_L_C11-
699
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
700
QSY


p1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAED

LSG




EADYYCQSYDSSLSGVVFGGGTKLTVL

VV





COVD21_P2_K_G6-
703
DIQMTQSPSSLSASVGDRVTITCQASQD
704
QQY


p1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

DNL




GVPSRFSGSGSGTDFTFTISSLQPEDIAT

PMY




YYCQQYDNLPMYTFGQGTKLEIK

T





COVD21_P1_K_B2-
707
EIVLTQSPATLSLSPGERATLSCRASQSV
708
QQ


p1389

SSYLAWYQQKPGQAPRLLIYDASNRAT

RSN




GIPARFSGSGSGTDFTLTISSLEPEDFAVY

WPL




YCQQRSNWPLTFGGGTKVEIK

T





COVD21_P2_K_D2-
711
DIQMTQSPSSLSASVGDRVTITCQASQD
712
QQ


p1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

HD




GVPSRFSGSGSGTDFTFTISSLQPEDIAT

NVV




YYCQQHDNVVTFGPGTKVEIK

T










LAMBDA











COVD21_P3_L_B4-
715
QSVLTQPASVSGSPGQSITISCTGTSSDI
716
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV





COVD21_P2_L_A12-
719
NFMLTQPHSVSESPGKTVTISCTGSSGSI
720
QSY


p1409

ASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




PSGVPDRFSGSIDSSSNSASLTISGLKTED

NH




EADYYCQSYDSSNHWVFGGGTKLTVL

WV










KAPPA











COVD21_P1_K_A10-
723
DIQMTQSPSSLSASVGDRVTITCRASQSI
724
QQS


p1389

SSYLNWYQQKPGKAPKVLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PPL




YCQQSYSTPPLTFGGGTKVEIK

T










LAMBDA











COVD21_P3_L_A2-
727
QSVLTQPASVSGSPGQSITISCTGTSSDI
728
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV










KAPPA











COVD21_P1_K_D3-
731
DIQMTQSPSSLSASVGDRVTITCRASQSI
732
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PGL




YCQQSYSTPGLTFGGGTKVEIK

T










LAMBDA











COVD21_P1_L_D10-
735
QSVLTQPPSASGTPGQRVTISCSGSSSNI
736
AT


p1409

GSNYVYWYQQLPGTAPKLLIYRNNQRP

WD




SGVPDRFSGSKSGTSASLAISGLRSEDEA

DSL




DYYCATWDDSLSGPVFGGGTKLTVL

SGP






V





COVD21_P3_L_H6-
739
QSALTQPASVSGSPGQSITISCTGTSSDI
740
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV





COVD21_P3_L_D12-
743
QSVLTQPPSASGTPGQRVTISCSGISSNL
744
AE


p1409

GSNTVNWFQQLPGTAPKLLIYNSNRRP

WD




SGVPDRFSGSKSGTSASLAISGLQSEDEG

DSL




DYYCAEWDDSLSTWVFGGGTHLTVL

STW






V





COVD21_P3_L_D11-
747
QSVLTQPASVSGSPGQSITISCTGTSSDI
748
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV





COVD21_P1_L_C3-
751
QSVLTQPPSASGSPGQSVTISCTGTSSD
752
SSY


p1409

VGGYKYVSWYQQHPGKAPKLMIYEVSK

AGS




RPSGVPDRFSGSKSGNTASLTVSGLQAE

NN




DEADYYCSSYAGSNNHVFGGGTKLTVL

HV





COVD21_P2_L_F11-
755
SYVLTQPPSVSVAPGKTARITCGGNNIG
756
QV


p1409

SKSVHWYQQKPGQAPVLVIYYDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDLFGGGTKLTVL

DL










KAPPA











COVD21_P1_K_C4-
759
DIQMTQSPSSLSASVGDRVTITCRASQSI
760
QQS


p1389

ASYLNWFQQKPGKAPKLLIYAASSLQSG

YSS




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PPT




CCQQSYSSPPTFGQGTKLEIK







COVD21_P1_K_G9-
763
DIQMTQSPXXLSASVGDRVTITCQASQ
764
QQY


p1389

DISNYLNWYQQKPGKAPKLLIYDASNLE

DNR




TGVPSRFSGSGSGTDFTFTISSLQPEDIA

LFT




TYYCQQYDNRLFTFGPGTKVDIK







COVD21_P2_K_F7-
767
DIQMTQSPSSLSASVGDRVTITCRASQSI
768
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YNT




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PPIT




YCQQSYNTPPITFGPGTKVDIK







COVD21_P2_K_D1-
771
DIQMTQSPXSLSASVGDRVTITCRASQS
772
QQS


p1389

ISSYLNWYQQKPGKAPKLLIYAASSLQS

YSS




GVPSRFSGSGSGTDFTLTISSLQPEDFAT

TLT




YFCQQSYSSTLTFGGGTKVEIK












LAMBDA











COVD21_P3_L_E1-
775
QSALTQPASVSGSPGQSITISCTGTSSDV
776
SSY


p1409

GGYNYVSWYRQHPGKAPKLMIYDVSN

TSSS




RPSGVSNRFSGSKSGNTASLTISGLQAE

TPD




DEADYYCSSYTSSSTPDVFGSGTKVTVL

V





COVD21_P1_L_F8-
779
NFMLTQPHSVSESPGKTVTISCTGSSGSI
780
QSY


p1409

ASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




PSGVPDRFSGSIDSSSNSASLTISGLKTED

NR




EADYYCQSYDSSNRWVFGGGTKLTVL

WV





COVD21_P3_L_D4-
783
QSALTQPASVSGSPGQSITISCTGTSSDI
784
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV










KAPPA











COVD21_P2_K_D4-
787
DVVMTQSPLSLPVTLGQPASISCRSSQS
788
MQ


p1389

LVYSDGNTYLNWFQQRPGQSPRRLIYK

GTH




VSNRDSGVPDRFSGSGSGTDFTLKISRV

WP




EAEDVGVYYCMQGTHWPPYTFGQGTK

PYT




LEIK







COVD21_P2_K_G9-
791
DIQMTQSPSSLSASVGDRVTITCRASQSI
792
QQS


p1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSRSGTDFTLTISSLQPEDFATY

PPL




YCQQSYSTPPLTFGGGTKVEIK

T





COVD21_P1_K_H9-
795
DIQMTQSPSTLSASVGDRVTITCRANQS
796
QQY


p1389

ISSWLAWYQQKPGKAPKLLIYKASSLES

NSY




GVPSRFSGSGSGTEFTLTISSLQPDDFAT

WT




YYCQQYNSYWTFGQGTKVEIK







COVD21_P2_K_G8-
799
DIQMTQSPSSLSASVGDRVTITCQASQD
800
QQY


p1389

INNYLNWYQQKPGKAPKLLIYDASNLET

DNL




GVPSRFSGSGSGTDFAFTISSLQPEDIAT

PRT




YYCQQYDNLPRTFGQGTKVEIK







COVD21_P2_K_E12-
803
DIQMTQSPSSLSASVGDRVTITCQASQD
804
QQY


p1389

ISNYLNWYQQKPGKAPELLIYDASNLET

DNL




GVPSRFSGSGSGTDFTFTISSLQPEDIAT

PLT




YYCQQYDNLPLTFGGGTKVEI







COVD21_P3_K_H4-
807
EIVLTQSPATLSLSPGERATLSCRASQSV
808
QQ


p1389

SSYLAWYQQKPGQAPRLLIYDASNRAT

RSN




GIPARFSGSGSGTDFTLTISSLEPEDFAVY

WPL




YCQQRSNWPLTFGGGTKVEIK

T





COVD21_P2_K_C4-
811
EIVLTQSPXXLSLSPGERATLSCRASQSVS
812
QQY


p1389

SRNLAWYQQKPGQAPRLLIDGASSRAT

GSS




GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PAIT




YYCQQYGSSPAITFGQGTRLEIK







COVD21_P2_K_G2-
815
DIQMTQSPSSLSASVGDRVTITCRASQSI
816
QQS


p1389

SSYLNWYQQKPGIAPKLLIYAASSLQSG

YST




VPSRFSGIGSGTDFTLTISSLQPEDFATYY

PW




CQQSYSTPWTFGQGTKVEIK

T





COVD21_P1_K_H10-
819
DIQMTQSPSSLSASVGDRVTITCRASQSI
820
QQS


p1389

SSYLNWYQQRPGKAPKLLIYAASSLQSG

YSTL




FPSRFSGSGSGTDFTLTISSLQPEDFATYY

MYT




CQQSYSTLMYTFGQGTKLEI







COVD21_P2_K_B1-
823
DIVMTQSPXSLAVSLGERATINCKSSQS
824
QQY


p1389

VLYSSNNKNYLAWYQQKPGQPPKLLIY

YST




WASTRESGVPDRFSGSGSGTDFTLTISSL

PFT




QAEDVAVYYCQQYYSTPFTFGPGTKVDI






K







COVD21_P3_L_E6-
827
QSVLTQPPSASGTPGQRVTISCSGSSSNI
828
AA


p1409

GSNTVNWYQQLPGTGPKLLIYSNNERP

WD




SGVPDRFSGSKSGTSASLAISGLQPEDEA

DSL




DYYCAAWDDSLNGPVFGTGTKVTVL

NGP






V





COVD21_P3_L_A5-
831
QSVLTQPRSVSGSPGQSVTISCTGTSSD
832
CSY


p1409

VGGYNYVSWYQQHPGKAPKLMIYDVS

AGS




KRPSGVPDRFSGSKSGNTASLTISGLQA

FW




EDEADYYCCSYAGSFWVFGGGTKLTVL

V





COVD21_P3_L_C12-
835
QSVLTQPASVSGSPGQSITISCAGTSSDV
836
SSY


p1409

GAYNYVSWYQQHPGKAPKLMIYDVSN

TSSS




RPSGVSNRFSGSKSGNTASLTISGLQAE

TW




DEADYYCSSYTSSSTWVFGGGTKLTVL

V





COVD21_P2_K_D8-
839
DIQMTQSPSSVSASVGDRVTITCRASQ
840
QQ


p1389

GISSWLAWYQQKPGKAPKLLIYAASSLQ

ANS




SGVPSRFSGSGSGTDFTLTISSLQPEDFA

LPLT




TYYCQQANSLPLTFGGGTKVEIK







COVD21_P1_K_B11-
843
DVVMTQSPLSLPVTLGQPASISCRSSQS
844
MQ


p1389

LVFSDGNTYLNWFQQRPGQSPRRLIYK

GTH




VSNRDSGVPDRFSGSGSGTDFTLKISRV

WP




EAEDVGVYFCMQGTHWPWTFGQGTK

WT




VEIK







COVD21_P1_K_C9-
847
DVVMTQSPLSLPVTLGQPASISCRSSQS
848
MQ


p1389

LVYIDGNTYLNWFQQRPGQSPRRLIYKV

GTH




SNRDSGVPDRFSGSGSGTDFTLKISRVE

WP




AEDVGVYYCMQGTHWPYTFGQGTKLE

YT




IK












LAMBDA











COVD21_P3_L_H8-
851
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
852
QSY


p1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAED

LSG




EADYYCQSYDSSLSGPYVFGTGTKVTVL

PYV





COVD21_P2_L_E10-
855
QSVLTQPRSVSGSPGQSVTISCTGTSSD
856
CSY


p1409

VGGYNYVSWYQQHPGKAPKLMIYDVS

AGS




KRPSGVPDRFSGSKSGNTASLTISGLQA

YTY




EDEADYYCCSYAGSYTYVFGTGTKVTVL

V










KAPPA











COVD21_P2_K_A4-
859
AIQLTQSPSSLSASVGDRVTITCRASQGI
860
QQF


p1389

SSALAWYQQKPGKAPKFLIYDASSLESG

NNY




VPSRFSGSGSGTDFTLTISSLQPEDFATY

PLT




YCQQFNNYPLTFGGGTKVEIK







COVD21_P2_K_G11-
863
DIVMTQSPLSLPVTPGEPASISCRSSQSL
864
MQ


p1389

LHSNGYNYLDWYLQKPGQSPQLLIYLGS

ALQ




NRASGVPDRFSGSGSGTDFTLKISRVEA

TPIT




EDVGVYYCMQALQTPITFGQGTRLEIK












LAMBDA











COVD21_P3_L_G10-
867
QSVLTQPASVSGSPGQSITISCTGTSSDV
868
SSYI


p1409

GGYNYVSWYQQHPGKAPKLIIYNVSNR

SSN




PSGVSNRFSGSKSGNTASLTISGLQAED

TV




EADYYCSSYISSNTVFGGGTKLTVL







COVD21_P1_L_H2-
871
SYVLTQPPSVSVSPGQTARITCSGDALP
872
QSA


p1409

NQYAYWYQQKPGQAPVLVIYKDSERPS

DSR




GIPERFSGSSSGTTVTLTISGVQAEDEAD

GV




YYCQSADSRGVFGGGTKLTVL







COVD21_P1_L_A8-
875
SYVLTQPPSVSVAPGKTARITCGGNNIG
876
QV


p1409

SKSVHWYQQKPGQAPVLVIYYDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDHLYWVFGGGTKLTV

DHL




L

YW






V










KAPPA











COVD21_P2_K_A3-
879
EIVLTQSPVSLSLSPGERATLSCRASQSVS
880
QQY


p1389

SSYLAWYQQKPGQAPRLLIYGASSRATG

GSS




IPDRFSGSGSGTDFTLTISRLEPEDFAVYY

PGT




CQQYGSSPGTFGQGTKVEIK












LAMBDA











COVD21_P3_L_G1-
883
QSVLTQPASVSGSPGQSITISCTGTSSDI
884
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV










KAPPA











COVD21_P2_K_A2-
887
DIQLTQSPSFLSASVGDRVTITCRASQGI
888
QHL


p1389

SSYLAWYQQKPGKAPKLLIYAASTLQSG

NG




VPSRFSGSGSGTEFTLTISSLQPEDSATYY






CQHLNGFGPGTKVDIK







COVD21_P1_K_F7-
891
DIQMTQSPSSLSASVGDRVTITCRASQG
892
QQY


p1389

ISNSLAWYQQKPGKAPKLLLYAASRLES

YST




GVPSRFSGSGSGTDYTLTINSLQPEDFAT

PRT




FYCQQYYSTPRTFGQGTKVEIK







COVD21_P2_K_C8-
895
EIVLTQSPGTLSLSPGERATLSCRASQSV
896
QQY


p1389

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PRT




YYCQQYGSSPRTFGQGTKVEIK







COVD21_P2_K_A10-
899
EIVLTQSPGTLSLSPGERATLSCRASQSV
900
QQY


p1389

SSTYLAWYQQKPGQAPRLLIYGASSRAT

GSS




GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PRT




YYCQQYGSSPRTFGQGTKLEIK







COVD21_P2_K_B12-
903
DIQLTQSPSFLSASVGDRVTVTCRASQG
904
QQ


p1389

ISSYLAWYQQKPGKAPKLLIYAASTLQSG

VNS




VPSRFSGSGSGTEFTLTISSLQPEDFATXY

YSH




CQQVNSYSHFGGGSKAEI












LAMBDA











COVD21_P3_L_C9-
907
QSVLTQPASVSGSPGQSITISCTGTSSDI
908
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV










KAPPA











COVD21_P2_K_H7-
911
DIQMTQSPXSLSASVGDRVTITCRASQS
912
QQS


p1389

ISSYLNWYQQKPGKAPKLLIYAASSLQS

YST




GVPSRFSGSGSGTDFTLTISSLQPEDFAT

WT




YYCQQSYSTWTFGQGTKVEIK












LAMBDA











COVD21_P2_L_F1-
915
NFMLTQPHSVSESPGKTVTISCTGSSGSI
916
QSY


p1409

ASNYVQWYQQRPGSAPTTVIYEDNQR

DSG




PSGVPDRFSGSIDSSSNSASLTISGLKTED

NVV




EADYYCQSYDSGNVVFGGGTKLTVL







COVD21_P2_L_C10-
919
SYVLTQPPSVSVSPGQTARITCSGDALP
920
QSA


p1409

KQYAFWYQQKPGQAPVLVIYKDSERPS

DSS




GIPERFSGSSSGTTVTLTISGVQAEDEAD

GTY




YYCQSADSSGTYVVFGGGTRLTVL

VV










KAPPA











COVD21_P3_K_H10-
923
DIQMTQSPSSLSASVGDRVTITCRASQSI
924
QQS


p1389

SSYLNWYQQKPGKAPKLLIYVASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATY

RT




YCQQSYSTRTFGQGTKVEIK







COVD21_P1_K_D8-
927
EIVLTQSPGTLSLSPGERATLSCRASQSV
928
QQY


p1389

SSSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




GIPDRFSGSGSGTDFTLTISRLEPEDFAV

PYT




YYCQQYGSSPYTFGQGTKLEIK












LAMBDA











COVD21_P1_L_D9-
931
SYVLTQPPSVSVSPGQTARITCSGDALP
932
QSA


p1409

KQYAYWYQQKPGQAPVLVIYKDSERPS

DSR




GIPERFSGSSSGTTVTLTISGVQAEDEAD

KVV




YYCQSADSRKVVFGGGTKLTVL







COVD21_P3_L_G3-
935
QSVLTQPPSASGTPGQRVTISCSGSSSNI
936
AA


p1409

GSNTVNWYQQLPGTAPKLLIYSNNQRP

WD




SGVPDRFSGSKSGTSASLAISGLQSEDEA

DSL




DYYCAAWDDSLNGYVFGTGTKVTVL

NGY






V





COVD21_P2_L_A5-
939
SYVLTQPPSVSVAPGKTARITCGGNDIG
940
QV


p1409

SNGVYWYQQKPGQAPVLVIYYDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDHVVFGGGTKLTVL

DHV






V










KAPPA











COVD21_P1_K_E10-
943
EIVLTQSPATLSLSPGERATLSCRASQSV
944
QQ


p1389

SSYLAWYQQKPGQAPRLLIYDASNRAT

RIT




GIPARFSGSGSGTDFTLTISSLEPEDFAVY






YCQQRITFGQGTRLEIK












LAMBDA











COVD21_P3_L_F9-
947
QSALTQPASVSGSPGQSITISCTGTSSDI
948
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVXNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV





COVD21_P2_L_D6-
951
SYVLTQPPSVSVAPGKTARITCGGNNIG
952
QV


p1409

SKSVHWYQQKPGQAPLLVIYYDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDETD

SSS




YYCQVWDSSSDPHVVFGGGTKLTV

DPH






VV





COVD21_P1_L_G3-
955
QSALTQPASVSGSPGQSITISCTGTSSDV
956
SSY


p1409

GGYNYVSWYQHHPGKAPKLMIYDVSN

TSSS




RPSGVSNRFSGSKSGNTASLTISGLQAE

TLE




DEADYYCSSYTSSSTLEGVFGGGTKLTVL

GV










KAPPA











COVD21_P2_K_E6-
959
DIVMTQSPLSLPVTPGEPASISCRSSQSL
960
MQ


p1389

LHSNGYNYLDWYLQKPGQSPQLLIYLGS

ALQ




NRASGVPDRFSGSGSGTDFTLKISRVEA

TPH




EDVGVYYCMQALQTPHTFGGGTKVEIK

T





COVD21_P2_K_G1-
963
EIVLTQSPATLSLSPGERATLSCRASQSV
964
QQ


p1389

STYLAWYQQKPGQAPRLLIYDASNRAT

RSN




GIPARFSGSGSGTDFTLTISSLEPEDFAVY

WLF




YCQQRSNWLFTFGPGTKVDIK

T





COVD21_P3_L_G7-
967
QSXXTQPRSVSGSPGQSVTISCTGTSSD
968
CSY


p1409

VGGYNCVSWYQQHPGKAPKLMIYDVS

AGS




KRPSGVPDRFSGSKSGNTASLTISGLQA

YTP




EDEADYYCCSYAGSYTPWVFGGGTKLT

WV




VL







COVD21_P2_L_D5-
971
QSVLTQPPSASGSPGQSVTISCTGTSSD
972
SSY


p1409

VGGYNYVSWYQQHPGKAPKLMIYEVS

AGS




KRPSGVPDRFSGSKSGNTASLTVSGLQA

NN




EDEADYYCSSYAGSNNWVFGGGTKLTV

WV




L







COVD21_P1_L_A9-
975
QSVLTQEPSLTVSPGGTVTLTCASSTGA
976
LLYY


p1409

VTSGYYPSWFQQKPGQAPRALIYSTSN

GGA




KHSWTPARFSGSLLGGKAALTLSGVQP

WV




EDEADYYCLLYYGGAWVFGGGTKLTVL







COVD21_P3_L_A8-
979
QSALTQPASVSGSPGQSITISCTGTSSDI
980
SSY


p1409

GVYNYISWSQQHPGKAPKVMIYDVTN

RGS




RPSGVSNRFSGSKSGNTASLTISGLQAE

STP




DEADYYCSSYRGSSTPYVFGTGTKVTVL

YV





COVD21_P2_L_B6-
983
NFMLTQPHSVSESPGKTVTISCTGSSGSI
984
QSY


p1409

ASNYVQWYQQRPGSAPTTVIYEDNQR

DSR




PSGVPDRISGSIDSSSNSASLTISGLKTED

NVV




EADYYCQSYDSRNVVFGGGTRLTVL







COVD21_P2_L_B6-
987
NFMLTQPHSVSESPGKTVTISCTGSSGSI
988
QSY


p1409

ASNYVQWYQQRPGSAPTTVIYEDNQR

DSR




PSGVPDRISGSIDSSSNSASLTISGLKTED

NVV




EADYYCQSYDSRNVVFGGGTRLTVL







COVD21_P1_L_D4-
991
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
992
QSY


p1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAED

LSD




EADYYCQSYDSSLSDSLFGGGTKLTVL

SL





COVD21_P2_K_H5-
995
DIQMTQSPVSLSASVGDRVTITCRASQS
996
QQY


p1389

ISSWLAWYQQKPGKAPKLLIYKASSLES

NSY




GVPSRFSGSGSGTEFTLTISSLQPDDFAT

ST




YYCQQYNSYSTFGQGTKVEIK












LAMBDA











COVD21_P1_L_F4-
999
QSVLTQPRSVSGSPGQSVTISCTGTSSD
1000
YSY


p1409

VGGYNYVSWYQQHPGKAPKLMIYDVS

AGS




KRPSGVPDRFSGSKSGNTASLTISGLQA

YTF




EDEADYYCYSYAGSYTFVFGGGTKLTVL

V





COVD21_P3_L_C4-
1003
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1004
QSY


p1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAED

LSG




EADYYCQSYDSSLSGYVVFGGGTKLTVL

YVV





COVD21_P1_L_E2-
1007
QSVLTQPPSASGTPGQRVTISCSGSSSNI
1008
AA


p1409

GSNYVYWYQQLPGTAPKLLIYRNNQRP

WD




SGVPDRFSGSKSGTSASLAISGLRSEDEA

DSL




DYYCAAWDDSLSGYWVFGGGTKLTVL

SGY






WV










KAPPA











COVD21_P2_K_C5-
1011
DIQMTQSPSTLSASVGDRVTITCRASQSI
1012
QQY


p1389

SSWLAWYQQKPGKAPKLLIYKASSLESG

NSF




VPSRFSGSGSGTEFTLTISSLQPDDFATY

SYT




YCQQYNSFSYTFGQGTKLEIK







COVD21_P1_K_H4-
1015
EIVMTQSPATLSVSPGERATLSCRASQS
1016
QQY


p1389

VSSNLAWYQQKSGQAPRLLIYGASTRA

NN




TGIPARFSGSGSGTEFTLTISSLQSEDFAV

WL




YYCQQYNNWLGTFGQGTKVEFK

GT





COVD21_P2_K_C6-
1019
EIVMTQSPATLSVSPGERATLSCRASQS
1020
QQY


p1389

VSSNLAWYQQKPGQAPRLLIYGASTRA

NN




TGIPARFSGSGSGTEFTLTISSLQSEDFAV

WPL




YYCQQYNNWPLTFGGGTKVEIK

T
















TABLE 9





Anti-SARS-CoV-2 IgG antibodies from COV47




















SEQ

SEQ




ID

ID



SEQUENCE_ID
NO
aa
NO
cdr3_aa










HEAVY











COV047_P3_IgG_43-
1021
EVQLVESGGGLIQPGGSLRLSCAASGFTVSNNY
1022
AREGEV


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVKG

EGYNDF




RFTISRDKSKNTLYLQMNRLRAEDTAVYYCAREG

WSGYSR




EVEGYNDFWSGYSRDRYYFDYWGQGTLVTVSS

DRYYFDY





COV047_P4_IgG_57-
1025
EVQLVESGGGLIQPGGSLRLSCAASGFSVSSNY
1026
AREGEV


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVKG

EGYYDF




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREG

WSGYSR




EVEGYYDFWSGYSRDRYYFDYWGQGTLVTVSS

DRYYFDY





COV047_P4_IgG_58-
1029
EVQLVESGGGLIQPGGSLRLSCAASGFTVSNNY
1030
AREGEV


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSLKG

EGYYDF




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREG

WSGYSR




EVEGYYDFWSGYSRDRYYFDYWGQGTLVTVSS

DRYYFDY





COV047_P5_IgG_26-
1033
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
1034
AREGDV


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVKG

EGYYDF




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREG

WSGYSR




DVEGYYDFWSGYSRDRYYFDYWGQGTLVTVSS

DRYYFDY





COV047_P5_IgG_41-
1037
EVQLVESGGGLIQPGGSLRLSCAASGFTVRNNY
1038
AREGEV


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVKG

EGYYDF




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREG

WSGYSR




EVEGYYDFWSGYSRDRYYFDYWGQGTLVTVSS

DRYYFDY





COV047_P5_IgG_49-
1041
EVQLVESGGGLIQPGGSLRLSCAASGFSVSSNY
1042
AREGEV


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVKG

EGYYDF




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREG

WSGYSR




EVEGYYDFWSGYSRDRYYFDYWGQGTLVTVSS

DRYYFDY





COV047_P3_IgG_16-
1045
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKY
1046
ARDSSEV


P1369

MTWVRQAPGKGLEWVSVLYSGGSDYYADSVK

RDHPGH




GRFTISRDNSKNALYLQMNSLRVEDTGVYYCAR

PGRSVG




DSSEVRDHPGHPGRSVGAFDIWGQGTMVTVSS

AFDI





COV047_P4_IgG_12-
1049
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKY
1050
ARDSSEV


P1369

MTWVRQAPGKGLEWVSVLYSGGSDYYADSVK

RDHPGH




GRFTISRDNSKNALYLQMSSLRVEDTGIYYCARD

PGRSVG




SSEVRDHPGHPGRSVGAFDIWGQGTMVTVSS

AFDI





COV047_P4_IgG_65-
1053
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKY
1054
ARDSSEV


P1369

MTWVRQAPGKGLEWVSVLYSGGSDYYADSVK

RDHPGH




GRFTISRDNSKNALYLQMSSLRVEDTGIYYCARD

PGRSVG




SSEVRDHPGHPGRSVGAFDIWGQGTMVTVSS

AFDI





COV047_P5_IgG_57-
1057
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKY
1058
ARDSSEV


P1369

MTWVRQAPGKGLEWVSVLYSGGSDYYADSVK

RDHPGH




GRFTISRDNSKNALYLQMNSLRVEDTGVYYCAR

PGRSVG




DSSEVRDHPGHPGRSVGAFDIWGQGTMVTVSS

AFDI





COV047_P3_IgG_10-
1061
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGI
1062
ARDRGG


P1369

SWVRQAPGQGLEWMGWISAYNGNTNYAQKL

HDFWSG




QGRVTMTTDTSTSTAYMELRSLRSDDTAVFYCA

YGFYYYY




RDRGGHDFWSGYGFYYYYGMDVWGQGTTVT

GMDV




VSS







COV047_P5_IgG_95-
1065
QVQLVQSGAEVKKPGASVKVSCKASGYNFTSYG
1066
ARDRGG


P1369

ISWVRQAPGQGLEWMGWISGYNGNTNYGQK

HNFWSG




FQGGVTMTTDTSTSTAYMELRSLRSDDTAVYYC

YGYYYYY




ARDRGGHNFWSGYGYYYYYGMDVWGQGTTV

GMDV




TVSS







COV047_P4_IgG_34-
1069
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSM
1070
ARERGY


P1369

NWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRF

YGGKTP




TISRDNAKNSLYLQMNSLRAEDTAVYYCARERG

PFL




YYGGKTPPFLGGQGTLVTVSS







COV047_P5_IgG_24-
1073
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYN
1074
ARERGY


P1369

MNWVRQAPGKGLEWVSCISSSSSYIYYADSVKG

DGGKTP




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARER

PFL




GYDGGKTPPFLGGQGTLVTVSS







COV047_P4_IgG_91-
1077
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1078
AKNVGT


P1369

MHWVRQAPGKGLEWVAVTSYDGTNKYYADSV

GYNVMY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYFCAK

YFDY




NVGTGYNVMYYFDYWGQGTLVTVSS







COV047_P5_IgG_87-
1081
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYG
1082
AKQAGP


P1369

MHWVRQAPGKGLEWVAVMSYDGSSKYYADS

YCSGGSC




VKGRFTISRDNSKNTLCLQMNSLRAEDTAVYYC

YSAPFDY




AKQAGPYCSGGSCYSAPFDYWGQGTLVTVSS







COV047_P4_IgG_69-
1085
QVQLVESGGGVVQPGRSLRLSCTASGFTFSSYG
1086
AKVGLG


P1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YSSGWY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK

GEEIDY




VGLGYSSGWYGEEIDYWGQGTLVTVSS







COV047_P5_IgG_68-
1089
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYG
1090
AKVGME


P1369

MHWVRQAPGKGLEWVAVISYDGSNKYFADSV

YSSGWY




KGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCAK

GEEIDF




VGMEYSSGWYGEEIDFWGQGTLVTVSS







COV047_P3_IgG_64-
1093
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG
1094
AKDPFPL


P1369

MHWVRQAPGKGLEWVAVISYDGNNKYYADSV

AVAGTG




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK

YFDY




DPFPLAVAGTGYFDYWGQGTLVTVSS







COV047_P5_IgG_77-
1097
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1098
AKDPWE


P1369

MHWVRQAPGKGLEWVAVISYDGSNKHYADSV

LRQGNY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK

FDY




DPWELRQGNYFDYWGQGTLVTVSS







COV047_P3_IgG_65-
1101
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
1102
ARDYGD


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVKG

YYFDY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDY






GDYYFDYWGQGTLVTVSS







COV047_P5_IgG_27-
1105
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYM
1106
ARDFGE


P1369

SWVRQAPGKGLEWVSVIYSGGSTFYADSVKGR

FYFDY




FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDF






GEFYFDYWGQGTLVTVSS







COV047_P4_IgG_3-
1109
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKY
1110
ARDSSEV


P1369

MTWVRQAPGKGLEWVSVLYSGGSDYYADSVK

RDHPGH




GRFTISRDNSKNALYLQMNSLRVEDTGVYYCAR

PGRSVG




DSSEVRDHPGHPGRSVGAFDIWGQGTMVTVSS

AFDI





COV047_P5_IgG_90-
1113
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKY
1114
ARDSSEV


P1369

MTWVRQAPGKGLEWVSALYSGGSDYYADSVK

RDHPGH




GRFTISRDNSKNTLYLQMSSLRVEDTGVYYCARD

PGRSVG




SSEVRDHPGHPGRSVGAFDIWGQGTMVTVSS

AFDI





COV047_P3_IgG_24-
1117
EVQLVESGGGLVQPGGSQRLSCAASGFTVSSNY
1118
ARIANY


P1369

MSWIRQAPGKGLEWVSVIYSGGSAYYVDSVKG

MDV




RFTISRDNSKNTLYLQMNSLRPEDTAVYYCARIA






NYMDVWGKGTTVTVSS







COV047_P5_IgG_94-
1121
EVQLVESGGGLVQPGGSQRLSCAASGFTVSSNY
1122
ARIANY


P1369

MSWIRQAPGKGLEWVSVIYSGGSAYYVDSVKG

MDV




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIA






NYMDVWGKGTTVTVSS







COV047_P3_IgG_8-
1125
EVQLVQSGAEVKKPGESLKISCKGSGYRFTNYWI
1126
ARLSDR


P1369

GWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

WYSPFD




GQVTISADKSITTAYLQWSSLKASDTAMYYCARL

P




SDRWYSPFDPWGQGTLVTVSS







COV047_P3_IgG_91-
1129
EVQLVQSGAEVKKPGESLKISCKGSGYRFTNYWI
1130
ARLSDR


P1369

GWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

WYSPFD




GQVTISADKSITTAYLQWSSLKASDTAMYYCARL

P




SDRWYSPFDPWGQGTLVTVSS







COV047_P3_IgG_77-
1133
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYN
1134
ARVPRG


P1369

ITWVRQAPGQGLEWVGWISAYNGNTNYAQKF

YYDRSGY




QGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCA

YYLPHYL




RVPRGYYDRSGYYYLPHYLDYWGQGTLVTVSS

DY





COV047_P5_IgG_78-
1137
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGI
1138
ARDSAYS


P1369

SWVRQAPGQGLEWMGWISAYNGNTNYAQKL

GYDFFEA




QGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCA

PRDY




RDSAYSGYDFFEAPRDYWGQGTLVTVSS







COV047_P5_IgG_21-
1141
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDI
1142
ARPSSSL


P1369

SWVRQAPGQGLEWMGWINAYNGNTNYAQKL

TSYFDY




QGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCA

ARVPASY




RPSSSLTSYFDYWGQGTLVTVSS







COV047_P3_IgG_53-
1145
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGI
1146
GDDDYY


P1369

SWVRQAPGQGLEWMGWISAYNGNTNYAQKL

YYYGMD




QGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCA

V




RVPASYGDDDYYYYYGMDVWGQGTTVTVSS







COV047_P4_IgG_27-
1149
QVQLVQSGAEVKKPGASVKVSCKASGYIFTDYS
1150
ARGPLF


P1369

MHWVRQAPGQGLEWIGWVNPNSGGTNYAQ

HRLVYDF




KFQGWVTMARDTSITTVYMELSRLKSDDTAVYF

WSGYHD




CARGPLFHRLVYDFWSGYHDGFDMWGQGTM

GFDM




VTVSS







COV047_P5_IgG_10-
1153
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
1154
ARTPRVY


P1369

LHWVRQAPGQGLEWMGWINPNSGGTNYAQK

DPTLPN




FQGWVTMTRDTSISTAYMELSRLRSDDTAVYYC

QWLVGE




ARTPRVYDPTLPNQWLVGEYYCDYWGQGTLVT

YYCDY




VSS







COV047_P4_IgG_60-
1157
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
1158
ARGTEY


P1369

IHWVRQAPGQGLEWMGWINPNSGGTKYAQK

NWNSA




FQGWVTMTRDTSITTVYMELSRLRSDDTAVYYC

HFDP




ARGTEYNWNSAHFDPWGQGTLVTVSS







COV047_P5_IgG_29-
1161
QVQLVQSGAEVKKPGASVKVSCMASGYTLTAY
1162
VRGGTW


P1369

YIHWVRQAPGQGLESLGWINPRTGGTTILQKFQ

NYVGGE




GWVTMTRDTSINTVYLELPRVTLADTAVYYCVR

V




GGTWNYVGGEVWGQGTAVTVSS







COV047_P3_IgG_61-
1165
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSHY
1166
ASSSSTP


P1369

MHWVRQAPGQGLEWMGIINPSGGGTSYAQK

DYYGMD




FQGRVTMTRDTSMSTVYMELSSLRSEDTAVYYC

V




ASSSSTPDYYGMDVWGQGTTVTVSS







COV047_P4_IgG_48-
1169
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYI
1170
ARASTST


P1369

HWVRQAPGQGLEWMGIINPSDGGTSYAQKFQ

TNWND




GRVTMTRDTSTSTVYMELSSLRSEDTAVYSCAR

ALSLGC




ASTSTTNWNDALSLGCWGQGTLVTVSS







COV047_P3_IgG_78-
1173
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYY
1174
ARGGSS


P1369

MHWVRQAPGQGLEWMGIINPSGGSTSYAQKF

RYCSSTS




QGRVTMTRDTSTSTVYMELNSLRSEDTAVYYCA

CYSFGVD




RGGSSRYCSSTSCYSFGVDNFDYWGQGTLVTVS

NFDY




S







COV047_P4_IgG_43-
1177
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAI
1178
ARVGYG


P1369

SWVRQAPGQGLEWMGGIIPIFGTANYAQKFQ

YYFDY




GRVTITADESTSTAYMELSSLRSEDTAVYYCARV






GYGYYFDYWGQGTLVTVSS







COV047_P4_IgG_89-
1181
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSDA
1182
ARDLRYC


P1369

ISWVRQAPGQGLEWMGGIMPIFGTANYAQKF

SGGRCL




QGRVTITADESTSTAYMELSSLRSEDTAVYYCAR

WWFDP




DLRYCSGGRCLWWFDPWGQGTLVTVSS







COV047_P5_IgG_15-
1185
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSNY
1186
ARYTYYY


P1369

AISWVRQAPGQGLEWMGGIIPIFGTANYAQKL

DRSGYY




QGRVTITTDESTSTAYMELSSLRSEDTAVYYCAR

RPDYFDY




YTYYYDRSGYYRPDYFDYWGQGTLVTVSS







COV047_P3_IgG_54-
1189
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSAW
1190
TTTNDY


P1369

MSWVRQAPGKGLEWVGRIKTKTDGGTKDYAA

GDYSPA




PVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYC

Y




TTTNDYGDYSPAYWGQGTLVTVSS







COV047_P5_IgG_72-
1193
EVQLVESGGGLVKPGGSLRLSCAVSGFTFSNVW
1194
TSQVWL


P1369

MRWVRQAPGKGXEWVGRIKSKTDGGTTXYAA

RGPGDY




PVKGRFTXSRDDSKNTLYLQMNSLKTEDTAVYY






CTSQVWLRGPGDYWGQGTLVTVSS







COV047_P4_IgG_17-
1197
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYIM
1198
AREAEW


P1369

NWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRF

EAFDI




TISRDNAKNSLYLQMNSLRAEDTAVYYCAREAE






WEAFDIWGQGTMVTVSS







COV047_P5_IgG_84-
1201
EVQLVESGGGLVKPGGSLRLSCAASGLTFTAYR
1202
ARDVAS


P1369

MNWVRQAPGKGLEWLSSISNTNGDIYYADSVK

NYAYFDL




GRFTISRDNAKNSLYLQMNSLRADDTAVYYCAR






DVASNYAYFDLWGQGTLVTVSS







COV047_P4_IgG_67-
1205
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSM
1206
ARERYG


P1369

NWVRQAPGKGLEWVSSISSSTSYIYYADSVKGR

DN




FTISRDNAKNSLYLQMNSLRAEDTAVYYCARERY






GDNWGQGTLVTVSS







COV047_P3_IgG_84-
1209
EVQLVESGGGLVKPGGSLRLSCAASGFTFSTYSM
1210
ARVVAN


P1369

NWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRF

WFDP




TISRDNAKNSLYLQMNSLRAEDTAVYYCARVVA






NWFDPWGQGTLVTVSS







COV047_P3_IgG_40-
1213
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSM
1214
AREAAR


P1369

NWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRF

RYDFWS




TISRDNAKNSLYLQMNSLRAEDTAVYYCAREAA

GLNWFD




RRYDFWSGLNWFDPWGQGTLVTVSS

P





COV047_P4_IgG_36-
1217
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
1218
AKSGGR


P1369

MSWVRQAPGKGLEWVSAISGSGGSTYYADSVK

HYYDSS




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKS

GYYRLPL




GGRHYYDSSGYYRLPLDDAFDIWGQGTMVTVS

DDAFDI




S







COV047_P4_IgG_52-
1221
QVQLVESGGGVVQPGRSLRLSCADSGFTFSTYG
1222
ARAEWL


P1369

MHWVRQAPGKGLEWVALISYDGSNKYYADSV

RGAFDI




KGRFTISGDNSKNTLYLQMNSLRAEDTAVYYCA






RAEWLRGAFDIWGQGTMVTVSS







COV047_P3_IgG_70-
1225
QVQLVESGGGVVQPGRSLRLSCAASGFTFNNY
1226
ARAGWE


P1369

GMHWVRQAPGKGLEWVAVISYDGNNKYYADS

LLRIRYYF




VKDRFTISRDNSKNTLYLQMNNLRAEDTAMYYC

DF




ARAGWELLRIRYYFDFWGQGTLVTVSS







COV047_P4_IgG_31-
1229
QVQLVESGGGVVQPGRSLRLSCAASGLTFSFYAI
1230
YALFERG


P1369

HWVRQAPGKGLEWVAYISYEGSDKYYADSVKG

NWNDA




RFTISRANSKSTLYLQMNSLRAEDTAVYYCYALFE

EY




RGNWNDAEYWGQGTLVTVSS







COV047_P5_IgG_30-
1233
QVQLVESGGGVVQPGRSLRLSCAASGFTFSGYD
1234
AKDLGSS


P1369

IHWVRQAPGKGLEWVAVISYDGSSKFYADSVK

LYYDAFD




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK

I




DLGSSLYYDAFDIWGQGTMVTVSS







COV047_P4_IgG_20-
1237
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1238
AKVDGS


P1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YYYYYYG




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK

MDV




VDGSYYYYYYGMDVWGQGTTVTVSS







COV047_P4_IgG_22-
1241
QVQLVESGGGVVQPGRSLRLSCAASGFTFRTYA
1242
AREQEA


P1369

MHWVRQAPGKGLEWVAVILSDGNNKYYADSV

NYYDISG




KGRFTISRDNSKNTLYLQMNSLRAEDTAIFYCAR

YYHWGE




EQEANYYDISGYYHWGESLGYWGQGTLVTVPS

SLGY





COV047_P4_IgG_70-
1245
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1246
ARGGRY


P1369

MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

YDSSGY




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

NGTYEF




ARGGRYYDSSGYNGTYEFDYWGQGTLVTVSS

DY





COV047_P4_IgG_50-
1249
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1250
ARDRKYS


P1369

MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

SGWSVV




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

NFDY




ARDRKYSSGWSVVNFDYWGQGTLVTVSS







COV047_P5_IgG_59-
1253
QVQLVESGGGVVQPGRSLRLSCAASGFMFSSY
1254
ARDGLN


P1369

GMHWVRQAPGKGLEWVAVIWYDGSNKYYAD

WNVPHY




SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

GMDV




ARDGLNWNVPHYGMDVWGQGTTVTVSS







COV047_P5_IgG_58-
1257
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
1258
ARVGGA


P1369

MSWVRQAPGKGLEWVSVIYSGYSTYYVDSVKG

HSGYDG




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARV

SFDY




GGAHSGYDGSFDYWGQGTLVTVSS







COV047_P5_IgG_8-
1261
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
1262
ARDRVIY


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVKG

GMDV




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARD






RVIYGMDVWGQGTTVTVSS







COV047_P4_IgG_11-
1265
EVQLVETGGGLIQPGGSLRLSCAASGFTVSSNY
1266
ARAISES


P1369

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVKG

PRYGVY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAI






SESPRYGVYWGQGTLVTVSS







COV047_P3_IgG_14-
1269
EVQLVETGGGLIQPGGSLRLSCAASEFTVSSNYM
1270
ARVLPFG


P1369

SWVRQAPGKGLEWVSLIYSGGSTYYADSVKGRF

DYFDY




TISRDNSKNTLYLQMNSLRAEDTAVYYCARVLPF






GDYFDYWGQGTLVTVSS







COV047_P5_IgG_91-
1273
EVQLVESGGGLVQPGGSLRLSCAASGFSVSTKY
1274
ARDSSEV


P1369

MTWVRQAPGKGLEWVSALYSGGSDYYADSVK

RDHPGH




GRFTISRDNSKNTLYLQMSSLRVEDTGVYYCARD

PGRSVG




SSEVRDHPGHPGRSVGAFDIWGQGTMV

AFDI





COV047_P4_IgG_51-
1277
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNY
1278



P1369

MSWVRQAPGKGLEWVSVIYSGGSAYYADSVKG






RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDS






TPGYGDYISGQGTLVTVSS







COV047_P3_IgG_47-
1281
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNY
1282
ARDYGD


P1369

MSWVRQAPGKGLEWVSVIYSGGSAYYADSVKG

FYFDY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDY






GDFYFDYWGQGTLVTVSS







COV047_P5_IgG_71-
1285
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNY
1286
ARDLRD


P1369

MSWVRQAPGKGLEWVSVIYSGGSAYYADSVKG

QDGYSY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDL

GAFDY




RDQDGYSYGAFDYWGQGTLVTVSS







COV047_P5_IgG_16-
1289
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
1290
ASAFWQ


P1369

MHWVRQAPGKGLVWVSHINGDGSSTSYADSV

RGNFDY




KGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCA






SAFWQRGNFDYWGQGTLVTVSS







COV047_P3_IgG_25-
1293
EVQLVESGGGLVQPGGSLRLSCVASGFTFSSYW
1294
ARPTAV


P1369

MHWVRQVPGKGPVWVSHINSEGSSTNYADSV

AAAGNY




RGRFTISRDNAKDTLYLQMNNLRAEDTAVYYCA

FYYYGM




RPTAVAAAGNYFYYYGMDVWGQGTTVTVSS

DV





COV047_P4_IgG_86-
1297
QLQLQESGSRLVKPSQTLSLTCAVSGGSISSGGYS
1298
ARFTNP


P1369

WSWIRQPPGKGLQWIGYIYHSGSTYYNPSLKSR

NYYDSS




VTISVDRSKNQFSLKLSSVTAADTAVYYCARFTN

GYYGFD




PNYYDSSGYYGFDYWGQGTLVTVSS

Y





COV047_P4_IgG_39-
1301
QVQLQESGPGLVKPSQTLSLTCAVSGDSIRSGGY
1302
ARVKGW


P1369

YWSWVRQHPGRGLEWIGYIYFSGTTYYNPSLKS

LRGYFDY




RVTISVDTSEKQFSLKLTSVTDADTAVYFCARVK






GWLRGYFDYWGQGAPVTVSA







COV047_P4_IgG_83-
1305
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSSN
1306
ARVAAFL


P1369

WWSWVRQPPGKGLEWIGEIYHSGSTNYNPSLK

DY




SRVTISVDKSKNQFSLKLSSVTAADTAVYYCARV






AAFLDYWGQGTLVTVSS







COV047_P3_IgG_38-
1309
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSSN
1310
ARTWIQ


P1369

WWSWVRQPPGKGLEWIGEIYHSGTTNYNPSLK

PHNWFD




SRVTISVDKSKNQFSLKLSSVTAADTAVYYCART

P




WIQPHNWFDPWGQGTLVTVSS







COV047_P4_IgG_72-
1313
QVQLQESGPGLVKPSETLSLTCTVSGGSISNYYW
1314
ARGPPRL


P1369

SWIRQPPGKGLEWIGYIYTSGSTNYNPSLKSRVTI

LWFGES




SVDTSKNQFSLKLSSVTAADTAVYYCARGPPRLL

PPTYWY




WFGESPPTYWYFNLWGRGTLVTVSS

FNL





COV047_P4_IgG_38-
1317
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
1318
ARYQLA


P1369

SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTI

PGSGSYY




SVDTSKNQFSLKLSSVTAADTAVYYCARYQLAPG

NWGGY




SGSYYNWGGYPRESEYYFDYWGQGTLVTVSS

PRESEYY






FDY





COV047_P3_IgG_5-
1321
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
1322
ARHDTIF


P1369

SWIRQPPGKGLEWIGYIYYSRSTNYNPSLKSRVTI

GVGQYY




SVDTSKNQFSLKLSSVTAADTAVYYCARHDTIFG

FDY




VGQYYFDYWGQGTLVTVSS







COV047_P3_IgG_35-
1325
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
1326
ARHSWL


P1369

SWIRQPPGKGLEWIGYIYTSGSTNYNPSLKSRVTI

RGMADY




SVDTSKNQFSLKLSSVTAADTAVYYCARHSWLR






GMADYWGQGTLVTVSS







COV047_P3_IgG_49-
1329
QVQLQESGPGLVKPSETLSLTCTVSGDSMSSYF
1330
ARLKQQ


P1369

WTWIRQPPGKGLECIGYFYPSGSTNYNPSLKSR

LVGFGW




VTISIDTSKNQFSLKLSSVTAADTAVYYCARLKQQ

FDP




LVGFGWFDPWGQGTLVTVSS







COV047_P4_IgG_23-
1333
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNTA
1334
ARDILRD


P1369

AWNWIRQSPSRGLEWLGRTYYRSKWYNDYAV

TSWPHD




SVISRIIINPDTSKNQFSLQLKSVTPEDTAVYYCAR

AFDI




DILRDTSWPHDAFDIWGQGTMVTVSS






SEQ

SEQ




ID

ID



SEQUENCE_ID
NO
aa
NO
cdr3_aa










LAMBDA











COV047_P3_Lambda_43-
1023
QSVLTQPASVSGSPGQSITISCTGTSSDV
1024
SSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSS




RPSGVSNRFSGSKSGNTASLTISGLQAED

STR




EADYYCSSYTSSSTRVFGTGTKVTVL

V





COV047_P4_Lambda_57-
1027
QSVLTQPASVSGSPGQSITISCTGTSSDV
1028
SSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSS




RPSGVSNRFSGSKSGNTASLTISGLQAED

TTR




EADYYCSSYTSSTTRVFGTGTRVTVL

V





COV047_P4_Lambda_58-
1031
QSALTQPASVSGSPGQSITISCTGTSSDV
1032
SSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSIS




RPSGVSNRFSGSKSGNTASLTISGLQAED

TRV




EADYYCSSYTSISTRVFGTGTKVTVL







COV047_P5_Lambda_26-
1035
QSALTQPASVSGSPGQSITISCTGTSSDV
1036
SSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSS




RPSGVSNRFSGSKSGNTASLTISGLQAED

STR




EADYYCSSYTSSSTRVFGTGTKVTVL

V





COV047_P5_Lambda_41-
1039
QSALTQPASVSGSPGQSITISCTGTSSDV
1040
SSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSS




RPSGVSNRFSGSKSGNTASLTISGLQAED

STR




EADYYCSSYTSSSTRVFGTGTKVTVL

V





COV047_P5_Lambda_49-
1043
QSVLTQPASVSGSPGQSITISCTGTSSDV
1044
SSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSS




RPSGVSNRFSGSKSGNTASLTISGLQAED

TTR




EADYYCSSYTSSTTRVFGTGTRVTVL

V





COV047_P3_Lambda_16-
1047
QSVLTQPASVSGSPGQSITISCTGTSNDV
1048
CSY


P1409

GSYTLVSWYQQYPGKAPKLLIFEGTKRSS

AGA




GISNRFSGSKSGNTASLTISGLQGEDEAD

STF




YYCCSYAGASTFVFGGGTKLTVL

V





COV047_P4_Lambda_12-
1051
QSVLTQPASVSGSPGQSITISCTGTSNDV
1052
CSY


P1409

GSYTLVSWYQQYPGKAPKLLIFEGTKRSS

AGA




GISNRFSGSKSGNTASLTISGLQGEDEAD

STF




YYCCSYAGASTFVFGGGTKLTVL

V





COV047_P4_Lambda_65-
1055
QSALTQPASVSGSPGQSITISCTGTSNDV
1056
CSY


P1409

GSYTLVSWYQQYPGKAPKLLIFEGTKRSS

AGA




GISNRFSGSKSGNTASLTISGLQGEDEAD

STF




YYCCSYAGASTFVFGGGTKLTVL

V





COV047_P5_Lambda_57-
1059
QSVLTQPASVSGSPGQSITISCTGTSNDV
1060
CSY


P1409

GSYTLVSWYQQYPGKAPKLLIFEGTKRSS

AGA




GISNRFSGSKSGNTASLTISGLQGEDEAD

STF




YYCCSYAGASTFVFGGGTKLTVL

V










KAPPA











COV047_P3_Kappa_10-
1063
DIQMTQSPSSLSASVGDRVTITCRASQGI
1064
QKY


P1389

SNYLAWYQQRPGKVPKLLIFAASTLQSG

NSA




VPSRFSGSGSGTDFTLTISSLQPEDVATY

PRT




YCQKYNSAPRTFGQGTKVEIK







COV047_P5_Kappa_95-
1067
DIQMTQSPSSLXASVGDRVTITCRASQG
1068
QKY


P1389

ISNYLAWYQQKPGKVPKLLIYAASTLQSG

NSA




VPSRFSGSESGTDFTLTISSLQPEDVATYY

PRT




CQKYNSAPRTFGQGTKVEIK












LAMBDA











COV047_P4_Lambda_34-
1071
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1072
QSY


P1409

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSS




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NY




ADYYCQSYDSSNYWVFGGGTKLTVL

WV





COV047_P5_Lambda_24-
1075
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1076
QSY


P1409

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSS




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NY




ADYYCQSYDSSNYWVFGGGTKLTVL

WV










KAPPA











COV047_P4_Kappa_91-
1079
DIQMTQSPSSLSASVGDRVTITCQASQD
1080
QQ


P1389

ISNYLNWYQQKPGKAPKLLIYDTSNLER

YDN




GVPSRFSGSGSGSDFTFTISSLQPEDIATY

LPIT




YCQQYDNLPITFGQGTRLEIK







COV047_P5_Kappa_87-
1083
DIQMTQSPSSLSASVGDRVTITCQASQG
1084
QQ


P1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

YDN




GVPSRFSGSGSGTDFTFTISSLQPEDIATY

LPIT




YCQQYDNLPITFGQGTRLEIK







COV047_P4_Kappa_69-
1087
DIQMTQSPSSLSASVGDRVTITCRASQSI
1088
QQS


P1389

SSFLNWYQQKPGKAPNLLIYAASSLQSG

YRT




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PLT




CQQSYRTPLTFGGGTKVEIK







COV047_P5_Kappa_68-
1091
DIQMTQSPSSLSASVGDRVTITCRASQSI
1092
QQS


P1389

SSYLNWYQQKPGKVPKLLIYAASSLQSG

YRT




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PLT




CQQSYRTPLTFGGGTKVEIK












LAMBDA











COV047_P3_Lambda_64-
1095
SYVLTQPPSVSVAPGQTARISCGGNNIG
1096
QV


P1409

SKNVHWYQQKPGQAPVLVVYDDSDRP

WD




SGIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDPWVFGGGTKLTVL

DP






WV





COV047_P5_Lambda_77-
1099
SYVLTQPPSVSVAPGQTARITCGGNNIG
1100
QV


P1409

SKNVHWYQQKPGQAPVLVVYDDSDRP

WD




SGIPERFSGSNSGTTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDPWVFGGGTKLTVL

DP






WV










KAPPA











COV047_P3_Kappa_65-
1103
EIVMTQSPATLSVSPGERATLSCRASQSV
1104
QQ


P1389

SSNLAWYQQKPGQAPRLLIYGASTRAT

YNN




GIPARFSGSGSGTEFTLTISSLQSEDFAVY

WP




YCQQYNNWPRTFGQGTKVEIK

RT





COV047_P5_Kappa_27-
1107
EIVMTQSPATLSVSPGERATLSCRASQSV
1108
QQ


P1389

SSNLAWYQQKPGQAPRLLIYGASTRATA

YNN




IPARFSGSGSGTEFTLTISSLQSEDFAVYY

WP




CQQYNNWPRTFGQGTKVEIK

RT










LAMBDA











COV047_P4_Lambda_3-
1111
QSVLTQPASVSGSPGQSITISCTGTSNDV
1112
CSY


P1409

GSYTLVSWYQQYPGKAPKLLIFEVTKRSS

AGA




GISNRFSGSKSGNTASLTISGLQGEDEAD

STF




YYCCSYAGASTFVFGGGTKLTVL

V





COV047_P5_Lambda_90-
1115
QSALTQPASVSGSPGQSITISCTGTSNDV
1116
CSY


P1409

GSYTLVSWYQQYPGKAPKLLIFEDTKRSS

AGT




GISNRFSGSKSGNTASLTISGLQGEDEAD

STF




YYCCSYAGTSTFVFGGGTKLTVL

V










KAPPA











COV047_P3_Kappa_24-
1119
EIVMTQSPATLSVSPGERATLSCRASQSV
1120
QQ


P1389

SSHLAWYQQKPGQAPRLLIYGASTRATG

YNN




IPTRFSGSGSGTEFTLTISSLQSEDFAVYY

WP




CQQYNNWPPLTFGGGTKVEIK

PLT





COV047_P5_Kappa_94-
1123
EIVMTQSPATLSVSPGERATLSCRASQSV
1124
QQ


P1389

SSHLAWYQQKPGQAPRLLIYGASTRATG

YNN




IPTRFSGSGSGTEFTLTISSLQSEDFAVYY

WP




CQQYNNWPPLTFGGGTKVEIK

PLT










LAMBDA











COV047_P3_Lambda_8-
1127
QSVLTQEPSLTVSPGGTVTLTCGSSTGA
1128
LLSY


P1409

VTSGHYPYWFQQKSGQAPRTLIYETSIK

SGA




HSWTPARFSGSLLGGKAALTLSGAQPED

RPV




EADYYCLLSYSGARPVFGGGTKLTVL







COV047_P3_Lambda_91-
1131
QSVLTQEPSLTVSPGGTVTLTCGSSTGA
1132
LLSY


P1409

VTSGHYPYWFQQKSGQAPRTLIYETSIK

SGA




HSWTPARFSGSLLGGKAALTLSGAQPED

RPV




EADYYCLLSYSGARPVFGGGTKLTVL












KAPPA











COV047_P3_Kappa_77-
1135
DIQMTQSPSSLSASVGDRVTITCQASQD
1136
QQ


P1389

ISNYLNWYQQKPGKPPKLLIYDASNLET

YDS




GVPSRFSGSGSGTDFIFSISSLQPEDIATY

LPG




YCQQYDSLPGCSFGQGTKLEIK

CS





COV047_P5_Kappa_78-
1139
DIQMTQSPSSLSASVGDRVTITCRASQSI
1140
QQS


P1389

SSFLNWYQQKPGKAPKLLIYAASSLHSG

YRT




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPL




CQQSYRTPPLFGGGTKVEI












LAMBDA











COV047_P5_Lambda_21-
1143
SYVLTQPPSVSVAPGQTARITCGGNNIG
1144
QV


P1409

SKNVHWYQQKPGQAPVLVVYDDSDRP

WD




SGIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDRHWVFGGGTKLTVL

DRH






WV





COV047_P3_Lambda_53-
1147
SYVLTQPPSVSVSPGQTARITCSGDALPK
1148
QSA


P1409

QYAYWYQQKPGQAPVLVIYKDSERPSGI

DSS




PERFSGSSSGTTVTLTISGVQAEDEADYY

GTL




CQSADSSGTLWVFGGGTKLTVL

WV





COV047_P4_Lambda_27-
1151
QSVLTQPASVSGSPGQSITISCTGTSSDV
1152
NSY


P1409

GGYKFVSWYQQHPGKAPKLMIYEVSNR

TSS




PSGVSNRFSGSKSGNTASLTISGLQAEDE

ST




ADYYCNSYTSSSTWVFGGGTKLTVL

WV





COV047_P5_Lambda_10-
1155
QSALTQPRSVSGSPGQSVTISCTGTSSDV
1156
CSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSK

AGS




RPSGVPDRFSGSKSGNTASLTISGLQAED

YT




EADYYCCSYAGSYTWVFGGGTKLTVL

WV





COV047_P4_Lambda_60-
1159
QSALTQPASVSGSPGQSITISCTGTSSDV
1160
SSY


P1409

GGYNYVSWYQQHPGKAPKLMIYEVSN

TSS




RPSGVSNRFSGSKSGNTASLTISGLQAED

STS




EADYYCSSYTSSSTSWVFGGGTKLTVL

WV





COV047_P5_Lambda_29-
1163
QSALTQPASVSGSPGQSITVSCAGSSTD
1164
TSF


P1409

VGGYNFVSWYQHHPGRVPKLIIYEVNN

TSS




RPSGVSVRFSGSKSGNTASLTISGLQAED

SDS




EADYYCTSFTSSSDSWIFGGGTKLTVL

WI










KAPPA











COV047_P3_Kappa_61-
1167
DIQLTQSPSFLSASVGDRVTITCRASQGIS
1168
QQL


P1389

SYLAWYQQKPGKAPKLLIYGASTLQSGV

NSY




PSRFSGSGSGTEFTLTISSLQPEDFATYYC

PLC




QQLNSYPLCSFGQGTKLEIK

S










LAMBDA











COV047_P4_Lambda_48-
1171
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1172
QSY


P1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSG




PSGVPDRFSGSKSGTSASLAITGLOAEDE

LSG




ADYYCQSYDSGLSGSGVVFGGGTKLTVL

SGV






V





COV047_P3_Lambda_78-
1175
SYVLTQPPSVSVAPGQTARITCGGNNIG
1176
QV


P1409

SKSVHWYQQKPGQAPVLVVYDDGDRP

WD




SGIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDHYYVFGTGTKVTVL

DHY






YV










KAPPA











COV047_P4_Kappa_43-
1179
EIVLTQSPATLSLSPGERATLSCRASQSVS
1180
QQ


P1389

SYLAWYQQKPGQAPRLLIYDASNRATGI

RSN




PARFSGSGSGTDFTLTISSLEPEDFAVYYC

WP




QQRSNWPSFGQGTKLEIK

S





COV047_P4_Kappa_89-
1183
DIQMTQSPSSLSASVGDRVTITCRASQSI
1184
QQS


P1389

NNYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PRT




CQQSYSTPRTFGPGTKVDIK




COV047_P5_Kappa_15-
1187
AIQLTQSPSSLSASVGDRVTITCRASQGIS
1188
QQF


P1389

TVLAWYQQKPGKTPKLLIYDASSLESGA

NSY




PSRFSGSGSGTDFTLTISSLQPEDFATYYC

QLT




QQFNSYQLTFGGGTKVEIK







COV047_P3_Kappa_54-
1191
DIQMTQSPSSLSASVGDRVTITCRASQSI
1192
QQS


P1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTAFTLTISSLQPEDFATYY

PLT




CQQSYSTPLTFGGGTKVEIK












LAMBDA











COV047_P5_Lambda_72-
1195
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1196
QSY


P1409

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSS




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

LN




ADYYCQSYDSSLNWVFGGGTKLTVL

WV





COV047_P4_Lambda_17-
1199
QSVLTQPRSVSGSPGQSVTISCTGTSSDV
1200
CSY


P1409

GGYNYVSWYQQHPGKAPKLMICDVSK

AGS




RPSGVPDRFSGSKSGNTASLTISGLOAED

YT




EADYYCCSYAGSYTWVFGGGTKLTVL

WV










KAPPA











COV047_P5_Kappa_84-
1203
DIQMTQSPSSLSASVGDRVTITCRASQSI
1204
QQS


P1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPL




CQQSYSTPPLTFGGGTKVEIK

T










LAMBDA











COV047_P4_Lambda_67-
1207
QLVLTQSPSASASLGASVKLTCTLSSGHS
1208
QT


P1409

SYAIAWHQQQPEKGPRYLMSLNSDGSH

WG




SKGDGIPDRFSGSSSGAERYLTISSLQSED

PW




EADYYCQTWGPWVFGGGTKLTVL

V










KAPPA











COV047_P3_Kappa_84-
1211
DIVMTQSPDSLAVSXGERATINCKSSQS
1212
QQ


P1389

VLYSSNNKNYLAWYQQKPGQPPKLLIY

YYS




WASTRESGVPDRFSGSGSGTDFTLTISSL

TPQ




QAEDVAVYYCQQYYSTPQPSWTFGQG

PS




TKVEIK

WT





COV047_P3_Kappa_40-
1215
DIVMTQSPDSLAVSXGERATINCKSSQS
1216
QQ


P1389

VLYSSNNKNYLAWYQQKPGQPPKLLIY

YYS




WASTRESGVPDRFSGSGSGTDFTLTISSL

TML




QAEDVAVYYCQQYYSTMLTFGGGTKVE

T




IK












LAMBDA











COV047_P4_Lambda_36-
1219
QSVLTQPPSVSGAPGQRVTISCTGSSSSI
1220
QSY


P1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSG




ADYYCQSYDSSLSGSWVFGGGTKLTVL

SW






V





COV047_P4_Lambda_52-
1223
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1224
QSY


P1409

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DST




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NH




ADYYCQSYDSTNHWVFGGGTKLTVL

WV










KAPPA











COV047_P3_Kappa_70-
1227
DIQMTQSPSSLSASVGDRVTITCQASQD
1228
QQ


P1389

ISNYLNWYQQKPGKAPKFLIYGASNLET

YDN




GVPPRFSGSGSGTDFTFIISSLQPEDIATY

LPP




YCQQYDNLPPTFGGGTKVEIK

T





COV047_P4_Kappa_31-
1231
DVVMTQSPLSLPVTLGQPASISCRSSQSL
1232
MQ


P1389

VHSDGNIYLSWYQQRPGQSPRRLIYKVS

GTH




NRDSGVPDRFSASGSGTDFTLRISRVEAE

WP




DVGVYYCMQGTHWPRTFGQGTKLEIK

RT





COV047_P5_Kappa_30-
1235
DIQMTQSPSSLSASVGDRLTITCRASQSI
1236
QQS


P1389

TSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PP




CQQSYSTPPWTFGQGTKVEIK

WT










LAMBDA











COV047_P4_Lambda_20-
1239
QSVLTQPASVSGSPGQSITISCTGTSSDV
1240
SSY


P1409

GAYNYVSWYQQHPGKAPKLMIYEVSNR

TSS




PSGVSNRFSGSKSGNTASLTISGLQAEDE

STA




ADYYCSSYTSSSTAWVFGGGTKLTVL

WV










KAPPA











COV047_P4_Kappa_22-
1243
DIQLTQSPSFLSASVGDRVTITCRASQGIS
1244
QKV


P1389

SYLAWYQQKPGKAPKLLIYGASTLQSGV

NSH




PSRFSGSGSGTEFTLTISSLQPEDFASYYC

PPG




QKVNSHPPGLTFGGGTKVEI

LT





COV047_P4_Kappa_70-
1247
EIVMTQSPATLSVSPGERATLSCRASQSV
1248
QQ


P1389

SSNLAWYQQKPGQAPRLLIYGASTRAT

YNN




GIPARFSGSGSGTEFTLTISSLQSEDFAVY

WP




YCQQYNNWPPVTFGPGTKVDIK

PVT










LAMBDA











COV047_P4_Lambda_50-
1251
QSVLTQPPSVSEAPRQRVTISCSGSSSNI
1252
AA


P1409

GNNAVNWYQQLPGKAPKLLIYYDDLLP

WD




SGVSDRFSGSKSGTSASLAISGLQSEDEA

DSL




DYYCAAWDDSLNGWVFGGGTKLTVL

NG






WV










KAPPA











COV047_P5_Kappa_59-
1255
DIQMTQSPSSVSASVGDRVTITCRASQG
1256
QQ


P1389

ISSWLAWYQQKPGKAPKLLIYAASSLQS

ANS




GVPSRFSGSGSGTDFTLTISSLQPEDFAT

FPP




YYCQQANSFPPLTFGGGTKVEIK

LT










LAMBDA











COV047_P5_Lambda_58-
1259
QSALTQPASVSGSPGQSITISCTGTSSDV
1260
CSY


P1409

GSYNLVSWYQQHPGKAPKLMIYEGSKR

AGS




PSGVSNRFSGSKSGNTASLTISGLQAEDE

ST




ADYYCCSYAGSSTWVFGGGTKLTVL

WV










KAPPA











COV047_P5_Kappa_8-
1263
DIQMTQSPSSLSASVGDRVTITCQASQD
1264
QQ


P1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

YDN




GVPSRFSGSGSGTDFTFTISSLQPEDIATY

LPQ




YCQQYDNLPQTFGGGTKVEIK

T





COV047_P4_Kappa_11-
1267
DIQMTQSPSSLSASVGDRVTITCQASQD
1268
QQ


P1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

YDN




GVPSRFSGSGSGTDFTFTISSLQPEDIATY

LPL




YCQQYDNLPLTFGQGTRLEIK

T










LAMBDA











COV047_P3_Lambda_14-
1271
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1272
QSY


P1409

GAGYDVHWCQQLPGTAPKLLIYGYSNR

DIN




PSGVPDRFSGSKSGTSASLAITGLOAEDE

LSA




ADYYCQSYDINLSAWVFGGGTRLTXL

WV










KAPPA











COV047_P5_Kappa_91-
1275
DIVMTQSPDSLAVSXGERATINCKSSQS
1276
QQ


P1389

VLYSSNNKNYLAWYQQKPGQPPKLLIY

YYS




WASTRESGVPDRFSGSGSGTDFTLTISSL

TPL




QAEDVAVYYCQQYYSTPLTFGGGTKVEI

T




K







COV047_P4_Kappa_51-
1279
DIQMTQSPSSLSASVGDRVTITCQASQD
1280
QQ


P1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

YDN




GVPSRFSGSGSGTDFTFTISSLQPEDIATY

LPIT




YCQQYDNLPITFGQGTRLEIK







COV047_P3_Kappa_47-
1283
EIVMTQSPATLSVSPGERATLSCRASQSV
1284
QQ


P1389

SSNLAWYQQKPGQAPRLLIYGASTRAT

YNN




GIPARFSGSGSGTEFTLTISSLQSEDFAVY

WP




YCQQYNNWPRTFGQGTKVEIK

RT










LAMBDA











COV047_P5_Lambda_71-
1287
QSALTQPASVSGSPGQSITISCTGTSSDV
1288
SSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TSS




RPSGVSNRFSGSKSGNTASLTISGLQAED

SSW




EADYYCSSYTSSSSWVFGGGTKLTVL

V





COV047_P5_Lambda_16-
1291
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1292
QSY


P1409

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSSI




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

LW




ADYYCQSYDSSILWVFGGGTKLTVL

V





COV047_P3_Lambda_25-
1295
QSVLTQPASVSGSPGQSITISCTGTSSDV
1296
SSY


P1409

GYYNFVSWYQQHPGKAPKLMIYEVSNR

RSS




PSGVSNRFSGSKSGNTASLIISGLQAEDE

STL




ADYYCSSYRSSSTLVFGGGTKLTVL

V





COV047_P4_Lambda_86-
1299
QSVLTQPPSASGSPGQSVTISCTGTSSDV
1300
TSY


P1409

GGYNYVSWYQQHPGKAPKLMIYEVSKR

AGS




PSGVPDRLSGSKSGNTASLTVSGLQAED

NN




EADYYCTSYAGSNNWVFGGGTKLTVL

WV





COV047_P4_Lambda_39-
1303
NFMLTQSHSVSESPGKTVTISCTGSSGNI
1304
QSY


P1409

VNNYVQWYQQRPGSAPIIVIYEDTQRPS

DSG




GVPDRFSGSIDTSSNSASLTISGLKTEDEA

SHV




DYYCQSYDSGSHVVFGGGTKLTV

V










KAPPA











COV047_P4_Kappa_83-
1307
DIQMTQSPSSLSASVGDRVTITCRASQGI
1308
QQ


P1389

SNSLAWYQQKPGKAPKLLLYAASRLESG

YYS




VPSRFSGSGSGTDYTLTISSLQPEDFATYY

TRT




CQQYYSTRTFGQGTKVEIK







COV047_P3_Kappa_38-
1311
DIQMTQSPSSLSASVGDRVTITCRASQGI
1312
QQ


P1389

SNYLAWFQQKPGKAPKSLIYAASSLQSG

YNS




VPSKFSGSGSGTDFTLTISSLQPEDFATYY

YPL




CQQYNSYPLFTFGPGTKVDIK

FT





COV047_P4_Kappa_72-
1315
DIVMTQSPDSLAVSXGERATINCKSSQS
1316
QQ


P1389

VLYSSNNKNYLAWYQQKPRQPPKLLIY

YYS




WASTRESGVPDRISGSGSGTDFTLTISSL

TPL




QAEDVAVYYCQQYYSTPLTFGGGTKVEI

T




K












LAMBDA











COV047_P4_Lambda_38-
1319
QSVLTQPRSVSGSPGQSVTISCTGTSSDV
1320
CSY


P1409

GGYNYVSWYQQHPGKAPKLMIYDVSK

AGS




RPSGVPDRFSGSKSGNTASLTISGLQAED

YT




EADYYCCSYAGSYTWVFGGGTKLTVL

WV





COV047_P3_Lambda_5-
1323
QSVLTQPASVSGSPGQSVTISCTGTSSD
1324
CSY


P1409

VGSYNLVSWYQQHPGKAPKVMIYEDSK

AGS




RPSGVSNRFSGSKSGNTASLTISGLQAED

ST




EADYYCCSYAGSSTWVFGGGTKLTVL

WV





COV047_P3_Lambda_35-
1327
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1328
QSY


P1409

ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSSI




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

WV




ADYYCQSYDSSIWVFGGGTKLTVL







COV047_P3_Lambda_49-
1331
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1332
QSY


P1409

GADYDVHWYQQFPGTAPKVLIYANTNR

DHS




PSGVPERFSGSKSGTSASLAITGLQAEDE

LN




ADYYCQSYDHSLNWVFGGGTKLTVL

WV





COV047_P4_Lambda_23-
1335
QSVLTQPASVSGSPGQSITISCTGTSSDV
1336
SSY


P1409

GGYNYLSWYQQHPGKAPKLMIYEVSNR

TSS




PSGVSNRFSGSKSGNTASLTISGLQAEDE

STP




ADYYCSSYTSSSTPFYVFGTGTKVTVL

FYV
















TABLE 10





Anti-SARS-CoV-2 IgG antibodies from COV57




















SEQ

SEQ




ID

ID



SEQUENCE_ID
NO
aa
NO
cdr3_aa










HEAVY











COVD57_P1_HC_B4-
1337
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
1338
ARGVA


1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

VDWYF




VTISADKSISTAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P1_HC_F6-
1341
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
1342
ARGVA


1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

VDWYF




VTISADKSISTAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P1_HC_G8-
1345
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
1346
ARGVA


1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

VDWYF




VTISADKSISTAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P2_HC_A2-
1349
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
1350
ARGVA


1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

VDWYF




VTISADKSISTAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P2_HC_B2-
1353
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWTG
1354
ARGVA


1369

WVRQMPGKGLEWMGIIYPGDSDTRYRPAFQGQ

VDWYF




VTISADKSISTAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P2_HC_B12-
1357
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
1358
ARGVA


1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

VDWYF




VTISADKSISTAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P2_HC_C10-
1361
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
1362
ARGVA


1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

VDWYF




VTISADKSISSAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P2_HC_D10-
1365
EVQLVQSGAEVKKPGESLKISCKGSGYSFTTYWIG
1366
ARGVA


1369

WVRQMPGKGLEWMGIIYPADSDTRYSPSFQGQ

VDWYF




VTISADKSISTAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P2_HC_E1-
1369
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
1370
ARGVA


1369

WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

VDWYF




VTISADKSISTAYLQWSSLKASDTAMYYCARGVAV

DL




DWYFDLWGRGTLVTVSS







COVD57_P1_HC_F3-
1373
QVQLQESGPGLVKPSETLSLTCTVSGASINSYYWT
1374
AREVV


1369

WIRQPPGKGLEWIGYIHDSGNTNYNPALRSRVTI

VQSAK




SLDTSKNQFSLKVRSVTAADTAVYYCAREVVVQS

DWSHY




AKDWSHYYYYMDVWGKGTTVSVSS

YYYMD






V





COVD57_P2_HC_A6-
1377
QVQLQESGPGLVKPSETLSLTCTVSGGSMTSYYW
1378
AREVV


1369

NWIRHTPGKDLEWIGYIDYSGNTNYNPSLRSRGTI

VSSPKD




SVDTSKNQFSLRVTSVTAADTAVYYCAREVVVSSP

WSHYY




KDWSHYYYYMDVWGKGTTVTVSS

YYMDV





COVD57_P2_HC_B11-
1381
QVQLQESGPGLVKPSETLSLTCTVSGASINSYYWT
1382
AREVV


1369

WIRQPPGKGLEWIGYIHDSGNTNYNPALRSRVTI

VQSAK




SLDTSKNQFSLKVRSVTAADTAVYYCAREVVVQS

DWSHY




AKDWSHYYYYMDVWGKGTTVSVSS

YYYMD






V





COVD57_P2_HC_D11-
1385
QVQLQESGPGLVKPSETLSLTCTVSGASINSYYWT
1386
AREVV


1369

WIRQPPGKGLEWIGYIHDSGNTNYNPALRSRVTI

VQSAK




SLDTSKNQFSLKVRSVTAADTAVYYCAREVVVQS

DWSHY




AKDWSHYYYYMDVWGKGTTVSVSS

YYYMD






V





COVD57_P2_HC_F10-
1389
QVQLQESGPGLVKPSETLSLTCTVSGASINSYYWT
1390
AREVV


1369

WIRQPPGKGLEWIGYIHDSGNTNYNPALRSRVTI

VQSAK




SLDTSKNQFSLKVRSVTAADTAVYYCAREVVVQS

DWSHY




AKDWSHYYYYMDVWGKGTTVSVSS

YYYMD






V





COVD57_P1_HC_B11-
1393
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
1394
ARDSEY


1369

WVRQAPGQGLEWMGRIIPILGIANYAQKFQGRV

SSSWYS




TITADKSTSTAYMELSSLRSEDTAVYYCARDSEYSS

RGYYG




SWYSRGYYGMDVWGQGTTVTVSS

MDV





COVD57_P2_HC_A11-
1397
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
1398
ARDSEY


1369

WVRQAPGQGLEWMGRIIPILGIANYAQKFQGRV

SSSWYS




TITADKSTSTAYMELSSLRSEDTAVYYCARDSEYSS

RGYYG




SWYSRGYYGMDVWGQGTTVTVSS

MDV





COVD57_P2_HC_E2-
1401
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
1402
ARDSEY


1369

WVRQAPGQGLEWMGRIIPILGIANYAQKFQGRV

SSSWYS




TITADKSTSTAYMELSSLRSEDTAVYYCARDSEYSS

RGYYG




SWYSRGYYGMDVWGQGTTVTVSS

MDV





COVD57_P1_HC_B7-
1405
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSYWM
1406
ARQPES


1369

TWVRQAPGKGLEWVASIKYNGNERNYVDSVKG

TIWYYF




RFTISRDNARNSLFLQLNNLGAEDTAVYYCARQPE

DY




STIWYYFDYWGQGTLVTVSS







COVD57_P1_HC_F5-
1409
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSYWM
1410
ARQPES


1369

TWVRQAPGKGLEWVASIKYNGNERNYVDSVKG

TIWYYF




RFTISRDNARNSLFLQLNNLGAEDTAVYYCARQPE

DY




STIWYYFDYWGQGTLVTVSS







COVD57_P1_HC_H2-
1413
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSYWM
1414
ARQPES


1369

TWVRQAPGKGLEWVASIKYNGNERNYVDSVKG

TIWYYF




RFTISRDNARNSLFLQLNNLGAEDTAVYYCARQPE

DY




STIWYYFDYWGQGTLVTVSS







COVD57_P1_HC_D12-
1417
QVQLQQWGAGLLKPSETLSRTCAVFGGSFTNYY
1418
ARRRSF


1369

WSWIRQSPGKGLEWIGEINDSGITNYNPSLKSRV

SRPSSI




TISVDTSKNQFSLSLRSVTAADTAVYYCARRRSFSR

DY




PSSIDYWGQGTLVTVSS







COVD57_P2_HC_B6-
1421
QVQLQQWGAGLLKPSETLSRTCAVFGGSFTNYY
1422
ARRRSF


1369

WSWIRQSPGKGLEWIGEINDSGITNYNPSLKSRV

SRPSSI




TISVDTSKNQFSLSLRSVTAADTAVYYCARRRSFSR

DY




PSSIDYWGQGTLVTVSS







COVD57_P2_HC_H7-
1425
QVQLQQWGAGLLKPSETLSRTCAVFGGSFTNYY
1426
ARRRSF


1369

WSWIRQSPGKGLEWIGEINDSGITNYNPSLKSRV

SRPSSI




TISVDTSKNQFSLSLRSVTAADTAVYYCARRRSFSR

DY




PSSIDYWGQGTLVTVSS







COVD57_P2_HC_H7-
1429
QVQLQQWGAGLLKPSETLSRTCAVFGGSFTNYY
1430
ARRRSF


1369

WSWIRQSPGKGLEWIGEINDSGITNYNPSLKSRV

SRPSSI




TISVDTSKNQFSLSLRSVTAADTAVYYCARRRSFSR

DY




PSSIDYWGQGTLVTVSS







COVD57_P1_HC_E6-
1433
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSSA
1434
AANHC


1369

MQWVRQARGQRLEWIGWIVVGSGNTNYAQKF

SGGSCY




QERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAN

DGFDI




HCSGGSCYDGFDIWGQGTMVTVSS







COVD57_P2_HC_H6-
1437
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSSA
1438
AAPYCS


1369

MQWVRQARGQRLEWIGWIVVGSGNTNYAQKF

GGSCN




QERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAP

DAFDI




YCSGGSCNDAFDIWGQGTMVTVSS







COVD57_P2_HC_A10-
1441
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
1442
TTDPH


1369

MSWVRQAPGKGLEWVGRIKSKTDGGTTDYAAP

CSSTSC




VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTT

PIFYYYY




DPHCSSTSCPIFYYYYMDVWGKGTTVTVSS

MDV





COVD57_P2_HC_C4-
1445
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
1446
TTDPH


1369

MSWVRQAPGKGLEWVGRIKSKTDGGTTDYAAP

CSSTSC




VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTT

PIFYYYY




DPHCSSTSCPIFYYYYMDVWGKGTTVTVSS

MDV





COVD57_P2_HC_C4-
1449
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
1450
TTDPH


1369

MSWVRQAPGKGLEWVGRIKSKTDGGTTDYAAP

CSSTSC




VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTT

PIFYYYY




DPHCSSTSCPIFYYYYMDVWGKGTTVTVSS

MDV





COVD57_P1_HC_E9-
1453
QVQLVESGGGVVOPGRSLRLSCAASGFTFNRIAM
1454
AKSPM


1369

YWVRQAPGKGLEWVAVISFDGSYEYYAESVKGRF

GYCTN




AISRDNSKNTLYLQMNSLRAEDTAVYYCAKSPMG

GVCYP




YCTNGVCYPDSWGQGTLVTVSS

DS





COVD57_P2_HC_G5-
1457
QVQLVESGGGVVQPGRSLRLSCAASGFTFNRIAM
1458
AKSPM


1369

YWVRQAPGKGLEWVAVISFDGSYEYYAESVKGRF

GYCTN




AISRDNSKNTLYLQMNSLRAEDTAVYYCAKSPMG

GVCYP




YCTNGVCYPDSWGQGTLVTVSS

DS





COVD57_P2_HC_G5-
1461
QVQLVESGGGVVQPGRSLRLSCAASGFTFNRIAM
1462
AKSPM


1369

YWVRQAPGKGLEWVAVISFDGSYEYYAESVKGRF

GYCTN




AISRDNSKNTLYLQMNSLRAEDTAVYYCAKSPMG

GVCYP




YCTNGVCYPDSWGQGTLVTVSS

DS





COVD57_P1_HC_F10-
1465
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYY
1466
ARAGF


1369

WSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRV

GVVITY




TISVDTSKNQFSLKLSSVTAADTAVYYCARAGFGV

GSGTD




VITYGSGTDPLFDYWGQGTLVTVSS

PLFDY





COVD57_P1_HC_H3-
1469
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYY
1470
ARAGF


1369

WSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRV

GVVITY




TISVDTSKNQFSLKLSSVTAADTAVYYCARAGFGV

GSGTD




VITYGSGTDPLFDYWGQGTLVTVSS

PLFDY





COVD57_P1_HC_A5-
1473
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
1474
AREYLE


1369

MHWVRQAPGQGLEWMGRINPNSGGTNYAQKF

RYFDG




QGRVTMTRDTSISTAYMELSRLRSDDTAVYYCAR

GQRWI




EYLERYFDGGQRWISYYYMDVWGKGTAVTVSS

SYYYM






DV





COVD57_P1_HC_A9-
1477
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYYI
1478
AREIPDI


1369

HWVRQAPGKGLEWMGMINPNGGTTRYPLKFQ

LEVVAA




GRVTMTRDTSTRTVYMELNSLRSEDTALYFCAREI

TGSLDD




PDILEVVAATGSLDDWGQGSLVTVS







COVD57_P1_HC_A11-
1481
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
1482
ARDSEY


1369

WVRQAPGQGLEWMGRIIPILGIANYAQKFQGRV

SSSWYS




TITADKSTSTAYMELSSLRSEDTAVYYCARDSEYSS

RGYYG




SWYSRGYYGMDVWGQGTTVTVSS

MDV





COVD57_P2_HC_B1-
1485
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYTIS
1486
ARDSG


1369

WVRQAPGQGLEWMGRIIPILGIANYAQKFQGRV

YSGYGS




TITADKSTSTAYMELSSLRSEDTAVYYCARDSGYSG

TYYMD




YGSTYYMDVWGKGTTVTVSS

V





COVD57_P1_HC_F11-
1489
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
1490
ARDSEY


1369

WVRQAPGQGLEWMGRIIPILGIANYAQKFQGRV

SSSWYS




TITADKSTSTAYMELSSLRSEDTAVYYCARDSEYSS

RGYYG




SWYSRGYYGMDVWGQGTTVTVSS

MDV





COVD57_P2_HC_G11-
1493
EVQLVQSGPVLVKPGPSVKISCKASGFTFTDYYM
1494
ARSGP


1369

HWVKQSHGKSLEWIGLVYPYNGGTSYNQKFKGK

DYFDY




ATLTVDTSSSTAYMELNSLTSEDSAVYYCARSGPD






YFDYWGQGTTLTVSS







COVD57_P2_HC_C12-
1497
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDM
1498
ARGTTF


1369

HWVRQATGKGLEWVSAIGTAGDTYYPGSVKGRF

NHYYY




TISRENAKNSLYLQMNSLRAGDTAVYYCARGTTF

MDV




NHYYYMDVWGKGTTVTVSS







COVD57_P2_HC_C3-
1501
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
1502
TTDVG


1369

MSWVRQAPGKGLEWVGRIKSKTDGGTTDYAAP

ADSSSA




VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTT

YYYYY




DVGADSSSAYYYYYMDVWGKGTTVTVSS

MDV





COVD57_P2_HC_E11-
1505
EVQLVESGGGLVKPGGSLRLSCAASGLTFTAYRM
1506
ARDVA


1369

NWVRQAPGKGLEWLSSISNTNGDIYYADSVKGR

SNYAYF




FTISRDNAKNSLYLQMNSLRADDTAVYYCARDVA

DL




SNYAYFDLWGQGTLVTVSS







COVD57_P2_HC_H12-
1509
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMS
1510
AKDTG


1369

WVRQAPGKGLEWVSGMSGSGGITYYADSVKGR

SMIVEL




FTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDTGS

LGY




MIVELLGYWGQGTLVTVSS







COVD57_P2_HC_H12-
1513
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMS
1514
AKDTG


1369

WVRQAPGKGLEWVSGMSGSGGITYYADSVKGR

SMIVEL




FTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDTGS

LGY




MIVELLGYWGQGTLVTVSS







COVD57_P1_HC_B8-
1517
EVQLVESGGGLVKPGRSLRLSCTASGFTFGDYAM
1518
TRARSV


1369

SWFRQAPGKGLEWVGFIRSKAYGGTTEYAASVK

TMVW




GRFTISRDDSKSIAYLQMNSLKTEDTAVYYCTRAR

YRYYM




SVTMVWYRYYMDVWGKGTTVTVSS

DV





COVD57_P2_HC_C2-
1521
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAM
1522
AREGPF


1369

HWVRQAPGKGLEYVSVISSNGGSTYYANSVKGRF

LPSLYSS




TISRDNSKNTLYLQMGSLRAEDMAVYYCAREGPF

SRDAF




LPSLYSSSRDAFDIWGQGTMVTVSS

DI





COVD57_P1_HC_C8-
1525
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAM
1526
ARGPIA


1369

HWVRQAPGKGLEYVSGISSNGGSPYYANSVKGR

AAGSYF




FTISRDNSKNTLYLQMGSLRAEDMAVYYCARGPI

DY




AAAGSYFDYWGQGTLVTVSS







COVD57_P1_HC_F9-
1529
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYM
1530
ARDLA


1369

SWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFT

VYGMD




ISRDNSKNTLYLQMNSLRAEDTAVYHCARDLAVY

V




GMDVWGQGTTVTVSS







COVD57_P1_HC_C3-
1533
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYM
1534
ARDGE


1369

SWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFT

GQRET




ISRDNSKNTLYLQMNSLRAEDTAVYYCARDGEGQ

DY




RETDYWGQGTLVTVSS







COVD57_P1_HC_G3-
1537
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTHW
1538
TRDDSS


1369

MHWVRQAPGKGLVWVSRINSDGSRRAYATSVK

WPHFF




GRFTISRDNAKNTLYLQMDSLRDEDTAVYYCTRD

DN




DSSWPHFFDNWGQGTLVTVSS







COVD57_P2_HC_B7-
1541
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTHW
1542
TRDDSS


1369

MHWVRQAPGKGLVWVSRINSDGSRRAYATSVK

WPHFF




GRFTISRDNAKNTLYLQMDSLRDEDTAVYYCTRD

DN




DSSWPHFFDNWGQGTLVTVSS







COVD57_P1_HC_H10-
1545
QVQLQQWGAGLLKPSETLSRTCGVYGGSFRDYY
1546
ARAYVS


1369

WSWIRQSPGKGLEWIGEINHSGSTNYNPSLLGRV

SVSEDY




TISVDTSKNQFSLRLTSVTAADTAVYYCARAYVSSV

FDY




SEDYFDYWGQGTLVTVSS







COVD57_P1_HC_B9-
1549
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYY
1550
ARHW


1369

WSWIRQPPGKGLEWIGEVNHSGSTNYNPSLKSR

MPRDY




VTISVDTSKNQFFLKLSSVTAADTAVYYCARHWM

YYYGM




PRDYYYYGMDVWGQGTTVTVSS

DV





COVD57_P2_HC_E3-
1553
QVQLQQWGAGLLKPSETLSRTCAVYGGSFTDYY
1554
ARGAK


1369

WSWIRQSPGKGLEWIGEINHSGSTNYNPFLKSRV

GDSDW




TLSVDTSKNQFSLKLDSLTVADTAIYYCARGAKGD

YFDL




SDWYFDLWGRGTLVTVSS







COVD57_P2_HC_F8-
1557
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWS
1558
ARHYDI


1369

WIRQPPGKGLEWIGYIHYSGSTNYNPSLKSRVTIS

LTALSW




VDTSKNQFSLKLSSVTAADTAVYYCARHYDILTALS

FDP




WFDPWGQGTLVTVSS




COVD57_P2_HC_H11-
1561
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWS
1562
ARLLST


1369

WIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISV

EWLFN




DTSKNQFSLKLSSVTAADTAVYYCARLLSTEWLFN

WFDP




WFDPWGQGTLVTVSS







COVD57_P2_HC_A9-
1565
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
1566
ARGIAV


1369

WVRQMPGKGLEWVGIIYPGDSDTRYSPSFQGQV

DWYFD




TISADKSISTAYLQWSSLKASDTAMYYCARGIAVD

L




WYFDLWGRGTLVTVSS






SEQ

SEQ




ID

ID



SEQUENCE_ID
NO
aa
NO
cdr3_aa










LAMBDA











COVD57_P1L_B4-
1339
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1340
QSY


_1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSAL




ADYYCQSYDSSLSALYVFGTGTKVTVL

YV





COVD57_P1_L_F6-
1343
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1344
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSAL




ADYYCQSYDSSLSALYVFGTGTKVTVL

YV





COVD57_P1_L_G8-
1347
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1348
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSAL




ADYYCQSYDSSLSALYVFGTGTKVTVL

YV





COVD57_P2_L_A2-
1351
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1352
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSAL




ADYYCQSYDSSLSALYVFGTGTKVTVL

YV





COVD57_P2_L_B2-
1355
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1356
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSAL




ADYYCQSYDSSLSALYVFGTGTKVTVL

YV





COVD57_P2_L_B12-
1359
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1360
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSAL




ADYYCQSYDSSLSALYVFGTGTKVTVL

YV





COVD57_P2_L_C10-
1363
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1364
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSVL




ADYYCQSYDSSLSVLYVFGTGTKVTVL

YV





COVD57_P2_L_D10-
1367
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1368
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGYTNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSAL




ADYYCQSYDSSLSALYVFGTGTKVTVL

YV





COVD57_P2_L_E1-
1371
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1372
QSY


1409

GAGSDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSAL




ADYYCQSYDSSLSALYVFGTGTKVTVL

YV










KAPPA











COVD57_P1_K_F3-
1375
EIVLTQSPATLSLSPGERASLSCRASQSVG
1376
QQ


1389

TYLAWYQQKVGQPPRLLIYDASNRATGI

RSS




PARFSGSGSGTDFTLTISSLDPEDFAVYYC

WF




QQRSSWFVTFGQGTRLEIK

VT





COVD57_P2_K_A6-
1379
EIVLTQSPATLSLSPGERATLSCRASQSVS
1380
QQ


1389

TYLTWYQQKPGQAPRLLIYDASNRATGI

RST




PARFSGSGSGTDFTLTITSLEPEDFALYYC

WF




QQRSTWFVTFGQGTRLEIK

VT





COVD57_P2_K_Bl1-
1383
EIVLTQSPATLSLSPGERASLSCRASQSVG
1384
QQ


1389

TYLAWYQQKVGQPPRLLIYDASNRATGI

RSS




PARFSGSGSGTDFTLTISSLDPEDFAVYYC

WF




QQRSSWFVTFGQGTRLEIK

VT





COVD57_P2_K_D11-
1387
EIVLTQSPATLSLSPGERASLSCRASQSVG
1388
QQ


1389

TYLAWYQQKVGQPPRLLIYDASNRATGI

RSS




PARFSGSGSGTDFTLTISSLDPEDFAVYYC

WF




QQRSSWFVTFGQGTRLEIK

VT





COVD_K_F10-
1391
EIVLTQSPATLSLSPGERASLSCRASQSVG
1392
QQ


1389

TYLAWYQQKVGQPPRLLIYDASNRATGI

RSS




PARFSGSGSGTDFTLTISSLDPEDFAVYYC

WF




QQRSSWFVTFGQGTRLEIK

VT





COVD57_P1_K_B11-
1395
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
1396
MQ


1389

HSNGYNYLDWYLQKPGQSPQLLIYLGSN

ALQ




RASGVPDRFSGSGSGTDFTLKISRVEAED

TPP




VGVYYCMQALQTPPTFGGGTKVEIK

T





COVD57_P2_K_A11-
1399
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
1400
MQ


1389

HSNGYNYLDWYLQKPGQSPQLLIYLGSN

ALQ




RASGVPDRFSGSGSGTDFTLKISRVEAED

TPP




VGVYYCMQALQTPPTFGGGTKVEIK

T





COVD57_P2_K_E2-
1403
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
1404
MQ


1389

HSNGYNYLDWYLQKPGQSPQLLIYLGSN

ALQ




RASGVPDRFSGSGSGTDFTLKISRVEAED

TPP




VGVYYCMQALQTPPTFGGGTKVEIK

T










LAMBDA











COVD57_P1_LB7-
1407
SYELTQPPSVSVSPGQTARVTCSGHALP
1408
QSA


1409

DQYTYWYQQRPGRAPVLVIYVNNQRPS

DSS




GIPDRFSATTSGTTVTLTISGVQAEDEAD

GSY




YYCQSADSSGSYVVFGGGTKLTVL

VV





COVD57_P1_LF5-
1411
SYVLTQPPSVSVSPGQTARVTCSGHALP
1412
QSA


1409

DQYTYWYQQRPGRAPVLVIYVNNQRPS

DSS




GIPDRFSATTSGTTVTLTISGVQAEDEAD

GSY




YYCQSADSSGSYVVFGGGTKLTVL

VV





COVD57_P1_L_H2-
1415
SYELTQPPSVSVSPGQTARVTCSGHALP
1416
QSA


1409

DQYTYWYQQRPGRAPVLVIYVNNQRPS

DSS




GIPDRFSATTSGTTVTLTISGVQAEDEAD

GSY




YYCQSADSSGSYVVFGGGTKLTVL

VV










KAPPA











COVD57_P1_K_D12-
1419
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
1420
MQ


1389

HRNGYNYLDWYLQKPGQSPQLLIYLGS

ALQ




NRASGVPDRFRGSGSGTDFTLKISRVEAE

TLT




DVGVYYCMQALQTLTFGQGTRLEIK







COVD57_P2_K_B6-
1423
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
1424
MQ


1389

HRNGYNYLDWYLQKPGQSPQLLIYLGS

ALQ




NRASGVPDRFRGSGSGTDFTLKISRVEAE

TLT




DVGVYYCMQALQTLTFGQGTRLEIK







COVD57_P2_K_H7-
1427
DIVMTQSPLSLPVTPGEPASISCRSSQSLX
1428
MQ


1389

HRNGYNYLDWYLQKPGQSPQLLIYLGS

ALQ




NRASGVPDRFRGSGSGTDFTLKISRVEAE

TLT




DVGVYYCMQALQTLTFGQGTRLEIK







COVD57_P2_K_H7-
1431
DIVMTQSPLSLPVTPGEPASISCRSSQSLX
1432
MQ


1389

HRNGYNYLDWYLQKPGQSPQLLIYLGS

ALQ




NRASGVPDRFRGSGSGTDFTLKISRVEAE

TLT




DVGVYYCMQALQTLTFGQGTRLEIK







COVD57_P1_K_E6-
1435
EIVLTQSPGTLSLSPGERATLSCRASQSVS
1436
QQY


1389

SSYLAWYQQRPGQAPRLLIYGASSRATG

GSS




IPDRFSGSGSGTDFTLTISRLEPEDFAVYY

PW




CQQYGSSPWMFGQGTKVEIK

M





COVD57_P2_K_H6-
1439
EIVLTQSPGTLSLSPGERATLSCRASQSVS
1440
QQY


1389

SSYLAWYQQKPGQAPRLLIYGASSRATG

GSS




IPDRFSGSGSGTDFTLTISRLEPEDFAVYY

PW




CQQYGSSPWTFGQGTKVEIK

T










LAMBDA











COVD57_P2_L_A10-
1443
SYVLTQPPSVSVAPGQTARITCGGNNIG
1444
QV


1409

SKSVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEAD

SSS




YYCQVWDSSSDQGVFGGGTKLTVL

DQ






GV





COVD57_P2_L_C4-
1447
SYVLTQPPSVSVAPGQTARITCGGNNIG
1448
QV


1409

SKSVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEAD

SSS




YYCQVWDSSSDQGVFGGGTKLTVL

DQ






GV





COVD57_P2_L_C4-
1451
SYVLTQPPSVSVAPGQTARITCGGNNIG
14
QV


1409

SKSVHWYQQKPGQAPVLVVYDDSDRPS
52
WD




GIPERFSGSNSGNTATLTISRVEAGDEAD

SSS




YYCQVWDSSSDQGVFGGGTKLTVL

DQ






GV





COVD57_P1_L_E9-
1455
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1456
QSY


1409

ASNYVQWYQQRPGSAPTTVIYEDTQRP

DIN




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

SR




ADYYCQSYDINSRWVFGGGTKLTVL

WV





COVD57_P2_L_G5-
1459
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1460
QSY


1409

ASNYVQWYQQRPGSAPTTVIYEDTQRP

DIN




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

SR




ADYYCQSYDINSRWVFGGGTKLTVL

WV





COVD57_P2_L_G5-
1463
NFMLTQPHSVSESPGKTVTISCTGSSGSI
1464
QSY


1409

ASNYVQWYQQRPGSAPTTVIYEDTQRP

DIN




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

SR




ADYYCQSYDINSRWVFGGGTKLTVL

WV





COVD57_P1_L_F10-
1467
QSVLTQPPSVSGAPGQRVTISCTGSNSNI
1468
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSG




ADYYCQSYDSSLSGSRVFGGGTKLTVL

SRV





COVD57_P1_L_H3-
1471
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1472
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSG




ADYYCQSYDSSLSGSRVFGGGTKLTVL

SRV





COVD57_P1_L_A5-
1475
QSVLTQPASVSGSPGQSITISCTGTSSDV
1476
SSY


1409

GGYNYVSWYQQHPGKAPKLMIYDVSN

TPN




RPSGVSNRFSGSKSGNTASLTISGLQAED

STL




EADYYCSSYTPNSTLVVFGGGTKLTVL

W





COVD57_P1_L_A9-
1479
QSVLTQPPSASGSPGQSVTISCTGTRSDV
1480
SSY


1409

GGYNYVSWYQQHPGKAPKLIIYEVTKRP

AGI




SGVPDRFSGSKSGDTASLTVSGLQADDE

TNL




ADYFCSSYAGITNLVFGGGTKLTV

V





COVD57_P1_L_A11-
1483
QSVLTQPPSASGSPGQSVTISCTGTSSDV
1484
YSY


1409

GGYNYVSWYQHHPGKAPKLMIFEVTKR

GG




PSGVPDRFSGSKSGNTASLTVSGLQAED

NN




EADYYCYSYGGNNNAVFGGGTKLTVL

NAV





COVD57_P2_L_B1-
1487
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1488
QSY


1409

GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSG




ADYYCQSYDSSLSGSVFGTVTKVTVL

SV










KAPPA











COVD57_P1_K_F11-
1491
DIVMTQSPLSLPVTPGEPASISCRSSQSLL
1492
MQ


1389

HSNGYNYLDWYLQKPGQSPQLLIYLGSN

ALQ




RASGVPDRFSGSGSGTDFTLKISRVEAED

TPP




VGVYYCMQALQTPPTFGGGTKVEIK

T





COVD57_P2_K_G11-
1495
EIVMTQSPATLSVSPGERATLSCRASQSV
1496
QQY


1389

SSNLAWYQQKPGQAPRLLIYGASTRATG

NN




IPARFSGSGSGTEFTLTISSLQSEDFAVYY

WP




CQQYNNWPRTFGGGTKVEIK

RT





COVD57_P2_K_C12-
1499
DIQMTQSPSSLSASVGDRVXITCRASQSI
1500
QQS


1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PP




CQQSYSTPPWTFGQGTKVEIK

WT





COVD57_P2_K_C3-
1503
EIVLTQSPXSLSLSPGERATLSCGASQSVS
1504
QQY


1389

SSYLAWYQQKPGLAPRLLIYDASSRATGI

GSS




PDRFSGSGSGTDFTLTISRLEPEDFAVYYC

PYT




QQYGSSPYTFGQGTKLEIK







COVD57_P2_K_E11-
1507
EIVMTQSPATLSLSPGERATLSCRASQSV
1508
QQY


1389

SSNLAWYHQKPGQAPRLLIYGASTRATG

DN




IPARFSGSGSGTEFTLTISSLQSEDFAVYY

WPL




CQQYDNWPLFGQGTRLEIK












LAMBDA











COVD57_P2_L_H12-
1511
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1512
QSY


1409

GAGSDVHWYQKLPGTAPKVFIYGYNNR

DTS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LRV




ADYYCQSYDTSLRVVFGGGTKLTV

V





COVD57_P2_L_H12-
1515
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
1516
QSY


1409

GAGSDVHWYQKLPGTAPKVFIYGYNNR

DTS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LRV




ADYYCQSYDTSLRVVFGGGTKLTV

V










KAPPA











COVD57_P1_K_B8-
1519
DIVMTQTPLSLSVTPGQPASISCKSSQSL
1520
MQ


1389

LHSDGKTYLYWYLQKPGQPPQLLIYEVS

SIQL




NRFSGVPDRFSGSGSGTDFTLKISRVEAE

PYT




DVGVYYCMQSIQLPYTFGQGTKLEIK












LAMBDA











COVD57_P2_L_C2-
1523
SYVLTQPPSVSVAPGQTARITCGGNNIG
1524
QV


1409

SKSVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGDTATLTISRVEAGDEAD

SSS




YYCQVWDSSSDPHYVFGTGTKVTV

DPH






YV





COVD57_P1_L_C8-
1527
SYVLTQPPSVSVAPGQTARITCGGNNIG
1528
QV


1409

SKNVHWYQQKPGQAPVLVVYDDSDRP

WD




SGIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDPHWVFGGGTKLTVL

DPH






WV







KAPPA











COVD57_P1_K_F9-
1531
DIQLTQSPSFLSASVGDRVTITCRASQGIS
1532
QQL


1389

SYLAWYQQKPGKAPKLLIYAASTLQSGV

NSY




PSRFSGSGSGTEFTLTISSLQPEDFATYYC

PPV




QQLNSYPPVTFGQGTRLEIK

T





COVD57_P1_K_C3-
1535
DIQMTQSPSSLSASVGDRVTITCQASQD
1536
QQY


1389

ISNYLNWYQQKPGKAPKLLIYDASNLET

DNL




GVPSRFSGSGSGTDFTFTISSLQPEDIATY

PRT




YCQQYDNLPRTFGQGTKVEIK







COVD57_P1_K_G3-
1539
DIQMTQSPSSLSASVGDRVTITCRASQSII
1540
QQS


1389

NYLNWYQQKPGKAPKLLIYTASSLQSGV

YSS




PSRFSGSGSGTDFTLTISSLQPEDFATYFC

PLW




QQSYSSPLWTFGQGTKVEIK

T





COVD57_P2_K_B7-
1543
EIVMTQSPATLSVSPGERATLSCRASQSV
1544
QQY


1389

SSNLAWYHQKPGQAPRLLIYGASTRATG

DN




IPARFSGSGSGTEFTLTISSLQSEDFAVYY

WPL




CQQYDNWPLFGQGTRLEIK







COVD57_P1_K_H10-
1547
DIQMTQSPSSLSASVGDRVTITCRASQSI
1548
QQS


1389

STYLNWYQQKPGKAPELLIYAASSFQSG

YTT




VPSRFSGSGSGTDFTLTIRSLEPEDSATYY

PYT




CQQSYTTPYTFGQGTKLEIK







COVD57_P1_K_B9-
1551
DIQMTQSPSSLSASVGDRVTITCRASQSI
1552
QQS


1389

SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PRT




CQQSYSTPRTFGQGTKVEIK







COVD57_P2_K_E3-
1555
EIVLTQSPATLSLSPGERATLSCRASQSVS
1556
GD


1389

NYLAWYQQKPGQAPRLLISDASNRATG

NW




VPDRFSGSGSGTDFTLTINSLEPEDFAVY

PR




YCQQGDNWPRMYTFGQGTKLQIK

MYT










LAMBDA











COVD57_P2_L_F8-
1559
QSVLTQPPSVSAAPGQKVTISCSGSSSNI
1560
WD


1409

GNNYVSWYQQLPGTAPKLLIYDNNKRP

SSLS




SGIPDRFSGSKSGTSATLGITGLQTGDEA

AY




DYYCGTWDSSLSAYWVFGGGTKLTVL

WV





COVD57_P2_L_H11-
1563
SYVLTQPPSVSVSPGQTASITCSGDKLGD
1564
QA


1409

KYACWYQQKPGQSPVLVIYQDSKRPSGI

WD




PERFSGSNSGNTATLTISGTQAMDEADY

SST




YCQAWDSSTAYVFGTGTKVTVL

AYV





COVD57_P2_L_A9-
1567
QSVLTQPASVSGSPGQSITISCTGTSSDIG
1568
SSY


1409

VYNYISWSQQHPGKAPKVMIYDVTNRP

RGS




SGVSNRFSGSKSGNTASLTISGLQAEDEA

STP




DYYCSSYRGSSTPYVFGTGTKVTVL

YV
















TABLE 11





Anti-SARS-CoV-2 IgG antibodies from COV72




















SEQ

SEQ




ID

ID



SEQUENCE_ID
NO
aa
NO
cdr3_aa










HEAVY











COV072_P3_HC_50-
1733
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYA
1734
ANHPLA


P1369

MSWVRQAPGKGLEWVSTITGSGGFTYYADSV

SGDEYY




KGRFTISRDNSKNTLFLQMNSLRAEDAAVYYCA

YYYMDV




NHPLASGDEYYYYYMDVWGKGTTVTVSS







COV072_Plate2_HC_24-
1737
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYA
1738
ANHPLA


P1369

MSWVRQAPGKGLEWVSTITGSGRDTYYADSV

SGDDYY




KGRFTISRDNSKNTLFLQLNSLRAEDAAVYSCAN

HYYMD




HPLASGDDYYHYYMDVWGKGTTVTVSS

V





COV072_Plate2_HC_66-
1741
EVQLLESGGGLVQPGGSLRLSCVASRFTFSNYA
1742
ANSPCS


P1369

MSWVRQAPGKGLEWVSTITGTGDHTYYADSV

SASCKS




KGRFTISRDNSKNTLYLQMNSLRAEDTAIFYCA

GYYYYY




NSPCSSASCKSGYYYYYMDVWGKGTTVTVSS

MDV





COV072_P3_HC_17-
1745
QVQLVQSGSEVKKPGSSVKVSCKASGGTFSSYA
1746
ARVNQ


P1369

FSWVRQAPGQGLEWIVIGRIIPILALANYAQKFQ

AVTTPF




GRVTITADKSTSTAYMELSSLRSEDTAVYYCARV

SMDV




NQAVTTPFSMDVWGQGTTVTVSS







COV072_P3_HC_21-
1749
QVQLVQSGAEVKKPGSSVKVSCKASGDTFSSSA
1750
ARANQ


P1369

LSWVRQAPGQGLEWIVIGRIIPILGITNYAQKFQ

PVTTPFS




GRVTITADKSTSTAYMELNSLRSEDTAVYYCARA

MDV




NQPVTTPFSMDVWGQGTTVTVSS







COV072_P3_HC_53-
1753
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1754
ARDSDV


P1369

MHWVRQAPGKGLEWVAVILYDGSNKYYADSV

DTSMVT




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

WFDY




RDSDVDTSMVTWFDYWGQGTLVTVSS







COV072_Plate2_HC_83-
1757
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYA
1758
ARDSDV


P1369

MHWVRQAPGKGLEWVAVISYDGTNKFYADSV

DTAMV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCA

TWFDY




RDSDVDTAMVTWFDYWGQGTLVTVSS







COV072_P3_HC_80-
1761
EVQLVESGGGLVQPGGSLRLSCAASGITVSSNY
1762
ARDLGD


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

YGMDV




GRVTISRDNSKNTLYLQMNSLRVEDTAVYYCAR






DLGDYGMDVWGQGTTVTVSS







COV072_Plate2_HC_36-
1765
EVQLVESGGGLVQPGGSLRLSCAASGVTVSSNY
1766
ARDLYY


P1369

MSWVRQAPGKGLEWVSLIYSGGSTFYADSVKG

YGMDV




RFTISRDNSENTLYLQMNTLRAEDTAVYYCARD






LYYYGMDVWGQGTTVTVSS







COV072_P3_HC_49-
1769
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNY
1770
ARSRPT


P1369

YMHWVRQAPGQGLEWMGIINPSGGSTGYAQ

PDWYF




KFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYY

DL




CARSRPTPDWYFDLWGRGTLVTVSS







COV072_Plate2_HC_81-
1773
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSHY
1774
AKSRPT


P1369

IHWVRQAPGQGLEWMGIINPSGGSTSYAQKF

PDWYF




QGRVTMTRDTSTTTLYMDLSSLRSEDTAVYYCA

DL




KSRPTPDWYFDLWGRGTLVTVSS







COV072_P3_HC_51-
1777
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYA
1778
AKDPLIT


P1369

MSWVRQAPGKGLEWVSAISGSDGSTYYAGSV

GPTYQY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FHY




KDPLITGPTYQYFHYWGQGTLVTVSS







COV072_Plate2_HC_93-
1781
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYA
1782
AKDPLIT


P1369

MSWVRQAPGKGLEWVSAISGSDGSTYYAGSV

GPTYQY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FHY




KDPLITGPTYQYFHYWGQGTLVTVSS







COV072_P3_HC_12-
1785
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
1786
ARALQG


P1369

MSWVRQAPGKGLEWVANIKQDGSEKYYVDSV

PWLGA




KGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

DY




RALQGPWLGADYWGQGTLVTVSS







COV072_Plate2_HC_33-
1789
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYW
1790
AGGTW


P1369

MSWVRQPPGKGLEWVANIKQDGSEKYYVDSV

LRSSFDY




KGRFTISRDNAKNSLYLQMNSLRADDTAVYYCA






GGTWLRSSFDYWGQGTLVTVSS







COV072_P3_HC_25-
1793
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSNN
1794
ARGGDT


P1369

WWSCVRQPPGKGLEWIGEIYHSGSTNYNPSLK

AMGPE




SRVTISVDKSKNQFSLKLSSVTAADTAVYYCARG

YFDY




GDTAMGPEYFDYWGQGTLVTVSS







COV072_Plate2_HC_53-
1797
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSNN
1798
AKGGDR


P1369

WWSWVRQPPGKGLEWIGEIYHSGSTNYNPSL

AMGPE




KSRVTISVDKSKNQFSLKLSSVTAADTAVYYCAK

YFDY




GGDRAMGPEYFDYWGQGTLVTVSS







COV072_P3_HC_44-
1801
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYG
1802
ARVLGII


P1369

ISWVRQAPGQGLEWMGWISAYNGNTKYAQK

VAGSLN




LQGRVTMTTDTSTSTAYMELRSLRSDDTAVYFC






ARVLGIIVAGSLNWGQGTLVTVSS







COV072_P3_HC_40-
1805
QVQLVQSGAEVKKPGASVKVSCKASGYTFSSNY
1806
ARDLGY


P1369

MHWVRQAPGQGLEWMGIINPSGGSTTYAQK

IPASDAF




FQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYC

DI




ARDLGYIPASDAFDIWGQGTMVTVS







COV072_P3_HC_77-
1809
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYT
1810
ARFSNY


P1369

1SWVRQAPGHGLEWMGRIIPILGIANYAQKFQ

CTSTSCY




GRVTITADKSTSTAYMELSSLRSEDTAVYYCARF

DY




SNYCTSTSCYDYWGQGTLVTVSS







COV072_Plate2_HC_9-
1813
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYG
1814
ARDGIT


P1369

ISWVRQAPGQGLEWMGWISAYNGNTNYAQK

GTIEYYF




LQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYC

DY




ARDGITGTIEYYFDYWGQGTLVTVSS







COV072_P3_HC_34-
1817
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELS
1818
ATNAEI


P1369

MHWVRQAPGKGLEWIVIGGFDPEDGETIYVQK

AARKGG




FQGRATMTEHTSTETAYMELSSLRSEDTAVYYC

MDV




ATNAEIAARKGGMDVWGQGTTVTVSS







COV072_P3_HC_10-
1821
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYY
1822
ARDIAL


P1369

IHWVRQAPGQGLEWMGIINPSAGSTSYAQKF

VPAAM




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCA

GLDY




RDIALVPAAMGLDYWGQGTLVTVSS




COV072_P3_HC_42-
1825
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTNS
1826
AAVDC


P1369

AVQWVRQSRRQRLEWIGWIVVGSGNTNYAQ

NSTSCY




KFQERVTITRDMSTSTAYMELSSLRSEDTAVYYC

DAFDI




AAVDCNSTSCYDAFDIWGQGTMVTVSS







COV072_P3_HC_31-
1829
QVQLVQSGAEVKKPGSSVKVSCKASGGTVNNY
1830
AKVSLTL


P1369

AINWVRQAPGQGLEWMGGIVPIFGTPNYAQK

PIAAAP




FQGRVTITADESTSTAYMELSSLRSEDTAVYYCA

RFWFDS




KVSLTLPIAAAPRFWFDSWGQGTLVTVSS







COV072_P3_HC_30-
1833
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
1834
ARGWA


P1369

ISWVRQAPGQGLEWMGRIIPMLVIATYARKFQ

ATPGNF




GRVTITADKSTSTAYMELSSLRSEDTAVYYCARG

DI




VVAATPGNFDIWGQGTMVTVSS







COV072_P3_HC_48-
1837
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
1838
ARDLLD


P1369

INWVRQAPGQGLEWMGRIIPIVGIANYAQKFQ

PQLDDA




GRVTITADKSSSTAYMELSSLRSEDTAVYYCARD

FDI




LLDPQLDDAFDIWGQGTMVTVSS







COV072_Plate2_HC_40-
1841
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA
1842
ARGGYS


P1369

INWVRQAPGQGLEWMGRIIPILDISNYAQKFQ

YGQLYY




GRVTITADKSTSIAYMELSSLRSEDTAVYYCARG

FDY




GYSYGQLYYFDYWGQGTLVTVSS







COV072_P3_HC_58-
1845
QVQLVESGGGLVKPGGSLRLSCAASGFTFSHYN
1846
ARDRGY


P1369

MIWIRQAPGKGLEWVSYISSSSSYTNCSDSVRG

SGYGLD




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD

RFDY




RGYSGYGLDRFDYWGQGTLVTVSS







COV072_P3_HC_64-
1849
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYY
1850
ARDNIT


P1369

MTWIRQAPGKGLEWVSYITTSSSYTNYADSVK

MVRGVI




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR

VRPND




DNITMVRGVIVRPNDGGYYYALDVWGQGTTV

GGYYYA




TVSS

LDV





COV072_P3_HC_5-
1853
EVQLLESGGGLVQPGGSLRLSCTASGFTFSTYA
1854
AKSKTV


P1369

MSWVRQAPGKGLEWVSAISDSGGSTYYADSV

ERLPYC




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

GGDCFS




KSKTVERLPYCGGDCFSAIDYWGQGTLVTVSS

AIDY





COV072_Plate2_HC_92-
1857
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
1858
AKAGPA


P1369

MSWVRQAPGKGLEWISAISGSGGRTYNADSV

AAYGW




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

YYYYMD




KAGPAAAYGWYYYYMDVWGKGTTVTASS

V





COV072_Plate2_HC_15-
1861
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1862
AKGPRF


P1369

MHWVRQAPGKGLEWVAVISYDGTDSVKGRFT

GWSYR




ISRDTSKNMLYLQMNSLRAEDTAVYYCAKGPRF

GGPGFD




GWSYRGGPGFDIWGQGTMVTVSS

I





COV072_P3_HC_45-
1865
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1866
ASSSGYL


P1369

MHWVRQAPGKGLEWVAVIPFDGRNKYYADS

FHSDY




VTGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

AKGPRF




ASSSGYLFHSDYWGQGTLVTVSS







COV072_Plate2_HC_31-
1869
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1870
GWSYR


P1369

MNWVRQAPGKGLEWVAVISYDGSNTYYTDSV

GGSGFD




KGRFTISRDNSKNTLYLQMNSLRVDDTATYYCA

I




KGPRFGWSYRGGSGFDIWGQGTMVTVSS







COV072_P3_HC_3-
1873
QVQLVESGGGVVQPGRSLRLSCAVSGFTFSSYG
1874
AKQLGL


P1369

MHWVRQAPGKGLEWVAVISYDGSNKHYADS

YCSGGN




VKGRFTISRDNSKNTLYVQMNSLRAEDTAMYY

CYSGAL




CAKQLGLYCSGGNCYSGALDYWGQGTLVTVSS

DY





COV072_P3_HC_37-
1877
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1878
AKQNGL


P1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YCSGGS




KGRFTISRDNSKNMLYLQMNSLRAEDTAVYYC

CYLGYF




AKQNGLYCSGGSCYLGYFDYWGQGTLVTVSS

DY





COV072_Plate2_HC_63-
1881
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1882
AKGGAY


P1369

MHWVRQAPGKGLEWVAVISYDGSNKYSADSV

SYYYYM




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DV




KGGAYSYYYYMDVWGKGTTVTVSS







COV072_P3_HC_69-
1885
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYT
1886
ARDSDT


P1369

MHWVRQAPGKGLEWVAVISYDGSIKYYADSV

AMVDY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




RDSDTAMVDYFDYWGQGTLVTVSS







COV072_P3_HC_74-
1889
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1890
AKVDLK


P1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YSYGLYY




KGRCTISRDNSKNTLFLQMNSLRPEDTAVYYCA

FDY




KVDLKYSYGLYYFDYWGQGTLVTVSS







COV072_Plate2_HC_12-
1893
QVQLVESGGGVVQPGRSLRLSCAASGFTFSHYA
1894
ASSSGYL


P1369

MHWVRQAPGKGLEWVAVIPFDGSNKYYADSV

FHFDY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA






SSSGYLFHFDYWGQGTLVTVSS







COV072_Plate2_HC_23-
1897
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
1898
ARVRLG


P1369

AMHWVRQAPGKGLEWVAVISYDGSKKYSADS

AYYNYF




VKGRFTISRDNSKNTLYLQMNSLRPVDTAVYYC

GMDV




ARVRLGAYYNYFGMDVWGQGTTVTVSS







COV072_P3_HC_68-
1901
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1902
AKKGQP


P1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YCGGDC




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

YFYYFDY




KKGQPYCGGDCYFYYFDYWGQGTLVTVSS







COV072_Plate2_HC_72-
1905
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
1906
ARDGTG


P1369

MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

IAAAGT




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

ANPPFD




ARDGTGIAAAGTANPPFDYWGQGTLVTVSS

Y





COV072_Plate2_HC_25-
1909
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYG
1910
ATSLFGI


P1369

MHWVRQAPGKGLEWVAVIWYDGNNKYYADS

ISLDY




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC






ATSLFGIISLDYWGQGTLVTVSS







COV072_Plate2_HC_54-
1913
QVQLVESGGGVVQPGRSLRLSCAASGFTFNNY
1914
ARDWEI


P1369

GMHWVRQAPGKGLEWVAVIWYDGSNKYYAD

WAGM




SVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYY

DV




CARDWEIVVAGMDVWGQGTTVTVSS







COV072_Plate2_HC_78-
1917
EVQLVESGGVVVQPGGSLRLSCAASGFTFDDH
1918
AKGLNY


P1369

TMHWVRQAPGKGLEWVSLISWDAGSTYYADS

RPQYYY




VKGRFTISRDNRKNFLYLQMNSLRTEDTALYYC

YYGMD




AKGLNYRPQYYYYYGMDVWGQGTTVTVSS

V





COV072_P3_HC_26-
1921
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
1922
ARSFYF


P1369

MSWVRQAPGKGLEWISVIYSGGSTFYADSVKG

DAFDI




RFTISRDNSKDTLYLQMNRLRAEDTAVYYCARS






FYFDAFDIWGQGTMVTVSS







COV072_P3_HC_67-
1925
EVQLVESGGGLIQPGGSLRLSCAASGFIVSRNY
1926
TRDPVP


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

GRGDAY




GRFTISRDNSKNTLYLQMNSLRADDTAVYYCTR






DPVPGRGDAYWGQGTLVTVSS







COV072_Plate2_HC_89-
1929
EVQLVETGGGLIQPGGSLRLSCAASGITVSSNY
1930
ARDLYY


P1369

MSWVRQAPGKGLEWVSIIYSGGSTFYADSVKG

YGMDV




RFTISRDNPKNTLYLQMNSLRAEDTAVYYCARD






LYYYGMDVWGQGTTVTVS







COV072_P3_HC_22-
1933
EVQLVESGGGLVQPGGSLRLSCSASGFTFSSYA
1934
VKDITM


P1369

MHWVRQAPGKGLEYVSAISSNGGSTYYADSVK

IVDVFEY




GRFTISRDNSKNTLYLQMSSLRAEDTAVYYCVK






DITMIVDVFEYWGQGTLVTVSS







COV072_P3_HC_47-
1937
EVQLVESGGGLVQPGGSLRLSCAASEFIVSRNY
1938
ARDIAG


P1369

MSWVRQAPGKGLEWVSLIYSGGSTYYADSVKG

RLDY




RFTISRDNSKNTLYLQMNSLRAEDTAMYYCARD






IAGRLDYWGQGTLVTVSS







COV072_P3_HC_59-
1941
EVQLVESGGGLVQPGGSLRLSCAASGFIVSSNY
1942
ARDLW


P1369

MSWVRQAPGKGLEWVSILYSGGSTYYADSVKG

YGADY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARD






LVVYGADYWGQGTLVTVSS







COV072_Plate2_HC_16-
1945
EVQLVESGGDLVQPGGSLRLSCAASGLTVSSNY
1946
ARDLOY


P1369

MSWVRQAPGKGLEWVSVIYSGGSTFYADSVK

YGMDV




GRFTISRDNSQNTLYLQMNSLRAEDTAVYYCAR






DLQYYGMDVWGQGTTVTVSS







COV072_Plate2_HC_37-
1949
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
1950
ARDQVS


P1369

MSWVRQAPGKGLEWVANIKQDGSVKYYVDSV

WYNLD




KGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCA

AFDI




RDQVSWYNLDAFDIWGQGTMVTVSS







COV072_Plate2_HC_86-
1953
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGDY
1954
VRWM


P1369

SWSWIRQPPGKGLEWIGYIYYSGSTYYNPSLKS

SGIAAA




RVTISVDTSKNQFSLKLSSVTAADTAVYYCVRVV

GQNDY




MSGIAAAGQNDYWGQGTLVTVSS







COV072_Plate2_HC_32-
1957
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGDY
1958
ARTYYY


P1369

YWSWIRQPPGKGLEWIGYIYYSGSTYYNPSLKS

DSSGYY




RVTISVDTSKNQFSLKLSSVTAADTAVYYCARTY

FQYYFD




YYDSSGYYFQYYFDCWGQGTLVTVSS

C





COV072_Plate2_HC_67-
1961
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
1962
ATNYDD


P1369

YWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS

YVPAEY




RVTISVDTSKKQFSLKLSSVTAADTAVYYCATNY

FQD




DDYVPAEYFQDWGQGTLVTVSS







COV072_Plate2_HC_88-
1965
QVQLQESGPGLVKPSQTLSLTCTFSGGSISSGGH
1966
ARSCSS


P1369

YWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS

TSCPFD




RVIISVDTSKNQFSLRLSSVTAADTAVYYCARSCS

Y




STSCPFDYWGQGTLVTVSS







COV072_Plate2_HC_74-
1969
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYY
1970
ARRPPG


P1369

WGWIRQSPGKGLEWIGSIYYSGSTYYNPSLKSR

DYYYM




VTISVDTSKNQFSLKLSSVTAADTAVYYCARRPP

DV




GDYYYMDVWGKGTTVTVSS







COV072_P3_HC_4-
1973
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNS
1974
ARSGSY


P1369

TAWNWIRQSPSRGLEWLGRTYYRSKWYNHYA

YISHGM




LSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYC

DV




ARSGSYYISHGMDVWGQGTTVTVSS







COV072_P3_HC_54-
1977
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1978
ARNDGS


P1369

MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

SGWYPE




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

RGGGFD




RNDGSSGWYPERGGGFDYWGQGTLVTVSS

Y





COV072_P3_HC_94-
1981
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1982
ARALSFI


P1369

IHWVRQAPGKGLEWVAVISNDGSNKYYEDSVK

AVAGID




GRFTFSRDNSKNTLYLQMNSLRAEDTAVYYCAR

Y




ALSFIAVAGIDYWGRGTLVTVSS







COV072_P3_HC_91-
1985
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
1986
ARADLG


P1369

MFWVRQAPGKGLEWVAVISYDGSNKYYADSV

YCTNGV




KGRFTISRDNSKNTLYLQI\/INSLRAEDTAVYYCA

CYVDY




RADLGYCTNGVCYVDYWGQGTLVTVSS







COV072_Plate2_HC_14-
1989
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNY
1990
ASHLMP


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

DAFDI




GRFTISRDNSKNTLYLHMNSLRAEDTAVFYCAS






HLMPDAFDIWGQGTMVTVSS







COV072_P3_HC_1-
1993
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
1994
ARWGY


P1369

MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

DFWSG




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR

YDGGYF




VVGYDFWSGYDGGYFDYWGQGTLVTVSS

DY





COV072_P3_HC_71-
1997
QVQLVESGGGVVQPGRSLRLSCVASGFTFSSYG
1998
ARGEW


P1369

MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

DSGSYQ




VKGRFTISRDNSKNTLYLKMNSLRAEDTAVYYC

YYDYYM




ARGEWDSGSYQYYDYYMDVWGKGTTVTVSS

DV





COV072_Plate2_HC_5-
2001
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
2002
ARDTGR


P1369

MSWVRQAPGKGLEWVANIKQDGSEKYYVDSV

ITFGGG




KGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

DDAFDI




RDTGRITFGGGDDAFDIWGQGTMVTVSS







COV072_Plate2_HC_71-
2005
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
2006
ARGVVL


P1369

YWNWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS

ITDYYFD




RVTISVDTSQNQFSLRLSSVTAADTAVYYCARG

Y




VVLITDYYFDYWGQGTLVTVSS







COV072_P3_HC_73-
2009
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSAYS
2010
AREGAV


P1369

WSWIRQPPGKGLEWIGEINHGGSTNYNASLKS

AGGDF




RVTISADTSKNLFSLKLSSVTAADTAVYYCAREG

DY




AVAGGDFDYWGQGTLVTVSS







COV072_Plate2_HC_76-
2013
QVQLQESG PG LVKPS ETLS LTCTVSGGS1SSYYW
2014
ARGRGL


P1369

SWIRQPPGKGLEWIGYIYYSGSTRYNPSLKSRVT

PPWFDP




ISVDTSKNQFSLKLSSVTAADTAVFYCARGRGLP






PWFDPWGQGTLVTVSS







COV072_P3_HC_18-
2017
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
2018
ARPDM


P1369

SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

SSSSSPH




ISVDTSKNQFSLKLSSVTAADTAVYYCARPDMSS

YWYFDL




SSSPHYWYFDLWGRGTLVTVSS







COV072_P3_HC_84-
2021
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWI
2022
ARRGGS


P1369

VWVRQMPGKGLERMGIIYPGDSDTRYSPSFQG

YYNNGD




QVTISADKSISTAYLQWSSLKASDTAMYYCARR

GMDV




GGSYYNNGDGMDVWGQGTTVTVSS







COV072_P3_HC_55-
2025
EVQLVESGGGLVKPGGSLRLSCAAASGFTISNA
2026
TTDYSIR


P1369

WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY

YYYGM




AAPVKGRFTISRDNSKNTLYLQMNSLKTEDTAV

DV




YYCTTDYSIRYYYGMDVWGQGTTVTVSS







COV072_P3_HC_38-
2029
EVQLVESGGGLVKPGGSLRLSCAASGFTFSTYS
2030
ARAKLEI


P1369

MNWVRQAPGKGLEWVSSISSSSNYIYYADSVK

AHYGGS




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR

PGFDY




AKLEIAHYGGSPGFDYWGQGTLVTVSS







COV072_P3_HC_36-
2033
EVQLVESGGGLVKPGGSLRLSCAASGFSFRSYS
2034
ARMGLE


P1369

MNWVRQAPGKGLEWVSSISSSSSYIYYADSVK

LPGLDY




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR

GMDV




MGLELPGLDYGMDVWGQGTTVTVSS




COV072_Plate2_HC_94-
2037
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYA
2038
AKVDYG


P1369

MTWVRQAPGKGLEWVSAISGSGGRTYYADSV

EYVFSN




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

AFDI




KVDYGEYVFSNAFDIWGQGTMVSVSS







COV072_P3_HC_56-
2041
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY
2042
AKAGGR


P1369

GMHWVRQAPGKGLEWVAVLSYEGSSTYYADS

DYYDSS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

GYYLLD




AKAGGRDYYDSSGYYLLDHYYGMDVWGQGTT

HYYGM




VTVSS

DV






SEQ

SEQ




ID

ID



SEQUENCE_ID
NO
aa
NO
cdr3_aa










KAPPA











COV072_Plate3_Kappa_50-
1735
EIVLTQSPGTLSLSPGERATLSCRASQSV
1736
QQY


P1389

NSRQLAWYQQKPGQGPRLLIYGASSR

GSS




ATGIPDRFSGSGSGTDFTLTISRLEPEDF

RAL




AVYYCQQYGSSRALTFGGGTKVEIK

T





COV072_Plate2_Kappa_24-
1739
EIVLTQSPGTLSLSPGERATLSCRASQSV
1740
QQY


P1389

NSRQLAWYQQKPGQAPRLLIYGASSR

GSS




ATGIPERFSGSGSGTDFTLTISRLESEDF

RAL




AVYHCQQYGSSRALTFGGGTKVEIK

T





COV072_Plate2_Kappa_66-
1743
EIVLTQSPGTLSLSPGERATLFCRASQSV
1744
QQY


P1389

TSSHLAWYQQKAGQAPRLLIYGASSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

RSLT




VYYCQQYGSSRSLTFGGGTKVEIK







COV072_Plate3_Kappa_17-
1747
EIVMTQSPATLSVSPGERATLSCRASQS
1748
QQY


P1389

VSSNLAWYQQKPGQAPRLLIYGASTRA

NN




TGIPARFSGSGSGTEFTLTISSLQSEDFA

WPI




VYYCQQYNNWPITFGQGTRLEIK

T





COV072_Plate3_Kappa_21-
1751
EIVMTQSPATLSVSPGERATLSCRASQS
1752
QQY


P1389

VSSNLAWYQQKPGQAPRLLIYAASTRA

NN




TGIPARFSGSGSGTEFTLTISSLQSEDFA

WPI




VYYCQQYNNWPITFGQGTRLEIK

T





COV072_Plate3_Kappa_53-
1755
DIQMTQSPSSLSASVGDRVTITCRASQS
1756
QQS


P1389

ISSYLNWYQQKPGKAPKLLIYAASSLQS

YSTP




GVPSRFSGSGSGTDFTLTISSLQPEDFA

PWT




TYYCQQSYSTPPWTFGQGTKVEIK







COV072_Plate2_Kappa_83-
1759
DIQMTQSPSSLSASVGDRVTITCRASQS
1760
QQS


P1389

ISSYLNWYQHKPGKAPKLLIYASSSLQS

YSTP




GVPSRFSGSGSGTDFTLTISSLQPEDFA

PWT




TYYCQQSYSTPPWTFGQGTKVEIK







COV072_Plate3_Kappa_80-
1763
DIQLTQSPSFLSASVGDRVTITCRASQGI
1764
QQL


P1389

SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PPY




YCQQLNSYPPYTFGQGTKLEIK

T





COV072_Plate2_Kappa_36-
1767
DIQLTQSPSFLSASVGDRVTITCRASQGI
1768
QQL


P1389

SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

SYT




YCQQLNSYSYTFGQGTKLEIK












LAMBDA











COV072_Plate3_Lambda_49-
1771
SYVLTQPPSVSVAPGKTARITCGGNNIG
1772
QV


P1409

SKSVHWYQQKPGQAPVLVIYYDSDRPS

WDS




GIPERFSGSNSGNTATLTISRVEAGDEA

SSD




DYYCQVWDSSSDHPGVVFGGGTKLTV

HPG




L

W





COV072_Plate2_Lambda_81-
1775
SYVLTQPPSVSVAPGKTARITCGGNNIG
1776
QV


P1409

SKSVHWYQQKPGQAPVLVIYYDNDRP

WD




SGIPERFSGSNSGNTATLTISRVEAGDE

GGS




ADYYCQVWDGGSDHPGVVFGGGTKL

DHP




TVL

GW





COV072_Plate3_Lambda_51-
1779
SYVLTQPPSVSVAPGKTARITCGGNNIG
1780
QV


P1409

SKSVHWYQQKPGQAPVLVIYYDSDRPS

WDS




GIPERFSGSNSGNTATLTISRVEAGDEA

SSD




EYHCQVWDSSSDRPGVVFGGGTKLTV

RPG




L

W





COV072_Plate2_Lambda_93-
1783
SYVLTQPPSVSVAPGKTARITCGGNNIG
1784
QV


P1409

SKSVHWYQQKPGQAPVLVIYYDSDRPS

WDS




GIPERFSGSNSGNTATLTISRVEAGDEA

SSD




EYHCQVWDSSSDRPGVVFGGGTKLTV

RPG




L

W





COV072_Plate3_Lambda_12-
1787
NFMLNQPPCEXESPGKTVTISCTGSSG
1788
QSY


P1409

SIASNYDQWYQQRPGSAPTTVIYEDKQ

DSS




RTSGVLDWFSGSXARSSNSPSLTIXGRK

KGV




REDEADXYCQSYDSSKGVFGGGTKLTV






L







COV072_Plate2_Lambda_33-
1791
NFMLTQPHSVSESPGKTVTISCTGSSGS
1792
QSY


P1409

IASNYVQWYQQRPGSAPTTVIYEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

NW




EDEADYYCQSYDSSNWVFGGGTKLTV

V




L







COV072_Plate3_Lambda_25-
1795
QSVLTQPASVSGSPGQSITISCTGTSSD
1796
SSYT


P1409

VGGYNYVSWYQQH PGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLQA

LL




EDEADYYCSSYTSSSTLLFGGGTKLTVL







COV072_Plate2_Lambda_53-
1799
QSVLTQPASVSGSPGQSITISCTGTSSD
1800
SSFT


P1409

VGGYNYVSWYQQH PGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLQA

LL




EDEADYYCSSFTSSSTLLFGGGTRLTVL







COV072_Plate3_Lambda_44-
1803
NFVLTQPHSVSESPGKTVTISCTGSSGSI
1804
QSY


P1409

ASNYVQWYQQRPGSAPTTVIYEDNQR

DSS




PSGVPDRFSGSIDSSSNSASLTISGLKTE

TWV




DEADYYCQSYDSSTWVFGGGTKLTVL







COV072_Plate3_Lambda_40-
1807
QSVLTQPRSVSGSPGQSVTISCTGTSSD
1808
CSY


P1409

FGGYNYVSWYQQHPGKAPKLIVIIYDVS






KRPSGVPDRFSGSKSGNTASLTISGLQA

AGS




EDEADYYCCSYAGSYTRYVFGTGTKVT

YTR




VL

YV





COV072_Plate3_Lambda_77-
1811
QSVLTQPPSVSGAPGQRVTISCTGSNS
1812
QSY


P1409

NIGAGYDVHWYQQLPGTAPKLLIYVNS

DSSL




NRPSGVPDRFSGSKSGTSASLAITGLQA

SGS




EDEADYSCQSYDSSLSGSVFGTGTKVTV

V




L












KAPPA











COV072_Plate2_Kappa_9-
1815
EIVLTQSPATLSLSPGERATLSCRASQSV
1816
QQR


P1389

SSYLAWYQQKPGQAPRLLIYDASNRAT

SNW




GIPARFSGSGSGTDFTLTISSLEPEDFAV

PPG




YYCQQRSNWPPGVTFGQGTRLEIK

VT





COV072_Plate3_Kappa_34-
1819
DIVMTQSPLSLPVTPGEPASISCRSSQSL
1820
MQ


P1389

LYSNGYNYLDWYLQKPGQSPQLLIYLG

ALQ




SNRASGVPDRFSGSGSGTDFTLKISRVE

TPW




AEDVGVYYCMQALQTPWTFGQGTKV

T




EIK







COV072_Plate3_Kappa_10-
1823
DIQMTQSPSSLSASVGDRVTITCRASQS
1824
QQS


P1389

SSRYLNWYQQKPGKAPKLLIYAASSLQS

YRT




GVPSRFSGSGSGTDFTLTISSLQPEDFA

RLT




TYYCQQSYRTRLTFGGGTKVEIK







COV072_Plate3_Kappa_42-
1827
EIVLTQSPGTLSLSPGERATLSCRASQSF
1828
QQY


P1389

RSSYLAWYQQKPGQAPRLLIYGASSRA

DISP




TGIPDRFSGSGSGSDFTLTISRLEPEDFA

WT




VYYCQQYDISPWTFGQGTKVEIK







COV072_Plate3_Kappa_31-
1831
EIVMTQSPATLSVSPGERATLSCRASQS
1832
QQY


P1389

VSSHLAWYQQKPGQAPRLLIYGASTRA

HN




TGIPARFSGSGSGTEFTLTISSLQSEDFA

WPP




VYYCQQYHNWPPALTFGGGTKVEIK

ALT





COV072_Plate3_Kappa_30-
1835
EIVMTQSPATLSVSPGERATLSCRASQS
1836
QQY


P1389

VSSNLAWYQQKPGQAPRLLIYGASTRA

NNG




TGIPARFSGSGSGTEFTLTISSLQSEDFA

LT




VYYCQQYNNGLTFGGGTKVEIK







COV072_Plate3_Kappa_48-
1839
EIVLTQSPGTLSLSPGERATLSCRASQSV
1840
QQY


P1389

SSTYLAWYQQKPGQAPRLLIYGASSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

PWT




VYYCQQYGSSPWTFGQGTKVEIK







COV072_Plate2_Kappa_40-
1843
EIVLTQSPGTLSLPPGERATLSCRASQSV
1844
QQY


P1389

SSSYLAWYQQKPGQAPRLLIYGASSRA

ANS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

RT




VYYCQQYANSRTFGQGTKVEIK







COV072_Plate3_Kappa_58-
1847
DIQMTQSPSSLSASVGDRVTITCQASQ
1848
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASHL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PLT




ATYYCQQYDNLPLTFGGGTKVEIK







COV072_Plate3_Kappa_64-
1851
DIQMTQSPSSLSASVGDRVTITCRASQS
1852
QQS


P1389

ISSYLNWYQEKPGKAPKLLIYAASSLQS

YSTR




GVPSRFSGSGSGTDFTLTISSLQPEDFA

ALT




TYYCQQSYSTRALTFGGGTKVEIK







COV072_Plate3_Kappa_5-
1855
DIQMTQSPSSLSASVGDRVTITCQASQ
1856
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PPFT




ATYYCQQYDNLPPFTFGPGTKVHIK




COV072_Plate2_Kappa_92-
1859
DIQMTQSPSSLSASVGDRVTITCRASQ
1860
QKY


P1389

GISNYLAWYQQKPGKVPKLLIYAASTLQ

NSA




SGVPSRFSGSGSGTDFTLTISSLQPEDVS

LGFT




TYYCQKYNSALGFTFGPGTKVDIK







COV072_Plate2_Kappa_15-
1863
DIQMTQSPSSLSASVGDRVTITCQASQ
1864
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PIT




ATYYCQQYDNLPITFGQGTRLEIK







COV072_Plate3_Kappa_45-
1867
DIQMTQSPSTLSASVGDRVTITCRASQS
1868
QQY


P1389

ISNWLAWFQQKPGKAPKLLIYEAXSLES

NSY




GVPSRFSGSGSGTEFTLTISSLQPDDFA

PWT




TYYCQQYNSYPWTFGQGTKVEIK







COV072_Plate2_Kappa_31-
1871
DIQMTQSPSSLSASVGDRVTITCQASQ
1872
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSESGTDFTFTISSLQPEDI

PIT




ATYYCQQYDNLPITFGQGTRLEIK







COV072_Plate3_Kappa_3-
1875
DIQMTQSPSSLSASVGDRVTITCQASQ
1876
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PFT




ATYYCQQYDNLPFTFGPGTKVDIK







COV072_Plate3_Kappa_37-
1879
DIQMTQSPSSLSASVGDRVTITCQASQ
1880
LOY


P1389

DISNYLNWFQQKPGKAPKLLIYAASDLE

DNL




TGVPSRFSGSGSGTDFTFTISSLQPEDIA

PLT




SYYCLQYDNLPLTFGGGTKVEIK







COV072_Plate2_Kappa_63-
1883
DIQMTQSPSSLSASVGDRVTITCQASQ
1884
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PLT




ATYYCQQYDNLPLTFGGGTKVEIK







COV072_Plate3_Kappa_69-
1887
DIQMTQSPSSLSASVGDRVTITCRASQS
1888
QQS


P1389

ISSYLNWYQQKAGKAPKLLIYAASSLQS

YSTF




GVPSRFSGSGSGTDFTLTISSLQPEDFA

MYT




TYYCQQSYSTFMYTFGQGTKLEIK







COV072_Plate3_Kappa_74-
1891
DIQMTQSPSSLSASVGDRVTITCRASQS
1892
QQT


P1389

ISSYLNWYQQKPGKAPKLLIYAASSLQS

YITP




GVPSRFSGSGSGTDFTLTISSLQPEDFA

PS




TYYCQQTYITPPSFGPGTKVDIK







COV072_Plate2_Kappa_12-
1895
DIQMTQSPSTLSASVGDRVTITCRASQS
1896
QQY


P1389

ISSWLAWYQQKPGKAPKLLIYKASSLES

NSY




GVPSRFSGSGSGTEFTLTISSLQPDDFA

PWT




TYYCQQYNSYPWTFGQGTKVEIK







COV072_Plate2_Kappa_23-
1899
DIVMTQSPLSLPVTPGEPASISCRSSQSL
1900
MQ


P1389

LHSNGYNYLDWYLQKPGQSPQLLIYLG

ALQ




SNRASGVPDRFSGSGSGTDFTLKISRVE

TFT




AEDVGVYYCMQALQTFTFGPGTKVDIK







COV072_Plate3_Kappa_68-
1903
DIQMTQSPSSLSASLGDRVTITCQASQ
1904
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PPIT




ATYYCQQYDNLPPITFGQGTRLEIK







COV072_Plate2_Kappa_72-
1907
DIQMTQSPSSLSASVGDRVTITCQASQ
1908
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PYT




ATYYCQQYDNLPYTFGQGTKLEIK







COV072_Plate2_Kappa_25-
1911
AIQMTQSPSSLSASVGDRVTITCRAGQ
1912
LOD


P1389

GIRNDLGWYQQKPGKAPKLLIYAASSL

YNY




QSGVPSRFSGSGSGTDFTLTISSLQPED

PYT




FATYYCLQDYNYPYTFGQGTKLEIK







COV072_Plate2_Kappa_54-
1915
DVVMTQSPLSLPVTLGQPASISCRSSQS
1916
MQ


P1389

LVYNDGNTYLNWFQQRPGQSPRRLIY

GTH




KVSNRDSGVPDRFSGSGSGTDFTLKISR

CPFT




VEAEDVGVYYCMQGTHCPFTFGPGTK






VDIK







COV072_Plate2_Kappa_78-
1919
DIVMTQSPLSLPVTPGEPASISCRSSQSL
1920
MQ


P1389

LHSNGYNYLDWYLQKPGQSPQLLIYLG

ALQ




SNRASGVPDRFSGSGSGTDFTLKISRVE

TPW




AEDVGVYYCMQALQTPWTFGQGTKV

T




EIK







COV072_Plate3_Kappa_26-
1923
DIQLTQSPSFLSASVGDRVTITCRASQGI
1924
QQL


P1389

SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PLLT




YCQQLNSYPLLTFGGGTKVEIK







COV072_Plate3_Kappa_67-
1927
DIQMTQSPSSLSASVGDRVTITCQASQ
1928
QQY


P1389

DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISTLQPEDI

PIT




ATYYCQQYDNLPITFGGGTKVEIK







COV072_Plate2_Kappa_89-
1931
DIQLTQSPSFLSASVGDRVTITCRASQGI
1932
QQL


P1389

SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PT




YCQQLNSYPTFGQGTKLEIK







COV072_Plate3_Kappa_22-
1935
DIQMTQSPSSLSASVGDRVTITCRASQS
1936
QQS


P1389

ISNYLNWYQQKPGKAPKLLIYAASSLQS

YTTP




AVPSRFSGSGSGTDFTLTISSLQPEDFAT

YT




YFCQQSYTTPYTFGQGTKLEIK







COV072_Plate3_Kappa_47-
1939
DIQMTQSPSSLSASVGDRVTITCQASQ
1940
QHY


P1389

DISKYLNWYQQKPGKAPKLLIYDASNLE

DSLS




TGVPSRFSGSGSGTDFTFTISSLQPEDF

RLT




ATYYCQHYDSLSRLTFGGGTKVEIK







COV072_Plate3_Kappa_59-
1943
DIQLTQSPSFLSASVGDRVTITCRASQGI
1944
QQL


P1389

SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PPP




YCQQLNSYPPPFGGGTKVEIK







COV072_Plate2_Kappa_16-
1947
DIQLTQSPSFLSASVGDRVTITCRASQGI
1948
QQP


P1389

SSYLAWYQQKPGKAPKLLIYAASTLQSG

DSF




VPSRFSGSGSGTEFTLTISSLQPEDFATY

T




YCQQPDSFTFGPGTKVDIK







COV072_Plate2_Kappa_37-
1951
DVVMTQSPLSLPVTLGQPASISCRSSQS
1952
MQ


P1389

LVYSDGDTYLNWFQQRPGQSPRRLIYK

GTH




VSNRDSGVPDRFSGSGSGTDFTLKISRV

WPK




EAEDVGVYYCMQGTHWPKTFGQGTK

T




LEIK







COV072_Plate2_Kappa_86-
1955
DIQMTQSPSSLSASVGDRVTITCQASQ
1956
QQY


P1389

DISSYLNWYQQKPGKAPKLLIYDASNLE

DILP




TGVPSRFSGSGSGTDFTFTISSLQPEDIA

PMY




TYYCQQYDILPPMYTFGQGTKLEIK

T





COV072_Plate2_Kappa_32-
1959
EIVLTQSPGTLSLSPGERATLSCRASLSV
1960
QQY


P1389

SSSYLAWYQQKPGQAPRLLIYGASSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

PLT




VYYCQQYGSSPLTFGGGTKVEIK







COV072_Plate2_Kappa_67-
1963
EIVLTQSPATLSLSPGERATLSCRASQSV
1964
QQR


P1389

SSYLAWYQQKPGQAPRLLIYDASNRAT

SNW




GIPARFSGSGSGTDFTLTISSLEPEDFAV

PPLT




YYCQQRSNWPPLTFGGGTKVEIK







COV072_Plate2_Kappa_88-
1967
DIQMTQSPSSLSASVGDRVTITCQASQ
1968
QQY


P1389

DISNSLNWYQQKPGKAPKVLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDF

PFT




ATYYCQQYDNLPFTFGPGTKVDIK







COV072_Plate2_Kappa_74-
1971
DIQMTQSPSSLSASVGDRVTITCRASQS
1972
QQS


P1389

ISSYLNWYQQKPGKAPKLLIYAASSLQS

YSIP




GVPSRFSGSGSGTDFTLTISSLQPEDFA

QIT




TYYCQQSYSIPQITFGQGTRLEIK







COV072_Plate3_Kappa_4-
1975
EIVMTQSPATLSVSPGERATLSCRASQS
1976
QQY


P1389

VSSNLAWYQQRPGQAPRLLIYGASTRA

NN




TGIPARFSGSGSGTEFTLTISSLQSEDFA

WPP




VYYCQQYNNWPPWTFGQGTKVEIK

WT










LAMBDA











COV072_Plate3_Lambda_54-
1979
QSVLTQPPSVSGAPGQRVTISCTGSSS
1980
QSY


P1409

NIGAGYDVKWYQQLPGTAPKLLIYGNS

DSSL




NRPSGVPDRFSGSKSGTSASLAITGLQA

SGL




EDEADYYCQSYDSSLSGLWVFGGGTKL

WV




TVL







COV072_Plate3_Lambda_94-
1983
NFMLTQPHSVSESPGKTVTISCTGSSGS
1984
QSY


P1409

IASNYVQWYQQRPGSAPTIVIYEDNQR

DST




PSGVPDRFSGSIDSSSNSASLTISGLKTE

THV




DEADYYCQSYDSTTHVVFGGGTKLIVL

V





COV072_Plate3_Lambda_91-
1987
NFMLTQPHSVSESPGKTVTISCTGSSGS
1988
QSY


P1409

IASNYVQWYQQRPGSAPTTVIYEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

NW




EDEADYYCQSYDSSNWVFGGGTKLTV

V




L







COV072_Plate2_Lambda_14-
1991
QSVLTQPASVSGSPGQSITISCTGTSSD
1992
CSY


P1409

VGSYNLVSWYQQHPGKAPKLMIYEVS

GGS




KRPSGVSNRFSGSKSGNTASLTISGLQA

STSF




EDEADYYCCSYGGSSTSFYVFGTGTKVT

YV




VL







COV072_Plate3_Lambda_1-
1995
QSALTQPASVSGSPGQSITISCTGTSSD
1996
CSY


P1409

VGSYNLVSWYQQHPGKAPKLMIYEVS

AGS




KRPSGVSNRFSGSKSGNTASLTISGLQA

STW




EDEADYYCCSYAGSSTWVFGGGTKLTV

V




L







COV072_Plate3_Lambda_71-
1999
QSVLTQEPSFSVSPGGTVTLTCGLSSGS
2000
VLY


P1409

VSTSYYPSWYQQTPGQPPRTLIYITNTR

MGS




SSGVPDRFSGSILGNKAALTITGAQADD

SNW




ESDYYCVLYMGSSNWVFGGGTKLTVL

V





COV072_Plate2_Lambda_5-
2003
SYVLTQPPSVSVAPGKTARITCGGNNIG
2004
QV


P1409

SKSVHWYQQKPGQAPVLVIYYDSDRPS

WDS




GIPERFSGSKSGNTATLTISRVEAGDEA

SSD




DYYCQVWDSSSDHRVFGGGTKLTVL

HRV





COV072_Plate2_Lambda_71-
2007
SYVLTQPPSVSVSPGQTARITCSGDTLP
2008
QSA


P1409

KQYVYWYQQKPGQAPALVIYKDSERPS

DSS




GIPERLSGSSSGTTATLTISGVQAEDEA

GTR




DYYCQSADSSGTRFGGGTKLTVL







COV072_Plate3_Lambda_73-
2011
SYVLTQPPSVSVAPGKTARITCGGNNIG
2012
QV


P1409

SKSVHWYQQKPGQAPVLVIYYDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

GTS




DYYCQVWDGTSDHPGWVFGGGTKLT

DHP




VL

GW






V





COV072_Plate2_Lambda_76-
2015
NFMLTQPHSVSESPGKTVTISCTGSSGS
2016
QSY


P1409

IASNYVQWYQQRPGSAPTTVIYEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

NVV




EDEADYYCQSYDSSNVVFGGGTKLTVL







COV072_Plate3_Lambda_18-
2019
SYVLTQPPSVSVAPGKTARITCGGNNIG
2020
QV


P1409

SKNVHWYQQKPGQAPVLVVYYDSDR

WDS




PSGIPERFSGSNSGNTATLTISRVEAGD

SSG




EADYYCQVWDSSSGHFHVVFGGGTKL

HFH




TVL

W





COV072_Plate3_Lambda_84-
2023
SYVLTQPPSVSVSPGQTASITCFGDKLG
2024
QA


P1409

DKYACWYQQKPGQSPVLVIYQDSKRP

WDS




SGIPERFSGSNSGNTATLTISGTQAMDE

STP




ADYYCQAWDSSTPHVVFGGGTKLTVL

HVV





COV072_Plate3_Lambda_55-
2027
SYVLTQPPSVAVSPGQTARITCSGDALP
2028
QSA


P1409

KQYAYWYQQKPGQAPVLVIYKDSERPS

DSS




GIPERFSGSSSGTTVTLTISGVQAEDEA

GTY




DYYCQSADSSGTYEVFGGGTKVTVL

EV





COV072_Plate3_Lambda_38-
2031
SYELTQPPSVSVSPGQTASITCSGDKLG
2032
QA


P1409

DKYTCWYQQKPGQSPVLVIYQDTQRP

WDS




SGIPERFSGSNSGNTATLTISGTQAMDE

STG




ADYYCQAWDSSTGVVFGGGTKVTVL

W





COV072_Plate3_Lambda_36-
2035
QSVLTQPPSVSEAPRQRVTISCSGSSSN
2036
AA


P1409

IGNNAVNWYQQLPGKAPKLLIYYDDLL

WD




PSGVSDRFSGSKSGTSASLAISGLQSED

DSF




EADYYCAAWDDSFNGPVFGGGTKLTV

NGP




L

V





COV072_Plate2_Lambda_94-
2039
QSVLTQPASVSGSPGQSITISCTGTSSD
2040
CSY


P1409

VGSYNLVSWYQQHPDKAPKLMIYEVS

AGT




KRPSGVSNRFSGSKSGNTASLTISGLQA

STYV




EDEADYYCCSYAGTSTYVFGTGTKLTVL







COV072_Plate3_Lambda_56-
2043
QSVLTQPPSVSGAPGQRVTISCTGSSS
2044
QSY


P1409

NIGAGYDVHWYQQLPGTAPKLLIYGNS

DSSL




NRPSGVPDRFSGSKSGTSASLAITGLQA

SGF




EDEADYYCQSYDSSLSGFYVFGTGTKVT

YV




VL
















TABLE 12







Anti-SARS-CoV-2 IgG antibodies from COV96












SEQ

SEQ




ID

ID



SEQUENCE_ID
NO
aa
NO
cdr3_aa










HEAVY











COV096_HC_100-pl369
2045
EVQLLESGGGLEQPGGSLRLSCAASGFTFSTYAM
2046
ARESDCG




SWVRQAPGKGLEWVSAISGSGAGTFYADSVKGR

STSCYQV




FTISRDNSKNTLYLQMNSLRAEDTAVYYCARESD

GWFDP




CGSTSCYQVGWFDPWGQGTLVTVSS







COV096_HC_164-pl369
2049
EVQLLESGGGLVQPGTSLRLSCAASGFTFSSYAMS
2050
ATERIAVA




WVRQAPGKGLEWVSAISSSGGSTYYADSVKGRF

GTRMYN




TISRDNSKNTLYLHMNSLRAEDTAVYYCATERIAV

WFDP




AGTRMYNWFDPWGQGTLVTVSS







COV096_HC_25-pl369
2053
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAM
2054
ASEEDYS




SWVRQAPGKGLEWVSAITDSGDGTFYADSVKGR

NYVGWF




FTISRDNSKNTLYLQMNSLRAEDTAVYYCASEEDY

DP




SNYVGWFDPWGQGTLVTVSS







COV096_HC_91-pl369
2057
EVQLLESGGGLEQPGGSLRLSCAASGFTFSTYAM
2058
ARESDCG




SWVRQAPGKGLEWVSAISGSGAGTFYADSVKGR

STSCYQV




FTISRDNSKNTLYLQMNSLRAEDTAVYYCARESD

GWFDP




CGSTSCYQVGWFDPWGQGTLVTVSS







COV096_HC_91-pl369
2061
EVQLLESGGGLEQPGGSLRLSCAASGFTFSTYAM
2062
ARESDCG




SWVRQAPGKGLEWVSAISGSGAGTFYADSVKGR

STSCYQV




FTISRDNSKNTLYLQMNSLRAEDTAVYYCARESD

GWFDP




CGSTSCYQVGWFDPWGQGTLVTVSS







COV096_HC_115-pl369
2065
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYM
2066
ARDTLGR




SWVRQAPGKGLEWVSLIYSGGSTYYADSVKGRFT

GGDY




ISRDNSKNTLYLQMNSLRAEDTAVYYCARDTLGR






GGDYWGQGTLVTVSS







COV096_HC_133-pl369
2069
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYM
2070
ARDTFGR




SWVRQAPGKGLEWVSLIYSGGSTYYADSVKGRFT

GGDY




ISRDNSKNTLYLQMNSLRAEDTAVYYCARDTFGR






GGDYWGQGTLVTVSS







COV096_HC_34-pl369
2073
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYM
2074
ARDTLGR




SWVRQAPGKGLEWVSLIYSGGSTYYADSVKGRFT

GGDY




ISRDNSKNTLYLQMNTLRAEDTAVYYCARDTLGR






GGDYWGQGTLVTVSS







COV096_HC_34-pl369
2077
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYM
2078
ARDTLGR




SWVRQAPGKGLEWVSLIYSGGSTYYADSVKGRFT

GGDY




ISRDNSKNTLYLQMNTLRAEDTAVYYCARDTLGR






GGDYWGQGTLVTVSS







COV096_HC_106-pl369
2081
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2082
AKGVEYS




MHWVRQAPGKGLEWVSGISWNSDSIGYADSVK

SSSNFDY




GRFTISRDNAKNSLYLQMNSLTAEDTALYYCAKG






VEYSSSSNFDYWGQGTLVTVSS







COV096_HC_132-pl369
2085
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2086
VKGVEYS




MHWVRQAPGKGLEWVSGISWNSGSIGYADSVK

SSSNFDY




GRFTISRDNAKNSLYLQMNSLRAEDTALYYCVKG






VEYSSSSNFDYWGQGTLVTVSS







COV096_HC_6-pl369
2089
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2090
VKGVEYS




MHWVRQAPGKGLEWVSGISWNSGSIGYADSVK

SSSNFDY




GRFTISRDNAKNSLYLQMNSLRAEDTALYYCVKG






VEYSSSSNFDYWGQGTLVTVSS












HEAVY











COV096_HC_116-pl369
2093
QVQLVQSGAEVKKPGASVKVSCKASGYTVTGYYI
2094
ARERYFDL




HWVRQAPGQGLEWMGWISPNSGGTNYAQKF

GGMDV




QGWVTMTRDMSITTAYMELSRLRSDDTAVYYCA






RERYFDLGGMDVWGQGTTVTVSS







COV096_HC_77-pl369
2097
QVQLVQSGAEVKKPGASVKVSCKASGYTVTGYYI
2098
AREPYFDL




HWVRQAPGQGLEWMGWISPNSGGTNYAQKF

GGMDV




QGWVTMTRDMSITTAYMELSRLRSDDTAVYYCA






REPYFDLGGMDVWGQGTTVTVSS







COV096_HC_138-pl369
2101
QVQLVQSGAEVKKSGASVKVSCKASGYTFTSYDI
2102
ARGFSLT




NWVRQATGQGLEWMGWMNPNSGNTGYAQK

WYFDL




FQGRVTMTRNTSISTAYMDLSSLRSEDTAVYYCA






RGFSLTWYFDLWGRGTLVTVSS







COV096_HC_176-pl369
2105
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDV
2106
ARGFSLT




NWVRQATGQGLEWMGWMNPNSGSAGYAQK

WYFDL




FQGRVTMTRNTSISTAYMELSSLRSEDTAVYYCA






RGFSLTWYFDLWGRGTLVTVSS







COV096_HC_104-pl369
2109
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSM
2110
ARVQVGA




NWVRQAPGKGLEWVSFISSRSSYIYYADSVKGRF

RGWVDY




TISRDNAKNSLYLQMNSLRAEDTAVYYCARVQVG






ARGWVDYWGQGTLVTVSS







COV096_HC_111-pl369
2113
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSM
2114
ARVQVGA




NWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRF

RGWVDY




TISRDNAKNSLYLQMNSLRAEDTAVYYCARVQVG






ARGWVDYWGQGTLVTVSS












HEAVY











COV096_HC_158-pl369
2117
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAM
2118
AKEPIGQ




SWVRQAPGKGLEWVSAISGSGGSTYYADSVKGR

PLLWWD




FTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEPIG

Y




QPLLWWDYWGQGTLVTVSS







COV096_HC_78-pl369
2121
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAM
2122
AKEPIGQ




SWVRQAPGKGLEWVSAISGSGGSTYYADSVKGR

PLLWWD




FTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEPIG

Y




QPLLWWDYWGQGTLVTVSS







COV096_HC_130-pl369
2125
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2126
AKGSSSG




MHWVRQVPGKGLEWVSGISWNSASIGYADSVK

WTRPLDY




GRFTISRDNAKNSLYLQMNSLRPEDMAFYYCAKG






SSSGWTRPLDYWGQGTLVTVSS







COV096_HC_44-pl369
2129
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2130
AKGSSSG




MHWVRQVPGKGLEWVSGISWNSASIGYADSVK

WTRPLDY




GRFTISRDNAKNSLYLQMNSLRPEDMAFYYCAKG






SSSGWTRPLDYWGQGTLVTVSS












HEAVY











COV096_HC72-pl369
2133
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGI
2134
ARRPRDY




SWVRQAPGQGLEWMGWISAYNGNTNYAQKL

YDRSGYY




QGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCAR

YVPGYFD




RPRDYYDRSGYYYVPGYFDYWGQGTLVTVSS

Y





COV096_HC_4-pl369
2137
QVQLVQSGAEVKKPGASVKVSCKASGSTFTGYY
2138
AREKVAT




MHWVRQAPGQGLEWMGWINPNSGGTNYAQ

MFALPPY




KFQGWVTMTRDTSISTAYMELSRLRSDDTAVYYC

GMDV




AREKVATMFALPPYGMDVWGQGTTVTVSS







COV096_HC_127-pl369
2141
QVQLVQSGAEVKKPGASVKVSCKASGYTFTYYY
2142
ARPLLPGE




MHWVRQAPGQGLEWMGIINPSGGSTSYAQKF

TGSLNRL




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAR

DY




PLLPGETGSLNRLDYWGQGTLVTVSS







COV096_HC_113-pl369
2145
QVQLVQSGAEVKKPGASVKVSCKASGHTFTSYY
2146
ARGPERG




MHWVRQAPGQGLEWMGIINPSGGSTSYAQKF

IVGATDYF




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAR

DY




GPERGIVGATDYFDYWGQGTLVTVSS







COV096_HC_153-pl369
2149
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSNAI
2150
ASEWEIF




SWVRQAPGQGLEWMGGITPIFGTVNYAQKFQG

GFDY




RVTITADESTSTAYMELSSLRSEDTAVYYCASEWEI






FGFDYWGQGTLVTVSS







COV096_HC_55-pl369
2153
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
2154
TSGQGAG




WVRQAPGQGLEWMGGIIPIFGTTNHAQKFQGR

VNRGVVI




VTITADESTSTAYMELSSLRSEDTAVYYCTSGQGA

TTLGY




GVNRGVVITTLGYWGQGTLVTVSS







COV096_HC_42-pl369
2157
QVQLVQSGAEVKKPGSSVKVSCKASGGTISSYAIS
2158
ARDDGQ




WVRQAPGQGLEWMGGIIPIFGTTNYAQKFQGR

QLWSYFD




VTITADESTSTAYMELSSLRSEDTALYYCARDDGQ

Y




QLWSYFDYWGQGTLVTVSS







COV096_HC_156-pl369
2161
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYM
2162
ARDLPPR




SWIRQAPGKGLEWVSYISSSGSTIYYADSVKGRFT

RFDI




ISRDNAKNSLYLQMNSLRAEDTAVYYCARDLPPR






RFDIWGQGTMVTVSS







COV096_HC_137-pl369
2165
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDM
2166
ARGDSGS




HWVRQATGKGLEWVSAIGTAGDTYYPGSVKGR

YLGVWYF




FTISRENAKNSLYLQMNSLRAGDTAVYYCARGDS

DL




GSYLGVWYFDLWGRGTLVTVSS







COV096_HC_75-pl369
2169
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDM
2170
ARDRGSS




HWVRQATGKGLEWVSAIGTAGDTYYPDSVKGR

GWYGWY




FTISRENAKNSLYLQMNSLRAGDTAVYYCARDRG

FDL




SSGWYGWYFDLWGRGTLVTVSS







COV096_HC_123-pl369
2173
EVQLVESGGGLVQPGGSLRLSCAASGFIFSSYDM
2174
ARGDYNI




HWVRQATGKGLEWVSTIGTAGDTYYPDSVKGRF

LTGYYFDY




TISRENAKNSLYLQMNSLRAGDTAVYYCARGDYN






ILTGYYFDYWGQGTLVTVSS







COV096_HC_65-pl369
2177
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDM
2178
ARDRDSS




HWVRQATGKGLQWVSAIGTAGDTYYPDSVKGR

WSFDY




FTISRENAKNSLYLQMNSLRAGDTAVYYCARDRD






SSWSFDYWGQGTLVTVSS







COV096_HC_81-pl369
2181
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDM
2182
ARGTFFY




HWVRQASGKGLEWVSAIGTSGDTYYPGSVKGRF

GSGSYN




TISRENAKNSLYLQMNSLRAGDTAVYYCARGTFF

WFDP




YGSGSYNWFDPWGQGTLVTVSS







COV096_HC_166-pl369
2185
EVQLVESGGGLVKPGGSLRVSCAASGFSFSYAW
2186
TTLSDYG




MSWVRQAPGKGLEWVGRIKSKTDGGTTDCAAP

DLSSVY




VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTT






LSDYGDLSSVYWGQGTLVTVSS







COV096_HC_140-pl369
2189
EVQLVESGGGLVKPGGSLRLSCAASGFTVRSYSM
2190
AKEEYYG




NWVRQAPGKGLEWVSCMTSSGSYLYYADSVKG

MDV




RFTISRDNAKNSLYLQMNSLRDEDTAVYYCAKEE






YYGMDVWGQGATVTVSS







COV096_HC_43-pl369
2193
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
2194
AKQLYYY




MHWVRQAPGKGLEWVAVISYDGSNKYYADSVK

GSGSYVF




GRFTISRDNSKNTLYLQMNSLRAEDTAVYFCAKQ

DY




LYYYGSGSYVFDYWGQGTLVTVSS







COV096_HC_21-pl369
2197
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
2198
AKDTPGG




MHWVRQAPGKGLEWVAVISYDGSNKYYADSVK

DDILTGW




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKD

GLYGMD




TPGGDDILTGWGLYGMDVWGQGTTVTVSS

V





COV096_HC_122-pl369
2201
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG
2202
ARDMGTL




MHWVRQAPGKGLEWVAVIWYDGSNKHYADSV

VTHFDY




KGRFTISRDNSKNTLYLQMNSLRAEDTAEYYCAR






DMGTLVTHFDYWGQGTLVTVSS







COV096_HC_98-pl369
2205
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
2206
ARDVGRV




MHWVRQAPGKGLEWVAAIWYDGSNKHYADSV

TTWFDP




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR






DVGRVTTWFDPWGQGTLVTVSS







COV096_HC_48-pl369
2209
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSM
2210
ARASGLR




NWVRQAPGKGLEWVSYISSSSSTIYYADSVKGRF

SYYYYGM




TISRDNAKNSLYLQMNSLRDEDTAVYYCARASGL

DV




RSYYYYGMDVWGQGTTVTVSS







COV096_HC_79-pl369
2213
EVQLVESGGGLVQPGGSLRLSCAASGFTFTNYN
2214
ARVVGSG




MNWVRQAPGKGLEWVSYISSSSSTIYYADSVKG

SYYYYGM




RFTISRDNAKNSLYLQMNSLRDEDTAVYYCARVV

DV




GSGSYYYYGMDVWGQGTTVTVSS







COV096_HC_3-pl369
2217
EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAM
2218
TRDLSYYY




NWFRQAPGKGLEWVGFIRSKAYGGTTEYAASVR

DSSGRGS




GRFTISRDDSESIAYLQMNSLKTEDTAVYYCTRDL

HLFDY




SYYYDSSGRGSHLFDYWGQGTLVTVSS







COV096_HC_3-pl369
2221
EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAM
2222
TRDLSYYY




NWFRQAPGKGLEWVGFIRSKAYGGTTEYAASVR

DSSGRGS




GRFTISRDDSESIAYLQMNSLKTEDTAVYYCTRDL

HLFDY




SYYYDSSGRGSHLFDYWGQGTLVTVSS







COV096_HC_134-pl369
2225
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYM
2226
ARDLMAY




SWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRF

GMDV




TFSRDNSKNTLYLQMNSLRAEDTAVYYCARDLM






AYGMDVWGQGTTVTVSS







COV096_HC_68-pl369
2229
EVQLVESGGGLIQPGGSLRLSCAASGVIVSSNYM
2230
ARDGGHY




SWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRF

GMDV




TISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGH






YGMDVWGQGTTVTVSS







COV096_HC_183-pl369
2233
EVQLVESGGGLIQPGGSLRLSCAASGLTVSRNYM
2234
ARESYGM




NWVRQAPGKGLEWVSVMYSGGSTFYADSVKGR

DV




FTISRDNSKNTLYLQMNSLRAEDTAVYYCARESYG






MDVWGQGTTVTVSS







COV096_HC_74-pl369
2237
EVQLVESGGGLVQPGGSLRLSCAASGFIVSSNYM
2238
ARDYGDF




SWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRF

YFDY




TISRDNSKNTLYLQMNSLRAEDTAVYYCARDYGD






FYFDYWGQGTLVTVSS







COV096_HC_45-pl369
2241
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTHW
2242
TRDDSSW




MHWVRQAPGKGLVWVSRINSDGSRRAYATSVK

PHFFDN




GRFTISRDNAKNTLYLQMDSLRDEDTAVYYCTRD






DSSWPHFFDNWGQGTLVAVSS







COV096_HC_126-pl369
2245
EVQLVESGGGLVQPGGSLRLSCAASGFNFSTHW
2246
TRDDSSW




MHWVRQAPGKGLVWVSRINSDGSRRAYATSVK

PHFFDN




GRFTISRDNAKNTLYLQMDSLRDEDTAVYYCTRD






DSSWPHFFDNWGQGTLVTVSS







COV096_HC_8-pl369
2249
EVQLVQSGAEVKKPGESLKISCKGSGYTFTSYWIG
2250
ARPVTYD




WVRQMPGKGLEWMGFIYPGDSDTRYSPSFQG

WYFDL




QVTISADKSISTAYLQWSSLKASDTAMYYCARPVT






YDWYFDLWGRGTLVTVSS




COV096_HC_124-pl369
2253
EVQLVQSGAEVKKPGESLKISCKVSGYTFTNYWIG
2254
ARVPSSS




WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

DYGDYGG




VTISADKSIITAYLQWSSLKASDTAMYYCARVPSSS

FEY




DYGDYGGFEYWGQGTLVTVSS







COV096_HC_28-pl369
2257
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
2258
ARMVTSG




WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

TYYYDNS




VTISADKSISTAYLQWSSLKASDTAMYYCARMVT

GYSSSGPF




SGTYYYDNSGYSSSGPFDYWGQGTLVTVSS

DY





COV096_HC_12-pl369
2261
EVQLVQSGAEVKKPGESLKISCKGSGYRFTNYWI
2262
ARLSDRW




GWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG

YSPFDP




QVTISADKSITTAYLQWSSLKASDTAMYYCARLSD






RWYSPFDPWGQGTLVTVSS












HEAVY











COV096_HC_90-pl369
2265
QVQLVQSGAELKKPGASVKVSCKASGYTFNSYGI
2266
ARRVEDN




SWVRQAPGQGLEWMGGISAYNGNTNYAQKLO

GDDGGD




GRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARR

YYYYYGM




VEDNGDDGGDYYYYYGMDVWGQGTTVTVSS

DV





COV096_HC_71-pl369
2269
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYS
2270
ARDLEYCS




MHWVRQAPGQGLEWMGWINPNSGGTNYAQ

STSCYTST




KFQGRVTMTRDTSISTAYMELSRLGSDDTAVYYC

TFDY




ARDLEYCSSTSCYTSTTFDYWGQGTLVTVSS







COV096_HC52-pl369
2273
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYY
2274
ASGIGHN




MHWVRQAPGQGLEWMGWINPNSGGTNYAQ

WNYVSTP




KFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYC

NGMDV




ASGIGHNWNYVSTPNGMDVWGQGTTVTVSS







COV096_HC_10-pl369
2277
QVQLVQSGAEVKKPGASVRVSCKASGYTFTGYYI
2278
ARDFAM




HWVRQAPGQGLEWMGWINPMSGGTNYTQKF

GTVTGTF




QGWVTMTRDTSINTAYMELSRLRSDDTAVYYCA

VY




RDFAMGTVTGTFVYWGQGTLVTVSS







COV096_HC_2-pl369
2281
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYY
2282
AREGVGG




MHWVRQAPGQGLEWMGIINPSGGSTRYAQKF

TSYFDY




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAR






EGVGGTSYFDYWGQGTLVTVSS







COV096_HC_30-pl369
2285
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
2286
ARDGLSG




WVRQAPGQGLEWMGGIIPIFGTANYAQKFQGR

HFPHNW




VTITADESTSTAYMELSSLRSEDTAVYYCARDGLS

FDP




GHFPHNWFDPWGQGTLVTVSS







COV096_HC_136-pl369
2289
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
2290
ARREAYG




WVRQAPGQGLEWMGGIIPIFGTANYAQKFQGR

PRDYYYYY




VTITADESTSTAYMELSSLRSEDTAVYYCARREAY

GMDV




GPRDYYYYYGMDVWGQGTTVTVSS







COV096_HC_99-pl369
2293
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAIS
2294
ARVLGYY




WGRQAPGQGLEWMGGIIPILGTVNYAQKFQGR

DSSGSND




VTITADKSTSTAYMELSSLRSEDTAVYYCARVLGY

AFDI




YDSSGSNDAFDIWGQGTMVTVSS







COV096_HC_152-pl369
2297
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDI
2298
ARGGRYC




NWVRQATGQGLEWMGWMNPNSGNTGYAQK

SDVSCYS




FQGRVTITRDTSISTAYMELSSLRXEDTAVYYCAR

GTGFDY




GGRYCSDVSCYSGTGFDYWGQGTLVTVSS







COV096_HC_50-pl369
2301
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
2302
TTDLGYCS




MSWVRQAPGKGLEWVGRIKSKTDGGTTDYAAP

STNCYYYY




VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTT






DLGYCSSTNCYYYYWGQGTLVTVSS







COV096_HC_92-pl369
2305
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW
2306
TTDDPGS




MSWVRQAPGKGLEWVGRIKSKTDGGTTDYAAP

YYYGMDV




VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTT






DDPGSYYYGMDVWGQGTTVTVSS







COV096_HC_40-pl369
2309
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
2310
ARAGTTN




MHWVRQAPGKGLEWVALISYDGSNKHYADSVK

SDYFDY




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARA






GTTNSDYFDYWGQGTLVTVSS







COV096_HC_149-pl369
2313
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
2314
AKGGYSY




MHWVRQAPGKGLEWVAVISYDGSNKYYADSVK

GYSLYYFD




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKG

Y




GYSYGYSLYYFDYWGQGTLVTVSS







COV096_HC_157-pl369
2317
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
2318
AKAQYSY




MHWVRQAPGKGLEWVAVISYDGSNKYYADSVK

GYVVYYF




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKA

DY




QYSYGYWYYFDYWGQGALVTVSS







COV096_HC_121-pl369
2321
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYM
2322
ARSLWLR




SWVRQAPGKGLEWVSVISSGGGTFYADSVKGRF

GSFQH




TISRDNSKNTLYLQMNSLRAEDTAVYYCARSLWL






RGSFQHWGQGTLVTVSS







COV096_HC_27-pl369
2325
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
2326
ARGDYDF




MSWVRQAPGKGLEWVATIKQDGSEKYYVDSVK

WSGYYDY




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARG






DYDFWSGYYDYWGQGTLVTVSS







COV096_HC_142-pl369
2329
EVQLVESGGGLVQPGGSLRLSCAASRFTFSSYW
2330
ATAPWLR




MSWVRQAPGKGLEWVANIKQDGSEKYYVDSVK

GGFDY




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCATA






PWLRGGFDYWGQGTLVTVSS







COV096_Hc_1-pl369
2333
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2334
AKIADIVR




MHWVRQAPGKGLEWVSGVSWNSGTIGYADSV

AYDFWSG




KGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKI

QHFDAFD




ADIVRAYDFWSGQHFDAFDIWGQGTMVTVSS

I





COV096_HC_15-pl369
2337
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2338
AKDGGSG




MHWVRQAPGKGLEWVSGISWNSGIIGYADSV

TTEYEAYY




MGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAK

FDY




DGGSGTTEYEAYYFDYWGQGTLVTVSS







COV096_HC_20-pl369
2341
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2342
AKDMGR




MHWVRQAPGKGLEWVSGISWNSGTIGYADSV

DDSSGSLL




QGRFIISRDNAKNSLYLQMNSLRAEDTALYYCAK

FDY




DMGRDDSSGSLLFDYWGQGTLVTVSS







COV096_HC_159-pl369
2345
EVQLVESGGGLIQPGRSLRLSCAASGFTFDDYAM
2346
AKDIGSKR




HWVRQAPGKGLEWVSGTSWNSGTIGYADSVKG

STSENYG




RFTISRDNAKNSLYLQMNRLRAEDTALYHCAKDI

MDV




GSKRSTSENYGMDVWGQGTTVTVSS







COV096_HC_103-pl369
2349
QLQLQESGPGLVKPSETLSLTCTVSGGSITSSSYY
2350
ASLRGAY




WGWIRQPPGKGLEWIGTIYYGGSTYYNPSLKSRV

YDFWSGP




TISVDTSKNQISLKLSSVTAADTAVYYCASLRGAYY

RDGGWF




DFWSGPRDGGWFDPWGQGTLVTVSS

DP





COV096_HC_23-pl369
2353
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGSYY
2354
AREIPST




WSWIRQPAGKGLEWIGHIYTSGSTNYNPSLKSRV

WYFDL




TISVDTSKNQFSLKLSSVTAADTAVYYCAREIPST






WYFDLWGRGTLVTVSS







COV096_HC_101-pl369
2357
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGNYY
2358
ARDIPPT




LTWIRQPAGKGLEWIGHIYTSGSTNYNPSLKSRVT

WYFDL




ISVDTSMNQFSLKLSSVTAADTAVYYCARDIPPT






WYFDLWGRGTLVTVSS







COV096_HC_174-pl369
2361
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSHWIG
2362
ARLPSGR




WVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQ

YNWFDP




VTISADKSISTAYLQWSSLKASDTAMYYCARLPSG






RYNWFDPWGQGTLVTVSS







COV096_HC_189-pl369
2365
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIG
2366
ARLPQEE




WVRQMPGKGLEWMGIIYPGDSDTTYSPSFQGQ
66
KRFLEWL




VTISADKSVTTAYLQWSSLKASDTAMYYCARLPQ

PPANVRK




EEKRFLEWLPPANVRKQIPYYYGMDVWGQGTT

QIPYYYG




VTVSS

MDV










KAPPA











COV096_KC_100-pl389
2047
DIQMTQSPSSLSASVGDRVTITCRASQSI
2048
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPW




CQQSYSTPPWTFGQGTKVEIK

T





COV096_KC_164-pl389
2051
DIQMTQSPSSLSASVGDRVTLTCRASQSI
2052
QQS




SSYLNWYQQKPGKAPNLLIYAASSLQSG

YSA




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPW




CQQSYSAPPWTFGQGTKVEIK

T





COV096_KC_25-pl389
2055
DIQMTQSPSSLSASVGDRVTITCRASQSI
2056
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPW




CQQSYSTPPWTFGQGTKVEIK

T





COV096_KC_91-pl389
2059
DIQMTQSPSSLSASVGDRVTITCRASQSI
2060
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPW




CQQSYSTPPWTFGQGTKVEIK

T





COV096_KC_91-pl389
2063
DIQMTQSPSSLSASVGDRVTITCRASQSI
2064
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPW




CQQSYSTPPWTFGQGTKVEIK

T





COV096_KC_115-pl389
2067
DIQMTQSPSSLSASVGDRVTITCQASQDI
2068
QQY




SNYLNWYQQKPGKAPKLLIYDASNLETG

DNL




VPSRFSGSGSGTDFTFTISSLQPEDIATYY

PRS




CQQYDNLPRSFGQGTKLEIK







COV096_KC_133-pl389
2071
DIQMTQSPSSLSASVGDRVTITCQASQDI
2072
QQY




SNYLNWYQQKPGKAPKLLIYDASNLETG

DNL




VPSRFSGSGSGTDFTFTISSLQPEDIATYY

PRS




CQQYDNLPRSFGQGTKLEIK







COV096_KC_34-pl389
2075
DIQMTQSPSSLSASVGDRVTITCQASQDI
2076
QQY




SNYLNWYQQKPGKAPKVLIYDASNLETG

DNL




VPSRFSGSGSGTDFTFTISSLQPEDIATYF

PRS




CQQYDNLPRSFGQGTKLEIK







COV096_KC_34-pl389
2079
DIQMTQSPSSLSASVGDRVTITCQASQDI
2080
QQY




SNYLNWYQQKPGKAPKVLIYDASNLETG

DNL




VPSRFSGSGSGTDFTFTISSLQPEDIATYF

PRS




CQQYDNLPRSFGQGTKLEIK







COV096_KC_106-pl389
2083
DIQMTQSPSSVSASVGDRVTITCRASQGI
2084
QQT




SSWLAWYQQKPGKAPKLLIYTASGLQSG

NSF




VPSRFSGSGSETDFTLTISSLQPEDFATYY

PLT




CQQTNSFPLTFGGGTKVEI







COV096_KC_132-pl389
2087
DIQMTQSPSSVSASVGDRVTITCRASQGI
2088
QQT




SSWLAWYQQKPGKAPKLLIYTASGLQSG

NSF




VPSRFSGSGSETDFTLTISSLQPEDFATYY

PLT




CQQTNSFPLTFGGGTKVEI







COV096_KC_6-pl389
2091
DIQMTQSPSSVSASVGDRVTITCRASQGI
2092
QQA




SSWLAWYQQKPGKAPKLLIYVESSLQSG

NSF




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PLT




CQQANSFPLTFGGGTKVEIK












LAMBDA











COV096_LC_116-pl409
2095
QSALTQPASVSGSPGQSITISCTGTSSDV
2096
CSY




GSYNLVSWYQQHPGKAPKLMIYEDSKR

AGS




PSGVSNRFSGSKSGNTASLTISGLQAEDE

STRL




ADYYCCSYAGSSTRLFGGGTKLTVL







COV096_LC_77-pl409
2099
QSXLTQPASVSGSPGQSITISCTGTSSDV
2100
CSY




GSYNLVSWYQQHPGKAPKLMIYEGSKR

AGS




PSGVSNRFSGSKSGNTASLTISGLQAEDE

STR




ADYYCCSYAGSSTRVFGGGTKLTVL

V





COV096_LC_138-pl409
2103
SYXLTQPPSVSVAPGKTARITCGGNNIGS
2104
QV




KSVHWYQQKPGHAPVLVVYDDSDRPSG

WD




IPERFSGSNSGNTATLTISRVEAGDEADY

STG




YCQVWDSTGGHPDVVFGGGTKLTVL

GHP






DVV





COV096_LC_176-pl409
2107
SYXLTQPPSVSVAPGKTARITCGGNNIGS
2108





KSVHWYQQKPGQAPVLVVYDDSDRPS

QV




GIPERFSGSNSGNTATLTISRVEAGDEAD

WD




YYCQVWDSTSDHPDVVFGGGTKLTVL

STS






DHP






DVV





COV096_LC_104-pl409
2111
NFMLTQPHSVSESPGKTVTISCTRSSGSI
2112
QSY




ASNYVQWYQQRPGSAPTTVIYEDNQRP

DSI




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NW




ADYYCQSYDSINWVFGGGTKLTVL

V





COV096_LC_111-pl409
2115
NFMLTQPHSVSESPGKTVTISCTRSSGSI
2116
QSY




ASNYVQWYQQRPGSAPTTVIYEDNERP

DRI




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

NW




ADYYCQSYDRINWVFGGGTKLTVL

V










KAPPA











COV096_KC_158-pl389
2119
EIVLTQSPATLSLSPGERATLSCRASQSVS
2120
QQR




SYLAWYQQKPGQAPRLLIYDASNRATGI

SN




PARFSGSGSGTDFTLTISSLEPEDFAVYYC

WP




QQRSNWPRGFGQGTKVEIK

RG





COV096_KC_78-pl389
2123
EIVLTQSPATLSLSPGERATLSCRASQSVS
2124
QQR




SYLAWYQQKPGQAPRLLIYDASNRATGI

SN




PARFSGSGSGTDFTLTISSLEPEDFAVYYC

WP




QQRSNWPRGFGQGTKVEIK

RG





COV096_LC_130-pl409
2127
SYXLTQPPSVSVAPGKTARITCGGNNIGS
2128
QV




KSVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEAD

SSS




YYCQVWDSSSDPVVFGGGTKLTVL

DPV






V





COV096_LC_44-pl409
2131
SYVLTQPPSVSVAPGKTARITCGGNNIGS
2132
QV




KSVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEAD

SSS




YYCQVWDSSSDPVVFGGGTKLTVL

DPV






V










KAPPA











COV096_KC_72-pl389
2135
DIQMTQSPSSLSASVGDRVTITCQASQDI
2136
QQY




SNYLNWYQQKPGKAPKLLIYDASNLETG

DNL




VPSRFSGSGSGTDFTFTISSLQPEDIATYY

PLT




CQQYDNLPLTFGGGTKVEIK







COV096_KC_4-pl389
2139
EIVLTQSPATLSLSPGERATLSCRASQSVS
2140
QQR




SYLAWYQQKPGQTPRLLIYDASNRATGI

SN




PARFSGSGSGTDFTLTISSLEPEDFAVYYC

WPP




QQRSNWPPIAFGQGTRLEIK

IA





COV096_KC_127-pl389
2143
DIQMTQSPSSLSASVGDRVTITCRASQSI
2144
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YSTL




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

WT




CQQSYSTLWTFGQGTKVEIK







COV096_KC_113-pl389
2147
EIVLTQSPGTLSLSPGERATLSCRASQSVS
2148
QQY




SSYLAWYQQKPGQAPRLLIYGASSRATGI

VSS




PDRFSGSGSGTDFTLTISRLEPEDFAVYYC

PWT




QQYVSSPWTFGQGTKVEIK







COV096_KC_153-pl389
2151
DIQMTQSPSSLSASVGDRVTITCRASQSI
2152
QQS




SRYLNWYQQKSGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PWT




CQQSYSTPWTFGQGTKVEIK







COV096_KC_55-pl389
2155
DIVMTQSPDSLAVSLGERATINCKSSQSV
2156
QQY




LYSSNNKNYLAWYQQKPGQPPKLLIYW

YST




ASTRESGVPDRFSGSGSGTDFTLTISSLQ

PCS




AEDVAVYYCQQYYSTPCSFGQGTKLEIK







COV096_KC_42-pl389
2159
DIVMTQSPDSLAVSLGERATINCKSSQSV
2160
QQY




LYSSNNKSYLAWYQQKPGQPPKLLIYWA

YSTL




STRESGVPDRFSGSGSGTDFTLTISSLQAE

PLT




DVAVYYCQQYYSTLPLTFGGGTKVEIK







COV096_KC_156-pl389
2163
DIQMTQSPSSLSASVGDRVTITCQASQDI
2164
QQF




SNYLNWYQQKPGKAPKLLIYDASNLETG

DNL




VPSRFSGSGSGTDFTFTISSLQPEDIATYY

PIT




CQQFDNLPITFGQGTRLEIK







COV096_KC_137-pl389
2167
DIQMTQSPSSLSASVGDRVTITCRASQSI
2168
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YSSP




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PIT




CQQSYSSPPITFGPGTKVDIK







COV096_KC_75-pl389
2171
DIQMTQSPSSLSASVGDRVTITCRASQSI
2172
QQS




SSYLNWYQQKPGKAPKLLIYVASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPIT




CQQSYSTPPITFGQGTRLEIK







COV096_KC_123-pl389
2175
DIQMTQSPSSLSASVGDRVTITCRASQSI
2176
QQS




SSYLNWYQQKPGKAPNLLIYAASSLQSG

YNT




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PQV




CQQSYNTPQVTFGGGTKVESK

T





COV096_KC_65-pl389
2179
DIQMTQSPSSLSASVGDRVTITCRASQSI
2180
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGGGSGADFTLTISSLQPEDFATY

PPIT




YCQQSYSTPPITFGQGTRLEIK







COV096_KC_81-pl389
2183
DIQMTQSPSSLSASVGDRVTITCRASQSI
2184
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PPW




CQQSYSTPPWTFGQGTKVEIK

T





COV096_KC_166-pl389
2187
DIQMTQSPSSLSASVGDRVTITCRASQSI
2188
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PLT




CQQSYSTPLTFGGGTKVEIK







COV096_KC_140-pl389
2191
DIQMTQSPSSLSASVGDRVTITCRASQDI
2192
QQA




SSWLAWYQQKPGKAPKLLIYAASNLQSG

NRF




VPSRFSGSGSGTHFTLTISSLQPEDFVTYY

PIT




CQQANRFPITFGQGTRLEIK







COV096_KC_43-pl389
2195
DIQMTQSPSSLSASVGDRVTITCQASQDI
2196
QQY




RNFLNWYQQKPGKAPKLLIYDASNLETG

DNL




VPSRFSGSGSGTDFTFTISSLQPEDIATYY

PLT




CQQYDNLPLTFGGGTKVEIK







COV096_KC_21-pl389
2199
DIQMTQSPSSLSASVGDRVTITCRASQSI
2200
QQS




SSYLNWYQQKPGKAPKLLIYAAFSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PWT




CQQSYSTPWTFGQGTKVEIK







COV096_KC_122-pl389
2203
DIQMTQSPSSLSASVGDRVTITCRASQSI
2204
QQS




SSYLNWYQQKPGKAPKLLIYAASNLQSG

YSSP




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PWT




CQQSYSSPPWTFGQGTKVEIK







COV096_KC_98-pl389
2207
DIQMTQSPSSLSASVGDRVTITCRASQSI
2208
QQS




SSYLTWYQQKPGKAPKLLIYAASSLQSGV

YST




PSRFSGSGSGTDFTLTISSLQPEDFATYYC

PPW




QQSYSTPPWTFGQGTKVEIK

T





COV096_KC_48-pl389
2211
DIQMTQSPSSLSASVGDRVTITCRASQSI
2212
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PAT




CQQSYSTPATFGQGTKVEIK







COV096_KC_79-pl389
2215
DIQMTQSPSSLSASVGDRVTITCRASQSI
2216
QQS




SSYLNWYQQKPGKAPKLLIYGASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PAT




CQQSYSTPATFGQGTKLEIK







COV096_KC_3-pl389
2219
EIVMTQSPATLSVSPGERATLSCRASQSV
2220
QQY




SSNLAWYQQKPGQAPRLLIYGASTRATG

NN




IPARFSGSGSGTEFTLTISSLQSEDFAVYY

WW




CQQYNNWWTFGQGTKVEIK

T





COV096_KC_3-pl389
2223
EIVMTQSPATLSVSPGERATLSCRASQSV
2224
QQY




SSNLAWYQQKPGQAPRLLIYGASTRATG

NN




IPARFSGSGSGTEFTLTISSLQSEDFAVYY

WW




CQQYNNWWTFGQGTKVEIK

T





COV096_KC_134-pl389
2227
DIQLTQSPSFLSASVGDRVTITCRASQGIS
2228
QQL




SYLAWYQQKPGKAPKLLIYAASTLQSGV

NSY




PSRFSGSGSGTEFTLTISSLQPEDFATYYC

PQG




QQLNSYPQGTFGGGTKVEIK

T





COV096_KC_68-pl389
2231
DIQLTQSPSFLSASVGDRVTITCRASQGIS
2232
QQL




SYLAWYQQKPGKAPKLLIYAASTLQSGV

NSY




PSRFSGSGSGTEFTLTISSLQPEDFATYYC

PPA




QQLNSYPPAFGQGTRLEIK







COV096_KC_183-pl389
2235
EIVLTQSPGTLSLSPGERATLSCRASQSFS
2236
QQY




STYLAWYQQKPGQAPRLLIYGASSRATGI

VTS




PDRFSGSGSGTDFTLTISRLEPEDFAVYYC

PWT




QQYVTSPWTFGQGTKVEIK







COV096_KC_74-pl389
2239
EIVMTQSPATLSVSPGERATLSCRASQSV
2240
QQY




SSNLAWYQQKPGQAPRLLIYGASTRATG

NN




IPARFSGSGSGTEFTLTISSLQSEDFAVYY

WP




CQQYNNWPRTFGQGTKVEIK

RT





COV096_KC_45-pl389
2243
DIQMTQSPSSLSASVGDRVTITCQASQDI
2244
QQY




SNYLNWYQQKPGKAPKLLIYDASNLETG

DNL




VPSRFSGSGSGTDFTFTISSLQPEDIATYY

PPK




CQQYDNLPPKLTFGGGTKVEIK

LT





COV096_KC_126-pl389
2247
DIQMTQSPSSLSASVGDRVTIPCRASQNI
2248
QQS




DNYLNWYQQKPGKAPKLLIFAASGLQDE

YISP




APSRFSGVGSGTDFTLTISSLQPEDSATYY

YT




CQQSYISPYTFGRGTKLEIK







COV096_KC_8-pl389
2251
DIQMTQSPSSVSASLGDRVTITCRASQGI
2252
QQA




SSWLAWYQQKPGKAPKVLIYAASSLQSG

NSF




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PIT




CQQANSFPITFGQGTRLEIK







COV096_KC_124-pl389
2255
DIQMTQSPSSLSASVGDRVTITCRASQSI
2256
QQS




SSYLNWYQQKPGKAPKLLIYAASSLQSG

YST




VPSRFSGSGSGTDFTLTISSLQPEDFATYY

PCS




CQQSYSTPCSFGQGTKLEIK







COV096_KC_28-pl389
2259
AIQLTQSPSSLSASVGDRVTITCRASQGIS
2260
QQF




SALAWYQQKPGKAPKLLIYDASSLESGVP

NN




SRFSGSGSGTDFTLTISSLQPEDFATYYCQ






QFNNFGPGTKVDIK







COV096_KC_12-pl389
2263
EIVMTQSPATLSVSPGERATLSCRASQSV
2264
QQY




SSNLAWYQQKPGQAPRLLIYGASTRATG

NN




IPARFSGSGSGTEFTLTISSLQSEDFAVYY

WPP




CQQYNNWPPGGFTFGPGTKVDIK

GGF






T










LAMBDA











COV096_LC_90-pl409
2267
SYVLTQPPSVSVSPGQTARITCSGEALPK
2268
QSA




QYAYWYQQKPGQAPVMVIYKDSERPSG

DSS




IPERFSGSSSGTTVTLTISGVQAEDDADYY

GTL




CQSADSSGTLVVFGGGTKLTVL

VV





COV096_LC_71-pl409
2271
SYVLTQPPSVSVAPGKTARITCGGNNIGS
2272
QV




KSVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEAD

YGV




YYCQVWDYGVVFAGGTKLTVL

V





COV096_LC_52-pl409
2275
NFMLTQPHSVSESPGKTVTISCTRSSGSI
2276
QSY




ASNYVQWYQQRPGSAPTTVIYEDYQRP

DSG




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

VV




ADYYCQSYDSGVVFGGGTKLTVL







COV096_LC_10-pl409
2279
QXXLTQPPSASGSPGQSVTISCTGTSSDV
2280
SSY




GGYNYVSWYQQHPGKAPKLMIYEVSKR

AGS




PSGVPDRFSGSKSGNTASLTVSGLQAED

NN




EADYYCSSYAGSNNWVFGTGTKVTVL

WV





COV096_LC_2-pl409
2283
SYVLTQPPSVSVAPGKTARITCGGNNIGS
2284
QV




KSVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEAD

SSS




YYCQVWDSSSDPYVFGTGTKVTVL

DPY






V





COV096_LC_30-pl409
2287
QSVLTQPPSVSGAPGQRVTISCTGSSSNI
2288
QSY




GAGYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LRG




ADYYCQSYDSSLRGVFGGGTKLTVL

V





COV096_LC_136-pl409
2291
QSXXTQPPSASASLGASVTLTCTLSSGYS
2292
GAD




NYKVDWYQQRPGKGPRFVMRVGTGGI

QGS




VGSKGDGIPDRFSVLGSGLNRYLTIKNIQ

GSN




EEDESDYHCGADQGSGSNFVGVFGGGT

FVG




KLTVL

V





COV096_LC_99-pl409
2295
QSXXTQPPSVSGAPGQRVTISCTGSSSNI
2296
QSY




GAGYDVHWYQQLPGTAPKLLIYANINRP

DSS




SGVPDRFSGSKSGTSASLAITGLQAEDEA

LSG




DYYCQSYDSSLSGSVFGGGTKLTVL

SV





COV096_LC_152-pl409
2299
QSVLTQPPSASGTPGQRVTISCSGSSSNI
2300
AA




GSNYVYWYQQLPGTAPKLLIYRNNQRPS

WD




GVPDRFSGSKSGTSASLAISGLRSEDEAD

DSL




YYCAAWDDSLSGYWVFGGGTKLTVL

SGY






WV








COV096_LC_50-pl409
2303
SYVLTQPPSVSVAPGKTARITCGGNNIGS
2304
QV




KSVHWYQQKPGQAPVLVIYYDSDRPSGI

WD




PERFSGSNSGNTATLTISRVEAGDEADYY

SSS




CQVWDSSSDHPVFGGGTKLTVL

DHP






V





COV096_LC_92-pl409
2307
QSVLTQEPSLTVSPGGTVTLTCGSSTGAV
2308
LLSY




TSGHYPYWFQQKPGQAPRTLIYDTSNKH

SGA




SWTPARFSGSLLGGKGALTLSGAQPEDE

RV




AEYYCLLSYSGARVFGGGTKLTVL







COV096_LC_40-pl409
2311
SYVLTQPPSVSVAPGKTARITCGGNNIGS
2312
QV




KSVHWYQQKPGQAPVLVIYYDTDRPSGI

WD




PERFSGSNSGNTATLTISRVEAGDEADYY

SSS




CQVWDSSSALWVFGGGTKLTVL

ALW






V





COV096_LC_149-pl409
2315
QXXXTQPASVSGSPGQSITISCTGTSSDV
2316
SSYT




GGYNYVSWHQQHPGKAPKLMIYDVSN

SSST




RPSGVSNRFSGSKSGNTASLTISGLQAED

LV




EADYYCSSYTSSSTLVFGGGTKLTVL







COV096_LC_157-pl409
2319
NFMLTQPHSVSESPGKTVTISCTRSSGSI
2320
QSY




ASNYVQWYQQRPGSSPTMYEDNQRPS

DSS




GVPDRFSGSIDSSSNSASLTISGLKTEDEA

NVV




DYYCQSYDSSNVVFGGGTKLTVL







COV096_LC_121-pl409
2323
NFMLTQPHSVSESPGKTVTISCTRSSGSI
2324
QSY




ASNYVQWYQQRPGSSPTTVIYEDNQRP

DSS




SGVPDRFSGSIDSSSNSASLTISGLKTEDE

SWV




ADYYCQSYDSSSWVFGGGTKLTVL







COV096_LC_27-pl409
2327
SYXLTQPPSVSVSPGQTARITCSGDAFPN
2328
QSA




QYAYWYQQKPGQAPVLVIYKDSERPSGI

DSS




PERFSGSSSGTTVTLTISGVQAEDEADYY

SWV




CQSADSSSWVFGGGTKLTVL







COV096_LC_142-pl409
2331
NFMLTQPHSVSESPGKTVTISCTRSSGSI
2332
QSF




ASNYVQWYQQRPGSSPTTVIYEDSQRPS

DST




GVPDRFSGSIDSSSNSASLTISGLKTEDEA

NL




DYYCQSFDSTNLWVFGGGTKLTVL

WV





COV096_LC_1-pl409
2335
QSALTQPPSASGTPGQRVTISCSGSSSNI
2336
AA




GSNTVNWYQQLPGTAPKLLIYSNNQRPS

WD




GVPDRFSGSKSGTSASLAISGLQSEDEAD

DSL




YYCAAWDDSLVVFGGGTKLTVL

VV





COV096_LC_15-pl409
2339
QSVLTQPPSASGTPGQRVTISCSGSSSNI
2340
AA




GSNTVNWYQQLPGTAPKLLIYSNNQRPS

WD




GVPDRFSGSKSGTSASLAISGLQSEDEAD

DSL




YYCAAWDDSLNGVVFGGGTKLTVL

NGV






V





COV096_LC_20-pl409
2343
SYVLTQPPSVSVAPGKTARITCGGNNIGS
2344
QV




KSVHWFQQKPGQAPVLVVYDDSDRPSG

WD




IPERFSGSNSGNTATLTISRVEAGDEADY

SSS




YCQVWDSSSDHVVFGGGTKLTVL

DHV






V





COV096_LC_159-pl409
2347
SYVLTQPPSVSVAPGKTARITCGGNNIGS
2348
QV




KSVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGNTATLTISKVEAGDEAD

SSS




YYCQVWDSSSDSVVFGGGTKLTVL

DSV






V





COV096_LC_103-pl409
2351
QXXXTQPASVSGSPGQSITISCTGTSSDV
2352
CSY




GSYNLVSWYQQHPGKAPKLMIYEDSKR

AGS




PSGVSNRFSGSKSGNTASLTISGLQAEDE

SLW




ADYYCCSYAGSSLWVFGGGTKLTVL

V





COV096_LC_23-pl409
2355
QSVLTQPPSASGTPGQRVTISCSGSSSNI
2356
AA




GSNYVYWYQQLPGTAPKLLIYRNNQRPS

WD




GVPDRFSGSKSGTSASLAISGLRSEDEAD

DSL




YYCAAWDDSLSGYWVFGGGTKLTVL

SGY






WV





COV096_LC_101-pl409
2359
SYVLTQPPSVSVAPGKTARITCGGNNIGS
2360
QV




KNVHWYQQKPGQAPVLVVYDDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEAG

STS




YYCQVWDSTSDHLFWVFGGGTKLTVL

DHL






FWV





COV096_LC_174-pl409
2363
QSXXTQPPSASGTPGQRVTISCSGSSSNI
2364
AA




GSNTVNWYQQLPGTAPKLLIYSNNQRPS

WD




GVPDRFSGSKSGTSASLAISGLQSEDEAD

DSL




YYCAAWDDSLNGHVVFGGGTKLTVL

NGH






VV


COV096_LC_189-pl409
2367
QSXLTQPPSVSGAPGQRVTISCTGSSSNI
2368
QSY




GADYDVHWYQQLPGTAPKLLIYGNSNR

DSS




PSGVPDRFSGSKSGTSASLAITGLQAEDE

LSG




ADYYCQSYDSSLSGPYWVFGGGTKLTVL

PYW






V
















TABLE 13







Anti-SARS-CoV-2 IgG antibodies from COV107












SEQ

SEQ




ID

ID



SEQUENCE_ID
NO
aa
NO
cdr3_aa










HEAVY











COV107_Plate1_HC_9-P1369
2721
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2369
ARDWG




MSWVRQAPGKGLEWVSVIYSGGSTFYADSVKG

EYYFDY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARD






WGEYYFDYWGQGTLVTVSS







COV107_Plate1_HC_36-P1369
2725
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYM
2373
ARDYGD




SWVRQAPGKGLEWVSVIYSGGSTYYADSVKGR

YYFDY




FTISRDNSKNTLYLQMNSLRVEDTAVYYCARDY






GDYYFDYWGQGTLVTVSS







COV107_Plate1_HC_40-P1369
2729
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2377
ARDWG




MSWVRQAPGKGLEWVSVIYSGGSTFYADSVKG

EYYFDY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARD






WGEYYFDYWGQGTLVTVSS







COV107_Plate2_HC_13-P1369
2733
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYM
2381
ARDYGD




SWVRQAPGKGLEWVSVIYSGGSTFYADSVKGR

YYFDY




FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDY






GDYYFDYWGQGTLVTVSS







COV107_Plate2_HC_93-P1369
2737
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYM
2385
VRDYGD




SWVRQAPGKGLEWVSVIYSGGSTFYTDSVKGR

FYFDY




FTISRDNSKNTLYLQMNSLRAEDTAVYYCVRDY






GDFYFDYWGQGTLVTVSS







COV107_Plate1_HC_11-P1369
2741
QVQLQQWGAGLLKPSETLSLTCAVSGGSLSGFY
2389
ARKPLLY




WTWIRQPPGKGLEWIGETNHFGSTDYKASLKS

SDFSPG




RVTISVGMSRNQFSLKVTSLTAADTAVYYCARK

AFDI




PLLYSDFSPGAFDIWGQGTMIVVSS







COV107_Plate1_HC_42-P1369
2745
QVQLQQWGAGLLKPSETLSLSCAVYGGSLSGYY
2393
ARKPLLY




WSWIRQPPGKGLEWIGEINHFGSTGYNPSLKSR

SNLSPG




VTISVDTSKSQFSVKLSSVTAADTAVYYCARKPLL

AFDI




YSNLSPGAFDIWGQGTMVTVSS







COV107_Plate1_HC_84-P1369
2749
QVQLQQWGAGLLKPSETLSLTCAVSGGSLSGFY
2397
ARKTLLF




WTWIRQPPGKGLEWIGETNHFGSTDYKPSLKS

SDFSPG




RVTISVDMSRNQFSLIMTSVTAADTAVYYCARK

AFDI




TLLFSDFSPGAFDIWGQGTMVVVSS







COV107_Plate2_HC_31-P1369
2753
QVQLQQWGAGLLKPSETLSLTCAVSGGSLSGFY
2401
ARKPLL




WTWIRQPPGKGLEWIGETNHFGSTDYKPSLKS

HSDLSP




RVTISVDMSRNQFSLKVTSVTAADTAVYYCARK

GAFDI




PLLHSDLSPGAFDIWGQGTMVAVSS







COV107_Plate2_HC_53-P1369
2757
QVQLQQWGAGLLKPSETLSLTCAVSGGSLSGFY
2405
ARKPLLY




WTWIRQPPGKGLEWIGETNHFGSTGYKPSLKS

SDFSPG




RVTISVDMSRNQFSLKVTSVTAADTAVYYCARK

AFDI




PLLYSDFSPGAFDIWGQGTMVAVSS












HEAVY











COV107_Plate1_HC_29-P1369
2761
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2409
ARGEG




MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

WDLPY




GRFTISRDNSKNTLYLQMHSLRAEDTAVYYCAR

DY




GEGWDLPYDYWGQGTLVTVSS







COV107_Plate1_HC_35-P1369
2765
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2413
ARGEG




MSWVRQAPGKGLEWVSVIYTGGSTFYADSVK

WDLPY




GRFTISRDNSKNTLYLQMNSLRAEDTAMYYCAR

DY




GEGWDLPYDYWGQGTLVTVSS







COV107_Plate2_HC_4-P1369
2769
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2417
ARGEG




MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

WELPYD




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR

Y




GEGWELPYDYWGQGTLVTVSS







COV107_Plate1_HC_63-P1369
2773
QVQLVQSGAEVKKPGASVRVSCKASGYTFTSYG
2421
ARGEAV




FSWVRQAPGQGLEWMGWISAYNGNTNFAQK

AGTTGF




LQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYC

FDY




ARGEAVAGTTGFFDYWGQGTLVTVSS







COV107_Plate1_HC_68-P1369
2777
QVQLVQSGAEVKKPGASVRVSCKASGYTFTSYG
2425
ARGEAV




FSWVRQAPGQGLEWMGWISAYNGNTNFAQK

AGTTGF




LQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYC

FDY




ARGEAVAGTTGFFDYWGQGTLVTVSS







COV107_Plate1_HC_13-P1369
2781
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYY
2429
ARDVIV




IHWVRQAPGQGLEWMGWINPNSGGTNYAQK

SMVRG




FQGRVTMTRDTSISTAYMELSRLRSDDTAVYYC

VIFRMD




ARDVIVSMVRGVIFRMDVWGQGTTVTVSS

V





COV107_Plate1_HC_27-P1369
2785
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
2433
ATAHPR




MHWVRQAPGQGLEWMGWINPNSGGTNYA

RIQGVF




QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY

FLGPGV




YCATAHPRRIQGVFFLGPGVWGQGTTVTVSS







COV107_Plate1_HC_79-P1369
2789
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYY
2437
ARANHE




MHWVRQAPGQGLEWMGIINPSGGSTSYAQKL

TTMDTY




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCA

YYYYYM




RANHETTMDTYYYYYYMDVWGKGTTVTVSS

DV





COV107_Plate1_HC_91-P1369
2793
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYY
2441
ARANHE




MHWVRQAPGQGLEWMGIINPSGGSTSYAQKL

TTMDTY




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCA

YYYYYM




RANHETTMDTYYYYYYMDVWGKGTTVTVSS

DV










HEAVY











COV107_Plate1_HC_53-P1369
2797
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSSA
2445
AAPHCS




VQWVRQARGQRLEWIGWIVVGSGNTNYVQK

STSCFD




FQERVTITRDMSTSTAYMELSSLRSEDTAVYYCA

AFDI




APHCSSTSCFDAFDIWGQGTMVTVSS







COV107_Plate2_HC_81-P1369
2801
QMQLVQSGPEVKKPGTSVKVSCKASGFTFTSSA
2449
AAPYCS




VQWVRQARGQRLEWIGWIVVGSGNTNYAQK

GGSCSD




FQERVTITRDMSTSTAYMELSSLRSEDTAVYYCA

AFDI




APYCSGGSCSDAFDIWGQGTMVTVSS












HEAVY











COV107_Plate2_HC_42-P1369
2805
QVQLVESGGGLVQPGRSLRLSCAASGFTFSTYA
2453
ARDPIW




MHWVRQAPGKGLKWVAVISYDGGNKYYADS

FGELLSP




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

PFVHFD




ARDPIWFGELLSPPFVHFDYWGQGTLVTVSS

Y





COV107_Plate2_HC_89-P1369
2809
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYA
2457
ARDPIW




MHWVRQAPGEGLEWVAVISYDGSNTYYADSV

FGELLSP




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

PFVHFD




RDPIWFGELLSPPFVHFDYWGQGTLVTVSS

Y





COV107_Plate1_HC_22-P1369
2813
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSHA
2461
AREDYY




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DSSGSF




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DY




REDYYDSSGSFDYWGQGTLVTVSS







COV107_Plate2_HC_88-P1369
2817
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRHA
2465
AREDYY




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DSSGSF




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DY




REDYYDSSGSFDYWGQGTLVTVSS







COV107_Plate2_HC_49-P1369
2821
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYA
2469
ASGYTG




MHWVRQAPGKGLEWVAVISYDGSNXYYADSV

YDYFVR




KGRFTISRDNSKNTLYLQMNSLRAEDTAIYYCAS

GDYYGL




GYTGYDYFVRGDYYGLDVWGQGTTVTVSS

DV





COV107_Plate2_HC_84-P1369
2825
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
2473
ASGYTG




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YDYFVG




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

GDYYG




SGYTGYDYFVGGDYYGMDVWGQGTTVTVSS

MDV










HEAVY











COV107_Plate1_HC_19-P1369
2829
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNFG
2477
ARGVNP




MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

DDILTG




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

VDAFDI




ARGVNPDDILTGVDAFDIWGQGTMVTVSS







COV107_Plate1_HC_38-P1369
2833
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNFG
2481
ARGVNP




MHWVRQAPGKGLEWVAVIWYDGSNKYYADS

DDILTG




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

VDAFDI




ARGVNPDDILTGVDAFDIWGQGTMVTVSS







COV107_Plate2_HC_15-P1369
2837
EVQLVESGGGLIKPGRSLRLSCTASGFTFGDYA
2485
TRWDG




MTWFRQAPGKGLEWVGFIRSKAYGGTTGYAA

WSQHD




SVKYRFTISRDDSKSIAYLQMDSLKTEDTAVYYCT

Y




RWDGWSQHDYWGQGTLVTVSS







COV107_Plate2_HC_69-P1369
2841
EVQLVESGGGLIKPGRSLRLSCTASGFTFGDYA
2489
TRWDG




MTWFRQAPGKGLEWVGFIRSKAYGGTTGYAA

WSQHD




SVRYRFTISRDDSSGIAYLQMDSLKTEDTAVYYC

Y




TRWDGWSQHDYWGQGTLVTVSS







COV107_Plate2_HC_32-P1369
2845
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2493
AREGM




MTWVRQAPGKGLEWVSLIYPGGSTYYADSVKG

GMAAA




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARE

GT




GMGMAAAGTWGQGTLVTVSS







COV107_Plate2_HC_73-P1369
2849
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
2497
AREGM




MSWVRQAPGKGLEWVSLIYPGGSTYFADSVKG

GIAAAG




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARE

T




GMGIAAAGTWGQGTLVTVSS












HEAVY











COV107_Plate1_HC_62-P1369
2853
EVQLVESGGGLIQPGGSLKLSCVVSGFTVSKNYI
2501
ARGDGE




SWVRQAPGKGLEWVSVIFAGGSTFYADSVKGR

LFFDH




FAISRDNSNNTLFLQMNSLRVEDTAIYYCARGD






GELFFDHWGQGTLVTVSS







COV107_Plate1_HC_73-P1369
2857
EVQLVESGGGLIQPGGSLKLSCVVSGFTVSKNYI
2505
ARGDGE




SWVRQAPGKGLEWVSVIFAGGSTFYADSVKGR

LFFDQ




FAISRDNSNNTLFLQMNSLRVEDTAIYYCARGD






GELFFDQWGQGTLVTVSS







COV107_Plate1_HC_46-P1369
2861
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSTN
2509
VRDGGR




WWSWVRQPPGKGLEWIGEIYHTGSTNYNPSL

PGDAFD




KSRVTISVDKSKNQFSLKLSSVTAADTAVYYCVR

I




DGGRPGDAFDIWGQGTMVTVSS







COV107_Plate2_HC57-P1369
2865
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSTN
2513
VRDGGR




WWSWVRQPPGKGLEWIGEIYHTGSTNYNPSL

PGDAFD




KSRVTISVDKSKNQFSLKLSSVTAADTAVYYCVR

I




DGGRPGDAFDIWGQGTMVTVSS







COV107_Plate2_HC_36-P1369
2869
QVQLQESGPGLVKPSETLSLTCTVSGGSISNYYW
2517
ARVED




SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

WGYCSS




ISVDTSKNQFSLKLSSVTAADTAVYYCARVEDW

TNCYSG




GYCSSTNCYSGAFDIWGQGTMVTVSS

AFDI





COV107_Plate2_HC71-P1369
2873
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW
2521
ARVED




SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

WGYCSS




ISVDTSKNQFSLKLSSVTAADTAVYYCARVEDW

TNCYSG




GYCSSTNCYSGAFDIWGQGTMVTVSS

AFDI





COV107_Plate1_HC_77-P1369
3220
QVQLQESGPGLVKPSETLSLTCTVSGASVSSGSY
2525
ARERPG




YWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKS

GTYSNT




RVTISVDTSKNQFSLKLSSVTAADTAVYYCARER

WYTPTD




PGGTYSNTWYTPTDTNWFDTWGQGTLVTVSS

TNWFD






T





COV107_Plate2_HC_72-P1369
3221
QVQLQESGPGLVKPSETLSLTCTVSGASVSSGSY
2529
ARERPG




YWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKS

GTYSNT




RVTISVDTSKNQFSLKLSSVTAADTAVYYCARER

WYTPTD




PGGTYSNTWYTPTDTNWFDTWGQGTLVTVSS

TNWFD






T










HEAVY











COV107_Plate1_HC_75-P1369
3222
EVQLVQSGAEVKKPGESLKISCKGSGYRFTSYWI
2533
ARSFRD




GWVRQMPGKGLEWMGIIYPGDSDATYSPSFQ

DPRIAV




GQVTISADRSISTAYLQWSSLKASDTAMYYCAR

AGPADA




SFRDDPRIAVAGPADAFDIWGQGTMVTVSS

FDI





COV107_Plate2_HC_90-P1369
3223
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWI
2537
ARSFRD




GWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

DPRIAV




GQVTISADKSISTAYMQWSSLKASDTAMYYCA

AGPADA




RSFRDDPRIAVAGPADAFDIWGQGTMVTVSS

FDI










HEAVY











COV107_Plate1_HC_52-P1369
3224
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYG
2541
ARAIAV




FSWVRQAPGQGLEWLGWISAYNGNTNYAQKL

AGTSGE




QGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCA

FDY




RAIAVAGTSGEFDYWGQGTLVTVSS







COV107_Plate1_HC_58-P1369
3225
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYG
2545
ARSQG




ISWVRQAPGQGLEWMGWISAYNGNTNYAQK

WLQLN




LQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYC

DY




ARSQGWLQLNDYWGQGTLVTVSS







COV107_Plate2_HC_45-P1369
3226
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
2549
ARGHDY




MHWVRQAPGQGLEWMGWINPNSGGTKYAQ

VWGSY




KFQGRVTMTRDTSISTAYMELSRLRSDDTAVYY

RYHNV




CARGHDYVWGSYRYHNVWGQGTLVTVSS







COV107_Plate1_HC_60-P1369
3227
QVQLVQSGAEVKKPGASVMLSCKASGYTFTGY
2553
ARDLAF




YMHWVRQAPGQGLEWMGWINPNSGGTNYA

SMVRAP




QKFQGRVTMTRDTSITTTYMELSRLRSDDTAVY

GDY




YCARDLAFSMVRAPGDYWGQGTLVTVSS







COV107_Plate1_HC_5-P1369
3228
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYS
2557
ARELIAV




MHWVRQAPGQGLEWMGWINPNSGGTNYA

AGIFDY




QKFQGRVTMTRDTSISTAYMELNRLRSDDTAV






YYCARELIAVAGIFDYWGQGTLVTVSS







COV107_Plate2_HC_94-P1369
3229
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
2561
ARAPLF




MHWVRQAPGQGLEWMGWISPVSGGTNYAQ

PTGVLA




KFQGRVTMTRDTSISTAYMELSRLRSDDTAVYY

GDYYYY




CARAPLFPTGVLAGDYYYYGMDVWGQGTTVT

GMDV




VSS







COV107_Plate1_HC_83-P1369
3230
QVQLVQSGAEVKKPGASVKVSCKASGYILTDYFI
2565
ARYKGT




HWVRQAPGQGLEWMGWINPNSGGTNYAQK

TVNTNY




FQGRVTMTRDTSISTAYMELSRLRSDDTAVYHC

YYGMD




ARYKGTTVNTNYYYGMDVWGQGTTVTVSS

V





COV107_Plate2_HC_40-P1369
3231
QVQLVQSGAEVKKPGASVKVSCKASGYSFTSYY
2569
ARDPSPI




MHWVRQAPGQGLEWMGIINPSGGSTSYAQKF

IARPGM




QGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCA

GYWFD




RDPSPIIARPGMGYWFDPWGQGTLVTVSS

P





COV107_Plate1_HC_28-P1369
3232
QVQLVQSGAEVKKPGSSVKVSCKASGGTFRSYA
2573
ARDSSG




ISWVRQAPGQGLEWMGGIIPIFGTTNYAQKFQ

YYYVSN




GRVTITADESTSRAYMELSSLRSEDTAVYYCARD

WFDP




SSGYYYVSNWFDPWGQGTLVTVSS







COV107_Plate2_HC_92-P1369
2929
QVQLLESGGGLVKPGGSLRLSCAASGFTFSDYY
2577
ATYRSYL




MSWIRQAPGKGLEWVSYISSRSSYTNYADSVKG

PLVQVD




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCATY

Y




RSYLPLVQVDYWGQGTLVTVSS







COV107_Plate2_HC_55-P1369
2933
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS
2581
ARGQLL




MNWVRQAPGKGLEWVSSISSSSSYIYYADSVKG

PFADY




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARG






QLLPFADYWGQGTLVTVSS







COV107_Plate2_HC_47-P1369
2937
EVQLVESGGGLVKPGGSLRVSCAASGFTFSSYS
2585
TRGSRG




MNWVRQAPGKGLEWVSSISSSKNYIYYADSVK

YYDRSG




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCTR

YYTPLDP




GSRGYYDRSGYYTPLDPYYGMDVWGQGTTVT

YYGMD




VSS

V





COV107_Plate1_HC_49-P1369
2941
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA
2589
AKEEVL




MSWVRQAPGKGLEWVSGISDSGGSTYYADSV

PAVEYF




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

QH




KEEVLPAVEYFQHWGQGTLVTVSS







COV107_Plate2_HC_22-P1369
2945
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
2593
AKGGYY




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YYNSDS




KGRFTISRDNSKNTLDLQMNSLRAEDTAVYYCA

YQAEID




KGGYYYYNSDSYQAEIDYWGQGTLVTVSS

Y





COV107_Plate2_HC_91-P1369
2949
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSSG
2597
AKDPLP




MHWVRQAPGKGLEWVAIISYDGSNKYYADSV

FRDFFYY




KGRFTISRDNSKNTLSLQMNSLRAEDTAVYYCA

YMDV




KDPLPFRDFFYYYMDVWGKGTTVTVSS







COV107_Plate2_HC_35-P1369
2953
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
2601
ARETQG




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

GYYGSG




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

SYYASPF




RETQGGYYGSGSYYASPFDPWGQGTLVTVSS

DP





COV107_Plate2_HC_24-P1369
2957
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
2605
ARDFYH




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

NWFDP




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA






RDFYHNWFDPWGQGTLVTVSS







COV107_Plate2_HC_34-P1369
2961
QVQLVESGGGVVQPGRSLRLSCAASGLTFSSYG
2609
ARDRGL




MHWVRQAPGKGLEWVAVIWYDGINKYYADS

RLGGPK




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

YYFDY




ARDRGLRLGGPKYYFDYWGQGTLVTVSS







COV107_Plate1_HC_41-P1369
2965
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYY
2613
ARDPQR




MNWVRQAPGKGLEWVSYISSSSSTIYYADSVK

DPADYF




GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCAR

DY




DPQRDPADYFDYWGQGTLVTVSS







COV107_Plate2_HC_46-P1369
2969
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYW
2617
AIQLWL




MSWVRQAPGKGLEWVANIKQDGSEKYYVDSV

RGGYDY




KGRFTISGDNAKNSLYLHMNSLRAEDTAVYYCAI






QLWLRGGYDYWGQGTLVTVSS







COV107_Plate1_HC_32-P1369
2973
EVQLVESGGGLVQPGGSLRLSCADSGFTFSSYW
2621
AVQLW




MSWVRQAPGKGLEWVANIKQDGSEKYYVDSV

LRGNFD




KGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA

Y




VQLWLRGNFDYWGQGTLVTVSS







COV107_Plate2_HC_25-P1369
2977
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2625
AKDDRE




MHWVRQAPGKGLEWVSGISWNSGSRGYADS

GFGDYF




VKGRFTISRDNAKNSLYLLMNSLRAEDTAFYYCA

DY




KDDREGFGDYFDYWGQGTLVTVSS







COV107_Plate2_HC_54-P1369
2981
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
2629
AKDSLV




MHWVRQAPGKGLEWVSGISWNSGSIGYADSV

RRNFYY




KGRFTISRDNAKSSLYLQMKSLRVEDTALYYCAK

YYMDV




DSLVRRNFYYYYMDVWGKGTTVTVSS







COV107_Plate2_HC_20-P1369
2985
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYY
2633
AGMYY




WGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKSR

DILTGYS




VTISVDTSKNQFSLKLSSVTAADTAVYYCAGMYY

EGAFDI




DILTGYSEGAFDIWGQGTMVTVSS







COV107_Plate1_HC_25-P1369
2989
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYY
2673
AGGTNP




WGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKSR

QWLDS




VTISVDTSKNQFSLKLSSVTAADTAVYYCAGGTN

TFDY




PQWLDSTFDYWGQGTLVTVSS







COV107_Plate1_HC_64-P1369
2993
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSHY
2641
ASAPYL




WGWIRQPPGKGLEWIGTIYYSGSTYYNPSLKSR

NWND




VTISVDTSKNQFSLRLSSVTAADTAVYYCASAPYL

WIFDY




NWNDWIFDYWGQGTLVTVSS







COV107_Plate2_HC_28-P1369
2997
QVQLQESGPGLVKPSETLSLSCAVSGGSIGSYF
2645
ARLQWL




WSWIRQPPGKGLEWIGYLHYSGSTNYNPSLKSR

RGAFDI




VTISVDTSKNQFSLKLSSVTAADTAVYYCARLQ






WLRGAFDIWGQGTMVTVSS







COV107_Plate2_HC_58-P1369
3001
QVQLQESGPGLVKPSETLSLTCTVSGGSISGYYW
2649
ARYGW




SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

GYDSSG




ISVDTSKNQFSLKLSSVTAADTAVYYCARYGWG

YYFDY




YDSSGYYFDYWGQGTLVTVSS







COV107_Plate2_HC_2-P1369
3005
QVQLQESGPRLVKPSENLSLTCTVSGGSISSYYW
2653
ARATTP




SWIRQPPGKGLEWIGYIYYTGSTKYNPSLKSRVTI

FSGVDY




SVDTSKNQFSLKLSSVTAADTAVFYCARATTPFS






GVDYWGQGTLVTVSS







COV107_Plate2_HC_10-P1369
3009
QVQLQESGPGLVKPSETLSLTCTVSGGSISNYYW
2657
ARILRGV




SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT

AENWF




ISVDTSKNQFSLKLTSVTAADTAVYYCARILRGV

DP




AENWFDPWGQGTLVTVSS







COV107_Plate1_HC_48-P1369
3013
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSY
2661
ATRGGY




YWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKS

YDSSGY




RVTISVDTSKNQFSLKLSSVTAADTAVYYCATRG

YALAFDI




GYYDSSGYYALAFDIWGQGTMVTVSS







COV107_Plate2_HC_87-P1369
3017
EVQLVQSGAEVKQPGESLKISCKALGYTFTTSWI
2665
ATETNS




SWVRQMPGKGLEWMGRIDPSDSYTKYSPSFQ

ETTDMF




GHVTISVDKSITTAYLQWSSLKASDSAVYYCATE

TGYSFD




TNSETTDMFTGYSFDPWGQGTLVTVSS

P





COV107_Plate2_HC_1-P1369
3021
EVQLVQSGAEVKKPGESLKISCKGSGYRFTSYWI
2669
ARGGPP




AWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

GGVKLE




GQVTISADQSISTAYLQWSSLKASDTAMYYCAR

LTDY




GGPPGGVKLELTDYWGQGALVTVSS







COV107_Plate1_HC_92-P1369
3025
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWI
2673
ARLHPT




GWVRQMPGKGLEWMGILYPGDSDTTYSPSFQ

YYDILTG




GQVTISADKSISTAYLQWSSLKASDTAMYYCARL

YYIDY




HPTYYDILTGYYIDYWGQGTLVTVSS







COV107_Plate1_HC_26-P1369
3029
EVQLVQSGAEVKKPGESLKISCKGSGYSFISYWI
2677
ARRPSS




GWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ

YSGWF




GQVTISADKSISTAYLQWSSLKASDTAMYYCAR

DP




RPSSYSGWFDPWGQGTLVTVSS












HEAVY











COV107_Plate2_HC_18-P1369
3033
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYY
2681
AREPQI




MHWVRQAPGQGLEWMGWINPNSGGTNYA

NPYYDIL




QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY

TGYRAF




YCAREPQINPYYDILTGYRAFDYWGQGTLVTVS

DY




S







COV107_Plate1_HC_21-P1369
3037
QVQLVQSGAEVVRPGASVKVSCKASGYTFTTHY
2685
ARGPRS




MHWVRQAPGQGLEWMGIINPSVGSTSYAQKF

PSDWCS




QGRVTMTRDTSTSTVYMELSSLISEDTAMYYCA

GGSCYD




RGPRSPSDWCSGGSCYDDQNWFDPWGQGTL

DQNWF




VTVSS

DP





COV107_Plate1_HC_24-P1369
3041
QVQLVQSGAEVMKPGASVKVSCKASGYTFTSY
2689
ARDFEL




YMHWVRQAPGQGLEWMGIINPTAGSTSYAQK

WFGELR




FQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYC

GWFDP




ARDFELWFGELRGWFDPWGQGTLVTVSS







COV107_Plate2_HC_17-P1369
3045
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYAI
2693
ASFHVA




SWVRQAPGQGLEWMGGIIPILGTANYAQKFQ

YGDYIPF




GRVTITADESTSTAYMELSSLRSEDTAVYYCASF

DY




HVAYGDYIPFDYWGQGTLVTVSS







COV107_Plate1_HC_78-P1369
3049
QVQLVQSGAEVKKSGSSVKVSCKASGGTFSSYG
2697
ARAGLL




ISWVRQAPGQGLEWMGGIIPIIGTANYAQKFQ

TKNIVA




GRVTITADESMSTAYMELSSLRSEDTAVYYCAR

TIGCFDP




AGLLTKNIVATIGCFDPWGQGTLVTVSS







COV107_Plate1_HC_95-P1369
3053
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYD
2701
ARGGRY




INWVRQATGQGLEWMGWMNPNSGNTGYA

CSSTSCY




QKFQGRVTMTRNTSISTAYMELSSLRSEDTAVY

SHVGFD




YCARGGRYCSSTSCYSHVGFDPWGQGTLVTVS

P




S







COV107_Plate2_HC_38-P1369
3057
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYD
2705
ARVRYD




MHWVRQATGRGLEWVSTIGTAGDTYYPGSVK

SSGYFW




GRFTISRENAKNSLYLQMNSLRAGDTALYYCAR

SLDY




VRYDSSGYFWSLDYWGQGTLVTVSS







COV107_Plate2_HC_61-P1369
3061
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYD
2709
ARGVSG




MHWVRQATGKGLEWVSTIGTAGDTYYPGSVK

VVRGVI




GRFTISRENAKNSLYLQMNSLRAGDTAVYFCAR

RSFYYY




GVSGVVRGVIRSFYYYGLDVWGQGTTVTVSS

GLDV





COV107_Plate1_HC_80-P1369
3065
EVQLLESGGGLVQPGGSLRLSCAASGITFSSYAM
2713
VETNLW




TWVRQAPGKGLEWVSTISGSGGGTYYADSVKG

FGEDNY




RFTISRDNSKNTLYLOMNSLRAEDTAVYYCVET

YYYYGM




NLWFGEDNYYYYYGMDVWGQGTTVTVSS

DV





COV107_Plate2_HC_68-P1369
3069
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
2717
ATGGGS




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YFSPRIY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

FDY




TGGGSYFSPRIYFDYWGQGTLVTVSS







COV107_Plate2_HC_51-P1369
3073
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
3191
AKQAGP




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YCSGGT




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

CYPGTL




KQAGPYCSGGTCYPGTLDYWGQGTLVTVSS

DY





COV107_Plate1_HC_43-P1369
3077
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
3192
AKAGYS




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

YGYPQQ




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

YFDY




KAGYSYGYPQQYFDYWGQGTLVTVSS







COV107_Plate2_HC_3-P1369
3081
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
3193
AKSLGP




MHWVRQAPGKGLEWVAVILYDGSNKYYADSV

YCSGGN




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

CYSSYFD




KSLGPYCSGGNCYSSYFDYWGQGTLVTVSS

Y





COV107_Plate2_HC_44-P1369
3085
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
3194
AKKGGG




MHWVRQAPGKGLEWVAVISYDGSNKYYGDSV

AYCGGD




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

CYLGEF




KKGGGAYCGGDCYLGEFDYWGQGTLVTVSS

DY





COV107_Plate2_HC_76-P1369
3089
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG
3195
AKSWW




MHWVRQAPGKGLEWVAVISDDGSNKYYADSV

LSENWF




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

DP




KSWWLSENWFDPWGQGTLVTVSS







COV107_Plate1_HC_16-P1369
3093
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYG
3196
AKGGLY




MHWVRQAPGKGLEWVAVISYDGSNKYYADSV

DSSGYY




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

PHYGM




KGGLYDSSGYYPHYGMDVWGQGTTVTVSS

DV





COV107_Plate1_HC_10-P1369
3097
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYA
3197
ARDQDL




MHWVRQAPGKGLEWVAVILYDGSNKYYADSV

DTAMV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

TLFDY




RDQDLDTAMVTLFDYWGQGTLVTVSS







COV107_Plate1_HC_65-P1369
3101
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAI
3198
ARDSPS




HWVRQAPGKGLEWVAVISYDGSNKYYADSVK

QIVVVP




GRFTISRDNSKNTLYLQMNSLRADDTAVYYCAR

VFDY




DSPSQIVVVPVFDYWGQGTLVTVSS







COV107_Plate1_HC_2-P1369
3105
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGYS
3199
AREGAR




MNWVRQAPGKGPEWVSYISRSSSTIYYADSVK

VGATYD




GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCAR

TYYFDY




EGARVGATYDTYYFDYWGQGTLVTVSS







COV107_Plate2_HC_64-P1369
3109
EVQLVESGGDLVQPGGSLRLSCAASGFTFSSYS
3200
ARVAIR




MNWVRQAPGKGLEWVSYISISSSTIYYADSVKG

WVPSA




RFTISRDNAKNSLYLQMNSLRDEDTAVYYCARV

TYYFDY




AIRVVVPSATYYFDYWGQGTLVTVSS







COV107_Plate2_HC_11-P1369
3113
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS
3201
ARDQGY




MNWVRQAPGKGLEWVSYISTSSSTIYYADSVQ

CSSTSCY




GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCAR

DGYYYY




DQGYCSSTSCYDGYYYYMDVWGKGTTVTVSS

MDV





COV107_Plate1_HC_44-P1369
3117
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
3202
ARDLRG




MSWVRQAPGKGLEWVSVIYSGGSTFYADSVKG

PGTFDI




RFTISSDNSKNTLYLQMNSLRAEDTAVYYCARDL






RGPGTFDIWGQGTMVTVSS







COV107_Plate1_HC_88-P1369
3121
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNY
3203
AREVAA




MSWVRQAPGKGLEWVSVIYSGGSTFYADSVKG

FDI




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARE






VAAFDIWGQGTMVTVSS







COV107_Plate1_HC_18-P1369
3125
EVQLVESGGGLIQPGGSLRLSCAASGVTVSRNY
3204
ARDLSA




MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK

AFDI




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR






DLSAAFDIWGQGTMVTVSS







COV107_Plate1_HC_59-P1369
3129
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYM
3205
ARTMD




SWVRQAPGKGLEWVSIIYSGGSTFYADSVKGRF

GDYFDY




TISRDNSKNTLYLOMNSLRAEDTAVYYCARTMD






GDYFDYWGQGTLVTVSS







COV107_Plate1_HC_30-P1369
3133
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
3206
ARTDIV




MSWVRQAPGKGLEWVSLIYSGGSTYYADSVKG

WPAAR




RFTISRDNSKNTLYLOMNSLRAEDTAVYYCART

GFYFDY




DIVVVPAARGFYFDYWGQGTLVTVSS







COV107_Plate1_HC_15-P1369
3137
EVQLVESGGGLIQPGGSLRLSCAASGLTVSSNY
3207
ARESGD




MSWVRQAPGKGLEWVSVLYSGGSSFYADSVK

TTMAFD




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR

Y




ESGDTTMAFDYWGQGTLVTVSS







COV107_Plate2_HC_23-P1369
3141
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
3208
ARDLGT




MSWVRQAPGKGLEWVSVIYSGGSTFYADSVKG

GLFDY




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARD






LGTGLFDYWGQGTLVTVSS







COV107_Plate1_HC_82-P1369
3145
EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYM
3209
ARDYGD




SWVRQAPGKGLEWVSVIYSGGSTYYADSVKGR

FYFDY




FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDY






GDFYFDYWGQGTLVTVSS







COV107_Plate2_HC_95-P1369
3149
EVQLVESGGGLIQPGGSLRLSCAASGFTVSYNY
3210
ARDYGD




MSWVRQAPGKGLEWVSIIYSGGSTYYADSVKG

LYFDY




RFTISRDNSKNTLYLQMNSLRAEDTAIYYCARDY






GDLYFDYWGQGTLVTVSS







COV107_Plate1_HC_86-P1369
3153
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
3211
ATDLTS



53
MSWVRQAPGKGLEWVSVIYSGGSTYYADSVK
11
GRGP




GRFTISRDNSKNTLYLQMNSLRADDTAVYYCAT






DLTSGRGPWGQGTLVTVSS







COV107_Plate2_HC_78-P1369
3157
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNY
3212
ARDLW




MTWVRQAPGKGLEWVSVIYSGGTTYYADSVK

WGMD




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR

V




DLVVWGMDVWGQGTTVTVSS







COV107_Plate2_HC_9-P1369
3161
EVQLVESGGGLVQPGGSLKLSCAASGFTFSGSA
3213
TKPHAH




MHWVRQASGKGLEWVGRIRSKANSYATTYAA

CGGDCY




SVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYY

SRDWF




CTKPHAHCGGDCYSRDWFDPWGQGTLVTVSS

DP





COV107_Plate2_HC_50-P1369
3165
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAI
3214
AKGLIAE




HWVRQAPEKGLEWVSGINWSSGSIVYADSVKG

LVGGG




RFTISRDNAKNSLYLQMNSLRAEDTALYYCAKGL

WYFDY




IAELVGGGWYFDYWGQGTLVTVSS







COV107_Plate1_HC_74-P1369
3169
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA
3215
AKALSST




MHWVRQAPGKGLEWVSGVSWNSGSIGYADS

GFLVVY




VRGRFTISRDNAKNSLYLQMNSLRAEDTALYYC

FDY




AKALSSTGFLVVYFDYWGRGTLVTVSS







COV107_Plate1_HC_93-P1369
3173
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY
3216
AWRYSS




YWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS

SWYTVD




RVTISVDTXKNQFSLKLSSVTAADTAVYYCAWR

NKKGDY




YSSSWYTVDNKKGDYYFDYWGQGTLVTVSS

YFDY





COV107_Plate1_HC_45-P1369
3177
EVQLVQSGAEVKKPGESLRISCKGSAYIFTTYWIS
3217
ARHISS




WVRQMPGKGLEWMGRIDPSDSYTNYSPSFQG

GWYDY




HVTISADKSISTAYLQWSSLKASDTAMYYCARHI






SSGWYDYWGQGTLVTVSS







COV107_Plate1_HC_39-P1369
3181
EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYYIS
3218
ARHRHP




WVRQMPGKGLEWMGRIDPSDSYTNYSPSFQG

GITMIV




HVTISADKSISAAYLQWSSLKASDTAMYYCARH

ALDY




RHPGITMIVALDYWGQGTLVTVSS







COV107_Plate1_HC_37-P1369
3185
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWI
3219
ALTTVTT




GWVRQMPGKDLEWMGIIYPGDSDTRYSPSFO

GRWFD




GQVTISADKSISTAYLQWSSLKASDTAMYYCALT

P




TVTTGRWFDPWGQGTLVTVSS












KAPPA











COV107_Plate1_Kappa_9-P1389
2370
EIVLTQSPGTLSLSPGERATLSCRASQSV
2411
QQY




TSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




GIPDRFSGSGSGTDFTLTISRLDPEDFAV

PRT




YYCQQYGSSPRTFGQGTKVEIK







COV107_Plate1_Kappa_36-P1389
2374
EIVLTQSPGTLSLSPGERATLSCRASQSV
2415
QQY




SSSYLAWYQQKPGQAPRLLIYGAFSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

PRT




VYYCQQYGSSPRTFGQGTKVEIK







COV107_Plate1_Kappa_40-P1389
2378
EIVLTQSPGTLSLSPGERATLSCRASQSV
2419
QQY




TSYLAWYQQKPGQAPRLLIYGASSRAT

GSS




GIPDRFSGSGSGTDFTLTISRLDPEDFAV

PRT




YYCQQYGSSPRTFGQGTKVEIK







COV107_Plate2_kappa_13-P1389
2382
EIVLTQSPGTLSLSPGERATLSCRASQSV
2423
QQY




SSSYLAWYQQKPGQAPRLLIYGASSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

PRT




VYYCQQYGSSPRTFGQGTKVEIK







COV107_Plate2_kappa_93-P1389
2386
EIVLTQSPGTLSLSPGERATLSCRASQSV
2427
QQY




SSSYLAWYQQKPGQAPRLLIYGASSRA

GSS




TGIPDRFSGGGSETDFTLTISRLEPEDCA

PRT




VYYCQQYGSSPRTFGQGTKVEIK







COV107_Plate1_Kappa_11-P1389
2390
EIVLTQSPGTLSLSPGERATLSCRASQTL
2431
QQY




TANYLAWYQQKPGQAPRLLIYGASKRA

HTT




AGIPDRFSGSGSGTDFTLSITRLEPEDFA

PRT




VYYCQQYHTTPRTFGGGTKVEI







COV107_Plate1_Kappa_42-P1389
2394
EIVLTQSPGTLSLSPGERATLSCWASQS
2435
QQY




VSASYLAWYQQKPGQAPRLLIYGASSR

GTT




ATGIPDRFSGSGSGTDFTLTISRLEPEDF

PRT




AVYYCQQYGTTPRTFGGGTKVEIK







COV107_Plate1_Kappa_84-P1389
2398
EIVLTQSPGTLSLSPGERATLSCRASQTL
2439
QQY




TANYLAWYQQKPGQAPRLLIYGASKRA

GTT




TGIPDRFSGSGSGTDFTLSISRLEPEDFA

PRT




VYYCQQYGTTPRTFGGGTKVEI







COV107_Plate2_kappa_31-P1389
2402
EIVLTQSPGTLSLSPGERATLSCRASQTV
2443
QQY




SANYLAWYQQKAGQAPRLLIYGASKRA

VTT




TGIPDRFSGSGSGTDFTLSISRLEPEDFA

PRT




VYYCQQYVTTPRTFGGGTKVEI







COV107_Plate2_kappa_53-P1389
2406
EIVLTQSPGTLSLSPGERATLSCRASQTV
2447
QQY




TANYLAWYQQKPGQAPRLLIYGASKRA

TTT




TGIPDRFSGSGSGTDFTLSISRLEPEDFA

PRT




VYYCQQYTTTPRTFGGGTKVEI












LAMBDA











COV107_Plate1_Lambda_29-P1409
2410
QSALTQPPSASGSPGQSVTISCTGTSSD
2451
SSY




VGGYNYVSWYQQHPGKAPKLMIYEVS

AGS




KRPSGVPDRFSGSKSGNTASLTVSGLQ

NNF




AEDEADYYCSSYAGSNNFVVFGGGTKL

VV




TVL







COV107_Plate1_Lambda_35-P1409
2414
QSVLTQPPSASGSPGQSVTISCTGTSSD
2455
SSY




VGGYNYVSWYQQHPGKAPKLMIYEVR

AGS




KRPSGVPDRFSGSKSGNTASLTVSGLQ

NNF




AEDEADYYCSSYAGSNNFVLFGGGTKL

VL




TVL







COV107_Plate2_lambda_4-P1409
2418
QSVLTQPPSASGSPGQSVTISCTGTSSD
2459
SSYE




VGGYKYVSWYQQHPGKAPKLMIYEVS

GSN




KRPSGVPDRFSGSKSGNTASLTVSGLQ

NFV




AEDEADYYCSSYEGSNNFVVFGGGTKL

V




TVL







COV107_Plate1_Lambda_63-P1409
2422
QSVLTQPPSASGTPGQRVTISCSGSSSN
2463
AA




IGSNYVYWYQQLPGTAPKLLIYRNNQR

WD




PSGVPDRFSGSKSGTSASLAISGLRSEDE

DSL




ADYYCAAWDDSLSGFVVFGGGTKLTVL

SGF






VV





COV107_Plate1_Lambda_68-P1409
2426
QSVLTQPPSASGTPGQRVTISCSGSSSN
2467
AA




IGSNYVYWYQQLPGTAPKLLIYRNNQR

WD




PSGVPDRFSGSKSGTSASLAISGLRSEDE

DSL




ADYYCAAWDDSLSGFVVFGGGTKLTVL

SGF






VV





COV107_Plate1_Lambda_13-P1409
2430
QSVLTQPPSASGTPGQRVTISCSGSSSN
2471
AA




IGSNTVNWYQQLPGTAPKLLIYSNNQR

WD




PSGVPDRFSVSKSGTSASLAISGLQSED

DSL




EADYYCAAWDDSLNGVVFGGGTKLTV

NGV




L

V





COV107_Plate1_Lambda_27-P1409
2434
QSVLTQPPSASGTPGQRVTISCSGSSSN
2475
AA




IGSNTVNWYQQLPGTAPKLLIYSNNQR

WD




PSGVPDRFSGSKSGTSASLAISGLQSED

DSL




EADYYCAAWDDSLNGVVFGGGTKLTV

NGV




L

V





COV107_Plate1_Lambda_79-P1409
2438
QSVLTQPASVSGSPGQSITISCTGTSSD
2479
SSYT




VGGYKYVSWYQRHPGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLQA

SVV




EDEADYYCSSYTSSSTSVVFGGGTQLTV






L







COV107_Plate1_Lambda_91-P1409
2442
QSALTQPASVSGSPGQSITISCTGTSSD
2483
SSYT




VGGYKYVSWYQRHPGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLQA

SVV




EDEADYYCSSYTSSSTSVVFGGGTQLTV






L












KAPPA











COV107_Plate1_Kappa_53-P1389
2446
EIVLTQSPGTLSLSPGERATLSCRASQSV
2487
QQY




SSSYLAWYQQKPGQAPRLLIYGASSRA

GNS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

PWT




VYYCQQYGNSPWTFGQGTKVEIK







COV107_Plate2_kappa_81-P1389
2450
EIVLTQSPGTLSLSPGERATLSCRASQSV
2491
QQY




SSSYLAWYQQKPGQAPRLLIYGASSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA
24
PWT




VYYCQQYGSSPWTFGQGTKVEIK
91











LAMBDA











COV107_Plate2_lambda_42-P1409
2454
QSVLTQPPSVSAAPGQKVTISCSGSSSN
2495
GT




IGNNYVSWYQQLPGTAPKLLIYENNKR

WD




PSGIPDRFSGSKSGTSATLGITGLQTGD

SSLS




EADYYCGTWDSSLSAGGVYVFGTGTTV

AGG




TVL

VYV





COV107_Plate2_lambda_89-P1409
2458
QSVLTQPPSVSAAPGQKVTISCSGSSSN
2499
GA




IGNNLVSWYQQLPGTAPKLLIYENNKR

WD




PSGIPDRFSGSKSGTSATLGITGLQTGD

SSLS




EADYYCGAWDSSLSAGGVYVFGTGTK

AGG




VTVL

VYV





COV107_Plate1_Lambda_22-P1409
2462
QSALTQPASVSGSPGQSITISCTGTSSD
2503
SSYT




VGGYNYVSWYQQHPGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLQA

WV




EDEADYYCSSYTSSSTWVFGGGTKLTVL







COV107_Plate2_lambda_88-P1409
2466
QSVLTQPASVSGSPGQSITISCTGTSSD
2507
SSYT




VGGYNYVSWYQQHPGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLQA

WV




EDEADYYCSSYTSSSTWVFGGGTKLTVL







COV107_Plate2_lambda_49-P1409
2470
QSVLTQSPSASASLGASVKLTCTLSSGH
2511
QT




SSYAIAWHQQQPEKGPRYLMKLNTDG

WG




SHSKGDGIPDRFSGSSSGAERYLTISSLQ

TGIL




SEDEADYYCQTWGTGILVFGGGTKLTV

V




L







COV107_Plate2_lambda_84-P1409
2474
QSVLTQSPSASASLGASVKLTCTLSSGH
2515
QT




SSYAIAWHQQQPEKGPRYLMKLNSDG

WG




SHSKGDGIPDRFSGSSSGAERYLTISSLQ

TGIL




SEDEADYYCQTWGTGILVFGGGTKLTV

V




L












KAPPA











COV107_Plate1_Kappa_19-P1389
2478
DIQMTQSPSTLSASVGDRVTITCRASQS
2519
QQ




MSSWLAWYQQKPGNAPKLLIYKASSLE

HNS




SGVPSRFSGSGSGTEFTLTISSLQPDDFA

SPLT




TYYCQQHNSSPLTFGGGTKVEIK







COV107_Plate1_Kappa_38-P1389
2482
DIQMTQSPSTLSASVGDRVTITCRASQS
2523
QQ




MSSWLAWYQQKPGNAPKLLIYKASSLE

HNS




SGVPSRFSGSGSGTEFTLTISSLQPDDFA

SPLT




TYYCQQHNSSPLTFGGGTKVEIK







COV107_Plate2_kappa_15-P1389
2486
DIVMTQSPLSLSVTPGEPASISCRSSQSL
2527
MQ




LHSNGNNYFDWYLQKPGQSPQLLIYLG

VLQI




SNRASGVPDRFSGSGSGTDFTLKISRVE

PYT




AEDVGVYYCMQVLQIPYTFGQGTKLEI







COV107_Plate2_kappa_69-P1389
2490
DIVMTQSPLSLPVTPGEPASISCRSSQSL
2531
MQ




LQSNGNNYFDWYLQKPGQSPQLLIYLG

VLQ




SNRASGVPDRFSGSGSGTDFTLKISRVE

VPY




AEDVGVYYCMQVLQVPYTFGQGTNLE

T




I







COV107_Plate2_kappa_32-P1389
2494
DIQMTQSPSSLSASVGDTVTITCQASQ
2535
QQY




DISKYLNWYQQKPGKAPKLLIYDASNLE

DNL




TGVPSRFSGSGSGTDFTFTISSLQPEDIA

PQT




TYYCQQYDNLPQTFGGGTKVEIK







COV107_Plate2_kappa_73-P1389
2498
DIQMTQSPSSLSASVGDTVTITCQASQ
2539
QQY




DISKYLNWYQQKPGKAPKLLIYDASNLE

DNL




TGVPSRFSGSGSGTDFTFTISSLQPEDIA

PQT




TYYCQQYDNLPQTFGGGTKVEIK












LAMBDA











COV107_Plate1_Lambda_62-P1409
2502
QSVLTQPPSVSGAPGQRVTISCTGTSS
2543
QSY




NIGAGYDVHWYQQLPGRAPKVLISGN

DSS




NIRPSEVPDRFSGSRSGTSASLAITSLQP

LYA




EDEAQYYCQSYDSSLYAVFGGGTKLTVL

V





COV107_Plate1_Lambda_73-P1409
2506
QSVLTQPPSVSGAPGQRVTISCTGTSS
2547
QSY




NIGAGYDVHWYQQLPGRAPKVLISGN

DSS




NIRPSEVPDRFSGSRSGTSASLAITSLQP

LYA




EDEAQYYCQSYDSSLYAVFGGGTKLTVL

V





COV107_Plate1_Lambda_46-P1409
2510
QSALTQPASVSGSPGQSITISCTGTSSD
2551
NSY




VGGYNFVSWYQQHPGKAPKLMIYDVS

TSSS




NRPSGVSNRFSGSKSGNTASLTISGLQA

TRV




EDEADYYCNSYTSSSTRVFGTGTKVTVL







COV107_Plate2_lambda57-P1409
2514
QSVLTQPASVSGSPGQSITISCTGTSSD
2555
NSY




VGGYNYVSWYQQHPGKAPKLMIYDVS

TSSS




NRPSGVSNRFSGSKSGNTASLTISGLQA

TRV




EDEADYYCNSYTSSSTRVFGTGTKVTVL







COV107_Plate2_lambda_36-P1409
2518
QSVLTQPPSVSEAPRQRVTISCSGSSSNI
2559
AA




GNNAVNWYQQLPGKAPKLLIYYDDLLP

WD




SGVSDRFSGSKSGTSASLAISGLQSEDE

DSL




ADYYFAAWDDSLNGAWVFGGGTKLT

NGA




VL

WV





COV107_Plate2_lambda71-P1409
2522
QSVLTQPPSVSEAPRQRVTISCSGSSSNI
2563
AA




GNNAVNWYQQVPGKAPKLLIYYDDLL

WD




PSGVSDRFSGSKSGTSASLAISGLQSED

DSL




EADYYCAAWDDSLNGAWVFGGGTKL

NGA




TVL

WV





COV107_Plate1_Lambda_77-P1409
2526
SYVLTQPPSVSVAPGKTARITCGGNNIG
2567
QV




SKSVHWYQQKPGQAPVLVIYFDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

SSR




DYYCQVWDSSRDHVVFGGGTKLTVL

DHV






V





COV107_Plate2_lambda_72-P1409
2530
SYVLTQPPSVSVAPGKTARITCGGNNIG
2571
QV




SKSVHWYQQKPGQAPVLVIYFDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

SSR




DYYCQVWDSSRDHVVFGGGTKLTVL

DHV






V










KAPPA











COV107_Plate1_Kappa_75-P1389
2534
DIQMTQSPSTLSASVGDRATITCRASQS
2575
QQY




ISYWLAWYQQKPGKAPKLLIYKASSLES

NSY




GVPSRFSGSGSGTEFTLTISSLQPDDSAT

PYT




YYCQQYNSYPYTFGQGTKLEIK







COV107_Plate2_kappa_90-P1389
2538
DIQMTQSPSTLSASVGDRVTITCRASQS
2579
QQY




ISYWLAWYQQKPGKAPKLLIYQASSLES

NSY




GVPSRFSGSESGTEFTLTISSLQPDDFAT

PYT




YYCQQYNSYPYTFGQGTKLEIK












LAMBDA











COV107_Plate1_Lambda_52-P1409
2542
QSVLTQPPSASGTPGQRVTISCSGSSSN
2583
AA




IGSNTVNWYQQLPGTAPKLLIYSNNQR

WD




PSGVPDRFSGSKSGTSASLAISGLQSED

DSL




EADYYCAAWDDSLNGHVVFGGGTKLT

NGH




VL

VV





COV107_Plate1_Lambda_58-P1409
2546
NFMLTQPHSVSESPGKTVTISCTGSSGS
2587
QSY




IASNYVQWYQQRPGSAPTTMIYEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

TPN




EDEADYYCQSYDSSTPNCVFGGGTKLT

CV




VL







COV107_Plate2_lambda_45-P1409
2550
QSVLTQPASVSGSPGQSITISCTGTSSD
2591
SSYT




VGGYNYVSWYQQHPGKAPKVMIYDV

SSST




SNRPSGVSNRFSGSKSGNTASLTISGLQ

LL




AEDEADYYCSSYTSSSTLLFGGGTKLTXL







COV107_Plate1_Lambda_60-P1409
2554
QSALTQPASVSGSPGQSITISCTGTSSD
2595
CSY




VGSYNLVSWYQQHPGKAPKLMIYEGS

AGS




KRPSGVSNRFSGSKSGNTASLTISGLQA

STW




EDEADYYCCSYAGSSTWVFGGGTKLTV

V




L







COV107_Plate1_Lambda_5-P1409
2558
SYVLTQPPSVSVAPGKTARITCGGNNIG
2599
QV




SKNVHWYQQKPGQAPVLVIYYDSDRP

WD




SGIPERFSGSNSGNTATLTISRVEAGDE

SSW




ADYYCQVWDSSWVFGGGTKLTVL

V





COV107_Plate2_lambda_94-P1409
2562
QSVLTQPASVSGSPGQSITISCTGTSSD
2603
CSY




VGSYNLVSWYQQHPGKAPKLMIYEGS

AGS




KRPSGVSNRFSGSKSGNTASLTISGLQA

STLV




EDEADYYCCSYAGSSTLVFGGGTKLTVL







COV107_Plate1_Lambda_83-P1409
2566
SYVLTQPPSVSVSPGQTASITCSGDKLG
2607
QA




DKYACWYQQKAGQSPVLVIYQDSKRP

WD




SGIPERFSGSKSGNTATLTISGTQAMDE

SST




ADYYCQAWDSSTVVFGGGTKLTVL

VV





COV107_Plate2_lambda_40-P1409
2570
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2511
QSY




IGAGYDVHWYQHLPGTAPKLLIYGNN

DSS




NRPSGVPDRFSGSRSGTSASLAITGLQA

LSA




EDEADYYCQSYDSSLSAVVFGGGTKLT

VV




VL







COV107_Plate1_Lambda_28-P1409
2574
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2615
QSY




IGAGYDVHWYQQLPGTAPNLLIYDNIN

DSS




RPSGVPDRFSGSKSGTSASLAITGLQAE

LSG




DEADYYCQSYDSSLSGVVFGGGTKLTV

VV




L







COV107_Plate2_lambda_92-P1409
2578
NFMLTQPHSVSESPGKTVTISCTGSSGS
2619
QSY




IASNYVQWYQQRPGSAPTTVIYEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

KHA




EDEADYYCQSYDSSKHAVFGGGTQLTV

V




L







COV107_Plate2_lambda_55-P1409
2582
NFMLTQPHSVSESPGKTVTISCAGSSGS
2623
QSY




IASNYVQWYQQRPGSAPTTVIYEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

KSW




EDEADYYCQSYDSSKSWVFGGGTKLTV

V




L







COV107_Plate2_lambda_47-P1409
2586
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2627
QSY




IGAGYDVHWYQQLPGTAPKLLIYGNSN

DSS




RPSGVPDRFSGSKSGTSASLAITGLQAE

LSG




DEADYYCQSYDSSLSGSYVFGTGTKVTV

SYV




L







COV107_Plate1_Lambda_49-P1409
2590
SYVLTQPPSVSVAPGKTARITCGGNNIG
2631
QV




SKSVHWYQQKPGQAPVLVISYDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDAA

GSS




DYYCQVWDGSSDHHVVFGGGTKLTVL

DHH






VV





COV107_Plate2_lambda_22-P1409
2594
QSVLTQPPSVSAAPGQRVTISCSGSSSN
2635
GT




IGNNYVSWYQQLPGTAPKLLIYENNKR

WD




PSGIPDRFSGSKSGTSATLGITGLQTGD

SSLS




EADYYCGTWDSSLSAFVFGTGTKVTVL

AFV





COV107_Plate2_lambda_91-P1409
2598
QSALTQPASVSGSPGQSITISCTGTSSD
2639
SSYT




VGGYNYVSWYQQHPGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLQA

LGV




EDEADYYCSSYTSSSTLGVFGTGTKVTV






L







COV107_Plate2_lambda_35-P1409
2602
SYVLTQPPSVSVAPGKTARITCGGNNIG
2643
QV




SKSVHWYQQKPGQAPVLVIYYDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDHPVVFGGGTKLTVL

DHP






VV





COV107_Plate2_lambda_24-P1409
2606
NFMLTQPHSVSESPGKTVTISCTGSSGS
2647
QSY




IASNYVQWYQQRPGSAPTTVIYEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

NQ




EDEADYYCQSYDSSNQWVVFGGGTKL

WV




TVL

V





COV107_Plate2_lambda_34-P1409
2610
QSVLTQPASVSGSPGQSITISCPGTSSD
2651
SSYT




VGGYNYVSWYQQHPGKAPKLMIYDVS

SSS




TRPSGVSNRFSGSKSGNTASLTISGLQA

VV




EDEADYYCSSYTSSSVVFGGGTKLTVL







COV107_Plate1_Lambda_41-P1409
2614
SYVLTQPPSVSVAPGKTARITCGGNNIG
2655
QV




SKSVHWYQQKPGQAPVLVIYYDSDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

SSR




DYYCQVWDSSRVFGGGTKLTVL

V





COV107_Plate2_lambda_46-P1409
2618
QSVLTQPPSASGSPGQSVTISCTGTSSD
2659
SSY




VGGYNYVSWYQQHPGKAPKLMIYEVT

AGS




KRPSGVPDRFSGSKSGNTASLTVSGLQ

NNY




AEDEADYYCSSYAGSNNYVVFGGGTKL

VV




TVL







COV107_Plate1_Lambda_32-P1409
2622
NFMLTQPHSVSESPGKTVTISCTGSSGS
2663
QSY




IASNYVQWYQQRPGSAPTTVIYEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLAISGLKT

NHV




EDEADYYCQSYDSSNHVVFGGGTKLTV

V




L







COV107_Plate2_lambda_25-P1409
2626
SYVLTQPPSVSVAPGKTARITCGGNNIG
2667
QV




SKSVHWYQQKPGQAPVLVIYYDSVRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

SSS




DYYCQVWDSSSDHYVFGTGTKVTVL

DHY






V





COV107_Plate2_lambda_54-P1409
2630
QSVLTQPPSVSGAPGQRVTISCTGSSSN
2671
QSY




IGAGYDVHWYQQLPGTAPKLLIYGNSD

DSS




RPSGVPDRFSGSKSGTSASLAITGLQAE

LSG




DEADYYCQSYDSSLSGVVFGGGTKLTXL

VV





COV107_Plate2_lambda_20-P1409
2634
QSVLTQPASVSGSPGQSITISCTGTSSD
2675
CSY




VGSYNLVSWYQQHPGKAPKLMIYEGS

AGS




KRPSGVSNRFSGSKSGNTASLTISGLQA

STW




EDEADYYCCSYAGSSTWVFGGGTKLTV

V




L







COV107_Plate1_Lambda_25-P1409
2638
QSALTQPASVSGSPGQSITISCTGTSSD
2679
SSYT




VGGYNYVSWYQQHPGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLOA

YV




EDEADYYCSSYTSSSTYVFGTGTKVTVL







COV107_Plate1_Lambda_64-P1409
2642
QSVLTQPASVSGSPGQSITISCTGTSSD
2683
SSYT




VGGYNYVSWYQQHPGEAPKLMIHDV

SSST




SNRPSGVSNRFSGSKSGNTASLTISGLQ

LV




AEDEADYYCSSYTSSSTLVFGGGTKLTV






L







COV107_Plate2_lambda_28-P1409
2646
NFMLTQPHSVSESPGKTVTISCTGSSGS
2687
QSY




IASNYVQWYQQRPGSAPTTVINEDNQ

DSS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

NLV




EDEADYYCQSYDSSNLVFGGGTKLTVL







COV107_Plate2_lambda_58-P1409
2650
QSVLTQPASVSGSPGQSITISCTGTSSD
2691
CSY




VGSYNLVSWYQEHPGKAPKLMIYEGSK

AGS




RPSGVSNRFSGSKSGNTASLTISGLOAE

STW




DEADYYCCSYAGSSTWVFGGGTKLTVL

V





COV107_Plate2_lambda_2-P1409
2654
NFMLTQPHSVSESPGKTVTISCTGSSGS
2695
QSY




IASNYVQWYQQRPGSAPTTVIYEDNQ

DTS




RPSGVPDRFSGSIDSSSNSASLTISGLKT

NW




EDEADYYCQSYDTSNWVFGGGTKLTV

V




L







COV107_Plate2_lambda_10-P1409
2658
SYVLTQPPSVSVAPGKTARITCGGNNIG
2699
QV




SKSVHWYQQKPGQAPVLVIYYDTDRPS

WD




GIPERFSGSNSGNTATLTISRVEAGDEA

NNS




DYYCQVWDNNSDHRGVFGGGTRLTV

DHR




L

GV





COV107_Plate1_Lambda_48-P1409
2662
QSALTQPASVSGSPGQSITISCTGTSSD
2703
SSYT




VGGYNYVSWYQQHPGKAPKLMIYDVS

SSST




NRPSGVSNRFSGSKSGNTASLTISGLOA

VW




EDEADYYCSSYTSSSTVWVFGGGTKLT

V




VL







COV107_Plate2_lambda_87P1409-
2666
QSVLTQPPSASGTPGQRVTIACSGSSSN
2707
AA




IGSSPVKWYKQLPGTGPKLLIYSSNQRP

WD




SGVPDRFSGSKSGTSASLAISGLQSEDE

DSL




ADYYCAAWDDSLSGYVFGTGTKVTVL

SGY






V





COV107_Plate2_lambda_1-P1409
2670
QSVLTQPPSASGTPGQRVTISCSGSSSN
2711
AA




IGSNTVNWYQQLPGTAPQLLIYNNYQR

WD




PSGVPDRFSGSKSGTSASLAISGLQSED

DSL




EADYYCAAWDDSLNGPVVFGGGTKLT

NGP




VL

VV





COV107_Plate1_Lambda_92-P1409
2674
QSALTQPASVSGSPGQSITISCTGTSSD
2715
CLY




VGSYNLVSWYQQHPGKAPKLMIYEGS

AFS




KRPSGVSNRFSGSKSGNTASLTISGLQA

SIV




EDEADYYCCLYAFSSIVFGGGTKLTVL







COV107_Plate1_Lambda_26-P1409
2678
QSVLTQPPSASGTPGQRVTISCSGSSSN
2719
AA




IGSNTVNWYQQLPGTAPKLLIYNNNQR

WD




PSGVPDRFSGSKSGTSASLAISGLQSED

DSL




EADYYCAAWDDSLNGLVFGGGTKLTV

NGL




L

V










KAPPA











COV107_Plate2_kappa_18-P1389
2682
EIVLTQSPGTLSLSPGERATLSCRASQSV
2723
QQY




SSSYLAWYQQKPGQAPRLLIYGASSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

LT




VYYCQQYGSSLTFGQGTRLEIK







COV107_Plate1_Kappa_21-P1389
2686
DIQMTQSPSSLSASVGDRVTITCRASQS
2727
QQS




ISSYLNWYQQKPGKAPKLLIYSASSLQS

YSTL




GVPSRFSGSGSGTDFTLTISSLQPEDFAT

IT




YYCQQSYSTLITFGQGTRLEIK







COV107_Plate1_Kappa_24-P1389
2690
EIVMTQSPATLSVSPGERATLSCRASQS
2731
QQY




VSSNLAWYQQKPGQAPTLLIYGASTRA

NN




TGIPARFSGSGSGTEFTLTISSLQSEDFA

WPP




VYYCQQYNNWPPITFGQGTRLEIK

IT





COV107_Plate2_kappa_17-P1389
2694
EIVLTQSPGTLSLSPGERATLSCRASQSV
2735
QQY




SSSYLAWYQQKPGQAPRLLIYGASSRA

GRS




TGIPDRFSGSGSGTDFTLTISRLEREDFA

PTW




VYYCQQYGRSPTWTFGQGTKVEIK

T





COV107_Plate1_Kappa_78-P1389
2698
DIVMTQSPDSLAVSXGERATINCKSSQS
2739
QQY




VLYSSNNKNYLAWYQQKPGQPPKLLIY

YST




WASTRESGVPDRFSGSGSGTDFTLTISS

PLT




LQAEDVAVYYCQQYYSTPLTFGGGTKV






EIK







COV107_Plate1_Kappa_95-P1389
2702
DIQLTQSPSFLSASVGDRVTITCRASQGI
2743
QQL




SSYLAWFQQKPGKAPKLLIYAASTLQTG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PIT




YCQQLNSYPITFGQGTRLEIK







COV107_Plate2_kappa_38-P1389
2706
DIQMTQSPSSLSASVGDRVTITCRASQS
2747
QQS




ISRYLNWYQQKPGKAPKLLIYAASSLQS

YST




GVPSRFSGSGSGTDFTLTISGLQPEDFA

PQY




TYYCQQSYSTPQYTFGQGTKLEIK

T





COV107_Plate2_kappa_61-P1389
2710
DIQMTQSPSSLSASVGDRVTITCRASQS
2751
QQS




ISSYLNWYQQKPGKAPKLLIYAASSLQS

YITP




GVPSRFSGSGSGTDFTLTISSLQPEDFAT

GW




YYCQQSYITPGWTFGQGTKVEIK

T





COV107_Plate1_Kappa_80-P1389
2714
EIVLTQSPGTLSLSPGERATLSCRASQSV
2755
QQY




RSSYLAWYQQKPGQAPRLLIYGASSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

PPW




VYYCQQYGSSPPWTFGQGTKVEIK

T





COV107_Plate2_kappa_68-P1389
2718
DIQMTQSPSSLSASVGDRVTITCQASQ
2759
QQY




DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PPY




ATYYCQQYDNLPPYTFGQGTKLEIK

T





COV107_Plate2_kappa_51-P1389
2722
DIQMTQSPSSLSASVGDRVTITCQASQ
2763
QQY




DISNYLNWYQQKPGKAPKLLIYDASNL

DNV




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PLT




ATYYCQQYDNVPLTFGPGTKVDIK







COV107_Plate1_Kappa_43-P1389
2726
DIQMTQSPSTLSASVGDRVTITCRASQS
2767
QQY




ISSWLAWYQQKPGKAPKLLISEASSLES

NSY




GVPSRFSGSGSGTEFTLTISSLQPDDFAT

SYT




YYCQQYNSYSYTFGQGTKLEIK







COV107_Plate2_kappa_3-P1389
2730
DIQMTQSPSTLSASVGDRVTITCRASQS
2771
QQY




ISSWLAWYQQKPGKAPKLLIYEASSLES

NSY




GVPSRFSGSGSGTEFTLTISSLQPDDFAT

ST




YYCQQYNSYSTFGPGTKVDIK







COV107_Plate2_kappa_44-P1389
2734
EIVLTQSPGTLSLSPGERATLSCRASQSV
2775
QQY




SSSYLAWYQQKPGQAPRLLIYGASSRA

GTS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

PST




VFYCQQYGTSPSTFGQGTKVESK







COV107_Plate2_kappa_76-P1389
2738
EIVMTQSPATLSVSPGERATLSCRASQS
2779
QQY




VSSNLAWYQQKPGQAPRLLIYGASTRA

NN




TGIPARFSGTGSGTEFTLTISSLQSEDFA

WPL




VYYCQQYNNWPLTFGGGTKVEIK

T





COV107_Plate1_Kappa_16-P1389
2742
DIQMTQSPSSLSASVGDRVTITCQASQ
2783
QQY




DINNYLNWYQQKPGKAPKVLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDF

PLA




ATYYCQQYDNLPLAFGGGTKVEIK







COV107_Plate1_Kappa_10-P1389
2746
DIQMTQSPSSLSASVRDRVTITCRASQS
2787
QQS




ISSYLNWYQQKPGKAPKLLIYAASSLQS

YST




GVPSRFSGSGSGTDFTLTISSLQPEDLAT

PPW




YYCQQSYSTPPWTFGQGTKVEIK

T





COV107_Plate1_Kappa_65-P1389
2750
DIQMTQSPSSLSASVGDRVTITCRASQS
2791
QQS




ISRYLNWYQQKPGKAPNLLIYAASSLQS

YSTL




GVPSRFSGSGSGTDFTLIISSLQPEDFAT

ALT




YYCQQSYSTLALTFGGGTKVEIK







COV107_Plate1_Kappa_2-P1389
2754
EIVLTQSPATLSLSPGERATLSCRASQSF
2795
QQR




SSYLAWYQQKPGQAPRLLIYDASNRAT

NN




GIPARFSGSGSGTDFTLTISSLEPEDFAV

WPP




YYCQQRNNWPPEWTFGQGTKVEIK

EWT





COV107_Plate2_kappa_64-P1389
2758
EIVLTQSPATLSLSPGERATLSCRASQSF
2799
QQR




SSYLAWYQQKPGQAPRLLIYDASNRAT

SN




GIPARFSGSGSGTDFTLTISSLEPEDFAF

WP




YYCQQRSNWPQGFTFGPGTKVDIK

QGF






T





COV107_Plate2_kappa_11-P1389
2762
DIQMTQSPSSLSASVGDRVTITCRASQS
2803
QQS




ISSYLNWYQQKPGKAPKLLIYAASSLHS

YSA




GVPSRFSGSGSGTDFTLTISSLQPEDFAT

PWT




YYCQQSYSAPWTFGQGTKVEIK







COV107_Plate1_Kappa_44-P1389
2766
DIQMTQSPSSLSASVGDRVTITCQASQ
2807
QQY




DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSGSGTDFTFTISSLQPEDI

PRV




ATYYCQQYDNLPRVTFGPGTKVDIK

T





COV107_Plate1_Kappa_88-P1389
2770
DIQLTQSPSFLSASVGDRVTITCRASQGI
2811
QQL




SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PPG




YCQQLNSYPPGFGQGTKVEIK







COV107_Plate1_Kappa_18-P1389
2774
DIQLTQSPSFLSASVGDRVTITCRASQGI
2815
QQL




SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PPA




YCQQLNSYPPAFGQGTRLEIK







COV107_Plate1_Kappa_59-P1389
2778
DIQMTQSPSSLSASVGDRVTITCRASQ
2819
QKY




DINNYLAWYQQKPGKVPKLLIYAASTL

NSA




QSGVPSRFSGSGSGTDFTLTISSLQPED

PLT




VATFYCQKYNSAPLTFGGGTKVEIK







COV107_Plate1_Kappa_30-P1389
2782
DIQMTQSPSTLSASVGDRVTITCRASQS
2823
QQY




ISSWLAWYQQKPGKAPKLLIYKASSLES

NSY




GVPSRFSGSGSGTEFTLTISSLQPDDFAT

GT




YYCQQYNSYGTFGQGTKVEIK







COV107_Plate1_Kappa_15-P1389
2786
DIQLTQSPSFLSASVGDRVTITCRASQGI
2827
QQL




SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSD




VPSRFSGSGSGTEFTLTISSLQPEDFATY

SYT




YCQQLNSDSYTFGQGTKLEIK







COV107_Plate2_kappa_23-P1389
2790
DIQLTQSPSFLSASVGDRVTITCRASQGI
2831
QQL




SSYLAWYQQKPGKAPKLLIYAASTLQSG

DSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PPG




YCQQLDSYPPGTFGPGTKVDIK

T





COV107_Plate1_Kappa_82-P1389
2794
EIVMTQSPATLSVSPGERATLSCRASQS
2835
QQY




VSSNLAWYQQKPGQAPRLLIYGASTRA

YN




TGIPARFSGSGSGTEFTLTISSLQSEDFA

WP




VYYCQQYYNWPRTFGQGTKVEIK

RT





COV107_Plate2_kappa_95-P1389
2798
EIVLTQSPGTLSLSPGERATLSCRASQSV
2839
QQY




SSSYLAWYQQKPGQAPRLLIYGASSRA

GSS




TGIPDRFSGSGSGTDFTLTISRLEPEDFA

PRT




VYYCQQYGSSPRTFGQGTRLEIK







COV107_Plate1_Kappa_86-P1389
2802
AIQMTQSPSSLSASVGDRVTITCRASQ
2843
LQD




GIRNDLGWYQQKPGKAPKLLIYAASSL

YNY




QSGVPSRFSGSGSGTDFTLTISSLQPED

PKT




FATYYCLQDYNYPKTFGQGTKVEIK







COV107_Plate2_kappa_78-P1389
2806
DIQLTQSPSFLSASVGDRVTITCRASQGI
2847
QLL




SSYLAWYQQKPGKAPKLLIYAASTLQSG

NSY




VPSRFSGSGSGTEFTLTISSLQPEDFATY

PYT




YCQLLNSYPYTFGQGTKLEIK







COV107_Plate2_kappa_9-P1389
2810
DIQMTQSPSSLSASVGDRVTITCRASQS
2851
QQS




ISSYLYWYQQKPGKAPKLLIYAASSLQS

YST




GVPSRFSGSGSGTDFTLTISSLQPEDFAT

PPF




YYCQQSYSTPPFTFGPGTKVDIK

T





COV107_Plate2_kappa_50-P1389
2814
EIVLTQSPATLSLSPGERATLSCRASQSV
2855
QQR




SSYLAWYQQKPGQAPRLLIYDASNRAT

SN




GIPARFSGGGSGTDFTLTISSLEPEDFAV

WPP




YYCQQRSNWPPLTFGQGTKVEIK

LT





COV107_Plate1_Kappa_74-P1389
2818
EIVMTQSPATLSVSPGERATLSCRASQS
2859
QQY




VSSNLAWYQQKPGQAPRLLIYGASTRA

NN




TGIPARFSGSGSGTEFTLTISSLQSEDFA

WLS




VYYCQQYNNWLSLTFGGGTKVEIK

LT





COV107_Plate1_Kappa_93-P1389
2822
DIVMTQSPLSLPVTPGEPASISCRSSESL
2863
MQ




LHSNGYNYLDWYLQKPGQSPQLLIYLG

ALQ




SNRASGVPDRFSGSGSGTDFTLKISRVE

TPR




AEDVGVYYCMQALQTPRTFGQGTKLEI

T




K







COV107_Plate1_Kappa_45-P1389
2826
DIQMTQSPSSLSASVGDRVTITCQASQ
2867
QQY




DISNYLNWYQQKPGKAPKLLIYDASNL

DNL




ETGVPSRFSGSKSGTDFTFTISSLQPEDI

PYT




ATYYCQQYDNLPYTFGQGTKVEI







COV107_Plate1_Kappa_39-P1389
2830
DIQMTQSPSSLSASVGDRVTITCQASQ
2871
QQY




DISNYLNWYQQKPGKAPKLLIYDASYLE

DNV




TGVPSRFTGSASGTDFTFTISSLQPEDIA

PL




TYYCQQYDNVPLFGPGTKVDI







COV107_Plate1_Kappa_37-P1389
2834
DVVMTQSPLSLPVTLGQPASISCRSSQS
2875
MQ




LVYSDGNTYLNWFQQRPGQSPRRLIYQ

GTH




VSNRDSGVPDRFSGSGSGTDFTLKISRV

WL




EAEDVGVYYCMQGTHWLWTFGQGTK

WT




VEIK
















TABLE 14







Additional representative sequences of the example antibodies as disclosed










SEQ





ID
Anti-




NO
body
Sequence
Notes





2876
C135
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVIPFDGRNKYYADSVTGRFTISRDNS
VH




KNTLYLQMNSLRAEDTAVYYCASSSGYLFHSDYWGQGTLVTVSS






2877

QVQLVESGGG VVQPGRSLRL SCAASGFTFS
HFW1





2878

SYAMH
HCDR1





2879

WVRQAPGKGL EWVA
HFW2





2880

VIPFDGRNKY YADSVTG
HCDR2





2881

RFTISRDNSK NTLYLQMNSL RAEDTAVYYC AS
HFW3





2882

SSGYLFHSDY
HCDR3





2883

WGQGTLVTVS S
HFW4





2884

TVSS
VH end





2885

ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT
IGHC




VPSSSLGTQT YICNVNHKPS NTKVDKRVEP KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP





EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA





LPAPIEKTIS KAKGQPREPQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV





LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV LHEALHSHYT QKSLSLSPG






2886

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVIPFDGRNKYYADSVTGRFTISRDNS
HC




KNTLYLQMNSLRAEDTAVYYCASSSGYLFHSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP
(contain-




EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPC
ing M428L




PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL
and N434S




TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES
(LS; 




NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVLHEALHSHYTQKSLSLSPG
high-





lighted 





in bold)





according 





to EU 





numbering)





2887

MRAWIFFLLCLAGRALAQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVIPFDGRN
HC (with 




KYYADSVTGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASSSGYLFHSDYWGQGTLVTVSSASTKGPSVFPLAPSSK
N-terminal 




STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV
Signal




DKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK
sequence)




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLT
(contain-




CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVLHEALHSHYTQKSLSL
ing M428L




SPG
and N434S





(LS; 





high-





lighted 





in bold)





according 





to EU 





numbering)





2888

DIQMTQSPSTLSASVGDRVTITCRASQSISNWLAWFQQKPGKAPKLLIYEASSLESGVPSRFSGSGSGTEFTLTISSLQ
VL




PDDFATYYCQQYNSYPWTFGQGTKVEIK






2889

DIQMTQSPST LSASVGDRVT ITC
LFWI





2890

RASQSISNWL A
LCDRI





2891

WFQQKPGKAP KLLIY
LFW2





2892

EASSLES
LCDR2





2893

GVPSRFSGSG SGTEFTLTIS SLQPDDFATY YC
LFW3





2894

QQYNSYPWT
LCDR3





2895

FGQGTKVEIK
LFW4





2896

KVEIK
VL end





2897

RTVAAPSVFI FPPSDEQLKS GTASVVCLLN NFYPREAKVQ WKVDNALQSG NSQESVTEQD SKDSTYSLSS
IGLC




TLTLSKADYE KHKVYACEVT HQGLSSPVTK SFNRGEC






2898

DIQMTQSPSTLSASVGDRVTITCRASQSISNWLAWFQQKPGKAPKLLIYEASSLESGVPSRFSGSGSGTEFTLTISSLQ
LC




PDDFATYYCQQYNSYPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC






2899

MRAWIFFLLCLAGRALADIQMTQSPSTLSASVGDRVTITCRASQSISNWLAWFQQKPGKAPKLLIYEASSLESGVPSR
LC (with 




FSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY
N-terminal 




PREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
Signal





sequence)





2900
C144'
EVQLVESGGGLIQPGGSLRLSCAASGFTVSNNYIVISWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDKSKNT
VH




LYLQMNSLRAEDTAVYYCAREGEVEGYNDFWSGYSRDRYYFDYWGQGTLVTVSS






2901

EVQLVESGGG LIQPGGSLRL SCAASGFTVS
HFWI





2902

NNYMS
HCDRI





2903

WVRQAPGKGL EWVS
HFW2





2904

VIYSGGSTYY ADSVKG
HCDR2





2905

RFTISRDKSK NTLYLQMNSL RAEDTAVYYC AR
HFW3





2906

EGEVEGYNDF WSGYSRDRYY FDY
HCDR3





2907

WGQGTLVTVS S
HFW4





2908

TVSS
VH end





2909

ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT
IGHC




VPSSSLGTQT YICNVNHKPS NTKVDKRVEP KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP





EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA





LPAPIEKTIS KAKGQPREPQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV





LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV LHEALHSHYT QKSLSLSPG






2910

EVQLVESGGGLIQPGGSLRLSCAASGFTVSNNYIVISWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDKSKNT
HC




LYLQMNSLRAEDTAVYYCAREGEVEGYNDFWSGYSRDRYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT
(contain-




AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEP
ing M428L




KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE
and N434S




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF
(LS; 




YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVLHEALHSHYTQKSLSLSPG
high-





lighted 





in bold)





according 





to EU 





numbering)





2911

MRAWIFFLLCLAGRALAEVQLVESGGGLIQPGGSLRLSCAASGFTVSNNYIVISWVRQAPGKGLEWVSVIYSGGSTYY
HC (with




ADSVKGRFTISRDKSKNTLYLQMNSLRAEDTAVYYCAREGEVEGYNDFWSGYSRDRYYFDYWGQGTLVTVSSASTK
N-terminal 




GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC
Signal




NVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW
sequence)




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ.DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS
(contain-




REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVLHE
ing M428L




ALHSHYTQKSLSLSPG
and N434S





(LS; 





high-





lighted 





in bold)





according 





to EU 





numbering)





2912

QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTIS
VL




GLQAEDEADYYCSSYTSSSTRVFGTGTKVTVL






2913

QSALTQPASV SGSPGQSITI SC
LFW1





2914

TGTSSDVGGY NYVS
LCDRI





2915

WYQQHPGKAP KLMIY
LFW2





2916

DVSNRPS
LCDR2





2917

GVSNRFSGSK SGNTASLTIS GLQ.AEDEADY YC
LFW3





2918

SSYTSSSTRV
LCDR3





2919

FGTGTKVTVL
LFW4





2920

GQPKAAPSVT LFPPSSEELQ ANKATLVCLI SDFYPGAVTV AWKADSSPVK AGVETTTPSK QSNNKYAASS
IGLC




YLSLTPEQWK SHRSYSCQVT HEGSTVEKTV APTECS






2921

QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTIS
LC




GLQAEDEADYYCSSYTSSSTRVFGTGTKVTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADS





SPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS






2922

MRAWIFFLLCLAGRALAQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGV
LC (with 




SNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTGTKVTVLGQPKAAPSVTLFPPSSEELQANKATLVC
N-terminal




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
Signal





sequence)





2923
C135
ATGAGGGCTTGGATCTTCTTTCTGCTCTGCCTGGCCGGGAGAGCGCTCGCACAGGTGCAGCTGGTGGAGTCTG
HC (with 




GGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTAT
N-terminal




GCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATACCATTTGATGGAAGA
Signal




AATAAGTACTACGCAGACTCCGTGACGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCT
sequence)




GCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGTAGTAGTGGTTATC1111CCACT





CTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTG





GCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACC





GGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG





GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTG





AATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCC





CACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA





TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA





CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTA





CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCC





AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT





ACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTAT





CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG





CTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG





TCTTCTCATGCTCCGTGCTGCATGAGGCTCTGCACAGCCACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTT





GA






2924
C135
ATGAGGGCTTGGATCTTCTTTCTGCTCTGCCTGGCCGGGCGCGCCTTGGCCGACATCCAGATGACCCAGTCTCCT
LC (with 




TCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAACTGGTT
N-terminal




GGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGAGGCGTCTAGTTTAGAAAGTGGG
Signal




GTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGA
sequence)




TTTTGCAACTTATTACTGCCAACAGTATAATAGTTATCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCA





AACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTG





TTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCG





GGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGC





TGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGT





CACAAAGAGCTTCAACAGGGGAGAGTGTTAG






2925
C144'
ATGAGGGCTTGGATCTTCTTTCTGCTCTGCCTGGCCGGGAGAGCGCTCGCAGAGGTGCAGCTGGTGGAGTCTG
HC (with 




GAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCACCGTCAGTAACAAC
N-terminal




TACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCA
Signal




CATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAAATCCAAGAACACGCTGTATCTTCAA
sequence)




ATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTATTGTGCGAGAGAAGGGGAGGTAGAAGGGTATAAC





GATTTTTGGAGTGGTTATTCTAGAGACCGTTACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCC





TCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGC





CCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGC





GGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCC





AGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAG





TTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA





GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTG





GACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG





ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACT





GGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC





CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAA





CCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGG





CAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCT





CACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGCTGCATGAGGCTCTGCACAGC





CACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTTGA






2926
C144'
ATGAGGGCTTGGATCTTCTTTCTGCTCTGCCTGGCCGGGCGCGCCTTGGCCCAGTCTGCCCTGACTCAGCCTGCC
LC (with 




TCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAA
N-terminal




CTATGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATTTATGATGTCAGTAATCGGCCCTC
Signal




AGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGA
sequence)




GGACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGCACCCGAGTCTTCGGAACTGGGACCAAGGTC





ACCGTCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTTACCCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAGCCAAC





AAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCA





GCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTA





TCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACC





GTGGAGAAGACAGTGGCCCCTACAGAATGTTCATAG





CDR sequences are identified based on the IMGT Kabat method.













TABLE 15







Additional sequence information for the disclosed anti-SARS-CoV-2 antibodies












HEAVY CHAIN
LIGHT CHAIN


















sequence







miniprep 
original nt 
ID
miniprep
original nt
sequence ID


ALICE
AbsID
sequence
sequence
(plate/well)
sequence
sequence
(plate/well)





COV21_P2
A-C003
TACACATACGATTTAGGTG
GAGGTGCTCTTGGAGGAGG
COV21_P2
TACACATACGATTTAGGT
CGATTGGAGGGCGTTATCCA
COV21_P2


A10

ACACTATAGAATAACATCC
GTGCCAGGGGGAAGACCGA
A10
GACACTATAGAATAACA
CCTTCCACTGTACTTTGGCC
A10




ACTTTGCCTTTCTCTCCACA
TGGGCCCTTGGTGGAGGCT

TCCACTTTGCCTTTCTCT
TCTCTGGGATAGAAGTTATT





GGTGTCCACTCCCAGGTCC
GAGGAGACGGTGACCAGGG

CCACAGGTGTCCACTCCC
CAGCAGGCACACAACAGAG





AACTGCACCTCGGTTCTATC
TTCCCTGGCCCCAGTAGTCA

AGGTCCAACTGCACCTC
GCAGTTCCAGATTTCAACTG





GATTGAATTCCACCATGGG
AAGTAGAAGTCACCGTAAT

GGTTCTATCGATTGAATT
CTCATCAGATGGCGGGAAG





ATGGTCATGTATCATCCTTT
CCCTCGCACAGTAATACAC

CCACCATGGGATGGTCA
ATGAAGACAGATGGTGCAG





TTCTAGTAGCAACTGCAAC
GGCCGTGTCCCCGGCTCTC

TGTATCATCCTTTTTCTA
CCACAGTTCGTTTGATCTCC





CGGTGTACATTCTGAGGTG
AGGCTGTTCATTTGAAGAT

GTAGCAACTGCAACCGG
AGCTTGGTCCCCTGGCCAAA





CAGCTGGTGGAGTCTGGAG
ACAGCGTGTTCTTGGAATT

TGTACATTCAGAAATTGT
AGTCCTAGGTGAGCTACCAT





GAGGCTTGATCCAGCCTGG
GTCTCTGGAGATGGTGAAT

GTTGACGCAGTCTCCAG
ACTGCTGACAGTAATACACT





GGGGTCCCTGAGACTCTCC
CGGCCCTTCACGGAGTCTG

GCACCCTGTCTTTGTCTC
GCAAAATCTTCAGGCTCCAG





TGTGCAGCCTCTGGGTTCAC
CGTAGTATGTGCTACCACC

CAGGGGAAAGAGCCACC
TCTGCTGATGGTGAGAGTGA





CGTCAGTAGCAACTACATG
GCTATAAATAACTGAGACC

CTCTCCTGCAGGGCCAGT
AGTCTGTCCCAGACCCACTG





AGCTGGGTCCGCCAGGCTC
CACTCCAGCCCCTTCCCTGG

CAGAGTGTTAGCAGCAC
CCACTGAACCTGTCTGGGAT





CAGGGAAGGGGCTGGAGTG
AGCCTGGCGGACCCAGCTC

CTACTTAGCCTGGTACCA
GCCAGTGGCCCTGCTGGATG





GGTCTCAGTTATTTATAGCG
ATGTAGTTGCTACTGACGG

GCAGAAACCTGGCCAGG
CACCATAGATGAGGAGCCT





GTGGTAGCACATACTACGC
TGAACCCAGAGGCTGCACA

CTCCCAGGCTCCTCATCT
GGGAGCCTGGCCAGGTTTCT





AGACTCCGTGAAGGGCCGA
GGAGAGTCTCAGGGACCCC

ATGGTGCATCCAGCAGG
GCTGGTACCAGGCTAAGTA





TTCACCATCTCCAGAGACA
CCAGGCTGGATCAAGCCTC

GCCACTGGCATCCCAGA
GGTGCTGCTAACACTCTGAC





ATTCCAAGAACACGCTGTA
CTCCAGACTCCACCAGNCT

CAGGTTCAGTGGCAGTG
TGGCCCTGCAGGAGAGGGT





TCTTCAAATGAACAGCCTG
GCAC (SEQ ID NO: 

GGTCTGGGACAGACTTC
GGCTCTTTCCCCTGGAGACA





AGAGCCGGGGACACGGCCG
3243)

ACTCTCACCATCAGCAG
AAGACAGGGAGACTGGA





TGTATTACTGTGCGAGGGA


ACTGGAGCCTGAAGATT
(SEQ ID NO: 3245)





TTACGGTGACTTCTACTTTG


TTGCAGTGTATTACTGTC






ACTACTGGGGCCAGGGAAC


AGCAGTATGGTAGCTCA






CCTGGTCACCGTCTCCTCAG


CCTAGGACTTTTGGCCAG






CGTCGACCAAGGGCCCATC


GGGACCAAGCTGGAGAT






GGTCTTCCCCCTGGCACCCT


CAAACGTACGGTGGCTG






CCTCCAAGAGCACCTCTGG


CACCATCTGTCTTCATCT






GGGCACAGCGGCCCTGGGC


TCCCGCCATCTGATGAGC






TGCCTGGTCAAGGACTACT


AGTTGAAATCTGGAACT






TCCCCGAACCTGTGACGGT


GCCTCTGTTGTGTGCCTG






CTCGTGGAACTCAGGCGCC


CTGAATAACTTCTATCCC






CTGACCAGCGGCGTGCACA


AGAGAGGCCAAAGTACA






CCTTCCCGGCTGTCCTACAG


GTGGAAGGTGGATAACG






TCCTCANGACTCTACTCCCT


CCCTCCAATCGGGTAACT






CAGCAGCGTGGTGACCGTG


CCCAGGAGAGTGTCACA






CCCTCCAGCAGCTTGGGCA


GAGCAGGACAGCAAGGA






CCCAGACCTACATCTGCAA


CAGCACCTACAGCCTCA






CGTGAATCACAAGCCCAGC


GCAGCACCCTGACGCTG






AACACCNANGTGGACAAGA


AGCAAAGCAGACTACGA






GAGTTGAGCCCAAATCTTG


GAAACACAAAGTCTACG






TGACAAAACTCACACATGC


CCTGCGAAGTCACCCAT






CCACCGTGCCCAGCACCTG


C (SEQ ID NO: 






AACT (SEQ ID NO: 


3244)






3242)










COV21_P1
A-C007
TACACATACGATTTAGGTG
NGAGGTGCTCTTGGAGGAG
COV21_P1
TACACATACGATTTAGGT
CGATTGGAGGGCGTTATCCA
COV21_P1


G2

ACACTATAGAATAACATCC
GGTGCCAGGGGGAAGACCG
G2
GACACTATAGAATAACA
CCTTCCACTGTACTTTGGCC
G2




ACTTTGCCTTTCTCTCCACA
ATGGGCCCTTGGTGGAGGC

TCCACTTTGCCTTTCTCT
TCTCTGGGATAGAAGTTATT





GGTGTCCACTCCCAGGTCC
TGAGGAGACGGTGACCAGG

CCACAGGTGTCCACTCCC
CAGCAGGCACACAACAGAG





AACTGCACCTCGGTTCTATC
GTTCCCTGGCCCCAGTAGTC

AGGTCCAACTGCACCTC
GCAGTTCCAGATTTCAACTG





GATTGAATTCCACCATGGG
AACAGTGTACGAATAACCA

GGTTCTATCGATTGAATT
CTCATCAGATGGCGGGAAG





ATGGTCATGTATCATCCTTT
GAATCATCATAGTGAGGGC

CCACCATGGGATGGTCA
ATGAAGACAGATGGTGCAG





TTCTAGTAGCAACTGCAAC
CTGTGGTACAGTAATACAC

TGTATCATCCTTTTTCTA
CCACAGTTCGTTTGATCTCC





CGGTGTACATTCTGAGGTG
GGCTGTGTCCTCGGTTTTCA

GTAGCAACTGCAACCGG
ACCTTGGTCCCTCCGCCGAA





CAGCTGGTGGAGTCTGGGG
GGCTGTTCATTTGCAGATAC

TGTACATGGGGATATTGT
AGTGAGGGGAGTTTGTAGA





GAGGCTTGGTAAAGCCTGG
AGCGTGTTTTTTGAATCATC

GATGACTCAGTCTCCACT
GCTTGCATGCAGTAATAAAC





GGGGTCCCTTAGACTCTCCT
TCTTGAGATGGTGAATCTG

CTCCCTGCCCGTCACCCC
CCCAACATCCTCAGCCTCCA





GTGCAGCCTCTGGATTCACT
CCTTGCACGGGTGCAGCGT

TGGAGAGCCGGCCTCCA
CTCTGCTGATTTTCAATGTA





TTCAGTAACGCCTGGATGA
AGTCTATTGTCCCACCATCA

TCTCCTGCAGGTCTAGTC
AAATCTGTGCCTGATCCACT





ACTGGGTCCGCCAGGCTCC
GATTTGTCTTTAATACGGCC

AGAGCCTCCTGCATAGT
GCCACTGAACCTGTCAGGG





AGGGAAGGGGCTGGAGTGG
AACCCACTCCAGCCCCTTCC

AATGGATTCCACTTTTTG
ACCCCGGAGGCCCGATTAG





GTTGGCCGTATTAAAGACA
CTGGAGCCTGGCGGACCCA

GATTGGTACCTGCAGAA
AACCCACATAGATCAGGAG





AATCTGATGGTGGGACAAT
GTTCATCCAGGCGTTACTG

GCCAGGGCAGACTCCAC
CTGTGGAGTCTGCCCTGGCT





AGACTACGCTGCACCCGTG
AAAGTGAATCCAGAGGCTG

AGCTCCTGATCTATGTGG
TCTGCAGGTACCAATCCAAA





CAAGGCAGATTCACCATCT
CACAGGAGAGTCTAAGGGA

GTTCTAATCGGGCCTCCG
AAGTGGAATCCATTACTATG





CAAGAGATGATTCAAAAAA
CCCCCCAGGCTTTACCAAG

GGGTCCCTGACAGGTTC
CAGGAGGCTCTGACTAGAC





CACGCTGTATCTGCAAATG
CCTCCCCCAGACTCCACCA

AGTGGCAGTGGATCAGG
CTGCAGGAGATGGAGGCCG





AACAGCCTGAAAACCGAGG
GCTGCACNT (SEQ ID 

CACAGATTTTACATTGAA
GCTCTCCAGGGGTGACGGG





ACACAGCCGTGTATTACTG
NO: 3247)

AATCAGCAGAGTGGAGG
CAGGGAGANTGGA (SEQ 





TACCACAGGCCCTCACTAT


CTGAGGATGTTGGGGTTT
ID NO: 3249)





GATGATTCTGGTTATTCGTA


ATTACTGCATGCAAGCTC






CACTGTTGACTACTGGGGC


TACAAACTCCCCTCACTT






CAGGGAACCCTGGTCACCG


TCGGCGGAGGGACCAAG






TCTCCTCAGCGGTCGACCA


GTGGAGATCAAACGTAC






AGGGCCCATCGGTCTTCCC


GGTGGCTGCACCATCTGT






CCTGGCACCCTCCTCCAAG


CTTCATCTTCCCGCCATC






AGCACCTCTGGGGGCACAG


TGATGAGCAGTTGAAAT






CGGCCCTGGGCTGCCTGGT


CTGGAACTGCCTCTGTTG






CAAGGACTACTTCCCCGAA


TGTGCCTGCTGAATAACT






CCTGTGACGGTCTCGTGGA


TCTATCCCAGAGAGGCC






ACTCANGCGCCCTGACCAG


AAAGTACAGTGGAAGGT






CGGCGTGCACACCTTCCCG


GGATAACGCCCTCCAAT






GCTGTCCTACAGTCCTCAN


CGGGTAACTCCCAGGAG






GACTCTACTCCCTCAGCAG


AGTGTCACAGAGCAGGA






CGTGGTGACCGTGCCCTCC


CAGCAAGGACAGCACCT






AGCAGCTTGGGCACCCAGA


ACAGCCTCAGCAGCACC






CCTACATCTGCAACGTGAA


CTGACGCTGAGCAAAGC






TCACAAGCCCAGCAACACC


AGACTACGAGAAACACA






AA (SEQ ID NO: 


AAGTCTACGCCTGCGAA






3246)


GTCACCCAT (SEQ ID









NO: 3248)







COV21_P1
A-C008
TACACATACGATTTAGGTG
CGCTGTGCCCCNGAGGTGC
COV21_P1
TACACATACGATTTAGGT
TGGGANTACCCGATTGGAG
COV21_P1


H9

ACACTATAGAATAACATCC
TCTTGGAGGAGGGTGCCAG
H9
GACACTATAGAATAACA
GGCGTTATCCACCTTCCACT
H9




ACTTTGCCTTTCTCTCCACA
GGGGAAGACCGATGGGCCC

TCCACTTTGCCTTTCTCT
GTACTTTGGCCTCTCTGGGA





GGTGTCCACTCCCAGGTCC
TTGGTGGAGGCTGAGGAGA

CCACAGGTGTCCACTCCC
TAGAAGTTATTCAGCAGGCA





AACTGCACCTCGGTTCTATC
CGGTGACCAGGGTTCCCTG

AGGTCCAACTGCACCTC
CACAACAGAGGCAGTTCCA





GATTGAATTCCACCATGGG
GCCCCAGTAGTCAAAGTAC

GGTTCTATCGATTGAATT
GATTTCAACTGCTCATCAGA





ATGGTCATGTATCATCCTTT
CACTCGGGGTCACCGAATT

CCACCATGGGATGGTCA
TGGCGGGAAGATGAAGACA





TTCTAGTAGCAACTGCAAC
CTCTCGCACAGTAATACAC

TGTATCATCCTTTTTCTA
GATGGTGCAGCCACAGTTCG





CGGTGTACATTCTGAGGTG
AGCCGTGTCCTCAGCTCTCA

GTAGCAACTGCAACCGG
TTTGATTTCCACCTTGGTCC





CAGCTGGTGGAGTCTGGGG
GGCTGTTCATTTGCAGATAC

TGTACATTCTGACATCCA
CTTGGCCGAACGTCCAATAA





GAGGCGTGGTCCAGCCTGG
AGCGTGTTCTTGGAGTTGTC

GATGACCCAGTCTCCTTC
CTATTATACTGTTGGCAGTA





GAGGTCCCTGAGACTCTCC
TCTGGAGATGGTGAATCGG

CACCCTGTCTGCATCTGT
ATAAGTTGCAAAATCATCAG





TGTGCAGCCTCTGGATTCAC
CCCTTCACGGAGTCTGCAT

AGGAGACAGAGTCACCA
GCTGCAGGCTGCTGATGGTG





CTTCAGTAGCTATGGCATG
AGTATTTATTCCTTCCATCA

TCACTTGCCGGGCCAATC
AGAGTGAATTCTGTCCCAGA





CACTGGGTCCGCCAGGCTC
TATGAAATAACTGTCACCC

AGAGTATTAGTAGCTGG
TCCACTGCCGCTGAACCTTG





CAGGCAAGGGGCTGGAGTG
ACTCCAGCCCCTTGCCTGG

TTGGCCTGGTATCAGCA
ATGGGACCCCACTTTCTAAA





GGTGACAGTTATTTCATATG
AGCCTGGCGGACCCAGTGC

GAAACCAGGGAAAGCCC
CTAGACGCCTTATAGATCAG





ATGGAAGGAATAAATACTA
ATGCCATAGCTACTGAAGG

CTAAGCTCCTGATCTATA
GAGCTTAGGGGCTTTCCCTG





TGCAGACTCCGTGAAGGGC
TGAATCCAGAGGCTGCACA

AGGCGTCTAGTTTAGAA
GTTTCTGCTGATACCAGGCC





CGATTCACCATCTCCAGAG
GGAGAGTCTCAGGGACCTC

AGTGGGGTCCCATCAAG
AACCAGCTACTAATACTCTG





ACAACTCCAAGAACACGCT
CCAGGCTGGACCACGCCTC

GTTCAGCGGCAGTGGAT
ATTGGCCCGGCAAGTGATG





GTATCTGCAAATGAACAGC
CCCCAGACTCCACCAGCTG

CTGGGACAGAATTCACT
GTGACTCTGTCTCCTACAGA





CTGAGAGCTGAGGACACGG
CACCTANNANGNAAACC

CTCACCATCAGCAGCCT
TGCAGACAGGGNGANTGNA





CTGTGTATTACTGTGCGAG
(SEQ ID NO: 3251)

GCAGCCTGATGATTTTGC
NNNNGGGGTCAT (SEQ





AGAATTCGGTGACCCCGAG


AACTTATTACTGCCAACA
ID NO: 3253)





TGGTACTTTGACTACTGGG


GTATAATAGTTATTGGAC






GCCAGGGAACCCTGGTCAC


GTTCGGCCAAGGGACCA






CGTCTCCTCAGCGTCGACC


AGGTGGAAATCAAACGT






AAGGGCCCATCGGTCTTCC


ACGGTGGCTGCACCATC






CCCTGGCACCCTCCTCCAA


TGTCTTCATCTTCCCGCC






GAGCACCTCTGGGGGCACA


ATCTGATGAGCAGTTGA






GCGGCCCTGGGCTGCCTGG


AATCTGGAACTGCCTCTG






TCAAGGACTACTTCCCCGA


TTGTGTGCCTGCTGAATA






ACCTGTGACGGTCTCGTGG


ACTTCTATCCCAGAGAG






AACTCNGCGCCCTGACCAG


GCCAAAGTACAGTGGAA






CGGCGTGCACACCTTCCCG


GGTGGATAACGCCCTCC






GCTGTCCTACAGTCCTCNN


AATCGGGTAACTCCCAG






ACTCTACTCCCTCAGCAGC


GAGAGTGTCACAGAGCA






GTGGTGACCGTGCCCTCCA


GGACAGCAAGGACAGCA






GCAGCTTGGGCACCCAGAC


CCTACAGCCTCAGCAGC






CTACATCTGCAACGTGAAT


ACCCTGACGCTGANCAA






CACAAGCCCAGCAACACCA


AGCAGACTACGAGAAAC






AGNTGGANAGAGAGTTGAG


ACAAAGTCTACGCCTGC






CCCAAATCTTGTGAC 


GAAGTCACCCATCNGGN






(SEQ ID NO: 3250)


CTGAGCTCGCCCGTCAC









AAAGAGCTTCAAC 









(SEQ ID NO: 3252)







COV21_P1
A-C010
TACACATACGATTTAGGTG
GAGGTGCTCTTGGAGGAGG
COV21_P1
TACACATACGATTTAGGT
CGATTGGAGGGCGTTATCCA
COV21_P1


H7

ACACTATAGAATAACATCC
GTGCCAGGGGGAAGACCGA
H7
GACACTATAGAATAACA
CCTTCCACTGTACTTTGGCC
H7




ACTTTGCCTTTCTCTCCACA
TGGGCCCTTGGTGGAGGCT

TCCACTTTGCCTTTCTCT
TCTCTGGGATAGAAGTTATT





GGTGTCCACTCCCAGGTCC
GAGGAGACGGTGACCAGGG

CCACAGGTGTCCACTCCC
CAGCAGGCACACAACAGAG





AACTGCACCTCGGTTCTATC
TTCCCTGGCCCCAGTAGTCA

AGGTCCAACTGCACCTC
GCAGTTCCAGATTTCAACTG





GATTGAATTCCACCATGGG
AACCACGTAACCAGAGCTG

GGTTCTATCGATTGAATT
CTCATCAGATGGCGGGAAG





ATGGTCATGTATCATCCTTT
TATCCACGATCCCGTCTCTC

CCACCATGGGATGGTCA
ATGAAGACAGATGGTGCAG





TTCTAGTAGCAACTGCAAC
GCACAGTAATACACAGCCG

TGTATCATCCTTTTTCTA
CCACAGTTCGTTTGATTTCC





CGGTGTACATTCTGAGGTG
TGTCCTCAGCTCTCAGGCTG

GTAGCAACTGCAACCGG
ACCTTGGTCCCTTGGCCGAA





CAGCTGGTGGAGTCTGGGG
TTCATTTGCAGATACAACGT

TGTACATTCAGACATCCA
CGTCCACGGAGGGGTACTGT





GAGGCGTGGTCCAGCCTGG
GTTCTTGGAATTGTCTCTGG

GTTGACCCAGTCTCCATC
AACTCTGTTGACAGTAGTAA





GAGGTCCCTGAGACTCTCC
AGATGGTGAATCGGCCCTT

CTCCCTGTCTGCATCTGT
GTTGCAAAATCTTCAGGTTG





TGTGCAGCCTCTGGATTCAC
CACGGAGTCTGCGTAGTAT

AGGAGACAGAGTCACCA
CAGACTGCTGATGGTGAGA





CTTCAGTAGCTATGCTATGC
TTACCGCTTCCATCATATAA

TCACTTGCCGGGCAAGT
GTGAAATCTGTCCCAGATCC





ACTGGGTCCGCCAGGCTCC
TATAACTGCCACCCACTCC

CAGAGCATTAGCACCTA
ACTGCCACTGAACCTTGATG





AGCCAAGGGGCTGGAGTGG
AGCCCCTTGGCTGGAGCCT

TTTAAATTGGTATCAGCA
GGACCCCACTTTGCAAACTG





GTGGCAGTTATATTATATG
GGCGGACCCAGTGCATAGC

GAAACCAGGGAAAGCCC
GATGCAGCATAGATCAGGA





ATGGAAGCGGTAAATACTA
ATAGCTACTGAAGGTGAAT

CTAAGCTCCTGATCTATG
GCTTAGGGGCTTTCCCTGGT





CGCAGACTCCGTGAAGGGC
CCAGAGGCTGCACAGGAGA

CTGCATCCAGTTTGCAAA
TTCTGCTGATACCAATTTAA





CGATTCACCATCTCCAGAG
GTCTCAGGGACCTCCCAGG

GTGGGGTCCCATCAAGG
ATAGGTGCTAATGCTCTGAC





ACAATTCCAAGAACACGTT
CTGGACCACGCCTCCCCCA

TTCAGTGGCAGTGGATCT
TTGCCCGGCAAGTGATGGTG





GTATCTGCAAATGAACAGC
GACTCCACCAGGCTGCACC

GGGACAGATTTCACTCTC
ACTCTGTCTCCTACAGATGC





CTGAGAGCTGAGGACACGG
T (SEQ ID NO: 3255)

ACCATCAGCAGTCTGCA
AGACAGGGAG (SEQ ID 





CTGTGTATTACTGTGCGAG


ACCTGAAGATTTTGCAA
NO: 3257)





AGACGGGATCGTGGATACA


CTTACTACTGTCAACAGA






GCTCTGGTTACGTGGTTTGA


GTTACAGTACCCCTCCGT






CTACTGGGGCCAGGGAACC


GGACGTTCGGCCAAGGG






CTGGTCACCGTCTCCTCAGC


ACCAAGGTGGAGATCAA






GTCGACCAAGGGCCCATCG


ACGTACGGTGGCTGCAC






GTCTTCCCCCTGGCACCCTC


CATCTGTCTTCATCTTCC






CTCCAAGAGCACCTCTGGG


CGCCATCTGATGAGCAG






GGCACAGCGGCCCTGGGCT


TTGAAATCTGGAACTGC






GCCTGGTCAAGGACTACTT


CTCTGTTGTGTGCCTGCT






CCCCGAACCTGTGACGGTC


GAATAACTTCTATCCCAG






TCGTGGAACTCNNCGCCCT


AGAGGCCAAAGTACAGT






GACCAGCGGCGTGCACACC


GGAAGGTGGATAACGCC






TTCCCGGCTGTCCTACAGTC


CTCCAATCGGGTAACTCC






CTCNNNCTCTACTCCCTCAG


CAGGAGAGTGTCACAGA






CAGCGTGGTGACCGTGCCC


GCAGGACAGCAAGGACA






TCCAGCAGCTTGGGCACCC


GCACCTACAGCCTCAGC






AGACCTACATCTGCAACGT


AGCACCCTGACGCTGAG






GAATCACAAGCCCAGCAAC


CAAAGCAGACTACGAGA






ACCAAG (SEQ ID NO: 


AACACAAAGTCTACGCC






3254)


TGCGAAGTCACCCATCN









GGCCNTGAGCTCGCCCG









TCACAAAGAGCTTCAAC









AGGGGAGAGTGTTAGAA









GCTTGGCCGCCATGGCC









CAACTTGTTTATTGCAGC









TTAT (SEQ ID NO: 









3256)







COV21_P2
A-C001
TACACATACGATTTAGGTG
CNCTGTGCCCCAGAGGTGC
COV21_P2
TACACATACGATTTAGGT
ATTGGAGGGCGTTATCCACC
COV21_P2


B7

ACACTATAGAATAACATCC
TCTTGGAGGAGGGTGCCAG
B7
GACACTATAGAATAACA
TTCCACTGTACTTTGGCCTC
B7




ACTTTGCCTTTCTCTCCACA
GGGGAAGACCGATGGGCCC

TCCACTTTGCCTTTCTCT
TCTGGGATAGAAGTTATTCA





GGTGTCCACTCCCAGGTCC
TTGGTGGAGGCTGAGGAGA

CCACAGGTGTCCACTCCC
GCAGGCACACAACAGAGGC





AACTGCACCTCGGTTCTATC
CGGTGACCAGGGTTCCCTG

AGGTCCAACTGCACCTC
AGTTCCAGATTTCAACTGCT





GATTGAATTCCACCATGGG
GCCCCAGTAGTCAAAGGCC

GGTTCTATCGATTGAATT
CATCAGATGGCGGGAAGAT





ATGGTCATGTATCATCCTTT
ACCACCACTACAATATCAG

CCACCATGGGATGGTCA
GAAGACAGATGGTGCAGCC





TTCTAGTAGCAACTGCAAC
ATGGTCTCCCCTCTTTCGCA

TGTATCATCCTTTTTCTA
ACAGTTCGTTTGATTTCCAC





CGGTGTACATTCTGAGGTG
CAGTAATACACAGCCGTGT

GTAGCAACTGCAACCGG
CTTGGTCCCTTGGCCGAACG





CAGCTGGTGGAGTCTGGGG
CCTCAGCTCTCAGGCTGTTC

TGTACATTCAGACATCCA
TCCGAGGGGTACTGTAACTC





GAGGCGTGGTCCAGCCTGG
ATTTGCAGATACAGCGTGT

GTTGACCCAGTCTCCATC
TGTTGACAGTAGTAAGTTGC





GAGGTCCCTGAGACTCTCC
TCTTGGAATTGTCTCTGGAG

CTCCCTGTCTGCATCTGT
AAAATCTTCAGGTTGCAGAC





TGTGCAGCCTCTGGATTCAC
ATGGTGAATCGGCCCTTCA

AGGAGACAGAGTCACCA
TGCTGATGGTGAGAGTGAA





CTTCAGTATCTATGGCATGC
CGGAGTCTGCATAGTATTT

TCACTTGCCGGGCAAGT
ATCTGTCCCAGATCCACTGC





ACTGGGTCCGCCAGGCTCC
ATTACTTCCATCATATGATA

CAGAGCATTAGCAGCTA
CACTGAACCTTGATGGGACC





AGGCAAGGGGCTGGAGTGG
TAACTGCCACCCACTCCAG

TTTAAATTGGTATCAGCA
CCACTTTGCAAACTGGATGC





GTGGCAGTTATATCATATG
CCCCTTGCCTGGAGCCTGG

GAAACCAGGGAAAGCCC
AGCATAGATCAGGAGCTTA





ATGGAAGTAATAAATACTA
CGGACCCAGTGCATGCCAT

CTAAGCTCCTGATCTATG
GGGGCTTTCCCTGGTTTCTG





TGCAGACTCCGTGAAGGGC
AGATACTGAAGGTGAATCC

CTGCATCCAGTTTGCAAA
CTGATACCAATTTAAATAGC





CGATTCACCATCTCCAGAG
AGAGGCTGCACAGGAGAGT

GTGGGGTCCCATCAAGG
TGCTAATGCTCTGACTTGCC





ACAATTCCAAGAACACGCT
CTCAGGGACCTCCCAGGCT

TTCAGTGGCAGTGGATCT
CGGCAAGTGATGGTGACTCT





GTATCTGCAAATGAACAGC
GGACCACGCCTCCCCCAGA

GGGACAGATTTCACTCTC
GTCTCCTACAGATGCAGACA





CTGAGAGCTGAGGACACGG
CTCCACCAGCTGCA (SEQ

ACCATCAGCAGTCTGCA
GGGAGANTGGAG (SEQ ID





CTGTGTATTACTGTGCGAA
ID NO: 3259)

ACCTGAAGATTTTGCAA
NO: 3261)





AGAGGGGAGACCATCTGAT


CTTACTACTGTCAACAGA






ATTGTAGTGGTGGTGGCCTT


GTTACAGTACCCCTCGG






TGACTACTGGGGCCAGGGA


ACGTTCGGCCAAGGGAC






ACCCTGGTCACCGTCTCCTC


CAAGGTGGAAATCAAAC






AGCGTCGACCAAGGGCCCA


GTACGGTGGCTGCACCA






TCGGTCTTCCCCCTGGCACC


TCTGTCTTCATCTTCCCG






CTCCTCCAAGAGCACCTCT


CCATCTGATGAGCAGTT






GGGGGCACAGCGGCCCTGG


GAAATCTGGAACTGCCT






GCTGCCTGGTCAAGGACTA


CTGTTGTGTGCCTGCTGA






CTTCCCCGAACCTGTGACG


ATAACTTCTATCCCAGAG






GTCTCGTGGAACTCANGCG


AGGCCAAAGTACAGTGG






CCCTGACCAGCGGCGTGCA


AAGGTGGATAACGCCCT






CACCTTCCCGGCTGTCCTAC


CCAATCGGGTAACTCCC






AGTCCTC (SEQ ID NO: 


AGGAGAGTGTCACAGAG






3258)


CAGGACAGCAAGGACAG









GCACCCTGACGCTGAGC









AAAGCAGACTACGAGAA









ACACAAAGTCTACGCCT









GCGAAGTCACCCATCAG









GGCCTGAGCTCGCCCGT









CACAAAGAGCTTCAACN









GGGGAGAGTGTTAGAAG









CTTGGCCGCCATGGCCC









AACTTGTTTATTGCAGCT









TATAAT (SEQ ID NO:









3260)







COV21_P2
A-C002
TACACATACGATTTAGGTG
GCTNNGCNCCNNANGTGCT
COV21_P2
TACACATACGATTTAGGT
CNGGGANTTACCCGATTGG
COV21_P2


F6

ACACTATAGAATAACATCC
CTTGGAGGNNGGTGCCAGG
F6
GACACTATAGAATAACA
AGGGCGTTATCCACCTTCCA
F6




ACTTTGCCTTTCTCTCCACA
GGGAAGACCGATGGGCCCT

TCCACTTTGCCTTTCTCT
CTGTACTTTGGCCTCTCTGG





GGTGTCCACTCCCAGGTCC
TGGTGGAGGCTGAGGAGAC

CCACAGGTGTCCACTCCC
GATAGAAGTTATTCAGCAG





AACTGCACCTCGGTTCTATC
GGTGACCAGGGTTCCCTGG

AGGTCCAACTGCACCTC
GCACACAACAGAGGCAGTT





GATTGAATTCCACCATGGG
CCCCAGTAGTCAAAGGCCA

GGTTCTATCGATTGAATT
CCAGATTTCAACTGCTCATC





ATGGTCATGTATCATCCTTT
CCACCACTACAATATCAGA

CCACCATGGGATGGTCA
AGATGGCGGGAAGATGAAG





TTCTAGTAGCAACTGCAAC
TGGTCTCCCCTCTTTCGCAC

TGTATCATCCTTTTTCTA
ACAGATGGTGCAGCCACAG





CGGTGTACATTCTGAGGTG
AGTAATACACAGCCGTGTC

GTAGCAACTGCAACCGG
TTCGTTTGATTTCCACCTTG





CAGCTGGTGGAGTCTGGGG
CTCAGCTCTCAGGCTGTTCA

TGTACATTCAGACATCCA
GTCCCTTGGCCGAACGTCCG





GAGGCGTGGTCCAGCCTGG
TTTGCAGATACAGCGTGTTC

GTTGACCCAGTCTCCATC
AGGGGTACTGTAACTCTGTT





GAGGTCCCTGAGACTCTCC
TTGGAATTGTCTCTGGAGAT

CTCCCTGTCTGCATCTGT
GACAGTAGTAAGTTGCAAA





TGTGCAGCCTCTGGATTCAC
GGTGAATCGGCCCTTCACG

AGGAGACAGAGTCACCA
ATCTTCAGGTTGCAGACTGC





CTTCAGTATCTATGGCATGC
GAGTCTGCATAGTATTTATT

TCACTTGCCGGGCAAGT
TGATGGTGAGAGTGAAATCT





ACTGGGTCCGCCAGGCTCC
ACTTCCATCATATGATATAA

CAGAGCATTAGCAGCTA
GTCCCAGATCCACTGCCACT





AGGCAAGGGGCTGGAGTGG
CTGCCACCCACTCCAGCCC

TTTAAATTGGTATCAGCA
GAACCTTGATGGGACCCCAC





GTGGCAGTTATATCATATG
CTTGCCTGGAGCCTGGCGG

GAAACCAGGGAAAGCCC
TTTGCAAACTGGATGCAGCA





ATGGAAGTAATAAATACTA
ACCCAGTGCATGCCATAGA

CTAAGCTCCTGATCTATG
TAGATCAGGAGCTTAGGGG





TGCAGACTCCGTGAAGGGC
TACTGAAGGTGAATCCAGA

CTGCATCCAGTTTGCAAA
CTTTCCCTGGTTTCTGCTGAT





CGATTCACCATCTCCAGAG
GGCTGCACAGGAGAGTCTC

GTGGGGTCCCATCAAGG
ACCAATTTAAATAGCTGCTA





ACAATTCCAAGAACACGCT
AGGGACCTCCCAGGCTGGA

TTCAGTGGCAGTGGATCT
ATGCTCTGACTTGCCCGGCA





GTATCTGCAAATGAACAGC
CCACGCCTCCCCCAGACTC

GGGACAGATTTCACTCTC
AGTGATGGTGACTCTGTCTC





CTGAGAGCTGAGGACACGG
CACCAGCCTGCAC (SEQ 

ACCATCAGCAGTCTGCA
CTACAGATGCAGACAGGGA





CTGTGTATTACTGTGCGAA
ID NO: 3263)

ACCTGAAGATTTTGCAA
GANTGGANNNTGGG (SEQ 





AGAGGGGAGACCATCTGAT


CTTACTACTGTCAACAGA
ID NO: 3265)





ATTGTAGTGGTGGTGGCCTT


GTTACAGTACCCCTCGG






TGACTACTGGGGCCAGGGA


ACGTTCGGCCAAGGGAC






ACCCTGGTCACCGTCTCCTC


CAAGGTGGAAATCAAAC






AGCGTCGACCAAGGGCCCA


GTACGGTGGCTGCACCA






TCGGTCTTCCCCCTGGCACC


TCTGTCTTCATCTTCCCG






CTCCTCCAAGAGCACCTCT


CCATCTGATGAGCAGTT






GGGGGCACAGCGGCCCTGG


GAAATCTGGAACTGCCT






GCTGCCTGGTCAAGGACTA


CTGTTGTGTGCCTGCTGA






CTTCCCCGAACCTGTGACG


ATAACTTCTATCCCAGAG






GTCTCGTGGAACTCANGCG


AGGCCAAAGTACAGTGG






CCCTGACCAGCGGCGTGCA


AAGGTGGATAACGCCCT






CACCTTCCCGGCTGTCCTAC


CCAATCGGGTAACTCCC






AGTCCTCNNACTCTACTCCC


AGGAGAGTGTCACAGAG






TCAGCAGCGTGGTGACCGT


CANGACAGCAAGGACAG






GCCCTCCAGCAGCTTGGGC


CACCTACAGCCTCAGCA






ACCCAGACCTACATCTGCA


GCACCCTGACGCTGAGC






ACGTGAATCACAAGCCCAG


AAAGCAGACTACGAGAA






CAACACCNAAGGTGGACAA


ACACAAAGTCTACGCCT






GAGAGTTGAGCCCAAATCT


GCGAAGTCACCCATC






TGTGACAAACTCACACATG


(SEQ ID NO: 3264)






CCCACCGTGCCCAGCACCT









GAACTCCTGGGGGGACCGT









CAGTCTT (SEQ ID NO: 









3262)










COV21_P1
A-C004
TACACATACGATTTAGGTG
GCTGTGCCCCAGAGGTGCT
COV21_P1
TACACATACGATTTAGGT
CNNGGANTTNCCCGATTGG
COV21_P1


F12

ACACTATAGAATAACATCC
CTTGGAGGANGGTGCCAGG
F12
GACACTATAGAATAACA
AGGGCGTTATCCACCTTCCA
F12




ACTTTGCCTTTCTCTCCACA
GGGAAGACCGATGGGCCCT

TCCACTTTGCCTTTCTCT
CTGTACTTTGGCCTCTCTGG





GGTGTCCACTCCCAGGTCC
TGGTGGAGGCTGAGGAGAC

CCACAGGTGTCCACTCCC
GATAGAAGTTATTCAGCAG





AACTGCACCTCGGTTCTATC
GGTGACCGTGGTCCCTTTGC

AGGTCCAACTGCACCTC
GCACACAACAGAGGCAGTT





GATTGAATTCCACCATGGG
CCCAGACGTCCATGTAGTA

GGTTCTATCGATTGAATT
CCAGATTTCAACTGCTCATC





ATGGTCATGTATCATCCTTT
GTAGTACCCATGATCGTAG

CCACCATGGGATGGTCA
AGATGGCGGGAAGATGAAG





TTCTAGTAGCAACTGCAAC
CCACTATATCCACGTGATG

TGTATCATCCTTTTTCTA
ACAGATGGTGCAGCCACAG





CGGTGTACATTCCCAGGTG
CTGGGCTCGCACAGTAATA

GTAGCAACTGCAACCGG
TTCGTTTAATCTCCAGTCGT





CAGCTGGTGCAGTCTGGGG
CACGGCCGTGTCGTCAGAT

TGTACATTGTGCCATCCG
GTCCCTTGGCCGAAGGTGAT





CTGAGGTGAAGAAGCCTGG
CTCAGCCTGCTCAGCTCCAT

GATGACCCAGTCTCCATC
AGGGAGATTATCATACTGTT





GGCCTCAGTGAAGGTCTCC
GTAGGCTGTGCTGATGGAC

CTCCCTGTCTGCATCTGT
GACAGTAATATGTTGCAATA





TGCAAGGCTTCTGGATACA
GTGTCCCTGGTCATGGTGA

AGGAGACAGAGTCACCA
TCTTCAGGCTGCAGGCTGCT





CCTTCACCGGCTACTATATG
CCCTGCCCTGAAACTTCTGT

TCACTTGCCAGGCGAGT
GATGGTGAAAGTAAAATCT





CACTGGGTGCGACAGGCCC
GCATAGTTTGTGCCACCACT

CAGGACATTAGCAACTA
GTCCCAGATCCACTTCCACT





CTGGACAAGGGCTTGAGTG
GATAGGGTTGATCCATCCC

TTTAAATTGGTATCAGCA
GAACCTTGATGGGACCCCTG





GATGGGATGGATCAACCCT
ATCCACTCAAGCCCTTGTCC

GAAACCAGGGAAAGCCC
TTTCCAAATTGGATGCATCG





ATCAGTGGTGGCACAAACT
AGGGGCCTGTCGCACCCAG

CTAAGCTCCTGATCTACG
TAGATCAGGAGCTTAGGGG





ATGCACAGAAGTTTCAGGG
TGCATATAGTAGCCGGTGA

ATGCATCCAATTTGGAA
CTTTCCCTGGTTTCTGCTGAT





CAGGGTCACCATGACCAGG
AGGTGTATCCAGAAGCCTT

ACAGGGGTCCCATCAAG
ACCAATTTAAATAGTTGCTA





GACACGTCCATCAGCACAG
GCAGGAGACCTTCACTGAG

GTTCAGTGGAAGTGGAT
ATGTCCTGACTCGCCTGGCA





CCTACATGGAGCTGAGCAG
GCCCCAGGCTTCTTCACCTC

CTGGGACAGATTTTACTT
AGTGATGGTGACTCTGTCTC





GCTGAGATCTGACGACACG
AGCCCCAGACTGCACCAGC

TCACCATCAGCAGCCTG
CTACAGATGCAGACAGGGN





GCCGTGTATTACTGTGCGA
TGCACCT (SEQ ID NO: 

CAGCCTGAAGATATTGC
G (SEQ ID NO: 3269)





GCCCAGCATCACGTGGATA
3267)

AACATATTACTGTCAAC






TAGTGGCTACGATCATGGG


AGTATGATAATCTCCCTA






TACTACTACTACATGGACG


TCACCTTCGGCCAAGGG






TCTGGGGCAAAGGGACCAC


ACACGACTGGAGATTAA






GGTCACCGTCTCCTCAGCGT


ACGTACGGTGGCTGCAC






CGACCAAGGGCCCATCGGT


CATCTGTCTTCATCTTCC






CTTCCCCCTGGCACCCTCCT


CGCCATCTGATGAGCAG






CCAAGAGCACCTCTGGGGG


TTGAAATCTGGAACTGC






CACAGCGGCCCTGGGCTGC


CTCTGTTGTGTGCCTGCT






CTGGTCAAGGACTACTTCC


GAATAACTTCTATCCCAG






CCGAACCTGTGACGGTCTC


AGAGGCCAAAGTACAGT






GTGGAACTCAGGCGCCCTG


GGAAGGTGGATAACGCC






ACCAGCGGCGTGCACACCT


CTCCAATCGGGTAACTCC






TCCCGGCTGTCCTACAGTCC


CAGGAGAGTGTCACAGA






TCAGGACTCTACTCCCTCAG


GCAGGACAGCAAGGACA






CAGCGTGGTGACCGTGCCC


GCACCTACAGCCTCAGC






TCCAGCAGCTTGGGCACCC


AGCACCCTGACGCTGAG






AGACCTACATCTGCAACGT


CAAAGCAGACTACGAGA






GAATCACAAGCCCAGCAAC


AACACAAAGTCTACGCC






ACCAAGGTGGACAAGAGAG


TGCGAAGTCACCCATCA






TTGAGCCCAAATCTTGTGA


GGGCCTGAGCTCGCCCG






CAAAAC (SEQ ID NO:


TCACAAAGAGCTTCAAC






3266)


AGGGGAGAGTGTTAGAA









GCTTGGCCGCCATGGCC









CAACTTGTTTATTGCAGC









TTATAATGGTTACAAATA









AA (SEQ ID NO:









3268)







COV21_P1
A-C005
TACACATACGATTTAGGTG
NGAGGTGCTCTTGGAGGAG
COV21_P1
TACACATACGATTTAGGT
ANTTACCCGATTGGAGGGC
COV21_P1


F9

ACACTATAGAATAACATCC
GGTGCCAGGGGGAAGACCG
F9
GACACTATAGAATAACA
GTTATCCACCTTCCACTGTA
F9




ACTTTGCCTTTCTCTCCACA
ATGGGCCCTTGGTGGAGGC

TCCACTTTGCCTTTCTCT
CTTTGGCCTCTCTGGGATAG





GGTGTCCACTCCCAGGTCC
TGAAGAGACGGTGACCATT

CCACAGGTGTCCACTCCC
AAGTTATTCAGCAGGCACAC





AACTGCACCTCGGTTCTATC
GTCCCTTGGCCCCAGATATC

AGGTCCAACTGCACCTC
AACAGAGGCAGTTCCAGAT





GATTGAATTCCACCATGGG
AAAAGCATCAAGGCAGCTA

GGTTCTATCGATTGAATT
TTCAACTGCTCATCAGATGG





ATGGTCATGTATCATCCTTT
CCACCGCTACAATGGGGAG

CCACCATGGGATGGTCA
CGGGAAGATGAAGACAGAT





TTCTAGTAGCAACTGCAAC
CCGCACAGTAATACACGGC

TGTATCATCCTTTTTCTA
GGTGCAGCCACAGTTCGTTT





CGGTGTACATTCCCAGGTG
CGTGTCCTCGGATCTCAGG

GTAGCAACTGCAACCGG
GATTTCCACCTTGGTCCCTT





CAGCTGGTGCAGTCTGGGC
CTGCTCAGCTCCATGTAGG

TGTACATTCAGAAATTGT
GGCCGAACGTCCACGGTGA





CTGAGGTGAAGAAGCCTGG
CTGTGCTTGTGGACATGTCC

GTTGACGCAGTCTCCAG
GCTACCATACTGCTGACAGT





GACCTCAGTGAAGGTCTCC
CTGGTAATGGTGACTCTTTC

GCACCCTGTCTTTGTCTC
AATACACTGCAAAATCTTCA





TGCAAGGCTTCTGGATTCA
CTGGAACTTCTGTGCGTAGT

CAGGGGAAAGAGCCACC
GGCTCCAGTCTGCTGATGGT





CCTTTACTAGCTCTGCTGTG
TTGTGTTACCACTGCCAACG

CTCTCCTGCAGGGCCAGT
GAGAGTGAAGTCTGTCCCA





CAGTGGGTGCGACAGGCTC
ACGATCCATCCTATCCACTC

CAGAGTGTTAGAAGCAG
GACCCACTGCCACTGAACCT





GTGGACAACGCCTTGAGTG
AAGGCGTTGTCCACGAGCC

CTACTTAGCCTGGTACCA
GTCTGGGATGCCAGTGGCCC





GATAGGATGGATCGTCGTT
TGTCGCACCCACTGCACAG

GCAGAAACCTGGCCAGG
TGCTGGATGCACCATAGATG





GGCAGTGGTAACACAAACT
CAGAGCTAGTAAAGGTGAA

CTCCCAGGCTCCTCATCT
AGGAGCCTGGGAGCCTGGC





ACGCACAGAAGTTCCAGGA
TCCAGAAGCCTTGCAGGAG

ATGGTGCATCCAGCAGG
CAGGTTTCTGCTGGTACCAG





AAGAGTCACCATTACCAGG
ACCTTCACTGAGGTCCCAG

GCCACTGGCATCCCAGA
GCTAAGTAGCTGCTTCTAAC





GACATGTCCACAAGCACAG
GCTTCTTCACCTCAGGCCCA

CAGGTTCAGTGGCAGTG
ACTCTGACTGGCCCTGCAGG





CCTACATGGAGCTGAGCAG
GACTGCACCAGCTGCACCT

GGTCTGGGACAGACTTC
AGAGGGTGGCTCTTTCCCCT





CCTGAGATCCGAGGACACG
(SEQ ID NO: 3271)

ACTCTCACCATCAGCAG
GGAGACAAAGACAGGGAGA





GCCGTGTATTACTGTGCGG


ACTGGAGCCTGAAGATT
CTGGA (SEQ ID NO: 





CTCCCCATTGTAGCGGTGGT


TTGCAGTGTATTACTGTC
3273)





AGCTGCCTTGATGCTTTTGA


AGCAGTATGGTAGCTCA






TATCTGGGGCCAAGGGACA


CCGTGGACGTTCGGCCA






ATGGTCACCGTCTCTTCAGC


AGGGACCAAGGTGGAAA






GTCGACCAAGGGCCCATCG


TCAAACGTACGGTGGCT






GTCTTCCCCCTGGCACCCTC


GCACCATCTGTCTTCATC






CTCCAAGAGCACCTCTGGG


TTCCCGCCATCTGATGAG






GGCACAGCGGCCCTGGGCT


CAGTTGAAATCTGGAAC






GCCTGGTCAAGGACTACTT


TGCCTCTGTTGTGTGCCT






CCCCGAACCTGTGACGGTC


GCTGAATAACTTCTATCC






TCGTGGAACTCANGCGCCC


CAGAGAGGCCAAAGTAC






TGACCAGCGGCGTGCACAC


AGTGGAAGGTGGATAAC






CTTCCCGGCTGTCCTACAGT


GCCCTCCAATCGGGTAA






CCTCNNNCTCTACTCCCTCA


CTCCCAGGAGAGTGTCA






GCAGCGTGGNGACCGTGCC


CAGAGCNNACAGCAAGG






CTCCAGCAGCTTGGGCACC


ACAGCACCTACAGCCTC






CAGACCTACATCTGCAACG


AGCAGCACCCTGACGCT






TGAATCACAAGCCCAGCAA


GAGCAAAGCAGACTACG






CACCA (SEQ ID NO: 


AGAAACACAAAGTCTAC






3270)


GCCTGCGAAGTCACCCA









TC (SEQ ID NO: 









3272)







COV21 P2
A-C006
TACACATACGATTTAGGTG
GNNGCTGTNNNNNNGAGGT
COV21 P2
TACACATACGATTTAGGT
GNNAGCCTTGGGCTGACCTA
COV21 P2


E5

ACACTATAGAATAACATCC
GCTCTTGGAGGAGGGTGCC
E5
GACACTATAGAATAACA
NGACGGTCAGCTTGGTCCCT
E5




ACTTTGCCTTTCTCTCCACA
AGGGGGAAGACCGATGGGC

TCCACTTTGCCTTTCTCT
CCGCCGAATACCGGACCATT





GGTGTCCACTCCCAGGTCC
CCTTGGTGGAGGCTGAGGA

CCACAGGTGTCCACTCCC
CAGGCTGTCATCCCATGCTG





AACTGCACCTCGGTTCTATC
GACGGTGACCGTGGTCCCT

AGGTCCAACTGCACCTC
CACAGAAATAATCAGCCTC





GATTGAATTCCACCATGGG
TTGCCCCAGACGTCCATGT

GGTTCTATCGATTGAATT
ATCCTCAGACTGGAGCCCAC





ATGGTCATGTATCATCCTTT
AGTTGTAGTAGTAGATCGA

CCACCATGGGATGGTCA
TGATGGCCAGGGAGGCTGA





TTCTAGTAGCAACTGCAAC
GCTGCTACCGTCCCCCCTTC

TGTATCATCCTTTTTCTA
GGTGCCAGACTTGGAGCCA





CGGTGTACATTCTCAGGTG
TCGCACAGTAATAAACGGC

GTAGCAACTGCAACCGG
GAGAATCGGTCAGGGACCC





CAGCTGGTGGAGTCTGGGG
CGTGTCTTCGGCGCTCAGG

TTCCTGGGCCCAGTCTGT
CTGAGGGCCGCTGATTATTA





GAGGCTTGGTCAAGCCTGG
CTGTCCATTTGCAGATACA

GCTGACTCAGCCACCCTC
CTATAGATGAGGAGTTTGGG





AGGGTCCCTGAGACTCTCC
GTGAGTTCCTGCCGTTGTCC

AGCGTCTGGGACCCCCG
GGCCGTTCCTGGGAGCTGCT





TGTGCAGCCTCTGGATTCAT
CTGGAGATGGTGAATCGGC

GACAGAGGGTCACCGTC
GGTACCAGTTTACAGTATTG





CTTCAGTGACTACTGCATG
CCTTCACAGAGTCTGCGTA

TCTTGTTCTGGAAGCAGC
CTTCCGATGTTGGAGCTGCT





AGCTGGATCCGCCGGGCTC
GTATCTGGTGGTACCACTAT

TCCAACATCGGAAGCAA
TCCAGAACAAGAGACGGTG





CAGGGAAGGGGCTGGAATG
TACTAATATATGAAAGCCA

TACTGTAAACTGGTACC
ACCCTCTGTCCGGGGGTCCC





GCTTTCATATATTAGTAATA
TTCCAGCCCCTTCCCTGGAG

AGCAGCTCCCAGGAACG
AGACGCTGAGGGTGGCTGA





GTGGTACCACCAGATACTA
CCCGGCGGATCCAGCTCAT

GCCCCCAAACTCCTCATC
GTCAGCACAGACTGGGCCC





CGCAGACTCTGTGAAGGGC
GCAGTAGTCACTGAAGATG

TATAGTAATAATCAGCG
NGGAACCGGTTGCNNNTNN





CGATTCACCATCTCCAGGG
AATCCAGAGGCTGCACAGG

GCCCTCAGGGGTCCCTG
CTTACTAGA (SEQ ID NO:





ACAACGGCAGGAACTCACT
AGAGTCTCAGGGACCCTCC

ACCGATTCTCTGGCTCCA
3277)





GTATCTGCAAATGGACAGC
AGGCTTGACCAAGCCTCCC

AGTCTGGCACCTCAGCCT






CTGAGCGCCGAAGACACGG
CCAGACTCCACCAGCCTGC

CCCTGGCCATCAGTGGG






CCGTTTATTACTGTGCGAGA
AC (SEQ ID NO: 3275)

CTCCAGTCTGAGGATGA






AGGGGGGACGGTAGCAGCT


GGCTGATTATTTCTGTGC






CGATCTACTACTACAACTA


AGCATGGGATGACAGCC






CATGGACGTCTGGGGCAAA


TGAATGGTCCGGTATTCG






GGGACCACGGTCACCGTCT


GCGGAGGGACCAAGCTG






CCTCAGCCTCCACCAAGGG


ACCGTCCTAGGTCAGCC






CCCATCGGTCTTCCCCCTGG


CAAGGCTGCCCCCTCGG






CACCCTCCTCCAAGAGCAC


TCACTCTGTTCCCACCCT






CTCTGGGGGCACAGCGGCC


CGAGTGAGGAGCTTCAA






CTGGGCTGCCTGGTCAAGG


GCCAACAAGGCCACACT






ACTACTTCCCCGAACCTGTG


GGTGTGTCTCATAAGTG






ACGGTCTCGTGGAACTCAG


ACTTCTACCCGGGAGCC






GCGCCCTGACCAGCGGCGT


GTGACAGTGGCCTGGAA






GCACACCTTCCCGGCTGTCC


GGCAGATAGCAGCCCCG






TACAGTCCTCNNNCTCTACT


TCAAGGCGGGAGTGGAG






CCCTCAGCAGCGTGGTGAC


ACCACCACACCCTCCAA






CGTGCCCTCCAGCAGCTTG


ACAAAGCAACAACAAGT






GGCACCCAGACCTACATCT


ACGCGGCCAGCAGCTAC






GCAACGTGAATCACAAGCC


CTGAGCCTGACGCCTGA






CAGCAACACCAAGNGGACN


GCAGTGGAAGTCCCACA






AGANAGTTGAGCCCAAATC


GAAGCTACAGCTGCCAG






TTGTGANAAACTCACNCAT


GTCACGCATGAAGGGAG






GCCCACCGTGCCCAG (SEQ


CACCGTGGAGAAGACAG






ID NO: 3274)


TGGCCCCTACAGAATGTT









CATAGAAGCTTGGCCGC









CATGGCCCAACTTGTTTA









TTGCAGCTTATAATGGTT









ACAAATAAAGCAA (SEQ









ID NO: 3276)







COV21_P3
A-C009
TACACATACGATTTAGGTG
CAGAGGTGCTCTTGGAGGA
COV21_P3
TACACATACGATTTAGGT
TTGGGCTGACCTAGGACGGT
COV21_P3


B5

ACACTATAGAATAACATCC
GGGTGCCAGGGGGAAGACC
B5
GACACTATAGAATAACA
CAGCTTGGTCCCTCCGCCGA
B5




ACTTTGCCTTTCTCTCCACA
GATGGGCCCTTGGTGGAGG

TCCACTTTGCCTTTCTCT
ATACCACATTGTTGCTGCCT





GGTGTCCACTCCCAGGTCC
CTGAGGAGACGGTGACCAG

CCACAGGTGTCCACTCCC
GCATCTGAGCTGCAGTAATA





AACTGCACCTCGGTTCTATC
GGTTCCCTGGCCCCAGTAG

AGGTCCAACTGCACCTC
CTCAGCCTCATCCTCAGCCT





GATTGAATTCCACCATGGG
TCATTGGAGGCCCCTAAAG

GGTTCTATCGATTGAATT
GGAGCCCAGAGACGGTCAG





ATGGTCATGTATCATCCTTT
CACTAAATGGGGAGTCTCT

CCACCATGGGATGGTCA
GGAGGCCGTGTTGCCAGACT





TTCTAGTAGCAACTGCAAC
CGCACAGTAATACACGGCC

TGTATCATCCTTTTTCTA
TGGAGCCAGAGAAGCGATC





CGGTGTACATTCCCAGGTG
GTGTCGTCAGATCTCAGCCT

GTAGCAACTGCAACCGG
AGGGACCCCTGAGGGCCGC





CAGCTGGTGCAGTCTGGGG
GCTCAGCTCCATGTAGGCT

TTCCTGGGCCCAGTCTGC
TTACTGACCTCATAAATCAT





CTGAGGTGAAGAAGCCTGG
GTGCTGATGGACGTGTCCC

CCTGACTCAGCCTCCCTC
GAGTTTGGGGGCTTTGCCTG





GGCCTCAGTGAAGGTCTCC
TGGTCATGGTGACCCTGCC

CGCGTCCGGGTCTCCTGG
GGTGCTGTTGGTACCAGGAG





TGCATGGCTTCTGGATACA
CTGAAACTTCTGTGCATAGT

ACAGTCAGTCACCATCTC
ACATAGTTATAACCACCAAC





CCTTCACCGGCTACTATATG
TTGTGCCACCACTGTTAGG

CTGCACTGGAACCAGCA
GTCACTGCTGGTTCCAGTGC





CACTGGGTGCGACAGGCCC
GTTGATCCATCCCATCCACT

GTGACGTTGGTGGTTATA
AGGAGATGGTGACTGACTG





CTGGACAAGGGCTTGAGTG
CAAGCCCTTGTCCAGGGGC

ACTATGTCTCCTGGTACC
TCCAGGAGACCCGGACGCG





GATGGGATGGATCAACCCT
CTGTCGCACCCAGTGCATA

AACAGCACCCAGGCAAA
GAGGGAGGCTGAGTCAG





AACAGTGGTGGCACAAACT
TAGTAGCCGGTGAAGGTGT

GCCCCCAAACTCATGATT
(SEQ ID NO: 3281)





ATGCACAGAAGTTTCAGGG
ATCCAGAAGCCATGCAGGA

TATGAGGTCAGTAAGCG






CAGGGTCACCATGACCAGG
GACCTTCACTGAGGCCCCA

GCCCTCAGGGGTCCCTG






GACACGTCCATCAGCACAG
GGCTTCTTCACCTCAGCCCC

ATCGCTTCTCTGGCTCCA






CCTACATGGAGCTGAGCAG
AGACTGCACCAGCTGCACC

AGTCTGGCAACACGGCC






GCTGAGATCTGACGACACG
TGNNANNGGGACNCCC

TCCCTGACCGTCTCTGGG






GCCGTGTATTACTGTGCGA
(SEQ ID NO: 3279)

CTCCAGGCTGAGGATGA






GAGACTCCCCATTTAGTGCT


GGCTGAGTATTACTGCA






TTAGGGGCCTCCAATGACT


GCTCAGATGCAGGCAGC






ACTGGGGCCAGGGAACCCT


AACAATGTGGTATTCGG






GGTCACCGTCTCCTCAGCGT


CGGAGGGACCAAGCTGA






CGACCAAGGGCCCATCGGT


CCGTCCTAGGTCAGCCC






CTTCCCCCTGGCACCCTCCT


AAGGCTGCCCCCTCGGT






CCAAGAGCACCTCTGGGGG


CACTCTGTTCCCGCCCTC






CACAGCGGCCCTGGGCTGC


GAGTGAGGAGCTTCAAG






CTGGTCAAGGACTACTTCC


CCAACAAGGCCACACTG






CCGAACCTGTGACGGTCTC


GTGTGTCTCATAAGTGAC






GTGGAACTCANGCGCCCTG


TTCTACCCGGGAGCCGT






ACCAGCGGCGTGCACACCT


GACAGTGGCCTGGAAGG






TCCCGGCTGTCCTACAGTCC


CAGATAGCAGCCCCGTC






TCNNACTCTACTCCCTCAGC


AAGGCGGGAGTGGAGAC






AGCGTGGTGACCGTGCCCT


CACCACACCCTCCAAAC






CCAGCAGCTTGGGCACCCA


AAAGCAACAACAAGTAC






GACCTACATCTGCAACGTG


GCGGCCAGCAGCTACCT






AATCACAAGCCCAGCAACA


GAGCCTGACGCCTGAGC






CCANNNGGANANAGAGTTG


AGTGGAAGTCCCACAGA






AGCCCAAATCTTGTGACAA


AGCTACAGCTGCCAGGT






AACTCACACATGCCCNCCG


CACGCATGAAGGGAGCA






TGCCCAGC (SEQ ID NO:


CCGTGGAGAAGACAGTG






3278)


GCCCCTACAGAATGTTC









ATAGAAGCTTGGCCGCC









ATGGCCCAACTTGTTTAT









TGCAGCTTATAATGGTTA









CAAA (SEQ ID NO:









3280)







COV21_P2
A-C012
TACACATACGATTTAGGTG
GNNCGCTNNGNNNNNNNN
COV21_P2
TACACATACGATTTAGGT
GNCAGCCTTGGGCTGACCTA
COV21_P2


C7

ACACTATAGAATAACATCC
GTGCTNTTGGANNNNGGTG
C7
GACACTATAGAATAACA
GGACGGTCAGCTTGGTCCCT
C7




ACTTTGCCTTTCTCTCCACA
CCAGGGGGAAGACCGATGG

TCCACTTTGCCTTTCTCT
CCGCCGAACACCCAAGTGTT





GGTGTCCACTCCCAGGTCC
GCCCTTGGTGGAGGCTGAG

CCACAGGTGTCCACTCCC
ACTACCTGCATATGAGCAGC





AACTGCACCTCGGTTCTATC
GAGACGGTGACCAGGGTTC

AGGTCCAACTGCACCTC
AGTAATAATCAGCCTCGTCC





GATTGAATTCCACCATGGG
CCNGGCCCCAGTAGTCAAA

GGTTCTATCGATTGAATT
TCAGCCTGGAGCCCAGAGA





ATGGTCATGTATCATCCTTT
GTACCCTTGGACATAGCTG

CCACCATGGGATGGTCA
TTGTCAGGGAGGCCGTGTTG





TTCTAGTAGCAACTGCCAA
TATCCGAGATCTCTCGCAC

TGTATCATCCTTTTTCTA
CCAGACTTGGAGCCAGAGA





CCGGTGTACATTCCCAGGT
AGTAATATACGGCCGTGTC

GTAGCAACTGCAACCGG
AGCGATTAGAAACCCCTGA





GCAGCTGGTGCAGTCTGGG
GTCAGATCTCAGCCTGCTC

TTCCTGGGCCCAGTCTGC
GGGCCGCTTACTGCCCTCAT





GCTGAGGTGAAGAAGCCTG
AGCTCCATGTAGGCTGTGC

CCTGACTCAGCCTGCCTC
AAATCATGAGTTTGGGGGCT





GGGCCTCAGTGAAGGTCTC
TGATGGACGTGTCCCTGGT

CGAGTCTGGGTCTCCTGG
TTGCCTGGGTGCTGTTGGTA





CTGCAAGGCTTCTGGATAC
CATGGTGACCCTGCCCTGA

ACAGTCGATCACCATCTC
CCAGGAGACAAGGTTATAA





ACCTTCACCGGCTACTATAT
AACTTCTGTGTATAGTTTCT

CTGCACTGGAACCAGCA
CTCCCAACATCACTGCTGGT





GCACTGGGTGCGACAGGCC
GCCACCACTGTTAGGGTTG

GTGATGTTGGGAGTTAT
TCCAGTGCAGGAGATGGTG





CCTGGACAAGGGCTTGAGT
ATCCATCCCATCCACTCAA

AACCTTGTCTCCTGGTAC
ATCGACTGTCCAGGAGACCC





GGATGGGATGGATCAACCC
GCCCTTGTCCAGGGGCCTG

CAACAGCACCCAGGCAA
AGACTCGGAGGCAGGCTGA





TAACAGTGGTGGCAGAAAC
TCGCACCCAGTGCATATAG

AGCCCCCAAACTCATGA
GTCAGCACAGACTGGGACC





TATACACAGAAGTTTCAGG
TAGCCGGTGAAGGTGTATC

TTTATGAGGGCAGTAAG
AGGAACCGGTTGCNNNNGN





GCAGGGTCACCATGACCAG
CAGAAGCCTTGCAGGAGAC

CGGCCCTCAGGGGTTTCT
NNAACTAGA (SEQ ID NO:





GGACACGTCCATCAGCACA
CTTCACTGAGGCCCCAGGC

AATCGCTTCTCTGGCTCC
3285)





GCCTACATGGAGCTGAGCA
TTCTTCACCTCAGCCCCAGA

AAGTCTGGCAACACGGC






GGCTGAGATCTGACGACAC
CTGCACCAGCTGCACCTG

CTCCCTGACAATCTCTGG






GGCCGTATATTACTGTGCG
(SEQ ID NO: 3283)

GCTCCAGGCTGAGGACG






AGAGATCTCGGATACAGCT


AGGCTGATTATTACTGCT






ATGTCCAAGGGTACTTTGA


GCTCATATGCAGGTAGT






CTACTGGGGCCAGGGAACC


AACACTTGGGTGTTCGG






CTGGTCACCGTCTCCTCAGC


CGGAGGGACCAAGCTGA






GTCGACCAAGGGCCCATCG


CCGTCCTAGGTCAGCCC






GTCTTCCCCCTGGCACCCTC


AAGGCTGCCCCCTCGGT






CTCCAAGAGCACCTCTGGG


CACTCTGTTCCCACCCTC






GGCACAGCGGCCCTGGGCT


GAGTGAGGAGCTTCAAG






GCCTGGTCAAGGACTACTT


CCAACAAGGCCACACTG






CCCCGAACCTGTGACGGTC


GTGTGTCTCATAAGTGAC






TCGTGGAACTCANGCGCCC


TTCTACCCGGGAGCCGT






TGACCAGCGGCGTGCACAC


GACAGTGGCCTGGAAGG






CTTCCCGGCTGTCCTACAGT


CAGATAGCAGCCCCGTC






CCTCNNNCTCTACTCCCTCA


AAGGCGGGAGTGGAGAC






GCAGCGTGGTGACCGTGCC


CACCACACCCTCCAAAC






CTCCAGCAGCTTGGGCACC


AAAGCAACAACAAGTAC






CAGACCTACATCTGCAACG


GCGGCCAGCAGCTACCT






TGAATCACAAGCCCAGCAA


GAGCCTGACGCCTGAGC






CACCAAGGTGGACAGA


AGTGGAAGTCCCACAGA






(SEQ ID NO: 3282)


AGCTACAGCTGCCAGGT









CACGCATGAAGGGAGCA









CCGTGG (SEQ ID NO:









3284)







COV21_P1
A-C013
TACACATACGATTTAGGTG
GGNCGCNGTGCCCCAGAGG
COV21_P1
TACACATACGATTTAGGT
CGATTGGAGGGCGTTATCCA
COV21_P1


B2

ACACTATAGAATAACATCC
TGCTCTTGGAGGAGGGTGC
B2
GACACTATAGAATAACA
CCTTCCACTGTACTTTGGCC
B2




ACTTTGCCTTTCTCTCCACA
CAGGGGGAAGACCGATGGG

TCCACTTTGCCTTTCTCT
TCTCTGGGATAGAAGTTATT





GGTGTCCACTCCCAGGTCC
CCCTTGGTGGAGGCTGAGG

NNNNNGNGTCCACTCCC
CAGCAGGCACACAACAGAG





AACTGCACCTCGGTTCTATC
AGACGGTGACCGTGGTCCC

AGGTCCAACTGCACCTC
GCAGTTCCAGATTTCAACTG





GATTGAATTCCACCATGGG
TTTGCCCCAGACGTCCATGT

GGTTCTATCGATTGAATT
CTCATCAGATGGCGGGAAG





ATGGTCATGTATCATCCTTT
AGTAGTAGTAGTAGTACCC

CCACCATGGGATGGTCA
ATGAAGACAGATGGTGCAG





TTCTAGTAGCAACTGCAAC
CTGCCTAACCGCATCTAGA

TGTATCATCCTTTTTCTA
CCACAGTTCGTTTGATCTCC





CGGTGTACATTCCCAGGTG
TAGCAGCTGGTACTACTAC

GTAGCAACTGCAACCGG
ACCTTGGTCCCTCCGCCGAA





CAGCTGGTGCAGTCTGGGG
AATAAAGTAGTCGATTCCC

TGTACATTCAGAAATTGT
AGTGAGGGGCCAGTTGCTA





CTGAGGTGAAGAAGCCTGG
TCTCGCACAGTAATACACG

GTTGACACAGTCTCCAG
CGCTGCTGACAGTAATAAAC





GTCCTCGGTGAAGGTCTCCT
GCCGTGTCCTCAGATCTCA

CCACCCTGTCTTTGTCTC
TGCAAAATCTTCAGGCTCTA





GCAAGGCTTCTGGAGGCAC
GGCTGCTCAGCTCCATGTA

CAGGGGAAAGAGCCACC
GGCTGCTGATGGTGAGAGT





CTTCAGCAGCTATGCTATCA
GGCTGTGCTCGTGGATTCGT

CTCTCCTGCAGGGCCAGT
GAAGTCTGTCCCAGACCCAC





GCTGGGTGCGACAGGCCCC
CCGCGGTAATCGTGACTCT

CAGAGTGTTAGCAGCTA
TGCCACTGAACCTGGCTGGG





TGGACAAGGGCTTGAGTGG
GCCCTGGAACTTCTGTGCGT

CTTAGCCTGGTACCAAC
ATGCCAGTGGCCCTGTTGGA





ATGGGAGGGATCATCCCTA
AGTTTGCTGTACCAAAGAT

AGAAACCTGGCCAGGCT
TGCATCATAGATGAGGAGC





TCTTTGGTACAGCAAACTA
AGGGATGATCCCTCCCATC

CCCAGGCTCCTCATCTAT
CTGGGAGCCTGGCCAGGTTT





CGCACAGAAGTTCCAGGGC
CACTCAAGCCCTTGTCCAG

GATGCATCCAACAGGGC
CTGTTGGTACCAGGCTAAGT





AGAGTCACGATTACCGCGG
GGGCCTGTCGCACCCAGCT

CACTGGCATCCCAGCCA
AGCTGCTAACACTCTGACTG





ACGAATCCACGAGCACAGC
GATAGCATAGCTGCTGAAG

GGTTCAGTGGCAGTGGG
GCCCTGCAGGAGAGGGTGG





CTACATGGAGCTGAGCAGC
GTGCCTCCAGAAGCCTTGC

TCTGGGACAGACTTCACT
CTCTTTCCCCTGGAGACAAA





CTGAGATCTGAGGACACGG
AGGAGACCTTCACCGAGGA

CTCACCATCAGCAGCCT
GACAGGG (SEQ ID NO: 





CCGTGTATTACTGTGCGAG
CCCAGGCTTCTTCACCTCAG

AGAGCCTGAAGATTTTG
3289)





AGGGAATCGACTACTTTAT
CCCCAGACTGCACCAGCTG

CAGTTTATTACTGTCAGC






TGTAGTAGTACCAGCTGCT
GCACCT (SEQ ID NO:

AGCGTAGCAACTGGCCC






ATCTAGATGCGGTTAGGCA
3287)

CTCACTTTCGGCGGAGG






GGGGTACTACTACTACTAC


GACCAAGGTGGAGATCA






TACATGGACGTCTGGGGCA


AACGTACGGTGGCTGCA






AAGGGACCACGGTCACCGT


CCATCTGTCTTCATCTTC






CTCCTCAGCGTCGACCAAG


CCGCCATCTGATGAGCA






GGCCCATCGGTCTTCCCCCT


GTTGAAATCTGGAACTG






GGCACCCTCCTCCAAGAGC


CCTCTGTTGTGTGCCTGC






ACCTCTGGGGGCACAGCGG


TGAATAACTTCTATCCCA






CCCTGGGCTGCCTGGTCAA


GAGAGGCCAAAGTACAG






GGACTACTTCCCCGAACCT


TGGAAGGTGGATAACGC






GTGACGGTCTCGTGGAACT


CCTCCAATCGGGTAACTC






CAGGCGCCCTGACCAGCGG


CCAGGAGAGTGTCACAG






CGTGCACACCTTCCCGGCT


AGCNNACAGCAAGGACA






GTCCTACAGTCCTCAGGAC


GCACCTACAGCCTCAGC






TCTACTCCCTCAGCAGCGTG


AGCACCCTGACGCTGAN






GTGACCGTGCCCTCCAGCA


CAAAGCANACTACGAGA






GCTTGGGCACCCAGACCTA


AACACAAAGTCTACGCC






CATCTGCAACGTGAATCAC


TGCGAAGTCACCCATCN






AAGCCCAGCAACACCAA


NNNCTGAGCTCGCCCGT






(SEQ ID NO: 3286)


CACAAAGAGCTTCAACA









GGGGGANANTGTTANAA









GCTTGGCCGCCATGGCC









CAACTTGTTNATTGCAGC









TTANATGGTTA (SEQ ID









NO: 3288)







COV21_P3
A-C014
TACACATACGATTTAGGTG
GGGGCCACCGGTGTGCACA
COV21_P3
TACACATACGATTTAGGT
CTTGGGCTGACCTAGGACGG
COV21_P3


H10

ACACTATAGAATAACATCC
GCAGTGGGGGAGGCTTGGT
H10
GACACTATAGAATAACA
TCAGCTTGGTCCCTCCGCCG
H10




ACTTTGCCTTTCTCTCCACA
GCAACCTGGTGGCTCATTG

TCCACTTTGCCTTTCTCT
AATATCACATATCGAGAGTG





GGTGTCCACTCCCAGGTCC
CGCCTCAGCTGCGCGGCGT

CCACAGGTGTCCACTCCC
CTGCTGCTTGTATATGAGCT





AACTGCACCTCGGTTCTATC
CCGGCTTCAATTTTTCCACT

AGGTCCAACTGCACCTC
GCAGTAATAATCAGCCTCGT





GATTGAATTCCACCATGGG
CACTGGATGCATTGGGTCA

GGTTCTATCGATTGAATT
CCTCAGCCTGGAGCCCAGA





ATGGTCATGTATCATCCTTT
GGCAAGCACCGGGAAAGG

CCACCATGGGATGGTCA
GATGGTCAGGGAGGCCGTG





TTCTAGTAGCAACTGCAAC
GCCTCGTGTGGGTATCTCG

TGTATCATCCTTTTTCTA
TTGCCAGACTTGGAGCCAGA





CGGTGTGCACAGCAGTGGG
GATTAACTCCGATGGCAGC

GTAGCAACTGCAACCGG
GAAGCGATTAGAAACCCCT





GGAGGCTTGGTGCAACCTG
AGAAGAGCCTACGCTACCT

TTCCTGGGCCCAGTCTGT
GAGGGCCGATTACTGACATC





GTGGCTCATTGCGCCTCAG
CAGTGAAAGGGAGGTTCAC

GCTGACTCAGCCTGCCTC
ATAAATCATGAGTTTGGGGG





CTGCGCGGCGTCCGGCTTC
AATTTCACGGGATAACGCA

CGTGTCTGGGTCTCCTGG
CTTTGCCTGGGTGTTGTTGG





AATTTTTCCACTCACTGGAT
AAAAACACTCTCTATCTCC

ACAGTCGATCACCATCTC
TACCAGGAGACATAGTTATA





GCATTGGGTCAGGCAAGCA
AGATGGACTCACTCCGCGA

CTGCACTGGAACCAGCA
ACCACCAACGTCACTGCTGG





CCGGGAAAGGGCCTCGTGT
CGAAGATACAGCTGTCTAT

GTGACGTTGGTGGTTATA
TTCCAGTGCAGGAGATGGTG





GGGTATCTCGGATTAACTC
TACTGTACTAGGGATGATA

ACTATGTCTCCTGGTACC
ATCGACTGTCCAGGAGACCC





CGATGGCAGCAGAAGAGCC
GTTCTTGGCCGCATTTCTTC

AACAACACCCAGGCAAA
AGACACGGAGGCAGGCTGA





TACGCTACCTCAGTGAAAG
GACAACTGGGGTCAGGGGA

GCCCCCAAACTCATGATT
GTCAGCACAGACTGGGNCC





GGAGGTTCACAATTTCACG
CCTTGGTGACGGTCTCTAGC

TATGATGTCAGTAATCG
AGGAACCGGNT (SEQ ID





GGATAACGCAAAAAACACT
GCGTCGACGGCA (SEQ ID

GCCCTCAGGGGTTTCTAA
NO: 3293)





CTCTATCTCCAGATGGACTC
NO: 3291)

TCGCTTCTCTGGCTCCAA






ACTCCGCGACGAAGATACA


GTCTGGCAACACGGCCT






GCTGTCTATTACTGTACTAG


CCCTGACCATCTCTGGGC






GGATGATAGTTCTTGGCCG


TCCAGGCTGAGGACGAG






CATTTCTTCGACAACTGGG


GCTGATTATTACTGCAGC






GTCAGGGGACCTTGGTGAC


TCATATACAAGCAGCAG






GGTCTCTAGCGCGTCGACC


CACTCTCGATATGTGATA






AAGGGCCCATCGGTCTTCC


TTCGGCGGAGGGACCAA






CCCTGGCACCCTCCTCCAA


GCTGACCGTCCTAGGTC






GAGCACCTCTGGGGGCACA


AGCCCAAGGCTGCCCCC






GCGGCCCTGGGCTGCCTGG


TCGGTCACTCTGTTCCCG






TCAAGGACTACTTCCCCGA


CCCTCGAGTGAGGAGCT






ACCTGTGACGGTCTCGTGG


TCAAGCCAACAAGGCCA






AACTCAGGCGCCCTGACCA


CACTGGTGTGTCTCATAA






GCGGCGTGCACACCTTCCC


GTGACTTCTACCCGGGA






GGCTGTCCTACAGTCCTCA


GCCGTGACAGTGGCCTG






GGACTCTACTCCCTCAGCA


NAAGGCAGATAGCAGCC






GCGTGGTGACCGTGCCCTC


CCGTCAAGGCGGGAGTG






CAGCAGCTTGGGCACCCAG


GAGACCACCACACCCTC






ACCTACATCTGCAACGTGA


CAAACAAAGCAACAACA






ATCACAAGCCCAGCAACAC


AGTACGCGGCCAGCAGC






CAAGGTGGACAAGAGAGTT


TACCTGAGCCTGACGCCT






GAGCCCAAATCTTGTGACA


GAGCAGTGGAAGTCCCA






AAACTCACACATGCCCNNN


CAGAAGCTACAGCTGCC






CNNGNGNCCAGCACCTGAA


AGGTCACGCATGAAGGA






CTCCTGGGGGGACCGTC


GCACCGTGGANAAGACA






(SEQ ID NO: 3290)


GTGGCCCCTACAGAATG









TTCATAGAAGCTTGGCC









GCCATGGCCCAACTTGTT









TATTGCAGCTTAT (SEQ









ID NO: 3292)







COV21_P3
A-C015
TACACATACGATTTAGGTG
GGGGCCACCGGTGTGCACA
COV21_P3
TACACATACGATTTAGGT
GGGNNNNNCTTGGGCTGAC
COV21_P3


D12

ACACTATAGAATAACATCC
GCGTCTGGAGGGGGCTTGG
D12
GACACTATAGAATAACA
GTAGGACGGTCAGGTGGGT
D12




ACTTTGCCTTTCTCTCCACA
TGAAACCTGGTGGTTCTCTT

TCCACTTTGCCTTTCTCT
CCCTCCACCGAACACCCAAG





GGTGTCCACTCCCAGGTCC
AGGCTGAGTTGCGCTGCGT

CCACAGGTGTCCACTCCC
TACTCAGGCTGTCATCCCAT





AACTGCACCTCGGTTCTATC
CAGGCTTTACCTTTTCTTCT

AGGTCCAACTGCACCTC
TCTGCACAGTAATAGTCACC





GATTGAATTCCACCATGGG
TATAGCATGAACTGGGTAC

GGTTCTATCGATTGAATT
CTCATCCTCAGACTGGAGCC





ATGGTCATGTATCATCCTTT
GCCAAGCGCCGGGCAAAGG

CCACCATGGGATGGTCA
CACTGATGGCCAGGGAGGC





TTCTAGTAGCAACTGCAAC
TCTCGAGTGGGTGTCCTCTA

TGTATCATCCTTTTTCTA
TGAGGTGCCAGACTTGGAG





CGGTGTGCACAGCGTCTGG
TATCAAGTTCCAGTAGCTA

GTAGCAACTGCAACCGG
CCAGAGAATCGGTCAGGGA





AGGGGGCTTGGTGAAACCT
CATTTACTATGCTGACTCAG

TTCCTGGGCCCAGTCTGT
CCCCTGAGGGCCGCCGATTA





GGTGGTTCTCTTAGGCTGA
TCAAAGGCAGATTTACCAT

GCTGACTCAGCCACCCTC
CTATTGTAAATGAGGAGTTT





GTTGCGCTGCGTCAGGCTTT
CAGCCGCGATAATGCCAAA

AGCGTCTGGGACCCCCG
GGGGGCCGTTCCTGGGAGCT





ACCTTTTCTTCTTATAGCAT
AATTCACTCTATCTGCAAAT

GACAGAGGGTCACCATC
GCTGGAACCAGTTAACAGT





GAACTGGGTACGCCAAGCG
GAACTCTCTTCGCGCAGAG

TCTTGTTCTGGAATCAGC
ATTACTTCCGAGGTTGGAGC





CCGGGCAAAGGTCTCGAGT
GATACCGCTGTCTACTACTG

TCCAACCTCGGAAGTAA
TGATTCCAGAACAAGAGAT





GGGTGTCCTCTATATCAAGT
TGCTAGGGAGGTGAAAAGA

TACTGTTAACTGGTTCCA
GGTGACCCTCTGTCCGGGGG





TCCAGTAGCTACATTTACTA
GTAGTAGCTGCCCCAGAGT

GCAGCTCCCAGGAACGG
TCCCAGACGCTGAGGGTGG





TGCTGACTCAGTCAAAGGC
ACTACTTTGATTATTGGGGT

CCCCCAAACTCCTCATTT
CTGAGTCAGCACAGACTGG





AGATTTACCATCAGCCGCG
CAAGGGACACTTGTTACAG

ACAATAGTAATCGGCGG
GACCAGGAACCGGTTG (SEQ





ATAATGCCAAAAATTCACT
TCTCATCCGCGTCGACGGC

CCCTCAGGGGTCCCTGA
ID NO: 3297)





CTATCTGCAAATGAACTCTC
A (SEQ ID NO: 3295)

CCGATTCTCTGGCTCCAA






TTCGCGCAGAGGATACCGC


GTCTGGCACCTCAGCCTC






TGTCTACTACTGTGCTAGGG


CCTGGCCATCAGTGGGC






AGGTGAAAAGAGTAGTAGC


TCCAGTCTGAGGATGAG






TGCCCCAGAGTACTACTTTG


GGTGACTATTACTGTGCA






ATTATTGGGGTCAAGGGAC


GAATGGGATGACAGCCT






ACTTGTTACAGTCTCATCCG


GAGTACTTGGGTGTTCG






CGTCGACCAAGGGCCCATC


GTGGAGGGACCCACCTG






GGTCTTCCCCCTGGCACCCT


ACCGTCCTACGTCAGCCC






CCTCCAAGAGCACCTCTGG


AAGGCTGCCCCCTCGGT






GGGCACAGCGGCCCTGGGC


CACTCTGTTCCCACCCTC






TGCCTGGTCAAGGACTACT


GAGTGAGGAGCTTCAAG






TCCCCGAACCTGTGACGGT


CCAACAAGGCCACACTG






CTCGTGGAACTCAGGCGCC


GTGTGTCTCATAAGTGAC






CTGACCAGCGGCGTGCACA


TTCTACCCGGGAGCCGT






CCTTCCCGGCTGTCCTACAG


GACAGTGGCCTGGAAGG






TCCTCAGGACTCTACTCCCT


CAGATAGCAGCCCCGTC






CAGCAGCGTGGTGACCGTG


AAGGCGGGAGTGGAGAC






CCCTCCAGCAGCTTGGGCA


CACCACACCCTCCAAAC






CCCAGACCTACATCTGCAA


AAAGCAACAACAAGTAC






CGTGAATCACAAGCCCAGC


GCGGCCAGCAGCTACCT






AACACCAAGGTGGACAAGA


GAGCCTGACGCCTGAGC






GAGTTGAGCCCAAATCTTG


AGTGGAAGTCCCACAGA






TGACAAAACTCACACATGC


AGCTACAGCTGCCAGGT






CCACCGTGCCCAGCACC


CACGCATGAAGGGAGCA






(SEQ ID NO: 3294)


CCGTGGAGAAGACAGTG









GCCCCTACAGAATGTTC









ATAGAAGCTTGGCCGCC









ATGGCCCAACTTGTTTAT









TGCAGCTTATAATGGTTA









CAAA (SEQ ID NO: 3296)







COV21_P3
A-C016
TACACATACGATTTAGGTG
GCTGTGNNNNAGAGGTGCT
COV21_P3
TACACATACGATTTAGGT
TNCCCGATTGGAGGGCGTTA
COV21_P3


A4

ACACTATAGAATAACATCC
CTTGGAGGAGGGTGCCAGG
A4
GACACTATAGAATAACA
TCCACCTTCCACTGTACTTT
A4




ACTTTGCCTTTCTCTCCACA
GGGAAGACCGATGGGCCCT

TCCACTTTGCCTTTCTCT
GGCCTCTCTGGGATAGAAGT





GGTGTCCACTCCCAGGTCC
TGGTGGAGGCTGAGGAGAC

CCACAGGTGTCCACTCCC
TATTCAGCAGGCACACAAC





AACTGCACCTCGGTTCTATC
GGTGACCAGGGTTCCCTGG

AGGTCCAACTGCACCTC
AGAGGCAGTTCCAGATTTCA





GATTGAATTCCACCATGGG
CCCCAGTAGTCAAAGTTAC

GGTTCTATCGATTGAATT
ACTGCTCATCAGATGGCGGG





ATGGTCATGTATCATCCTTT
CTCCGTAGCAGCTACCACC

CCACCATGGGATGGTCA
AAGATGAAGACAGATGGTG





TTCTAGTAGCAACTGCAAC
ACTACAATAAGGGGCGGTC

TGTATCATCCTTTTTCTA
CAGCCACAGTTCGTTTGATC





CGGTGTACATTCTGAGGTG
ACTTTCGCACAGTAATACA

GTAGCAACTGCAACCGG
TCCACCTTGGTCCCTCCGCC





CAGCTGGTGGAGTCTGGGG
CAGCCGTGTCCTCAGCTCTC

TGTACATTGTGCCATCCG
GAAAGTAGGAGGGAGATTA





GAGGCGTGGTCCAGCCTGG
AGGCTGTTCATTTGCAGAT

GATGACCCAGTCTCCATC
TCATACTGTTGACAGTAATA





GAGGTCCCTGAGACTCTCC
ACAGCGTGTTCTTGGAATT

CTCCCTGTCTGCATCTGT
TGTTGCAATATCTTCAGGCT





TGTGCAGCCTCTGGATTCAC
GTCTCTGGAGATGGTGAAT

AGGAGACAGAGTCACCA
GCAGGCTGTTGATGGTGAA





CTTCAGTAGATATGGCATG
CGGCCCTTCACGGAGTCTG

TCACTTGCCAGGCGAGT
AGTAAAATCTGTCCCAGATC





CACTGGGTCCGCCAGGCTC
CATAGTATTTATTACTTCCA

CAGGACATTAGCAACTA
CACTTCCGCTGAACCTTGAT





CAGGCAAGGGGCTGGAGTG
TCATATGATATAACTGCCA

TTTAAATTGGTATCAGCA
GGGACCCCTGTTTCCAAATT





GGTGGCAGTTATATCATAT
CCCACTCCAGCCCCTTGCCT

GAAACCAGGGAAAGCCC
GGATGCATCGTAGATCAGG





GATGGAAGTAATAAATACT
GGAGCCTGGCGGACCCAGT

CTAAGCTCCTGATCTACG
AGCTTAGGGGCTTTCCCTGG





ATGCAGACTCCGTGAAGGG
GCATGCCATATCTACTGAA

ATGCATCCAATTTGGAA
TTTCTGCTGATACCAATTTA





CCGATTCACCATCTCCAGA
GGTGAATCCAGAGGCTGCA

ACAGGGGTCCCATCAAG
AATAGTTGCTAATGTCCTGA





GACAATTCCAAGAACACGC
CAGGAGAGTCTCAGGGACC

GTTCAGCGGAAGTGGAT
CTCGCCTGGCAAGTGATGGT





TGTATCTGCAAATGAACAG
TCCCAGGCTGGACCACGCC

CTGGGACAGATTTTACTT
GACTCTGTCTCCTACAGATG





CCTGAGAGCTGAGGACACG
TCCCCCAGACTCCACCANN

TCACCATCAACAGCCTG
CAGACAGGGNG (SEQ ID





GCTGTGTATTACTGTGCGA
CTGCAC (SEQ ID NO: 

CAGCCTGAAGATATTGC
NO: 3301)





AAGTGACCGCCCCTTATTGT
3299)

AACATATTACTGTCAAC






AGTGGTGGTAGCTGCTACG


AGTATGATAATCTCCCTC






GAGGTAACTTTGACTACTG


CTACTTTCGGCGGAGGG






GGGCCAGGGAACCCTGGTC


ACCAAGGTGGAGATCAA






ACCGTCTCCTCAGCGTCGA


ACGTACGGTGGCTGCAC






CCAAGGGCCCATCGGTCTT


CATCTGTCTTCATCTTCC






CCCCCTGGCACCCTCCTCCA


CGCCATCTGATGAGCAG






AGAGCACCTCTGGGGGCAC


TTGAAATCTGGAACTGC






AGCGGCCCTGGGCTGCCTG


CTCTGTTGTGTGCCTGCT






GTCAAGGACTACTTCCCCG


GAATAACTTCTATCCCAG






AACCTGTGACGGTCTCGTG


AGAGGCCAAAGTACAGT






GAACTCANGCGCCCTGACC


GGAAGGTGGATAACGCC






AGCGGCGTGCACACCTTCC


CTCCAATCGGGTAACTCC






CGGCTGTCCTACAGTCCTCN


CAGGAGAGTGTCACAGA






NACTCTACTCCCTCAGCAG


GCAGGACAGCAAGGACA






CGTGGTGACCGTGCCCTCC


GCACCTACAGCCTCAGC






AGCAGCTTGGGCACCCAGA


AGCACCCTGACGCTGAG






CCTACATCTGCAACGTGAA


CAAAGCAGACTACGAGA






TCACAAGCCCAGCAACACC


AACACAAAGTCTACGCC






A (SEQ ID NO: 3298)


TGCGAAGTCACCCATCA









GGGCCTGAGCTCGCCCG









TCACAAAGAGCTTCAAC









AGGGGAGAGTGTTAGAA









GCTTGGCCGCCATGGCC









CAACTTGTTTATTGCAGC









TTATAATGG (SEQ ID









NO: 3300)







COV21_P1
A-C017
TACACATACGATTTAGGTG
GAGGTGCTCTTGGAGGAGG
COV21_P1
TACACATACGATTTAGGT
CCGATTGGAGGGCGTTATCC
COV21_P1


E10

ACACTATAGAATAACATCC
GTGCCAGGGGGAAGACCGA
E10
GACACTATAGAATAACA
ACCTTCCACTGTACTTTGGC
E10




ACTTTGCCTTTCTCTCCACA
TGGGCCCTTGGTGGAGGCT

TCCACTTTGCCTTTCTCT
CTCTCTGGGATAGAAGTTAT





GGTGTCCACTCCCAGGTCC
GAGGAGACGGTGACCAGGG

CCACAGGTGTCCACTCCC
TCAGCAGGCACACAACAGA





AACTGCACCTCGGTTCTATC
TTCCCTGGCCCCAGTGGTCG

AGGTCCAACTGCACCTC
GGCAGTTCCAGATTTCAACT





GATTGAATTCCACCATGGG
AAGTTGAGGTCGGGACCAG

GGTTCTATCGATTGAATT
GCTCATCAGATGGCGGGAA





ATGGTCATGTATCATCCTTT
CTGCTGCTATACCCCTTACG

CCACCATGGGATGGTCA
GATGAAGACAGATGGTGCA





TTCTAGTAGCAACTGCAAC
CCCGCTTTTGCACAGTAATA

TGTATCATCCTTTTTCTA
GCCACAGTTCGTTTAATCTC





CGGTGTACATTCTGAAGTG
AAAGGCCGTGTCCTCAGCT

GTAGCAACTGCAACCGG
CAGTCGTGTCCCTTGGCCGA





CAGCTGGTGGAGTCTGGGG
CTCAGACTGTTCATTTGCAG

TGTACATTCAGAAATTGT
AGGTGATACGCTGCTGACA





GAGGCTTGGTACAGCCTGG
ATACAGGGAGTTCTTGGCG

GTTGACACAGTCTCCAG
GTAATAAACTGCAAAATCTT





CAGGTCCCTGAGACTCTCCT
TTGTCTCTGGAGATGGTGA

CCACCCTGTCTTTGTCTC
CAGGCTCTAGGCTGCTGATG





GTGCAGCCTCTGGATTCAC
ATCGGCCCTTCACAGAGTC

CAGGGGAAAGAGCCACC
GTGAGAGTGAAGTCTGTCCC





CTTTGATGATTATGCCATGC
CGCATAGCCTATGGTACCA

CTCTCCTGCAGGGCCAGT
AGACCCACTGCCACTGAACC





ACTGGGTCCGGCAAGCTCC
CTATTCCAACTAATACCTGA

CAGAGTGTTAGCAGCTA
TGGCTGGGATGCCAGTGGCC





AGGGAAGGGCCTGGAGTGG
GACCCACTCCAGGCCCTTC

CTTAGCCTGGTACCAAC
CTGTTGGATGCATCATAGAT





GTCTCAGGTATTAGTTGGA
CCTGGAGCTTGCCGGACCC

AGAAACCTGGCCAGGCT
GAGGAGCCTGGGAGCCTGG





ATAGTGGTACCATAGGCTA
AGTGCATGGCATAATCATC

CCCAGGCTCCTCATCTAT
CCAGGTTTCTGTTGGTACCA





TGCGGACTCTGTGAAGGGC
AAAGGTGAATCCAGAGGCT

GATGCATCCAACAGGGC
GGCTAAGTAGCTGCTAACAC





CGATTCACCATCTCCAGAG
GCACAGGAGAGTCTCAGGG

CACTGGCATCCCAGCCA
TCTGACTGGCCCTGCAGGAG





ACAACGCCAAGAACTCCCT
ACCTGCCAGGCTGTACCAA

GGTTCAGTGGCAGTGGG
AGGGTGGCTCTTTCCCCTGG





GTATCTGCAAATGAACAGT
GCCTCCCCCAGACTCCACN

TCTGGGACAGACTTCACT
AGACAAAGACAGGGAGACT





CTGAGAGCTGAGGACACGG
NNNTTGCAC (SEQ ID NO:

CTCACCATCAGCAGCCT
GGA (SEQ ID NO: 3305)





CCTTTTATTACTGTGCAAAA
3303)

AGAGCCTGAAGATTTTG






GCGGGCGTAAGGGGTATAG


CAGTTTATTACTGTCAGC






CAGCAGCTGGTCCCGACCT


AGCGTATCACCTTCGGCC






CAACTTCGACCACTGGGGC


AAGGGACACGACTGGAG






CAGGGAACCCTGGTCACCG


ATTAAACGTACGGTGGC






TCTCCTCAGCGTCGACCAA


TGCACCATCTGTCTTCAT






GGGCCCATCGGTCTTCCCCC


CTTCCCGCCATCTGATGA






TGGCACCCTCCTCCAAGAG


GCAGTTGAAATCTGGAA






CACCTCTGGGGGCACAGCG


CTGCCTCTGTTGTGTGCC






GCCCTGGGCTGCCTGGTCA


TGCTGAATAACTTCTATC






AGGACTACTTCCCCGAACC


CCAGAGAGGCCAAAGTA






TGTGACGGTCTCGTGGAAC


CAGTGGAAGGTGGATAA






TCAGGCGCCCTGACCAGCG


CGCCCTCCAATCGGGTA






GCGTGCACACCTTCCCGGC


ACTCCCAGGAGAGTGTC






TGTCCTACAGTCCTCAGGA


ACAGAGCAGGACAGCAA






CTCTACTCCCTCAGCAGCGT


GGACAGCACCTACAGCC






GGTGACCGTGCCCTCCAGC


TCAGCAGCACCCTGACG






AGCTTGGGCACCCAGACCT


CTGAGCAAAGCAGACTA






ACATCTGCAACGTGAATCA


CGAGAAACACAAAGTCT






CAAGCCCAGCAACACCAA


ACGCCTGCGAAGTCACC






(SEQ ID NO: 3302)


CATCNGGCCTGAGCTCG









CCCGTCACAAAGAGCTT









CAACAGGGGAGAGTGTT









AGAAGCTTGGNCGCCAT









GGCCCAACTTGTTTATTG









CAGCTTATNATGGNTAC









AAATAAAGCAATAGCAT









CACAAATTTCAC (SEQ









ID NO: 3304)







COV21_P3
A-C028
TACACATACGATTTAGGTG
CTGTGCCCCAGAGGTGCTC
COV21_P3
TACACATACGATTTAGGT
TACCCGATTGGAGGGCGTTA
COV21_P3


E2

ACACTATAGAATAACATCC
TTGGAGGAGGGTGCCAGGG
E2
GACACTATAGAATAACA
TCCACCTTCCACTGTACTTT
E2




ACTTTGCCTTTCTCTCCACA
GGAAGACCGATGGGCCCTT

TCCACTTTGCCTTTCTCT
GGCCTCTCTGGGATAGAAGT





GGTGTCCACTCCCAGGTCC
GGTGGAGGCTGAGGAGACG

CCACAGGTGTCCACTCCC
TATTCAGCAGGCACACAAC





AACTGCACCTCGGTTCTATC
GTGACCAGGGTTCCCTGGC

AGGTCCAACTGCACCTC
AGAGGCAGTTCCAGATTTCA





GATTGAATTCCACCATGGG
CCCAGTAGTCAAAGTTGAG

GGTTCTATCGATTGAATT
ACTGCTCATCAGATGGCGGG





ATGGTCATGTATCATCCTTT
GTCGGGACCAGCTGCTGCT

CCACCATGGGATGGTCA
AAGATGAAGACAGATGGTG





TTCTAGTAGCAACTGCAAC
ATACCCCTTACGCCCGCTTT

TGTATCATCCTTTTTCTA
CAGCCACAGTTCGTTTAATC





CGGTGTACTTCTGAAGTGC
TGCACAGTAATACAAGGCC

GTAGCAACTGCAACCGG
TCCAGTCGTGTCCCTTGGCC





AGCTGGTGGAGTCTGGGGG
GTGTCCTCAGCTCTCAGACT

TGTACATTCAGAAATTGT
GAAGGTGATACGCTGCTGA





AGGCTTGGTACAGCCTGGC
GTTCATTTGCAGATACAGG

GTTGACACAGTCTCCAG
CAGTAATAAACTGCAAAAT





AGGTCCCTGAGACTCTCCT
GAGTTCTTGGCGTTGTCTCT

CCACCCTGTCTTTGTCTC
CTTCAGGCTCTAGGCTGCTG





GTGCAGCCTCTGGATTCAC
GGAGATGGTGAATCGGCCC

CAGGGGAAAGAGCCACC
ATGGTGAGAGTGAAGTCTGT





CTTTGATGATTATGCCATGC
TTCACAGAGTCCGCATAGC

CTCTCCTGCAGGGCCAGT
CCCAGACCCACTGCCACTGA





ACTGGGTCCGGCAAGCTCC
CTATGCTACCACTATTCCAA

CAGAGTGTTAGCAGCTA
ACCTGGCTGGGATGCCAGTG





AGGGAAGGGCCTGGAGTGG
CTAATACCTGAGACCCACT

CTTAGCCTGGTACCAAC
GCCCTGTTGGATGCATCATA





GTCTCAGGTATTAGTTGGA
CCAGGCCCTTCCCTGGAGC

AGAAACCTGGCCAGGCT
GATGAGGAGCCTGGGAGCC





ATAGTGGTAGCATAGGCTA
TTGCCGGACCCAGTGCATG

CCCAGGCTCCTCATCTAT
TGGCCAGGTTTCTGTTGGTA





TGCGGACTCTGTGAAGGGC
GCATAATCATCAAAGGTGA

GATGCATCCAACAGGGC
CCAGGCTAAGTAGCTGCTAA





CGATTCACCATCTCCAGAG
ATCCAGAGGCTGCACAGGA

CACTGGCATCCCAGCCA
CACTCTGACTGGCCCTGCAG





ACAACGCCAAGAACTCCCT
GAGTCTCAGGGACCTGCCA

GGTTCAGTGGCAGTGGG
GAGAGGGTGGCTCTTTCCCC





GTATCTGCAAATGAACAGT
GGCTGTACCAAGCCTCCCC

TCTGGGACAGACTTCACT
TGGAGACAAAGACAGGGNG





CTGAGAGCTGAGGACACGG
CAGACTCCACCAGCTGCAC

CTCACCATCAGCAGCCT
ACTGNNNNNGGGGGTCATA





CCTTGTATTACTGTGCAAAA
(SEQ ID NO: 3307)

AGAGCCTGAAGATTTTG
CCAATCTCGCANGT (SEQ





GCGGGCGTAAGGGGTATAG


CAGTTTATTACTGTCAGC
ID NO: 3309)





CAGCAGCTGGTCCCGACCT


AGCGTATCACCTTCGGCC






CAACTTTGACTACTGGGGC


AAGGGACACGACTGGAG






CAGGGAACCCTGGTCACCG


ATTAAACGTACGGTGGC






TCTCCTCAGCGTCGACCAA


TGCACCATCTGTCTTCAT






GGGCCCATCGGTCTTCCCCC


CTTCCCGCCATCTGATGA






TGGCACCCTCCTCCAAGAG


GCAGTTGAAATCTGGAA






CACCTCTGGGGGCACAGCG


CTGCCTCTGTTGTGTGCC






GCCCTGGGCTGCCTGGTCA


TGCTGAATAACTTCTATC






AGGACTACTTCCCCGAACC


CCAGAGAGGCCAAAGTA






TGTGACGGTCTCGTGGAAC


CAGTGGAAGGTGGATAA






TCAGGCGCCCTGACCAGCG


CGCCCTCCAATCGGGTA






GCGTGCACACCTTCCCGGC


ACTCCCAGGAGAGTGTC






TGTCCTACAGTCCTCAGGA


ACAGAGCAGGACAGCAA






CTCTACTCCCTCAGCAGCGT


GGACAGCACCTACAGCC






GGTGACCGTGCCCTCCAGC


TCAGCAGCACCCTGACG






AGCTTGGGCACCCAGACCT


CTGAGCAAAGCANACTA






ACATCTGCAACGTGAATCA


CGAGAAACACAAAGTCT






CAAGCCCAGCAACACCAAN


ACGCCTGCGAAGTCACC






GTGGACAAGAGAGTTGAGC


CATCNGNCCTGAGCTCG






CCAAATCTTGTGACAAAAC


CCCGTCACAAAGAGCTT






TCACACATGCCCACCGTGC


CAACAGGGGAGAGTGTT






CC (SEQ ID NO: 3306)


AGAAGCTTGGCCGCCAT









GGNNCAACTTGTTTATTG









CAGCTTATAATGGTTACA









AATAAAGCAATAGCATC









(SEQ ID NO: 3308)







COV21_P3
A-C018
TACACATACGATTTAGGTG
GCTGTGNNNNNGAGGTGCT
COV21_P3
TACACATACGATTTAGGT
GGNNNTNCNNGATTGGAGG
COV21_P3


B9

ACACTATAGAATAACATCC
CTTGGAGGAGGGTGCCAGG
B9
GACACTATAGAATAACA
GCGTTATCCACCTTCCACTG
B9




ACTTTGCCTTTCTCTCCACA
GGGAAGACCGATGGGCCCT

TCCACTTTGCCTTTCTCT
TACTTTGGCCTCTCTGGGAT





GGTGTCCACTCCCAGGTCC
TGGTGGAGGCTGAGGAGAC

CCACAGGTGTCCACTCCC
AGAAGTTATTCAGCAGGCA





AACTGCACCTCGGTTCTATC
GGTGACCAGGGTTCCCTGG

AGGTCCAACTGCACCTC
CACAACAGAGGCAGTTCCA





GATTGAATTCCACCATGGG
CCCCAGTAGTCAAACGCCC

GGTTCTATCGATTGAATT
GATTTCAACTGCTCATCAGA





ATGGTCATGTATCATCCTTT
AGAACGAACTATCGTCAAA

CCACCATGGGATGGTCA
TGGCGGGAAGATGAAGACA





TTCTAGTAGCAACTGCAAC
ATCTCTCGCACAGTAATAC

TGTATCATCCTTTTTCTA
GATGGTGCAGCCACAGTTCG





CGGTGTACATTCTGAGGTG
ACAGCCGTGTCCTCAGCTCT

GTAGCAACTGCAACCGG
TTTGATCTCCAGCTTGGTCC





CAGCTGGTGGAGTCTGGGG
CAGGCTGTTCATTTGCAGAT

TGTACATTCAGACATCCA
CCTGGCCAAAAGTGGCCGG





GAGGCGTGGTCCAGCCTGG
ACAGCGTGTTCTTGGAATT

GTTGACCCAGTCTCCATC
AGGGGTACTGTAACTCTGTT





GAGGTCCCTGAGACTCTCC
GTCTCTGGAGATGGTGAAT

CTCCCTGTCTGCGTCTGT
GACAGTAGTAAGTTGCAAA





TGTGCAGCCTCTGGATTCAC
CGGCCCTTCACGGAGTCTG

AGGAGACAGAGTCACCA
ATCATCAGGTTGCAGACTGC





CTTCAGTAACTATGCTATAC
CGTAGTATTTATTGCTTCCA

TCACTTGCCGGGCAAGT
TGATGGTGAGAGTGAAATCT





ACTGGGTCCGCCAGGCTCC
TCATATGATATAACTGCCA

CAGAGCATTCGCAGCTA
GTCCCAGATCCACTGCCACT





AGGCAAGGGGCTGGAGTGG
CCCACTCCAGCCCCTTGCCT

TTTAAATTGGTATCAACA
GAACCTTGAAGGGACCCCA





GTGGCAGTTATATCATATG
GGAGCCTGGCGGACCCAGT

GAAACCAGGGAAAGCCC
CTTTGCAAACTGGATGCAGC





ATGGAAGCAATAAATACTA
GTATAGCATAGTTACTGAA

CTAAGCTCCTGATCTATG
ATAGATCAGGAGCTTAGGG





CGCAGACTCCGTGAAGGGC
GGTGAATCCAGAGGCTGCA

CTGCATCCAGTTTGCAAA
GCTTTCCCTGGTTTCTGTTG





CGATTCACCATCTCCAGAG
CAGGAGAGTCTCAGGGACC

GTGGGGTCCCTTCAAGG
ATACCAATTTAAATAGCTGC





ACAATTCCAAGAACACGCT
TCCCAGGCTGGACCACGCC

TTCAGTGGCAGTGGATCT
GAATGCTCTGACTTGCCCGG





GTATCTGCAAATGAACAGC
TCCCCCAGACTCCACCAGN

GGGACAGATTTCACTCTC
CAAGTGATGGTGACTCTGTC





CTGAGAGCTGAGGACACGG
CCTGCAC (SEQ ID 

ACCATCAGCAGTCTGCA
TCCTACAGACGCAGACAGG





CTGTGTATTACTGTGCGAG
NO: 3311)

ACCTGATGATTTTGCAAC
GNGG (SEQ ID NO: 





AGATTTTGACGATAGTTCGT


TTACTACTGTCAACAGA
3313)





TCTGGGCGTTTGACTACTGG


GTTACAGTACCCCTCCGG






GGCCAGGGAACCCTGGTCA


CCACTTTTGGCCAGGGG






CCGTCTCCTCAGCGTCGACC


ACCAAGCTGGAGATCAA






AAGGGCCCATCGGTCTTCC


ACGTACGGTGGCTGCAC






CCCTGGCACCCTCCTCCAA


CATCTGTCTTCATCTTCC






GAGCACCTCTGGGGGCACA


CGCCATCTGATGAGCAG






GCGGCCCTGGGCTGCCTGG


TTGAAATCTGGAACTGC






TCAAGGACTACTTCCCCGA


CTCTGTTGTGTGCCTGCT






ACCTGTGACGGTCTCGTGG


GAATAACTTCTATCCCAG






AACTCAGGCGCCCTGACCA


AGAGGCCAAAGTACAGT






GCGGCGTGCACACCTTCCC


GGAAGGTGGATAACGCC






GGCTGTCCTACAGTCCTCA


CTCCAATCGGGTAACTCC






GGACTCTACTCCCTCAGCA


CAGGAGAGTGTCACAGA






GCGTGGTGACCGTGCCCTC


GCAGGACAGCAAGGACA






CAGCAGCTTGGGCACCCAG


GCACCTACAGCCTCAGC






ACCTACATCTGCAACGTGA


AGCACCCTGACGCTGAG






ATCACAAGCCCAGCAACAC


CAAAGCAGACTACGAGA






CAANGTGGACAAGAGAGTT


AACACAAAGTCTACGCC






GAGCCCAAATCTTGTGACA


TGCGAAGTCACCCATCA






AAACTCACACATGCCCACC


GGGCCTGAGCTCGCCCG






GTGCCCAGCACCT (SEQ


TCACAAAGAGCTTCAAC






ID NO: 3310)


AGGGGAGAGTGTTAGAA









GCTTGGCCGCCATGGCC









CAACTTGTTTATTGCAGC









TTATAATGGTTACAAA









(SEQ ID NO: 3312)







COV21_P1
A-C019
TACACATACGATTTAGGTG
GNCGCTGTNNNNNAGAGGT
COV21_P1
TACACATACGATTTAGGT
AGGGGGCCANCTTGGGCTG
COV21_P1


G8

ACACTATAGAATAACATCC
GCTCTTGGAGGAGGGTGCC
G8
GACACTATAGAATAACA
ACCTAGGACGGTCAGCTTGG
G8




ACTTTGCCTTTCTCTCCACA
AGGGGGAAGACCGATGGGC

TCCACTTTGCCTTTCTCT
TCCCTCCGCCGAATACCACA





GGTGTCCACTCCCAGGTCC
CCTTGGTGGAGGCTGAGGA

CCACAGGTGTCCACTCCC
TGATCACTACTACTATCCCA





AACTGCACCTCGGTTCTATC
GACGGTGACCAGGGTTCCC

AGGTCCAACTGCACCTC
CACCTGACAGTAATAGTCGG





GATTGAATTCCACCATGGG
TGGCCCCAGGGGTCGAACC

GGTTCTATCGATTGAATT
CCTCATCCCCGGCTTCGACC





ATGGTCATGTATCATCCTTT
CTGGGGTCCCCTCACGGGG

CCACCATGGGATGGTCA
CTGTTGATGGTCAGGGTGGC





TTCTAGTAGCAACTGCAAC
CACTCTAGCACAGTAATAC

TGTATCATCCTTTTTCTA
CGTGTTCCCAGAGTTGGAGC





CGGTGTACATTCCCAGGTG
ACGGCCGTGTCCTCAGATC

GTAGCAACTGCAACCGG
CAGAGAATCGCTCAGGGAT





CAGCTGGTGCAGTCTGGGG
TCAGGCTGCTCAGCTCCAT

TTCTGTGACCTCCTATGA
CCCTGAGGGCCGGTCGCTAT





CTGAGGTGAAGAAGCCTGG
GTAGACTGTGCTCGTGGAC

GCTGACACAGCCACCCT
CATAATAGATGACCAGCAC





GGCCTCAGTGAAGGTTTCC
GTGTCCCTGGTCATGGTGA

CAGTGTCAGTGGCCCCA
AGGGGCCTGGCCTGGCTTCT





TGCAAGGCATCTGGATACA
CTCTGCCCTGGAACTTCTGT

GGAAAGACGGCCAGGAT
GCTGGTACCAGTGCACACTT





CCTTCACCAGTTACTATATG
GCGTAGCTTGTGCTACCAC

TACCTGTGGGGAAAACA
TTACTTCCAATGTTGTTTTCC





CACTGGGTGCGACAGGCCC
CACTAGGGTTGATTATTCCC

ACATTGGAAGTAAAAGT
CCACAGGTAATCCTGGCCGT





CTGGACAAGGGCTTGAGTG
ATCCACTCAAGCCCTTGTCC

GTGCACTGGTACCAGCA
CTTTCCTGGGGCCACTGACA





GATGGGAATAATCAACCCT
AGGGGCCTGTCGCACCCAG

GAAGCCAGGCCAGGCCC
CTGAGGGTGGCTGAGTCAG





AGTGGTGGTAGCACAAGCT
TGCATATAGTAACTGGTGA

CTGTGCTGGTCATCTATT
CACAGACTGGGCCCAGGAA





ACGCACAGAAGTTCCAGGG
AGGTGTATCCAGATGCCTT

ATGATAGCGACCGGCCC
CCGGTTGCAGNNNNNTACT





CAGAGTCACCATGACCAGG
GCAGGAAACCTTCACTGAG

TCAGGGATCCCTGAGCG
AAAANNG (SEQ ID 





GACACGTCCACGAGCACAG
GCCCCAGGCTTCTTCACCTC

ATTCTCTGGCTCCAACTC
NO: 3317)





TCTACATGGAGCTGAGCAG
AGCCCCAGACTGCACCAGC

TGGGAACACGGCCACCC






CCTGAGATCTGAGGACACG
TGCACCTGNNA (SEQ ID

TGACCATCAACAGGGTC






GCCGTGTATTACTGTGCTAG
NO: 3315)

GAAGCCGGGGATGAGGC






AGTGCCCCGTGAGGGGACC


CGACTATTACTGTCAGGT






CCAGGGTTCGACCCCTGGG


GTGGGATAGTAGTAGTG






GCCAGGGAACCCTGGTCAC


ATCATGTGGTATTCGGCG






CGTCTCCTCAGCGTCGACC


GAGGGACCAAGCTGACC






AAGGGCCCATCGGTCTTCC


GTCCTAGGTCAGCCCAA






CCCTGGCACCCTCCTCCAA


GGCTGCCCCCTCGGTCAC






GAGCACCTCTGGGGGCACA


TCTGTTCCCACCCTCGAG






GCGGCCCTGGGCTGCCTGG


TGAGGAGCTTCAAGCCA






TCAAGGACTACTTCCCCGA


ACAAGGCCACACTGGTG






ACCTGTGACGGTCTCGTGG


TGTCTCATAAGTGACTTC






AACTCAGGCGCCCTGACCA


TACCCGGGAGCCGTGAC






GCGGCGTGCACACCTTCCC


AGTGGCCTGGAAGGCAG






GGCTGTCCTACAGTCCTCA


ATAGCAGCCCCGTCAAG






NGACTCTACTCCCTCAGCA


GCGGGAGTGGAGACCAC






GCGTGGTGACCGTGCCCTC


CACACCCTCCAAACAAA






CAGCAGCTTGGGCACCCAG


GCAACAACAAGTACGCG






ACCTACATCTGCAACGTGA


GCCAGCAGCTACCTGAG






ATCACAAGCCCAGCAACAC


CCTGACGCCTGAGCAGT






C (SEQ ID NO: 3314)


GGAAGTCCCACAGAAGC









TACAGCTGCCAGGTCAC









GCATGAAAGGGAGCACC









GTGGANAAGACAGTGGC









CCCTACAGAATGTTCATA









GAAGCTTGGCCGCCATG









GCCCAACTTGTTTATTGC









AGCTTATAATGG (SEQ









ID NO: 3316)







COV21_P3
A-C020
TACACATACGATTTAGGTG
GNCGCTGTNNNNNAGAGGT
COV21_P3
TACACATACGATTTAGGT
GGGGCCACCGGTGTACATTC
COV21_P3


G5

ACACTATAGAATAACATCC
GCTCTTGGAGGAGGGTGCC
G5
GACACTTATAGAATAAC
CCTCCCTGTCTGCATCTGTA
G5




ACTTTGCCTTTCTCTCCACA
AGGGGGAAGACCGATGGGC

ATCCACTTTGCCTTTCTC
GGAGACAGAGTCACCATCA





GGTGTCCACTCCCAGGTCC
CCTTGGTGGAGGCTGAGGA

TCCACAGGTGTCCACTCC
CTTGCCGGGCAAGTCAGAG





AACTGCACCTCGGTTCTATC
GACGGTGACCAGGGTTCCC

CAGGTCCAACTGCACCT
CATTAGCAGCTATTTAAATT





GATTGAATTCCACCATGGG
TGGCCCCAGTACCCCAATA

CGGTTCTATCGATTGAAT
GGTATCAGCAGAAACCAGG





ATGGTCATGTATCATCCTTT
GGTAATAACCACTACTATC

TCCACCATGGGANGGNC
GAAAGCCCCTAAGCTCCTGA





TTCTAGTAGCAACTGCAAC
ATAGTAATACGTTTCCGATC

ATGTATCATCCTTTTTCT
TCTATGCTGCATCCAGTTTG





CGGTGTACATTCCCAGGTG
CCTCGGTCTCGGCCCGATCT

AGTAGCAACTGCAACCG
CAAAGTGGGGTCCCATCAA





CAGCTGGTGCAGTCTGGGG
CTAGCACAGTAATACACGG

GTGTACATTCCCTCCCTG
GGTTCAGTGGCAGTGGATCT





CTGAGGTGAAGAAACCTGG
CCGTGTCCTCAGATCTCAG

TCTGCATCTGTAGGAGA
GGGACAGATTTCACTCTCAC





GGCCTCAGTGAAGGTTTCC
GCTGCTCAGCTCCATGTAG

CAGAGTCACCATCACTT
CATCAGCAGTCTGCAACCTG





TGCAAGGCATCTGGATACA
ACTGTGCTCGTGGACGTGT

GCCGGGCAAGTCAGAGC
AAGATTTTGCAACTTACTAC





CCTTCACCAGCTACTATATG
CCCTGGTCATGGTGACTCTG

ATTAGCAGCTATTTAAAT
TGTCAACAGAGTTACAGTAC





CACTGGGTGCGACAGGCCC
CCCTGGAACTTCTGTGCGTA

TGGTATCAGCAGAAACC
CCCACCGTCGTTCGGCCAAG





CTGGACAAGGGCTTGAGTG
GGTTGTGCTACCACCACTA

AGGGAAAGCCCCTAAGC
GGACCAAGGTGGAAATCAA





GATGGGAATAATCAACCCT
GGGTTGATTATTCCCATCCA

TCCTGATCTATGCTGCAT
ACGGTGGAGGCACCAAGCT





AGTGGTGGTAGCACAACCT
CTCAAGCCCTTGTCCAGGG

CCAGTTTGCAAAGTGGG
GGAAATCAAACGTACGGGC





ACGCACAGAAGTTCCAGGG
GCCTGTCGCACCCAGTGCA

GTCCCATCAAGGTTCAGT
A (SEQ ID NO: 3321)





CAGAGTCACCATGACCAGG
TATAGTAGCTGGTGAAGGT

GGCAGTGGATCTGGGAC






GACACGTCCACGAGCACAG
GTATCCAGATGCCTTGCAG

AGATTTCACTCTCACCAT






TCTACATGGAGCTGAGCAG
GAAACCTTCACTGAGGCCC

CAGCAGTCTGCAACCTG






CCTGAGATCTGAGGACACG
CAGGTTTCTTCACCTCAGCC

AAGATTTTGCAACTTACT






GCCGTGTATTACTGTGCTAG
CCAGACTGCACCAGCTGCA

ACTGTCAACAGAGTTAC






AGATCGGGCCGAGACCGAG
CCNNNGACANGACCCC

AGTACCCCACCGTCGTTC






GGATCGGAAACGTATTACT
(SEQ ID NO: 3319)

GGCCAAGGGACCAAGGT






ATGATAGTAGTGGTTATTA


GGAAATCAAACGGTGGA






CCTATTGGGGTACTGGGGC


GGCACCAAGCTGGAAAT






CAGGGAACCCTGGTCACCG


CAAACGTACGGTGGCTG






TCTCCTCAGCGTCGACCAA


CACCATCTGTCTTCATCT






GGGCCCATCGGTCTTCCCCC


TCCCGCCATCTGATGAGC






TGGCACCCTCCTCCAAGAG


AGTTGAAATCTGGAACT






CACCTCTGGGGGCACAGCG


GCCTCTGTTGTGTGCCTG






GCCCTGGGCTGCCTGGTCA


CTGAATAACTTCTATCCC






AGGACTACTTCCCCGAACC


AGAGAGGCCAAAGTACA






TGTGACGGTCTCGTGGAAC


GTGGAAGGTGGATAACG






TCAGGCGCCCTGACCAGCG


CCCTCCAATCGGGTAACT






GCGTGCACACCTTCCCGGC


CCCAGGAGAGTGTCACA






TGTCCTACAGTCCTCANGA


GAGCAGGACAGCAAGGA






CTCTACTCCCTCAGCAGCGT


CAGCACCTACAGCCTCA






GGTGACCGTGCCCTCCAGC


GCAGCACCCTGACGCTG






AGCTTGGGCACCCAGACCT


AGCAAAGCAGACTACGA






ACATCTGCAACGTGAATCA


GAAACACAAAGTCTACG






CAAGCCCAGCAACACCA


CCTGCGAAGTCACCCAT






(SEQ ID NO: 3318)


CAGGGCCTGAGCTCGCC









CGTCACAAAGAGCTTCA









ACAGGGGAGAGTGTTAG









AAGCTTGGCCGCCATGG









CCCAACTTGTTTATTGCA









GCTTATAATGGTTACAA









ATAAAGCAATAG (SEQ









ID NO: 3320)







COV21_P3
A-C021
TACACATACGATTTAGGTG
GCTGTGNNNNNGAGGTGCT
COV21_P3
TACACATACGATTTAGGT
TNNCCGATTGGAGGGCGTTA
COV21_P3


E7

ACACTATAGAATAACATCC
CTTGGAGGAGGGTGCCAGG
E7
GACACTATAGAATAACA
TCCACCTTCCACTGTACTTT
E7




ACTTTGCCTTTCTCTCCACA
GGGAAGACCGATGGGCCCT

TCCACTTTGCCTTTCTCT
GGCCTCTCTGGGATAGAAGT





GGTGTCCACTCCCAGGTCC
TGGTGGAGGCTGAGGAGAC

CCACAGGTGTCCACTCCC
TATTCAGCAGGCACACAAC





AACTGCACCTCGGTTCTATC
GGTGACCAGGGTTCCCTGG

AGGTCCAACTGCACCTC
AGAGGCAGTTCCAGATTTCA





GATTGAATTCCACCATGGG
CCCCAGTAGTCAAAGGAAC

GGTTCTATCGATTGAATT
ACTGCTCATCAGATGGCGGG





ATGGTCATGTATCATCCTTT
CACTACTATCATAGTATTGC

CCACCATGGGATGGTCA
AAGATGAAGACAGATGGTG





TTCTAGTAGCAACTGCAAC
CAAACTCTCGCACAGTAAT

TGTATCATCCTTTTTCTA
CAGCCACAGTTCGTTTGATA





CGGTGTACATTCCCAGGTG
ACACGGCCGTGTCCGCGGC

GTAGCAACTGCAACCGG
TCCACTTTGGTCCCAGGGCC





CAGCTGCAGGAGTCGGGCC
AGTCACAGAGCTCAGCTTC

TGTACATGGGGATATTGT
GAAAGTGAATGGAGTTTGT





CAGGACTGGTGAAGCCTTC
AGGGAGAACTGGTTCTTAG

GATGACTCAGTCTCCACT
AGAGCTTGCATGCAGTAATA





ACAGACCCTGTCCCTCACCT
ACGTGTCTACTGATATGGT

CTCCCTGCCCGTCACCCC
AACCCCAACATCCTCAGCCT





GCACTGTCTCTGGTGGCTCC
AACTCGACTCTTGAGGGAC

TGGAGAGCCGGCCTCCA
CCACTCTGCTGATTTTCAGT





ATCAGCAGTGGTGGTTACT
GGGTTGTAGTAGGTGCTCC

TCTCCTGCAGGTCTAGTC
GTAAAATCTGTGCCTGATCC





ACTGGAGCTGGATCCGCCA
CACTGTAATAGATGTACCC

AGAGCCTCCTGCATAGT
ACTGCCACTGAACCTGTCAG





GCACCCAGGGAAGGGCCTG
AATCCACTCCAGGCCCTTCC

AATGGATACAACTATTT
GGACCCCGGAGGCCCGATT





GAGTGGATTGGGTACATCT
CTGGGTGCTGGCGGATCCA

GGATTGGTACCTGCAGA
AGAACCCAAATAGATCAGG





ATTACAGTGGGAGCACCTA
GCTCCAGTAGTAACCACCA

AGCCAGGGCAGTCTCCA
AGCTGTGGAGACTGCCCTGG





CTACAACCCGTCCCTCAAG
CTGCTGATGGAGCCACCAG

CAGCTCCTGATCTATTTG
CTTCTGCAGGTACCAATCCA





AGTCGAGTTACCATATCAG
AGACAGTGCAGGTGAGGGA

GGTTCTAATCGGGCCTCC
AATAGTTGTATCCATTACTA





TAGACACGTCTAAGAACCA
CAGGGTCTGTGAAGGCTTC

GGGGTCCCTGACAGGTT
TGCAGGAGGCTCTGACTAG





GTTCTCCCTGAAGCTGAGCT
ACCAGTCCTGGGCCCGACT

CAGTGGCAGTGGATCAG
ACCTGCAGGAGATGGAGGC





CTGTGACTGCCGCGGACAC
CCTGCAGCTGCACCT 

GCACAGATTTTACACTG
CGGCTCTCCAGGGGTGACG





GGCCGTGTATTACTGTGCG
(SEQ ID NO: 3323)

AAAATCAGCAGAGTGGA
GGCAGGGAGGATGGA (SEQ





AGAGTTTGGCAATACTATG


GGCTGAGGATGTTGGGG
ID NO: 3325)





ATAGTAGTGGTTCCTTTGAC


TTTATTACTGCATGCAAG






TACTGGGGCCAGGGAACCC


CTCTACAAACTCCATTCA






TGGTCACCGTCTCCTCAGCG


CTTTCGGCCCTGGGACCA






TCGACCAAGGGCCCATCGG


AAGTGGATATCAAACGT






TCTTCCCCCTGGCACCCTCC


ACGGTGGCTGCACCATC






TCCAAGAGCACCTCTGGGG


TGTCTTCATCTTCCCGCC






GCACAGCGGCCCTGGGCTG


ATCTGATGAGCAGTTGA






CCTGGTCAAGGACTACTTC


AATCTGGAACTGCCTCTG






CCCGAACCTGTGACGGTCT


TTGTGTGCCTGCTGAATA






CGTGGAACTCANGCGCCCT


ACTTCTATCCCAGAGAG






GACCAGCGGCGTGCACACC


GCCAAAGTACAGTGGAA






TTCCCGGCTGTCCTACAGTC


GGTGGATAACGCCCTCC






CTCAGGACTCTACTCCCTCA


AATCGGGTAACTCCCAG






GCAGCGTGGTGACCGTGCC


GAGAGTGTCACAGAGCA






CTCCAGCAGCTTGGGCACC


GGACAGCAAGGACAGCA






CAGACCTACATCTGCAACG


CCTACAGCCTCAGCAGC






TGAATCACAAGCCCAGCAA


ACCCTGACGCTGANCAA






CACCAAGGTGGACAAGAGA


AGCAGACTACGAGAAAC






GTTGAGCCCAAATCTTGTG


ACAAAGTCTACGCCTGC






ACAAAACTCACACATGCCC


GAAGTCACCCATCNGGC






ACCGTGCCCAGCACC 


CTGAGCTCGCCCGTCAC






(SEQ ID NO: 3322)


AAAGANCTTCAACAGGG









GANANTGTTANAAGCTT









GGNCGCCATGGCCCAAC









TTGTTTATTGCAGCTTAT









AATGG (SEQ ID NO: 









3324)







COV21_P2
A-C029
TACACATACGATTTAGGTG
GCTNNGCCCCAGAGGTGCT
COV21_P2
TACACATACGATTTAGGT
TTNCCCGATTGGAGGGCGTT
COV21_P2


E6

ACACTATAGAATAACATCC
CTTGGAGGAGGGTGCCAGG
E6
GACACTATAGAATAACA
ATCCACCTTCCACTGTACTT
E6




ACTTTGCCTTTCTCTCCACA
GGGAAGACCGATGGGCCCT

TCCACTTTGCCTTTCTCT
TGGCCTCTCTGGGATAGAAG





GGTGTCCACTCCCAGGTCC
TGGTGGAGGCTGAGGAGAC

CCACAGGTGTCCACTCCC
TTATTCAGCAGGCACACAAC





AACTGCACCTCGGTTCTATC
GGTGACCAGGGTTCCCTGG

AGGTCCAACTGCACCTC
AGAGGCAGTTCCAGATTTCA





GATTGAATTCCACCATGGG
CCCCAGTAGTCAAAGGAAC

GGTTCTATCGATTGAATT
ACTGCTCATCAGATGGCGGG





ATGGTCATGTATCATCCTTT
CACTACTATCATAGTAATA

CCACCATGGGATGGTCA
AAGATGAAGACAGATGGTG





TTCTAGTAGCAACTGCAAC
CATTGTTCTCGCACAGTAAT

TGTATCATCCTTTTTCTA
CAGCCACAGTTCGTTTGATC





CGGTGTACATTCCCAGGTG
ACACGGCCGTGTCCGCGGC

GTAGCAACTGCAACCGG
TCCACCTTGGTCCCTCCGCC





CAGCTGCAGGAGTCGGGCC
AGTCACAGAGCTCAGCTTC

TGTACATGGGGATATTGT
GAAAGTGTGAGGAGTTTGT





CAGGACTGGTGAAGCCTTC
AGGGAGAACTGGTTCTTAG

GATGACTCAGTCTCCACT
AGAGCTTGCATGCAGTAATA





ACAGACCCTGTCCCTCACCT
ACGTGTCTACTGATATGGT

CTCCCTGCCCGTCACCCC
AACCCCAACATCCTCAGCCT





GCACTGTCTCTGGTGGCTCC
AACTCGACTCTTGAGGGAC

TGGAGAGCCGGCCTCCA
CCACTCTGCTGATTTTCAGT





ATCAGCAGTGGTGGTTACT
GGGTTGTAGTAGGTGCTCC

TCTCCTGCAGGTCTAGTC
GTAAAATCTGTGCCTGATCC





ACTGGAGCTGGATCCGCCA
CACTGTAATAGATGTACCC

AGAGCCTCCTGCATAGT
ACTGCCACTGAACCTGTCAG





GCACCCAGGGAAGGGCCTG
AATCCACTCCAGGCCCTTCC

AATGGATACAACTATTT
GGACCCCGGAGGCCCGATT





GAGTGGATTGGGTACATCT
CTGGGTGCTGGCGGATCCA

GGATTGGTACCTGCAGA
AGAACCCAAATAGATCAGG





ATTACAGTGGGAGCACCTA
GCTCCAGTAGTAACCACCA

AGCCAGGGCAGTCTCCA
AGCTGTGGAGACTGCCCTGG





CTACAACCCGTCCCTCAAG
CTGCTGATGGAGCCACCAG

CAGCTCCTGATCTATTTG
CTTCTGCAGGTACCAATCCA





AGTCGAGTTACCATATCAG
AGACAGTGCAGGTGAGGGA

GGTTCTAATCGGGCCTCC
AATAGTTGTATCCATTACTA





TAGACACGTCTAAGAACCA
CAGGGTCTGTGAAGGCTTC

GGGGTCCCTGACAGGTT
TGCAGGAGGCTCTGACTAG





GTTCTCCCTGAAGCTGAGCT
ACCAGTCCTGGGCCCGACT

CAGTGGCAGTGGATCAG
ACCTGCAGGAGATGGAGGC





CTGTGACTGCCGCGGACAC
CCTGCAGCTTNNACC 

GCACAGATTTTACACTG
CGGCTCTCCAGGGGTGACG





GGCCGTGTATTACTGTGCG
(SEQ ID NO: 3327)

AAAATCAGCAGAGTGGA
GGCAGGGAGANTGGAGNNT





AGAACAATGTATTACTATG


GGCTGAGGATGTTGGGG
NNG (SEQ ID NO: 





ATAGTAGTGGTTCCTTTGAC


TTTATTACTGCATGCAAG
3329)





TACTGGGGCCAGGGAACCC


CTCTACAAACTCCTCACA






TGGTCACCGTCTCCTCAGCG


CTTTCGGCGGAGGGACC






TCGACCAAGGGCCCATCGG


AAGGTGGAGATCAAACG






TCTTCCCCCTGGCACCCTCC


TACGGTGGCTGCACCAT






TCCAAGAGCACCTCTGGGG


CTGTCTTCATCTTCCCGC






GCACAGCGGCCCTGGGCTG


CATCTGATGAGCAGTTG






CCTGGTCAAGGACTACTTC


AAATCTGGAACTGCCTCT






CCCGAACCTGTGACGGTCT


GTTGTGTGCCTGCTGAAT






CGTGGAACTCAGGCGCCCT


AACTTCTATCCCAGAGA






GACCAGCGGCGTGCACACC


GGCCAAAGTACAGTGGA






TTCCCGGCTGTCCTACAGTC


AGGTGGATAACGCCCTC






CTCAGGACTCTACTCCCTCA


CAATCGGGTAACTCCCA






GCAGCGTGGTGACCGTGCC


GGAGAGTGTCACAGAGC






CTCCAGCAGCTTGGGCACC


AGGACAGCAAGGACAGC






CAGACCTACATCTGCAACG


ACCTACAGCCTCAGCAG






TGAATCACAAGCCCAGCAA


CACCCTGACGCTGANCA






CACCAANGTGGACAAGAGA


AAGCAGACTACGAGAAA






GTTGAGCCCAAATCTTGTG


CACAAAGTCTACGCCTG






ACAAAACTCACACATGCCC


CGAAGTCACCCATCNGG






ACCGTGCCCAGCACC 


NCTGAGCTCGCCCGTCA






(SEQ ID NO: 3326)


CAAAGAGCTTCAACNGG









GGANAGTGTTAGAAGCT









TGGCCGCCATGGCCCAA









CTTGTTTATTGCAGCTTA









TAATGG (SEQ ID NO:









3328)







COV21_P1
A-C022
TACACATACGATTTAGGTG
GCTGTGCCCCAGAGGTGCT
COV21_P1
TACACATACGATTTAGGT
CTGGNNTTNCCCGATTGGAG
COV21_P1


B10

ACACTATAGAATAACATCC
CTTGGAGGAGGGTGCCAGG
B10
GACACTATAGAATAACA
GGCGTTATCCACCTTCCACT
B10




ACTTTGCCTTTCTCTCCACA
GGGAAGACCGATGGGCCCT

TCCACTTTGCCTTTCTCT
GTACTTTGGCCTCTCTGGGA





GGTGTCCACTCCCAGGTCC
TGGTGGAGGCTGAGGAGAC

CCACAGGTGTCCACTCCC
TAGAAGTTATTCAGCAGGCA





AACTGCACCTCGGTTCTATC
GGTGACCAGGGTGCCCTGG

AGGTCCAACTGCACCTC
CACAACAGAGGCAGTTCCA





GATTGAATTCCACCATGGG
CCCCAGTGCTGGAAGTATT

GGTTCTATCGATTGAATT
GATTTCAACTGCTCATCAGA





ATGGTCATGTATCATCCTTT
CGATGAAATAATAACCACT

CCACCATGGGATGGTCA
TGGCGGGAAGATGAAGACA





TTCTAGTAGCAACTGCAAC
TCTATCATAGTATGCTGCCG

TGTATCATCCTTTTTCTA
GATGGTGCAGCCACAGTTCG





CGGTGTACATTCCCAGGTG
CATGTCTCGCACAGTAATA

GTAGCAACTGCAACCGG
TTTGATCTCCAGCTTGGTCC





CAGTTGCAGGAGTCGGGCC
CACAGCCGTGTCTGCGGCG

TGTACATTCTGACATCCA
CCTGGCCAAAAGTGTACCG





CAGGACTGGTGAAGCCTTC
GTCACAGAGCTCAGCTTCA

GATGACCCAGTCTCCTTC
GTAATTATTATACTGTTGGC





GGAGACCCTGTCCGTCACT
GGGAGAACTGGTTCTTGGA

CACCCTGTCTGCATCTGT
AGTAATAAGTTGCAAAATC





TGCACTGTCTCTGGTGGCTC
CGTGTCCACGGATATGGTG

AGGAGACAGCGTCACCA
ATCAGGCTGCAGGCTGCTGA





CATCAGCAGTAGTAGGTAC
ACTCGACTCTTGAGGGACG

TCACTTGCCGGGCCAGTC
TGGTGAGAGTGAATTCTGTC





TACTGGGGCTGGATCCGCC
GGTTGTAGTAGGTGCTCCC

AGAGTATTAGTAGCTGG
CCAGATCCACTGCCGCTGAA





AGCCCCCAGGGAAGGGGCT
ACTATAATAGATACTCCCA

TTGGCCTGGTATCAGCA
CCTTGATGGGACCCCACTTT





GGAGTGGATTGGGAGTATC
ATCCACTCCAGCCCCTTCCC

GAAACCAGGGAAAGCCC
CTAAACTAGACGCCTTATAG





TATTATAGTGGGAGCACCT
TGGGGGCTGGCGGATCCAG

CTAAGCTCCTGATCTATA
ATCAGGAGCTTAGGGGCTTT





ACTACAACCCGTCCCTCAA
CCCCAGTAGTACCTACTACT

AGGCGTCTAGTTTAGAA
CCCTGGTTTCTGCTGATACC





GAGTCGAGTCACCATATCC
GCTGATGGAGCCACCAGAG

AGTGGGGTCCCATCAAG
AGGCCAACCAGCTACTAAT





GTGGACACGTCCAAGAACC
ACAGTGCAAGTGACGGACA

GTTCAGCGGCAGTGGAT
ACTCTGACTGGCCCGGCAAG





AGTTCTCCCTGAAGCTGAG
GGGTCTCCGAAGGCTTCAC

CTGGGACAGAATTCACT
TGATGGTGACGCTGTCTCCT





CTCTGTGACCGCCGCAGAC
CAGTCCTGGGCCCGACTCC

CTCACCATCAGCAGCCT
ACAGATGCAGACAGGG 





ACGGCTGTGTATTACTGTGC
NG (SEQ ID NO: 3331)

GCAGCCTGATGATTTTGC
(SEQ ID NO: 3333)





GAGACATGCGGCAGCATAC


AACTTATTACTGCCAACA






TATGATAGAAGTGGTTATT


GTATAATAATTACCGGT






ATTTCATCGAATACTTCCAG


ACACTTTTGGCCAGGGG






CACTGGGGCCAGGGCACCC


ACCAAGCTGGAGATCAA






TGGTCACCGTCTCCTCAGCC


ACGTACGGTGGCTGCAC






TCCACCAAGGGCCCATCGG


CATCTGTCTTCATCTTCC






TCTTCCCCCTGGCACCCTCC


CGCCATCTGATGAGCAG






TCCAAGAGCACCTCTGGGG


TTGAAATCTGGAACTGC






GCACAGCGGCCCTGGGCTG


CTCTGTTGTGTGCCTGCT






CCTGGTCAAGGACTACTTC


GAATAACTTCTATCCCAG






CCCGAACCTGTGACGGTCT


AGAGGCCAAAGTACAGT






CGTGGAACTCANGCGCCCT


GGAAGGTGGATAACGCC






GACCAGCGGCGTGCACACC


CTCCAATCGGGTAACTCC






TTCCCGGCTGTCCTACAGTC


CAGGAGAGTGTCACAGA






CTCAGGACTCTACTCCCTCA


GCAGGACAGCAAGGACA






GCAGCGTGGTGACCGTGCC


GCACCTACAGCCTCAGC






CTCCAGCAGCTTGGGCACC


AGCACCCTGACGCTGAG






CAGACCTACATCTGCAACG


CAAAGCAGACTACGAGA






TGAATCACAAGCCCAGCAA


AACACAAAGTCTACGCC






CACCAANNGGACAAGAGA


TGCGAAGTCACCCATCA






GTTGAGCCCAAATCTTGTG


GGGCCTGAGCTCGCCCG






AC (SEQ ID NO: 3330)


TCACAAAGAGCTTCAAC









NGGGGAGAGTGTTAGAA









GCTTGGNCGCCATGGCC









CAACTTGTTTATTGCAGC









TTATAATGG (SEQ ID









NO: 3332)







COV21_P1
A-C027
TACACATACGATTTAGGTG
GCTGNGCCCCAGAGGTGCT
COV21_P1
TACACATACGATTTAGGT
CGATTGGAGGGCGTTATCCA
COV21_P1


G4

ACACTATANAATAACATCC
CTTGGAGGAGGGTGCCAGG
G4
GACACTATAGAATAACA
CCTTCCACTGTACTTTGGCC
G4




ACTTTGCCTTTCTCTCCACA
GGGAAGACCGATGGGCCCT

TCCACTTTGCCTTTCTCT
TCTCTGGGATAGAAGTTATT





GGTGTCCACTCCCAGGTCC
TGGTGGAGGCTGAGGAGAC

CCACAGGTGTCCACTCCC
CAGCAGGCACACAACAGAG





AACTGCACCTCGGTTCTATC
GGTGACCAGGGTTCCCTGG

AGGTCCAACTGCACCTC
GCAGTTCCAGATTTCAACTG





GATTGAATTCCACCATGGG
CCCCAGTAGTCAAAGTAGT

GGTTCTATCGATTGAATT
CTCATCAGATGGCGGGAAG





ATGGTCATGTATCATCCTTT
ATGAGTAGCAGTCTCCACC

CCACCATGGGATGGTCA
ATGAAGACAGATGGTGCAG





TTCTAGTAGCAACTGCAAC
ACTACAATAAATTCCACTT

TGTATCATCCTTTTTCTA
CCACAGTTCGTTTGATTTCC





CGGTGTACATTCTGAGGTG
GCTTTCGCACAGTAATACA

GTAGCAACTGCAACCGG
ACCTTGGTCCCTTGGCCGAA





CAGCTGGTGGAGTCTGGGG
CAGCCGTGTCCTCAGCTCTC

TGTACATTCTGACATCCA
CGTCGAATAACTATTATACT





GAGGCGTGGTCCAGCCTGG
AGGCTGTTCATTTGCAGAT

GATGACCCAGTCTCCTTC
GTTGGCAGTAATAAGTTGCA





GAGGTCCCTGAGACTCTCC
ACAGCGTGTTCTTGGAATT

CACCCTGTCTGCATCTGT
AAATCATCAGGCTGCAGGCT





TGTGCAGCCTCTGGATTCAC
GTCTCTGGAGATGGTGAAT

AGGAGACAGAGTCACCA
GCTGATGGTGAGAGTGAATT





CTTCAGTAGCTATGGCATG
CGGCCCTTCACGGAGTCTG

TCACTTGCCGGGCCAGTC
CTGTCCCAGATCCACTGCCG





CACTGGGTCCGCCAGGCTC
CATAGTATTTATTACTTCCA

AGAGTATTAGTAGCTGG
CTGAACCTTGATGGGACCCC





CAGGCAAGGGGCTGGAGTG
TCATATGATATAACTGCCA

TTGGCCTGGTATCAGCA
ACTTTCTAAACTAGACGCCT





GGTGGCAGTTATATCATAT
CCCACTCCAGCCCCTTGCCT

GAAACCAGGGAAAGCCC
TATAGATCAGGAGCTTAGG





GATGGAAGTAATAAATACT
GGAGCCTGGCGGACCCAGT

CTAAGCTCCTGATCTATA
GGCTTTCCCTGGTTTCTGCT





ATGCAGACTCCGTGAAGGG
GCATGCCATAGCTACTGAA

AGGCGTCTAGTTTAGAA
GATACCAGGCCAACCAGCT





CCGATTCACCATCTCCAGA
GGTGAATCCAGAGGCTGCA

AGTGGGGTCCCATCAAG
ACTAATACTCTGACTGGCCC





GACAATTCCAAGAACACGC
CAGGAGAGTCTCAGGGACC

GTTCAGCGGCAGTGGAT
GGCAAGTGATGGTGACTCTG





TGTATCTGCAAATGAACAG
TCCCAGGCTGGACCACGCC

CTGGGACAGAATTCACT
TCTCCTACAGATGCAGACAG





CCTGAGAGCTGAGGACACG
TCCCCCAGACTCCACCAGC

CTCACCATCAGCAGCCT
GGNG (SEQ ID NO: 





GCTGTGTATTACTGTGCGA
TGCA (SEQ ID NO: 

GCAGCCTGATGATTTTGC
3337)





AAGCAAGTGGAATTTATTG
3335)

AACTTATTACTGCCAACA






TAGTGGTGGAGACTGCTAC


GTATAATAGTTATTCGAC






TCATACTACTTTGACTACTG


GTTCGGCCAAGGGACCA






GGGCCAGGGAACCCTGGTC


AGGTGGAAATCAAACGT






ACCGTCTCCTCAGCGTCGA


ACGGTGGCTGCACCATC






CCAAGGGCCCATCGGTCTT


TGTCTTCATCTTCCCGCC






CCCCCTGGCACCCTCCTCCA


ATCTGATGAGCAGTTGA






AGAGCACCTCTGGGGGCAC


AATCTGGAACTGCCTCTG






AGCGGCCCTGGGCTGCCTG


TTGTGTGCCTGCTGAATA






GTCAAGGACTACTTCCCCG


ACTTCTATCCCAGAGAG






AACCTGTGACGGTCTCGTG


GCCAAAGTACAGTGGAA






GAACTCANGCGCCCTGACC


GGTGGATAACGCCCTCC






AGCGGCGTGCACACCTTCC


AATCGGGTAACTCCCAG






CGGCTGTCCTACAGTCCTCA


GAGAGTGTCACAGAGCA






GNACTCTACTCCCTCAGCA


GGACAGCAAGGACAGCA






GCGTGGTGACCGTGCCCTC


CCTACAGCCTCAGCAGC






CAGCAGCTTGGGCACCCAG


ACCCTGACGCTGAGCAA






ACCTACATCTGCAACGTGA


AGCANACTACGAGAAAC






ATCACAAGCCCAGCAACAC


ACAAAGTCTACGCCTGC






CAAGGTGGNANNAGAGAGT


GAAGTCACCCATCNGGN






TGAGCCCAAATCTTGTGAN


CNTGANCTCGCCCGTCA






AAAACTCACACATGCCC


CAAAGAGCTTCAACAGG






(SEQ ID NO: 3334)


GGAGAGTGTTAGAAGCT









TGGCCGCCATGGCCCAA









CTTGTTTATTGCAGCTTA









TAATGGNTACAAATAAA









GCAATAGCATCA (SEQ









ID NO: 3336)







COV21_P2
A-C030
TACACATACGATTTAGGTG
AGAGGTGCTCTTGGAGGAG
COV21_P2
TACACATACGATTTAGGT
TTACCCGATTGGAGGGCGTT
COV21_P2


B2

ACACTATAGAATAACATCC
GGTGCCAGGGGGAAGACCG
B2
GACACTATAGAATAACA
ATCCACCTTCCACTGTACTT
B2




ACTTTGCCTTTCTCTCCACA
ATGGGCCCTTGGTGGAGGC

TCCACTTTGCCTTTCTCT
TGGCCTCTCTGGGATAGAAG





GGTGTCCACTCCCAGGTCC
TGAGGAGACGGTGACCAGG

CCACAGGTGTCCACTCCC
TTATTCAGCAGGCACACAAC





AACTGCACCTCGGTTCTATC
GTTCCCTGGCCCCAGTAGTC

AGGTCCAACTGCACCTC
AGAGGCAGTTCCAGATTTCA





GATTGAATTCCACCATGGG
AAAGTAGTATGAGTAGCAG

GGTTCTATCGATTGAATT
ACTGCTCATCAGATGGCGGG





ATGGTCATGTATCATCCTTT
TTACCACCACTACAATATAT

CCACCATGGGATGGTCA
AAGATGAAGACAGATGGTG





TTCTAGTAGCAACTGCAAC
TCCACTTGCTTTCGCACAGT

TGTATCATCCTTTTTCTA
CAGCCACAGTTCGTTTGATT





CGGTGTACATTCTGAGGTG
AATACACAGCCGTGTCCTC

GTAGCAACTGCAACCGG
TCCACCTTGGTCCCTTGGCC





CAGCTGGTGGAGTCTGGGG
AGCTCTCAGGCTGTTCATTT

TGTACATTCTGACATCCA
GAACGTCGAATAACTATTAT





GAGGCGTGGTCCAGCCTGG
GCAGATACAGCGTGTTCTT

GATGACCCAGTCTCCTTC
ACTGTTGGCAGTAATAAGTT





GAGGTCCCTGAGACTCTCC
GGAATTGTCTCTGGAGATG

CACCCTGTCTGCATCTGT
GCAAAATCATCAGGCTGCA





TGTGCAGCCTCTGGATTCAC
GTGAATCGGCCCTTCACGG

AGGAGACAGAGTCACCA
GGCTGCTGATGGTGAGAGT





CTTCAGTAGCTATGGCATG
AGTCTGCATAGTATTTATTA

TCACTTGCCGGGCCAGTC
GAATTCTGTCCCAGATCCAC





CACTGGGTCCGCCAGGCTC
CTTCCATCATATGATATAAC

AGAGTATTAGTAGCTGG
TGCCGCTGAACCTTGATGGG





CAGGCAAGGGGCTGGAGTG
TGCCACCCACTCCAGCCCCT

TTGGCCTGGTATCAGCA
ACCCCACTTTCTAAACTAGA





GGTGGCAGTTATATCATAT
TGCCTGGAGCCTGGCGGAC

GAAACCAGGGAAAGCCC
CGCCTTATAGATGAGGAGCT





GATGGAAGTAATAAATACT
CCAGTGCATGCCATAGCTA

CTAAGCTCCTCATCTATA
TAGGGGCTTTCCCTGGTTTC





ATGCAGACTCCGTGAAGGG
CTGAAGGTGAATCCAGAGG

AGGCGTCTAGTTTAGAA
TGCTGATACCAGGCCAACCA





CCGATTCACCATCTCCAGA
CTGCACAGGAGAGTCTCAG

AGTGGGGTCCCATCAAG
GCTACTAATACTCTGACTGG





GACAATTCCAAGAACACGC
GGACCTCCCAGGCTGGACC

GTTCAGCGGCAGTGGAT
CCCGGCAAGTGATGGTGACT





TGTATCTGCAAATGAACAG
ACGCCTCCCCCAGACTCCA

CTGGGACAGAATTCACT
CTGTCTCCTACAGATGCAGA





CCTGAGAGCTGAGGACACG
NNNNCTGCAC (SEQ ID

CTCACCATCAGCAGCCT
CAGGGAGACTGGAGNNNNG





GCTGTGTATTACTGTGCGA
NO: 3339)

GCAGCCTGATGATTTTGC
GGTCA (SEQ ID NO: 





AAGCAAGTGGAATATATTG


AACTTATTACTGCCAACA
3341)





TAGTGGTGGTAACTGCTAC


GTATAATAGTTATTCGAC






TCATACTACTTTGACTACTG


GTTCGGCCAAGGGACCA






GGGCCAGGGAACCCTGGTC


AGGTGGAAATCAAACGT






ACCGTCTCCTCAGCGTCGA


ACGGTGGCTGCACCATC






CCAAGGGCCCATCGGTCTT


TGTCTTCATCTTCCCGCC






CCCCCTGGCACCCTCCTCCA


ATCTGATGAGCAGTTGA






AGAGCACCTCTGGGGGCAC


AATCTGGAACTGCCTCTG






AGCGGCCCTGGGCTGCCTG


TTGTGTGCCTGCTGAATA






GTCAAGGACTACTTCCCCG


ACTTCTATCCCAGAGAG






AACCTGTGACGGTCTCGTG


GCCAAAGTACAGTGGAA






GAACTCANGCGCCCTGACC


GGTGGATAACGCCCTCC






AGCGGCGTGCACACCTTCC


AATCGGGTAACTCCCAG






CGGCTGTCCTACAGTCCTCN


GAGAGTGTCACAGAGCA






NNCTCTACTCCCTCAGCAG


NGACAGCAAGGACAGCA






CGTGGTGACCGTGCCCTCC


CCTACAGCCTCAGCAGC






AGCAGCTTGGGCACCCAGA


ACCCTGACGCTGAGCAA






CCTACATCTGCAACGTGAA


AGCAGACTACGAGAAAC






TCACAAGCCCAGCAACACC


ACAAAGTCTACGCCTGC






ANNNGGACAAGANAGTTGA


GAAGTCACCCATCNGNC






GCCCAAATCTTGTGACAAA


CTGAGCTCGCCCGTCAC






ACTCACACATGCCCACCG


AAAGAGCTTCAACAGGG






(SEQ ID NO: 3338)


GANAGTGTTAGAAGCTT









GGCCGCCATGGCCCAAC









TTGTTTATTGCAGCTTAT









AATGGTTACAAATAAAG









CAATAGCATCAC (SEQ









ID NO: 3340)







COV21_P1
A-C031
TACACATACGATTTAGGTG
CGCTGTGCCCCNGAGGTGC
COV21_P1
TACACATACGATTTAGGT
TACCCGATTGGAGGGCGTTA
COV21_P1


A10

ACACTATAGAATAACATCC
TCCTGGAGCAGGGCGCCAG
A10
GACACTATAGAATAACA
TCCACCTTCCACTGTACTTT
A10




ACTTTGCCTTTCTCTCCNCN
GGGGAAGACCGATGGGCCC

TCCACTTTGCCTTTCTCT
GGCCTCTCTGGGATAGAAGT





GGTGTCCACTCCCAGGTCC
TTGGTGGAAGCTGAGGAGA

CCACAGGTGTCCACTCCC
TATTCAGCAGGCACACAAC





AACTGCACCTCGGTTCTATC
CAGTGACCAGGGTGCCACG

AGGTCCAACTGCACCTC
AGAGGCAGTTCCAGATTTCA





GATTGAATTCCACCATGGG
GCCCCAGAGATCGAAGTAC

GGTTCTATCGATTGAATT
ACTGCTCATCAGATGGCGGG





ATGGTCATGTATCATCCTTT
CAGCCCGAATAACCACTAC

CCACCATGGGATGGTCA
AAGATGAAGACAGATGGTG





TTCTAGTAGCAACTGCAAC
TATCATACCCTACTCTTGCA

TGTATCATCCTTTTTCTA
CAGCCACAGTTCGTTTGATC





CGGTGTACATTCTGAGGTG
CAGTAATACACAGCCGTGT

GTAGCAACTGCAACCGG
TCCACCTTGGTCCCTCCGCC





CAGCTGGTGGAGTCTGGGG
CCCCGGCTCTCAGGCTGTTC

TGTACATTCTGACATCCA
GAAAGTGAGCGGAGGGGTA





GAGGCTTGGTACAGCCTGG
ATTTGAAGATACAAGGAGT

GATGACCCAGTCTCCATC
CTGTAACTCTGTTGACAGTA





GGGGTCCCTGAGACTCTCC
TCTTGGCATTTTCTCTGGAG

CTCCCTGTCTGCATCTGT
GTAAGTTGCAAAATCTTCAG





TGTGCAGCCTCTGGATTCAC
ATGGTGAATCGGCCCTTCA

AGGAGACAGAGTCACCA
GTTGCAGACTGCTGATGGTG





CTTCAGTAGCTACGACATG
CGGAGCCTGGATAGTATGT

TCACTTGCCGGGCAAGT
AGAGTGAAATCTGTCCCAG





CACTGGGTCCGCCAAGCTA
GTCACCAGCAGTACCAATA

CAGAGCATTAGCAGCTA
ATCCACTGCCACTGAACCTT





CAGGAAAAGGTCTGGAGTG
GCTGAGACCCACTCCAGAC

TTTAAATTGGTATCAGCA
GATGGGACCCCACTTTGCAA





GGTCTCAGCTATTGGTACTG
CTTTTCCTGTAGCTTGGCGG

GAAACCAGGGAAAGCCC
ACTGGATGCAGCATAGATC





CTGGTGACACATACTATCC
ACCCAGTGCATGTCGTAGC

CTAAGGTCCTGATCTATG
AGGACCTTAGGGGCTTTCCC





AGGCTCCGTGAAGGGCCGA
TACTGAAGGTGAATCCAGA

CTGCATCCAGTTTGCAAA
TGGTTTCTGCTGATACCAAT





TTCACCATCTCCAGAGAAA
GGCTGCACAGGAGAGTCTC

GTGGGGTCCCATCAAGG
TTAAATAGCTGCTAATGCTC





ATGCCAAGAACTCCTTGTA
AGGGACCCCCCAGGCTGTA

TTCAGTGGCAGTGGATCT
TGACTTGCCCGGCAAGTGAT





TCTTCAAATGAACAGCCTG
CCAAGCCTCCCCCAGACTC

GGGACAGATTTCACTCTC
GGTGACTCTGTCTCCTACAG





AGAGCCGGGGACACGGCTG
CACCAGCCTGCACCT 

ACCATCAGCAGTCTGCA
ATGCAGACAGGGAG (SEQ





TGTATTACTGTGCAAGAGT
(SEQ ID NO: 3343)

ACCTGAAGATTTTGCAA
ID NO: 3345)





AGGGTATGATAGTAGTGGT


CTTACTACTGTCAACAGA






TATTCGGGCTGGTACTTCGA


GTTACAGTACCCCTCCGC






TCTCTGGGGCCGTGGCACC


TCACTTTCGGCGGAGGG






CTGGTCACCGTCTCCTCAGC


ACCAAGGTGGAGATCAA






GTCGACCAAGGGCCCATCG


ACGTACGGTGGCTGCAC






GTCTTCCCCCTGGCACCCTC


CATCTGTCTTCATCTTCC






CTCCAAGAGCACCTCTGGG


CGCCATCTGATGAGCAG






GGCACAGCGGCCCTGGGCT


TTGAAATCTGGAACTGC






GCCTGGTCAAGGACTACTT


CTCTGTTGTGTGCCTGCT






CCCCGAACCTGTGACGGTC


GAATAACTTCTATCCCAG






TCGTGGAACTCANGCGCCC


AGAGGCCAAAGTACAGT






TGACCAGCGGCGTGCACAC


GGAAGGTGGATAACGCC






CTTCCCGGCTGTCCTACAGT


CTCCAATCGGGTAACTCC






CCTCAGGACTCTACTCCCTC


CAGGAGAGTGTCACAGA






AGCAGCGTGGTGACCGTGC


GCANGACAGCAAGGACA






CCTCCAGCAGCTTGGGCAC


GCACCTACAGCCTCAGC






CCAGACCTACATCTGCAAC


AGCACCCTGACGCTGAG






GTGAATCACAAGCCCAGCA


CAAAGCAGACTACGAGA






CACC (SEQ ID NO: 


AACACAAAGTCTACGCC






3342)


TGCGAAGTCACCCATCA









GGCCTGAGCTCGCCCGT









CACAAAGAGCTTCAACN









GGGGANANTGTTAGAAG









CTTGGCCGCCATGGCCC









AACTTGTTTATTGCAGCT









TATNATGGNTACAAATA









AAGCAATAGCA (SEQ 









ID NO: 3344)







COV21_P1
A-C042
TACACATACGATTTAGGTG
CGCTGTGCNNNNGAGGTGC
COV21_P1
TACACATACGATTTAGGT
ANGGGGCNACCTTGGGCTG
COV21_P1


F2

ACACTATAGAATAACATCC
TCTTGGAGGAGGGTGCCAG
F2
GACACTATAGAATAACA
ACCTAGGACGGTCAGCTTGG
F2




ACTTTGCCTTTCTCTCCACA
GGGGAAGACCGATGGGCCC

TCCACTTTGCCTTTCTCT
TCCCTCCGCCGAATACCCCC





GGTGTCCACTCCCAGGTCC
TTGGTGGAGGCTGAGGAGA

CCACAGGTGTCCACTCCC
AGAGTGCTCCTGCTTGTATA





AACTGCACCTCGGTTCTATC
CGGTGACCAGGGTTCCCTG

AGGTCCAACTGCACCTC
TGAGCTGCAGTGATAGTCAG





GATTGAATTCCACCATGGG
GCCCCAGTAGTCAAACGGC

GGTTCTATCGATTGAATT
CCTCGTCCTCAGCCTGGAGC





ATGGTCATGTATCATCCTTT
GAGACCGAGTCCGGGTCTA

CCACCATGGGATGGTCA
CCAGAGATGGTCAGGGAGG





TTCTAGTAGCAACTGCAAC
TAGCATACACCACCCTGCC

TGTATCATCCTTTTTCTA
CCGTGTTGCCAGACTTGGAG





CGGTGTACATTCTGAAGTG
TTTTGCACAGTAATACAAG

GTAGCAACTGCAACCGG
CCAGAGAAGCGATTAGAAA





CAGCTGGTGGAGTCTGGGG
GCCGTGTCCTCAGCTCTCAG

TTCCTGGGCCCAGTCTGC
CCCCTGAGGGCCGATTACTG





GAGGCTTGGTACAGCCTGG
ACTGTTCATTTGCAGATACA

CCTGACTCAGCCTGCCTC
ACATCATAAATCATGAGTTT





CAGGTCCCTGAGACTCTCCT
GGGAGTTCTTGGCGTTGTCT

CGTGTCTGGGTCTCCTGG
GGGGGCTTTGCCTGGGTGTT





GTGCAGCCTCTGGATTCAC
CTGGAGATGGTGAATCGGC

ACAGTCGATCACCATCTC
GTTGGTACCAGGAGACAAA





CTTTGATGATTATGCCATGC
CCTTCACAGAGTCCGCATA

CTGCACTGGAACCAGCA
GTTATAACCACCAACGCCAC





ACTGGGTCCGGCAAGCTCC
GCCTATGGTGCCACTATTCC

GTGGCGTTGGTGGTTATA
TGCTGGTTCCAGTGCAGGAG





AGGGAAGGGCCTGGAGTGG
AACTAGTGCCTGAGACCCA

ACTTTGTCTCCTGGTACC
ATGGTGATCGACTGTCCAGG





GTCTCAGGCACTAGTTGGA
CTCCAGGCCCTTCCCTGGA

AACAACACCCAGGCAAA
AGACCCAGACACGGAGGCA





ATAGTGGCACCATAGGCTA
GCTTGCCGGACCCAGTGCA

GCCCCCAAACTCATGATT
GGCTGAGTCAGCACAGACT





TGCGGACTCTGTGAAGGGC
TGGCATAATCATCAAAGGT

TATGATGTCAGTAATCG
GGGACCAGGAACCGGTTGC





CGATTCACCATCTCCAGAG
GAATCCAGAGGCTGCACAG

GCCCTCAGGGGTTTCTAA
NNNTNNCCTACTAGAA 





ACAACGCCAAGAACTCCCT
GAGAGTCTCAGGGACCTGC

TCGCTTCTCTGGCTCCAA
(SEQ ID NO: 3349)





GTATCTGCAAATGAACAGT
CAGGCTGTACCAAGCCTCC

GTCTGGCAACACGGCCT






CTGAGAGCTGAGGACACGG
CCCAGACTCCACCAGCCTG

CCCTGACCATCTCTGGGC






CCTTGTATTACTGTGCAAAA
CACCTANNATG (SEQ ID

TCCAGGCTGAGGACGAG






GGCAGGGTGGTGTATGCTA
NO: 3347)

GCTGACTATCACTGCAG






TAGACCCGGACTCGGTCTC


CTCATATACAAGCAGGA






GCCGTTTGACTACTGGGGC


GCACTCTGGGGGTATTC






CAGGGAACCCTGGTCACCG


GGCGGAGGGACCAAGCT






TCTCCTCAGCGTCGACCAA


GACCGTCCTAGGTCAGC






GGGCCCATCGGTCTTCCCCC


CCAAGGCTGCCCCCTCG






TGGCACCCTCCTCCAAGAG


GTCACTCTGTTCCCACCC






CACCTCTGGGGGCACAGCG


TCGAGTGAGGAGCTTCA






GCCCTGGGCTGCCTGGTCA


AGCCAACAAGGCCACAC






AGGACTACTTCCCCGAACC


TGGTGTGTCTCATAAGTG






TGTGACGGTCTCGTGGAAC


ACTTCTACCCGGGAGCC






TCANGCGCCCTGACCAGCG


GTGACAGTGGCCTGGAA






GCGTGCACACCTTCCCGGC


GGCAGATAGCAGCCCCG






TGTCCTACAGTCCTCANGA


TCAAGGCGGGAGTGGAG






CTCTACTCCCTCAGCAGCGT


ACCACCACACCCTCCAA






GGTGACCGTGCCCTCCAGC


ACAAAGCAACAACAAGT






AGCTTGGGCACCCAGACCT


ACGCGGCCAGCAGCTAC






ACATCTGCAACGTGAATCA


CTGAGCCTGACGCCTGA






CAAGCCCAGCAACACCAAN


GCAGTGGAAGTCCCACA






GTGGACAAGAGAGTTGAGC


GAAGCTACAGCTGCCAG






CCAAATCTTGTGACAAAAC


GTCACGCATGAAGGGAG






TCACACATGCCCACCG 


CACCGTGGANAAGACAG






(SEQ ID NO: 3346)


TGGCCCTACAGAATGTTC









ATAGAAGCTTGGCCGCC









ATGGNCCAACTTGTTTAT









TGCAGCTTATAATGGTTA









CNAATAAAGCA (SEQ









ID NO: 3348)







COV21_P1
A-C023
TACACATACGATTTAGGTG
TGAGGAGACGGTGACCAGG
COV21_P1
TACACATACGATTTAGGT
TGGGCTGACCCAGGACGGT
COV21_P1


H8

ACACTATAGAATAACATCC
GTTCCCTGGCCCCAGGAGT
H8
GACACTATAGAATAACA
CAGCTTGGTCCCTCCGCCGA
H8




ACTTTGCCTTTCTCTCCACA
CGAACCAACTATGCAAGCA

TCCACTTTGCCTTTCTCT
ATACCACCCTCAGGCTGGTG





GGTGTCCACTCCCAGGTCC
GCTGATACTACTACAATGT

CCACAGGTGTCCACTCCC
TCATAGGACTGGCAGTAATA





AACTGCACCTCGGTTCTATC
CCCCGACCTCTTGCACAGT

AGGTCCAACTGCACCTC
ATCAGCCTCATCCTCAGCCT





GATTGAATTCCACCATGGG
AATACACAGCCGTGTCCCC

GGTTCTATCGATTGAATT
GGAGCCCTGTGATGGCCAG





ATGGTCATGTATCATCCTTT
GGCTCTCAGGCTGTTCATTT

CCACCATGGGATGGTCA
GGAGGCTGAGGTGCCAGAC





TTCTAGTAGCAACTGCAAC
GAAGAAACACGGAGTTCTT

TGTATCATCCTTTTTCTA
TTGGAGCCAGAGAATCGGT





CGGTGTACATTCTGAGGTG
GGCATTTTCTCTGGAGATG

GTAGCAACTGCAACCGG
CAGGGACCCCTGAGGGCCG





CAGCTGGTGGAGTCTGGGG
GTGAATCGGCCCCTCACGG

TTCCTGGGCCCAGTCTGT
ATTGCTGTAACCATAGATGA





GAGGCTTGGTACAGCCTGG
AGCCTGGATAGTATGTGTC

GCTGACGCAGCCGCCCT
GGACTTTGGGGGCTGTTCCT





GGGGTCCCTGAGACTCTCG
ACCACCAGTACCAATTGCT

CAGTGTCTGGGGCCCCA
GGAAGTTTCTGGTACCAGTG





TGTGCAGCCTCTGGATTCAC
GAGACCCACTCCAGACCTT

GGGCAGAGGGTCACCAT
TACATCAGAACCTGCCCCGA





CTTCAGTAACTACGACATTC
CTCCTGTAGCTTGGCGGAC

CTCCTGCACTGGGAGCA
TGTTGGAGCTGCTCCCAGTG





ACTGGGTCCGCCAAGCTAC
ACAGTGAATGTCGTAGTTA

GCTCCAACATCGGGGCA
CAGGAGATGGTGACCCTCTG





AGGAGAAGGTCTGGAGTGG
CTGAAGGTGAATCCAGAGG

GGTTCTGATGTACACTGG
CCCTGGGGCCCCAGACACTG





GTCTCAGCAATTGGTACTG
CTGCACACGAGAGTCTCAG

TACCAGAAACTTCCAGG
AGGGCGGCTGAGTCAGCAC





GTGGTGACACATACTATCC
GGACCCCCCAGGCTGTACC

AACAGCCCCCAAAGTCC
AGACTNGGCNCCNAGAANC





AGGCTCCGTGAGGGGCCGA
AAGCCTCCCCCAGACTCCA

TCATCTATGGTTACAGCA
GNNT (SEQ ID NO:





TTCACCATCTCCAGAGAAA
CCAGCTGCACCTANNATG

ATCGGCCCTCAGGGGTC
3353)





ATGCCAAGAACTCCGTGTT
(SEQ ID NO: 3351)

CCTGACCGATTCTCTGGC






TCTTCAAATGAACAGCCTG


TCCAAGTCTGGCACCTCA






AGAGCCGGGGACACGGCTG


GCCTCCCTGGCCATCACA






TGTATTACTGTGCAAGAGG


GGGCTCCAGGCTGAGGA






TCGGGGACATTGTAGTAGT


TGAGGCTGATTATTACTG






ATCAGCTGCTTGCATAGTTG


CCAGTCCTATGACACCA






GTTCGACTCCTGGGGCCAG


GCCTGAGGGTGGTATTC






GGAACCCTGGTCACCGTCT


GGCGGAGGGACCAAGCT






CCTCAGCGTCGACCAAGGG


GACCGTCCTGGGTCAGC






CCCATCGGTCTTCCCCCTGG


CCAAGGCTGCCCCCTCG






CACCCTCCTCCAAGAGCAC


GTCACTCTGTTCCCGCCC






CTCTGGGGGCACAGCGGCC


TCGAGTGAGGAGCTTCA






CTGGGCTGCCTGGTCAAGG


AGCCAACAAGGCCACAC






ACTACTTCCCCGAACCTGTG


TGGTGTGTCTCATAAGTG






ACGGTCTCGTGGAACTCAG


ACTTCTACCCGGGAGCC






GCGCCCTGACCAGCGGCGT


GTGACAGTGGCCTGGAA






GCACACCTTCCCGGCTGTCC


GGCAGATAGCAGCCCCG






TACAGTCCTCANGACTCTA


TCAAGGCGGGAGTGGAG






CTCCCTCAGCAGCGTGGTG


ACCACCACACCCTCCAA






ACCGTGCCCTCCAGCAGCT


ACAAAGCAACAACAAGT






TGGGCACCCAGACCTACAT


ACGCGGCCAGCAGCTAC






CTGCAACGTGAATCACAAG


CTGAGCCTGACGCCTGA






CCCAGCAACACCNAAGGTG


GCAGTGGAAGTCCCACA






GACNAGANAGTTGAGCCCA


GAAGCTACAGCTGCCAG






AATCTTGTGACAAAACTCA


GTCACGCATGAAGGGAG






CACATGCCCACCGT 


CACCGTGGAGAAGACAG






(SEQ ID NO: 3350)


TGGCCCCTACAGAATGTT









CATAGAAGCTTGGCCGC









CATGGCCCAACTTGTTTA









TTGCAGCTTATAATGGTT









ACAAA (SEQ ID NO:









3352)







COV21_P1
A-C024
TACACATACGATTTAGGTG
CTGAGGAGACGGTGACCAG
COV21_P1
TACACATACGATTTAGGT
TTGGGCTGACCCAGGACGGT
COV21_P1


B2

ACACTATAGAATAACATCC
GGTTCCCTGGCCCCAGGAG
B2
GACACTATAGAATAACA
CAGCTTGGTCCCTCCGCCGA
B2




ACTTTGCCTTTCTCTCCACA
TCGAACCAGCTATGCAAGC

TCCACTTTGCCTTTCTCT
ATACCACCCTCAGGCTGGTG





GGTGTCCACTCCCAGGTCC
AGCTGATACTACTACAATG

CCACAGGTGTCCACTCCC
TCATAGGACTGGCAGTAATA





AACTGCACCTCGGTTCTATC
TCCCCGACCTCTTGCACAGT

AGGTCCAACTGCACCTC
ATCAGCCTCATCCTCAGCCT





GATTGAATTCCACCATGGG
AATACACAGCCGTGTCCCC

GGTTCTATCGATTGAATT
GGAGCCCTGTGATGGCCAG





ATGGTCATGTATCATCCTTT
GGCTCTCAGGCTGTTCATTT

CCACCATGGGATGGTCA
GGAGGCTGAGGTGCCAGAC





TTCTAGTAGCAACTGCAAC
GAAGAAACACGGAGTTCTT

TGTATCATCCTTTTTCTA
TTGGAGCCAGAGAATCGGT





CGGTGTACATTCTGAGGTG
GGCATTTTCTCTGGAGATG

GTAGCAACTGCAACCGG
CAGGGACCCCTGAGGGCCG





CAGCTGGTGGAGTCTGGGG
GTGAATCGGCCCTTCACGG

TTCCTGGGCCCAGTCTGT
ATTGCTGTAGCCATAGATGA





GAGGCTTGGTACAGCCTGG
AGCCTGGATAGTATGTGTC

GCTGACGCAGCCGCCCT
GGACTTTGGGGGCTATTCCT





GGGGTCCCTGAGACTCTCG
ACCAGCAGTACCAATTGCT

CAGTGTCTGGGGCCCCA
GGAAGTTTCTGGTACCAGTG





TGTGCAGCCTCTGGATTCAC
GAGACCCACTCCAGACCTT

GGGCAGAGGGTCACCAT
TACATCAGAACCTGCCCCGA





CTTCAGTAACTACGACATG
CTCCTGTAACTTGGCGGAC

CTCCTGCACTGGGAGCA
TGTTGGAGCTGCTCCCAGTG





CACTGGGTCCGCCAAGTTA
CCAGTGCATGTCGTAGTTA

GCTCCAACATCGGGGCA
CAGGAGATGGTGACCCTCTG





CAGGAGAAGGTCTGGAGTG
CTGAAGGTGAATCCAGAGG

GGTTCTGATGTACACTGG
CCCTGGGGCCCCAGACACTG





GGTCTCAGCAATTGGTACT
CTGCACACGAGAGTCTCAG

TACCAGAAACTTCCAGG
AGGGCGGCTGAGTCAGCAC





GCTGGTGACACATACTATC
GGACCCCCCAGGCTGTACC

AATAGCCCCCAAAGTCC
AGACTGGGACCNGGAACCG





CAGGCTCCGTGAAGGGCCG
AAGCCTCCCCCAGACTCCA

TCATCTATGGCTACAGCA
GNN (SEQ ID NO: 





ATTCACCATCTCCAGAGAA
CCAGCTGCACNNNACACTG

ATCGGCCCTCAGGGGTC
3357)





AATGCCAAGAACTCCGTGT
NNACACC (SEQ ID 

CCTGACCGATTCTCTGGC






TTCTTCAAATGAACAGCCT
NO: 3355)

TCCAAGTCTGGCACCTCA






GAGAGCCGGGGACACGGCT


GCCTCCCTGGCCATCACA






GTGTATTACTGTGCAAGAG


GGGCTCCAGGCTGAGGA






GTCGGGGACATTGTAGTAG


TGAGGCTGATTATTACTG






TATCAGCTGCTTGCATAGCT


CCAGTCCTATGACACCA






GGTTCGACTCCTGGGGCCA


GCCTGAGGGTGGTATTC






GGGAACCCTGGTCACCGTC


GGCGGAGGGACCAAGCT






TCCTCAGCGTCGACCAAGG


GACCGTCCTGGGTCAGC






GCCCATCGGTCTTCCCCCTG


CCAAGGCTGCCCCCTCG






GCACCCTCCTCCAAGAGCA


GTCACTCTGTTCCCACCC






CCTCTGGGGGCACAGCGGC


TCGAGTGAGGAGCTTCA






CCTGGGCTGCCTGGTCAAG


AGCCAACAAGGCCACAC






GACTACTTCCCCGAACCTGT


TGGTGTGTCTCATAAGTG






GACGGTCTCGTGGAACTCA


ACTTCTACCCGGGAGCC






GGCGCCCTGACCAGCGGCG


GTGACAGTGGCCTGGAA






TGCACACCTTCCCGGCTGTC


GGCAGATAGCAGCCCCG






CTACAGTCCTCAGGACTCT


TCAAGGCGGGAGTGGAG






ACTCCCTCAGCAGCGTGGT


ACCACCACACCCTCCAA






GACCGTGCCCTCCAGCAGC


ACAAAGCAACAACAAGT






TTGGGCACCCAGACCTACA


ACGCGGCCAGCAGCTAC






TCTGCAACGTGAATCACAA


CTGAGCCTGACGCCTGA






GCCCAGCAACACCAANGTG


GCAGTGGAAGTCCCACA






GACAAGAGAGTTGAGCCCA


GAAGCTACAGCTGCCAG






AATCTTGTGACAAAACTCA


GTCACGCATGAAGGGAG






CACATGCCCACCGTGCCC


CACCGTGGAGAAGACAG






(SEQ ID NO: 3354)


TGGCCCCTACAGAATGTT









CATAGAAGCTTGGCCGC









CATGGCCCAACTTGTTTA









TTGCAGCTTATAATGGTT









ACAAATAAAGCAA (SEQ









ID NO: 3356)







COV21_P1
A-C025
TACACATACGATTTAGGTG
GGTGACCAGGGTTNCCTGG
COV21_P1
TACACATACGATTTAGGT
CTTGGGCTGACCCAGGACG
COV21_P1


A12

ACACTATAGAATAACATCC
CCCCAGGAGTCGAACCAGC
A12
GACACTATAGAATAACA
GTCAGCTTGGTCCCTCCGCC
A12




ACTTTGCCTTTCTCTCCACA
TATGCAAGCAGCTGATACT

TCCACTTTGCCTTTCTCT
GAATACCACCCTCAGGCTGG





GGTGTCCACTCCCAGGTCC
ACTACAATGTCCCCGACCT

CCACAGGTGTCCACTCCC
TGTCATAGGACTGGCAGTAA





AACTGCACCTCGGTTCTATC
CTTGCACAGTAATACACAG

AGGTCCAACTGCACCTC
TAATCAGCCTCATCCTCAGC





GATTGAATTCCACCATGGG
CCGTGTCCCCGGCTCTCAG

GGTTCTATCGATTGAATT
CTGGAGCCCTGTGATGGCCA





ATGGTCATGTATCATCCTTT
GCTGTTCATTTGAAGAAAC

CCACCATGGGATGGTCA
GGGAGGCTGAGGTGCCAGA





TTCTAGTAGCAACTGCAAC
ACGGAGTTCTTGGCATTTTC

TGTATCATCCTTTTTCTA
CTTGGAGCCAGAGAATCGG





CGGTGTACATTCTGAGGTG
TCTGGAGATGGTGAATCGG

GTAGCAACTGCAACCGG
TCAGGGACCCCCGAGGGCC





CAGCTGGTGGAGTCTGGGG
CCCTTCACGGAGCCTGGAT

TTCCTGGGCCCAGTCTGT
GATTGCTGTAACCATAGATG





GAGGCTTGGTACAGCCTGG
AGTATGTGTCACCAGCAGT

GCTGACGCAGCCGCCCT
AGGACTTTGGGGGCTGTTCC





GGGGTCCCTGAGACTCTCG
ACCAATTGCTGAGACCCAC

CAGTGTCTGGGGCCCCA
TGGAAGTTTCTGGTACCAGT





TGTGCAGCCTCTGGATTCAC
TCCAGACCTTCTCCTGTAGC

GGGCAGAGGGTCACCAT
GTACATCAGAACCTGCCCCG





CTTCAGTAACTACGACATG
TTGGCGGACCCAGTGCATG

CTCCTGCACTGGGAGTA
ATGTTGGAGCTACTCCCAGT





CACTGGGTCCGCCAAGCTA
TCGTAGTTACTGAAGGTGA

GCTCCAACATCGGGGCA
GCAGGAGATGGTGACCCTCT





CAGGAGAAGGTCTGGAGTG
ATCCAGAGGCTGCACACGA

GGTTCTGATGTACACTGG
GCCCTGGGGCCCCAGACACT





GGTCTCAGCAATTGGTACT
GAGTCTCAGGGACCCCCCA

TACCAGAAACTTCCAGG
GAGGGCGGCTGAGTCAGCA





GCTGGTGACACATACTATC
GGCTGTACCAAGCCTCCCC

AACAGCCCCCAAAGTCC
CAGACTGGGNCCAGGAACC





CAGGCTCCGTGAAGGGCCG
CAGACTCCACCANCTGCAC

TCATCTATGGTTACAGCA
GGNN (SEQ ID NO: 





ATTCACCATCTCCAGAGAA
CTANNATG (SEQ ID 

ATCGGCCCTCGGGGGTC
3361)





AATGCCAAGAACTCCGTGT
NO: 3359)

CCTGACCGATTCTCTGGC






TTCTTCAAATGAACAGCCT


TCCAAGTCTGGCACCTCA






GAGAGCCGGGGACACGGCT


GCCTCCCTGGCCATCACA






GTGTATTACTGTGCAAGAG


GGGCTCCAGGCTGAGGA






GTCGGGGACATTGTAGTAG


TGAGGCTGATTATTACTG






TATCAGCTGCTTGCATAGCT


CCAGTCCTATGACACCA






GGTTCGACTCCTGGGGCCA


GCCTGAGGGTGGTATTC






GGGAACCCTGGTCACCGTC


GGCGGAGGGACCAAGCT






TCCTCAGCGTCGACCAAGG


GACCGTCCTGGGTCAGC






GCCCATCGGTCTTCCCCCTG


CCAAGGCTGCCCCCTCG






GCACCCTCCTCCAAGAGCA


GTCACTCTGTTCCCACCC






CCTCTGGGGGCACAGCGGC


TCGAGTGAGGAGCTTCA






CCTGGGCTGCCTGGTCAAG


AGCCAACAAGGCCACAC






GACTACTTCCCCGAACCTGT


TGGTGTGTCTCATAAGTG






GACGGTCTCGTGGAACTCA


ACTTCTACCCGGGAGCC






GGCGCCCTGACCAGCGGCG


GTGACAGTGGCCTGGAA






TGCACACCTTCCCGGCTGTC


GGCAGATAGCAGCCCCG






CTACAGTCCTCAGGACTCT


TCAAGGCGGGAGTGGAG






ACTCCCTCAGCAGCGTGGT


ACCACCACACCCTCCAA






GACCGTGCCCTCCAGCAGC


ACAAAGCAACAACAAGT






TTGGGCACCCAGACCTACA


ACGCGGCCAGCAGCTAC






TCTGCAACGTGAATCACAA


CTGAGCCTGACGCCTGA






GCCCAGCAACACCAANGTG


NCAGTGGAAGTCCCACA






GACAAGAGAGTTGAGCCCA


GAAGCTACAGCTGCCAG






AATCTTGTGACAAAACTCA


GTCACGCATGAAGGGAG






CACATGCCCACCGTGCCC


CACCGTGGAGAAGACAG






(SEQ ID NO: 3358)


TGGCCCCTACAGAATGTT









CATAGAAGCTTGGCCGC









CATGGCCCAACTTGTTTA









TTGCAGCTTATAATGGTT









ACAAATAAAGCAAT









(SEQ ID NO: 3360)







COV21_P1
A-C026
TACACATACGATTTAGGTG
CTGAGGAGANGGTGACCAG
COV21_P1
TACACATACGATTTAGGT
TTGGGCTGACCCAGGACGGT
COV21_P1


D11

ACACTATAGAATAACATCC
GGTTCCCTGGCCCCAGGAG
D11
GACACTATAGAATAACA
CAGCTTGGTCCCTCCGCCGA
D11




ACTTTGCCTTTCTCTCCACA
TCGAACCAGCTATGCAAGC

TCCACTTTGCCTTTCTCT
ATACCACCCTCAAACTGGTG





GGTGTCCACTCCCAGGTCC
AGCTGATACTACTACAATG

CCACAGGTGTCCACTCCC
TCATAGGACTGGCAGTAATA





AACTGCACCTCGGTTCTATC
TCCCCGACCTCTTGCACAGT

AGGTCCAACTGCACCTC
ATCAGCCTCATCCTCAGCCT





GATTGAATTCCACCATGGG
AATACACCGCCGTGTCCCC

GGTTCTATCGATTGAATT
GGAGCCCTGTGATGGCCAG





ATGGTCATGTATCATCCTTT
GGCTCTCAGGCTGTTCATTT

CCACCATGGGATGGTCA
GGAGGCTGAGGTGCCAGAC





TTCTAGTAGCAACTGCAAC
GAAGAAACACGGAGTTCTT

TGTATCATCCTTTTTCTA
TTGGAGCCAGAGAATCGGT





CGGTGTACATTCTGAGGTG
GGCATTTTCTCTGGAGATG

GTAGCAACTGCAACCGG
CAGGGACCCCTGAGGGCCG





CAGCTGGTGGAGTCTGGGG
GTGAATCGGCCCTTCACGG

TTCCTGGGCCCAGTCTGT
ATTGTTGTAACCATAGATGA





GAGGCTTGGTACAGCCTGG
AGCCTGGATAGTATGTGTC

GCTGACGCAGCCGCCCT
GGACTTTGGGGGCTGTTCCT





GGGGTCCCTGAGACTCTCG
ACCAGCAGTACCAATTGCT

CAGTGTCTGGGGCCCCA
GGAAGTTTCTGGTACCAGTG





TGTGCAGCCTCTGGATTCAC
GAGACCCACTCCAGACCTT

GGGCAGAGGGTCACCAT
TACATCAGAACCTGCCCCGA





CTTCAGTAACTACGACATA
CTCCTGTAGCCTGGCGGAC

CTCCTGCACTGGGAGCA
TGTTGGAGCTGCTCCCAGTG





CACTGGGTCCGCCAGGCTA
CCAGTGTATGTCGTAGTTAC

GCTCCAACATCGGGGCA
CAGGAGATGGTGACCCTCTG





CAGGAGAAGGTCTGGAGTG
TGAAGGTGAATCCAGAGGC

GGTTCTGATGTACACTGG
CCCTGGGGCCCCAGACACTG





GGTCTCAGCAATTGGTACT
TGCACACGAGAGTCTCAGG

TACCAGAAACTTCCAGG
AGGGCGGCTGAGTCAGCAC





GCTGGTGACACATACTATC
GACCCCCCAGGCTGTACCA

AACAGCCCCCAAAGTCC
AGACTGGGNNNNGGAACCG





CAGGCTCCGTGAAGGGCCG
AGCCTCCCCCAGACTCCAC

TCATCTATGGTTACAACA
GNTGNNNNTG (SEQ ID 





ATTCACCATCTCCAGAGAA
CAGCTGCACCTANNATG

ATCGGCCCTCAGGGGTC
NO: 3365)





AATGCCAAGAACTCCGTGT
(SEQ ID NO: 3363)

CCTGACCGATTCTCTGGC






TTCTTCAAATGAACAGCCT


TCCAAGTCTGGCACCTCA






GAGAGCCGGGGACACGGCG


GCCTCCCTGGCCATCACA






GTGTATTACTGTGCAAGAG


GGGCTCCAGGCTGAGGA






GTCGGGGACATTGTAGTAG


TGAGGCTGATTATTACTG






TATCAGCTGCTTGCATAGCT


CCAGTCCTATGACACCA






GGTTCGACTCCTGGGGCCA


GTTTGAGGGTGGTATTCG






GGGAACCCTGGTCACCGTC


GCGGAGGGACCAAGCTG






TCCTCAGCGTCGACCAAGG


ACCGTCCTGGGTCAGCC






GCCCATCGGTCTTCCCCCTG


CAAGGCTGCCCCCTCGG






GCACCCTCCTCCAAGAGCA


TCACTCTGTTCCCGCCCT






CCTCTGGGGGCACAGCGGC


CGAGTGAGGAGCTTCAA






CCTGGGCTGCCTGGTCAAG


GCCAACAAGGCCACACT






GACTACTTCCCCGAACCTGT


GGTGTGTCTCATAAGTG






GACGGTCTCGTGGAACTCA


ACTTCTACCCGGGAGCC






NGCGCCCTGACCAGCGGCG


GTGACAGTGGCCTGGAA






TGCACACCTTCCCGGCTGTC


GGCAGATAGCAGCCCCG






CTACAGTCCTCANGACTCT


TCAAGGCGGGAGTGGAG






ACTCCCTCAGCAGCGTGGT


ACCACCACACCCTCCAA






GACCGTGCCCTCCAGCAGC


ACAAAGCAACAACAAGT






TTGGGCACCCAGACCTACA


ACGCGGCCAGCAGCTAC






TCTGCAACGTGAATCACAA


CTGAGCCTGACGCCTGA






GCCCAGCAACACCAAGGTG


GCAGTGGAAGTCCCACA






GACAGANAGTTGAGCCCAA


GAAGCTACAGCTGCCAG






ATCTTGTGACAAAACTCAC


GTCACGCATGAAGGGAG






ACATGCCCACCGTGCCC


CACCGTGGAGAAGACAG






(SEQ ID NO: 3362)


TGGCCCCTACAGAATGTT









CATAGAAGCTTGGCCGC









CATGGCCCAACTTGTTTA









TTGCAGCTTATAATGGTT









ACAAATAAAGCAAT









(SEQ ID NO: 3364)







COV57_P1
A-C032
TACACATACGATTTAGGTG
GNNGCTGTGCCCCAGAGGT
COV57_P1
TACACATACGATTTAGGT
CTTGGGCTGACCTAGGACGG
COV57_P1


F6

ACACTATAGAATAACATCC
GCTCTTGGAGGAGGGTGCC
F6
GACACTATAGAATAACA
TGACCTTGGTCCCAGTTCCG
F6




ACTTTGCCTTTCTCTCCACA
AGGGGGAAGACCGATGGGC

TCCACTTTGCCTTTCTCT
AAGACATAAAGGGCACTCA





GGTGTCCACTCCCAGGTCC
CCTTGGTGGAGGCTGAGGA

CCACAGGTGTCCACTCCC
GGCTGCTGTCATAGGACTGG





AACTGCACCTCGGTTCTATC
GACAGTGACCAGGGTGCCA

AGGTCCAACTGCACCTC
CAGTAATAATCAGCCTCATC





GATTGAATTCCACCATGGG
CGGCCCCAGAGATCGAAGT

GGTTCTATCGATTGAATT
CTCAGCCTGGAGCCCAGTGA





ATGGTCATGTATCATCCTTT
ACCAGTCCACTGCTACCCCT

CCACCATGGGATGGTCA
TGGCCAGGGAGGCTGAGGT





TTCTAGTAGCAACTGCAAC
CTCGCACAGTAATACATGG

TGTATCATCCTTTTTCTA
GCCAGACTTGGAGCCAGAG





CGGTGTACATTCCGAGGTG
CGGTGTCCGAGGCCTTCAG

GTAGCAACTGCAACCGG
AATCGGTCAGGGACCCCTG





CAGCTGGTGCAGTCTGGAG
GCTGCTCCACTGCAGGTAG

TTCCTGGGCCCAGTCTGT
AGGGCCGATTGCTGTTACCA





CAGAGGTGAAAAAGCCCGG
GCGGTGCTGATGGACTTGT

GCTGACTCAGCCGCCCTC
TAGATGAGGAGTTTGGGGG





GGAGTCTCTGAAGATCTCC
CGGCTGAGATGGTGACCTG

AGTGTCTGGGGCCCCAG
CTGTTCCTGGAAGCTGCTGG





TGTAAGGGTTCTGGATACA
GCCTTGGAAGGACGGGCTG

GGCAGAGGGTCACCATC
TACCAGTGTACATCATAACC





GCTTTACCAGCTACTGGATC
TATCTGGTATCAGAGTCAC

TCCTGCACTGGGAGCAG
TGCCCCGATGTTGGAGCTGC





GGCTGGGTGCGCCAGATGC
CAGGATAGATGATCCCCAT

CTCCAACATCGGGGCAG
TCCCAGTGCAGGAGATGGT





CCGGGAAAGGCCTGGAGTG
CCACTCCAGGCCTTTCCCGG

GTTATGATGTACACTGGT
GACCCTCTGCCCTGGGGCCC





GATGGGGATCATCTATCCT
GCATCTGGCGCACCCAGCC

ACCAGCAGCTTCCAGGA
CAGACACTGAGGGCGGCTG





GGTGACTCTGATACCAGAT
GATCCAGTAGCTGGTAAAG

ACAGCCCCCAAACTCCT
AGTCAGCACAGACTGGGAC





ACAGCCCGTCCTTCCAAGG
CTGTATCCAGAACCCTTAC

CATCTATGGTAACAGCA
CAGGAACCGGNTG (SEQ





CCAGGTCACCATCTCAGCC
AGGAGATCTTCAGAGACTC

ATCGGCCCTCAGGGGTC
ID NO: 3369)





GACAAGTCCATCAGCACCG
CCCGGGCTTTTTCACCTCTG

CCTGACCGATTCTCTGGC






CCTACCTGCAGTGGAGCAG
CTCCAGACTGCACCAGCTG

TCCAAGTCTGGCACCTCA






CCTGAAGGCCTCGGACACC
CAC (SEQ ID NO: 

GCCTCCCTGGCCATCACT






GCCATGTATTACTGTGCGA
3367)

GGGCTCCAGGCTGAGGA






GAGGGGTAGCAGTGGACTG


TGAGGCTGATTATTACTG






GTACTTCGATCTCTGGGGCC


CCAGTCCTATGACAGCA






GTGGCACCCTGGTCACCGT


GCCTGAGTGCCCTTTATG






CTCCTCAGCGTCGACCAAG


TCTTCGGAACTGGGACC






GGCCCATCGGTCTTCCCCCT


AAGGTCACCGTCCTAGG






GGCACCCTCCTCCAAGAGC


TCAGCCCAAGGCCAACC






ACCTCTGGGGGCACAGCGG


CCACTGTCACTCTGTTCC






CCCTGGGCTGCCTGGTCAA


CACCCTCGAGTGAGGAG






GGACTACTTCCCCGAACCT


CTTCAAGCCAACAAGGC






GTGACGGTCTCGTGGAACT


CACACTGGTGTGTCTCAT






CAGGCGCCCTGACCAGCGG


AAGTGACTTCTACCCGG






CGTGCACACCTTCCCGGCT


GAGCCGTGACAGTGGCC






GTCCTACAGTCCTCAGGAC


TGGAAGGCAGATAGCAG






TCTACTCCCTCAGCAGCGTG


CCCCGTCAAGGCGGGAG






GTGACCGTGCCCTCCAGCA


TGGAGACCACCACACCC






GCTTNNCACCCAGACCTAC


TCCAAACAAAGCAACAA






ATCTGCAACGTGAATCACA


CAAGTACGCGGCCAGCA






AGCCCAGCAACACCAAGGT


GCTACCTGAGCCTGACG






GGACAAGAGAGTTGAGCCC


CCTGAGCAGTGGAAGTC






AAATCTTGTGACAAAACTC


CCACAGAAGCTACAGCT






ACACATGCCCACCGTGCCC


GCCAGGTCACGCATGAA






AGCACC (SEQ ID NO: 


GGGAGCACCGTGGAGAA






3366)


GACAGTGGCCCCTACAG









AATGTTCATAGAAGCTT









GGCCGCCATGGCCCAAC









TTGTTTATTGCAGCTTAT









AAT (SEQ ID NO: 









3368)







COV57_P2
A-C033
TACACATACGATTTAGGTG
AGAGGTGCTCTTGGAGGAG
COV57_P2
TACACATACGATTTAGGT
TACCGATTGGAGGGCGTTAT
COV57_P2


F10

ACACTATAGAATAACATCC
GGTGCCAGGGGGAAGACCG
F10
GACACTATAGAATAACA
CCACCTTCCACTGTACTTTG
F10




ACTTTGCCTTTCTCTCCACA
ATGGGCCCTTGGTGGAGGC

TCCACTTTGCCTTTCTCT
GCCTCTCTGGGATAGAAGTT





GGTGTCCACTCCCAGGTCC
TGAGGAGACGCTGACCGTG

CCACAGGTGTCCACTCCC
ATTCAGCAGGCACACAACA





AACTGCACCTCGGTTCTATC
GTCCCTTTGCCCCAGACGTC

AGGTCCAACTGCACCTC
GAGGCAGTTCCAGATTTCAA





GATTGAATTCCACCATGGG
CATGTAGTAGTAGTAGTGA

GGTTCTATCGATTGAATT
CTGCTCATCAGATGGCGGGA





ATGGTCATGTATCATCCTTT
GACCAATCTTTTGCAGATTG

CCACCATGGGATGGTCA
AGATGAAGACAGATGGTGC





TTCTAGTAGCAACTGCAAC
TACTACTACCTCTCTCGCAC

TGTATCATCCTTTTTCTA
AGCCACAGTTCGTTTAATCT





CGGTGTACATTCCCAGGTG
AGTAATAGACGGCCGTGTC

GTAGCAACTGCAACCGG
CCAGTCGAGTCCCTTGGCCG





CAGCTGCAGGAGTCGGGCC
CGCAGCGGTCACAGACCTC

TGTACATTCAGAAATTGT
AAGGTGACGAACCAGCTGC





CAGGACTAGTGAAGCCTTC
ACCTTCAGGGAGAACTGAT

GTTGACACAGTCTCCAG
TACGCTGCTGACAGTAATAA





GGAGACCCTGTCCCTCACC
TCTTCGACGTGTCTAGTGAT

CCACCCTGTCTTTGTCTC
ACTGCAAAATCTTCAGGGTC





TGCACTGTCTCTGGTGCCTC
ATGGTGACTCGACTCCTGA

CAGGGGAAAGAGCCTCC
TAGGCTGCTGATGGTGAGA





CATCAATAGTTACTACTGG
GGGCGGGGTTGTAGTTGGT

CTCTCCTGCAGGGCCAGT
GTGAAGTCTGTCCCAGACCC





ACCTGGATCCGGCAGCCCC
GTTCCCACTGTCATGGATAT

CAGAGTGTTGGTACCTA
ACTGCCACTGAACCTGGCTG





CAGGGAAGGGACTGGAATG
ATCCAATCCATTCCAGTCCC

CTTAGCCTGGTACCAAC
GGATGCCAGTGGCCCTGTTG





GATTGGATATATCCATGAC
TTCCCTGGGGGCTGCCGGA

AGAAAGTTGGCCAGCCT
GACGCATCATAGATGAGGA





AGTGGGAACACCAACTACA
TCCAGGTCCAGTAGTAACT

CCCAGGCTCCTCATCTAT
GCCTGGGAGGCTGGCCAAC





ACCCCGCCCTCAGGAGTCG
ATTGATGGAGGCACCAGAG

GATGCGTCCAACAGGGC
TTTCTGTTGGTACCAGGCTA





AGTCACCATATCACTAGAC
ACAGTGCAGGTGAGGGACA

CACTGGCATCCCAGCCA
AGTAGGTACCAACACTCTGA





ACGTCGAAGAATCAGTTCT
GGGTCTCCGAAGGCTTCAC

GGTTCAGTGGCAGTGGG
CTGGCCCTGCAGGAGAGGG





CCCTGAAGGTGAGGTCTGT
TAGTCCTGGGCCCGACTCC

TCTGGGACAGACTTCACT
AGGCTCTTTCCCCTGGAGAC





GACCGCTGCGGACACGGCC
NGCAGCCTGCACCT 

CTCACCATCAGCAGCCT
AAAGACAGGG (SEQ ID 





GTCTATTACTGTGCGAGAG
(SEQ ID NO: 3371)

AGACCCTGAAGATTTTG
NO: 3373)





AGGTAGTAGTACAATCTGC


CAGTTTATTACTGTCAGC






AAAAGATTGGTCTCACTAC


AGCGTAGCAGCTGGTTC






TACTACTACATGGACGTCT


GTCACCTTCGGCCAAGG






GGGGCAAAGGGACCACGGT


GACACGACTGGAGATTA






CACCGTCTCCTCAGCGTCG


AACGTACGGTGGCTGCA






ACCAAGGGCCCATCGGTCT


CCATCTGTCTTCATCTTC






TCCCCCTGGCACCCTCCTCC


CCGCCATCTGATGAGCA






AAGAGCACCTCTGGGGGCA


GTTGAAATCTGGAACTG






CAGCGGCCCTGGGCTGCCT


CCTCTGTTGTGTGCCTGC






GGTCAAGGACTACTTCCCC


TGAATAACTTCTATCCCA






GAACCTGTGACGGTCTCGT


GAGAGGCCAAAGTACAG






GGAACTCAGGCGCCCTGAC


TGGAAGGTGGATAACGC






CAGCGGCGTGCACACCTTC


CCTCCAATCGGGTAACTC






CCGGCTGTCCTACAGTCCTC


CCAGGAGAGTGTCACAG






AGGACTCTACTCCCTCAGC


AGCAGGACAGCAAGGAC






AGCGTGGTGACCGTGCCCT


AGCACCTACAGCCTCAG






CCAGCAGCTTGGGCACCCA


CAGCACCCTGACGCTGA






GACCTACATCTGCAACGTG


GCAAAGCAGACTACGAG






AATCACAAGCCCAGCAACA


AAACACAAAGTCTACGC






CCAAGGTGGACAAGAGAGT


CTGCGAAGTCACCCATC






TGAGCCCAAATCTTGTGAC


ANGGCCTGAGCTCGCCC






AAAACTCACACATGCCCA


GTCACAAAGAGCTTCAA






(SEQ ID NO: 3370)


CAGGGGAGAGTGNNNNA









AANCTTGGCCGCCATGG









CCCAACTTGTTTATTGCA









GCTTATAATGGTTACAA









ATAAA (SEQ ID 









NO: 3372)







COV57_P1
A-C036
TACACATACGATTTAGGTG
GCTGTGCCNNGAGGTGCTC
COV57_P1
TACACATACGATTTAGGT
TACCCGATTGGAGGGCGTTA
COV57_P1


D12

ACACTATAGAATAACATCC
TTGGAGGAGGGTGCCAGGG
D12
GACACTATAGAATAACA
TCCACCTTCCACTGTACTTT
D12




ACTTTGCCTTTCTCTCCACA
GGAAGACCGATGGGCCCTT

TCCACTTTGCCTTTCTCT
GGCCTCTCTGGGATAGAAGT





GGTGTCCACTCCCAGGTCC
GGTGGAGGCTGAGGAGACG

CCACAGGTGTCCACTCCC
TATTCAGCAGGCACACAAC





AACTGCACCTCGGTTCTATC
GTGACCAGGGTTCCCTGGC

AGGTCCAACTGCACCTC
AGAGGCAGTTCCAGATTTCA





GATTGAATTCCACCATGGG
CCCAGTAGTCGATAGACGA

GGTTCTATCGATTGAATT
ACTGCTCATCAGATGGCGGG





ATGGTCATGTATCATCCTTT
AGGACGAGAGAAGGACCTC

CCACCATGGGATGGTCA
AAGATGAAGACAGATGGTG





TTCTAGTAGCAACTGCAAC
CTTCTGGCACAGTAATACA

TGTATCATCCTTTTTCTA
CAGCCACAGTTCGTTTAATC





CGGTGTACATTCCCAGGTG
CAGCCGTGTCCGCGGCGGT

GTAGCAACTGCAACCGG
TCCAGTCGTGTCCCTTGGCC





CAGCTACAGCAGTGGGGCG
CACAGACCTCAGGCTCAGG

TGTACATGGGGATATTGT
GAAGGTGAGAGTTTGTAGA





CAGGACTGTTGAAGCCTTC
GAGAACTGGTTCTTGGACG

GATGACTCAGTCTCCACT
GCTTGCATGCAGTAATAAAC





GGAGACCCTGTCCCGCACC
TGTCTACTGAGATGGTGAC

CTCCCTGCCCGTCACCCC
CCCAACATCCTCAGCCTCCA





TGCGCTGTCTTTGGTGGGTC
TCGACTCTTGAGGGACGGG

TGGAGAGCCGGCCTCCA
CTCTGCTGATTTTCAGTGTG





CTTCACTAATTACTACTGGA
TTGTAGTTGGTGATTCCACT

TCTCCTGCAGGTCTAGTC
AAATCTGTGCCTGATCCACT





GTTGGATCCGCCAGTCCCC
ATCATTGATTTCCCCAATCC

AGAGCCTCCTGCATAGA
GCCCCTGAACCTGTCAGGGA





AGGGAAGGGGCTGGAGTGG
ACTCCAGCCCCTTCCCTGGG

AATGGATACAACTATTT
CCCCGGAGGCCCGATTGGA





ATTGGGGAAATCAATGATA
GACTGGCGGATCCAACTCC

GGATTGGTACCTGCAGA
ACCCAAATAGATCAGGAGC





GTGGAATCACCAACTACAA
AGTAGTAATTAGTGAAGGA

AGCCAGGGCAGTCTCCA
TGTGGAGACTGCCCTGGCTT





CCCGTCCCTCAAGAGTCGA
CCCACCAAAGACAGCGCAG

CAGCTCCTGATCTATTTG
CTGCAGGTACCAATCCAAAT





GTCACCATCTCAGTAGACA
GTGCGGGACAGGGTCTCCG

GGTTCCAATCGGGCCTCC
AGTTGTATCCATTTCTATGC





CGTCCAAGAACCAGTTCTC
AAGGCTTCAACAGTCCTGC

GGGGTCCCTGACAGGTT
AGGAGGCTCTGACTAGACCT





CCTGAGCCTGAGGTCTGTG
GCCCCACTGCTGTAGCTGC

CAGGGGCAGTGGATCAG
GCAGGAGATGGAGGCCGGC





ACCGCCGCGGACACGGCTG
AC (SEQ ID NO: 3375)

GCACAGATTTCACACTG
TCTCCAGGGGTGACGGGGC





TGTATTACTGTGCCAGAAG


AAAATCAGCAGAGTGGA
AGGGAG (SEQ ID NO: 





GAGGTCCTTCTCTCGTCCTT


GGCTGAGGATGTTGGGG
3377)





CGTCTATCGACTACTGGGG


TTTATTACTGCATGCAAG






CCAGGGAACCCTGGTCACC


CTCTACAAACTCTCACCT






GTCTCCTCAGCGTCGACCA


TCGGCCAAGGGACACGA






AGGGCCCATCGGTCTTCCC


CTGGAGATTAAACGTAC






CCTGGCACCCTCCTCCAAG


GGTGGCTGCACCATCTGT






AGCACCTCTGGGGGCACAG


CTTCATCTTCCCGCCATC






CGGCCCTGGGCTGCCTGGT


TGATGAGCAGTTGAAAT






CAAGGACTACTTCCCCGAA


CTGGAACTGCCTCTGTTG






CCTGTGACGGTCTCGTGGA


TGTGCCTGCTGAATAACT






ACTCAGGCGCCCTGACCAG


TCTATCCCAGAGAGGCC






CGGCGTGCACACCTTCCCG


AAAGTACAGTGGAAGGT






GCTGTCCTACAGTCCTCAG


GGATAACGCCCTCCAAT






GACTCTACTCCCTCAGCAG


CGGGTAACTCCCAGGAG






CGTGGTGACCGTGCCCTCC


AGTGTCACAGAGCAGGA






AGCAGCTTGGGGCACCCAG


CAGCAAGGACAGCACCT






ACCTACATCTGCAACGTGA


ACAGCCTCAGCAGCACC






ATCACAAGCCCAGCAACAC


CTGACGCTGAGCAAAGC






CAAGGTGGACAAGAGAGTT


AGACTACGAGAAACACA






GAGCCCAAATCTTGTGACA


AAGTCTACGCCTGCGAA






AAACTCACACATGCCCACC


GTCACCCATCAGGGCCT






GTGCCCAGCACCTGAAC


GAGCTCGCCCGTCACAA






(SEQ ID NO: 3374)


AGAGCTTCAACANGGGN









ANAGTGTTAGAAGCTTG









GCCGCCATGGCCCAACT









TGTTTATT (SEQ ID 









NO: 3376)







COV57_P2
A-C037
TACACATACGATTTAGGTG
CGCTGTGCCCCNGAGGTGC
COV57_P2
TACACATACGATTTAGGT
ATTGGAGGGCGTTATCCACC
COV57_P2


H6

ACACTATAGAATAACATCC
TCCTGGAGCAGGGCGCCAG
H6
GACACTATAGAATAACA
TTCCACTGTACTTTGGCCTC
H6




ACTTTGCCTTTCTCTCCACA
GGGGAAGACCGATGGGCCC

TCCACTTTGCCTTTCTCT
TCTGGGATAGNNCNTAANN





GGTGTCCACTCCCAGGTCC
TTGGTGGAAGCTGAAGAGA

CCACAGGTGTCCACTCCC
CAGCAGGCACACAACAGAG





AACTGCACCTCGGTTCTATC
CGGTGACCATTGTCCCTTGG

AGGTCCAACTGCACCTC
GCAGTTCCAGATTTCAACTG





GATTGAATTCCACCATGGG
CCCCAGATATCAAAAGCAT

GGTTCTATCGATTGAATT
CTCATCAGATGGCGGGAAG





ATGGTCATGTATCATCCTTT
CATTGCAGCTACCACCACT

CCACCATGGGATGGTCA
ATGAAGACAGATGGTGCAG





TTCTAGTAGCAACTGCAAC
ACAATATGGGGCCGCACAG

TGTATCATCCTTTTTCTA
CCACAGTTCGTTTGATTTCC





CGGTGTACATTCCCAGGTG
TAATACACGGCCGTGTCCT

GTAGCAACTGCAACCGG
ACCTTGGTCCCTTGGCCGAA





CAGCTGGTGCAGTCTGGGC
CGGATCTCAGGCTGCTCAG

TGTACATTCAGAAATTGT
CGTCCACGGTGAGCTACCAT





CTGAGGTGAAGAAGCCTGG
CTCCATGTAGGCTGTGCTTG

GTTGACGCAGTCTCCAG
ACTGCTGACAGTAATACACT





GACCTCAGTGAAGGTCTCC
TGGACATGTCCCTGGTAAT

GCACCCTGTCTTTGTCTC
GCAAAATCTTCAGGCTCCAG





TGCAAGGCTTCTGGATTCA
GGTGACTCTTTCCTGGAACT

CAGGGGAAAGAGCCACC
TCTGCTGATGGTGAGAGTGA





CCTTTACTAGCTCTGCTATG
TCTGTGCGTAGTTTGTGTTA

CTCTCCTGCAGGGCCAGT
AGTCTGTCCCAGACCCACTG





CAGTGGGTGCGACAGGCTC
CCACTGCCAACGACGATCC

CAGAGTGTTAGCAGCAG
CCACTGAACCTGTCTGGGAT





GTGGACAACGCCTTGAGTG
ATCCTATCCACTCAAGGCG

CTACTTAGCCTGGTACCA
GCCAGTGGCCCTGCTGGATG





GATAGGATGGATCGTCGTT
TTGTCCACGAGCCTGTCGC

GCAGAAACCTGGCCAGG
CACCATAGATGAGGAGCCT





GGCAGTGGTAACACAAACT
ACCCACTGCATAGCAGAGC

CTCCCAGGCTCCTCATCT
GGGAGCCTGGCCAGGTTTCT





ACGCACAGAAGTTCCAGGA
TAGTAAAGGTGAATCCAGA

ATGGTGCATCCAGCAGG
GCTGGTACCAGGCTAAGTA





AAGAGTCACCATTACCAGG
AGCCTTGCAGGAGACCTTC

GCCACTGGCATCCCAGA
GCTGCTGCTAACACTCTGAC





GACATGTCCACAAGCACAG
ACTGAGGTCCCAGGCTTCTT

CAGGTTCAGTGGCAGTG
TGGCCCTGCAGGAGAGGGT





CCTACATGGAGCTGAGCAG
CACCTCAGGCCCAGACTGC

GGTCTGGGACAGACTTC
GGCTCTTTCCCCTGGAGACA





CCTGAGATCCGAGGACACG
NC (SEQ ID NO: 

ACTCTCACCATCAGCAG
AAGACAGGGNGANTGNAGA





GCCGTGTATTACTGTGCGG
3379)

ACTGGAGCCTGAAGATT
NTGGGTC (SEQ ID NO:





CCCCATATTGTAGTGGTGGT


TTGCAGTGTATTACTGTC
3381)





AGCTGCAATGATGCTTTTG


AGCAGTATGGTAGCTCA






ATATCTGGGGCCAAGGGAC


CCGTGGACGTTCGGCCA






AATGGTCACCGTCTCTTCAG


AGGGACCAAGGTGGAAA






CGTCGACCAAGGGCCCATC


TCAAACGTACGGTGGCT






GGTCTTCCCCCTGGCACCCT


GCACCATCTGTCTTCATC






CCTCCAAGAGCACCTCTGG


TTCCCGCCATCTGATGAG






GGGCACAGCGGCCCTGGGC


CAGTTGAAATCTGGAAC






TGCCTGGTCAAGGACTACT


TGCCTCTGTTGTGTGCCT






TCCCCGAACCTGTGACGGT


GCTGAATAACTTCTATCC






CTCGTGGAACTCAGGCGCC


CAGAGAGGCCAAAGTAC






CTGACCAGCGGCGTGCACA


AGTGGAAGGTGGATAAC






CCTTCCCGGCTGTCCTACAG


GCCCTCCAATCGGGTAA






TCCTCAGGACTCTACTCCCT


CTCCCAGGAGAGTGTCA






CAGCAGCGTGGTGACCGTG


CAGAGCAGGACAGCAAG






CCCTCCAGCAGCTTGGGCA


GACAGCACCTACAGCCT






CCCAGACCTACATCTGCAA


CAGCAGCACCCTGACGC






CGTGAATCACAAGCCCAGC


TGAGCAAAGCAGACTAC






AACACCNAAGGTGGACAAG


GAGAAACACAAAGTCTA






AGAGTTGAGCCCAAATCTT


CGCCTGCGAAGTCACCC






GTGACAAAACTCACACATG


ATCANGGCCTGAGCTCG






CCCACCGTGCC (SEQ 


CCCGTCACAAAGAGCTT






ID NO: 3378)


CAACAGGGGAGAGTGTT









AGAAGCTTGGCCGCCAT









GGCCCAACTTGTTTATTG









CAGCTTATAATGGTTACA









AA (SEQ ID NO: 









3380)







COV57_P1
A-C038
TACACATACGATTTAGGTG
CTGTGCTCTCGGANGTGCTC
COV57_P1
TACACATACGATTTAGGT
TGGGCTGGCTTAGGACGGTC
COV57_P1


E9

ACACTATAGAATAACATCC
CTGGAGCAGGGCGCCAGGG
E9
GACACTATAGAATAACA
AGCTTGGTCCCTCCGCCGAA
E9




ACTTTGCCTTTCTCTCCACA
GGAAGACCGATGGGCCCTT

TCCACTTTGCCTTTCTCT
CACCCAACGACTGTTGATAT





GGTGTCCACTCCCAGGTCC
GGTGGAGGCTGAGGAGACG

CCACAGGTGTCCACTCCC
CATAAGACTGACAGTAGTA





AACTGCACCTCGGTTCTATC
GTGACCAGGGTTCCCTGGC

AGGTCCAACTGCACCTC
GTCAGCCTCGTCCTCAGTCT





GATTGAATTCCACCATGGG
CCCAGGAGTCAGGATAGCA

GGTTCTATCGATTGAATT
TCAGTCCAGAGATGGTGAG





ATGGTCATGTATCATCCTTT
TACACCATTAGTGCAATAA

CCACCATGGGATGGTCA
GGAGGCAGAATTGGAGGAG





TTCTAGTAGCAACTGCAAC
CCCATCGGACTTTTCGCACA

TGTATCATCCTTTTTCTA
CTGTCGATGGAGCCAGAGA





CGGTGTACATTCTGAGGTG
GTAATAGACAGCCGTGTCC

GTAGCAACTGCAACCGG
ACCGATCAGGGACCCCAGA





CAGCTGGTGGAGTCTGGGG
TCAGCTCTCAGGCTGTTCAT

TTCTTGGGCCAATTTTAT
GGGTCTTTGGGTATCTTCAT





GAGGCGTGGTCCAGCCTGG
CTGTAGATACAGCGTGTTCT

GCTGACTCAGCCCCACTC
AGATCACAGTGGTGGGGGC





GAGGTCCCTGAGACTCTCC
TGGAATTGTCTCTGGAGAT

TGTGTCGGAGTCTCCGG
ACTGCCCGGGCGCTGCTGGT





TGTGCAGCCTCTGGATTCAC
GGCGAACCGGCCCTTCACG

GGAAGACGGTTACCATC
ACCACTGCACATAGTTGCTG





CTTCAATAGAATTGCCATGT
GACTCTGCATAGTATTCATA

TCCTGCACCGGCAGCAG
GCAATGCTGCCACTGCTGCC





ACTGGGTCCGCCAGGCTCC
ACTTCCATCAAATGATATA

TGGCAGCATTGCCAGCA
GGTGCAGGAGATGGTAACC





AGGCAAGGGGCTGGAATGG
ACTGCCACCCATTCCAGCC

ACTATGTGCAGTGGTAC
GTCTTCCCCGGAGACTCCGA





GTGGCAGTTATATCATTTGA
CCTTGCCTGGAGCCTGGCG

CAGCAGCGCCCGGGCAG
CACAGAGTGGGGCTGAGTC





TGGAAGTTATGAATACTAT
GACCCAGTACATGGCAATT

TGCCCCCACCACTGTGAT
AGCACAGACTGGGACCAGG





GCAGAGTCCGTGAAGGGCC
CTATTGAAGGTGAATCCAG

CTATGAAGATACCCAAA
AACCGGNTG (SEQ ID 





GGTTCGCCATCTCCAGAGA
AGGCTGCACAGGAGAGTCT

GACCCTCTGGGGTCCCTG
NO: 3385)





CAATTCCAAGAACACGCTG
CAGGGACCTCCCAGGCTGG

ATCGGTTCTCTGGCTCCA






TATCTACAGATGAACAGCC
ACCACGCCTCCCCCAGACT

TCGACAGCTCCTCCAATT






TGAGAGCTGAGGACACGGC
CCACCANNCTGCAC 

CTGCCTCCCTCACCATCT






TGTCTATTACTGTGCGAAA
(SEQ ID NO: 3383)

CTGGACTGAAGACTGAG






AGTCCGATGGGTTATTGCA


GACGAGGCTGACTACTA






CTAATGGTGTATGCTATCCT


CTGTCAGTCTTATGATAT






GACTCCTGGGGCCAGGGAA


CAACAGTCGTTGGGTGTT






CCCTGGTCACCGTCTCCTCA


CGGCGGAGGGACCAAGC






GCGTCGACCAAGGGCCCAT


TGACCGTCCTAAGCCAG






CGGTCTTCCCCCTGGCACCC


CCCAAGGCTGCCCCCTC






TCCTCCAAGAGCACCTCTG


GGTCACTCTGTTCCCACC






GGGGCACAGCGGCCCTGGG


CTCGAGTGAGGAGCTTC






CTGCCTGGTCAAGGACTAC


AAGCCAACAAGGCCACA






TTCCCCGAACCTGTGACGG


CTGGTGTGTCTCATAAGT






TCTCGTGGAACTCAGGCGC


GACTTCTACCCGGGAGC






CCTGACCAGCGGCGTGCAC


CGTGACAGTGGCCTGGA






ACCTTCCCGGCTGTCCTACA


AGGCAGATAGCAGCCCC






GTCCTCAGGACTCTACTCCC


GTCAAGGCGGGAGTGGA






TCAGCAGCGTGGTGACCGT


GACCACCACACCCTCCA






GCCCTCCAGCAGCTTGGGC


AACAAAGCAACAACAAG






ACCCAGACCTACATCTGCA


TACGCGGCCAGCAGCTA






ACGTGAATCACAAGCCCAG


CCTGAGCCTGACGCCTG






CAACACCNANGTGGACAAG


AGCAGTGGAAGTCCCAC






AGAGTTGAGCCCAAATCTT


AGAAGCTACAGCTGCCA






GTGACAAAACTCACACATG


GGTCACGCATGAAGGGA






CCCACCGTGCCCA 


GCACCGTGGAGAAGACA






(SEQ ID NO: 3382)


GTGGCCCCTACAGAATG









TTCATAGAAGCTTGGGC









CGCCATGGCCCAACTTGT









TTATTGCAGCTTATAATG









G (SEQ ID NO: 3384)







COV57_P1
A-C039
TACACATACGATTTAGGTG
CGCTGTGNNNNNGAGGTGC
COV57_P1
TACACATACGATTTAGGT
TTGGGCTGACCTAGGACGGT
COV57_P1


F10

ACACTATAGAATAACATCC
TCTTGGAGGAGGGTGCCAG
F10
GACACTATAGAATAACA
CAGCTTGGTCCCTCCGCCAA
F10




ACTTTGCCTTTCTCTCCACA
GGGGAAGACCGATGGGCCC

TCCACTTTGCCTTTCTCT
ACACCCTCGAACCACTCAGG





GGTGTCCACTCCCAGGTCC
TTGGTGGAGGCTGAGGAGA

CCACAGGTGTCCACTCCC
CTGCTGTCATAGGACTGGCA





AACTGCACCTCGGTTCTATC
CGGTGACCAGGGTTCCCTG

AGGTCCAACTGCACCTC
GTAATAATCAGCCTCATCCT





GATTGAATTCCACCATGGG
GCCCCAGTAGTCAAAAAGG

GGTTCTATCGATTGAATT
CAGCCTGGAGCCCAGTGAT





ATGGTCATGTATCATCCTTT
GGATCCGTTCCTGAACCAT

CCACCATGGGATGGTCA
GGCCAGGGAGGCTGAGGTG





TTCTAGTAGCAACTGCAAC
AGGTAATAACCACTCCAAA

TGTATCATCCTTTTTCTA
CCAGACTTGGAGCCAGAGA





CGGTGTACATTCCCAGGTG
ACCAGCTCTCGCACAGTAA

GTAGCAACTGCAACCGG
ATCGGTCAGGGACCCCTGA





CAGCTACAGCAGTGGGGCG
TACACAGCCGTGTCCGCGG

TTCCTGGGCCCAGTCTGT
GGGCCGATTGCTGTTACCAT





CAGGACTGTTGAAGCCTTC
CGGTCACAGAGCTCAGCTT

GCTGACTCAGCCGCCCTC
AGATGAGGAGTTTGGGGGC





GGAGACCCTGTCCCTCACC
CAGGGAGAACTGGTTCTTG

AGTGTCTGGGGCCCCAG
TGTTCCTGGAAGCTGCTGGT





TGCGCTGTCTATGGTGGGTC
GACGTGTCTACTGATATGG

GGCAGAGGGTCACCATC
ACCAGTGTACATCATAACCT





CTTCAGTGGTTACTACTGGA
TGACTCGACTCTTGAGGGA

TCCTGCACTGGGAGCAA
GCCCCGATGTTGGAGTTGCT





GCTGGATCCGCCAGCCCCC
CGGGTTGTAGTTGGTGCTTC

CTCCAACATCGGGGCAG
CCCAGTGCAGGAGATGGTG





AGGGAAGGGGCTGGAGTGG
CACTATGATTGATTTCCCCA

GTTATGATGTACACTGGT
ACCCTCTGCCCTGGGGCCCC





ATTGGGGAAATCAATCATA
ATCCACTCCAGCCCCTTCCC

ACCAGCAGCTTCCAGGA
AGACACTGAGGGCGGCTGA





GTGGAAGCACCAACTACAA
TGGGGGCTGGCGGATCCAG

ACAGCCCCCAAACTCCT
GTCAGCACAGACTGGGACC





CCCGTCCCTCAAGAGTCGA
CTCCAGTAGTAACCACTGA

CATCTATGGTAACAGCA
AGGAACCGGNTG (SEQ ID





GTCACCATATCAGTAGACA
AGGACCCACCATAGACAGC

ATCGGCCCTCAGGGGTC
NO: 3389)





CGTCCAAGAACCAGTTCTC
GCAGGTGAGGGACAGGGTC

CCTGACCGATTCTCTGGC






CCTGAAGCTGAGCTCTGTG
TCCGAAGGCTTCAACAGTC

TCCAAGTCTGGCACCTCA






ACCGCCGCGGACACGGCTG
CTGCGCCCCACTGCTGTAG

GCCTCCCTGGCCATCACT






TGTATTACTGTGCGAGAGC
CTGCACCTGGGA (SEQ ID

GGGCTCCAGGCTGAGGA






TGGTTTTGGAGTGGTTATTA
NO: 3387)

TGAGGCTGATTATTACTG






CCTATGGTTCAGGAACGGA


CCAGTCCTATGACAGCA






TCCCCTTTTTGACTACTGGG


GCCTGAGTGGTTCGAGG






GCCAGGGAACCCTGGTCAC


GTGTTTGGCGGAGGGAC






CGTCTCCTCAGCGTCGACC


CAAGCTGACCGTCCTAG






AAGGGCCCATCGGTCTTCC


GTCAGCCCAAGGCTGCC






CCCTGGCACCCTCCTCCAA


CCCTCGGTCACTCTGTTC






GAGCACCTCTGGGGGCACA


CCGCCCTCGAGTGAGGA






GCGGCCCTGGGCTGCCTGG


GCTTCAAGCCAACAAGG






TCAAGGACTACTTCCCCGA


CCACACTGGTGTGTCTCA






ACCTGTGACGGTCTCGTGG


TAAGTGACTTCTACCCGG






AACTCAGGCGCCCTGACCA


GAGCCGTGACAGTGGCC






GCGGCGTGCACACCTTCCC


TGGAAGGCAGATAGCAG






GGCTGTCCTACAGTCCTCA


CCCCGTCAAGGCGGGAG






GGACTCTACTCCCTCAGCA


TGGAGACCACCACACCC






GCGTGGTGACCGTGCCCTC


TCCAAACAAAGCAACAA






CAGCAGCTTGGGCACCCAG


CAAGTACGCGGCCAGCA






ACCTACATCTGCAACGTGA


GCTACCTGAGCCTGACG






ATCACAAGCCCAGCAACAC


CCTGAGCAGTGGAAGTC






CAAGGTGGACAAGAGAGTT


CCACAGAAGCTACAGCT






GAGCCCAAATCTTGTGACA


GCCAGGTCACGCATGAA






AAACTCACACATGCCCAC


GGGAGCACCGTGGAGAA






(SEQ ID NO: 3386)


GACAGTGGCCCCTACAG









AATGTTCATAGAAGCTT









GGCCGCCATGGCCCAAC









TTGTTTATTGCAGCTTAT









AATGGTTACAAATAAA









(SEQ ID NO: 3388)







CO57_P2
A-C040
TACACATACGATTTAGGTG
CGCTGTGNNNNNGAGGTGC
CO57_P2
TACACATACGATTTAGGT
TTGGGCTGACCTAGGACGGT
CO57_P2


A10

ACACTATAGAATAACATCC
TCTTGGAGGAGGGTGCCAG
A10
GACACTATAGAATAACA
CAGCTTGGTCCCTCCGCCGA
A10




ACTTTGCCTTTCTCTCCACA
GGGGAAGACCGATGGGCCC

TCCACTTTGCCTTTCTCT
ATACCCCCTGATCACTACTA





GGTGTCCACTCCCAGGTCC
TTGGTGGAGGCTGAGGAGA

CCACAGGTGTCCACTCCC
CTATCCCACACCTGACAGTA





AACTGCACCTCGGTTCTATC
CGGTGACCGTGGTCCCTTTG

AGGTCCAACTGCACCTC
ATAGTCGGCCTCATCCCCGG





GATTGAATTCCACCATGGG
CCCCAGACGTCCATGTAGT

GGTTCTATCGATTGAATT
CTTCGACCCTGCTGATGGTC





ATGGTCATGTATCATCCTTT
AGTAGTAAAAAATGGGGCA

CCACCATGGGATGGTCA
AGGGTGGCCGTGTTCCCAGA





TTCTAGTAGCAACTGCAAC
GCTGGTACTACTACAATGG

TGTATCATCCTTTTTCTA
GTTGGAGCCAGAGAATCGC





CGGTGTACATTCTGAGGTG
GGATCTGTGGTACAGTAAT

GTAGCAACTGCAACCGG
TCAGGGATCCCTGAGGGCC





CAGCTGGTGGAGTCTGGGG
ACACGGCTGTGTCCTCGGTT

TTCTGTGACCTCCTATGA
GGTCGCTATCATCATAGACG





GAGGCTTGGTAAAGCCTGG
TTCAGGCTGTTCATTTGCAG

GCTGACTCAGCCACCCTC
ACCAGCACAGGGGCCTGGC





GGGGTCCCTTAGACTCTCCT
ATACAGCGTGTTTTTTGAAT

GGTGTCAGTGGCCCCAG
CTGGCTTCTGCTGGTACCAG





GTGCAGCCTCTGGATTCACT
CATCTCTTGAGATGGTGAA

GACAGACGGCCAGGATT
TGCACACTTTTACTTCCAAT





TTCAGTAACGCCTGGATGA
TCTGCCTTTCACGGGTGCAG

ACCTGTGGGGGAAACAA
gttgtttcccccAcAggtAA





GCTGGGTCCGCCAGGCTCC
CGTAGTCTGTTGTCCCACCA

CATTGGAAGTAAAAGTG
TCCTGGCCGTCTGTCCTGGG





AGGGAAGGGGCTGGAGTGG
TCAGTTTTGCTTTTAATACG

TGCACTGGTACCAGCAG
GCCACTGACACCGAGGGTG





GTTGGCCGTATTAAAAGCA
GCCAACCCACTCCAGCCCC

AAGCCAGGCCAGGCCCC
GCTGAGTCAGCACATACTGG





AAACTGATGGTGGGACAAC
TTCCCTGGAGCCTGGCGGA

TGTGCTGGTCGTCTATGA
GACCAGGAACCGGTTG 





AGACTACGCTGCACCCGTG
CCCAGCTCATCCAGGCGTT

TGATAGCGACCGGCCCT
(SEQ ID NO: 3393)





AAAGGCAGATTCACCATCT
ACTGAAAGTGAATCCAGAG

CAGGGATCCCTGAGCGA






CAAGAGATGATTCAAAAAA
GCTGCACAGGAGAGTCTAA

TTCTCTGGCTCCAACTCT






CACGCTGTATCTGCAAATG
GGGACCCCCCAGGCTTTAC

GGGAACACGGCCACCCT






AACAGCCTGAAAACCGAGG
CAAGCCTCCCCCAGACTCC

GACCATCAGCAGGGTCG






ACACAGCCGTGTATTACTG
NNNNCTGCACC (SEQ ID

AAGCCGGGGATGAGGCC






TACCACAGATCCCCATTGT
NO: 3391)

GACTATTACTGTCAGGTG






AGTAGTACCAGCTGCCCCA


TGGGATAGTAGTAGTGA






TTTTTTACTACTACTACATG


TCAGGGGGTATTCGGCG






GACGTCTGGGGCAAAGGGA


GAGGGACCAAGCTGACC






CCACGGTCACCGTCTCCTCA


GTCCTAGGTCAGCCCAA






GCGTCGACCAAGGGCCCAT


GGCTGCCCCCTCGGTCAC






CGGTCTTCCCCCTGGCACCC


TCTGTTCCCGCCCTCGAG






TCCTCCAAGAGCACCTCTG


TGAGGAGCTTCAAGCCA






GGGGCACAGCGGCCCTGGG


ACAAGGCCACACTGGTG






CTGCCTGGTCAAGGACTAC


TGTCTCATAAGTGACTTC






TTCCCCGAACCTGTGACGG


TACCCGGGAGCCGTGAC






TCTCGTGGAACTCAGGCGC


AGTGGCCTGGAAGGCAG






CCTGACCAGCGGCGTGCAC


ATAGCAGCCCCGTCAAG






ACCTTCCCGGCTGTCCTACA


GCGGGAGTGGAGACCAC






GTCCTCANGACTCTACTCCC


CACACCCTCCAAACAAA






TCAGCAGCGTGGTGACCGT


GCAACAACAAGTACGCG






GCCCTCCAGCAGCTTGGGC


GCCAGCAGCTACCTGAG






ACCCAGACCTACATCTGCA


CCTGACGCCTGAGCAGT






ACGTGAATCACAAGCCCAG


GGAAGTCCCACAGAAGC






CAACACCNANGTGGACAAG


TACAGCTGCCAGGTCAC






AGAGTTGAGCCCAAATCTT


GCATGAAGGGAGCACCG






GTGACAAAAC (SEQ ID


TGGAGAAGACAGTGGCC






NO: 3390)


CCTACAGAATGTTCATA









GAAGCTTGGCCGCCATG









GCCCAACTTGTTTATTGC









AGCTTATAATGGTTACA









AATAAAG (SEQ ID NO:









3392)







CO57_P1
A-C041
TACACATACGATTTAGGTG
GNCGCTGTGNNNNNNAGGT
CO57_P1
TACACATACGATTTAGGT
GANTTNCCCGATTGGAGGG
CO57_P1


B9

ACACTATAGAATAACATCC
GCTCTTGGAGGAGGGTGCC
B9
GACACTATAGAATAACA
CGTTATCCACCTTCCACTGT
B9




ACTTTGCCTTTCTCTCCACA
AGGGGGAAGACCGATGGGC

TCCACTTTGCCTTTCTCT
ACTTTGGCCTCTCTGGGATA





GGTGTCCACTCCCAGGTCC
CCTTGGTGGAGGCTGAGGA

CCACAGGTGTCCACTCCC
GAAGTTATTCAGCAGGCAC





AACTGCACCTCGGTTCTATC
GACGGTGACCGTGGTCCCT

AGGTCCAACTGCACCTC
ACAACAGAGGCAGTTCCAG





GATTGAATTCCACCATGGG
TGGCCCCAGACGTCCATAC

GGTTCTATCGATTGAATT
ATTTCAACTGCTCATCAGAT





ATGGTCATGTATCATCCTTT
CGTAGTAGTAGTAGTCCCT

CCACCATGGGATGGTCA
GGCGGGAAGATGAAGACAG





TTCTAGTAGCAACTGCAAC
CGGCATCCAGTGTCTCGCA

TGTATCATCCTTTTTCTA
ATGGTGCAGCCACAGTTCGT





CGGTGTACATTCCCAGGTG
CAGTAATACACAGCCGTGT

GTAGCAACTGCAACCGG
TTGATTTCCACCTTGGTCCC





CAGCTACAGCAGTGGGGCG
CCGCGGCGGTCACAGAGCT

TGTACATTCAGACATCCA
TTGGCCGAACGTCCGAGGG





CAGGACTGTTGAAGCCTTC
CAGCTTCAGGAAGAACTGG

GTTGACCCAGTCTCCATC
GTACTGTAACTCTGTTGACA





GGAGACCCTGTCCCTCACC
TTCTTGGACGTGTCTACTGA

CTCCCTGTCTGCATCTGT
GTAGTAAGTTGCAAAATCTT





TGCGCTGTCTATGGTGGGTC
TATGGTGACTCGACTCTTGA

AGGAGACAGAGTCACCA
CAGGTTGCAGACTGCTGATG





CTTCAGTGGTTACTACTGGA
GGGACGGGTTGTAGTTGGT

TCACTTGCCGGGCAAGT
GTGAGAGTGAAATCTGTCCC





GCTGGATCCGCCAGCCCCC
GCTTCCACTATGATTGACTT

CAGAGCATTAGCAGCTA
AGATCCACTGCCACTGAACC





AGGGAAGGGGCTGGAGTGG
CCCCAATCCACTCCAGCCC

TTTAAATTGGTATCAGCA
TTGATGGGACCCCACTTTGC





ATTGGGGAAGTCAATCATA
CTTCCCTGGGGGCTGGCGG

GAAACCAGGGAAAGCCC
AAACTGGATGCAGCATAGA





GTGGAAGCACCAACTACAA
ATCCAGCTCCAGTAGTAAC

CTAAGCTCCTGATCTATG
TCAGGAGCTTAGGGGCTTTC





CCCGTCCCTCAAGAGTCGA
CACTGAAGGACCCACCATA

CTGCATCCAGTTTGCAAA
CCTGGTTTCTGCTGATACCA





GTCACCATATCAGTAGACA
GACAGCGCAGGTGAGGGAC

GTGGGGTCCCATCAAGG
ATTTAAATAGCTGCTAATGC





CGTCCAAGAACCAGTTCTT
AGGGTCTCCGAAGGCTTCA

TTCAGTGGCAGTGGATCT
TCTGACTTGCCCGGCAAGTG





CCTGAAGCTGAGCTCTGTG
ACAGTCCTGCGCCCCACTG

GGGACAGATTTCACTCTC
ATGGTGACTCTGTCTCCTAC





ACCGCCGCGGACACGGCTG
CTGTAGCTGCACCTNNNAA

ACCATCAGCAGTCTGCA
AGATGCAGACAGGGAG





TGTATTACTGTGCGAGACA
(SEQ ID NO: 3395)

ACCTGAAGATTTTGCAA
(SEQ ID NO: 3397)





CTGGATGCCGAGGGACTAC


CTTACTACTGTCAACAGA






TACTACTACGGTATGGACG


GTTACAGTACCCCTCGG






TCTGGGGCCAAGGGACCAC


ACGTTCGGCCAAGGGAC






GGTCACCGTCTCCTCAGCGT


CAAGGTGGAAATCAAAG






CGACCAAGGGCCCATCGGT


TACGGTGGCTGCACCAT






CTTCCCCCTGGCACCCTCCT


CTGTCTTCATCTTCCCGC






CCAAGAGCACCTCTGGGGG


CATCTGATGAGCAGTTG






CACAGCGGCCCTGGGCTGC


AAATCTGGAACTGCCTCT






CTGGTCAAGGACTACTTCC


GTTGTGTGCCTGCTGAAT






CCGAACCTGTGACGGTCTC


AACTTCTATCCCAGAGA






GTGGAACTCNGCGCCCTGA


GGCCAAAGTACAGTGGA






CCAGCGGCGTGCACACCTT


AGGTGGATAACGCCCTC






CCCGGCTGTCCTACAGTCCT


CAATCGGGTAACTCCCA






CANGACTCTACTCCCTCAG


GGAGAGTGTCACAGAGC






CAGCGTGGTGACCGTGCCC


AGGACAGCAAGGACAGC






TCCAGCAGCTTGGGCACCC


ACCTACAGCCTCAGCAG






AGACCTACATCTGCAACGT


CACCCTGACGCTGAGCA






GAATCACAAGCCCAGCAAC


AAGCAGACTACGAGAAA






ACCNANGTGGACAAGANAG


CACAAAGTCTACGCCTG






TTGAGCCCAAATCTTGTGA


CGAAGTCACCCATCAGG






CAAACTCACACATGCCCAC


GCCTGAGCTCGCCCGTC






CGTGCCCAG (SEQ ID 


ACAAAGAGCTTCAACAG






NO: 3394)


GGGAGAGTGTTAGAAGC









TTGGNCGCCATGGCCCA









ACTTGTTTATTGCAGCTT









ATAATGGTTACAAATAA









AGCAATAGCATCAC 









(SEQ ID NO: 3396)








V-C001
NNNNNNNNNNNNNGTATCA
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNCNNATGTATC
GAAATTGTGTTGACGCAGTC
COV107_




TACACATACGATTTAGGTG
CTGGAGGAGGCTTGATCCA
P2_H9
NTACACATACGATTTAG
TCCAGGCACCCTGTCTTTGT
P2_H9




ACACTATAGAATAACATCC
GCCTGGGGGGTCCCTGAGA

GTGACACTATAGAATAA
CTCCAGGGGAAAGAGCCAC





ACTTTGCCTTTCTCTCCACA
CTCTCCTGTGCAGCCTCTGG

CATCCACTTTGCCTTTCT
CCTCTCCTGCAGGGCCAGTC





GGTGTCCACTCCCAGGTCC
GTTCATCGTCAGTAGCAAC

CTCCACAGGTGTCCACTC
AGAGTGTTAGCAGCAGCTA





AACTGCACCTCGGTTCTATC
TACATGAGCTGGGTCCGCC

CCAGGTCCAACTGCACC
CTTAGCCTGGTACCAGCAGA





GATTGAATTCCACCATGGG
AGGCTCCAGGGAAGGGGCT

TCGGTTCTATCGATTGAA
AACCTGGCCAGGCTCCCAG





ATGGTCATGTATCATCCTTT
GGAGTGGGTCTCAGTTATTT

TTCCACCATGGGATGGTC
GCTCCTCATCTATGGTGCAT





TTCTAGTAGCAACTGCAAC
ATAGCGGTGGTAGCACATT

ATGTATCATCCTTTTTCT
CCAGCAGGGCCACTGGCAT





CGGTGTACATTCTCAGGTG
CTACACAGACTCCGTGAAG

AGTAGCAACTGCAACCG
CCCAGACAGGTTCAGTGGC





CAGCTGGTGGAGTCTGGAG
GGCCGATTCACCATCTCCA

GTGTACATTCAGAAATT
GGTGGGTCTGAGACAGACTT





GAGGCTTGATCCAGCCTGG
GAGACAATTCCAAGAACAC

GTGTTGACGCAGTCTCCA
CACTCTCACCATCAGCAGAC





GGGGTCCCTGAGACTCTCC
TCTGTATCTTCAAATGAACA

GGCACCCTGTCTTTGTCT
TGGAGCCTGAAGATTGTGCA





TGTGCAGCCTCTGGGTTCAT
GCCTGAGAGCCGAGGACAC

CCAGGGGAAAGAGCCAC
GTGTATTACTGTCAGCAGTA





CGTCAGTAGCAACTACATG
GGCCGTGTATTACTGTGTGC

CCTCTCCTGCAGGGCCA
TGGTAGCTCACCCCGGACGT





AGCTGGGTCCGCCAGGCTC
GGGACTACGGTGACTTCTA

GTCAGAGTGTTAGCAGC
TCGGCCAAGGGACCAAGGT





CAGGGAAGGGGCTGGAGTG
CTTTGACTACTGGGGCCAG

AGCTACTTAGCCTGGTAC
GGAAATCAAAC (SEQ 





GGTCTCAGTTATTTATAGCG
GGAACCCTGGTCACCGTCT

CAGCAGAAACCTGGCCA
ID NO: 3401)





GTGGTAGCACATTCTACAC
CCTCAG (SEQ ID 

GGCTCCCAGGCTCCTCAT






AGACTCCGTGAAGGGCCGA
NO: 3399)

CTATGGTGCATCCAGCA






TTCACCATCTCCAGAGACA


GGGCCACTGGCATCCCA






ATTCCAAGAACACTCTGTA


GACAGGTTCAGTGGCGG






TCTTCAAATGAACAGCCTG


TGGGTCTGAGACAGACT






AGAGCCGAGGACACGGCCG


TCACTCTCACCATCAGCA






TGTATTACTGTGTGCGGGA


GACTGGAGCCTGAAGAT






CTACGGTGACTTCTACTTTG


TGTGCAGTGTATTACTGT






ACTACTGGGGCCAGGGAAC


CAGCAGTATGGTAGCTC






CCTGGTCACCGTCTCCTCAG


ACCCCGGACGTTCGGCC






CGTCGACCAAGGGCCCATC


AAGGGACCAAGGTGGAA






GGTCTTCCCCCTGGCACCCT


ATCAAACGTACGGTGGC






CCTCCAAGAGCACCTCTGG


TGCACCATCTGTCTTCAT






GGGCACAGCGGCCCTGGGC


CTTCCCGCCATCTGATGA






TGCCTGGTCAAGGACTACT


GCAGTTGAAATCTGGAA






TCCCCGAACCTGTGACGGT


CTGCCTCTGTTGTGTGCC






CTCGTGGAACTCAGGCGCC


TGCTGAATAACTTCTATC






CTGACCAGCGGCGTGCACA


CCAGAGAGGCCAAAGTA






CCTTCCCGGCTGTCCTACAG


CAGTGGAAGGTGGATAA






TCCTCAGGACTCTACTCCCT


CGCCCTCCAATCGGGTA






CAGCAGCGTGGTGACCGTG


ACTCCCAGGAGAGTGTC






CCCTCCAGCAGCTTGGGCA


ACAGAGCAGGACAGCAA






CCCAGACCTACATCTGCAA


GGACAGCACCTACAGCC






CGTGAATCACAAGCCCAGC


TCAGCAGCACCCTGACG






AACACCNANNTGGACAAGA


CTGAGCAAAGCAGACTA






GAGTTGAGCCCAAATCTTG


CGAGAAACACAAAGTCT






TGACAAAACTCACACATGC


ACGCCTGCGAAGTCACC






CCACCGTGCCCAGCACCTG


CATCNGGNCNTGAGCTC






AACTCCTGGGGGGACCGTC


GCCCGTCACAAAGAGCT






AGTCTTCCTCTTCCCCCCAA


TCAACAGGGGAGAGTGT






AACCCNAGGACACCCTCAT


TAGAAGCTTGGCCGCCA






GATCTCCCNGACCCCNGAG


TGGCCCAACTTGTTTATT






TCACATGCGTGGNNGTGGN


GCAGCTTATAATGGTTAC






NGTGANCCACGAAGANCCT


AAATAAAGCAATAGCAT






GAGGTCAAGTTCAACTGGN


CACAAATTTCACAAATA






ACNNNGNNNNGNN 


AAGCATTTTTTTCACTGC






(SEQ ID NO: 3398)


ATTCTANTTGNNGTTNGT









CCAAACTCATCANGTAT









NTNNCATGTCTGGNTCG









GGANTNNNGCGCAGCNC









NTGCTGAANNNACNTCT









GAANNAGANNNNGTTAG









GTACCTTNNGNNNGNNN









NNNN (SEQ ID 









NO: 3400)








V-C002
NNNNNNNNNNNTNTGNNTC
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNCNTATGTATC
GAAATTGTGTTGACGCAGTC
COV107_




NTACNCATACGATTTAGGT
CTGGAGGAGGCTTGATCCA
P2_b1
NTACACATACGATTTAG
TCCAGGCACCCTGTCTTTGT
P2_b1




GACACTATAGAATAACATC
GCCTGGGGGGTCCCTGAGA

GTGACACTATAGAATAA
CTCCAGGGGAAAGAGCCAC





CACTTTGCCTTTCTCTCCAC
CTCTCCTGTGCAGCCTCTGG

CATCCACTTTGCCTTTCT
CCTCTCCTGCAGGGCCAGTC





AGGTGTCCACTCCCAGGTC
GTTCATCGTCAGTAGCAAC

CTCCACAGGTGTCCACTC
AGAGTGTTAGCAGCAGCTA





CAACTGCACCTCGGTTCTAT
TACATGAGCTGGGTCCGCC

CCAGGTCCAACTGCACC
CTTAGCCTGGTACCAGCAGA





CGATTGAATTCCACCATGG
AGGCTCCAGGGAAGGGGCT

TCGGTTCTATCGATTGAA
AACCTGGCCAGGCTCCCAG





GATGGTCATGTATCATCCTT
GGAGTGGGTCTCAGTTATTT

TTCCACCATGGGATGGTC
GCTCCTCATCTATGGTGCAT





TTTCTAGTAGCAACTGCAA
ATAGCGGTGGTAGCACATT

ATGTATCATCCTTTTTCT
CCAGCAGGGCCACTGGCAT





CCGGTGTACATTCTCAGGT
CTACGCAGACTCCGTGAAG

AGTAGCAACTGCAACCG
CCCAGACAGGTTCAGTGGC





GCAGCTGGTGGAGTCTGGA
GGCCGATTCACCATCTCCA

GTGTACATTCAGAAATT
AGTGGGTCTGGGACAGACTT





GGAGGCTTGATCCAGCCTG
GAGACAATTCCAAGAACAC

GTGTTGACGCAGTCTCCA
CACTCTCACCATCAGCAGAC





GGGGGTCCCTGAGACTCTC
GCTGTATCTTCAAATGAAC

GGCACCCTGTCTTTGTCT
TGGAGCCTGAAGATTTTGCA





CTGTGCAGCCTCTGGGTTCA
AGCCTGAGAGCCGAGGACA

CCAGGGGAAAGAGCCAC
GTCTATTACTGTCAGCAGTA





TCGTCAGTAGCAACTACAT
CGGCCGTGTATTACTGTGC

CCTCTCCTGCAGGGCCA
TGGTAGCTCACCTCGGACGT





GAGCTGGGTCCGCCAGGCT
GAGGGACTACGGTGACTAC

GTCAGAGTGTTAGCAGC
TCGGCCAAGGGACCAAGGT





CCAGGGAAGGGGCTGGAGT
TACTTTGACTACTGGGGCC

AGCTACTTAGCCTGGTAC
GGAAATCAAAC (SEQ 





GGGTCTCAGTTATTTATAGC
AGGGAACCCTGGTCACCGT

CAGCAGAAACCTGGCCA
ID NO: 3405)





GGTGGTAGCACATTCTACG
CTCCTCAG (SEQ ID 

GGCTCCCAGGCTCCTCAT






CAGACTCCGTGAAGGGCCG
NO: 3403)

CTATGGTGCATCCAGCA






ATTCACCATCTCCAGAGAC


GGGCCACTGGCATCCCA






AATTCCAAGAACACGCTGT


GACAGGTTCAGTGGCAG






ATCTTCAAATGAACAGCCT


TGGGTCTGGGACAGACT






GAGAGCCGAGGACACGGCC


TCACTCTCACCATCAGCA






GTGTATTACTGTGCGAGGG


GACTGGAGCCTGAAGAT






ACTACGGTGACTACTACTTT


TTTGCAGTCTATTACTGT






GACTACTGGGGCCAGGGAA


CAGCAGTATGGTAGCTC






CCCTGGTCACCGTCTCCTCA


ACCTCGGACGTTCGGCC






GCGTCGACCAAGGGCCCAT


AAGGGACCAAGGTGGAA






CGGTCTTCCCCCTGGCACCC


ATCAAACGTACGGTGGC






TCCTCCAAGAGCACCTCTG


TGCACCATCTGTCTTCAT






GGGGCACAGCGGCCCTGGG


CTTCCCGCCATCTGATGA






CTGCCTGGTCAAGGACTAC


GCAGTTGAAATCTGGAA






TTCCCCGAACCTGTGACGG


CTGCCTCTGTTGTGTGCC






TCTCGTGGAACTCAGGCGC


TGCTGAATAACTTCTATC






CCTGACCAGCGGCGTGCAC


CCAGAGAGGCCAAAGTA






ACCTTCCCGGCTGTCCTACA


CAGTGGAAGGTGGATAA






GTCCTCAGGACTCTACTCCC


CGCCCTCCAATCGGGTA






TCAGCAGCGTGGTGACCGT


ACTCCCAGGAGAGTGTC






GCCCTCCAGCAGCTTGGGC


ACAGAGCAGGACAGCAA






ACCCAGACCTACATCTGCA


GGACAGCACCTACAGCC






ACGTGAATCACAAGCCCAG


TCAGCAGCACCCTGACG






CAACACCAAGGTGGACAAG


CTGAGCAAAGCAGACTA






AGAGTTGAGCCCAAATCTT


CGAGAAACACAAAGTCT






GTGACAAAACTCACACATG


ACGCCTGCGAAGTCACC






CCCACCGTGCCCAGCACCT


CATCNGGNCCTGAGCTC






GAACTCCTGGGGGGACCGT


GCCCGTCACAAAGAGCT






CAGTCTTCCTCTTCCCCCCA


TCAACAGGGGAGAGTGT






AAACCCAANGACACCCTCA


TAGAAGCTTGGCCGCCA






TGATCTCCCGGACCCCTGA


TGGNCCAACTTGTTTATT






GGTCACATGCGTGGTGGTG


GCAGCTTATAATGGNTA






GACGTGAGCCACGAANANC


CAAATAAAGCAATAGCA






CTGANNCAAGTTCNACTGG


TCACAAATTTCACAAAT






NACGTGGNNGGCGTNNNGT


AAAGCATTTTTTTCACTG






GCATANGCCANANAAGCNG


CATTCTAGTTGNGGNTTG






CGGAGGAGCANTANANAGC


TCCAAACTCATCAATGN






ACGTACGNNNNGNCAGCGT


ATNTNTCATGTCTGGNTC






CCNNNNCNNCNGCNNNGAC


GGGNATNATTCNNNGCA






TNNNNANNNNNNNNANAN


GCACCNTGGNNTGAAAN






NNCAGNCTCANAANCNNNC


NACCTNNTGAANNNGNN






CNNCCCCANCNANAAAANC


CTNNGN (SEQ ID 






NTNNNNNAGCNNANNNGN


NO: 3404)






NNNNCCCNNAN (SEQ 









ID NO: 3402)











V-C003
NNNNNNNNNNNNTGNNTCN
CAGGTGCAGCTACAGCAGT
COV107_
NNNNNNNNNNNATGTAT
GAAATTGTGTTGACGCAGTC
COV107_




TACACATACGATTTAGGTG
GGGGCGCAGGACTGTTGAA
P2_E5
CNTACACATACGATTTA
TCCAGGCACCCTGTCTTTGT
P2_E5




ACACTATAGAATAACATCC
GCCTTCGGAGACCCTGTCC

GGTGACACTATAGAATA
CTCCAGGGGAAAGAGCCAC





ACTTTGCCTTTCTCTCCACA
CTCACCTGCGCTGTCTCTGG

ACATCCACTTTGCCTTTC
CCTCTCCTGCAGGGCCAGTC





GGTGTCCACTCCCAGGTCC
TGGGTCACTCAGTGGTTTCT

TCTCCACAGGTGTCCACT
AGACTGTTACCGCCAACTAC





AACTGCACCTCGGTTCTATC
ACTGGACCTGGATCCGCCA

CCCAGGTCCAACTGCAC
TTAGCCTGGTACCAGCAGAA





GATTGAATTCCACCATGGG
GCCCCCAGGAAAGGGGCTG

CTCGGTTCTATCGATTGA
ACCTGGCCAGGCTCCCAGAC





ATGGTCATGTATCATCCTTT
GAGTGGATTGGGGAAACCA

ATTCCACCATGGGATGG
TCCTCATCTATGGTGCATCC





TTCTAGTAGCAACTGCAAC
ATCATTTTGGAAGCACCGG

TCATGTATCATCCTTTTT
AAGAGGGCCACTGGCATCC





CGGTGTACATTCCCAGGTG
CTACAAGCCGTCCCTCAAG

CTAGTAGCAACTGCAAC
CAGACAGGTTCAGTGGCAG





CAGCTACAGCAGTGGGGCG
AGTCGAGTCACCATATCAG

CGGTGTACATTCAGAAA
TGGGTCTGGGACAGACTTCA





CAGGACTGTTGAAGCCTTC
TAGACATGTCCAGGAACCA

TTGTGTTGACGCAGTCTC
CTCTCAGCATCAGCAGACTG





GGAGACCCTGTCCCTCACC
GTTCTCCCTGAAGGTGACCT

CAGGCACCCTGTCTTTGT
GAGCCTGAAGATTTTGCAGT





TGCGCTGTCTCTGGTGGGTC
CTGTGACCGCCGCGGACAC

CTCCAGGGGAAAGAGCC
GTATTACTGTCAGCAGTATA





ACTCAGTGGTTTCTACTGGA
GGCTGTGTATTACTGTGCG

ACCCTCTCCTGCAGGGCC
CTACTACACCTCGGACTTTC





CCTGGATCCGCCAGCCCCC
AGAAAGCCCCTCCTCTACA

AGTCAGACTGTTACCGC
GGCGGAGGGACCAAGGTGG





AGGAAAGGGGCTGGAGTGG
GTGACTTCTCTCCTGGTGCT

CAACTACTTAGCCTGGTA
AGATCAA (SEQ ID 





ATTGGGGAAACCAATCATT
TTTGATATCTGGGGCCAAG

CCAGCAGAAACCTGGCC
NO: 3409)





TTGGAAGCACCGGCTACAA
GGACAATGGTCGCCGTCTC

AGGCTCCCAGACTCCTC






GCCGTCCCTCAAGAGTCGA
TTCAG (SEQ ID NO: 

ATCTATGGTGCATCCAA






GTCACCATATCAGTAGACA
3407)

GAGGGCCACTGGCATCC






TGTCCAGGAACCAGTTCTC


CAGACAGGTTCAGTGGC






CCTGAAGGTGACCTCTGTG


AGTGGGTCTGGGACAGA






ACCGCCGCGGACACGGCTG


CTTCACTCTCAGCATCAG






TGTATTACTGTGCGAGAAA


CAGACTGGAGCCTGAAG






GCCCCTCCTCTACAGTGACT


ATTTTGCAGTGTATTACT






TCTCTCCTGGTGCTTTTGAT


GTCAGCAGTATACTACT






ATCTGGGGCCAAGGGACAA


ACACCTCGGACTTTCGGC






TGGTCACCGTCTCTTCAGCG


GGAGGGACCAAGGTGGA






TCGACCAAGGGCCCATCGG


GATCAAACGTACGGTGG






TCTTCCCCCTGGCACCCTCC


CTGCACCATCTGTCTTCA






TCCAAGAGCACCTCTGGGG


TCTTCCCGCCATCTGATG






GCACAGCGGCCCTGGGCTG


AGCAGTTGAAATCTGGA






CCTGGTCAAGGACTACTTC


ACTGCCTCTGTTGTGTGC






CCCGAACCTGTGACGGTCT


CTGCTGAATAACTTCTAT






CGTGGAACTCAGGCGCCCT


CCCAGAGAGGCCAAAGT






GACCAGCGGCGTGCACACC


ACAGTGGAAGGTGGATA






TTCCCGGCTGTCCTACAGTC


ACGCCCTCCAATCGGGT






CTCAGGACTCTACTCCCTCA


AACTCCCAGGAGAGTGT






GCAGCGTGGTGACCGTGCC


CACAGAGCAGGACAGCA






CTCCAGCAGCTTGGGCACC


AGGACAGCACCTACAGC






CAGACCTACATCTGCAACG


CTCAGCAGCACCCTGAC






TGAATCACAAGCCCAGCAA


GCTGAGCAAAGCAGACT






CACCAAGGTGGACAAGAGA


ACGAGAAACACAAAGTC






GTTGAGCCCAAATCTTGTG


TACGCCTGCGAAGTCAC






ACAAAACTCACACATGCCC


CCATCAGGGCCTGAGCT






ACCGTGCCCAGCACCTGAA


CGCCCGTCACAAAGAGC






CTCCTGGGGGGACCGTCAG


TTCAACAGGGGANAGTG






TCTTCCTCTTCCCCCCAAAA


TTAGAAGCTTGGNCGCC






CCCAAGGACACCCTCATGA


ATGGNCCAACTTGTTTAT






TCTCCCGGACCCCTGAGGT


TGCAGCTTATAATGGNTT






CACATGCGTGGNGGTGGNC


ACNAATAAAGCAATAGC






GTGAGCCACGAANACCCTG


ATCACAAATTTCACAAA






ANNCAAGTTCAACTGGNAC


TAAAGCATTTTTTTCACT






NTGNNGGCNNNNNNGCATA


GCATTCTAGTTGTGGNTN






NGCCANGAANAAGCCNCGG


GNCCAAACTCATCAATG






NAGNANCANTANANNGCNC


NATNTNATCATGTCTGG






GTACNNNNNNNAGCNTCNN


NTCGGNAATTAATTCGG






NCNNNCNGCNCANNACTNN


NGNNGCNNNNATGGNNT






NNANNNNNNGNNNNNNNN


GAANNACNNNNNGN






NNNAGNNNCANNANNCNN


(SEQ ID NO: 3408)






NCCNNNNCCNTCNANNANN









NTNNNNAANNNNAAGGGN









NN (SEQ ID NO: 









3406)











V-C004
NNNNNNCNNATGTATCNTA
CAGGTGCAGCTACAGCAGT
COV107_
NNNNNNNNNNNTATGNA
GAAATTGTGTTGACGCAGTC
COV107_




CACNTACGATTTAGGTGAC
GGGGCGCAGGACTGTTGAA
P1_D6
TCNTACACATACGATTTA
TCCAGGCACCCTGTCTTTGT
P1_D6




ACTATAGAATAACATCCAC
GCCTTCGGAGACCCTGTCC

GGTGACACTATAGAATA
CTCCAGGGGAAAGAGCCAC





TTTGCCTTTCTCTCCACAGG
CTCTCCTGCGCTGTCTATGG

ACATCCACTTTGCCTTTC
CCTCTCCTGCTGGGCCAGTC





TGTCCACTCCCAGGTCCAA
TGGGTCCCTCAGTGGTTACT

TCTCCACAGGTGTCCACT
AGAGTGTTAGCGCCAGCTAC





CTGCACCTCGGTTCTATCGA
ACTGGAGCTGGATCCGCCA

CCCAGGTCCAACTGCAC
TTAGCCTGGTACCAGCAGAA





TTGAATTCCACCATGGGAT
GCCCCCAGGGAAGGGGCTG

CTCGGTTCTATCGATTGA
ACCTGGCCAGGCTCCCAGGC





GGTCATGTATCATCCTTTTT
GAGTGGATTGGGGAGATCA

ATTCCACCATGGGATGG
TCCTCATCTATGGTGCATCC





CTAGTAGCAACTGCAACCG
ATCATTTTGGAAGCACCGG

TCATGTATCATCCTTTTT
AGCAGGGCCACTGGCATCC





GTGTACATTCCCAGGTGCA
CTACAACCCGTCCCTCAAG

CTAGTAGCAACTGCAAC
CAGACAGGTTCAGTGGCAG





GCTACAGCAGTGGGGCGCA
AGTCGAGTCACCATCTCCG

CGGTGTACATTCAGAAA
TGGGTCTGGGACAGACTTCA





GGACTGTTGAAGCCTTCGG
TGGACACGTCCAAGAGCCA

TTGTGTTGACGCAGTCTC
CTCTCACCATCAGTAGACTG





AGACCCTGTCCCTCTCCTGC
GTTCTCCGTGAAGCTGAGC

CAGGCACCGTGTCTTTGT
GAGCCTGAAGATTTTGCAGT





GCTGTCTATGGTGGGTCCCT
TCTGTGACCGCCGCGGACA

CTCCAGGGGAAAGAGCC
ATATTACTGTCAGCAGTACG





CAGTGGTTACTACTGGAGC
CGGCTGTCTATTACTGTGCG

ACCCTCTCCTGCTGGGCC
GTACTACACCTCGGACTTTC





TGGATCCGCCAGCCCCCAG
AGAAAGCCCCTCCTCTACA

AGTCAGAGTGTTAGCGC
GGCGGAGGGACCAAGGTGG





GGAAGGGGCTGGAGTGGAT
GTAACTTATCCCCTGGTGCT

CAGCTACTTAGCCTGGTA
AGATCAAAC (SEQ ID 





TGGGGAGATCAATCATTTT
TTTGATATCTGGGGCCAAG

CCAGCAGAAACCTGGCC
NO: 3413)





GGAAGCACCGGCTACAACC
GGACAATGGTCACCGTCTC

AGGCTCCCAGGCTCCTC






CGTCCCTCAAGAGTCGAGT
TTCAG (SEQ ID NO: 

ATCTATGGTGCATCCAGC






CACCATCTCCGTGGACACG
3411)

AGGGCCACTGGCATCCC






TCCAAGAGCCAGTTCTCCG


AGACAGGTTCAGTGGCA






TGAAGCTGAGCTCTGTGAC


GTGGGTCTGGGACAGAC






CGCCGCGGACACGGCTGTC


TTCACTCTCACCATCAGT






TATTACTGCGCGAGAAAGC


AGACTGGAGCCTGAAGA






CCCTCCTCTACAGTAACTTA


TTTTGCAGTATATTACTG






TCCCCTGGTGCTTTTGATAT


TCAGCAGTACGGTACTA






CTGGGGCCAAGGGACAATG


CACCTCGGACTTTCGGCG






GTCACCGTCTCTTCAGCGTC


GAGGGACCAAGGTGGAG






GACCAAGGGCCCATCGGTC


ATCAAACGTACGGTGGC






TTCCCCCTGGCACCCTCCTC


TGCACCATCTGTCTTCAT






CAAGAGCACCTCTGGGGGC


CTTCCCGCCATCTGATGA






ACAGCGGCCCTGGGCTGCC


GCAGTTGAAATCTGGAA






TGGTCAAGGACTACTTCCC


CTGCCTCTGTTGTGTGCC






CGAACCTGTGACGGTCTCG


TGCTGAATAACTTCTATC






TGGAACTCAGGCGCCCTGA


CCAGAGAGGCCAAAGTA






CCAGCGGCGTGCACACCTT


CAGTGGAAGGTGGATAA






CCCGGCTGTCCTACAGTCCT


CGCCCTCCAATCGGGTA






CAGGACTCTACTCCCTCAG


ACTCCCAGGAGAGTGTC






CAGCGTGGTGACCGTGCCC


ACAGAGCAGGACAGCAA






TCCAGCAGCTTGGGCACCC


GGACAGCACCTACAGCC






AGACCTACATCTGCAACGT


TCAGCAGCACCCTGACG






GAATCACAAGCCCAGCAAC


CTGAGCAAAGCAGACTA






ACCNANGTGGACAAGANAG


CGAGAAACACAAAGTCT






TTGAGCCCAAATCTTGTGA


ACGCCTGCGAAGTCACC






CAAAACTCACACATGCCCA


CATCAGGGCCTGAGCTC






CCGTGCCCAGCACCTGANT


GCCCGTCACAAAGAGCT






CCTGGGGGGACCGTCAGTC


TCAACAGGGGAGAGTGT






TTCCTCTTCCCCCCAAAACC


TAGAAGCTTGGCCGCCA






CNAGGANACCCTCATGATC


TGGCCCAACTTGTTTATT






TCCNNNCCCNTGNNNCACA


GCAGCTTATAATGGTTAC






TGCGTGGNGNNNGNNGTGA


AAATAAAGCAATAGCAT






GCCACNANACCCTGAGTCA


CACAAATTTCACAAATA






AGTTCAACTGGNACNNNGN


AAGCATTTTTTTCACTGC






NNGGCGTNNNNGNTGCANN


ATTCTAGTTGTGGTTTGT






NN (SEQ ID NO: 


CCAAACTCATCAATGTAT






3410)


CTTATCATGTCTGGATCG









GGAATTAANTTCGNCGC









AGCACNTGGCNTGAAAT









NACCTCTGAAAGANGAA









CTTG (SEQ ID









NO: 3412)








V-C005
NNNNNNNNNNNATGTATCA
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNTATGTATCN
CAGTCTGTGCTGACTCAGCC
COV107_




TACACATACGATTTAGGTG
CTGGAGGAGGCTTGATCCA
P2_A4
TACACATACGATTTAGGT
TCCCTCCGCGTCCGGGTCTC
P2_A4




ACACTATAGAATAACATCC
GCCTGGGGGGTCCCTGAGA

GACACTATAGAATAACA
CTGGACAGTCAGTCACCATC





ACTTTGCCTTTCTCTCCACA
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
TCCTGCACTGGAACCAGCAG





GGTGTCCACTCCCAGGTCC
GTTCACCGTCAGTAGCAAC

CCACAGGTGTCCACTCCC
TGACGTTGGTGGTTATAAGT





AACTGCACCTCGGTTCTATC
TACATGAGCTGGGTCCGCC

AGGTCCAACTGCACCTC
ATGTCTCCTGGTACCAACAG





GATTGAATTCCACCATGGG
AGGCTCCAGGGAAGGGGCT

GGTTCTATCGATTGAATT
CACCCAGGCAAAGCCCCCA





ATGGTCATGTATCATCCTTT
GGAGTGGGTCTCAGTTATTT

CCACCATGGGATGGTCA
AACTCATGATTTATGAGGTC





TTCTAGTAGCAACTGCAAC
ATAGCGGTGGTAGTACATA

TGTATCATCCTTTTTCTA
AGTAAGCGGCCCTCAGGGG





CGGTGTACATTCTCAGGTG
CTACGCAGACTCCGTGAAG

GTAGCAACTGCAACCGG
TCCCTGATCGCTTCTCTGGC





CAGCTGGTGGAGTCTGGAG
GGCCGATTCACCATCTCCA

TTCCTGGGCCCAGTCTGC
TCCAAGTCTGGCAACACGGC





GAGGCTTGATCCAGCCTGG
GAGACAATTCCAAGAACAC

CCTGACTCAGCCTCCCTC
CTCCCTGACCGTTTCTGGGC





GGGGTCCCTGAGACTCTCC
GCTGTATCTTCAAATGAAC

CGCGTCCGGGTCTCCTGG
TCCAGGCTGAGGATGAGGC





TGTGCAGCCTCTGGGTTCAC
AGCCTGAGAGCCGAGGACA

ACAGTCAGTCACCATCTC
TGATTATTACTGCAGCTCAT





CGTCAGTAGCAACTACATG
CGGCCGTGTATTACTGTGC

CTGCACTGGAACCAGCA
ATGAAGGCAGCAACAATTTT





AGCTGGGTCCGCCAGGCTC
GAGAGGCGAGGGGTGGGA

GTGACGTTGGTGGTTATA
GTGGTATTCGGCGGAGGGA





CAGGGAAGGGGCTGGAGTG
GCTACCATACGACTACTGG

AGTATGTCTCCTGGTACC
CCAAGCTGACCGTCCTAG





GGTCTCAGTTATTTATAGCG
GGCCAGGGAACCCTGGTCA

AACAGCACCCAGGCAAA
(SEQ ID NO: 3417)





GTGGTAGTACATACTACGC


GCCCCCAAACTCATGATT






AGACTCCGTGAAGGGCCGA
CCGTCTCCTCAG (SEQ ID

TATGAGGTCAGTAAGCG






TTCACCATCTCCAGAGACA
NO: 3415)

GCCCTCAGGGGTCCCTG






ATTCCAAGAACACGCTGTA


ATCGCTTCTCTGGCTCCA






TCTTCAAATGAACAGCCTG


AGTCTGGCAACACGGCC






AGAGCCGAGGACACGGCCG


TCCCTGACCGTTTCTGGG






TGTATTACTGTGCGAGAGG


CTCCAGGCTGAGGATGA






CGAGGGGTGGGAGCTACCA


GGCTGATTATTACTGCAG






TACGACTACTGGGGCCAGG


CTCATATGAAGGCAGCA






GAACCCTGGTCACCGTCTC


ACAATTTTGTGGTATTCG






CTCAGCGTCGACCAAGGGC


GCGGAGGGACCAAGCTG






CCATCGGTCTTCCCCCTGGC


ACCGTCCTAGGTCAGCC






ACCCTCCTCCAAGAGCACC


CAAGGCTGCCCCCTCGG






TCTGGGGGCACAGCGGCCC


TCACTCTGTTCCCACCCT






TGGGCTGCCTGGTCAAGGA


CGAGTGAGGAGCTTCAA






CTACTTCCCCGAACCTGTGA


GCCAACAAGGCCACACT






CGGTCTCGTGGAACTCAGG


GGTGTGTCTCATAAGTG






CGCCCTGACCAGCGGCGTG


ACTTCTACCCGGGAGCC






CACACCTTCCCGGCTGTCCT


GTGACAGTGGCCTGGAA






ACAGTCCTCANGACTCTAC


GGCAGATAGCAGCCCCG






TCCCTCAGCAGCGTGGTGA


TCAAGGCGGGAGTGGAG






CCGTGCCCTCCAGCAGCTT


ACCACCACACCCTCCAA






GGGCACCCAGACCTACATC


ACAAAGCAACAACAAGT






TGCAACGTGAATCACAAGC


ACGCGGCCAGCAGCTAC






CCAGCAACACCANNGTGGA


CTGAGCCTGACGCCTGA






CAAGANAGTTGAGCCCAAA


GCAGTGGAAGTCCCACA






TCTTGTGACAAAACTCACA


GAAGCTACAGCTGCCAG






CATGCCCACCGTGCCCAGC


GTCACGCATGNAAGGGA






ACCTGAACTCCTGGGGGGA


GCACCGTGGNNAAGACA






CCGTCAGTCTTCCTCNTCCC


GTGGCCCCTACAGAATG






CCCAAAACCCNNNCACCCN


TTCATAGAAGCTTGGCC






CATGATCTNCCNNACCCNG


GCCATGGCCCAACTTGTT






AGTCNNNNTGNNNNGGNGG


TATTGCAGCTTATAATGG






NNGNNGTGANCNNNNANA


NTACNAATAAAGCATAG






CCCTGNNNGTCAAGTTCAA


CATCACAAATTTCACAA






NTGGNACNN (SEQ ID NO:


ATAAAGCATTTTTTTCAC






3414)


TGCATTCTANTTGTNGNT









NGTCCAAACTCATCNAT









GNNNCTTATCATGTCTGG









NTCGGGAATTAANTNNG









NNGCAGCNNCNNNGN









(SEQ ID NO: 3416)








V-C006
NNNNNNNNNTATGNATCNT
CAGGTGCAGCTGCAGGAGT
COV107_
NNNNNNNNNNATGTATC
TCCTATGTGCTGACTCAGCC
COV107_




ACACATACGATTTAGGTGA
CGGGCCCAGGACTGGTGAA
P2_F12
NTACACATACGATTTAG
ACCCTCAGTGTCAGTGGCCC
P2_F12




CACTATAGAATAACATCCA
GCCTTCGGAGACCCTGTCC

GTGACACTATAGAATAA
CAGGAAAGACGGCCAGGAT





CTTTGCCTTTCTCTCCACAG
CTCACCTGCACTGTCTCTGG

CATCCACTTTGCCTTTCT
TACCTGTGGGGGAAACAAC





GTGTCCACTCCCAGGTCCA
TGCCTCCGTCAGCAGTGGT

CTCCACAGGTGTCCACTC
ATTGGAAGTAAAAGTGTGC





ACTGCACCTCGGTTCTATCG
AGTTACTACTGGAGCTGGA

CCAGGTCCAACTGCACC
ACTGGTACCAGCAGAAGCC





ATTGAATTCCACCATGGGA
TCCGGCAGCCCCCAGGGAA

TCGGTTCTATCGATTGAA
AGGCCAGGCCCCTGTGCTGG





TGGTCATGTATCATCCTTTT
GGGACTGGAATGGATTGGG

TTCCACCATGGGATGGTC
TCATCTATTTTGATAGCGAC





TCTAGTAGCAACTGCAACC
TATATCTATTACAGTGGGA

ATGTATCATCCTTTTTCT
CGGCCCTCAGGGATCCCTGA





GGTGTACATTCCCAGCTGC
GCACCAACTACAACCCCTC

AGTAGCAACTGCAACCG
GCGATTCTCTGGCTCCAACT





AGCTGCAGGAGTCGGGCCC
CCTCAAGAGTCGAGTCACC

GTTCTGTGACCTCCTATG
CTGGGAACACGGCCACCCT





AGGACTGGTGAAGCCTTCG
ATATCAGTGGACACGTCCA

AGCTGACACAGCCACCC
GACCATCAGCAGGGTCGAA





GAGACCCTGTCCCTCACCT
AGAACCAGTTCTCCCTGAA

TCAGTGTCAGTGGCCCC
GCCGGGGATGAGGCCGACT





GCACTGTCTCTGGTGCCTCC
GCTGAGCTCTGTGACCGCT

AGGAAAGACGGCCAGGA
ATTACTGTCAGGTGTGGGAT





GTCAGCAGTGGTAGTTACT
GCGGACACGGCCGTGTATT

TTACCTGTGGGGGAAAC
AGTAGTCGTGATCATGTGGT





ACTGGAGCTGGATCCGGCA
ACTGTGCGAGAGAGCGGCC

AACATTGGAAGTAAAAG
ATTCGGCGGAGGGACCAAG





GCCCCCAGGGAAGGGACTG
CGGTGGAACGTATAGCAAC

TGTGCACTGGTACCAGC
CTGACCGTCCTAG (SEQ 





GAATGGATTGGGTATATCT
ACCTGGTACACCCCAACCG

AGAAGCCAGGCCAGGCC
ID NO: 3421)





ATTACAGTGGGAGCACCAA
ATACCAACTGGTTCGACAC

CCTGTGCTGGTCATCTAT






CTACAACCCCTCCCTCAAG
CTGGGGCCAGGGAACCCTG

TTTGATAGCGACCGGCC






AGTCGAGTCACCATATCAG
GTCACCGTCTCCTCAG 

CTCAGGGATCCCTGAGC






TGGACACGTCCAAGAACCA
(SEQ ID NO: 3419)

GATTCTCTGGCTCCAACT






GTTCTCCCTGAAGCTGAGCT


CTGGGAACACGGCCACC






CTGTGACCGCTGCGGACAC


CTGACCATCAGCAGGGT






GGCCGTGTATTACTGTGCG


CGAAGCCGGGGATGAGG






AGAGAGCGGCCCGGTGGAA


CCGACTATTACTGTCAGG






CGTATAGCAACACCTGGTA


TGTGGGATAGTAGTCGT






CACCCCAACCGATACCAAC


GATCATGTGGTATTCGGC






TGGTTCGACACCTGGGGCC


GGAGGGACCAAGCTGAC






AGGGAACCCTGGTCACCGT


CGTCCTAGGTCAGCCCA






CTCCTCAGCGTCGACCAAG


AGGCTGCCCCCTCGGTC






GGCCCATCGGTCTTCCCCCT


ACTCTGTTCCCGCCCTCG






GGCACCCTCCTCCAAGAGC


AGTGAGGAGCTTCAAGC






ACCTCTGGGGGCACAGCGG


CAACAAGGCCACACTGG






CCCTGGGCTGCCTGGTCAA


TGTGTCTCATAAGTGACT






GGACTACTTCCCCGAACCT


TCTACCCGGGAGCCGTG






GTGACGGTCTCGTGGAACT


ACAGTGGCCTGGAAGGC






CAGGCGCCCTGACCAGCGG


AGATAGCAGCCCCGTCA






CGTGCACACCTTCCCGGCT


AGGCGGGAGTGGAGACC






GTCCTACAGTCCTCANGAC


ACCACACCCTCCAAACA






TCTACTCCCTCAGCAGCGTG


AAGCAACAACAAGTACG






GTGACCGTGCCCTCCAGCA


CGGCCAGCAGCTACCTG






GCTTGGGCACCCAGACCTA


AGCCTGACGCCTGAGCA






CATCTGCAACGTGAATCAC


GTGGAAGTCCCACAGAA






AAGCCCAGCAACACCAAGG


GCTACAGCTGCCAGGTC






TGGACAAGAGAGTTGAGCC


ACGCATGAAGGGAGCAC






CAAATCTTGTGACAAAACT


CGTGGAGAAGACAGTGG






CACACATGCCCACCGTGCC


CCCCTACAGAATGTTCAT






CAGCACCTGAACTCCTGGG


AGAAGCTTGGCCGCCAT






GGGANCGTCAGTCTTCCTCT


GGCCCAACTTGTTTATTG






TCCCCCCAAAACCCAAGGA


CAGCTTATAATGGTTACA






CACCCTCATGATCTCCCGG


AATAAAGCAATAGCATC






ACCCCTGAGTCACATGCGT


ACAAATTTCACAAATAA






NNNNNGANGTGANCCACGA


AGCATTTTTTTCACTGCA






ANACCCTGAGNCAAGTTCA


TTCTANTTGTGGTTTGTC






CTGGNACGTNNNNNNTNNN


CAAACTCATCAATGTATC






NNCATNANNCANNAANAA


TTATCATGTCTGGATCGG






GCNNNNGGANGANCANTN


GAATTAATTCGNCGCAG






NANNNNACNNNCNNNNNN


CACCATGNNNTGAAATA






NGNNAGCNTCNTNNCGNNC


ACCTCTGAAAGAGNAAC






NNNNNCNNNNTNNNTNANN


NN (SEQ ID NO:






NNNGNNNNANNNNNNNNN


3420)






NCNNNNNCCNNNCNNNNCC









ATCNNNANCCNTNNNNNNA









NNNNNN (SEQ ID )









NO: 3418











V-C007
NNNNNNNNNATGTATCNTA
CAGGTTCAGCTGGTGCAGT
COV107_
NNNNNNNNNNNNNNNG
CAGTCTGTGCTGACTCAGCC
COV107_




CACATACGATTTAGGTGAC
CTGGAGCTGAGGTGAAGAA
P1_F3
NATCTACACNTACGATTT
ACCCTCAGCGTCTGGGACCC
P1_F3




ACTATAGAATAACATCCAC
GCCTGGGGCCTCAGTGAGG

AGGTGACACTATAGAAT
CCGGGCAGAGGGTCACCAT





TTTGCCTTTCTCTCCACAGG
GTCTCCTGCAAGGCTTCTGG

AACATCCACTTTGCCTTT
CTCTTGTTCTGGAAGCAGCT





TGTCCACTCCCAGGTCCAA
TTACACCTTTACCAGCTATG

CTCTCCACAGGTGTCCAC
CCAACATCGGAAGTAATTAT





CTGCACCTCGGTTCTATCGA
GTTTCAGCTGGGTGCGACA

TCCCAGGTCCAACTGCA
GTATACTGGTACCAGCAGCT





TTGAATTCCACCATGGGAT
GGCCCCTGGACAAGGGCTT

CCTCGGTTCTATCGATTG
CCCAGGAACGGCCCCCAAA





GGTCATGTATCATCCTTTTT
GAGTGGATGGGATGGATCA

AATTCCACCATGGGATG
CTCCTCATCTATAGGAATAA





CTAGTAGCAACTGCAACCG
GCGCTTACAATGGTAACAC

GTCATGTATCATCCTTTT
TCAGCGGCCCTCAGGGGTCC





GTGTACATTCCCAGGTTCA
AAACTTTGCACAGAAGCTC

TCTAGTAGCAACTGCAA
CTGACCGATTCTCTGGCTCC





GCTGGTGCAGTCTGGAGCT
CAGGGCAGAGTCACCATGA

CCGGTTCCTGGGCCCAGT
AAGTCTGGCACCTCAGCCTC





GAGGTGAAGAAGCCTGGGG
CCACAGACACATCCACGAG

CTGTGCTGACTCAGCCAC
CCTGGCCATCAGTGGGCTCC





CCTCAGTGAGGGTCTCCTG
CACAGCCTACATGGAGCTG

CCTCAGCGTCTGGGACC
GGTCCGAGGATGAGGCTGA





CAAGGCTTCTGGTTACACCT
AGGAGCCTGAGATCTGACG

CCCGGGCAGAGGGTCAC
TTATTACTGTGCAGCATGGG





TTACCAGCTATGGTTTCAGC
ACACGGCCGTGTATTACTG

CATCTCTTGTTCTGGAAG
ATGACAGCCTGAGTGGTTTT





TGGGTGCGACAGGCCCCTG
TGCGAGAGGGGAAGCAGTG

CAGCTCCAACATCGGAA
GTGGTATTCGGCGGAGGGA





GACAAGGGCTTGAGTGGAT
GCTGGTACAACCGGTTTTTT

GTAATTATGTATACTGGT
CCAAGCTGACCGTCCTAG





GGGATGGATCAGCGCTTAC
TGACTACTGGGGCCAGGGA

ACCAGCAGCTCCCAGGA
(SEQ ID NO: 3425)





AATGGTAACACAAACTTTG
ACCCTGGTCACCGTCTCCTC

ACGGCCCCCAAACTCCT






CACAGAAGCTCCAGGGCAG
AG (SEQ ID NO: 3423)

CATCTATAGGAATAATC






AGTCACCATGACCACAGAC


AGCGGCCCTCAGGGGTC






ACATCCACGAGCACAGCCT


CCTGACCGATTCTCTGGC






ACATGGAGCTGAGGAGCCT


TCCAAGTCTGGCACCTCA






GAGATCTGACGACACGGCC


GCCTCCCTGGCCATCAGT






GTGTATTACTGTGCGAGAG


GGGCTCCGGTCCGAGGA






GGGAAGCAGTGGCTGGTAC


TGAGGCTGATTATTACTG






AACCGGTTTTTTTGACTACT


TGCAGCATGGGATGACA






GGGGCCAGGGAACCCTGGT


GCCTGAGTGGTTTTGTGG






CACCGTCTCCTCAGCGTCG


TATTCGGCGGAGGGACC






ACCAAGGGCCCATCGGTCT


AAGCTGACCGTCCTAGG






TCCCCCTGGCACCCTCCTCC


TCAGCCCAAGGCTGCCC






AAGAGCACCTCTGGGGGCA


CCTCGGTCACTCTGTTCC






CAGCGGCCCTGGGCTGCCT


CGCCCTCGAGTGAGGAG






GGTCAAGGACTACTTCCCC


CTTCAAGCCAACAAGGC






GAACCTGTGACGGTCTCGT


CACACTGGTGTGTCTCAT






GGAACTCAGGCGCCCTGAC


AAGTGACTTCTACCCGG






CAGCGGCGTGCACACCTTC


GAGCCGTGACAGTGGCC






CCGGCTGTCCTACAGTCCTC


TGGAAGGCAGATAGCAG






AGGACTCTACTCCCTCAGC


CCCCGTCAAGGCGGGAG






AGCGTGGTGACCGTGCCCT


TGGAGACCACCACACCC






CCAGCAGCTTGGGCACCCA


TCCAAACAAAGCAACAA






GACCTACATCTGCAACGTG


CAAGTACGCGGCCAGCA






AATCACAAGCCCAGCAACA


GCTACCTGAGCCTGACG






CCNAAGGTGGACAAGANAG


CCTGAGCAGTGGAAGTC






TTGAGCCCAAATCTTGTGA


CCACAGAAGCTACAGCT






CAAAACTCACACATGCCCA


GCCAGGTCACGCATGAA






CCGTGCCCAGCACCTGAAC


GGGAGCACCGTGGAGAA






TNCTGGGGGGACCGTCAGT


GACAGTGGCCCCTACAG






CTTCCTCTTCCCCCCNAAAC


AATGTTCATAGAAGCTT






CCAAGGACANCCTCATGAT


GGCCGCCATGGCCCAAC






NTNCCNGACCCNTGAGTCA


TTGTTTATTGCAGCTTAT






CATGNNGTNGTGGNGGNCG


AATGGTTACAAATAAAG






TGNNCCACNAANNACCNNG


CAATAGCATCACAAATT






NAGGTCAAGTTCAACNGGN


TCACAAATAAAGCATTTT






ACNNNGNNN (SEQ ID NO:


TTTCACTGCATTCTAGTT






3422)


GNGGNTTGTCCAAACTC









ATCAATGTATCTNATCAT









GTCTGGNTCNGGGANTA









ATTCNGCGCAGCACCAT









GGCNTGAAANNACCTCT









GAAAGAGNNTNNNNGNN









CNNCTNNGNNNNNNNNT









CNGNGANNNGNGNTCAN









TNNNNNNGAAAGNCCCC









NGNNNCCCNNCAGNNNA









NNNTGN (SEQ ID NO:









3424)








V-C008
NNNNNNNCNTATGNATCNT
CAGGTGCAGCTGCAGGAGT
COV107_
NNNNNNNNNTTATGTAT
CAGTCTGTGCTGACTCAGCC
COV107_




ACACATACGATTTAGGTGA
CGGGCCCAGGACTGGTGAA
P2_E9
CNTACNCATACGATTTA
TGCCTCCGTGTCTGGGTCTC
P2_E9




CACTATAGAATAACATCCA
GCCTTCGGGGACCCTGTCC

GGTGACACTATAGAATA
CTGGACAGTCGATCACCATC





CTTTGCCTTTCTCTCCACAG
CTCACCTGCGCTGTCTCTGG

ACATCCACTTTGCCTTTC
TCCTGCACTGGAACCAGCAG





GTGTCCACTCCCAGGTCCA
TGGCTCCATCAGCAGTACT

TCTCCACAGGTGTCCACT
TGACGTTGGTGGTTATAACT





ACTGCACCTCGGTTCTATCG
AACTGGTGGAGTTGGGTCC

CCCAGGTCCAACTGCAC
ATGTCTCCTGGTACCAACAA





ATTGAATTCCACCATGGGA
GCCAGCCCCCAGGGAAGGG

CTCGGTTCTATCGATTGA
CACCCAGGCAAAGCCCCCA





TGGTCATGTATCATCCTTTT
GCTGGAGTGGATTGGGGAA

ATTCCACCATGGGATGG
AACTCATGATTTATGATGTC





TCTAGTAGCAACTGCAACC
ATCTATCATACTGGGAGCA

TCATGTATCATCCTTTTT
AGTAATCGGCCCTCAGGGGT





GGTGTACATTCCCAGGTGC
CCAACTACAACCCGTCCCT

CTAGTAGCAACTGCAAC
TTCTAATCGCTTCTCTGGCT





AGCTGCAGGAGTCGGGCCC
CAAGAGTCGAGTCACCATA

CGGTTCCTGGGCCCAGTC
CCAAGTCTGGCAACACGGC





AGGACTGGTGAAGCCTTCG
TCAGTAGACAAGTCCAAGA

TGCCCTGACTCAGCCTGC
CTCCCTGACCATCTCTGGGC





GGGACCCTGTCCCTCACCT
ACCAGTTCTCCCTGAAGCT

CTCCGTGTCTGGGTCTCC
TCCAGGCTGAGGACGAGGC





GCGCTGTCTCTGGTGGCTCC
GAGCTCTGTGACCGCCGCG

TGGACAGTCGATCACCA
TGATTATTACTGCAACTCAT





ATCAGCAGTACTAACTGGT
GACACGGCCGTGTATTACT

TCTCCTGCACTGGAACCA
ATACAAGCAGCAGCACTCG





GGAGTTGGGTCCGCCAGCC
GTGTGAGAGATGGAGGACG

GCAGTGACGTTGGTGGT
AGTCTTCGGAACTGGGACCA





CCCAGGGAAGGGGCTGGAG
ACCCGGGGATGCTTTTGAT

TATAACTATGTCTCCTGG
AGGTCACCGTCCTAG (SEQ





TGGATTGGGGAAATCTATC
ATCTGGGGCCAAGGGACAA

TACCAACAACACCCAGG
ID NO: 3429)





ATACTGGGAGCACCAACTA
TGGTCACCGTCTCTTCAG

CAAAGCCCCCAAACTCA






CAACCCGTCCCTCAAGAGT
(SEQ ID NO: 3427)

TGATTTATGATGTCAGTA






CGAGTCACCATATCAGTAG


ATCGGCCCTCAGGGGTTT






ACAAGTCCAAGAACCAGTT


CTAATCGCTTCTCTGGCT






CTCCCTGAAGCTGAGCTCT


CCAAGTCTGGCAACACG






GTGACCGCCGCGGACACGG


GCCTCCCTGACCATCTCT






CCGTGTATTACTGTGTGAG


GGGCTCCAGGCTGAGGA






AGATGGAGGACGACCCGGG


CGAGGCTGATTATTACTG






GATGCTTTTGATATCTGGGG


CAACTCATATACAAGCA






CCAAGGGACAATGGTCACC


GCAGCACTCGAGTCTTC






GTCTCTTCAGCGTCGACCA


GGAACTGGGACCAAGGT






AGGGCCCATCGGTCTTCCC


CACCGTCCTAGGTCAGC






CCTGGCACCCTCCTCCAAG


CCAAGGCCAACCCCACT






AGCACCTCTGGGGGCACAG


GTCACTCTGTTCCCACCC






CGGCCCTGGGCTGCCTGGT


TCGAGTGAGGAGCTTCA






CAAGGACTACTTCCCCGAA


AGCCAACAAGGCCACAC






CCTGTGACGGTCTCGTGGA


TGGTGTGTCTCATAAGTG






ACTCAGGCGCCCTGACCAG


ACTTCTACCCGGGAGCC






CGGCGTGCACACCTTCCCG


GTGACAGTGGCCTGGAA






GCTGTCCTACAGTCCTCAG


GGCAGATAGCAGCCCCG






GACTCTACTCCCTCAGCAG


TCAAGGCGGGAGTGGAG






CGTGGTGACCGTGCCCTCC


ACCACCACACCCTCCAA






AGCAGCTTGGGCACCCAGA


ACAAAGCAACAACAAGT






CCTACATCTGCAACGTGAA


ACGCGGCCAGCAGCTAC






TCACAAGCCCAGCAACACC


CTGAGCCTGACGCCTGA






AAGGTGGACAAGANAGTTG


GCAGTGGAAGTCCCACA






AGCCCAAATCTTGTGACAA


GAAGCTACAGCTGCCAG






AACTCACACATGCCCACCG


GTCACGCATGAANGGGA






TGCCCAGCACCTGAACTNC


GCACCGTGGAGAAGACA






TGGGGGGACCGTCAGTCTT


GTGGCCCCTACAGAATG






CCTCTTCCCCCAAANCCNA


TTCATAGAAGCTTGGCC






GGACACCCTCATGATCTNC


GCCATGGNCCAACTTGTT






CNGACCCTGAGTCACATGC


TATTGCAGCTTATAATGG






GTGGNNNNNNGTGAGCCAC


TTACAAATAAAGCAATA






NANANCCTGAGTCAGTTCA


GCATCACAAATTTCACA






ACTGGNACGNNGNNGGNN


AATAAAGCATTTTTTTNA






NNGGNNGNNGCATNATGNN


CTGCATTCTANTNGTGGT






(SEQ ID NO: 3426)


TNGTCCAANTCATCAAT









GTATNNNTCATGTCTGG









NTCGGGNATTAATTCGN









CGCAGCACCANGGCCTG









AANNNACCTCTNNAANN









ANN (SEQ ID 









NO: 3428)








V-C009
NNNNNNNNNTTATGTATCN
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNNNNNNNTAT
CAGTCTGTGCTGACTCAGCC
COV107_




TACACATACGATTTAGGTG
CTGGGGGAGGCTTGGTCCA
P2_D10
GTATCNTACACATACGA
TCCCTCCGCGTCCGGGTCTC
P2_D10




ACACTATAGAATAACATCC
GCCTGGGGGGTCCCTGAGA

TTTAGGTGACACTATAG
CTGGACAGTCAGTCACCATC





ACTTTGCCTTTCTCTCCACA
CTCTCCTGTGCAGCCTCTGG

AATAACATCCACTTTGCC
TCCTGCACTGGAACCAGCAG





GGTGTCCACTCCCAGGTCC
ATTCACCTTTAGTAGCTATT

TTTCTCTCCACAGGTGTC
TGACGTTGGTGGTTATAACT





AACTGCACCTCGGTTCTATC
GGATGAGCTGGGTCCGCCA

CACTCCCAGGTCCAACT
ATGTCTCCTGGTACCAACAG





GATTGAATTCCACCATGGG
GGCTCCAGGGAAGGGGCTG

GCACCTCGGTTCTATCGA
CACCCAGGCAAAGCCCCCA





ATGGTCATGTATCATCCTTT
GAGTGGGTGGCCAACATAA

TTGAATTCCACCATGGG
AACTCATGATTTATGAGGTC





TTCTAGTAGCAACTGCAAC
AGCAAGATGGAAGTGAGAA

ATGGTCATGTATCATCCT
ACTAAGCGGCCCTCAGGGG





CGGTGTACATTCTGAAGTG
ATACTATGTGGACTCTGTG

TTTTCTAGTAGCAACTGC
TCCCTGATCGCTTCTCTGGC





CAGCTGGTGGAGTCTGGGG
AAGGGCCGATTCACCATCT

AACCGGTTCCTGGGCCC
TCCAAGTCTGGCAACACGGC





GAGGCTTGGTCCAGCCTGG
CCGGAGACAACGCCAAGAA

AGTCTGCCCTGACTCAGC
CTCCCTGACCGTCTCTGGGC





GGGGTCCCTGAGACTCTCC
CTCACTGTATCTGCACATGA

CTCCCTCCGCGTCCGGGT
TCCAGGCTGAGGATGAGGC





TGTGCAGCCTCTGGATTCAC
ACAGCCTGAGAGCCGAGGA

CTCCTGGACAGTCAGTC
TGATTATTACTGCAGCTCAT





CTTTAGTAGCTATTGGATGA
CACGGCTGTGTATTACTGTG

ACCATCTCCTGCACTGGA
ATGCAGGCAGCAACAATTA





GCTGGGTCCGCCAGGCTCC
CTATACAGCTATGGTTAAG

ACCAGCAGTGACGTTGG
TGTGGTATTCGGCGGAGGG





AGGGAAGGGGCTGGAGTGG
GGGGGGCTATGACTACTGG

TGGTTATAACTATGTCTC
ACCAAGCTGACCGTCCTAG





GTGGCCAACATAAAGCAAG
GGCCAGGGAACCCTGGTCA

CTGGTACCAACAGCACC
(SEQ ID NO: 3433)





ATGGAAGTGAGAAATACTA
CCGTCTCCTCAG (SEQ

CAGGCAAAGCCCCCAAA






TGTGGACTCTGTGAAGGGC
ID NO: 3431)

CTCATGATTTATGAGGTC






CGATTCACCATCTCCGGAG


ACTAAGCGGCCCTCAGG






ACAACGCCAAGAACTCACT


GGTCCCTGATCGCTTCTC






GTATCTGCACATGAACAGC


TGGCTCCAAGTCTGGCA






CTGAGAGCCGAGGACACGG


ACACGGCCTCCCTGACC






CTGTGTATTACTGTGCTATA


GTCTCTGGGCTCCAGGCT






CAGCTATGGTTAAGGGGGG


GAGGATGAGGCTGATTA






GCTATGACTACTGGGGCCA


TTACTGCAGCTCATATGC






GGGAACCCTGGTCACCGTC


AGGCAGCAACAATTATG






TCCTCAGCGTCGACCAAGG


TGGTATTCGGCGGAGGG






GCCCATCGGTCTTCCCCCTG


ACCAAGCTGACCGTCCT






GCACCCTCCTCCAAGAGCA


AGGTCAGCCCAAGGCTG






CCTCTGGGGGCACAGCGGC


CCCCCTCGGTCACTCTGT






CCTGGGCTGCCTGGTCAAG


TCCCGCCCTCGAGTGAG






GACTACTTCCCCGAACCTGT


GAGCTTCAAGCCAACAA






GACGGTCTCGTGGAACTCA


GGCCACACTGGTGTGTCT






NGCGCCCTGACCAGCGGCG


CATAAGTGACTTCTACCC






TGCACACCTTCCCGGCTGTC


GGGAGCCGTGACAGTGG






CTACAGTCCTCANGACTCT


CCTGNAAGGCAGATAGC






ACTCCCTCAGCAGCGTGGT


AGCCCCGTCAAGGCGGG






GACCGTGCCCTCCAGCAGC


AGTGGAGACCACCACAC






TTGGGCACCCAGACCTACA


CCTCCAAACAAAGCAAC






TCTGCAACGTGAATCACAA


AACAAGTACGCGGCCAG






GCCCAGCAACACCNANGTG


CAGCTACCTGAGCCTGA






GACAAGAGAGTTGAGCCCA


CGCCTGAGCAGTGGAAG






AATCTTGTGACAAAACTCA


TCCCACAGAAGCTACAG






CACATGCCCACCGTGCCCA


CTGCCAGGTCACGCATG






GCACCTGAACTCCTGGGGG


ANGGAGCACCGTGGAGA






GACCGTCAGTCTTCCTCTTC


ANACAGTGGCCCCTACA






CCCCCAAAACCCAAGNANA


GAATGTTCATAGAAGCT






NCCTCATGATCTCCCNGAC


TGGCCGCCATGGCCCAA






CCCTGAGTCACATGCGTGN


CTTGTTTATTGCAGCTTA






NNNGACGTGAGCCACGANA


TAATGGNTACNAATAAA






CCCTGAGNCAAGTTCAACT


GCAATAGCATCACAAAT






GGNACNNNGNNGNNNNNN


TTCNNAAANAAAGCATT






GNNNGCATAATGNCANNAA


tttttcactgcatnntan






NAAAGCCNN (SEQ ID


TNGNGGNTTNTCNNAAC






NO: 3430)


TCATCNATGNATCTTATC









ATGTCTGGNTNGGAATT









NATTCGGNNNNNN 









(SEQ ID NO: 3432)








V-C010
NNNNNNNNNNTGNNTCNTA
GAGGTGCAGCTGGTGCAGT
COV107_
NNNNNNNNNNNATGTAT
GACATCCAGATGACCCAGTC
COV107_




CACATACGATTTAGGTGAC
CTGGAGCAGAGGTGAAAAA
P2_H6
CNTACACATACGATTTA
TCCTTCCACCCTGTCTGCAT
P2_H6




ACTATAGAATAACATCCAC
GCCCGGGGAGTCTCTGAAG

GGTGACACTATAGAATA
CTGTAGGAGACAGAGTCAC





TTTGCCTTTCTCTCCACAGG
ATCTCCTGTAAGGGTTCTGG

ACATCCACTTTGCCTTTC
CATCACTTGCCGGGCCAGTC





TGTCCACTCCCAGGTCCAA
ATACAGCTTTACCAGCTACT

TCTCCACAGGTGTCCACT
AGAGTATTAGTTACTGGTTG





CTGCACCTCGGTTCTATCGA
GGATCGGCTGGGTGCGCCA

CCCAGGTCCAACTGCAC
GCCTGGTATCAGCAGAAAC





TTGAATTCCACCATGGGAT
GATGCCCGGGAAAGGCCTG

CTCGGTTCTATCGATTGA
CAGGGAAAGCCCCTAAGCT





GGTCATGTATCATCCTTTTT
GAGTGGATGGGGATCATCT

ATTCCACCATGGGATGG
CCTGATCTATCAGGCGTCTA





CTAGTAGCAACTGCAACCG
ATCCTGGTGACTCTGATACC

TCATGTATCATCCTTTTT
GTTTAGAAAGTGGGGTCCCG





GTGTACATTCCCAGGTACA
AGATACAGCCCGTCCTTCC

CTAGTAGCAACTGCAAC
TCAAGGTTCAGCGGCAGTG





GCTGCAGCAGTCTGGAGCA
AAGGCCAGGTCACCATCTC

CGGTGTACATTCTGACAT
AGTCTGGGACAGAATTCACT





GAGGTGAAAAAGCCCGGGG
AGCCGACAAGTCCATCAGC

CCAGATGACCCAGTCTC
CTCACCATCAGCAGCCTGCA





AGTCTCTGAAGATCTCCTGT
ACCGCCTACATGCAGTGGA

CTTCCACCCTGTCTGCAT
GCCTGATGATTTTGCAACTT





AAGGGTTCTGGATACAGCT
GCAGCCTGAAGGCCTCGGA

CTGTAGGAGACAGAGTC
ATTACTGCCAACAGTATAAT





TTACCAGCTACTGGATCGG
CACCGCCATGTATTACTGTG

ACCATCACTTGCCGGGC
AGTTACCCGTACACTTTTGG





CTGGGTGCGCCAGATGCCC
CGAGATCGTTCCGGGACGA

CAGTCAGAGTATTAGTT
CCAGGGGACCAAGCTGGAG





GGGAAAGGCCTGGAGTGGA
CCCCCGTATAGCAGTGGCT

ACTGGTTGGCCTGGTATC
ATCAAAC (SEQ ID 





TGGGGATCATCTATCCTGGT
GGCCCGGCTGATGCTTTTG

AGCAGAAACCAGGGAAA
NO: 3437)





GACTCTGATACCAGATACA
ATATCTGGGGCCAAGGGAC

GCCCCTAAGCTCCTGATC






GCCCGTCCTTCCAAGGCCA
AATGGTCACCGTCTCTTCAG

TATCAGGCGTCTAGTTTA






GGTCACCATCTCAGCCGAC
(SEQ ID NO: 3435)

GAAAGTGGGGTCCCGTC






AAGTCCATCAGCACCGCCT


AAGGTTCAGCGGCAGTG






ACATGCAGTGGAGCAGCCT


AGTCTGGGACAGAATTC






GAAGGCCTCGGACACCGCC


ACTCTCACCATCAGCAG






ATGTATTACTGTGCGAGAT


CCTGCAGCCTGATGATTT






CGTTCCGGGACGACCCCCG


TGCAACTTATTACTGCCA






TATAGCAGTGGCTGGCCCG


ACAGTATAATAGTTACC






GCTGATGCTTTTGATATCTG


CGTACACTTTTGGCCAGG






GGGCCAAGGGACAATGGTC


GGACCAAGCTGGAGATC






ACCGTCTCTTCAGCGTCGAC


AAACGTACGGTGGCTGC






CAAGGGCCCATCGGTCTTC


ACCATCTGTCTTCATCTT






CCCCTGGCACCCTCCTCCAA


CCCGCCATCTGATGAGC






GAGCACCTCTGGGGGCACA


AGTTGAAATCTGGAACT






GCGGCCCTGGGCTGCCTGG


GCCTCTGTTGTGTGCCTG






TCAAGGACTACTTCCCCGA


CTGAATAACTTCTATCCC






ACCTGTGACGGTCTCGTGG


AGAGAGGCCAAAGTACA






AACTCAGGCGCCCTGACCA


GTGGAAGGTGGATAACG






GCGGCGTGCACACCTTCCC


CCCTCCAATCGGGTAACT






GGCTGTCCTACAGTCCTCA


CCCAGGAGAGTGTCACA






GGACTCTACTCCCTCAGCA


GAGCANGACAGCAAGGA






GCGTGGTGACCGTGCCCTC


CAGCACCTACAGCCTCA






CAGCAGCTTGGGCACCCAG


GCAGCACCCTGACGCTG






ACCTACATCTGCAACGTGA


AGCAAAGCAGACTACGA






ATCACAAGCCCAGCAACAC


GAAACACAAAGTCTACG






CAAGGTGGANANAGAGTTG


CCTGCGAAGTCACCCAT






AGCCCAAATCTTGTGACAA


CAGGGCCTGAGCTCGCC






ACTCACACATGCCCACCGT


CGTCACAAAGAGCTTCA






GCCCAGCACCTGAACTCCT


ACAGGGGAGAGTGTTAG






GGGGGGACCGTCAGTCTTC


AAGCTTGGCCGCCATGG






CTCTTCCCCCCAAAACCCN


CCCAACTTGTTTATTGCA






NNNCACCCNCATGATCTCC


GCTTATNATGGNTACNA






CNNACCCNNGAGTCACATG


ATAAAGCAATAGCATCA






CNTGGNGNNGGNNGTGNNC


CAAATTTCACAAATAAA






CNCNANACCCNGNANGTCA


GCATTTTTTTCACTGCAT






AGTNN (SEQ ID 


TCTANTNNTGGTTTNTCC






NO: 3434)


AAACTCATCANNNNTCT









TATCATGTCTGGNTCGGG









AANTAANTCGNNNNNAG









NNNNNTGGNNTGNAANN









AACNNNNNNNNN (SEQ









ID NO: 3436)








V-011
NNNNNNNNNNNNNNNTAT
CAGGTGCAGCTGCAGGAGT
COV107_
NNNNNNNNNNNATGNAT
CAGTCTGTGCTGACTCAGCC
COV107_




GTATNNTACACATACGATT
CGGGCCCAGGACTGGTGAA
P2_F11
CNTACACATACGATTTA
ACCCTCGGTGTCTGAAGCCC
P2_F11




TAGGTGACACTATAGAATA
GCCTTCGGAGACCCTGTCC

GGTGACACTATAGAATA
CCAGGCAGAGGGTCACCAT





ACATCCACTTTGCCTTTCTC
CTCACCTGCACTGTCTCTGG

ACATCCACTTTGCCTTTC
CTCCTGTTCTGGAAGCAGCT





TCCACAGGTGTCCACTCCC
TGGCTCCATCAGTAGTTACT

TCTCCACAGGTGTCCACT
CCAACATCGGAAATAATGCT





AGGTCCAACTGCACCTCGG
ACTGGAGCTGGATCCGGCA

CCCAGGTCCAACTGCAC
GTAAATTGGTACCAGCAGGT





TTCTATCGATTGAATTCCAC
GCCCCCAGGGAAGGGACTG

CTCGGTTCTATCGATTGA
CCCAGGAAAGGCTCCCAAA





CATGGGATGGTCATGTATC
GAGTGGATTGGGTATATCT

ATTCCACCATGGGATGG
CTCCTCATCTATTATGATGA





ATCCTTTTTCTAGTAGCAAC
ATTACAGTGGGAGCACCAA

TCATGTATCATCCTTTTT
TCTGCTGCCCTCAGGGGTCT





TGCAACCGGTGTACATTCC
CTACAACCCCTCCCTCAAG

CTAGTAGCAACTGCAAC
CTGACCGATTCTCTGGCTCC





CAGCTGCAGCTGCAGGAGT
AGTCGAGTCACCATATCAG

CGGTTCCTGGGCCCAGTC
AAGTCTGGCACCTCAGCCTC





CGGGCCCAGGACTGGTGAA
TAGACACGTCCAAGAACCA

TGTGCTGACGCAGCCAC
CCTGGCCATCAGTGGGCTCC





GCCTTCGGAGACCCTGTCC
GTTCTCCCTGAAGCTGAGCT

CCTCGGTGTCTGAAGCCC
AGTCTGAGGATGAGGCTGA





CTCACCTGCACTGTCTCTGG
CTGTGACCGCTGCGGACAC

CCAGGCAGAGGGTCACC
TTATTACTGTGCAGCATGGG





TGGCTCCATCAGTAGTTACT
GGCCGTGTATTACTGTGCG

ATCTCCTGTTCTGGAAGC
ATGACAGCCTGAATGGCGCT





ACTGGAGCTGGATCCGGCA
AGAGTAGAAGACTGGGGAT

AGCTCCAACATCGGAAA
TGGGTGTTCGGCGGAGGGA





GCCCCCAGGGAAGGGACTG
ATTGTAGTAGTACCAACTG

TAATGCTGTAAATTGGTA
CCAAGCTGACCGTCCTAG





GAGTGGATTGGGTATATCT
CTATTCTGGTGCTTTTGATA

CCAGCAGGTCCCAGGAA
(SEQ ID NO: 3441)





ATTACAGTGGGAGCACCAA
TCTGGGGCCAAGGGACAAT

AGGCTCCCAAACTCCTC






CTACAACCCCTCCCTCAAG
GGTCACCGTCTCTTCAG

ATCTATTATGATGATCTG






AGTCGAGTCACCATATCAG
(SEQ ID NO: 3439)

CTGCCCTCAGGGGTCTCT






TAGACACGTCCAAGAACCA


GACCGATTCTCTGGCTCC






GTTCTCCCTGAAGCTGAGCT


AAGTCTGGCACCTCAGC






CTGTGACCGCTGCGGACAC


CTCCCTGGCCATCAGTGG






GGCCGTGTATTACTGTGCG


GCTCCAGTCTGAGGATG






AGAGTAGAAGACTGGGGAT


AGGCTGATTATTACTGTG






ATTGTAGTAGTACCAACTG


CAGCATGGGATGACAGC






CTATTCTGGTGCTTTTGATA


CTGAATGGCGCTTGGGT






TCTGGGGCCAAGGGACAAT


GTTCGGCGGAGGGACCA






GGTCACCGTCTCTTCAGCGT


AGCTGACCGTCCTAGGT






CGACCAAGGGCCCATCGGT


CAGCCCAAGGCTGCCCC






CTTCCCCCTGGCACCCTCCT


CTCGGTCACTCTGTTCCC






CCAAGAGCACCTCTGGGGG


ACCCTCGAGTGAGGAGC






CACAGCGGCCCTGGGCTGC


TTCAAGCCAACAAGGCC






CTGGTCAAGGACTACTTCC


ACACTGGTGTGTCTCATA






CCGAACCTGTGACGGTCTC


AGTGACTTCTACCCGGG






GTGGAACTCAGGCGCCCTG


AGCCGTGACAGTGGCCT






ACCAGCGGCGTGCACACCT


GGAAGGCAGATAGCAGC






TCCCGGCTGTCCTACAGTCC


CCCGTCAAGGCGGGAGT






TCANGACTCTACTCCCTCAG


GGAGACCACCACACCCT






CAGCGTGGTGACCGTGCCC


CCAAACAAAGCAACAAC






TCCAGCAGCTTGGGCACCC


AAGTACGCGGCCAGCAG






AGACCTACATCTGCAACGT


CTACCTGAGCCTGACGC






GAATCACAAGCCCAGCAAC


CTGAGCAGTGGAAGTCC






ACCAAAGGTGGACAAGAGA


CACAGAAGCTACAGCTG






GTTGAGCCCAAATCTTGTG


CCAGGTCACGCATGAAG






ACAAAACTCACACATGCCC


GGAGCACCGTGGNNAAG






ACCGTGCCCAGCACCTGAA


ACAGTGGNCCCTACAGA






CTCCTGGGGGGANCGTCAG


ATGTTCATAGAAGCTTG






TCTTCCTCTTCCCCCCAAAA


GCCGCCATGGCCCAACT






CCCAAGGACACCNTCATGA


TGTTTATTGCAGCTTATA






TCTCCCNGNACCCCTGAGG


ATGGTTACAAATAAAGC






TCNCNTGCGTGGNGGNNGN


AATAGCATCACAAATTT






NGTGANCCACGAAGANCCT


CACAAATAANCATTTTTT






GANGTCAAGTTNANTGNNN


CACTGCATCTANTTGNGT






CNNGGNNGNCNNNNNGTGC


TNNTCCAANCTCATCAAT






ATANNNNANANNAAGCNN


GNATCTNNCATGTCTGG






NGGANGANNAGTACAACN


NTCGGGAAN (SEQ 






GCACGTNCNNNNNGNNAGC


ID NO: 3440)






NTCNNCACCNNCCNNNACC









NNNNACNNGNNNNANN









(SEQ ID NO: 3438)











V-C012
NNNNNNNNNNNTATGNATC
CAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNNNNNNNNTG
CAGTCTGCCCTGACTCAGCC
COV107_




NTACACATACGATTTAGGT
CTGGGGGAGGCGTGGTCCA
P1_B10
NNTCNACACATACGATT
TGCCTCCGTGTCTGGGTCTC
P1_B10




GACACTATAGAATAACATC
GCCTGGGAGGTCCCTGAGA

TAGGTGACACTATAGAA
CTGGACAGTCGATCACCATC





CACTTTGCCTTTCTCTCCAC
CTCTCCTGTGCAGCCTCTGG

TAACATCCACTTTGCCTT
TCCTGCACCGGAACCAGCA





AGGTGTCCACTCCCAGGTC
ATTCACCTTCAGTAGCCATG

TCTCTCCACAGGTGTCCA
GTGACGTTGGTGGTTATAAC





CAACTGCACCTCGGTTCTAT
CTATGCACTGGGTCCGCCA

CTCCCAGGTCCAACTGC
TATGTCTCCTGGTACCAACA





CGATTGAATTCCACCATGG
GGCTCCAGGCAAGGGGCTG

ACCTCGGTTCTATCGATT
ACACCCAGGCAAAGCCCCC





GATGGTCATGTATCATCCTT
GAGTGGGTGGCAGTTATAT

GAATTCCACCATGGGAT
AAACTCATGATTTATGATGT





TTTCTAGTAGCAACTGCAA
CATATGATGGAAGCAATAA

GGTCATGTATCATCCTTT
CAGTAATCGGCCCTCAGGG





CCGGTGTACATTCTCAGGT
ATACTACGCAGACTCCGTG

TTCTAGTAGCAACTGCA
GTTTCTAATCGCTTCTCTGG





GCAGCTGGTGGAGTCTGGG
AAGGGCCGATTCACCATCT

ACCGGTTCCTGGCCCAGT
CTCCAAGTCTGGCAACACGG





GGAGGCGTGGTCCAGCCTG
CCAGAGACAATTCCAAGAA

CTGCCCTGACTCAGCCTG
CCTCCCTGACCATCTCTGGG





GGAGGTCCCTGAGACTCTC
CACGCTGTATCTGCAAATG

CCTCCGTGTCTGGGTCTC
CTCCAGGCTGAGGACGAGG





CTGTGCAGCCTCTGGATTCA
AACAGCCTGAGAGCTGAGG

CTGGACAGTCGATCACC
CTGATTATTACTGCAGCTCA





CCTTCAGTAGCCATGCTATG
ACACGGCTGTGTATTACTGT

ATCTCCTGCACCGGAAC
TATACAAGCAGCAGCACTTG





CACTGGGTCCGCCAGGCTC
GCGAGAGAGGATTACTATG

CAGCAGTGACGTTGGTG
GGTGTTCGGCGGAGGGACC





CAGGCAAGGGGCTGGAGTG
ATAGTAGTGGTTCTTTTGAC

GTTATAACTATGTCTCCT
AAGCTGACCGTCCTAG 





GGTGGCAGTTATATCATAT
TACTGGGGCCAGGGAACCC

GGTACCAACAACACCCA
(SEQ ID NO: 3445)





GATGGAAGCAATAAATACT
TGGTCACCGTCTCCTCAG

GGCAAAGCCCCCAAACT






ACGCAGACTCCGTGAAGGG
(SEQ ID NO: 3443)

CATGATTTATGATGTCAG






CCGATTCACCATCTCCAGA


TAATCGGCCCTCAGGGG






GACAATTCCAAGAACACGC


TTTCTAATCGCTTCTCTG






TGTATCTGCAAATGAACAG


GCTCCAAGTCTGGCAAC






CCTGAGAGCTGAGGACACG


ACGGCCTCCCTGACCATC






GCTGTGTATTACTGTGCGA


TCTGGGCTCCAGGCTGA






GAGAGGATTACTATGATAG


GGACGAGGCTGATTATT






TAGTGGTTCTTTTGACTACT


ACTGCAGCTCATATACA






GGGGCCAGGGAACCCTGGT


AGCAGCAGCACTTGGGT






CACCGTCTCCTCAGCGTCG


GTTCGGCGGAGGGACCA






ACCAAGGGCCCATCGGTCT


AGCTGACCGTCCTAGGT






TCCCCCTGGCACCCTCCTCC


CAGCCCAAGGCTGCCCC






AAGAGCACCTCTGGGGGCA


CTCGGTCACTCTGTTCCC






CAGCGGCCCTGGGCTGCCT


ACCCTCGAGTGAGGAGC






GGTCAAGGACTACTTCCCC


TTCAAGCCAACAAGGCC






GAACCTGTGACGGTCTCGT


ACACTGGTGTGTCTCATA






GGAACTCAGGCGCCCTGAC


AGTGACTTCTACCCGGG






CAGCGGCGTGCACACCTTC


AGCCGTGACAGTGGCCT






CCGGCTGTCCTACAGTCCTC


GGAAGGCAGATAGCAGC






AGGACTCTACTCCCTCAGC


CCCGTCAAGGCGGGAGT






AGCGTGGTGACCGTGCCCT


GGAGACCACCACACCCT






CCAGCAGCTTGGGCACCCA


CCAAACAAAGCAACAAC






GACCTACATCTGCAACGTG


AAGTACGCGGCCAGCAG






AATCACAAGCCCAGCAACA


CTACCTGAGCCTGACGC






CCAAGGTGGACAAGAGAGT


CTGAGCAGTGGAAGTCC






TGAGCCCAAATCTTGTGAC


CACAGAAGCTACAGCTG






AAAACTCACACATGCCCAC


CCAGGTCACGCATGAAG






CGTGCCCAGCACCTGAACT


GGAGCACCGTGGAGAAG






CCTGGGGGGACCGTCAGTC


ACAGTGGCCCCTACAGA






TTCCTCTTCCCCCCAAAACC


ATGTTCATAGAAGCTTG






CAAGGACACCCTCATGATC


GCCGCCATGGCCCAACT






TCCCGGACCCCTGAGGTTA


TGTTTATTGCAGCTTATA






CATGCGTGGNGGNGGNCGT


ATGGNTACAAATAAAGC






GAGCCACGAANACCCTGAN


AATAGCATCACAAATTT






NCAGTTCANCTGGNACNNG


CACAAATAAAGCATTTTT






GNNGGCGTNNNNTGCATNA


TTCACTGCATTCTANTTG






TGNNANAANAAGCCNNNG


TGGTTTGTCCAAACTCAT






GGAGGANCAGTANANAGC


CAATGTATCTTATCATGT






ACGTACCNNGNNNNAGCGT


CTGGATCGGGAATTAAN






CNCNCGTCNGCACANNACT


TNNNGCANCACCATGNN






GGNNNANGGNNAGNANTA


NTGAANTAACCTCNGAA






NNANNNCNNGNNNNNCNN


GANNACTTNNNNGNACC






NNANNNNNN (SEQ 


TTCNGAGNNNANNNNNN






ID NO: 3442)


CTGNNNNNNNNGTCANT









NGGNNNNNGNANGTCCC









NNGNNCCCNNNAGGCAN









ANNNNNCNAAGCATNCA









TCTCANNNNNCANCANN









ANNNNN (SEQ ID NO:









3444)








V-C013
NNNNNNCNNNNTGNATCNT
CAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNNNTATGNAT
GACATCCAGATGACCCAGTC
COV107_




ACACNTACGATTTAGGTGA
CTGGGGGAGGCGTGGTCCA
P1_D2
CNTACACATACGATTTA
TCCTTCCACCCTGTCTGCAT
P1_D2




CACTATAGAATAACATCCA
GCCTGGGAGGTCCCTGAGA

GGTGACACTATAGAATA
CTGTAGGAGACAGAGTCAC





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCGTCTGG

ACATCCACTTTGCCTTTC
CATCACTTGCCGGGCCAGTC





GTGTCCACTCCCAGGTCCA
ATTCACCTTCAGTAACTTTG

TCTCCACAGGTGTCCACT
AGAGTATGAGTAGCTGGTTG





ACTGCACCTCGGTTCTATCG
GCATGCACTGGGTCCGCCA

CCCAGGTCCAACTGCAC
GCCTGGTATCAGCAGAAAC





ATTGAATTCCACCATGGGA
GGCTCCAGGCAAGGGGCTG

CTCGGTTCTATCGATTGA
CAGGGAACGCCCCTAAGCT





TGGTCATGTATCATCCTTTT
GAGTGGGTGGCAGTTATAT

ATTCCACCATGGGATGG
CCTGATCTATAAGGCGTCTA





TCTAGTAGCAACTGCAACC
GGTATGATGGAAGTAATAA

TCATGTATCATCCTTTTT
GTTTAGAAAGTGGGGTCCCA





GGTGTACATTCTCAGGTGC
ATACTATGCAGACTCCGTG

CTAGTAGCAACTGCAAC
TCAAGGTTCAGCGGCAGTG





AGCTGGTGGAGTCTGGGGG
AAGGGCCGATTCACCATCT

CGGTGTACATTCTGACAT
GATCTGGGACAGAATTCACT





AGGCGTGGTCCAGCCTGGG
CCAGAGACAATTCCAAGAA

CCAGATGACCCAGTCTC
CTCACCATCAGCAGCCTGCA





AGGTCCCTGAGACTCTCCT
CACGCTGTATCTGCAAATG

CTTCCACCCTGTCTGCAT
GCCTGATGATTTTGCAACTT





GTGCAGCGTCTGGATTCAC
AACAGCCTGAGAGCCGAGG

CTGTAGGAGACAGAGTC
ATTACTGCCAACAGCATAAT





CTTCAGTAACTTTGGCATGC
ACACGGCTGTGTATTACTGT

ACCATCACTTGCCGGGC
AGTTCCCCGCTCACTTTCGG





ACTGGGTCCGCCAGGCTCC
GCGAGAGGAGTAAACCCCG

CAGTCAGAGTATGAGTA
CGGAGGGACCAAGGTGGAG





AGGCAAGGGGCTGGAGTGG
ACGATATTTTGACTGGCGT

GCTGGTTGGCCTGGTATC
ATCAAAC (SEQ ID





GTGGCAGTTATATGGTATG
AGATGCTTTTGATATCTGGG

AGCAGAAACCAGGGAAC
NO: 3449)





ATGGAAGTAATAAATACTA
GCCAAGGGACAATGGTCAC

GCCCCTAAGCTCCTGATC






TGCAGACTCCGTGAAGGGC
CGTCTCTTCAG 

TATAAGGCGTCTAGTTTA






CGATTCACCATCTCCAGAG
(SEQ ID NO: 3447)

GAAAGTGGGGTCCCATC






ACAATTCCAAGAACACGCT


AAGGTTCAGCGGCAGTG






GTATCTGCAAATGAACAGC


GATCTGGGACAGAATTC






CTGAGAGCCGAGGACACGG


ACTCTCACCATCAGCAG






CTGTGTATTACTGTGCGAG


CCTGCAGCCTGATGATTT






AGGAGTAAACCCCGACGAT


TGCAACTTATTACTGCCA






ATTTTGACTGGCGTAGATG


ACAGCATAATAGTTCCC






CTTTTGATATCTGGGGCCAA


CGCTCACTTTCGGCGGA






GGGACAATGGTCACCGTCT


GGGACCAAGGTGGAGAT






CTTCAGCGTCGACCAAGGG


CAAACGTACGGTGGCTG






CCCATCGGTCTTCCCCCTGG


CACCATCTGTCTTCATCT






CACCCTCCTCCAAGAGCAC


TCCCGCCATCTGATGAGC






CTCTGGGGGCACAGCGGCC


AGTTGAAATCTGGAACT






CTGGGCTGCCTGGTCAAGG


GCCTCTGTTGTGTGCCTG






ACTACTTCCCCGAACCTGTG


CTGAATAACTTCTATCCC






ACGGTCTCGTGGAACTCAG


AGAGAGGCCAAAGTACA






GCGCCCTGACCAGCGGCGT


GTGGAAGGTGGATAACG






GCACACCTTCCCGGCTGTCC


CCCTCCAATCGGGTAACT






TACAGTCCTCAGGACTCTA


CCCAGGAGAGTGTCACA






CTCCCTCAGCAGCGTGGTG


GAGCAGGACAGCAAGGA






ACCGTGCCCTCCAGCAGCT


CAGCACCTACAGCCTCA






TGGGCACCCAGACCTACAT


GCAGCACCCTGACGCTG






CTGCAACGTGAATCACAAG


AGCAAAGCAGACTACGA






CCCAGCAACACCAAGGTGG


GAAACACAAAGTCTACG






ACAAGAGAGTTGAGCCCAA


CCTGCGAAGTCACCCAT






ATCTTGTGACAAAACTCAC


CAGGGCCTGAGCTCGCC






ACATGCCCACCGTGCCCAG


CGTCACAAAGAGCTTCA






CACCTGAACTCCTGGGGGG


ACAGGGGANAGTGTTAG






ACCGTCAGTCTTCCTCTTCC


AAGCTTGGCCGCCATGG






CCCCAAAACCCAAGGACAC


CCCAACTTGTTTATTGCA






CCTCATGATCTCCCGGACCC


GCTTATAATGGNTACAA






CTGAGGTCACATGCGTGGN


ATAAAGCAATAGCATCA






GGNNNACGTGANCCACGAA


CAAATTTCACNAATAAA






GACCCTNAGGTCAAGTTCA


GCATTTTTTTCACTGCAT






ACTGGNACGTNNNGGCNTN


TCTANTTGNGGNTTNTCC






NNGTGCATNANGNCCAAGA


AAACTCATNANNNATNT






CNAAGCCGCGGNGANCAGT


NNCATGTCTGGNTCGNN






ACAACANCNNNTACCGTGN


NNANTNGNGCAGCNCNT






NGNNANNNTCNTCACCNNC


GNNNGAANNNCNCTGAA






NNNACCANNANTNNNTNAN


GAGANNNNNNNACTNTG






NNNNGNNTNNNNNNCNNG


AGNGAANANNTNNNNNN






NNNNNNNAANNNCNTCCNA


NGAATGNNNNNNTCANT






NNNCCATNNNNN (SEQ ID


NGGGNNNNNNAANTCCC






NO: 3446)


NNGNNNCCCCNNNNNNN









(SEQ ID NO: 3448)








V-C014
NNNNNNNNNNNNTGTNTNN
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNNNNNNTATG
CAGTCTGTGCTGACTCAGCC
COV107_




ACACATACGATTTAGGTGA
CTGGAGGAGGGTTGATCCA
P1_G1
TATCATACACATACGATT
GCCCTCAGTGTCTGGGGCCC
P1_G1




CACTATAGAATAACATCCA
GCCTGGGGGGTCCCTGAAA

TAGGTGACACTATAGAA
CAGGGCAGAGGGTCACCAT





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGTAGTCTCTGG

TAACATCCACTTTGCCTT
CTCCTGCACTGGGACCAGTT





GTGTCCACTCCCAGGTCCA
GTTCACCGTCAGTAAGAAC

TCTCTCCACAGGTGTCCA
CCAACATCGGGGCAGGTTAT





ACTGCACCTCGGTTCTATCG
TACATCAGTTGGGTCCGCC

CTCCCAGGTCCAACTGC
GATGTGCACTGGTACCAGCA





ATTGAATTCCACCATGGGA
AGGCTCCAGGCAAGGGGCT

ACCTCGGTTCTATCGATT
ACTTCCTGGAAGAGCCCCCA





TGGTCATGTATCATCCTTTT
GGAATGGGTCTCAGTTATTT

GAATTCCACCATGGGAT
AAGTCCTCATCTCTGGAAAC





TCTAGTAGCAACTGCAACC
TTGCCGGTGGTAGTACATTC

GGTCATGTATCATCCTTT
AACATTCGGCCCTCAGAGGT





GGTGTACATTCTCAGGTGC
TACGCAGACTCCGTTAAGG

TTCTAGTAGCAACTGCA
CCCTGACCGATTCTCTGGCT





AGCTGGTGGAGTCTGGAGG
GCCGATTCGCCATCTCCAG

ACCGGTTCCTGGGCCCA
CCAGGTCTGGCACCTCAGCC





AGGGTTGATCCAGCCTGGG
AGACAACTCCAACAACACG

GTCTGTGCTGACTCAGCC
TCCCTGGCCATCACTAGTCT





GGGTCCCTGAAACTCTCCT
CTGTTTCTTCAAATGAACAG

GCCCTCAGTGTCTGGGG
CCAGCCTGAGGATGAGGCT





GTGTAGTCTCTGGGTTCACC
CCTGAGAGTCGAGGACACG

CCCCAGGGCAGAGGGTC
CAATATTACTGTCAGTCTTA





GTCAGTAAGAACTACATCA
GCCATTTATTACTGTGCGAG

ACCATCTCCTGCACTGGG
TGACAGCAGTCTCTATGCGG





GTTGGGTCCGCCAGGCTCC
AGGGGACGGGGAGTTATTC

ACCAGTTCCAACATCGG
TGTTCGGCGGAGGGACCAA





AGGCAAGGGGCTGGAATGG
TTTGACCAATGGGGCCAGG

GGCAGGTTATGATGTGC
GCTGACCGTCCTA (SEQ





GTCTCAGTTATTTTTGCCGG
GAACCCTGGTCACCGTCTC

ACTGGTACCAGCAACTT
ID NO: 3453)





TGGTAGTACATTCTACGCA
CTCAG (SEQ ID NO: 

CCTGGAAGAGCCCCCAA






GACTCCGTTAAGGGCCGAT
3451)

AGTCCTCATCTCTGGAAA






TCGCCATCTCCAGAGACAA


CAACATTCGGCCCTCAG






CTCCAACAACACGCTGTTTC


AGGTCCCTGACCGATTCT






TTCAAATGAACAGCCTGAG


CTGGCTCCAGGTCTGGC






AGTCGAGGACACGGCCATT


ACCTCAGCCTCCCTGGCC






TATTACTGTGCGAGAGGGG


ATCACTAGTCTCCAGCCT






ACGGGGAGTTATTCTTTGA


GAGGATGAGGCTCAATA






CCAATGGGGCCAGGGAACC


TTACTGTCAGTCTTATGA






CTGGTCACCGTCTCCTCAGC


CAGCAGTCTCTATGCGGT






GTCGACCAAGGGCCCATCG


GTTCGGCGGAGGGACCA






GTCTTCCCCCTGGCACCCTC


AGCTGACCGTCCTACGTC






CTCCAAGAGCACCTCTGGG


AGCCCAAGGCTGCCCCC






GGCACAGCGGCCCTGGGCT


TCGGTCACTCTGTTCCCA






GCCTGGTCAAGGACTACTT


CCCTCGAGTGAGGAGCT






CCCCGAACCTGTGACGGTC


TCAAGCCAACAAGGCCA






TCGTGGAACTCAGGCGCCC


CACTGGTGTGTCTCATAA






TGACCAGCGGCGTGCACAC


GTGACTTCTACCCGGGA






CTTCCCGGCTGTCCTACAGT


GCCGTGACAGTGGCCTG






CCTCAGGACTCTACTCCCTC


NAAGGCAGATAGCAGCC






AGCAGCGTGGTGACCGTGC


CCGTCAAGGCGGGAGTG






CCTCCAGCAGCTTGGGCAC


GAGACCACCACACCCTC






CCAGACCTACATCTGCAAC


CAAACAAAGCAACAACA






GTGAATCACAAGCCCAGCA


AGTACGCGGCCAGCAGC






ACACCAAGGTGGACAAGAG


TACCTGAGCCTGACGCCT






AGTTGAGCCCAAATCTTGT


GAGCAGTGGAAGTCCCA






GACAAAACTCACACATGCC


CAGAAGCTACAGCTGCC






CACCGTGCCCAGCACCTGA


AGGTCACGCATGAAGGG






ACTCCTGGGGGGANCGTCA


AGCACCGTGNANAAGAC






GTCTTCCTCTTCCCCCCAAA


AGTGGCCCCTACAGAAT






CCCNAGGACACCCTCATGA


GTTCATAGAAGCTTGGN






TCTCCCGGACCCCTGANTC


CGCCATGGCCCAACTTGT






ACATGCGTGGTGGTGGACG


TTATTGCAGCTTANNATG






TGAGCCACGAAGACCCTGA


GTTACAAANTAAAGCAA






GTCAAGTTCANTGGNACNN


TAGCATCACAAATTTCAC






NGNNGGCNNNGNGGTGCAT


AAATAAANNCATTTTTTT






AATGCCANANNAAGCCNNN


CACTGCATTCTANTTGNN






GGANGANCANNANANAGC


GTTNGNCCAAACTCNTC






ACNTACCGNGNNNNAGCGT


AATGNNTCTTATCATGNC






CCTNNNCNNCNNNNCNGNC


TGGATCGGNNANTNANT






TGNNNANGNNNNNNACNN


TCGGNNCAGCNNC 






NNNCANGGNNNCANCNAN


(SEQ ID NO: 3452)






CCNTNCCNNCNNCNNTCNA









NAAAANNANNNNNN (SEQ









ID NO: 3450)











V-C015
NNNNNNNNTATGTATNNTA
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNCNNATGTATCN
GATATTGTGATGACTCAGTC
COV107_




CACATACGATTTAGGTGAC
CTGGGGGAGGCTTGATAAA
P2_B3
TACACATACGATTTAGGT
TCCACTCTCCCTGTCCGTCA
P2_B3




ACTATAGAATAACATCCAC
GCCAGGGCGGTCCCTGAGA

GACACTATAGAATAACA
CCCCTGGAGAGCCGGCCTCC





TTTGCCTTTCTCTCCACAGG
CTCTCTTGTACAGCCTCTGG

TCCACTTTGCCTTTCTCT
ATCTCCTGCAGGTCTAGTCA





TGTCCACTCCCAGGTCCAA
ATTCACCTTTGGTGATTATG

CCACAGGTGTCCACTCCC
GAGCCTCCTGCATAGTAATG





CTGCACCTCGGTTCTATCGA
CTATGACCTGGTTCCGCCA

AGGTCCAACTGCACCTC
GAAACAACTATTTCGATTGG





TTGAATTCCACCATGGGAT
GGCTCCAGGGAAGGGGCTG

GGTTCTATCGATTGAATT
TACCTGCAGAAGCCAGGGC





GGTCATGTATCATCCTTTTT
GAGTGGGTAGGTTTCATTA

CCACCATGGGATGGTCA
AGTCTCCACAGCTCCTGATC





CTAGTAGCAACTGCAACCG
GAAGTAAAGCTTATGGTGG

TGTATCATCCTTTTTCTA
TATTTGGGTTCTAATCGGGC





GGTACATTCTCAGGTGCAG
GACAACAGGATACGCCGCG

GTAGCAACTGCAACCGG
CTCCGGGGTCCCTGACAGGT





CTGGTGGAGTCTGGGGGAG
TCTGTGAAATACAGATTTA

TGTACATGGGGATATTGT
TCAGTGGCAGTGGATCAGG





GCTTGATAAAGCCAGGGCG
CCATCTCAAGAGATGATTC

GATGACTCAGTCTCCACT
CACAGATTTTACACTGAAGA





GTCCCTGAGACTCTCTTGTA
CAAAAGCATCGCCTATCTG

CTCCCTGTCCGTCACCCC
TCAGCAGAGTGGAGGCTGA





CAGCCTCTGGATTCACCTTT
CAAATGGACAGCCTGAAAA

TGGAGAGCCGGCCTCCA
GGATGTTGGGGTTTATTACT





GGTGATTATGCTATGACCT
CCGAGGACACAGCCGTGTA

TCTCCTGCAGGTCTAGTC
GCATGCAAGTTCTACAAATT





GGTTCCGCCAGGCTCCAGG
TTACTGTACTAGGTGGGAC

AGAGCCTCCTGCATAGT
CCGTACACTTTTGGCCAGGG





GAAGGGGCTGGAGTGGGTA
GGGTGGAGTCAACATGACT

AATGGAAACAACTATTT
GACCAAGCTGGAGATCAA





GGTTTCATTAGAAGTAAAG
ATTGGGGCCAGGGAACCCT

CGATTGGTACCTGCAGA
(SEQ ID NO: 3457)





CTTATGGTGGGACAACAGG
GGTCACCGTCTCCTCAG

AGCCAGGGCAGTCTCCA






ATACGCCGCGTCTGTGAAA
(SEQ ID NO: 3455)

CAGCTCCTGATCTATTTG






TACAGATTTACCATCTCAA


GGTTCTAATCGGGCCTCC






GAGATGATTCCAAAAGCAT


GGGGTCCCTGACAGGTT






CGCCTATCTGCAAATGGAC


CAGTGGCAGTGGATCAG






AGCCTGAAAACCGAGGACA


GCACAGATTTTACACTG






CAGCCGTGTATTACTGTACT


AAGATCAGCAGAGTGGA






AGGTGGGACGGGTGGAGTC


GGCTGAGGATGTTGGGG






AACATGACTATTGGGGCCA


TTTATTACTGCATGCAAG






GGGAACCCTGGTCACCGTC


TTCTACAAATTCCGTACA






TCCTCAGCGTCGACCAAGG


CTTTTGGCCAGGGGACC






GCCCATCGGTCTTCCCCCTG


AAGCTGGAGATCAAACG






GCACCCTCCTCCAAGAGCA


TACGGTGGCTGCACCAT






CCTCTGGGGGCACAGCGGC


CTGTCTTCATCTTCCCGC






CCTGGGCTGCCTGGTCAAG


CATCTGATGAGCAGTTG






GACTACTTCCCCGAACCTGT


AAATCTGGAACTGCCTCT






GACGGTCTCGTGGAACTCA


GTTGTGTGCCTGCTGAAT






NGCGCCCTGACCAGCGGCG


AACTTCTATCCCAGAGA






TGCACACCTTCCCGGCTGTC


GGCCAAAGTACAGTGGA






CTACAGTCCTCNNNCTCTAC


AGGTGGATAACGCCCTC






TCCCTCAGCAGCGTGGTGA


CAATCGGGTAACTCCCA






CCGTGCCCTCCAGCAGCTT


GGAGAGTGTCACAGAGC






GGGCACCCAGACCTACATC


AGGACAGCAAGGACAGC






TGCAACGTGAATCACAAGC


ACCTACAGCCTCAGCAG






CCAGCANNNCCNNNNNNNN


CACCCTGACGCTGAGCA






ANANANTTGAGCCCNAATC


AAGCAGACTACGAGAAA






TNNTGANNAACTCANNCAT


CACAAAGTCTACGCCTG






GCCCANCGNGCCCAGCACC


CGAAGTCACCCATCNGG






TGACTNCTGGGGGGANCGT


NCNTGAGCTCGCCCGTC






CAGTCTCNNTCCCCNNAAN


ACAAAGAGCTTCAACNG






CNNNNNNNCCNTCATGATN


GGGANANTGTTAGAAGC






NNCNNACCCTGAGTCACAT


TTGGNCGCCATGGCCCA






GNNNNGGTGGNNGANNTG


ACTTGTTTATTGCAGCTT






ANCCNCNANANCCTGAGNC


ATNATGGNTACAAATAA






AGTCANTGNANNGNNNGGN


AGCAATAGCATCACAAA






NNGNNNNNNCNNNANGCN


TTTCANAATAAAGCATTT






NANNNANNNNNNGNNNNN


TTTTCACTGCATNTANTN






NNNNNTNCANNNNGCNNGT


NGGNNNTCCAANCTCAT






NCNNNNGTNNNNNNNNNC


CNATGNATNTATCATGTC






NGTNCNNNNNNNNNNTGGN


TGGNTCNGNATTANTTC






NNANGNNNNNNNNNNANN


GNNNNAGCNNCANN






NNNNNGNNNNNCNNNANN


(SEQ ID NO: 3456)






NNNCNNNNCCCCCNNNNNN









NNA (SEQ ID NO: 









3454)











V-C016
NNNNNNNNNNATGTATCAT
CAGGTGCAGCTGGTGGAGT
COV107_
NNNNCNTTATGNNTCNA
AATTTTATGCTGACTCAGCC
COV107_




ACACNTACGATTTAGGTGA
CTGGGGGAGGCGTGGTCCA
P2_C6
CNCATACGATTTAGGTG
CCACTCTGTGTCGGAGTCTC
P2_C6




CACTATAGAATAACATCCA
GCCTGGGAGGTCCCTGAGA

ACACTATAGAATAACAT
CGGGGAAGACGGTAACCAT





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCCTCTGG

CCACTTTGCCTTTCTCTC
CTCCTGCACCGGCAGCAGTG





GTGTCCACTCCCAGGTCCA
ATTCACCTACAGTACCTATG

CACAGGTGTCCACTCCC
GCAGCATTGCCAGCAACTAT





ACTGCACCTCGGTTCTATCG
CTATGCACTGGGTCCGCCA

AGGTCCAACTGCACCTC
GTGCAGTGGTACCAGCAGC





ATTGAATTCCACCATGGGA
GGCTCCAGGCAAGGGGCTG

GGTTCTATCGATTGAATT
GCCCGGGCAGTGCCCCCACC





TGGTCATGTATCATCCTTTT
GAGTGGGTGGCATTTATAT

CCACCATGGGATGGTCA
ACTGTGATCTATGAGGATAA





TCTAGTAGCAACTGCAACC
CATATGATGGAAGCAATAA

TGTATCATCCTTTTTCTA
CCAAAGACCCTGTGGGGTCC





GGTGTACATTCTCAGGTGC
ATACTACGCAGACTCCGTG

GTAGCAATGCAACCGGT
CTGATCGGTTCTCTGGCTCC





AGCTGGTGGAGTCTGGGGG
AAGGGCCGATTCACCATCT

TCTTGGGCCAATTTTATG
ATCGACAGGTCCTCCAACTC





AGGCGTGGTCCAGCCTGGG
CCAGAGACAATTCCAAGAA

CTGACTCAGCCCCACTCT
TGCCTCCCTCACCATCTCTG





AGGTCCCTGAGACTCTCCT
CACGCTGTATCTGCAAATG

GTGTCGGAGTCTCCGGG
GACTGAAGACTGAGGACGA





GTGCAGCCTCTGGATTCAC
AACAGCCTGAGAGCTGAGG

GAAGACGGTAACCATCT
GGCTGACTACTACTGTCAGT





CTACAGTACCTATGCTATGC
ACACGGCTGTGTATTACTGT

CCTGCACCGGCAGCAGT
CTTATGATAGCGGCAATCAT





ACTGGGTCCGCCAGGCTCC
GCGAGAGATTTCTACCATA

GGCAGCATTGCCAGCAA
TGGGTGGTATTCGGCGGAG





AGGCAAGGGGCTGGAGTGG
ACTGGTTCGACCCCTGGGG

CTATGTGCAGTGGTACC
GGACCAGGCTGACCGTCCTA





GTGGCATTTATATCATATGA
CCAGGGAACCCTGGTCACC

AGCAGCGCCCGGGCAGT
G (SEQ ID NO: 3461)





TGGAAGCAATAAATACTAC
GTCTCCTCAG (SEQ ID

GCCCCCACCACTGTGATC






GCAGACTCCGTGAAGGGCC
NO: 3459)

TATGAGGATAACCAAAG






GATTCACCATCTCCAGAGA


ACCCTCTGGGGTCCCTGA






CAATTCCAAGAACACGCTG


TCGGTTCTCTGGCTCCAT






TATCTGCAAATGAACAGCC


CGACAGGTCCTCCAACT






TGAGAGCTGAGGACACGGC


CTGCCTCCCTCACCATCT






TGTGTATTACTGTGCGAGA


CTGGACTGAAGACTGAG






GATTTCTACCATAACTGGTT


GACGAGGCTGACTACTA






CGACCCCTGGGGCCAGGGA


CTGTCAGTCTTATGATAG






ACCCTGGTCACCGTCTCCTC


CGGCAATCATTGGGTGG






AGCGTCGACCAAGGGCCCA


TATTCGGCGGAGGGACC






TCGGTCTTCCCCCTGGCACC


AGGCTGACCGTCCTAGG






CTCCTCCAAGAGCACCTCT


TCAGCCCAAGGCTGCCC






GGGGGCACAGCGGCCCTGG


CCTCGGTCACTCTGTTCC






GCTGCCTGGTCAAGGACTA


CGCCCTCGAGTGAGGAG






CTTCCCCGAACCTGTGACG


CTTCAAGCCAACAAGGC






GTCTCGTGGAACTCAGGCG


CACACTGGTGTGTCTCAT






CCCTGACCAGCGGCGTGCA


AAGTGACTTCTACCCGG






CACCTTCCCGGCTGTCCTAC


GAGCCGTGACAGTGGCC






AGTCCTCANGACTCTACTCC


TGGANGGCAGATAGCAG






CTCAGCAGCGTGGTGACCG


CCCCGTCAAGGCGGGAG






TGCCCTCCAGCAGCTTGGG


TGGAGACCACCACACCC






CACCCAGACCTACATCTGC


TCCAAACAAAGCAACNA






AACGTGAATCACAAGCCCA


CAAGTACGCNGNCNNNC






GCAACACCAAGGTGGACAA


ANN (SEQ ID NO:






GAGAGTTGAGCCCAAATCT


3460)






TGTGACAAAACTCACACAT









GCCCACCGTGCCCAGCACC









TGAACTCCTGGGGGGACCG









TCAGTCTTCCTCTTCCCCCC









AAAACCCNNNNNNNCCTCA









TGATCTCCCGGACCCCTGA









GTCACATGCGTGNNNNNNG









TGAGCCACGANANCCTGAG









NCAGTTCAACTGGNACNNN









GNNGGCNNGGNNNTGCAN









NATGCCNAGACNNAAGCCN









N (SEQ ID NO: 3458)











V-C017
NNNNNNNNNATGTATCNTA
CAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNCNNATGTATCN
CAGTCTGTGCTGACTCAGCC
COV107_




CACATACGATTTAGGTGAC
CTGGGGGAGGCGTGGTCCA
P2_H5
TACACATACGATTTAGGT
GCCCTCAGTGTCTGCGGCCC
P2_H5




ACTATAGAATAACATCCAC
GCCTGGGAGGTCCCTGAGA

GACACTATAGAATAACA
CAGGACAGAAGGTCACCAT





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
CTCCTGCTCTGGAAGCAGCT





TGTCCACTCCCAGGTCCAA
ATTCACCTTCAGTACCTATG

CCACAGGTGTCCACTCCC
CCAACATTGGGAATAATTTG





CTGCACCTCGGTTCTATCGA
CTATGCACTGGGTCCGCCA

AGGTCCAACTGCACCTC
GTATCCTGGTACCAGCAGCT





TTGAATTCCACCATGGGAT
GGCTCCAGGCGAGGGGCTG

GGTTCTATCGATTGAATT
CCCAGGAACAGCCCCCAAA





GGTCATGTATCATCCTTTTT
GAGTGGGTGGCAGTTATTT

CCACCATGGGATGGTCA
CTCCTCATCTATGAAAATAA





CTAGTAGCAATGCAACCGG
CATATGATGGAAGCAATAC

TGTATCATCCTTTTTCTA
TAAGCGACCCTCAGGGATTC





TGTACATTCTCAGGTGCAG
ATACTACGCAGACTCCGTG

GTAGCAACTGCAACCGG
CTGACCGATTCTCTGGCTCC





CTGGTGGAGTCTGGGGGAG
AAGGGCCGATTCACCATCT

TTCCTGGGCCCAGTCTGT
AAGTCTGGCACGTCAGCCAC





GCGTGGTCCAGCCTGGGAG
CCAGAGACAATTCCAAGAA

GCTGACTCAGCCGCCCTC
CCTGGGCATCACCGGACTCC





GTCCCTGAGACTCTCCTGTG
CACGCTGTATCTGCAAATG

AGTGTCTGCGGCCCCAG
AGACTGGGGACGAGGCCGA





CAGCCTCTGGATTCACCTTC
AACAGCCTGAGAGCTGAAG

GACAGAAGGTCACCATC
TTATTACTGCGGAGCATGGG





AGTACCTATGCTATGCACT
ACACGGCTGTGTATTACTGT

TCCTGCTCTGGAAGCAG
ATAGCAGCCTGAGTGCTGGC





GGGTCCGCCAGGCTCCAGG
GCGAGAGATCCCATATGGT

CTCCAACATTGGGAATA
GGGGTTTATGTCTTCGGAAC





CGAGGGGCTGGAGTGGGTG
TCGGGGAGTTATTATCTCCT

ATTTGGTATCCTGGTACC
TGGGACCAAGGTCACCGTCC





GCAGTTATTTCATATGATGG
CCTTTTGTTCACTTTGACTA

AGCAGCTCCCAGGAACA
TAG (SEQ ID NO:





AAGCAATACATACTACGCA
CTGGGGCCAGGGAACCCTG

GCCCCCAAACTCCTCATC
3465)





GACTCCGTGAAGGGCCGAT
GTCACCGTCTCCTCAG (SEQ

TATGAAAATAATAAGCG






TCACCATCTCCAGAGACAA
ID NO: 3463)

ACCCTCAGGGATTCCTG






TTCCAAGAACACGCTGTAT


ACCGATTCTCTGGCTCCA






CTGCAAATGAACAGCCTGA


AGTCTGGCACGTCAGCC






GAGCTGAAGACACGGCTGT


ACCCTGGGCATCACCGG






GTATTACTGTGCGAGAGAT


ACTCCAGACTGGGGACG






CCCATATGGTTCGGGGAGT


AGGCCGATTATTACTGC






TATTATCTCCTCCTTTTGTT


GGAGCATGGGATAGCAG






CACTTTGACTACTGGGGCC


CCTGAGTGCTGGCGGGG






AGGGAACCCTGGTCACCGT


TTTATGTCTTCGGAACTG






CTCCTCAGCGTCGACCAAG


GGACCAAGGTCACCGTC






GGCCCATCGGTCTTCCCCCT


CTAGGTCAGCCCAAGGC






GGCACCCTCCTCCAAGAGC


CAACCCCACTGTCACTCT






ACCTCTGGGGGCACAGCGG


GTTCCCACCCTCGAGTGA






CCCTGGGCTGCCTGGTCAA


GGAGCTTCAAGCCAACA






GGACTACTTCCCCGAACCT


AGGCCACACTGGTGTGT






GTGACGGTCTCGTGGAACT


CTCATAAGTGACTTCTAC






CAGGCGCCCTGACCAGCGG


CCGGGAGCCGTGACAGT






CGTGCACACCTTCCCGGCT


GGCCTGGAAGGCAGATA






GTCCTACAGTCCTCAGGAC


GCAGCCCCGTCAAGGCG






TCTACTCCCTCAGCAGCGTG


GGAGTGGAGACCACCAC






GTGACCGTGCCCTCCAGCA


ACCCTCCAAACAAAGCA






GCTTGGGCACCCAGACCTA


ACAACAAGTACGCGGCC






CATCTGCAACGTGAATCAC


AGCAGCTACCTGAGCCT






AAGCCCAGCAACACCNANG


GACGCCTGAGCAGTGGA






TGGACAAGAGAGTTGAGCC


AGTCCCACAGAAGCTAC






CAAATCTTGTGACAAAACT


AGCTGCCAGGTCACGCA






CACACATGCCCACCGTGCC


TGAAGGGAGCANCGTGN






CAGCACCTGAACTCCTGGG


NANANAGTNNCCCTACN






GGGACCGTCAGTCTTCCTCT


GAATGNTCATNNNANCT






TCCCCCCAAAACCCNAGGA


TGGNGCATGGCCCANTT






NACCCTCATGATCTCCCNG


GTTNANTGCAGCTTATA






ACCCCNGAGTCACNNGCCG


ATGGTNCAANNAAGCAT






NNGNNGGNGGACGTGAGCC


AGCATCACAAANTTCAC






NNGA (SEQ ID NO:


AAATAAGCATTTTTTNNC






3462)


TGCATCTANNNNGTTGN









CNAACTCNTCANGNNNC









TTANCATGNCNGNTCGG









NANNNNGNNCANNNCNT









NNNGAANNNACCNNTNA









NNNANTNNNNNGNACTN









NGANGNGAANANCNNN









NNNNNNNGGNGNNANN









NNGGNNNAAGNNNCCNN









GNNCCNNNGNNANNNNN









NNNNNNGNN (SEQ ID









NO: 3464)








V-C018
NNNNNNNNNNNNTGNATCN
CAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNNCNTATGNN
CAGTCTGTGCTGACTCAGTC
COV107_




ACACATACGATTTAGGTGA
CTGGGGGAGGCGTGGTCCA
P2_E1
NNNACACNTACGATTTA
GCCCTCTGCCTCTGCCTCCC
P2_E1




CACTATAGAATAACATCCA
GCCTGGGAGGTCCCTGAGA

GGTGACACTATAGAATA
TGGGAGCCTCGGTCAAGCTC





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
ACCTGCACTCTGAGCAGTGG





GTGTCCACTCCCAGGTCCA
ATTCACCTTCAGTAACTATG

TCTCCACAGGTGTCCACT
GCACAGCAGCTACGCCATC





ACTGCACCTCGGTTCTATCG
CTATGCACTGGGTCCGCCA

CCCAGGTCCAACTGCAC
GCATGGCATCAGCAGCAGC





ATTGAATTCCACCATGGGA
GGCTCCAGGCAAGGGGCTG

CTCGGTTCTATCGATTGA
CAGAGAAGGGCCCTCGGTA





TGGTCATGTATCATCCTTTT
GAGTGGGTGGCAGTTATAT

ATTCCACCATGGGATGG
CTTGATGAAGCTTAACACTG





TCTAGTAGCAACTGCAACC
CATATGATGGAAGCAATAN

TCATGTATCATCCTTTTT
ATGGCAGCCACAGCAAGGG





GGTGTACATTCTCAGGTGC
ATACTACGCAGACTCCGTG

CTAGTAGCAACTGCAAC
GGACGGGATCCCTGATCGCT





AGCTGGTGGAGTCTGGGGG
AAGGGCCGATTCACCATCT

CGGTTCTCTCTCCCAGCC
TCTCAGGCTCCAGCTCTGGG





AGGCGTGGTCCAGCCTGGG
CCAGAGACAATTCCAAGAA

TGTGCTGACTCAATCGCC
GCTGAGCGCTACCTCACCAT





AGGTCCCTGAGACTCTCCT
CACGCTGTATCTGCAAATG

CTCTGCCTCTGCCTCCCT
CTCCAGCCTCCAGTCTGAGG





GTGCAGCCTCTGGATTCAC
AACAGCCTGAGAGCTGAGG

GGGAGCCTCGGTCAAGC
ATGAGGCTGACTATTACTGT





CTTCAGTAACTATGCTATGC
ACACGGCTATTTATTACTGT

TCACCTGCACTCTGAGCA
CAGACCTGGGGCACTGGCA





ACTGGGTCCGCCAGGCTCC
GCGAGTGGATATACTGGCT

GTGGGCACAGCAGCTAC
TTCTCGTATTCGGCGGAGGG





AGGCAAGGGGCTGGAGTGG
ACGATTATTTTGTGCGGGG

GCCATCGCATGGCATCA
ACCAAGCTGACCGTCCTAG





GTGGCAGTTATATCATATG
GGACTACTACGGTCTGGAC

GCAGCAGCCAGAGAAGG
(SEQ ID NO: 3469)





ATGGAAGCAATAAATACTA
GTCTGGGGCCAAGGGACCA

GCCCTCGGTACTTGATGA






CGCAGACTCCGTGAAGGGC
CGGTCACCGTCTCCTCA

AGCTTAACACTGATGGC






CGATTCACCATCTCCAGAG
(SEQ ID NO: 3467)

AGCCACAGCAAGGGGGA






ACAATTCCAAGAACACGCT


CGGGATCCCTGATCGCTT






GTATCTGCAAATGAACAGC


CTCAGGCTCCAGCTCTGG






CTGAGAGCTGAGGACACGG


GGCTGAGCGCTACCTCA






CTATTTATTACTGTGCGAGT


CCATCTCCAGCCTCCAGT






GGATATACTGGCTACGATT


CTGAGGATGAGGCTGAC






ATTTTGTGCGGGGGGACTA


TATTACTGTCAGACCTGG






CTACGGTCTGGACGTCTGG


GGCACTGGCATTCTCGTA






GGCCAAGGGACCACGGTCA


TTCGGCGGAGGGACCAA






CCGTCTCCTCAGCGTCGACC


GCTGACCGTCCTAGGTC






AAGGGCCCATCGGTCTTCC


AGCCCAAGGCTGCCCCC






CCCTGGCACCCTCCTCCAA


TCGGTCACTCTGTTCCCG






GAGCACCTCTGGGGGCACA


CCCTCGAGTGAGGAGCT






GCGGCCCTGGGCTGCCTGG


TCAAGCCAACAAGGCCA






TCAAGGACTACTTCCCCGA


CACTGGTGTGTCTCATAA






ACCTGTGACGGTCTCGTGG


GTGACTTCTACCCGGGA






AACTCAGGCGCCCTGACCA


GCCGTGACAGTGGCCTG






GCGGCGTGCACACCTTCCC


GAAGGCAGATAGCAGCC






GGCTGTCCTACAGTCCTCA


CCGTCAAGGCGGGAGTG






GGACTCTACTCCCTCAGCA


GAGACCACCACACCCTC






GCGTGGTGACCGTGCCCTC


CAAACAAAGCAACAACA






CAGCAGCTTGGGCACCCAG


AGTACGCGGCCAGCAGC






ACCTACATCTGCAACGTGA


TACCTGAGCCTGACGCCT






ATCACAAGCCCAGCAACAC


GAGCAGTGNAAGTCCCA






CAAGGTGGACAAGAGAGTT


CAGAAGCTACAGCTGCC






GAGCCCAAATCTTGTGACA


AGGTCACGCATGAANGG






AAACTCACACATGCCCACC


AGCACCGTGGAGAAGAC






GTGCCCAGCACCTGAACTC


AGTGGCCCCTACAGAAT






CTGGGGGGACCGTCAGTCT


GTTCATAGAAGCTTGGG






TCCTCTTCCCCCCAAAACCC


CCGCCATGGNCCAACTT






AAGGACACCCTCATGATCT


GTTTATTGCAGCTTATAA






CCCGGACCCCTGAGGTNNC


TGGTTACAAATAAAGCA






ATGCGTGGNGGTGGNNGTG


ATAGCATCACAAATTTC






ANCCACNANACCCTGANGT


ACAAATAAAGCATTTTTT






CAAGTTCAACTGGNACGTN


TCACTGCATTCTANTTNG






NNGGCGTGAAGGTGCATAA


TGGNTTGTCCAAACTCAT






TGNCNANNANNANCCGCNG


CAATGNATCTTATCATGT






GNAGGAGCAGNANANNNN


CTGGNTCGGGAANTAAT






CNNNNNCNNGNNNNNCAN


TCGNNGCANCANCATNN






CNNCNTCNNCNNNNNNCAN


NTGAAATACNTCTNAAN






NNNNNTNNNNNNNNNNNN


NAGNNNTGNNNGGTACC






NANTACNANNNNAGNNNN


TTCTGAGGNNNANGAAN






CANNAANNCNTCCCNNNCC


CANCTNNGGNNNNNNNN






NCATNNNNAAAANNCNTNN


NNCANTNNGNNNNNNNN






NNCAANN (SEQ ID 


NCCCNNNNCCCNNNNCC






NO: 3466)


NNANNATGCAAAGCATG









CATNTNNNNNNCNGNNN









NNNNNNNNAANNNCNCA









GNNNNCNCNNNNGGNNN









ANNNNNNNNAANNNN









(SEQ ID NO: 3468)








V-C019
NNNNNNNNNNNNNNNNTG
CAGGTGCAGCTGGTGCAGT
COV107_
NNNNNNNNNNNATGTAT
CAGTCTGCCCTGACTCAGCC
COV107_




TATCNNCACNTACGATTTA
CTGGGGCTGAGGTGAAGAA
P1_H7
CNTACACATACGATTTA
TGCCTCCGTGTCTGGGTCTC
P1_H7




GGTGACACTATAGAATAAC
GCCTGGGGCCTCAGTGAAG

GGTGACACTATAGAATA
CTGGACAGTCGATCACCATC





ATCCACTTTGCCTTTCTCTC
GTTTCCTGCAAGGCATCTG

ACATCCACTTTGCCTTTC
TCCTGCACTGGAACCAGCAG





CACAGGTGTCCACTCCCAG
GATACACCTTCACCAGCTA

TCTCCACAGGTGTCCACT
TGACGTTGGTGGTTATAAGT





GTCCAACTGCACCTCGGTTC
CTATATGCACTGGGTGCGA

CCCAGGTCCAACTGCAC
ATGTCTCCTGGTACCAACGG





TATCGATTGAATTCCACCAT
CAGGCCCCTGGACAAGGGC

CTCGGTTCTATCGATTGA
CACCCAGGCAAAGCCCCCA





GGGATGGTCATGTATCATC
TTGAGTGGATGGGAATAAT

ATTCCACCATGGGATGG
AACTCATGATATATGATGTC





CTTTTTCTAGTAGCAACTGC
CAACCCTAGTGGTGGTAGC

TCATGTATCATCCTTTTT
AGTAATCGGCCCTCAGGGGT





AACCGGTGTACATTCCCAG
ACAAGCTACGCACAGAAGT

CTAGTAGCAACTGCAAC
TTCTAATCGCTTCTCTGGCT





GTCCAGCTGGTACAGTCTG
TACAGGGCAGAGTCACCAT

CGGTTCCTGGGCCCAGTC
CCAAGTCTGGCAACACGGC





GGGCTGAGGTGAAGAAGCC
GACCAGGGACACGTCCACG

TGCCCTGACTCAGCCTGC
CTCCCTGACCATCTCTGGGC





TGGGGCCTCAGTGAAGGTT
AGCACAGTCTACATGGAGC

CTCCGTGTCTGGGTCTCC
TCCAGGCTGAGGACGAGGC





TCCTGCAAGGCATCTGGAT
TGAGCAGCCTGAGATCTGA

TGGACAGTCGATCACCA
TGATTATTACTGCAGCTCAT





ACACCTTCACCAGCTACTAT
GGACACGGCCGTGTATTAC

TCTCCTGCACTGGAACCA
ACACAAGCAGCAGCACTTCT





ATGCACTGGGTGCGACAGG
TGTGCGAGAGCCAATCATG

GCAGTGACGTTGGTGGT
GTGGTGTTCGGCGGAGGGA





CCCCTGGACAAGGGCTTGA
AAACAACTATGGACACTTA

TATAAGTATGTCTCCTGG
CCCAGCTGACCGTCCTAG





GTGGATGGGAATAATCAAC
CTACTACTACTACTACATGG

TACCAACGGCACCCAGG
(SEQ ID NO: 3473)





CCTAGTGGTGGTAGCACAA
ACGTCTGGGGCAAAGGGAC

CAAAGCCCCCAAACTCA






GCTACGCACAGAAGTTACA
CACGGTCACCGTCTCCTCA

TGATATATGATGTCAGTA






GGGCAGAGTCACCATGACC
(SEQ ID NO: 3471)

ATCGGCCCTCAGGGGTTT






AGGGACACGTCCACGAGCA


CTAATCGCTTCTCTGGCT






CAGTCTACATGGAGCTGAG


CCAAGTCTGGCAACACG






CAGCCTGAGATCTGAGGAC


GCCTCCCTGACCATCTCT






ACGGCCGTGTATTACTGTG


GGGCTCCAGGCTGAGGA






CGAGAGCCAATCATGAAAC


CGAGGCTGATTATTACTG






AACTATGGACACTTACTAC


CAGCTCATACACAAGCA






TACTACTACTACATGGACG


GCAGCACTTCTGTGGTGT






TCTGGGGCAAAGGGACCAC


TCGGCGGAGGGACCCAG






GGTCACCGTCTCCTCAGCGT


CTGACCGTCCTAGGTCA






CGACCAAGGGCCCATCGGT


GCCCAAGGCTGCCCCCT






CTTCCCCCTGGCACCCTCCT


CGGTCACTCTGTTCCCGC






CCAAGAGCACCTCTGGGGG


CCTCGAGTGAGGAGCTT






CACAGCGGCCCTGGGCTGC


CAAGCCAACAAGGCCAC






CTGGTCAAGGACTACTTCC


ACTGGTGTGTCTCATAAG






CCGAACCTGTGACGGTCTC


TGACTTCTACCCGGGAG






GTGGAACTCAGGCGCCCTG


CCGTGACAGTGGCCTGG






ACCAGCGGCGTGCACACCT


AAGGCAGATAGCAGCCC






TCCCGGCTGTCCTACAGTCC


CGTCAAGGCGGGAGTGG






TCANGACTCTACTCCCTCAG


AGACCACCACACCCTCC






CAGCGTGGTGACCGTGCCC


AAACAAAGCAACAACAA






TCCAGCAGCTTGGGCACCC


GTACGCGGCCAGCAGCT






AGACCTACATCTGCAACGT


ACCTGAGCCTGACGCCT






GAATCACAAGCCCAGCAAC


GAGCAGTGGAAGTCCCA






ACCNANGTGGACAAGAGAG


CAGAAGCTACAGCTGCC






TTGAGCCCAAATCTTGTGA


AGGTCACGCATGAAGGG






CAAAACTCACACATGCCCA


AGCACCGNGGNGAAGAC






CCGTGCCCAGCACCTGAAC


AGTGGCCCCTACAGAAT






TCCTGGGGGGACCGTCAGT


GTTCATAGAAGCTTGGN






CTTCCTCTTCCCCCCNAAAC


CGCCATGGCCCAACTTGT






CCNNNGACACCCTCATGAT


TTATTGCAGCTTATAATG






CTCCCGGACCCCTGAGGTC


GTTACAAATAAAGCAAT






ACATGCGTGGNNGNNGACG


AGCATCACAAATTTCAC






TGAGCCACGAANACCCTGA


AAATAANCATTTTTTTCA






NNCAAGTTCAACTGGNACN


CTGCATNTANTGNNGNT






TNNNGGNNNNNNNGNGCAT


NNTCCAAACTCATCNAT






NANGNNANAANAAGCNNN


GNATNTNTCATGTCTGG






NGGGAGGANCANNANNAA


NTCGGGNANTNANTCGN






CAGCNNNNNACCNNNGNN


NNNNAGCANNATNN






NGNCNNNCNNNCCNTCACC


(SEQ ID NO: 3472)






NN (SEQ ID NO: 3470)











V-C020
NNNNNNNNNNATGNNTCNA
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNNNTATGNAT
GACATCCAGATGACCCAGTC
COV107_




CACATACGATTTAGGTGAC
CTGGAGGAGGCTTGATCCA
P2_C8
CNTACACATACGATTTA
TCCATCCTCCCTGTCTGCAT
P2_C8




ACTATAGAATAACATCCAC
GCCTGGGGGGTCCCTGAGA

GGTGACACTATAGAATA
CTGTAGGAGACACAGTCAC





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CATCACTTGCCAGGCGAGTC





TGTCCACTCCCAGGTCCAA
GTTCACCGTCAGTAGCAAC

TCTCCACAGGTGTCCACT
AGGACATTAGCAAGTATTTA





CTGCACCTCGGTTCTATCGA
TACATGACCTGGGTCCGCC

CCCAGGTCCAACTGCAC
AATTGGTATCAGCAGAAAC





TTGAATTCCACCATGGGAT
AGGCTCCAGGGAAGGGGCT

CTCGGTTCTATCGATTGA
CAGGGAAAGCCCCTAAGCT





GGTCATGTATCATCCTTTTT
GGAGTGGGTCTCACTTATTT

ATTCCACCATGGGATGG
CCTGATCTACGATGCATCCA





CTAGTAGCAACTGCAACCG
ATCCCGGTGGTAGCACATA

TCATGTATCATCCTTTTT
ATTTGGAAACAGGGGTCCC





GTGTACATTCTGAGGTGCA
CTACGCAGACTCCGTGAAG

CTAGTAGCAACTGCAAC
ATCAAGGTTCAGTGGAAGT





GCTGGTGGAGTCTGGAGGA
GGCCGATTCACCATCTCCA

CGGTGTACATTGTGCCAT
GGATCTGGGACAGATTTTAC





GGCTTGATCCAGCCTGGGG
GAGACAATTCCAAGAACAC

CCGGATGACCCAGTCTC
TTTCACCATCAGCAGCCTGC





GGTCCCTGAGACTCTCCTGT
GCTGTATCTTCAAATGAAC

CATCCTCCCTGTCTGCAT
AGCCTGAAGATATTGCAAC





GCAGCCTCTGGGTTCACCG
AGCCTGAGAGCCGAGGACA

CTGTAGGAGACACAGTC
ATATTACTGTCAACAGTATG





TCAGTAGCAACTACATGAC
CGGCCGTCTATTACTGTGCG

ACCATCACTTGCCAGGC
ATAATCTCCCTCAGACTTTC





CTGGGTCCGCCAGGCTCCA
AGAGAGGGTATGGGTATGG

GAGTCAGGACATTAGCA
GGCGGAGGGACCAAGGTGG





GGGAAGGGGCTGGAGTGGG
CAGCAGCTGGTACGTGGGG

AGTATTTAAATTGGTATC
AGATCAAAC (SEQ ID 





TCTCACTTATTTATCCCGGT
CCAGGGAACCCTGGTCACC

AGCAGAAACCAGGGAAA
NO: 3477)





GGTAGCACATACTACGCAG
GTCTCCTCAG (SEQ ID

GCCCCTAAGCTCCTGATC






ACTCCGTGAAGGGCCGATT
NO: 3475)

TACGATGCATCCAATTTG






CACCATCTCCAGAGACAAT


GAAACAGGGGTCCCATC






TCCAAGAACACGCTGTATC


AAGGTTCAGTGGAAGTG






TTCAAATGAACAGCCTGAG


GATCTGGGACAGATTTT






AGCCGAGGACACGGCCGTC


ACTTTCACCATCAGCAGC






TATTACTGTGCGAGAGAGG


CTGCAGCCTGAAGATAT






GTATGGGTATGGCAGCAGC


TGCAACATATTACTGTCA






TGGTACGTGGGGCCAGGGA


ACAGTATGATAATCTCCC






ACCCTGGTCACCGTCTCCTC


TCAGACTTTCGGCGGAG






AGCGTCGACCAAGGGCCCA


GGACCAAGGTGGAGATC






TCGGTCTTCCCCCTGGCACC


AAACGTACGGTGGCTGC






CTCCTCCAAGAGCACCTCT


ACCATCTGTCTTCATCTT






GGGGGCACAGCGGCCCTGG


CCCGCCATCTGATGAGC






GCTGCCTGGTCAAGGACTA


AGTTGAAATCTGGAACT






CTTCCCCGAACCTGTGACG


GCCTCTGTTGTGTGCCTG






GTCTCGTGGAACTCAGGCG


CTGAATAACTTCTATCCC






CCCTGACCAGCGGCGTGCA


AGAGAGGCCAAAGTACA






CACCTTCCCGGCTGTCCTAC


GTGGAAGGTGGATAACG






AGTCCTCAGGACTCTACTCC


CCCTCCAATCGGGTAACT






CTCAGCAGCGTGGTGACCG


CCCAGGAGAGTGTCACA






TGCCCTCCAGCAGCTTGGG


GAGCAGGACAGCAAGGA






CACCCAGACCTACATCTGC


CAGCACCTACAGCCTCA






AACGTGAATCACAAGCCCA


GCAGCACCCTGACGCTG






GCAACACCAAGGTGGACAA


AGCAAAGCAGACTACGA






GAGAGTTGAGCCCAAATCT


GAAACACAAAGTCTACG






TGTGACAAAACTCACACAT


CCTGCGAAGTCACCCAT






GCCCACCGTGCCNNNNCTG


CAGGGCCTGAGCTCGCC






AACNTCTGNNNNGGNNGGN


CGTCACAAAGAGCTTCA






NNNNNTTCCTNNTTCCTCCN


ACAGGGGAGAGTGTTAG






TNCCCCCNAAGNCNNNGNG


AAGCTTGGCCCGCCATG






AANNCNTNNNNGNNTNNCN


GCCCAACTTGTTTATTGC






CGAANCCNNTNNNNNNNNN


AGCTTATAATGGTTACA






NNNNNGGNNGNNNNACNN


AATAAAGCAATAGCATC






NANCCNNNNANNNNCNNN


ACAAATTTCACAAATAA






NNNNNANNNNNNNNNNNN


AGCATTTTTTTCACTGCA






NGNGGANNGNNNNGNNNG


TTCTAGTTGNNGTTTGTC






TNNNTNNNNCNNNNNNNNC


CAAACTCATCAATGTATC






NNNGNNNNNNNNTNNNNN


TTATCATGTCTGGATCGG






NNNCNNGTNNNNNNGNNA


GNATNNNCGGCGCAGCA






NNNCNNNCNCCGTCNGCNC


NCATGGCCTGAANNNAC






NNACTNNNNN (SEQ 


CTNNGAAGANGANNNNG






ID NO: 3474)


NNAGGNACNTNNTGAGN









NNNN (SEQ ID NO:









3476)








V-C021
NNNNNNNNNNNATGNATCA
CAGGTGCAGCTGGTGCAGT
COV107_
NNNNNNNNNNATGTATC
CAGTCTGTGCTGACTCAGCC
COV107_




TACACATACGATTTAGGTG
CTGGGGCTGAGGTGAAGAA
P2_H10
NTACACATACGATTTAG
TGCCTCCGTGTCTGGGTCTC
P2_H10




ACACTATAGAATAACATCC
GCCTGGGGCCTCAGTGAAG

GTGACACTATAGAATAA
CTGGACAGTCGATCACCATC





ACTTTGCCTTTCTCTCCACA
GTCTCCTGCAAGGCTTCTGG

CATCCACTTTGCCTTTCT
TCCTGCACTGGAACCAGCAG





GGTGTCCACTCCCAGGTCC
ATACACCTTCACCGGCTACT

CTCCACAGGTGTCCACTC
TGATGTTGGGAGTTATAACC





AACTGCACCTCGGTTCTATC
ATATGCACTGGGTGCGACA

CCAGGTCCAACTGCACC
TTGTCTCCTGGTACCAACAG





GATTGAATTCCACCATGGG
GGCCCCTGGACAAGGGCTT

TCGGTTCTATCGATTGAA
CACCCAGGCAAAGCCCCCA





ATGGTCATGTATCATCCTTT
GAGTGGATGGGATGGATCA

TTCCACCATGGGATGGTC
AACTCATGATTTATGAGGGC





TTCTAGTAGCAACTGCAAC
GCCCTGTCAGTGGTGGCAC

ATGTATCATCCTTTTTCT
AGTAAGCGGCCCTCAGGGG





CGGTGTACATTCCCAGGTG
AAACTATGCACAGAAGTTT

AGTAGCAACTGCAACCG
TTTCTAATCGCTTCTCTGGCT





CAGCTGGTGCAGTCTGGGG
CAGGGCAGGGTCACCATGA

GTTCCTGGGCCCAGTCTG
CCAAGTCTGGCAACACGGC





CTGAGGTGAAGAAGCCTGG
CCAGGGACACGTCCATCAG

CCCTGACTCAGCCTGCCT
CTCCCTGACAATCTCTGGAC





GGCCTCAGTGAAGGTCTCC
CACAGCCTACATGGAGCTG

CCGTGTCTGGGTCTCCTG
TCCAGGCTGAGGACGAGGC





TGCAAGGCTTCTGGATACA
AGCAGGCTGAGATCTGACG

GACAGTCGATCACCATC
TGATTATTACTGCTGCTCAT





CCTTCACCGGCTACTATATG
ACACGGCCGTGTATTACTG

TCCTGCACTGGAACCAG
ATGCAGGTAGTAGCACTTTG





CACTGGGTGCGACAGGCCC
TGCGAGAGCCCCACTGTTC

CAGTGATGTTGGGAGTT
GTATTCGGCGGAGGGACCA





CTGGACAAGGGCTTGAGTG
CCCACAGGGGTGCTAGCTG

ATAACCTTGTCTCCTGGT
AGCTGACCGTCCTAG (SEQ





GATGGGATGGATCAGCCCT
GGGACTACTACTACTACGG

ACCAACAGCACCCAGGC
ID NO: 3481)





GTCAGTGGTGGCACAAACT
TATGGACGTCTGGGGCCAA

AAAGCCCCCAAACTCAT






ATGCACAGAAGTTTCAGGG
GGGACCACGGTCACCGTCT

GATTTATGAGGGCAGTA






CAGGGTCACCATGACCAGG
CCTCA (SEQ ID NO:

AGCGGCCCTCAGGGGTT






GACACGTCCATCAGCACAG
3479)

TCTAATCGCTTCTCTGGC






CCTACATGGAGCTGAGCAG


TCCAAGTCTGGCAACAC






GCTGAGATCTGACGACACG


GGCCTCCCTGACAATCTC






GCCGTGTATTACTGTGCGA


TGGACTCCAGGCTGAGG






GAGCCCCACTGTTCCCCAC


ACGAGGCTGATTATTACT






AGGGGTGCTAGCTGGGGAC


GCTGCTCATATGCAGGT






TACTACTACTACGGTATGG


AGTAGCACTTTGGTATTC






ACGTCTGGGGCCAAGGGAC


GGCGGAGGGACCAAGCT






CACGGTCACCGTCTCCTCA


GACCGTCCTAGGTCAGC






GCGTCGACCAAGGGCCCAT


CCAAGGCTGCCCCCTCG






CGGTCTTCCCCCTGGCACCC


GTCACTCTGTTCCCACCC






TCCTCCAAGAGCACCTCTG


TCGAGTGAGGAGCTTCA






GGGGCACAGCGGCCCTGGG


AGCCAACAAGGCCACAC






CTGCCTGGTCAAGGACTAC


TGGTGTGTCTCATAAGTG






TTCCCCGAACCTGTGACGG


ACTTCTACCCGGGAGCC






TCTCGTGGAACTCAGGCGC


GTGACAGTGGCCTGGAA






CCTGACCAGCGGCGTGCAC


GGCAGATAGCAGCCCCG






ACCTTCCCGGCTGTCCTACA


TCAAGGCGGGAGTGGAG






GTCCTCAGGACTCTACTCCC


ACCACCACACCCTCCAA






TCAGCAGCGTGGTGACCGT


ACAAAGCAACAACAAGT






GCCCTCCAGCAGCTTGGGC


ACGCGGCCAGCAGCTAC






ACCCAGACCTACATCTGCA


CTGAGCCTGACGCCTGA






ACGTGAATCACAAGCCCAG


GCAGTGGAAGTCCCACA






CAACACCAAGGTGGACAAG


GAAGCTACAGCTGCCAG






AGAGTTGAGCCCAAATCTT


GTCACGCATGAAGGGAG






GTGACAAAACTCACACATG


CACCGTGGAGAAGACAG






CCCACCGTGCCCAGCACCT


TGGCCCCTACAGAATGTT






GAACTCCTGGGGGGACCGT


CATAGAAGCTTGGCCGC






CAGTCTTCCTCTTCCCCCCA


CATGGCCCAACTTGTTTA






AAACCCAAGGACACCCTCA


TTGCAGCTTATAATGGTT






TGATCTCCCGGACCCCTGA


ACAAATAAAGCAATAGC






NNCACATGCGTGGNGGNNG


ATCACAAATTTCACAAA






ACGTGAGCCACGAANACCC


TAAAGCATTTTTTTCACT






TGAGGTCAAGTTCAACTGG


GCATTCTANTTGTGGTTT






NACGNNGNNGGCNNGN


GTCCAAACTCATCAATGT






(SEQ ID NO: 3478)


ATCTTATCATGTCTGGNT









CGGGAATTAATTCGNCG









CAGCACCATGNNNTGAA









ATANCTCTGAAAGAGNA









NTTGGNNNNNACCTTCT









GAGCNGAAAGAACCATC









TGNNGGAANNNGNNNN









(SEQ ID NO: 3480)








V-C022
NNNNNNNNNNNANNNNTC
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNNNNTGNNNN
GACATCCAGTTGACCCAGTC
COV107_




NTACACATACGATTTAGGT
CTGGAGGAGGCTTGATCCA
P1_B3
NTACACATACGATTTAG
TCCATCCTTCCTGTCTGCAT
P1_B3




GACACTATAGAATAACATC
GCCTGGGGGGTCCCTGAGA

GTGACACTATAGAATAA
CTGTAGGAGACAGAGTCAC





CACTTTGCCTTTCTCTCCAC
CTCTCCTGTGCAGCCTCTGG

CATCCACTTTGCCTTTCT
CATCACTTGCCGGGCCAGTC





AGGTGTCCACTCCCAGGTC
GCTCACCGTCAGTAGCAAC

CTCCACAGGTGTCCACTC
AGGGCATTAGCAGTTATTTA





CAACTGCACCTCGGTTCTAT
TACATGAGCTGGGTCCGCC

CCAGGTCCAACTGCACC
GCCTGGTATCAGCAAAAAC





CGATTGAATTCCACCATGG
AGGCTCCAGGGAAGGGGCT

TCGGTTCTATCGATTGAA
CAGGGAAAGCCCCTAAGCT





GATGGTCATGTATCATCCTT
GGAGTGGGTCTCAGTTCTTT

TTCCACCATGGGATGGTC
CCTGATCTATGCTGCATCCA





TTTCTAGTAGCAACTGCAA
ATAGCGGTGGTAGCTCATT

ATGTATCATCCTTTTTCT
CTTTGCAAAGTGGGGTCCCA





CCGGTGTACATTCTGAGGT
CTACGCAGACTCCGTGAAG

AGTAGCAACTGCAACCG
TCAAGGTTCAGCGGCAGTG





GCAGCTGGTGGAGTCTGGA
GGCCGATTCACCATCTCCA

GTGTACATTCAGACATCC
GATCTGGGACAGAATTCACT





GGAGGCTTGATCCAGCCTG
GAGACAATTCCAAGAACAC

AGTTGACCCAGTCTCCAT
CTCACAATCAGCAGCCTGCA





GGGGGTCCCTGAGACTCTC
GCTGTATCTTCAAATGAAC

CCTTCCTGTCTGCATCTG
GCCTGAAGATTTTGCAACTT





CTGTGCAGCCTCTGGGCTC
AGCCTGAGAGCCGAAGACA

TAGGAGACAGAGTCACC
ATTACTGTCAACAGCTTAAT





ACCGTCAGTAGCAACTACA
CGGCCGTGTATTACTGTGC

ATCACTTGCCGGGCCAG
AGTGACTCGTACACTTTTGG





TGAGCTGGGTCCGCCAGGC
GAGAGAAAGTGGGGATACA

TCAGGGCATTAGCAGTT
CCAGGGGACCAAGCTGGAG





TCCAGGGAAGGGGCTGGAG
ACTATGGCCTTTGACTACTG

ATTTAGCCTGGTATCAGC
ATCAAAC (SEQ ID 





TGGGTCTCAGTTCTTTATAG
GGGCCAGGGAACCCTGGTC

AAAAACCAGGGAAAGCC
NO: 3485)





CGGTGGTAGCTCATTCTAC
ACCGTCTCCTCAG (SEQ 

CCTAAGCTCCTGATCTAT






GCAGACTCCGTGAAGGGCC
ID NO: 3483)

GCTGCATCCACTTTGCAA






GATTCACCATCTCCAGAGA


AGTGGGGTCCCATCAAG






CAATTCCAAGAACACGCTG


GTTCAGCGGCAGTGGAT






TATCTTCAAATGAACAGCC


CTGGGACAGAATTCACT






TGAGAGCCGAAGACACGGC


CTCACAATCAGCAGCCT






CGTGTATTACTGTGCGAGA


GCAGCCTGAAGATTTTG






GAAAGTGGGGATACAACTA


CAACTTATTACTGTCAAC






TGGCCTTTGACTACTGGGG


AGCTTAATAGTGACTCGT






CCAGGGAACCCTGGTCACC


ACACTTTTGGCCAGGGG






GTCTCCTCAGCGTCGACCA


ACCAAGCTGGAGATCAA






AGGGCCCATCGGTCTTCCC


ACGTACGGTGGCTGCAC






CCTGGCACCCTCCTCCAAG


CATCTGTCTTCATCTTCC






AGCACCTCTGGGGGCACAG


CGCCATCTGATGAGCAG






CGGCCCTGGGCTGCCTGGT


TTGAAATCTGGAACTGC






CAAGGACTACTTCCCCGAA


CTCTGTTGTGTGCCTGCT






CCTGTGACGGTCTCGTGGA


GAATAACTTCTATCCCAG






ACTCAGGCGCCCTGACCAG


AGAGGCCAAAGTACAGT






CGGCGTGCACACCTTCCCG


GGAAGGTGGATAACGCC






GCTGTCCTACAGTCCTCAN


CTCCAATCGGGTAACTCC






GACTCTACTCCCTCAGCAG


CAGGAGAGTGTCACAGA






CGTGGTGACCGTGCCCTCC


GCAGGACAGCAAGGACA






AGCAGCTTGGGCACCCAGA


GCACCTACAGCCTCAGC






CCTACATCTGCAACGTGAA


AGCACCCTGACGCTGAG






TCACAAGCCCAGCAACACC


CAAAGCAGACTACGAGA






AAGGTGGACAAGANAGTTG


AACACAAAGTCTACGCC






AGCCCAAATCTTGTGACAA


TGCGAAGTCACCCATCA






AACTCACACATGCCCACCG


GGGCCTGAGCTCGCCCG






TGCCCAGCACCTGAACTCC


TCACAAAGAGCTTCAAC






TGGGGGGACCGTCAGTCTT


ANGGGGANANTGTNANA






CCNCNTCCCCCCAAAACCC


ANCTNGGCCGCNNNNNG






AAGGACACCCTCATGATCT


NCCACNTTGTNTNTNGN






CCNGGACCCCNGAGGTCAC


GNCNNNTNNTANNNTGN






ATGCGNNGGTGGNTGGNNG


NNACAAATANAACANAT






NGAGCCACGANNANCCTGA


CATCANNNNNTTTNNNA






GGTCAAGTTCAACTGGNAC


ANANNNNTTTTTTNNNN






GTGGACGGNNGNNGNNNN


CAGNCNAGNNGNNGTTG






NCATAATGCCAAGACCAAA


GTNNNNNTNNTCATNNN






GCNN (SEQ ID NO: 


NNNANNNNTGNCTGNAT






3482)


GGATNANNNNNNNCNNN









NNNNNNNNNNNNNNNN









AACTANNNTNNNNANNA









NNTANNTNNNTANNTNC









NNNNNNANGANGAANN









N (SEQ ID NO: 









3484)








V-C023
NNNNNNNNNNNTANNNNN
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNCNNNTGNATC
GACATCCAGTTGACCCAGTC
COV107_




TCNTACNNATACGATTTAG
CTGGAGGAGGCTTGATCCA
P1_B6
NTACACATACGATTTAG
TCCATCCTTCCTGTCTGCAT
P1_B6




GTGACACTATAGAATAACA
GCCTGGGGGGTCCCTGAGA

GTGACACTATAGAATAA
CTGTAGGAGACAGAGTCAC





TCCACTTTGCCTTTCTCTCC
CTCTCCTGTGCAGCCTCTGG

CATCCACTTTGCCTTTCT
CATCACTTGCCGGGCCAGTC





ACAGGTGTCCACTCCCAGG
GGTCACCGTCAGTAGGAAC

CTCCACAGGTGTCCACTC
AGGGCATTAGCAGTTATTTA





TCCAACTGCACCTCGGTTCT
TACATGAGCTGGGTCCGCC

CCAGGTCCAACTGCACC
GCCTGGTATCAGCAAAAAC





ATCGATTGAATTCCACCAT
AGGCTCCAGGGAAGGGGCT

TCGGTTCTATCGATTGAA
CAGGGAAAGCCCCTAAGCT





GGGATGGTCATGTATCATC
GGAGTGGGTCTCAGTTATTT

TTCCACCATGGGATGGTC
CCTGATCTATGCTGCATCCA





CTTTTTCTAGTAGCAACTGC
ATAGCGGTGGTAGCACATA

ATGTATCATCCTTTTTCT
CTTTGCAAAGTGGGGTCCCA





AACCGGTGTACATTCTGAG
CTACGCAGACTCCGTGAAG

AGTAGCAACTGCAACCG
TCAAGGTTCAGCGGCAGTG





GTGCAGCTGGTGGAGTCTG
GGCCGATTCACCATCTCCA

GTGTACATTCAGACATCC
GATCTGGGACAGAATTCACT





GAGGAGGCTTGATCCAGCC
GAGACAATTCCAAGAACAC

AGTTGACCCAGTCTCCAT
CTCACAATCAGCAGCCTGCA





TGGGGGGTCCCTGAGACTC
GCTGTATCTTCAAATGAAC

CCTTCCTGTCTGCATCTG
GCCTGAAGATTTTGCAACTT





TCCTGTGCAGCCTCTGGGGT
AGCCTGAGAGCCGAGGACA

TAGGAGACAGAGTCACC
ATTACTGTCAACAGCTTAAT





CACCGTCAGTAGGAACTAC
CGGCCGTGTATTACTGTGC

ATCACTTGCCGGGCCAG
AGTTACCCTCCAGCCTTCGG





ATGAGCTGGGTCCGCCAGG
GAGAGATCTATCTGCTGCTT

TCAGGGCATTAGCAGTT
CCAAGGGACACGACTGGAG





CTCCAGGGAAGGGGCTGGA
TTGATATCTGGGGCCAAGG

ATTTAGCCTGGTATCAGC
ATTAAAC (SEQ ID 





GTGGGTCTCAGTTATTTATA
GACAATGGTCACCGTCTCTT

AAAAAccAGGGAAAGcc
NO: 3489)





GCGGTGGTAGCACATACTA
CAG (SEQ ID NO: 

CCTAAGCTCCTGATCTAT






CGCAGACTCCGTGAAGGGC
3487)

GCTGCATCCACTTTGCAA






CGATTCACCATCTCCAGAG


AGTGGGGTCCCATCAAG






ACAATTCCAAGAACACGCT


GTTCAGCGGCAGTGGAT






GTATCTTCAAATGAACAGC


CTGGGACAGAATTCACT






CTGAGAGCCGAGGACACGG


CTCACAATCAGCAGCCT






CCGTGTATTACTGTGCGAG


GCAGCCTGAAGATTTTG






AGATCTATCTGCTGCTTTTG


CAACTTATTACTGTCAAC






ATATCTGGGGCCAAGGGAC


AGCTTAATAGTTACCCTC






AATGGTCACCGTCTCTTCAG


CAGCCTTCGGCCAAGGG






CGTCGACCAAGGGCCCATC


ACACGACTGGAGATTAA






GGTCTTCCCCCTGGCACCCT


ACGTACGGTGGCTGCAC






CCTCCAAGAGCACCTCTGG


CATCTGTCTTCATCTTCC






GGGCACAGCGGCCCTGGGC


CGCCATCTGATGAGCAG






TGCCTGGTCAAGGACTACT


TTGAAATCTGGAACTGC






TCCCCGAACCTGTGACGGT


CTCTGTTGTGTGCCTGCT






CTCGTGGAACTCAGGCGCC


GAATAACTTCTATCCCAG






CTGACCAGCGGCGTGCACA


AGAGGCCAAAGTACAGT






CCTTCCCGGCTGTCCTACAG


GGAAGGTGGATAACGCC






TCCTCAGGACTCTACTCCCT


CTCCAATCGGGTAACTCC






CAGCAGCGTGGTGACCGTG


CAGGAGAGTGTCACAGA






CCCTCCAGCAGCTTGGGCA


GCAGGACAGCAAGGACA






CCCAGACCTACATCTGCAA


GCACCTACAGCCTCAGC






CGTGAATCACAAGCCCAGC


AGCACCCTGACGCTGAG






AACACCAANGTGGACAAGA


CAAAGCAGACTACGAGA






GAGTTGAGCCCAAATCTTG


AACACAAAGTCTACGCC






TGACAAAACTCACACATGC


TGCGAAGTCACCCATCA






CCNCCGTGCCCAGCACCTG


GGGCCTGAGCTCGCCCG






NACTCCTGGGGGNNNNTCA


TCACAAAGAGCTTCAAC






GTCTTNNNCTNNNCCCCAA


AGGGGAGAGTGTTAGAA






AANCCNNNGNNNNCCNCNN


GCTTGGNCCGCCATGGC






NNNNTCCNCNANNCCNNNN


CCAACTTGTTTATTGCAG






GNCCCANNNGNGNNNNNN


CTTATAATGGTTACAAAT






NNNNNNGNCCNNGAACCN


AAAGCAATAGCATCACA






NCNNNNNNNNNNNNNNNN


AATTTCACAAATAAAGC






GTTNNNNGGNNCNTGGANN


ATTTTTTTCACTGCATTC






GNNNNNNANGNNNNNNAT


TANTTGNNGTTTGTCCAA






GNCNNANNAGNCNNNGNA


NCTCATCAATGTATNTNN






NNNCANTACANNNGNNCGT


CATGTCTGGNTCGGGAA






ACNNNNNGNCAGCGTCNTC


TTNNNNNNGCAGCNCNT






NCGTCNTGCACNNNACTGG


NNNTGAANNACNNTGAA






NNNANNGNNN (SEQ ID


NAGNNTTGNNNNGTACC






NO: 3486)


TTCTGAGNGAANNNNTC









TNNNGANN (SEQ ID









NO: 3488)








V-C024
NNNNNNNNTATGTATNNTA
GAGGTGCAGCTGGTGGAGT
COV107_
NNNNNNNNNNNTGNNTC
GAAATTGTGTTGACACAGTC
COV107_




CACATACGATTTAGGTGAC
CTGGGGGAGGCTTGGTACA
P1_A2
NTACACATACGATTTAG
TCCAGCCACCCTGTCTTTGT
P1_A2




ACTATAGAATAACATCCAC
GCCTGGGGGGTCCCTGAGA

GTGACACTATAGAATAA
CTCCAGGGGAAAGAGCCAC





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

CATCCACTTTGCCTTTCT
CCTCTCCTGCAGGGCCAGTC





TGTCCACTCCCAGGTCCAA
ATTCACCTTCAGTGGCTATA

CTCCACAGGTGTCCACTC
AGAGTTTTAGCAGCTACTTA





CTGCACCTCGGTTCTATCGA
GCATGAACTGGGTCCGCCA

CCAGGTCCAACTGCACC
GCCTGGTACCAACAGAAAC





TTGAATTCCACCATGGGAT
GGCTCCAGGGAAGGGGCCG

TCGGTTCTATCGATTGAA
CTGGCCAGGCTCCCAGGCTC





GGTCATGTATCATCCTTTTT
GAGTGGGTTTCATACATTA

TTCCACCATGGGATGGTC
CTCATCTATGATGCATCCAA





CTAGTAGCAACTGCAACCG
GTAGGAGTAGTAGTACCAT

ATGTATCATCCTTTTTCT
CAGGGCCACTGGCATCCCA





GTGTACATTCTGAGGTGCA
ATACTACGCAGACTCTGTG

AGTAGCAACTGCAACCG
GCCAGGTTCAGTGGCAGTG





GCTGGTGGAGTCTGGGGGA
AAGGGCCGATTCACCATCT

GTGTACATTCAGAAATT
GGTCTGGGACAGACTTCACT





GGCTTGGTACAGCCTGGGG
CCAGAGACAATGCCAAGAA

GTGTTGACACAGTCTCCA
CTCACCATCAGCAGCCTAGA





GGTCCCTGAGACTCTCCTGT
CTCACTGTATCTGCAAATG

GCCACCCTGTCTTTGTCT
GCCTGAAGATTTTGCAGTTT





GCAGCCTCTGGATTCACCTT
AACAGCCTGAGAGACGAGG

CCAGGGGAAAGAGCCAC
ATTACTGTCAGCAGCGTAAC





CAGTGGCTATAGCATGAAC
ACACGGCTGTGTATTACTGT

CCTCTCCTGCAGGGCCA
AACTGGCCTCCCGAGTGGAC





TGGGTCCGCCAGGCTCCAG
GCGAGAGAAGGGGCTAGA

GTCAGAGTTTTAGCAGCT
GTTCGGCCAAGGGACCAAG





GGAAGGGGCCGGAGTGGGT
GTGGGAGCTACATATGACA

ACTTAGCCTGGTACCAA
GTGGAAATCAAAC (SEQ





TTCATACATTAGTAGGAGT
CGTACTACTTTGACTACTGG

CAGAAACCTGGCCAGGC
ID NO: 3493)





AGTAGTACCATATACTACG
GGCCAGGGAACCCTGGTCA

TCCCAGGCTCCTCATCTA






CAGACTCTGTGAAGGGCCG
CCGTCTCCTCAG (SEQ 

TGATGCATCCAACAGGG






ATTCACCATCTCCAGAGAC
ID NO: 3491)

CCACTGGCATCCCAGCC






AATGCCAAGAACTCACTGT


AGGTTCAGTGGCAGTGG






ATCTGCAAATGAACAGCCT


GTCTGGGACAGACTTCA






GAGAGACGAGGACACGGCT


CTCTCACCATCAGCAGCC






GTGTATTACTGTGCGAGAG


TAGAGCCTGAAGATTTT






AAGGGGCTAGAGTGGGAGC


GCAGTTTATTACTGTCAG






TACATATGACACGTACTAC


CAGCGTAACAACTGGCC






TTTGACTACTGGGGCCAGG


TCCCGAGTGGACGTTCG






GAACCCTGGTCACCGTCTC


GCCAAGGGACCAAGGTG






CTCAGCGTCGACCAAGGGC


GAAATCAAACGTACGGT






CCATCGGTCTTCCCCCTGGC


GGCTGCACCATCTGTCTT






ACCCTCCTCCAAGAGCACC


CATCTTCCCGCCATCTGA






TCTGGGGGCACAGCGGCCC


TGAGCAGTTGAAATCTG






TGGGCTGCCTGGTCAAGGA


GAACTGCCTCTGTTGTGT






CTACTTCCCCGAACCTGTGA


GCCTGCTGAATAACTTCT






CGGTCTCGTGGAACTCAGG


ATCCCAGAGAGGCCAAA






CGCCCTGACCAGCGGCGTG


GTACAGTGGAAGGTGGA






CACACCTTCCCGGCTGTCCT


TAACGCCCTCCAATCGG






ACAGTCCTCAGGACTCTAC


GTAACTCCCAGGAGAGT






TCCCTCAGCAGCGTGGTGA


GTCACAGAGCAGGACAG






CCGTGCCCTCCAGCAGCTT


CAAGGACAGCACCTACA






GGGCACCCAGACCTACATC


GCCTCAGCAGCACCCTG






TGCAACGTGAATCACAAGC


ACGCTGAGCAAAGCAGA






CCAGCAACACCAAGGTGGA


CTACGAGAAACACAAAG






CAAGAGAGTTGAGCCCAAA


TCTACGCCTGCGAAGTC






TCTTGTGACAAAACTCACA


ACCCATCAGGGCCTGAG






CATGCCCACCGTGCCCAGC


CTCGCCCGTCACAAAGA






ACCTGAACTCCTGGGGGGA


GCTTCAACAGGGGAGAG






CCGTCAGTCTTCCTCTTCCC


TGTTAGAAGCTTGGCCG






CCCAAAACCCAAGGACACC


CCATGGCCCAACTTGTTT






CTCATGATCTCCCGGACCCC


ATTGCAGCTTATAATGGT






TGNNNCACATGCGTGGTGG


TACAAATAAAGCAATAG






TGGNCGTGAGCCACGANAC


CATCACAAATTTCACAA






CCTGNNNCAAGTTCAACTG


ATAAAGCATTTTTTTCAC






GTACGNNGNCGGGCGNNGA


TGCATTCTAGTTGTGGTT






GGTGCATNATGCCAANANA


TGTCCAAACTCATCAATG






AGCCGCGGGNAGGAGCAGT


TATCTTATCATGTCTGGA






ANAACAGCNCGTACCGNNN


TCGGGAANTAATTNNNG






NNGNNAGNNN (SEQ ID


CANCANCATGGNNTGAA






NO: 3490)


ATAACCTCTGAAANANA









ACTTGGNNNGGTACCTN









CTGNANGCGGAAANAAN









CATCNNNN (SEQ ID 









NO: 3492)








V-C025
NNNNNNNNNNATGTATCAT
CAAATGCAGCTGGTGCAGT
COV107_
NNNNNNNNCNNTANGTA
GAAATTGTGTTGACGCAGTC
COV107_




ACACATACGATTTAGGTGA
CTGGGCCTGAGGTGAAGAA
P2_G9
TCATACACATACGATTTA
TCCAGGCACCCTGTCTTTGT
P2_G9




CACTATAGAATAACATCCA
GCCTGGGACCTCAGTGAAG

GGTGACACTATAGAATA
CTCCAGGGGAAAGAGCCAC





CTTTGCCTTTCTCTCCACAG
GTCTCCTGCAAGGCTTCTGG

ACATCCACTTTGCCTTTC
CCTCTCCTGCAGGGCCAGTC





GTGTCCACTCCCAGGTCCA
ATTCACCTTTACTAGCTCTG

TCTCCACAGGTGTCCACT
AGAGTGTTAGCAGCAGCTA





ACTGCACCTCGGTTCTATCG
CTGTGCAGTGGGTGCGACA

CCCAGGTCCAACTGCAC
CTTAGCCTGGTACCAGCAGA





ATTGAATTCCACCATGGGA
GGCTCGTGGACAACGCCTT

CTCGGTTCTATCGATTGA
AACCTGGCCAGGCTCCCAG





TGGTCATGTATCATCCTTTT
GAGTGGATAGGATGGATCG

ATTCCACCATGGGATGG
GCTCCTCATCTATGGTGCAT





TCTAGTAGCAACTGCAACC
TCGTTGGCAGTGGTAACAC

TCATGTATCATCCTTTTT
CCAGCAGGGCCACTGGCAT





GGTGTACATTCCCAGGTGC
AAACTACGCACAGAAGTTC

CTAGTAGCAACTGCAAC
CCCAGACAGGTTCAGTGGC





AGCTGGTGCAGTCTGGGCC
CAGGAAAGAGTCACCATTA

CGGTGTACATTCAGAAA
AGTGGGTCTGGGACAGACTT





TGAGGTGAAGAAGCCTGGG
CCAGGGACATGTCCACAAG

TTGTGTTGACGCAGTCTC
CACTCTCACCATCAGCAGAC





ACCTCAGTGAAGGTCTCCT
CACAGCCTACATGGAGCTG

CAGGCACCCTGTCTTTGT
TGGAGCCTGAAGATTTTGCA





GCAAGGCTTCTGGATTCAC
AGCAGCCTGAGATCCGAGG

CTCCAGGGGAAAGAGCC
GTGTATTACTGTCAGCAGTA





CTTTACTAGCTCTGCTGTGC
ACACGGCCGTGTATTACTG

ACCCTCTCCTGCAGGGCC
TGGTAGCTCACCGTGGACGT





AGTGGGTGCGACAGGCTCG
TGCGGCACCTTATTGTAGTG

AGTCAGAGTGTTAGCAG
TCGGCCAAGGGACCAAGGT





TGGACAACGCCTTGAGTGG
GTGGTAGCTGCTCTGATGCT

CAGCTACTTAGCCTGGTA
GGAAATCAAAC (SEQ ID





ATAGGATGGATCGTCGTTG
TTTGATATCTGGGGCCAAG

CCAGCAGAAACCTGGCC
NO: 3497)





GCAGTGGTAACACAAACTA
GGACAATGGTCACCGTCTC

AGGCTCCCAGGCTCCTC






CGCACAGAAGTTCCAGGAA
TTCAG (SEQ ID NO:

ATCTATGGTGCATCCAGC






AGAGTCACCATTACCAGGG
3495)

AGGGCCACTGGCATCCC






ACATGTCCACAAGCACAGC


AGACAGGTTCAGTGGCA






CTACATGGAGCTGAGCAGC


GTGGGTCTGGGACAGAC






CTGAGATCCGAGGACACGG


TTCACTCTCACCATCAGC






CCGTGTATTACTGTGCGGC


AGACTGGAGCCTGAAGA






ACCTTATTGTAGTGGTGGTA


TTTTGCAGTGTATTACTG






GCTGCTCTGATGCTTTTGAT


TCAGCAGTATGGTAGCT






ATCTGGGGCCAAGGGACAA


CACCGTGGACGTTCGGC






TGGTCACCGTCTCTTCAGCG


CAAGGGACCAAGGTGGA






TCGACCAAGGGCCCATCGG


AATCAAACGTACGGTGG






TCTTCCCCCTGGCACCCTCC


CTGCACCATCTGTCTTCA






TCCAAGAGCACCTCTGGGG


TCTTCCCGCCATCTGATG






GCACAGCGGCCCTGGGCTG


AGCAGTTGAAATCTGGA






CCTGGTCAAGGACTACTTC


ACTGCCTCTGTTGTGTGC






CCCGAACCTGTGACGGTCT


CTGCTGAATAACTTCTAT






CGTGGAACTCAGGCGCCCT


CCCAGAGAGGCCAAAGT






GACCAGCGGCGTGCACACC


ACAGTGGAAGGTGGATA






TTCCCGGCTGTCCTACAGTC


ACGCCCTCCAATCGGGT






CTCAGGACTCTACTCCCTCA


AACTCCCAGGAGAGTGT






GCAGCGTGGTGACCGTGCC


CACAGAGCAGGACAGCA






CTCCAGCAGCTTGGGCACC


AGGACAGCACCTACAGC






CAGACCTACATCTGCAACG


CTCAGCAGCACCCTGAC






TGAATCACAAGCCCAGCAA


GCTGAGCAAAGCAGACT






CACCNNGTGGACAAGAGAG


ACGAGAAACACAAAGTC






TTGAGNCCAAATCNTGTGN


TACGCCTGCGAAGTCAC






NNAACTNANACNTNNNCNN


CCATCAGGGCCTGAGCT






NCCNNCNNGNCCAGNACCN


CGCCCGTCACAAAGAGC






NNNNNNNCGGGGGGGNNN


TTCAACAGGGGAGAGTG






NNNNCATTTNNNNNNNNNN


TTAGAAGCTTGGCCGCC






NNAAACCCAGGGACNCCCT


ATGGCCCAACTTGTTTAT






CANTGATCTCCNNNNNCCC


TGCAGCTTATAATGGTTA






NNGANGTCACNTGNNGTGG


CAAATAAAGCAATAGCA






TGGTGNNCGTGANCCANNA


TCACAAATTTCACNATA






NANNNGNNNCANTNAACTN


AAGCATTTTTTTCACTGC






NNCGTGNNGNNNTNNNNTG


ATTCTANTTGTGGTTTGT






CATANGCANANNNCNCGGG


CCANCTCATCAATGTATC






ANGNNCANTANACAGCNCG


TNATCATGTCTGGATCGG






TACGNGNNGNCANNNTCNT


GANTNANTNNNGCAGCA






CNNNGNCNN (SEQ ID


NCATGGNNTGAAATACN






NO: 3494)


TCTGAANNAGGANTTGG









NTANGTACCTNNNGAGN









GAANNNANCATNNNNNG









N (SEQ ID NO: 3496)








V-C026
NNNNNNNNNNNCNNNNTGT
CAGGTGCAGCTGCAGGAGT
COV107_
NNNNNNNNNNNNTGTAT
AATTTTATGCTGACTCAGCC
COV107_




ATCNTACACATACGATTTA
CGGGCCCAGGACTGGTGAA
P2_C4
CNTACACATACGATTTA
CCACTCTGTGTCGGAGTCTC
P2_C4




GGTGACACTATAGAATAAC
GCCTTCGGAGACCCTGTCC

GGTGACACTATAGAATA
CGGGGAAGACGGTAACCAT





ATCCACTTTGCCTTTCTCTC
CTCTCCTGCGCTGTCTCTGG

ACATCCACTTTGCCTTTC
CTCCTGCACCGGCAGCAGTG





CACNNNNNNCCACTCCCAG
TGGCTCCATCGGTAGTTACT

TCTCCACAGGTGTCCACT
GCAGCATTGCCAGCAACTAT





GTCCAACTGCACCTCGGTTC
TCTGGAGCTGGATCCGGCA

CCCAGGTCCAACTGCAC
GTGCAGTGGTACCAGCAGC





TATCGATTGAATTCCACCAT
GCCCCCAGGGAAGGGACTG

CTCGGTTCTATCGATTGA
GCCCGGGCAGTGCCCCCACC





GGGATGGTCATGTATCATC
GAGTGGATTGGATATCTCC

ATTCCACCATGGGATGG
ACTGTGATCAATGAAGATA





CTTTTTCTAGTAGCAACTGC
ATTACAGTGGGAGCACCAA

TCATGTATCATCCTTTTT
ACCAAAGACCCTCTGGGGTC





AACCGGTGTACATTCCCAG
CTACAACCCCTCCCTGAAG

CTAGTAGCAACTGCAAC
CCTGATCGGTTCTCTGGCTC





GTGCAGCTGCAGGAGTCGG
AGTCGAGTCACCATATCAG

CGGTTCTTGGGCCAATTT
CATCGACAGCTCCTCCAACT





GCCCAGGACTGGTGAAGCC
TAGACACGTCCAAGAATCA

TATGCTGACTCAGCCCCA
CTGCCTCCCTCACCATCTCT





TTCGGAGACCCTGTCCCTCT
GTTCTCCCTGAAGCTGAGCT

CTCTGTGTCGGAGTCTCC
GGACTGAAGACTGAGGACG





CCTGCGCTGTCTCTGGTGGC
CTGTGACCGCTGCGGACAC

GGGGAAGACGGTAACCA
AGGCTGACTACTACTGTCAG





TCCATCGGTAGTTACTTCTG
GGCCGTGTATTACTGTGCG

TCTCCTGCACCGGCAGC
TCTTATGATAGCAGCAATTT





GAGCTGGATCCGGCAGCCC
AGATTGCAGTGGCTACGCG

AGTGGCAGCATTGCCAG
GGTATTCGGCGGAGGGACC





CCAGGGAAGGGACTGGAGT
GAGCTTTTGATATCTGGGG

CAACTATGTGCAGTGGT
AAGCTGACCGTCCTAG 





GGATTGGATATCTCCATTAC
CCAAGGGACAATGGTCACC

ACCAGCAGCGCCCGGGC
(SEQ ID NO: 3501)





AGTGGGAGCACCAACTACA
GTCTCTTCAG (SEQ ID

AGTGCCCCCACCACTGT






ACCCCTCCCTGAAGAGTCG
NO: 3499)

GATCAATGAAGATAACC






AGTCACCATATCAGTAGAC


AAAGACCCTCTGGGGTC






ACGTCCAAGAATCAGTTCT


CCTGATCGGTTCTCTGGC






CCCTGAAGCTGAGCTCTGT


TCCATCGACAGCTCCTCC






GACCGCTGCGGACACGGCC


AACTCTGCCTCCCTCACC






GTGTATTACTGTGCGAGATT


ATCTCTGGACTGAAGAC






GCAGTGGCTACGCGGAGCT


TGAGGACGAGGCTGACT






TTTGATATCTGGGGCCAAG


ACTACTGTCAGTCTTATG






GGACAATGGTCACCGTCTC


ATAGCAGCAATTTGGTA






TTCAGCGTCGACCAAGGGC


TTCGGCGGAGGGACCAA






CCATCGGTCTTCCCCCTGGC


GCTGACCGTCCTAGGTC






ACCCTCCTCCAAGAGCACC


AGCCCAAGGCTGCCCCC






TCTGGGGGCACAGCGGCCC


TCGGTCACTCTGTTCCCG






TGGGCTGCCTGGTCAAGGA


CCCTCGAGTGAGGAGCT






CTACTTCCCCGAACCTGTGA


TCAAGCCAACAAGGCCA






CGGTCTCGTGGAACTCAGG


CACTGGTGTGTCTCATAA






CGCCCTGACCAGCGGCGTG


GTGACTTCTACCCGGGA






CACACCTTCCCGGCTGTCCT


GCCGTGACAGTGGCCTG






ACAGTCCTCNNACTCTACTC


GAAGGCAGATAGCAGCC






CCTCAGCAGCGTGGTGACC


CCGTCAAGGCGGGAGTG






GTGCCCTCCAGCAGCTTGG


GAGACCACCACACCCTC






GCACCCAGACCTACATCTG


CAAACAAAGCAACAACA






CAACGTGAATCACAAGCCC


AGTACGCGGCCAGCAGC






AGCAACACCAAGGTGGANN


TACCTGAGCCTGACGCCT






GAGAGTTGAGCCCAAATCT


GAGCAGTGGAAGTCCCA






TGTGACAAAACTCACACAT


CAGAAGCTACAGCTGCC






GCCCACCGNGCCCAGCACC


AGGTCACGCATGNANGG






TGACTCCTGGGGGGACCGT


GAGCACCGTGGAGAAGA






CAGTCTTCCTCTTCCCCCAA


CAGTGGCCCCTACAGAA






AACNCNNGGANNNCCCNNA


TGTTCATAGAAGCTTGGC






TGATCTCCCNNANCCCTGA


CGCCATGGCCCAACTTGT






GNCACATGNNNNNGGTGGG


TTATTGCAGCTTATAATG






NGNNGTGAGCCACNANACC


GTTACAAATAAAGCAAT






CNNGAGNTNAGTTCNANTT


AGCATCACAAATTTCAC






GGNNCGNNGNANGGCGNG


AAATAAGCATTTTTTTCA






NAGGNNNNNTAATGNCANN


CTGCATTCTAGTTGNNGG






NNNNAAGNNNN (SEQ ID


NTTGTCCAAACTCATCAA






NO: 3498)


TGNNTCTNATCATGTCTG









GATCGGGAATTNNNCGN









NNAGCACCATNNNTNAA









ANNACNTCTGAANAGNN









NTGGTNAGGTACCTTCTN









NNNNAAANAANCATCTN









NNGNAANGN (SEQ ID









NO: 3500)








V-C027
NNNNNNNNNNNTATGNATN
CAGGTGCAGCTGGTGCAGT
COV107_
NNNNNNNNNNNNNNNTC
CAGTCTGTGCTGACTCAGCC
COV107_




ATACACATACGATTTAGGT
CTGGGGCTGAGGTGAAGAA
P1_C3
ATACACATACGATTTAG
ACCCTCAGCGTCTGGGACCC
P1_C3




GACACTATAGAATAACATC
GCCTGGGGCCTCAGTGAAG

GTGACACTATAGAATAA
CCGGGCAGAGGGTCACCAT





CACTTTGCCTTTCTCTCCAC
GTCTCCTGCAAGGCTTCTGG

CATCCACTTTGCCTTTCT
CTCTTGTTCTGGAAGCAGCT





AGGTGTCCACTCCCAGGTC
ATACACCTTCACCGGCTACT

CTCCACAGGTGTCCACTC
CCAACATCGGAAGTAATACT





CAACTGCACCTCGGTTCTAT
ATATGCACTGGGTGCGACA

CCAGGTCCAACTGCACC
GTAAACTGGTACCAGCAGCT





CGATTGAATTCCACCATGG
GGCCCCTGGACAAGGGCTT

TCGGTTCTATCGATTGAA
CCCAGGAACGGCCCCCAAA





GATGGTCATGTATCATCCTT
GAGTGGATGGGATGGATCA

TTCCACCATGGGATGGTC
CTCCTCATCTATAGTAATAA





TTTCTAGTAGCAACTGCAA
ACCCTAACAGTGGTGGCAC

ATGTATCATCCTTTTTCT
TCAGCGGCCCTCAGGGGTCC





CCGGTGTACATTCCCAGGT
AAACTATGCACAGAAGTTT

AGTAGCAACTGCAACCG
CTGACCGATTCTCTGGCTCC





GCAGCTGGTGCAGTCTGGG
CAGGGCAGGGTCACCATGA

GTTCCTGGGCCCAGTCTG
AAGTCTGGCACCTCAGCCTC





GCTGAGGTGAAGAAGCCTG
CCAGGGACACGTCCATCAG

TGCTGACTCAGCCACCCT
CCTGGCCATCAGTGGGCTCC





GGGCCTCAGTGAAGGTCTC
CACAGCCTACATGGAGCTG

CAGCGTCTGGGACCCCC
AGTCTGAGGATGAGGCTGA





CTGCAAGGCTTCTGGATAC
AGCAGGCTGAGATCTGACG

GGGCAGAGGGTCACCAT
TTATTACTGTGCAGCATGGG





ACCTTCACCGGCTACTATAT
ACACGGCCGTGTATTACTG

CTCTTGTTCTGGAAGCAG
ATGACAGCCTGAATGGCGT





GCACTGGGTGCGACAGGCC
TGCGACGGCGCACCCCCGG

CTCCAACATCGGAAGTA
GGTATTCGGCGGAGGGACC





CCTGGACAAGGGCTTGAGT
AGGATCCAAGGGGTATTTT

ATACTGTAAACTGGTAC
AAGCTGACCGTCCTAG 





GGATGGGATGGATCAACCC
TTTTGGGGCCGGGCGTCTG

CAGCAGCTCCCAGGAAC
(SEQ ID NO: 3505)





TAACAGTGGTGGCACAAAC
GGGCCAAGGGACCACGGTC

GGCCCCCAAACTCCTCAT






TATGCACAGAAGTTTCAGG
ACCGTCTCCTCA (SEQ 

CTATAGTAATAATCAGC






GCAGGGTCACCATGACCAG
ID NO: 3503)

GGCCCTCAGGGGTCCCT






GGACACGTCCATCAGCACA


GACCGATTCTCTGGCTCC






GCCTACATGGAGCTGAGCA


AAGTCTGGCACCTCAGC






GGCTGAGATCTGACGACAC


CTCCCTGGCCATCAGTGG






GGCCGTGTATTACTGTGCG


GCTCCAGTCTGAGGATG






ACGGCGCACCCCCGGAGGA


AGGCTGATTATTACTGTG






TCCAAGGGGTATTTTTTTTG


CAGCATGGGATGACAGC






GGGCCGGGCGTCTGGGGCC


CTGAATGGCGTGGTATTC






AAGGGACCACGGTCACCGT


GGCGGAGGGACCAAGCT






CTCCTCAGCGTCGACCAAG


GACCGTCCTAGGTCAGC






GGCCCATCGGTCTTCCCCCT


CCAAGGCTGCCCCCTCG






GGCACCCTCCTCCAAGAGC


GTCACTCTGTTCCCACCC






ACCTCTGGGGGCACAGCGG


TCGAGTGAGGAGCTTCA






CCCTGGGCTGCCTGGTCAA


AGCCAACAAGGCCACAC






GGACTACTTCCCCGAACCT


TGGTGTGTCTCATAAGTG






GTGACGGTCTCGTGGAACT


ACTTCTACCCGGGAGCC






CAGGCGCCCTGACCAGCGG


GTGACAGTGGCCTGGAA






CGTGCACACCTTCCCGGCT


GGCAGATAGCAGCCCCG






GTCCTACAGTCCTCANGAC


TCAAGGCGGGAGTGGAG






TCTACTCCCTCAGCAGCGTG


ACCACCACACCCTCCAA






GTGACCGTGCCCTCCAGCA


ACAAAGCAACAACAAGT






GCTTGGGCACCCAGACCTA


ACGCGGCCAGCAGCTAC






CATCTGCAACGTGAATCAC


CTGAGCCTGACGCCTGA






AAGCCCAGCAACACCNAAG


GCAGTGGAAGTCCCACA






TGGACAAGANAGTTGAGCC


GAAGCTACAGCTGCCAG






CAAATCTTGTGACAAAACT


GTCACGCATGAAGGGAG






CACACATGCCCACCGTGCC


CACCGTGGAGAAGACAG






CAGCACCTGAACTCCTGGG


TGGCCCCTACAGAATGTT






GGGANCGTCAGTCTTCCTCT


CATAGAAGCTTGGCCGC






TCCCCCNAAANCCCAANGA


CATGGCCCAACTTGTTTA






CACCCTCATGATNTCCCNN


TTGCAGCTTATAATGGTT






ACCCCTGAGGTCNNATNCG


ACAAATAAAGCAATAGC






TGGNNNNNGNNGTGANCCA


ATCACAAATTTCACAAA






CNANACCCNGANNCAGTTC


TAAAGCATTTTTTTCACT






AACTGGNACNTNNNGGCGN


GCATTCTANTTGTGGTTT






NNNNTGCANNANNCNANA


GTCCAAACTCATCAATGT






N (SEQ ID NO: 3502)


ATCTTATCNTGTCTGGAT









CGGGAATTANTTCGGCG









CANCACCNTGGCCTGAA









TANCCTCTGAAANANNA









ACTTGNNTANNGNACCT









TCTGNNNGNNANNTANN









NAANNNNNNNAANNNN









NGTCTNNNNNNNNNNNN









NGNNANNTNNNNNNNNN









N (SEQ ID NO:









3504)








V-C028
NNNNNNNNNNNTATGTATC
GAGGTGCAGCTGTTGGAGT
COV072_
NNNNNNNNCNNNNNGTA
GAAATTGTGTTGACGCAGTC
COV072_




NTACACATACGATTTAGGT
CTGGGGGAGGCTTGGTACA
P2_B12
TCNTACACATACGATTTA
TCCAGGCACCCTGTCTTTGT
P2_B12




GACACTATAGAATAACATC
GCCTGGGGGGTCCCTGAGA

GGTGACACTATAGAATA
CTCCAGGGGAAAGAGCCAC





CACTTTGCCTTTCTCTCCAC
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CCTCTCCTGCAGGGCCAGTC





AGGTGTCCACTCCCAGGTC
ATTCACCTTTAGCACCTATG

TCTCCACAGGTGTCCACT
AGAGTGTTAACAGCAGGCA





CAACTGCACCTCGGTTCTAT
CCATGAGTTGGGTCCGCCA

CCCAGGTCCAACTGCAC
GTTAGCCTGGTACCAGCAGA





CGATTGAATTCCACCATGG
GGCTCCAGGGAAGGGGCTG

CTCGGTTCTATCGATTGA
AACCTGGCCAGGCTCCCAG





GATGGTCATGTATCATCCTT
GAGTGGGTCTCAACTATTA

ATTCCACCATGGGATGG
GCTCCTCATCTATGGTGCGT





TTTCTAGTAGCAACTGCAA
CTGGTAGTGGTCGTGACAC

TCATGTATCATCCTTTTT
CCAGCAGGGCCACTGGCAT





CCGGTGTACATTCTGAGGT
ATACTACGCAGACTCCGTG

CTAGTAGCAACTGCAAC
CCCAGAGAGGTTCAGTGGC





GCAGCTGTTGGAGTCTGGG
AAGGGCCGGTTCACCATCT

CGGTGTACATTCAGAAA
AGTGGATCTGGGACAGACTT





GGAGGCTTGGTACAGCCTG
CCAGAGACAATTCCAAGAA

TTGTGTTGACGCAGTCTC
CACTCTCACCATCAGCAGAC





GGGGGTCCCTGAGACTCTC
CACGCTGTTTCTGCAACTGA

CAGGCACCCTGTCTTTGT
TGGAGTCTGAAGATTTTGCA





CTGTGCAGCCTCTGGATTCA
ACAGCCTGAGAGCCGAGGA

CTCCAGGGGAAAGAGCC
GTGTATCACTGTCAGCAATA





CCTTTAGCACCTATGCCATG
CGCGGCCGTGTATTCCTGTG

ACCCTCTCCTGCAGGGCC
TGGTAGCTCAAGGGCGCTCA





AGTTGGGTCCGCCAGGCTC
CGAACCACCCTCTGGCATC

AGTCAGAGTGTTAACAG
CTTTCGGCGGAGGGACCAA





CAGGGAAGGGGCTGGAGTG
AGGCGACGACTACTACCAC

CAGGCAGTTAGCCTGGT
GGTGGAGATCAAAC (SEQ





GGTCTCAACTATTACTGGTA
TACTACATGGACGTCTGGG

ACCAGCAGAAACCTGGC
ID NO: 3509)





GTGGTCGTGACACATACTA
GCAAAGGGACCACGGTCAC

CAGGCTCCCAGGCTCCTC






CGCAGACTCCGTGAAGGGC
CGTCTCCTCA (SEQ ID

ATCTATGGTGCGTCCAGC






CGGTTCACCATCTCCAGAG
NO: 3507)

AGGGCCACTGGCATCCC






ACAATTCCAAGAACACGCT


AGAGAGGTTCAGTGGCA






GTTTCTGCAACTGAACAGC


GTGGATCTGGGACAGAC






CTGAGAGCCGAGGACGCGG


TTCACTCTCACCATCAGC






CCGTGTATTCCTGTGCGAAC


AGACTGGAGTCTGAAGA






CACCCTCTGGCATCAGGCG


TTTTGCAGTGTATCACTG






ACGACTACTACCACTACTA


TCAGCAATATGGTAGCT






CATGGACGTCTGGGGCAAA


CAAGGGCGCTCACTTTC






GGGACCACGGTCACCGTCT


GGCGGAGGGACCAAGGT






CCTCAGCGTCGACCAAGGG


GGAGATCAAACGTACGG






CCCATCGGTCTTCCCCCTGG


TGGCTGCACCATCTGTCT






CACCCTCCTCCAAGAGCAC


TCATCTTCCCGCCATCTG






CTCTGGGGGCACAGCGGCC


ATGAGCAGTTGAAATCT






CTGGGCTGCCTGGTCAAGG


GGAACTGCCTCTGTTGTG






ACTACTTCCCCGAACCTGTG


TGCCTGCTGAATAACTTC






ACGGTCTCGTGGAACTCAG


TATCCCAGAGAGGCCAA






GCGCCCTGACCAGCGGCGT


AGTACAGTGGAAGGTGG






GCACACCTTCCCGGCTGTCC


ATAACGCCCTCCAATCG






TACAGTCCTCAGGACTCTA


GGTAACTCCCAGGAGAG






CTCCCTCAGCAGCGTGGTG


TGTCACAGAGCAGGACA






ACCGTGCCCTCCAGCAGCT


GCAAGGACAGCACCTAC






TGGGCACCCAGACCTACAT


AGCCTCAGCAGCACCCT






CTGCAACGTGAATCACAAG


GACGCTGAGCAAAGCAG






CCCAGCAACACCNAAGGTG


ACTACGAGAAACACAAA






GACAAGAGAGTTGAGCCCA


GTCTACGCCTGCGAAGT






AATCTTGTGACAAAACTCA


CACCCATCAGGNCCTGA






CACATGCCCACCGTGCCCA


GCTCGCCCGTCACAAAG






GCACCTGAACTNCTGGGGG


AGCTTCAACAGGGGANA






GACCGTCAGTCTTCCTCTTC


GTGTTAGAAGCTTGGNC






CCCCCAAAACCCNANGACA


GCCATGGCCCAACTTGTT






CCCTCATGATCTNCNNGAC


TANTGCAGCTTANNTGG






CCNNGAGTCACATGCCGTG


TTACAAATAAAGCAATA






GNGGNGGNNGTGANCCACN


GCATCACAAATTTCACA






ANGACCNTGAGTCAGTTCA


AATAAAGCATTTTTTTCA






NTNNNCNTGNNGGCGTGNN


CTGCATTCTANTGNGGNT






NGCANNANGCNANNNANN


TGTCCNAACTCATCAAN






ANCNNNNGGAGGANCANT


NNNNCTTATCATGTCTGG






ACNANNNNCNNNNNCNNN


NTCGGGAATTAATTCCG






NNNNNNANNCNNN (SEQ


NNNN (SEQ ID NO:






ID NO: 3506)


3508)








V-C029
NNNNNNNNNNTTATGTATC
CAGGTGCAGCTGGTGGAGT
COV072_
GNNNNNNNNNNNTTATN
GACATCCAGATGACCCAGTC
COV072_




NTACACATACGATTTAGGT
CTGGGGGAGGCGTGGTCCA
P2_C7
NNATCNTACACATACGA
TCCATCCTCCCTGTCTGCAT
P2_C7




GACACTATAGAATAACATC
GCCTGGGAGGTCCCTGAGA

TTTAGGTGACACTATAG
CTGTAGGAGACAGAGTCAC





CACTTTGCCTTTCTCTCCAC
CTCTCCTGTGCAGCCTCTGG

AATAACATCCACTTTGCC
CATCACTTGCCAGGCGAGTC





AGGTGTCCACTCCCAGGTC
ATTCACCTTCAGTAGCTATG

TTTCTCTCCACAGGTGTC
AGGACATTAGCAACTATTTA





CAACTGCACCTCGGTTCTAT
GCATGAACTGGGTCCGCCA

CACTCCCAGGTCCAACT
AATTGGTATCAGCAGAAAC





CGATTGAATTCCACCATGG
GGCTCCAGGCAAGGGGCTG

GCACCTCGGTTCTATCGA
CAGGGAAAGCCCCTAAGCT





GATGGTCATGTATCATCCTT
GAGTGGGTGGCAGTTATAT

TTGAATTCCACCATGGG
CCTGATCTACGATGCATCCA





TTTCTAGTAGCAACTGCAA
CATATGATGGAAGTAATAC

ATGGTCATGTATCATCCT
ATTTGGAAACAGGGGTCCC





CCGGTGTACATTCTCAGGT
ATACTATACAGACTCCGTG

TTTTCTAGTAGCAACTGC
ATCAAGGTTCAGTGGAAGT





GCAGCTGGTGGAGTCTGGG
AAGGGCCGATTCACCATCT

AACCGGTGTACATTCTG
GAATCTGGGACAGATTTTAC





GGAGGCGTGGTCCAGCCTG
CCAGAGACAATTCCAAGAA

ACATCCAGATGACCCAG
TTTCACCATCAGCAGCCTGC





GGAGGTCCCTGAGACTCTC
CACGCTGTATCTGCAAATG

TCTCCATCCTCCCTGTCT
AGCCTGAAGATATTGCAAC





CTGTGCAGCCTCTGGATTCA
AACAGCCTGAGAGTTGACG

GCATCTGTAGGAGACAG
ATATTACTGTCAACAGTATG





CCTTCAGTAGCTATGGCAT
ACACGGCTACATATTACTG

AGTCACCATCACTTGCCA
ATAATCTCCCGATCACCTTC





GAACTGGGTCCGCCAGGCT
TGCGAAAGGGCCCCGGTTT

GGCGAGTCAGGACATTA
GGCCAAGGGACACGACTGG





CCAGGCAAGGGGCTGGAGT
GGCTGGAGCTATAGAGGGG

GCAACTATTTAAATTGGT
AGATTAAAC (SEQ ID





GGGTGGCAGTTATATCATA
GGTCTGGTTTTGATATCTGG

ATCAGCAGAAACCAGGG
NO: 3513)





TGATGGAAGTAATACATAC
GGCCAAGGGACAATGGTCA

AAAGCCCCTAAGCTCCT






TATACAGACTCCGTGAAGG
CCGTCTCTTCAG (SEQ 

GATCTACGATGCATCCA






GCCGATTCACCATCTCCAG
ID NO: 3511)

ATTTGGAAACAGGGGTC






AGACAATTCCAAGAACACG


CCATCAAGGTTCAGTGG






CTGTATCTGCAAATGAACA


AAGTGAATCTGGGACAG






GCCTGAGAGTTGACGACAC


ATTTTACTTTCACCATCA






GGCTACATATTACTGTGCG


GCAGCCTGCAGCCTGAA






AAAGGGCCCCGGTTTGGCT


GATATTGCAACATATTAC






GGAGCTATAGAGGGGGGTC


TGTCAACAGTATGATAA






TGGTTTTGATATCTGGGGCC


TCTCCCGATCACCTTCGG






AAGGGACAATGGTCACCGT


CCAAGGGACACGACTGG






CTCTTCAGCGTCGACCAAG


AGATTAAACGTACGGTG






GGCCCATCGGTCTTCCCCCT


GCTGCACCATCTGTCTTC






GGCACCCTCCTCCAAGAGC


ATCTTCCCGCCATCTGAT






ACCTCTGGGGGCACAGCGG


GAGCAGTTGAAATCTGG






CCCTGGGCTGCCTGGTCAA


AACTGCCTCTGTTGTGTG






GGACTACTTCCCCGAACCT


CCTGCTGAATAACTTCTA






GTGACGGTCTCGTGGAACT


TCCCAGAGAGGCCAAAG






CAGGCGCCCTGACCAGCGG


TACAGTGGAAGGTGGAT






CGTGCACACCTTCCCGGCT


AACGCCCTCCAATCGGG






GTCCTACAGTCCTCAGGAC


TAACTCCCAGGAGAGTG






TCTACTCCCTCAGCAGCGTG


TCACAGAGCAGGACAGC






GTGACCGTGCCCTCCAGCA


AAGGACAGCACCTACAG






GCTTGGGCACCCAGACCTA


CCTCAGCAGCACCCTGA






CATCTGCAACGTGAATCAC


CGCTGAGCAAAGCAGAC






AAGCCCAGCAACACCAAGG


TACGAGAAACACAAAGT






TGGACAAGAGAGTTGAGCC


CTACGCCTGCGAAGTCA






CAAATCTTGTGACAAAACT


CCCATCAGGGCCTGAGC






CACACATGCCCACCGTGCC


TCGCCCGTCACAAAGAG






CAGCACCTGAACTCCTGGG


CTTCAACAGGGGAGAGT






GGGACCGTCAGTCTTCCTCT


GTTAGAAGCTTGGNCGC






TCCCCCCAAAACCCAAGGA


CATGGCCCAACTTGTTTA






CACCCTCATGATCTCCCGG


TTGCAGCTTATAATGGTT






ACCCCTGAGGTCACATGCG


ACAAATAAAGCAATAGC






TGGNGGNNGACGTGAGCCA


ATCACAAATTTCNNNAA






CGAANANCCTGAGGTCAAG


TAAAGCATTTTTTTCACT






TTCAACTGGNACGNNGNNG


GCATTCTAGTTGTGGTTT






GCGTNNNNTGCATNANGCC


GTCCAAACTCATCAATGT






ANACAAAGCCNNNGGGAN


ATCTTATCATGTCTGGNT






GNANCAGTACACAGCNNNT


CGGGAATTNANTCGGCG






ACCGNGNGGNCAGCNNCCN


CAGCNNCCANGN (SEQ






NNNCCGNCNN (SEQ ID


ID NO: 3512)






NO: 3510)











V-C030
NNNNNNNNNNNNNNNTGN
CAGGTGCAGCTGGTGCAGT
COV072_
NNNNNNNNNNNNNNNN
TCCTATGTGCTGACTCAGCC
COV072_




NNNNTACACATACGATTTA
CTGGGGCTGAGGTGAAGAA
P3_E1
GTATCNTACNCNTACGA
ACCCTCAGTGTCAGTGGCCC
P3_E1




GGTGACACTATAGAATAAC
GCCTGGGGCCTCAGTGAAG

TTTAGGTGACACTATAG
CAGGAAAGACGGCCAGGAT





ATCCACTTTGCCTTTCTCTC
GTTTCCTGCAAGGCATCTG

AATAACATCCACTTTGCC
TACCTGTGGGGGAAACAAC





CACNGGTGTCCACTCCCAG
GATACACCTTCACCAACTA

TTTCTCTCCACNGGTGTC
ATTGGAAGTAAAAGTGTGC





GTCCAACTGCACCTCGGTTC
CTATATGCACTGGGTGCGA

CACTCCCAGGTCCAACT
ACTGGTACCAGCAGAAGCC





TATCGATTGAATTCCACCAT
CAGGCCCCTGGACAAGGGC

GCAACCGGTTCTGTGAC
AGGCCAGGCCCCTGTGCTGG





GGGATGGTCATGTATCATC
TTGAGTGGATGGGAATAAT

CTCCTATGAGCTGACAC
TCATCTATTATGATAGCGAC





CTTTTTCTAGTAGCAACTGC
CAACCCTAGTGGTGGTAGC

AGCCACCCTCAGTGTCA
CGGCCCTCAGGGATCCCTGA





AACCGGTGTACATTCCCAG
ACAGGCTACGCACAGAAGT

GTGGCCCCAGGAAAGAC
GCGATTCTCTGGCTCCAACT





GTGCAGCTGGTGCAGTCTG
TCCAGGGCAGAGTCACCAT

GGCCAGGATTACCTGTG
CTGGGAACACGGCCACCCT





GGGCTGAGGTGAAGAAGCC
GACCAGGGACACGTCCACG

GGGGAAACAACATTGGA
GACCATCAGCAGGGTCGAA





TGGGGCCTCAGTGAAGGTT
AGCACAGTCTACATGGAGC

AGTAAAAGTGTGCACTG
GCCGGGGATGAGGCCGACT





TCCTGCAAGGCATCTGGAT
TGAGCAGCCTGAGATCTGA

GTACCAGCAGAAGCCAG
ATTACTGTCAGGTGTGGGAT





ACACCTTCACCAACTACTAT
GGACACGGCCGTGTATTAC

GCCAGGCCCCTGTGCTG
AGTAGTAGTGATCATCCGGG





ATGCACTGGGTGCGACAGG
TGTGCGAGATCCCGACCGA

GTCATCTATTATGATAGC
GGTGGTATTCGGCGGAGGG





CCCCTGGACAAGGGCTTGA
CTCCTGACTGGTACTTCGAT

GACCGGCCCTCAGGGAT
ACCAAGCTGACCGTCCTAG





GTGGATGGGAATAATCAAC
CTCTGGGGCCGTGGCACCC

CCCTGAGCGATTCTCTGG
(SEQ ID NO: 3517)





CCTAGTGGTGGTAGCACAG
TGGTCACTGTCTCCTCAG

CTCCAACTCTGGGAACA






GCTACGCACAGAAGTTCCA
(SEQ ID NO: 3515)

CGGCCACCCTGACCATC






GGGCAGAGTCACCATGACC


AGCAGGGTCGAAGCCGG






AGGGACACGTCCACGAGCA


GGATGAGGCCGACTATT






CAGTCTACATGGAGCTGAG


ACTGTCAGGTGTGGGAT






CAGCCTGAGATCTGAGGAC


AGTAGTAGTGATCATCC






ACGGCCGTGTATTACTGTG


GGGGGTGGTATTCGGCG






CGAGATCCCGACCGACTCC


GAGGGACCAAGCTGACC






TGACTGGTACTTCGATCTCT


GTCCTAGGTCAGCCCAA






GGGGCCGTGGCACCCTGGT


GGCTGCCCCCTCGGTCAC






CACCGTCTCCTCAGCGTCG


TCTGTTCCCACCCTCGAG






ACCAAGGGCCCATCGGTCT


TGAGGAGCTTCAAGCCA






TCCCCCTGGCACCCTCCTCC


ACAAGGCCACACTGGTG






AAGAGCACCTCTGGGGGCA


TGTCTCATAAGTGACTTC






CAGCGGCCCTGGGCTGCCT


TACCCGGGAGCCGTGAC






GGTCAAGGACTACTTCCCC


AGTGGCCTGGAAGGCAG






GAACCTGTGACGGTCTCGT


ATAGCAGCCCCGTCAAG






GGAACTCAGGCGCCCTGAC


GCGGGAGTGGAGACCAC






CAGCGGCGTGCACACCTTC


CACACCCTCCAAACAAA






CCGGCTGTCCTACAGTCCTC


GCAACAACAAGTACGCG






AGGACTCTACTCCCTCAGC


GCCAGCAGCTACCTGAG






AGCGTGGTGACCGTGCCCT


CCTGACGCCTGAGCAGT






CCAGCAGCTTGGGCACCCA


GGAAGTCCCACAGAAGC






GACCTACATCTGCAACGTG


TACAGCTGCCAGGTCAC






AATCACAAGCCCAGCAACA


GCATGAANNGGAGCACC






CCNAGGTGGANAGAGAGTT


GTGGAGAAGACAGTGGC






GAGCCCAAATCTTGTGACA


CCCTACAGAATGTTCATA






AACTCACACATGCCCACCG


GAAGCTTGGCCGCCATG






TGCCCAGCACCTGAACTCC


GCCCAACTTGTTTATTGC






TGGGGGGACCGTCAGTCTT


AGCTTATAATGGTTACA






CCTCNTCCCCCCAAAACCC


AATAAAGCAATAGCATC






ANGGANACCCNTCATGATC


ACAANNTTCACAAATAA






TCCNNNACCCTGAGNCNCN


AGCATTTTTTTCACTGCA






NTGCGTGNNNGACNNNNAN


TTCTANTTGTGGTTTGTC






CCACNAANACCCTGAGNCA


CAACTCATCANGTATCTT






NNTCAACTGGNNCGNNGNN


ATCATGTCTGGATCGGN






(SEQ ID NO: 3514)


ATTAATTCGGCGCANCA









NCATGGCCTGAAATAAC









CTCTGAAANANGAANTT









GGNNAGGNACCTTCNGA









NGCNGAAAGAANCNTNN









(SEQ ID NO: 3516)








V-C031
NNNNNNNNNNNNNGNATN
CAGGTGCAGCTGGTGCAGT
COV072_
NNNNNNNNNNNNNANN
GAAATAGTGATGACGCAGT
COV072_




NTACACATACGATTTAGGT
CTGGGTCTGAGGTGAAGAA
P3_B5
NNNNNNTACACNTACGA
CTCCAGCCACCCTGTCTGTG
P3_B5




GACACTATAGAATAACATC
GCCTGGGTCCTCGGTGAAG

TTTAGGTGACACTATAG
TCTCCAGGGGAAAGAGCCA





CACTTTGCCTTTCTCTCCAC
GTCTCCTGCAAGGCTTCTGG

AATAACATCCACTTTGCC
CCCTCTCCTGCAGGGCCAGT





AGGTGTCCACTCCCAGGTC
AGGCACCTTCAGCAGCTAT

TTTCTCTCCACAGGTGTC
CAGAGTGTTAGCAGCAACTT





CAACTGCACCTCGGTTCTAT
GCTTTCAGCTGGGTGCGAC

CACTCCCAGGTCCAACT
AGCCTGGTACCAGCAGAAA





CGATTGAATTCCACCATGG
AGGCCCCTGGACAAGGGCT

GCACCTCGGTTCTATCGA
CCTGGCCAGGCTCCCAGGCT





GATGGTCATGTATCATCCTT
TGAGTGGATGGGAAGGATC

TTGAATTCCACCATGGG
CCTCATCTATGGTGCATCCA





TTTCTAGTAGCAACTGCAA
ATCCCTATCCTTGCTTTAGC

ATGGTCATGTATCATCCT
CCAGGGCCACTGGTATCCCA





CCGGTGTACATTCCCAGGT
AAACTACGCACAGAAGTTC

TTTTCTAGTAGCAACTGC
GCCAGGTTCAGTGGCAGTG





GCAGCTGGTGCAGTCTGGG
CAGGGCAGAGTCACGATTA

AACCGGTGTACATTCAG
GGTCTGGGACAGAGTTCACT





TCTGAGGTGAAGAAGCCTG
CCGCGGACAAATCCACGAG

AAATAGTGATGACGCAG
CTCACCATCAGCAGCCTGCA





GGTCCTCGGTGAAGGTCTC
CACAGCCTACATGGAGCTG

TCTCCAGCCACCCTGTCT
GTCTGAAGATTTTGCAGTTT





CTGCAAGGCTTCTGGAGGC
AGCAGCCTGAGATCTGAGG

GTGTCTCCAGGGGAAAG
ATTACTGTCAGCAGTATAAT





ACCTTCAGCAGCTATGCTTT
ACACGGCCGTGTATTACTG

AGCCACCCTCTCCTGCAG
AACTGGCCGATCACCTTCGG





CAGCTGGGTGCGACAGGCC
TGCGAGAGTCAATCAAGCA

GGCCAGTCAGAGTGTTA
CCAAGGGACACGACTGGAG





CCTGGACAAGGGCTTGAGT
GTAACTACTCCCTTCTCCAT

GCAGCAACTTAGCCTGG
ATTAAAC (SEQ ID 





GGATGGGAAGGATCATCCC
GGACGTCTGGGGCCAAGGG

TACCAGCAGAAACCTGG
NO: 3521)





TATCCTTGCTTTAGCAAACT
ACCACGGTCACCGTCTCCTC

CCAGGCTCCCAGGCTCCT






ACGCACAGAAGTTCCAGGG
A (SEQ ID NO: 3519)

CATCTATGGTGCATCCAC






CAGAGTCACGATTACCGCG


CAGGGCCACTGGTATCC






GACAAATCCACGAGCACAG


CAGCCAGGTTCAGTGGC






CCTACATGGAGCTGAGCAG


AGTGGGTCTGGGACAGA






CCTGAGATCTGAGGACACG


GTTCACTCTCACCATCAG






GCCGTGTATTACTGTGCGA


CAGCCTGCAGTCTGAAG






GAGTCAATCAAGCAGTAAC


ATTTTGCAGTTTATTACT






TACTCCCTTCTCCATGGACG


GTCAGCAGTATAATAAC






TCTGGGGCCAAGGGACCAC


TGGCCGATCACCTTCGGC






GGTCACCGTCTCCTCAGCGT


CAAGGGACACGACTGGA






CGACCAAGGGCCCATCGGT


GATTAAACGTACGGTGG






CTTCCCCCTGGCACCCTCCT


CTGCACCATCTGTCTTCA






CCAAGAGCACCTCTGGGGG


TCTTCCCGCCATCTGATG






CACAGCGGCCCTGGGCTGC


AGCAGTTGAAATCTGGA






CTGGTCAAGGACTACTTCC


ACTGCCTCTGTTGTGTGC






CCGAACCTGTGACGGTCTC


CTGCTGAATAACTTCTAT






GTGGAACTCANGCGCCCTG


CCCAGAGAGGCCAAAGT






ACCAGCGGCGTGCACACCT


ACAGTGGAAGGTGGATA






TCCCGGCTGTCCTACAGTCC


ACGCCCTCCAATCGGGT






TCAGGACTCTACTCCCTCAG


AACTCCCAGGAGAGTGT






CAGCGTGGTGACCGTGCCC


CACAGAGCAGGACAGCA






TCCAGCAGCTTGGGCACCC


AGGACAGCACCTACAGC






AGACCTACATCTGCAACGT


CTCAGCAGCACCCTGAC






GAATCACAAGCCCAGCAAC


GCTGAGCAAAGCAGACT






ACCAAGGTGGACAAGAGAG


ACGAGAAACACAAAGTC






TTGAGCCCAAATCTTGTGA


TACGCCTGCGAAGTCAC






CAAAACTCACACATGCCCA


CCATCAGGGCCTGAGCT






CCGTGCCCAGCACCTGAAC


CGCCCGTCACAAAGAGC






TNCTGGGGGGACCGTCAGT


TTCAACNGGGGAGANTG






CTTCNTCTTCCCCCCAAANC


TTAGAAGCTTGGCCGCC






CNAGGANNCCCTCATGATC


ATGGCCCAACTTGTTTAT






TCNNNACCCNGAGTCNACA


TGCAGCTTATAATGGTTA






TGCGTGGNGGTGNNGTGAN


CAAATAAGCAATAGCAT






CNNCNAANNNCCNGAGGTC


CACAAATTTCACAAATA






AAGTTCAACTGGNNNCNTN


AAGCATTTTTTCACTGCA






(SEQ ID NO: 3518)


TTCTANTNNNNNNTNGN









CCAAACTCATCAATGNN









NTCTTATCATGTCNGGNT









CGGNAATTAANTN 









(SEQ ID NO: 3520)








V-C032
NNNNNNNNNNNNNTGTATC
CAGGTGCAGCTGCAGGAGT
COV072_
NNNNNNNNNNNNNNNN
CAGTCTGTGCTGACTCAGCC
COV072_




ATACACATACGATTTAGGT
CGGGCCCAGGACTGGTGAA
P3_C1
NTNNTNNNNTACNNNTA
TGCCTCCGTGTCTGGGTCTC
P3_C1




GACACTATAGAATAACATC
GCCTTCGGGGACCCTGTCC

CNATTTAGGTGACACTAT
CTGGACAGTCGATCACCATC





CACTTTGCCTTTCTCTCCAC
CTCACCTGCGCTGTCTCTGG

AGAATAACATCCACTTT
TCCTGCACTGGAACCAGCAG





NGGTGTCCACTCCCAGGTC
TGGCTCCATCAGCAGTAAT

GCCTTTCTCTCCCCNGGT
TGACGTTGGTGGTTATAACT





CAACTGCACCTCGGTTCTAT
AACTGGTGGAGTTGTGTCC

GTCCACTCCCAGGTCCA
ATGTCTCCTGGTACCAACAA





CGATTGAATTCCACCATGG
GCCAGCCCCCAGGGAAGGG

ACTGCACCTCGGTTCTAT
CACCCAGGCAAAGCCCCCA





GATGGTCATGTATCATCCTT
GCTGGAGTGGATTGGGGAA

CGATTGAATTCCACCATG
AACTCATGATTTATGATGTC





TTTCTAGTAGCAACTGCAA
ATCTATCATAGTGGGAGCA

GGATGGTCATGTATCATC
AGTAATCGGCCCTCAGGGGT





CCGGTGTACATTCCCAGGT
CCAACTACAACCCGTCCCT

CTTTTTCTAGTAGCAACT
TTCTAATCGCTTCTCTGGCT





GCAGCTGCAGGAGTCGGGC
CAAGAGTCGAGTCACCATA

GCAACCGGTTCCTGGGC
CCAAGTCTGGCAACACGGC





CCAGGACTGGTGAAGCCTT
TCAGTAGACAAGTCCAAGA

CCAGTCTGCCCTGACTCA
CTCCCTGACCATCTCTGGGC





CGGGGACCCTGTCCCTCAC
ACCAGTTCTCCCTGAAGCT

GCCTGCCTCCGTGTCTGG
TCCAGGCTGAGGACGAGGC





CTGCGCTGTCTCTGGTGGCT
GAGCTCTGTGACCGCCGCG

GTCTCCTGGACAGTCGAT
TGATTATTACTGCAGCTCAT





CCATCAGCAGTAATAACTG
GACACGGCCGTGTATTACT

CACCATCTCCTGCACTGG
ATACAAGCAGCAGCACTCTT





GTGGAGTTGTGTCCGCCAG
GTGCGAGAGGGGGGGATAC

AACCAGCAGTGACGTTG
TTGTTCGGCGGAGGGACCA





CCCCCAGGGAAGGGGCTGG
AGCTATGGGCCCCGAATAC

GTGGTTATAACTATGTCT
AGCTGACCGTCCTAG 





AGTGGATTGGGGAAATCTA
TTTGACTACTGGGGCCAGG

CCTGGTACCAACAACAC
(SEQ ID NO: 3525)





TCATAGTGGGAGCACCAAC
GAACCCTGGTCACCGTCTC

CCAGGCAAAGCCCCCAA






TACAACCCGTCCCTCAAGA
CTCAG (SEQ ID NO:

ACTCATGATTTATGATGT






GTCGAGTCACCATATCAGT
3523)

CAGTAATCGGCCCTCAG






AGACAAGTCCAAGAACCAG


GGGTTTCTAATCGCTTCT






TTCTCCCTGAAGCTGAGCTC


CTGGCTCCAAGTCTGGC






TGTGACCGCCGCGGACACG


AACACGGCCTCCCTGAC






GCCGTGTATTACTGTGCGA


CATCTCTGGGCTCCAGGC






GAGGGGGGGATACAGCTAT


TGAGGACGAGGCTGATT






GGGCCCCGAATACTTTGAC


ATTACTGCAGCTCATATA






TACTGGGGCCAGGGAACCC


CAAGCAGCAGCACTCTT






TGGTCACCGTCTCCTCAGCG


TTGTTCGGCGGAGGGAC






TCGACCAAGGGCCCATCGG


CAAGCTGACCGTCCTAG






TCTTCCCCCTGGCACCCTCC


GTCAGCCCAAGGCTGCC






TCCAAGAGCACCTCTGGGG


CCCTCGGTCACTCTGTTC






GCACAGCGGCCCTGGGCTG


CCACCCTCGAGTGAGGA






CCTGGTCAAGGACTACTTC


GCTTCAAGCCAACAAGG






CCCGAACCTGTGACGGTCT


CCACACTGGTGTGTCTCA






CGTGGAACTCAGGCGCCCT


TAAGTGACTTCTACCCGG






GACCAGCGGCGTGCACACC


GAGCCGTGACAGTGGCC






TTCCCGGCTGTCCTACAGTC


TGNAAGGCAGATANCAG






CTCAGGACTCTACTCCCTCA


CCCCGTCAAGGCGGGAN






GCAGCGTGGTGACCGTGCC


TGGAGACCACCACACCC






CTCCAGCAGCTTGGGCACC


TCCAAACAAAGCAACAA






CAGACCTACATCTGCAACG


CAAGTACGCGGGCCAGC






TGAATCACAAGCCCAGCAA


AGCTACCTGANCCNTGA






CACCAAGGTGGACAAGAGA


CGCCTGAGCANTGGAAG






GTTGAGCCCAAATCTTGTG


TCCCACAGAAGCNTACA






ACAAAACTCACACATGCCC


GCTGCCANGTCACGCAT






ACCGTGCCCAGCACCTGAA


GAAGGGAGCACCGNGNA






CTCCTGGGGGGACCGTCAG


GAGANANTGGCNCCTAC






TCTTCCTCTTCCCCCCAAAA


AGAATGTTCATANAANC






NCCNAAGGACACCCTCATG


TTGGCCGCCCANGGCCC






ATCTCCCNGACCCNTGAGG


AACTTGTTATTGNNGCTT






TCNACATGCGTGGTGGNGG


ATNN (SEQ ID NO:






NCGTGANCCACNAAGACCC


3524)






TGNNNGTCAAGTTCAACTG









GNTACGTGGNANGGGNGNN









NNNGGNNCANN (SEQ ID









NO: 3522)











V-C033
NNNNNNNNNNNNNNNGNN
CAGGTGCAGCTGGTGGAGT
COV072_
GNNNNNNNNNNNNGTAT
GACATCCAGATGACCCAGTC
COV072_




TNNTACACATACGATTTAG
CTGGGGGAGGCGTGGTCCA
P3_E5
CNNNCNCATACGATTTA
TCCATCCTCCCTGTCTGCAT
P3_E5




GTGACACTATAGAATAACA
GCCTGGGAGGTCCCTGAGA

GGTGACACTATAGAATA
CTGTAGGAGACAGAGTCAC





TCCACTTTGCCTTTCTCTCC
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CATCACTTGCCGGGCAAGTC





ACNGNTGTCCACTCCCAGG
ATTCACCTTCAGTAGCTATG

TCTCCACNGGTGTCCACT
AGAGCATTAGCAGCTATTTA





TCCAACTGCACCTCGGTTCT
CTATGCACTGGGTCCGCCA

CCCAGGTCCAACTGCAC
AATTGGTATCAGCAGAAAC





ATCGATTGAATTCCACCAT
GGCTCCAGGCAAGGGGCTG

CTCGGTTCTATCGATTGA
CAGGGAAAGCCCCTAAGCT





GGGATGGTCATGTATCATC
GAGTGGGTGGCAGTTATAT

ATTCCACCATGGGATGG
CCTGATCTATGCTGCATCCA





CTTTTTCTAGTAGCAACTGC
TATATGATGGAAGCAATAA

TCATGTATCATCCTTTTT
GTTTGCAAAGTGGGGTCCCA





AACCGGTGTACATTCTCAG
ATACTACGCAGACTCCGTG

CTAGTAGCAACTGCAAC
TCAAGGTTCAGTGGCAGTGG





GTGCAGCTGGTGGAGTCTG
AAGGGCCGATTCACCATCT

CGGTGTACATTCTGACAT
ATCTGGGACAGATTTCACTC





GGGGAGGCGTGGTCCAGCC
CCAGAGACAATTCCAAGAA

CCAGATGACCCAGTCTC
TCACCATCAGCAGTCTGCAA





TGGGAGGTCCCTGAGACTC
CACGCTGTATCTGCAAATG

CATCCTCCCTGTCTGCAT
CCTGAAGATTTTGCAACTTA





TCCTGTGCAGCCTCTGGATT
AACAGCCTGAGAGCTGAGG

CTGTAGGAGACAGAGTC
CTACTGTCAACAGAGTTACA





CACCTTCAGTAGCTATGCTA
ACACGGCTGTGTATTACTGT

ACCATCACTTGCCGGGC
GTACCCCTCCGTGGACGTTC





TGCACTGGGTCCGCCAGGC
GCGAGAGATTCGGACGTAG

AAGTCAGAGCATTAGCA
GGCCAAGGGACCAAGGTGG





TCCAGGCAAGGGGCTGGAG
ATACATCTATGGTTACTTGG

GCTATTTAAATTGGTATC
AAATCAAAC (SEQ ID





TGGGTGGCAGTTATATTAT
TTCGACTACTGGGGCCAGG

AGcAGAAAccAGGGAAA
NO:3 529)





ATGATGGAAGCAATAAATA
GAACCCTGGTCACCGTCTC

GCCCCTAAGCTCCTGATC






CTACGCAGACTCCGTGAAG
CTCAG (SEQ ID NO:

TATGCTGCATCCAGTTTG






GGCCGATTCACCATCTCCA
3527)

CAAAGTGGGGTCCCATC






GAGACAATTCCAAGAACAC


AAGGTTCAGTGGCAGTG






GCTGTATCTGCAAATGAAC


GATCTGGGACAGATTTC






AGCCTGAGAGCTGAGGACA


ACTCTCACCATCAGCAGT






CGGCTGTGTATTACTGTGCG


CTGCAACCTGAAGATTTT






AGAGATTCGGACGTAGATA


GCAACTTACTACTGTCAA






CATCTATGGTTACTTGGTTC


CAGAGTTACAGTACCCC






GACTACTGGGGCCAGGGAA


TCCGTGGACGTTCGGCC






CCCTGGTCACCGTCTCCTCA


AAGGGACCAAGGTGGAA






GCGTCGACCAAGGGCCCAT


ATCAAACGTACGGTGGC






CGGTCTTCCCCCTGGCACCC


TGCACCATCTGTCTTCAT






TCCTCCAAGAGCACCTCTG


CTTCCCGCCATCTGATGA






GGGGCACAGCGGCCCTGGG


GCAGTTGAAATCTGGAA






CTGCCTGGTCAAGGACTAC


CTGCCTCTGTTGTGTGCC






TTCCCCGAACCTGTGACGG


TGCTGAATAACTTCTATC






TCTCGTGGAACTCAGGCGC


CCAGAGAGGCCAAAGTA






CCTGACCAGCGGCGTGCAC


CAGTGGAAGGTGGATAA






ACCTTCCCGGCTGTCCTACA


CGCCCTCCAATCGGGTA






GTCCTCAGGACTCTACTCCC


ACTCCCAGGAGAGTGTC






TCAGCAGCGTGGTGACCGT


ACAGAGCANGACAGCAA






GCCCTCCAGCAGCTTGGGC


GGACAGCACCTACAGCC






ACCCAGACCTACATCTGCA


TCAGCAGCACCCTGACG






ACGTGAATCACAAGCCCAG


CTGAGCAAAGCAGACTA






CAACACCNAAGGTGGACAA


CGAGAAACACAAAGTCT






GAGAGTTGANCCCAAATCT


ACGCCTGCGAAGTCACC






TGTGACAAAACTCACACAT


CATCNGGGCCTGAGCTC






GCCCACCGTGCCCAGCACC


GCCCGTCACAAAGAGCT






TGAACTCCTGGGGGGACCG


TCAACAGGGGAGAGTGT






TCAGTCTTCCTCTTCCCCCN


TAGAAGCTTGGCCGCCA






NAAACCCANGGANACCCNC


TGGNCCAACTTGTTTATT






ATGATCTCCCNGACCCCTG


GCAGCTTATNATGGTTAC






AGNCACNTGNNNTGGNGGN


AAATAAGCAATAGCATC






GGANNNNGANCCNCGAAG


ACAAATTTCACAAATAA






ACCCTGGAGGTNAGTTCAA


AGCATTTTTTNNNNCTGC






CTGGNNCNNNGGAANGNN


ATNCTAGTTGNNGGTTN






NNNNN (SEQ ID NO:


GTCCAAACTN (SEQ ID






3526)


NO: 3528)








V-C034
NNNNNNNNCNNNNTGTATC
GAGGTGCAGCTGTTGGAGT
COV072_
NNNNNNNNNNNNTGTAT
TCCTATGTGCTGACTCAGCC
COV072_




NTACACATACGATTTAGGT
CTGGGGGAGGCTTGGTACA
P3_H9
CATACACATACGATTTA
ACCCTCAGTGTCAGTGGCCC
P3_H9




GACACTATAGAATAACATC
GCCTGGGGGGTCCCTGAGA

GGTGACACTATAGAATA
CAGGAAAGACGGCCAGGAT





CACTTTGCCTTTCTCTCCAC
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
TACCTGTGGGGGAAACAAC





AGGTGTCCACTCCCAGGTC
ATTCACCTTTAGCAACTATG

TCTCCACAGGTGTCCACT
ATTGGAAGTAAAAGTGTGC





CAACTGCACCTCGGTTCTAT
CCATGAGCTGGGTCCGCCA

CCCAGGTCCAACTGCAC
ACTGGTACCAGCAGAAGCC





CGATTGAATTCCACCATGG
GGCTCCAGGGAAGGGGCTG

CTCGGTTCTATCGATTGA
AGGCCAGGCCCCTGTGCTGG





GATGGTCATGTATCATCCTT
GAGTGGGTCTCAGCTATTA

ATTCCACCATGGGATGG
TCATCTATTATGATAGCGAC





TTTCTAGTAGCAACTGCAA
GTGGTAGTGATGGTAGCAC

TCATGTATCATCCTTTTT
CGGCCCTCAGGGATCCCTGA





CCGGTGTACATTCTGAGGT
ATACTACGCAGGCTCCGTG

CTAGTAGCAACTGCAAC
GCGATTCTCTGGCTCCAACT





GCAGCTGTTGGAGTCTGGG
AAGGGCCGGTTCACCATCT

CGGTTCTGTGACCTCCTA
CTGGGAACACGGCCACCCT





GGAGGCTTGGTACAGCCTG
CCAGAGACAATTCCAAGAA

TGAGCTGACACAGCCAC
GACCATCAGCAGGGTCGAA





GGGGGTCCCTGAGACTCTC
CACACTGTATCTGCAAATG

CCTCAGTGTCAGTGGCCC
GCCGGGGATGAGGCCGAAT





CTGTGCAGCCTCTGGATTCA
AACAGCCTGAGAGCCGAGG

CAGGAAAGACGGCCAGG
ATCACTGTCAGGTGTGGGAT





CCTTTAGCAACTATGCCATG
ACACGGCCGTATATTACTG

ATTACCTGTGGGGGAAA
AGTAGTAGTGATCGTCCGGG





AGCTGGGTCCGCCAGGCTC
TGCGAAAGATCCCCTTATA

CAACATTGGAAGTAAAA
GGTGGTTTTCGGCGGAGGG





CAGGGAAGGGGCTGGAGTG
ACTGGACCTACCTATCAAT

GTGTGCACTGGTACCAG
ACCAAGCTGACCGTCCTAG





GGTCTCAGCTATTAGTGGT
ACTTTCACTACTGGGGCCA

CAGAAGCCAGGCCAGGC
(SEQ ID NO: 3533)





AGTGATGGTAGCACATACT
GGGAACCCTGGTCACCGTC

CCCTGTGCTGGTCATCTA






ACGCAGGCTCCGTGAAGGG
TCCTCAG (SEQ ID 

TTATGATAGCGACCGGC






CCGGTTCACCATCTCCAGA
NO: 3531)

CCTCAGGGATCCCTGAG






GACAATTCCAAGAACACAC


CGATTCTCTGGCTCCAAC






TGTATCTGCAAATGAACAG


TCTGGGAACACGGCCAC






CCTGAGAGCCGAGGACACG


CCTGACCATCAGCAGGG






GCCGTATATTACTGTGCGA


TCGAAGCCGGGGATGAG






AAGATCCCCTTATAACTGG


GCCGAATATCACTGTCA






ACCTACCTATCAATACTTTC


GGTGTGGGATAGTAGTA






ACTACTGGGGCCAGGGAAC


GTGATCGTCCGGGGGTG






CCTGGTCACCGTCTCCTCAG


GTTTTCGGCGGAGGGAC






CGTCGACCAAGGGCCCATC


CAAGCTGACCGTCCTAG






GGTCTTCCCCCTGGCACCCT


GTCAGCCCAAGGCTGCC






CCTCCAAGAGCACCTCTGG


CCCTCGGTCACTCTGTTC






GGGCACAGCGGCCCTGGGC


CCACCCTCGAGTGAGGA






TGCCTGGTCAAGGACTACT


GCTTCAAGCCAACAAGG






TCCCCGAACCTGTGACGGT


CCACACTGGTGTGTCTCA






CTCGTGGAACTCAGGCGCC


TAAGTGACTTCTACCCGG






CTGACCAGCGGCGTGCACA


GAGCCGTGACAGTGGCC






CCTTCCCGGCTGTCCTACAG


TGGAAGGCAGATAGCAG






TCCTCNNACTCTACTCCCTC


CCCCGTCAAGGCGGGAG






AGCAGCGTGGTGACCGTGC


TGGAGACCACCACACCC






CCTCCAGCAGCTTGGGCAC


TCCAAACAAAGCAACAA






CCAGACCTACATCTGCAAC


CAAGTACGCGGCCAGCA






GTGAATCACAAGCCCAGCA


GCTACCTGAGCCTGACG






ACACCNAAGGTGGACAAGA


CCTGAGCAGTGGAAGTC






NAGTTGAGCCCAAATCTTG


CCACAGAAGCTACAGCT






TGACAAAACTCACACATGC


GCCAGGTCACGCATGAA






CCACCGTGCCCAGCACCTG


GGGAGCACCGTGGAGAA






AACTNCTGGGGGGGACCGT


GACAGTGGCCCCTACAG






CAGTCTTCCTCTTCCCCCNA


AATGTTCATAGAAGCTT






AANCCNAGGANACCCTCAT


GGCCGCCATGGNCCAAC






GATCTCCCNNACCCCNGAA


TTGTTTATTGCAGCTTAN






GGTCNCATGCNTGGNNGGT


NATGGTTACAAATAAAG






GGACGTGAGCCNCGAANNA


CAATAGCATCACAAATT






NCCNN (SEQ ID NO:


TCACAAANAAAGCATTT






3530)


TTTTCACTGCATCTANTG









TGGNTNNTCCNAACNCA









TCNATGNNNNNTNNCAT









GTCTGGATCN (SEQ ID









NO: 3532)








V-C035
NNNNNNNNNNNTGTATCNT
CAGGTGCAGCTGGTGGAGT
COV072_
NNNNNNNNNNNNTNTGT
GACATCCAGATGACCCAGTC
COV072_




ACACATACGATTTAGGTGA
CTGGGGGAGGCGTGGTCCA
P3_D9
ATCNTACNCNTACGATTT
TCCTTCCACCCTGTCTGCAT
P3_D9




CACTATAGAATAACATCCA
GCCTGGGAGGTCCCTGAGA

AGGTGACACTATAGAAT
CTGTAGGAGACAGAGTCAC





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCCTCTGG

AACATCCACTTTGCCTTT
CATCACTTGCCGGGCCAGTC





GTGTCCACTCCCAGGTCCA
ATTCACCTTCAGTAGCTATG

CTCTCCACAGGTGTCCAC
AGAGTATTAGTAACTGGTTG





ACTGCACCTCGGTTCTATCG
CTATGCACTGGGTCCGCCA

TCCCAGGTCCAACTGCA
GCCTGGTTTCAGCAGAAACC





ATTGAATTCCACCATGGGA
GGCTCCAGGCAAGGGGCTG

CCTCGGTTCTATCGATTG
AGGGAAAGCCCCTAAGCTC





TGGTCATGTATCATCCTTTT
GAGTGGGTGGCAGTTATAC

AATTCCACCATGGGATG
CTGATCTATGAGGCGTNTAG





TCTAGTAGCAACTGCAACC
CATTTGATGGAAGAAATAA

GTCATGTATCATCCTTTT
TTTAGAAAGTGGGGTCCCAT





GGTGTACATTCTCAGGTGC
GTACTACGCAGACTCCGTG

TCTAGTAGCAACTGCAA
CAAGGTTCAGCGGCAGTGG





AGCTGGTGGAGTCTGGGGG
ACGGGCCGATTCACCATCT

CCGGTGTACATTCTGACA
ATCTGGGACAGAATTCACTC





AGGCGTGGTCCAGCCTGGG
CCAGAGACAATTCCAAGAA

TCCAGATGACCCAGTCTC
TCACCATCAGCAGCCTGCAG





AGGTCCCTGAGACTCTCCT
CACACTGTATCTGCAAATG

CTTCCACCCTGTCTGCAT
CCTGATGATTTTGCAACTTA





GTGCAGCCTCTGGATTCAC
AACAGCCTGAGAGCTGAGG

CTGTAGGAGACAGAGTC
TTACTGCCAACAGTATAATA





CTTCAGTAGCTATGCTATGC
ACACGGCTGTGTATTACTGT

ACCATCACTTGCCGGGC
GTTATCCGTGGACGTTCGGC





ACTGGGTCCGCCAGGCTCC
GCGAGTAGTAGTGGTTATC

CAGTCAGAGTATTAGTA
CAAGGGACCAAGGTGGAAA





AGGCAAGGGGCTGGAGTGG
TTTTCCACTCTGACTACTGG

ACTGGTTGGCCTGGTTTC
TCAAAC (SEQ ID NO: 





GTGGCAGTTATACCATTTG
GGCCAGGGAACCCTGGTCA

AGCAGAAACCAGGGAAA
3537)





ATGGAAGAAATAAGTACTA
CCGTCTCCTCAG (SEQ ID

GCCCCTAAGCTCCTGATC






CGCAGACTCCGTGACGGGC
NO: 3535)

TATGAGGCGTCTAGTTTA






CGATTCACCATCTCCAGAG


GAAAGTGGGGTCCCATC






ACAATTCCAAGAACACACT


AAGGTTCAGCGGCAGTG






GTATCTGCAAATGAACAGC


GATCTGGGACAGAATTC






CTGAGAGCTGAGGACACGG


ACTCTCACCATCAGCAG






CTGTGTATTACTGTGCGAGT


CCTGCAGCCTGATGATTT






AGTAGTGGTTATCTTTTCCA


TGCAACTTATTACTGCCA






CTCTGACTACTGGGGCCAG


ACAGTATAATAGTTATCC






GGAACCCTGGTCACCGTCT


GTGGACGTTCGGCCAAG






CCTCAGCGTCGACCAAGGG


GGACCAAGGTGGAGATC






CCCATCGGTCTTCCCCCTGG


AAACGTACGGTGGCTGC






CACCCTCCTCCAAGAGCAC


ACCATCTGTCTTCATCTT






CTCTGGGGGCACAGCGGCC


CCCGCCATCTGATGAGC






CTGGGCTGCCTGGTCAAGG


AGTTGAAATCTGGAACT






ACTACTTCCCCGAACCTGTG


GCCTCTGTTGTGTGCCTG






ACGGTCTCGTGGAACTCAG


CTGAATAACTTCTATCCC






GCGCCCTGACCAGCGGCGT


AGAGAGGCCAAAGTACA






GCACACCTTCCCGGCTGTCC


GTGGAAGGTGGATAACG






TACAGTCCTCANGACTCTA


CCCTCCAATCGGGTAACT






CTCCCTCAGCAGCGTGGTG


CCCAGGAGAGTGTCACA






ACCGTGCCCTCCAGCAGCT


GAGCAGGACAGCAAGGA






TGGGCACCCAGACCTACAT


CAGCACCTACAGCCTCA






CTGCAACGTGAATCACAAG


GCAGCACCCTGACGCTG






CCCAGCAACACCNAAGGTG


AGCAAAGCAGACTACGA






GACAAGANAGTTGAGCCCA


GAAACACAAAGTCTACG






AATCTTGTGACAAAACTCA


CCTGCGAAGTCACCCAT






CACATGCCCACCGTGCCCA


CNGGGCCTGAGCTCGCC






GCACCTGAACTCCTGGGGG


CGTCACAAAGAGCTTCA






GACCGTCAGTCTTCCTCTTC


ACAGGGGAGAGTGTTAG






CCCCCAAAACCCANNNNAC


AAGCTTGGCCGCCATGG






CCNCATGATCTCCCNNACC


CCCAACTTGTTTATTGCA






CCTGANNCNCATGNNNGGN


GCTTATAATGGNTACAA






GGNNNCGTGAGCCACNAAG


ATAAAGCAATAGCATCA






ACCNTGNNNCAGTTCAACT


CAATTTCACAAATAAAG






GGNACNNNGNNGNNNNGG


CATTTTTTTCACTGCATT






NNGTGCATAATGNCAANAA


CTAGTTGTGGTTTGTCCA






NNAAGCCNCGGGANNANC


ANCTCATNANGNATNNN






ANTANNANNGCNNCGTACC


NCATGTCTNGNTCGGGN






GNNNNNNGNNNNNNNGTN


NNNTCGNNGCAGCACCA






NNNNNCGNCCNGCACNNNN


NGGNCNNGAANNNACCN






GNAANNNNNNTNN (SEQ


CNNANNAN (SEQ ID






ID NO: 3534)


NO: 3536)








V-C036
NNNNNNNNNNATGNATCNT
GAGGTGCAGCTGGTGCAGT
COV072_
NNNNNNNNNTATGTATC
CAGTCTGTGCTGACTCAGCC
COV072_




ACACNTACGATTTAGGTGA
CTGGAGTAGAGGTGAAAAA
P2_B10
NTACNCATACGATTTAG
TCCCTCCGTGTCCGGGTCTC
P2_B10




CACTATAGAATAACATCCA
GTCGGGGGAGTCTCTGAAG

GTGACACTATAGAATAA
CTGGACAGTCAGTCACCATC





CTTTGCCTTTCTCTCCACAG
ATCTCCTGTAAGGGCTCTG

CATCCACTTTGCCTTTCT
TCCTGCACTGGAACCAGCAG





GTGTCCACTCCCAGGTCCA
GATACAACTTTGCCACCTCC

CTCCACAGGTGTCCACTC
TGACGTTGGTAGTTATAACC





ACTGCACCTCGGTTCTATCG
TGGCTCGGCTGGGTGCGCC

CCAGGTCCAACTGCACC
GTGTCTCTTGGTACCAGCAG





ATTGAATTCCACCATGGGA
AGATGCCCGGCAAAGGCCT

TCGGTTCTATCGATTGAA
CCCCCAGGCACAGCCCCCA





TGGTCATGTATCATCCTTTT
GGAGTGGATGGGGATCATC

TTCCACCATGGGATGGTC
AACTCATGATTTATGAGGTC





TCTAGTAGCAACTGCAACC
TATCCTGGTGACTCTGATAC

ATGTATCATCCTTTTTCT
AATAATCGGCCCTCAGGGGT





GGTGTACATTCCGAGGTGC
CAGATACAGCCCGTCCTTC

AGTAGCAACTGCAACCG
CCCTGATCGCTTCTCTGGGT





AGCTGGTGCAGTCTGGAGT
CAAGGCCAGGTCACCATCT

GTTCCTGGGCCCAGTCTG
CCAAGTCTGGCAACACGGC





AGAGGTGAAAAAGTCGGGG
CAGCCGACAAGTCCATCAG

CCCTGACTCAGCCTCCCT
CTCCCTGACCATCTCTGGGC





GAGTCTCTGAAGATCTCCT
CACCGCCTACCTGCAGTGG

CCGTGTCCGGGTCTCCTG
TCCAGGCTGAAGACGAGGC





GTAAGGGCTCTGGATACAA
AGCAGCCTGAAGGCCTCGG

GACAGTCAGTCACCATC
TGATTATTACTGCAGCTCAT





CTTTGCCACCTCCTGGCTCG
ACACCGCCATGTATTACTGT

TCCTGCACTGGAACCAG
ATACAAGCAGTAGCAATTTC





GCTGGGTGCGCCAGATGCC
GCGAGACTCACATATACCA

CAGTGACGTTGGTAGTT
GATGTCTTCGGAACTGGGAC





CGGCAAAGGCCTGGAGTGG
GTGGCTGGTACTGGGGCCA

ATAACCGTGTCTCTTGGT
CAAGGTCACCGTCCTAG





ATGGGGATCATCTATCCTG
GGGAACCCTGGTCACCGTC

ACCAGCAGCCCCCAGGC
(SEQ ID NO: 3541)





GTGACTCTGATACCAGATA
TCGTCAG (SEQ ID NO:

ACAGCCCCCAAACTCAT






CAGCCCGTCCTTCCAAGGC
3539)

GATTTATGAGGTCAATA






CAGGTCACCATCTCAGCCG


ATCGGCCCTCAGGGGTC






ACAAGTCCATCAGCACCGC


CCTGATCGCTTCTCTGGG






CTACCTGCAGTGGAGCAGC


TCCAAGTCTGGCAACAC






CTGAAGGCCTCGGACACCG


GGCCTCCCTGACCATCTC






CCATGTATTACTGTGCGAG


TGGGCTCCAGGCTGAAG






ACTCACATATACCAGTGGC


ACGAGGCTGATTATTACT






TGGTACTGGGGCCAGGGAA


GCAGCTCATATACAAGC






CCCTGGTCACCGTCTCCTCA


AGTAGCAATTTCGATGTC






GCGTCGACCAAGGGCCCAT


TTCGGAACTGGGACCAA






CGGTCTTCCCCCTGGCACCC


GGTCACCGTCCTAGGTC






TCCTCCAAGAGCACCTCTG


AGCCCAAGGCCAACCCC






GGGGCACAGCGGCCCTGGG


ACTGTCACTCTGTTCCCG






CTGCCTGGTCAAGGACTAC


CCCTCGAGTGAGGAGCT






TTCCCCGAACCTGTGACGG


TCAAGCCAACAAGGCCA






TCTCGTGGAACTCAGGCGC


CACTGGTGTGTCTCATAA






CCTGACCAGCGGCGTGCAC


GTGACTTCTACCCGGGA






ACCTTCCCGGCTGTCCTACA


GCCGTGACAGTGGCCTG






GTCCTCNNACTCTACTCCCT


GAAGGCAGATAGCAGCC






CAGCAGCGTGGTGACCGTG


CCGTCAAGGCGGGAGTG






CCCTCCAGCAGCTTGGGCA


GAGACCACCACACCCTC






CCCAGACCTACATCTGCAA


CAAACAAAGCAACAACA






CGTGAATCACAAGCCCAGC


AGTACGCGGCCAGCAGC






AACACCNANGTGGACAAGA


TACCTGAGCCTGACGCCT






NAGTTGAGCCCAAATCTTG


GAGCAGTGGAAGTCCCA






TGACAAAACTCACACATGC


CAGAAGCTACAGCTGCC






CCACCGTGCCCAGCACCTG


AGGTCACGCATGANGGN






AACTCCTGGGGGGACCGTC


NCACCGTGGANAANACA






AGTCTTCCNCTTCCCCCCAA


GTGGNCCCTACAGAATG






ANCNNNNNCACCCTCATGA


TTCATAGAAGCTTGGCC






TCTCCCNGACCCCTGAGTC


GCCATGGCCCAACTTGTT






ACATGCGTGNGNNNNGTGA


TATTGCAGCTTANNATG






NCCACGANACCCTGNNNCA


GNTACAAATAAAGCAAT






GTCANTNNNCGTGNNGGCG


AGCATCACAAATTTCAC






TGNNNGCNTANNCNNAANN


NAATAAAGCATTTTTTNN






AGCNCNGGANNNNNANTAC


ACTGCATTCTANTNNNN






NANNNNNNGTACNNNNNG


NNTNGNCNAACTCATNA






NNAGCGTCCNNCNNNNTCN


NGNATCTNATCATGNNC






NNNCNNNNTNNNGAANNN


TGGNTCGGGNNNNNGNN






ANGGANNNCAANNNGCAN


CANCNNNTNNNNANNAC






GGNNNN (SEQ ID NO:


NNTGAANAGACNNNGNN






3538)


GNACTNCTGNNGNGGAA









NNAACATNNNNNNNGAA









N (SEQ ID NO: 









3540)








V-C037
NNNNNNNNNNNATGNATCN
GAGGTGCAGCTGGTGCAGT
COV072_
NNNNNNNNNNATGTATC
CAGTCTGCCCTGACTCAGCC
COV072_




TACACNTACGATTTAGGTG
CTGGAGTAGAGGTGAAAAA
P2_D6
NTACACNTACGATTTAG
TCCCTCCGTGTCCGGGTCTC
P2_D6




ACACTATAGAATAACATCC
GTCGGGGGAGTCTCTGAAG

GTGACACTATAGAATAA
CTGGACAGTCAGTCACCATC





ACTTTGCCTTTCTCTCCACA
ATCTCCTGTAAGGGCTCTG

CATCCACTTTGCCTTTCT
TCCTGCACTGGAACCAGCAG





GGTGTCCACTCCCAGGTCC
GATACAACTTTGCCACCTCC

CTCCACAGGTGTCCACTC
TGACGTTGGTAGTTATAACC





AACTGCACCTCGGTTCTATC
TGGCTCGGCTGGGTGCGCC

CCAGGTCCAACTGCACC
GTGTCTCTTGGTACCAGCAG





GATTGAATTCCACCATGGG
AGATGCCCGGCAAAGGCCT

TCGGTTCTATCGATTGAA
CCCCCAGGCACAGCCCCCA





ATGGTCATGTATCATCCTTT
GGAGTGGATGGGGATCATC

TTCCACCATGGGATGGTC
AACTCATGATTTATGAGGTC





TTCTAGTAGCAACTGCAAC
TATCCTGGTGACTCTGATAC

ATGTATCATCCTTTTTCT
AATAATCGGCCCTCAGGGGT





CGGTGTACATTCCGAGGTG
CAGATACAGCCCGTCCTTC

AGTAGCAACTGCAACCG
CCCTGATCGCTTCTCTGGGT





CAGCTGGTGCAGTCTGGAG
CAAGGCCAGGTCACCATTT

GTTCCTGGGCCCAGTCTG
CCAAGTCTGGCAACACGGC





TAGAGGTGAAAAAGTCGGG
CAGCCGACAAGTCCATCAG

CCCTGACTCAGCCTCCCT
CTCCCTGACCATCTCTGGGC





GGAGTCTCTGAAGATCTCC
CACCGCCTACCTGCAGTGG

CCGTGTCCGGGTCTCCTG
TCCAGGCTGAAGACGAGGC





TGTAAGGGCTCTGGATACA
AGCAGCCTGAAGGCCTCGG

GACAGTCAGTCACCATC
TGATTATTACTGCAGCTCAT





ACTTTGCCACCTCCTGGCTC
ACACCGCCATGTATTACTGT

TCCTGCACTGGAACCAG
ATACAAGCAGTAGCAATTTC





GGCTGGGTGCGCCAGATGC
GCGAGACTCATATATACCA

CAGTGACGTTGGTAGTT
GATGTCTTCGGAACTGGGAC





CCGGCAAAGGCCTGGAGTG
GTGGCTGGTACTGGGGCCA

ATAACCGTGTCTCTTGGT
CAAGGTCACCGTCCTAG





GATGGGGATCATCTATCCT
GGGAACCCTGGTCACCGTC

ACCAGCAGCCCCCAGGC
(SEQ ID NO: 3545)





GGTGACTCTGATACCAGAT
TCCTCAG (SEQ ID 

ACAGCCCCCAAACTCAT






ACAGCCCGTCCTTCCAAGG
NO: 3543)

GATTTATGAGGTCAATA






CCAGGTCACCATTTCAGCC


ATCGGCCCTCAGGGGTC






GACAAGTCCATCAGCACCG


CCTGATCGCTTCTCTGGG






CCTACCTGCAGTGGAGCAG


TCCAAGTCTGGCAACAC






CCTGAAGGCCTCGGACACC


GGCCTCCCTGACCATCTC






GCCATGTATTACTGTGCGA


TGGGCTCCAGGCTGAAG






GACTCATATATACCAGTGG


ACGAGGCTGATTATTACT






CTGGTACTGGGGCCAGGGA


GCAGCTCATATACAAGC






ACCCTGGTCACCGTCTCCTC


AGTAGCAATTTCGATGTC






AGCGTCGACCAAGGGCCCA


TTCGGAACTGGGACCAA






TCGGTCTTCCCCCTGGCACC


GGTCACCGTCCTAGGTC






CTCCTCCAAGAGCACCTCT


AGCCCAAGGCCAACCCC






GGGGGCACAGCGGCCCTGG


ACTGTCACTCTGTTCCCG






GCTGCCTGGTCAAGGACTA


CCCTCGAGTGAGGAGCT






CTTCCCCGAACCTGTGACG


TCAAGCCAACAAGGCCA






GTCTCGTGGAACTCANGCG


CACTGGTGTGTCTCATAA






CCCTGACCAGCGGCGTGCA


GTGACTTCTACCCGGGA






CACCTTCCCGGCTGTCCTAC


GCCGTGACAGTGGCCTG






AGTCCTCAGGACTCTACTCC


GAAGGCAGATAGCAGCC






CTCAGCAGCGTGGTGACCG


CCGTCAAGGCGGGAGTG






TGCCCTCCAGCAGCTTGGG


GAGACCACCACACCCTC






CACCCAGACCTACATCTGC


CAAACAAAGCAACAACA






AACGTGAATCACAAGCCCA


AGTACGCGGCCAGCAGC






GCAACACCAAAGGTGGANA


TACCTGAGCCTGACGCCT






AGANAGTTGAGCCCAAATC


GAGCAGTGGAAGTCCCA






TTGTGACAAAACTCACACA


CAGAAGCTACAGCTGCC






TGCCCACCGNGCCCAGCAC


AGGTCACGCATGAAGGG






CTGAACTNCTGGGGGGACC


AGCACCGTGGAGAAGAC






GTCAGTCTTCCTCTTCCCCC


AGTGGCCCCTACAGAAT






CAAAACCCNNNCACCCTCA


GTTCATAGAAGCTTGGN






TGATCTCCCNGACCCCNGA


CGCCATGGCCCAACTTGT






GTCACATGCGTGNGNGNCG


TTATTGCAGCTTATAATG






TGANCCACGANANCCTGAG


GNTACAAATAAAGCAAT






TCAGTNACTNNNCNNNNNG


AGCATCACAAATTTCAC






GNNNGGANNNGCATANNC


AAATAAAGCATTTTTTTC






NNAANNAGCNNNGNAGAG


ACTGCATTCTANTTGTGG






CANTANANAGCNNNTNCGN


TTTNTCCNAACTCATCAN






GNNNGNCANCGTCNNNNNN


GTATCTNNCATGTCTGGA






CNNN (SEQ ID NO:


TCGGGAATTANNCGNCG






3542)


CAGCNNNTGGCCTGAAA









NNACNCTGAAAGAGANN









NNNNGNNCTNCTGAGNG









AAANANNTCNGNNGAAN









GNNNNGNTCANTNNGGN









NNNNGNANGTCCAGNNN









CCCNNCAGNNNNNANNN









TGNNNGCATNCANNNNN









NNNNCNGCNNNNNGNNN









NNGGNNNNNN (SEQ 









ID NO: 3544)








V-C038
NNNNNNNNNNNATGTATCN
GAGGTGCAGCTGGTGGAGT
COV072_
NNNNNNNNNNNNNTGTA
AATTTTATGCTGACTCAGCC
COV072_




TACACATACGATTTAGGTG
CTGGGGGAGGCTTGGTCCA
P2_C9
TCNTACACATACGATTTA
CCACTCTGTGTCGGAGTCTC
P2_C9




ACACTATAGAATAACATCC
GCCTGGGGGGTCCCTGAGA

GGTGACACTATAGAATA
CGGGGAAGACGGTAACCAT





ACTTTGCCTTTCTCTCCACA
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CTCCTGCACCGGCAGCAGTG





GGTGTCCACTCCCAGGTCC
ATTCACCTTTAGTACCTATT

TCTCCACAGGTGTCCACT
GCAGCATTGCCAGCAACTAT





AACTGCACCTCGGTTCTATC
GGATGAGCTGGGTCCGCCA

CCCAGGTCCAACTGCAC
GTGCAGTGGTACCAGCAGC





GATTGAATTCCACCATGGG
GCCTCCAGGGAAGGGGCTG

CTCGGTTCTATCGATTGA
GCCCGGGCAGTGCCCCCACC





ATGGTCATGTATCATCCTTT
GAGTGGGTGGCCAACATAA

ATTCCACCATGGGATGG
ACTGTGATCTATGAGGATAA





TTCTAGTAGCAACTGCAAC
AGCAAGATGGAAGTGAGAA

TCATGTATCATCCTTTTT
CCAAAGACCCTCTGGGGTCC





CGGTGTACATTCTGAGGTG
ATACTATGTGGATTCTGTGA

CTAGTAGCAACTGCAAC
CTGATCGGTTCTCTGGCTCC





CAGCTGGTGGAGTCTGGGG
AGGGCCGATTCACCATCTC

CGGTTCTTGGGCCAATTT
ATCGACAGCTCCTCCAACTC





GAGGCTTGGTCCAGCCTGG
CAGAGACAACGCCAAGAAC

TATGCTGACTCAGCCCCA
TGCCTCCCTCACCATCTCTG





GGGGTCCCTGAGACTCTCC
TCACTGTATCTGCAAATGA

CTCTGTGTCGGAGTCTCC
GACTGAAGACTGAGGACGA





TGTGCAGCCTCTGGATTCAC
ACAGCCTGAGAGCCGACGA

GGGGAAGACGGTAACCA
GGCTGACTACTACTGTCAGT





CTTTAGTACCTATTGGATGA
CACGGCCGTGTATTACTGT

TCTCCTGCACCGGCAGC
CTTATGATAGCAGCAATTGG





GCTGGGTCCGCCAGCCTCC
GCCGGGGGGACATGGCTAC

AGTGGCAGCATTGCCAG
GTGTTCGGCGGAGGGACCA





AGGGAAGGGGCTGGAGTGG
GATCCTCTTTTGACTACTGG

CAACTATGTGCAGTGGT
AGCTGACCGTCCTA (SEQ





GTGGCCAACATAAAGCAAG
GGCCAGGGAACCCTGGTCA

ACCAGCAGCGCCCGGGC
ID NO: 3549)





ATGGAAGTGAGAAATACTA
CCGTCTCCTCAG (SEQ ID

AGTGCCCCCACCACTGT






TGTGGATTCTGTGAAGGGC
NO: 3547)

GATCTATGAGGATAACC






CGATTCACCATCTCCAGAG


AAAGACCCTCTGGGGTC






ACAACGCCAAGAACTCACT


CCTGATCGGTTCTCTGGC






GTATCTGCAAATGAACAGC


TCCATCGACAGCTCCTCC






CTGAGAGCCGACGACACGG


AACTCTGCCTCCCTCACC






CCGTGTATTACTGTGCCGG


ATCTCTGGACTGAAGAC






GGGGACATGGCTACGATCC


TGAGGACGAGGCTGACT






TCTTTTGACTACTGGGGCCA


ACTACTGTCAGTCTTATG






GGGAACCCTGGTCACCGTC


ATAGCAGCAATTGGGTG






TCCTCAGCGTCGACCAAGG


TTCGGCGGAGGGACCAA






GCCCATCGGTCTTCCCCCTG


GCTGACCGTCCTACGTCA






GCACCCTCCTCCAAGAGCA


GCCCAAGGCTGCCCCCT






CCTCTGGGGGCACAGCGGC


CGGTCACTCTGTTCCCGC






CCTGGGCTGCCTGGTCAAG


CCTCGAGTGAGGAGCTT






GACTACTTCCCCGAACCTGT


CAAGCCAACAAGGCCAC






GACGGTCTCGTGGAACTCA


ACTGGTGTGTCTCATAAG






GGCGCCCTGACCAGCGGCG


TGACTTCTACCCGGGAG






TGCACACCTTCCCGGCTGTC


CCGTGACAGTGGCCTGG






CTACAGTCCTCANGACTCT


AAGGCAGATAGCAGCCC






ACTCCCTCAGCAGCGTGGT


CGTCAAGGCGGGAGTGG






GACCGTGCCCTCCAGCAGC


AGACCACCACACCCTCC






TTGGGCACCCAGACCTACA


AAACAAAGCAACAACAA






TCTGCAACGTGAATCACAA


GTACGCGGCCAGCAGCT






GCCCAGCAACACCNAAGGT


ACCTGAGCCTGACGCCT






GGACNAGAGAGTTGAGCCC


GAGCAGTGGAAGTCCCA






AAATCTTGTGACNAAACTC


CAGAAGCTACAGCTGCC






ACACATGCCCACCGTGCCC


AGGTCACGCATGAAGGG






AGCACCTGAACTCCTGGGG


AGCACCGTGGANAAGAC






GGACCGTCAGTCTTCCTCNT


AGTGGCCCCTACAGAAT






CCCCCAAACCCAAGGACAC


GTTCATAGAAGCTTGGC






CCTCATGATCTCCCGGACCC


CGCCATGGCCCAACTTGT






TGANTCACATGCNTGGTGG


TTATTGCAGCTTATAATG






TGGANGTGAGCCACNANNN


GTTACNAATAAAGCAAT






CNTGAGGTCANTCANTGGN


ANCATCACAAATTTCAC






ACGNNGNNGGCNNNGAGG


AAATAAAGCATTTTTTTC






TGCATAANNCNNNNNNAAG


ACTGCATTCTANTNGNG






CNNNGGNAGGANCNNTACA


GTTTGTCCAANCTCATCA






ANNNNCNCGTACNNNNNNN


NGNATNNNNNATGTCTG






NANNNGTCNTNNNCGTNNN


GATCGGNATTNNNGNNN






NNNNCNNNAANNNNNNTG


NNNNCNNCNTGGCCTGA






AANNG (SEQ ID NO:


AANNACCTCTGAAAGAN






3546)


NNTNNNNGNANNNNGAG









NNNANNNNTCNGNNNNG









NNNNGTCANTNGGGTGN









NGAANNNCCAGNTNCCC









NNCAGNNNANNNNTGNA









AGCATGNATNTCNNNNN









CANNNNNNNNNGNGNN









(SEQ ID NO: 3548)








V-C039
NNNNNNNNNNATGNATCNT
CAGGTGCAGCTGGTGGAGT
COV072_
NNNNNNNNNNNTATGNA
GACATCCAGATGACCCAGTC
COV072_




ACACATACGATTTAGGTGA
CTGGGGGAGGCGTGGTCCA
P2_F3
TCNTACACNTACGATTTA
TCCATCCTCCCTGTCTGCAT
P2_F3




CACTATAGAATAACATCCA
GCCTGGGAGGTCCCTGAGA

GGTGACACTATAGAATA
CTGTAGGAGACAGAGTCAC





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CATCACTTGCCAGGCGAGTC





GTGTCCACTCCCAGGTCCA
ATTCACCTTCAGTAGCTATG

TCTCCACAGGTGTCCACT
AGGACATTAGCAACTATTTA





ACTGCACCTCGGTTCTATCG
CCATGCACTGGGTCCGCCA

CCCAGGTCCAACTGCAC
AATTGGTATCAGCAGAAAC





ATTGAATTCCACCATGGGA
GGCTCCAGGCAAGGGGCTG

CTCGGTTCTATCGATTGA
CAGGGAAAGCCCCTAAGCT





TGGTCATGTATCATCCTTTT
GAGTGGGTGGCAGTTATAT

ATTCCACCATGGGATGG
CCTGATCTACGATGCATCCA





TCTAGTAGCAACTGCAACC
CATATGATGGAAGTAATAA

TCATGTATCATCCTTTTT
ATTTGGAAACAGGGGTCCC





GGTGTACATTCTGAGGTGC
ATACTCTGCAGACTCCGTG

CTAGTAGCAACTGCAAC
ATCAAGGTTCAGTGGAAGT





AGCTGGTGGAGTCTGGGGG
AAGGGCCGATTCACCATCT

CGGTGTACATTCTGACAT
GGATCTGGGACAGATTTTAC





AGGCGTGGTCCAGCCTGGG
CCAGAGACAATTCCAAGAA

CCAGATGACCCAGTCTC
TTTCACCATCAGCAGCCTGC





AGGTCCCTGAGACTCTCCT
CACGCTGTATCTGCAAATG

CATCCTCCCTGTCTGCAT
AGCCTGAAGATATTGCAAC





GTGCAGCCTCTGGATTCAC
AACAGCCTGAGAGCTGAGG

CTGTAGGAGACAGAGTC
ATATTACTGTCAACAGTATG





CTTCAGTAGCTATGCCATGC
ACACGGCTGTGTATTACTGT

ACCATCACTTGCCAGGC
ATAATCTCCCGCTCACTTTC





ACTGGGTCCGCCAGGCTCC
GCGAAAGGGGGGGCCTACA

GAGTCAGGACATTAGCA
GGCGGAGGGACCAAGGTGG





AGGCAAGGGGCTGGAGTGG
GCTACTACTACTACATGGA

ACTATTTAAATTGGTATC
AGATCAAAC (SEQ ID





GTGGCAGTTATATCATATG
CGTCTGGGGCAAAGGGACC

AGCAGAAACCAGGGAAA
NO: 3553)





ATGGAAGTAATAAATACTC
ACGGTCACCGTCTCCTCA

GCCCCTAAGCTCCTGATC






TGCAGACTCCGTGAAGGGC
(SEQ ID NO: 3551)

TACGATGCATCCAATTTG






CGATTCACCATCTCCAGAG


GAAACAGGGGTCCCATC






ACAATTCCAAGAACACGCT


AAGGTTCAGTGGAAGTG






GTATCTGCAAATGAACAGC


GATCTGGGACAGATTTT






CTGAGAGCTGAGGACACGG


ACTTTCACCATCAGCAGC






CTGTGTATTACTGTGCGAA


CTGCAGCCTGAAGATAT






AGGGGGGGCCTACAGCTAC


TGCAACATATTACTGTCA






TACTACTACATGGACGTCT


ACAGTATGATAATCTCCC






GGGGCAAAGGGACCACGGT


GCTCACTTTCGGCGGAG






CACCGTCTCCTCAGCGTCG


GGACCAAGGTGGAAATC






ACCAAGGGCCCATCGGTCT


AAACGTACGGTGGCTGC






TCCCCCTGGCACCCTCCTCC


ACCATCTGTCTTCATCTT






AAGAGCACCTCTGGGGGCA


CCCGCCATCTGATGAGC






CAGCGGCCCTGGGCTGCCT


AGTTGAAATCTGGAACT






GGTCAAGGACTACTTCCCC


GCCTCTGTTGTGTGCCTG






GAACCTGTGACGGTCTCGT


CTGAATAACTTCTATCCC






GGAACTCANGCGCCCTGAC


AGAGAGGCCAAAGTACA






CAGCGGCGTGCACACCTTC


GTGGAAGGTGGATAACG






CCGGCTGTCCTACAGTCCTC


CCCTCCAATCGGGTAACT






NNNCTCTACTCCCTCAGCA


CCCAGGAGAGTGTCACA






GCGTGGTGACCGTGCCCTC


GAGCAGGACAGCAAGGA






CAGCAGCTTGGGCACCCAG


CAGCACCTACAGCCTCA






ACCTACATCTGCAACGTGA


GCAGCACCCTGACGCTG






ATCACAAGCCCAGCAACAC


AGCAAAGCAGACTACGA






CAAGGTGGACAAGAGAGTT


GAAACACAAAGTCTACG






GAGCCCAAATCTTGTGANN


CCTGCGAAGTCACCCAT






AAACTCACACATGCCCACC


CNGGCCTGAGCTCGCCC






GTGCCCAGCANCTGAACTN


GTCACAAAGAGCTTCAA






CTGGGGGGACCGTCAGTCT


CAGGGGAGAGTGTTAGA






TCCTCNTCCCCCNAANCCN


AGCTTGGCCGCCATGGN






AGGACACCCNNCATGATCT


CCAACTTGNTTATTGCAG






NCCNNACCNNGAGTCACAT


CTTATNATGGTTACAATA






GCGTGNNNNNNGTNAGCAC


AAGCAATAGCATCACAA






GANANCCTGAGTCAGTCAN


ATTTCACAAATAAAGCA






TGGNACNNNGNNGGNNNN


TTTTTTTCACTGCATTCT






GNNNNGCNTANNCNNANN


ANTNGNNGGTTNGTCCA






NCNNNGGNAGNANCNNTAC


ANCTCATCAATGNATNN






ANNNNNCGTACNNNNNGNC


NNCATGTCTGGNTCGGG






AGCNNNNTNNNCGTCNNNN


ANTNNNNGNGCAGCNNC






CCNNGNNNGNNNNAANGG


NTGGCNTGAANNNNNTC






NA (SEQ ID NO: 


TGAAGAGANTNNNAGNA






3550)


CNNTGAGNGNNNCNTNN









NNNNNNNNNNNNNNNTC









AGTNGNNNNNNGAANNN









(SEQ ID NO: 3552)








V-C040
NNNNNNNNNATGNATCNTA
GAGGTGCAGCTGGTGGAGT
COV072_
NNNNNNNNNNNNNGNAT
GACATCCAGTTGACCCAGTC
COV072_




CACATACGATTTAGGTGAC
CTGGGGGAGGCTTGGTCCA
P2_C12
CNTACACATACGATTTA
TCCATCCTTCCTGTCTGCAT
P2_C12




ACTATAGAATAACATCCAC
GCCTGGGGGGTCCCTGAGA

GGTGACACTATAGAATA
CTGTAGGAGACAGAGTCAC





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CATCACTTGCCGGGCCAGTC





TGTCCACTCCCAGGTCCAA
AGTCACCGTCAGTAGCAAC

TCTCCACAGGTGTCCACT
AGGGCATTAGCAGTTATTTA





CTGCACCTCGGTTCTATCGA
TACATGAGCTGGGTCCGCC

CCCAGGTCCAACTGCAC
GCCTGGTATCAGCAAAAAC





TTGAATTCCACCATGGGAT
AGGCTCCAGGGAAGGGGCT

CTCGGTTCTATCGATTGA
CAGGGAAAGCCCCTAAGCT





GGTCATGTATCATCCTTTTT
GGAGTGGGTCTCACTTATTT

ATTCCACCATGGGATGG
CCTGATCTATGCTGCATCCA





CTAGTAGCAACTGCAACCG
ATAGCGGTGGTAGCACATT

TCATGTATCATCCTTTTT
CTTTGCAAAGTGGGGTCCCA





GTGTACATTCTGAGGTGCA
CTACGCAGACTCCGTGAAG

CTAGTAGCAACTGCAAC
TCAAGGTTCAGCGGCAGTG





GCTGGTGGAGTCTGGGGGA
GGCAGATTCACCATCTCCA

CGGTGTACATTCAGACA
GATCTGGGACAGAATTCACT





GGCTTGGTCCAGCCTGGGG
GAGACAATTCCGAGAACAC

TCCAGTTGACCCAGTCTC
CTCACAATCAGCAGCCTGCA





GGTCCCTGAGACTCTCCTGT
GCTGTATCTTCAAATGAAC

CATCCTTCCTGTCTGCAT
GCCTGAAGATTTTGCAACTT





GCAGCCTCTGGAGTCACCG
ACCCTGAGAGCCGAGGACA

CTGTAGGAGACAGAGTC
ATTACTGTCAACAGCTTAAT





TCAGTAGCAACTACATGAG
CGGCTGTGTATTACTGTGCG

ACCATCACTTGCCGGGC
AGTTACTCTTACACTTTTGG





CTGGGTCCGCCAGGCTCCA
AGAGATCTGTATTACTACG

CAGTCAGGGCATTAGCA
CCAGGGGACCAAGCTGGAG





GGGAAGGGGCTGGAGTGGG
GTATGGACGTCTGGGGCCA

GTTATTTAGCCTGGTATC
ATCAAAC (SEQ ID NO:





TCTCACTTATTTATAGCGGT
AGGGACCACGGTCACCGTC

AGCAAAAACCAGGGAAA
3557)





GGTAGCACATTCTACGCAG
TCCTCA (SEQ ID NO:

GCCCCTAAGCTCCTGATC






ACTCCGTGAAGGGCAGATT
3555)

TATGCTGCATCCACTTTG






CACCATCTCCAGAGACAAT


CAAAGTGGGGTCCCATC






TCCGAGAACACGCTGTATC


AAGGTTCAGCGGCAGTG






TTCAAATGAACACCCTGAG


GATCTGGGACAGAATTC






AGCCGAGGACACGGCTGTG


ACTCTCACAATCAGCAG






TATTACTGTGCGAGAGATC


CCTGCAGCCTGAAGATTT






TGTATTACTACGGTATGGA


TGCAACTTATTACTGTCA






CGTCTGGGGCCAAGGGACC


ACAGCTTAATAGTTACTC






ACGGTCACCGTCTCCTCAG


TTACACTTTTGGCCAGGG






CGTCGACCAAGGGCCCATC


GACCAAGCTGGAGATCA






GGTCTTCCCCCTGGCACCCT


AACGTACGGTGGCTGCA






CCTCCAAGAGCACCTCTGG


CCATCTGTCTTCATCTTC






GGGCACAGCGGCCCTGGGC


CCGCCATCTGATGAGCA






TGCCTGGTCAAGGACTACT


GTTGAAATCTGGAACTG






TCCCCGAACCTGTGACGGT


CCTCTGTTGTGTGCCTGC






CTCGTGGAACTCAGGCGCC


TGAATAACTTCTATCCCA






CTGACCAGCGGCGTGCACA


GAGAGGCCAAAGTACAG






CCTTCCCGGCTGTCCTACAG


TGGAAGGTGGATAACGC






TCCTCAGGACTCTACTCCCT


CCTCCAATCGGGTAACTC






CAGCAGCGTGGTGACCGTG


CCAGGAGAGTGTCACAG






CCCTCCAGCAGCTTGGGCA


AGCANGACAGCAAGGAC






CCCAGACCTACATCTGCAA


AGCACCTACAGCCTCAG






CGTGAATCACAAGCCCAGC


CAGCACCCTGACGCTGA






AACACCNANGTGGACAAGA


NCAAAGCAGACTACGAG






NAGTTGAGCCCAAATCTTG


AAACACAAAGTCTACGC






TGACAAAACTCACACATGC


CTGCGAAGTCACCCATC






CCACCGTGCCCAGCACCTG


AGGGCCTGAGCTCGCCC






AACTCCTGGGGGGACCGTC


GTCACAAAGAGCTTCAA






AGTCTTCCTCTTCCCCCCAA


CAGGGGAGAGTGTTAGA






AANCCAAGGACACCCTNAT


AGCTTGGCCGCCATGGC






GATCNCCCNGACCCCNGAN


CCAACTTGTTTATTGCAG






TCACATGCGTGGNGNNGAC


CTTATAATGGNTACAAA






GTGAGCCACGANACCCNGA


TAAAGCAATAGCATCAC






GTCAGTTCAACTGGNACGN


AAATTTCACAAATAAAG






NGNNGGNNNNGGAGGTGC


CATTTTTTTCACTGCATT






ANANNCNNNAANAAGCCN


CTANTTGNGGNTTGNCC






NNGGNAGGANNAGTANAN


AAACTCATNNNGNATNT






NGNNCGTACNNNNNNNNCA


NTCATGTCTGNATCNGN






NCGTCNNCNNCNNNNNNNC


NNTNATTCGNCGCAGCN






AGNNTNNNGAANGGCNNG


CNTNNNNAANNACNCTG






NNNNNNNANNGCAANGNN


AANAGNNNNNNNNACN






NNNCNNNNAANNNNNN


NNGAGNGAANAACNTNN






(SEQ ID NO: 3554)


TGNGANNNNNNNTCAGT









NGGNNGNNGAAAGTCCC









NNGNTNCCNANCAGNAN









ANNNTGNNNCANGCATT









NNCANNNNNNNCNNCNG









NNNNGGAAANTCNNNNN









NNNN (SEQ ID NO:









3556)








V-C041
NNNNNNNNNATGTATCNTA
CAGGTGCAGCTGGTGGAGT
COV072_
NNNNNNNNNNTATGNAT
AATTTTATGCTGACTCAGCC
COV072_




CACNTACGATTTAGGTGAC
CTGGGGGAGGCGTGGTCCA
P3_H7
CNTACACATACGATTTA
CCACTCTGTGTCGGAGTCTC
P3_H7




ACTATAGAATAACATCCAC
GCCTGGGAGGTCCCTGAGA

GGTGACACTATAGAATA
CGGGGAAGACGGTAACCAT





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CTCCTGCACCGGCAGCAGTG





TGTCCACTCCCAGGTCCAA
ATTCACCTTCAGTAGCTATG

TCTCCACAGGTGTCCACT
GCAGCATTGCCAGCAACTAT





CTGCACCTCGGTTCTATCGA
CTATGTTCTGGGTCCGCCAG

CCCAGGTCCAACTGCAC
GTGCAGTGGTACCAGCAGC





TTGAATTCCACCATGGGAT
GCTCCAGGCAAGGGGCTGG

CTCGGTTCTATCGATTGA
GCCCGGGCAGTGCCCCCACC





GGTCATGTATCATCCTTTTT
AGTGGGTGGCAGTTATATC

ATTCCACCATGGGATGG
ACTGTGATCTATGAGGATAA





CTAGTAGCAACTGCAACCG
ATATGATGGAAGCAATAAA

TCATGTATCATCCTTTTT
CCAAAGACCCTCTGGGGTCC





GTGTACATTCTGAGGTGCA
TACTACGCAGACTCCGTGA

CTAGTAGCAACTGCAAC
CTGATCGGTTCTCTGGCTCC





GCTGGTGGAGTCTGGGGGA
AGGGCCGATTCACCATCTC

CGGTTCTTGGGCCAATTT
ATCGACAGCTCCTCCAACTC





GGCGTGGTCCAGCCTGGGA
CAGAGACAATTCCAAGAAC

TATGCTGACTCAGCCCCA
TGCCTCCCTCACCATCTCTG





GGTCCCTGAGACTCTCCTGT
ACGCTGTATCTGCAAATGA

CTCTGTGTCGGAGTCTCC
GACTGAAGACTGAGGACGA





GCAGCCTCTGGATTCACCTT
ACAGCCTGAGAGCTGAGGA

GGGGAAGACGGTAACCA
GGCTGACTACTACTGTCAGT





CAGTAGCTATGCTATGTTCT
CACGGCTGTGTATTACTGTG

TCTCCTGCACCGGCAGC
CTTATGATAGCAGCAATTGG





GGGTCCGCCAGGCTCCGGG
CGAGGGCGGATTTAGGATA

AGTGGCAGCATTGCCAG
GTGTTCGGCGGAGGGACCA





CAAGGGGCTGGAGTGGGTG
TTGTACTAATGGTGTATGCT

CAACTATGTGCAGTGGT
AGCTGACCGTCCTAG (SEQ





GCAGTTATATCATATGATG
ATGTTGACTACTGGGGCCA

ACCAGCAGCGCCCGGGC
ID NO: 310)





GAAGCAATAAATACTACGC
GGGAACCCTGGTCACCGTC

AGTGCCCCCACCACTGT






AGACTCCGTGAAGGGCCGA
TCCTCA (SEQ ID NO:

GATCTATGAGGATAACC






TTCACCATCTCCAGAGACA
3559)

AAAGACCCTCTGGGGTC






ATTCCAAGAACACGCTGTA


CCTGATCGGTTCTCTGGC






TCTGCAAATGAACAGCCTG


TCCATCGACAGCTCCTCC






AGAGCTGAGGACACGGCTG


AACTCTGCCTCCCTCACC






TGTATTACTGTGCGAGGGC


ATCTCTGGACTGAAGAC






GGATTTAGGATATTGTACT


TGAGGACGAGGCTGACT






AATGGTGTATGCTATGTTG


ACTACTGTCAGTCTTATG






ACTACTGGGGCCAGGGAAC


ATAGCAGCAATTGGGTG






CCTGGTCACCGTCTCCTCAG


TTCGGCGGAGGGACCAA






CGTCGACCAAGGGCCCATC


GCTGACCGTCCTAGGTC






GGTCTTCCCCCTGGCACCCT


AGCCCAAGGCTGCCCCC






CCTCCAAGAGCACCTCTGG


TCGGTCACTCTGTTCCCG






GGGCACAGCGGCCCTGGGC


CCCTCGAGTGAGGAGCT






TGCCTGGTCAAGGACTACT


TCAAGCCAACAAGGCCA






TCCCCGAACCTGTGACGGT


CACTGGTGTGTCTCATAA






CTCGTGGAACTCANGCGCC


GTGACTTCTACCCGGGA






CTGACCAGCGGCGTGCACA


GCCGTGACAGTGGCCTG






CCTTCCCGGCTGTCCTACAG


GAAGGCAGATAGCAGCC






TCCTCAGGACTCTACTCCCT


CCGTCAAGGCGGGAGTG






CAGCAGCGTGGTGACCGTG


GAGACCACCACACCCTC






CCCTCCAGCAGCTTGGGCA


CAAACAAAGCAACAACA






CCCAGACCTACATCTGCAA


AGTACGCGGCCAGCAGC






CGTGAATCACAAGCCCAGC


TACCTGAGCCTGACGCCT






AACACCANNNGGACAAGA


GAGCAGTGGAAGTCCCA






NAGTTGAGCCCAAATCTTG


CAGAAGCTACAGCTGCC






TGACAAAACTCACACATGC


AGGTCACGCATGAAGGG






CCACCGTGCCCAGCACCTG


AGCACCGTGGNNAAGAC






ACTCCTGGGGGGACCGTCA


AGTGGCCCCTACAGAAT






GTCTTCNNNTCCCCCAAAA


GTTCATAGAAGCTTGGC






NCCAANNNANCCNTCATGA


CGCCATGGCCCAACTTGT






TCTNCCNNCCNNGAGTCAC


TTATTGCAGCTTATAATG






NTGNNGTGGNGNNNGNNGT


GTTACAAATAAAGCANA






GANCNCNANANCCTGAGTC


GCATCACAAATTTCACA






AGTCACTNNNCNTGNNNNN


AATAAAGCATTTTTTTCA






NNNGANNNGCNNANNCNN


CTGCATNCTANTNGNGG






NNNNANCNNNGANNANAG


TTTGTCCAAACTCATCNN






TNCANNGNNCNNNCNNNNN


NNATNNNTCATGTCTGG






NGNCANCNNNNNNNNNNC


ATCGGGAATNNNTNGNC






CGTNNNNNNNCNNNNGNA


GCANCNCNTGCCTGANN






ANNNGGCNNNNN (SEQ


ACCTCTGAANANNNTNN






ID NO: 3558)


NGTACTNCNGAGNGAAA









NNANNTCTGNGNNNNNN









GTCAGTTNGGGNGNNNN









NNCCNGNTNCCCNNNNN









GNANANNNTGCAAGCAT









GCNTNNTNNNTNANTCA









NN (SEQ ID NO:









3560)








V-C042

GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNNNTNNNGNN
GACATCGTGATGACCCAGTC
COV047_





CTGGGGGAGGCTTGGTCCA
P5_H7
TNNTACNCATACGATTTA
TCCAGACTCCCTGGCTGTGT
P5_H7





GCCGGGGGGGTCCCTGAGA

GGTGACACTATAGAATA
CTNTGGGCGAGAGGGCCAC






CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CATCAACTGCAAGTCCAGCC






ATTCAGTGTCAGCACGAAG

TCTCCACAGGTGTCCACT
AGAGTGTTTTATACAGCTCC






TACATGACATGGGTCCGTC

CCCAGGTCCAACTGCAC
AACAATAAGAACTACTTAG






AGGCTCCAGGGAAGGGACT

CTCGGTTCTATCGATTGA
CTTGGTACCAGCAGAAACC






GGAGTGGGTCTCAGCTCTTT

ATTCCACCATGGGATGG
AGGACAGCCTCCTAAGCTGC






ACAGCGGTGGTAGTGATTA

TCATGTATCATCCTTTTT
TCATTTACTGGGCATCTACC






CTACGCAGACTCCGTGAAG

CTAGTAGCAACTGCAAC
CGGGAATCCGGGGTCCCTG






GGCAGATTCACCATCTCCA

CGGTGTACATTCGGACA
ACCGATTCAGTGGCAGCGG






GAGACAATTCCAAGAACAC

TCGTGATGACCCAGTCTC
GTCTGGGACAGATTTCACTC






TTTATATCTTCAAATGAGCA

CAGACTCCCTGGCTGTGT
TCACCATCAGCAGCCTGCAG






GCTTGAGAGTCGAGGACAC

CTCTGGGCGAGAGGGCC
GCTGAAGATGTGGCAGTTTA






GGGTGTTTATTACTGTGCCA

ACCATCAACTGCAAGTC
TTACTGTCAGCAATATTATA






GAGACTCGTCGGAAGTCCG

CAGCCAGAGTGTTTTATA
GTACTCCGCTCACTTTCGGC






TGACCACCCCGGGCACCCA

CAGCTCCAACAATAAGA
GGAGGGACCAAGGTGGAGA






GGGCGCTCGGTGGGGGCTT

ACTACTTAGCTTGGTACC
TCAAAC (SEQ ID NO:






TTGATATTTGGGGCCAAGG

AGCAGAAACCAGGACAG
3564)






GACAATGGTC (SEQ ID

CCTCCTAAGCTGCTCATT







NO: 3562)

TACTGGGCATCTACCCG









GGAATCCGGGGTCCCTG









ACCGATTCAGTGGCAGC









GGGTCTGGGACAGATTT









CACTCTCACCATCAGCA









GCCTGCAGGCTGAAGAT









GTGGCAGTTTATTACTGT









CAGCAATATTATAGTACT









CCGCTCACTTTCGGCGGA









GGGACCAAGGTGGAGAT









CAAACGTACGGTGGCTG









CACCATCTGTCTTCATCT









TCCCGCCATCTGATGAGC









AGTTGAAATCTGGAACT









GCCTCTGTTGTGTGCCTG









CTGAATAACTTCTATCCC









AGAGAGGCCAAAGTACA









GTGGAAGGTGGATAACG









CCCTCCAATCGGGTAACT









CCCAGGAGAGTGTCACA









GAGCAGGACAGCAAGGA









CAGCACCTACAGCCTCA









GCAGCACCCTGACGCTG









AGCAAAGCAGACTACGA









GAAACACAAAGTCTACG









CCTGCGAAGTCACCCAT









CANGGCCTGAGCTCGCC









CGTCACAAAGAGCTTCA









ACAGGGGAGAGTGTTAG









AAGCTTGGCCGCCATGG









CCCAACTTGTTTATTGCA









GCTTATAATGGTTACAA









ATAAAGCAATAGCATCA









CAAATTTCACAAATAAA









GCATTTTTTTCACTGCAT









TCTANTTGTGGTTTGTCC









AAACTCATCAATGTATCT









NATCATGTCTGGATCGG









GAATTNATTCGGCGCAG









CANCATGGNCCTGAAAT









AACCTNNNAAAGANNAC









TTGNTTAGNACNTNCTG









ANNNNANNACATCNNNN









GAATGNNNGTCANNNNN









NGGNNGAAAGTCCCNNN









CTCCCCNNCNGNNANNN









TGCNNANNNNNNNNNNN









NNNNCAGCACNGNNNGA









ANNNNNNNNNNNNNNN









GCNAANNNNCANCANNN









ANNNNNNNNNNNNNNN









ANC (SEQ ID NO:









3563)








V-C043
NNNNNNNNNNATGNATCNT
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNCCNNNNNNT
CAGTCTGTGCTGACTCAGCC
COV047_




ACACATACGATTTAGGTGA
CTGGGGGAGGCTTGGTCCA
P5_E9
ANNNTACNCATACGATT
TGCCTCCGTGTCTGGGTCTC
P5_E9




CACTATAGAATAACATCCA
GCCGGGGGGGTCCCTGAGA

TAGGTGACACTATAGAA
CTGGACAGTCGATCACCATC





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCCTCTGG

TAACATCCACTTTGCCTT
TCCTGCACTGGAACCAGCAA





GTGTCCACTCCCAGGTCCA
ATTCAGTGTCAGCACCAAG

TCTCTCCACAGGTGTCCA
TGATGTTGGGAGTTATACCC





ACTGCACCTCGGTTCTATCG
TACATGACATGGGTCCGTC

CTCCCAGGTCCAACTGC
TTGTCTCCTGGTACCAACAG





ATTGAATTCCACCATGGGA
AGGCTCCAGGGAAGGGGCT

ACCTCGGTTCTATCGATT
TACCCAGGCAAAGCCCCCA





TGGTCATGTATCATCCTTTT
GGAGTGGGTCTCAGTTCTTT

GAATTCCACCATGGGAT
AACTCTTAATTTTTGAGGGC





TCTAGTAGCAACTGCAACC
ACAGCGGTGGTAGTGATTA

GGTCATGTATCATCCTTT
ACTAAGCGGTCCTCAGGGAT





GGTGTACATTCTGAGGTGC
CTACGCAGACTCCGTGAAG

TTCTAGTAGCAACTGCA
TTCTAATCGCTTCTCTGGTTC





AGCTGGTGGAGTCTGGGGG
GGCAGATTCACCATCTCCA

ACCGGTTCCTGGGCCCA
CAAGTCTGGCAACACGGCCT





AGGCTTGGTCCAGCCGGGG
GAGACAATTCCAAGAACGC

GTCTGCCCTGACTCAGCC
CCCTGACAATCTCTGGGCTC





GGGTCCCTGAGACTCTCCT
TTTATATCTTCAAATGAACA

TGCCTCCGTGTCTGGGTC
CAGGGTGAAGACGAGGCTG





GTGCAGCCTCTGGATTCAG
GCTTGAGAGTCGAGGACAC

TCCTGGACAGTCGATCA
ATTATTATTGCTGCTCATAT





TGTCAGCACCAAGTACATG
GGGTGTTTATTACTGTGCCA

CCATCTCCTGCACTGGAA
GCAGGTGCTAGCACTTTCGT





ACATGGGTCCGTCAGGCTC
GAGACTCGTCGGAAGTCCG

CCAGCAATGATGTTGGG
GTTCGGCGGAGGGACCAAG





CAGGGAAGGGGCTGGAGTG
TGACCACCCCGGGCACCCA

AGTTATACCCTTGTCTCC
CTGACCGTCCTAG (SEQ





GGTCTCAGTTCTTTACAGCG
GGGCGCTCGGTGGGGGCTT

TGGTACCAACAGTACCC
ID NO: 3568)





GTGGTAGTGATTACTACGC
TTGATATCTGGGGCCAAGG

AGGCAAAGCCCCCAAAC






AGACTCCGTGAAGGGCAGA
GACAATGGTCACCGTCTCTT

TCTTAATTTTTGAGGGCA






TTCACCATCTCCAGAGACA
CAG (SEQ ID NO: 

CTAAGCGGTCCTCAGGG






ATTCCAAGAACGCTTTATAT
3566)

ATTTCTAATCGCTTCTCT






CTTCAAATGAACAGCTTGA


GGTTCCAAGTCTGGCAA






GAGTCGAGGACACGGGTGT


CACGGCCTCCCTGACAA






TTATTACTGTGCCAGAGACT


TCTCTGGGCTCCAGGGTG






CGTCGGAAGTCCGTGACCA


AAGACGAGGCTGATTAT






CCCCGGGCACCCAGGGCGC


TATTGCTGCTCATATGCA






TCGGTGGGGGCTTTTGATAT


GGTGCTAGCACTTTCGTG






CTGGGGCCAAGGGACAATG


TTCGGCGGAGGGACCAA






GTCACCGTCTCTTCAGCGTC


GCTGACCGTCCTAGGTC






GACCAAGGGCCCATCGGTC


AGCCCAAGGCTGCCCCC






TTCCCCCTGGCACCCTCCTC


TCGGTCACTCTGTTCCCA






CAAGAGCACCTCTGGGGGC


CCCTCGAGTGAGGAGCT






ACAGCGGCCCTGGGCTGCC


TCAAGCCAACAAGGCCA






TGGTCAAGGACTACTTCCC


CACTGGTGTGTCTCATAA






CGAACCTGTGACGGTCTCG


GTGACTTCTACCCGGGA






TGGAACTCAGGCGCCCTGA


GCCGTGACAGTGGCCTG






CCAGCGGCGTGCACACCTT


GAAGGCAGATAGCAGCC






CCCGGCTGTCCTACAGTCCT


CCGTCAAGGCGGGAGTG






CAGGACTCTACTCCCTCAG


GAGACCACCACACCCTC






CAGCGTGGTGACCGTGCCC


CAAACAAAGCAACAACA






TCCAGCAGCTTGGGCACCC


AGTACGCGGCCAGCAGC






AGACCTACATCTGCAACGT


TACCTGAGCCTGACGCCT






GAATCACAAGCCCAGCAAC


GAGCAGTGGAAGTCCCA






ACCAANGTGGACAAGAGAG


CAGAAGCTACAGCTGCC






TTGAGCCCAAATCTTGTGA


AGGTCACGCATGAAGGG






NNNAANTNANNCNNGNCCA


AGCACCGTGGAGAAGAC






TGNNCCGNCCGNGCCCAGN


AGTGGCCCCTACAGAAT






ACTNGNANNNCNNGGGGG


GTTCATAGAAGCTTGGC






GANCNNTCANNNTTNCNTC


CGCCATGGCCCAACTTGT






TTCCCCCCAAAACCCANGG


TTATTGCAGCTTATAATG






ACACCNNCATGATCTCCCG


GTTACAAATAAAGCAAT






GACCCNTGAGTCANNNTGG


AGCATCACAAATTTCAC






CGATTTTTGGAGTGGTTATT


AGCTCATATACAAGCAG






CTAGAGACCGTTACTACTTT


CACCACTCGAGTCTTCGG






GACTACTGGGGCCAGGGAA


AACTGGGACCAGGGTCA






CCCTGGTCACCGTCTCCTCA


CCGTCCTAGGTCAGCCC






GCGTCGACCAAGGGCCCAT


AAGGCCAACCCCACTGT






CGGTCTTCCCCCTGGCACCC


CACTCTGTTCCCACCCTC






TCCTCCAAGAGCACCTCTG


GAGTGAGGAGCTTCAAG






GGGGCACAGCGGCCCTGGG


CCAACAAGGCCACACTG






CTGCCTGGTCAAGGACTAC


GTGTGTCTCATAAGTGAC






TTCCCCGAACCTGTGACGG


TTCTACCCGGGAGCCGT






TCTCGTGGAACTCANGCGC


GACAGTGGCCTGGAAGG






CCTGACCAGCGGCGTGCAC


CAGATAGCAGCCCCGTC






ACCTTCCCGGCTGTCCTACA


AAGGCGGGAGTGGAGAC






GTCCTCANGACTCTACTCCC


CACCACACCCTCCAAAC






TCAGCAGCGTGGTGACCGT


AAAGCAACAACAAGTAC






GCCCTCCAGCAGCTTGGGC


GCGGCCAGCAGCTACCT






ACCCAGACCTACATCTGCA


GAGCCTGACGCCTGAGC






ACGTGAATCACAAGCCCAG


AGTGGAAGTCCCACAGA






CAACACCNAAGGTGGACAA


AGCTACAGCTGCCAGGT






GANAGTTGAGCCCAAATCT


CACGCATGAAGGGAGCA






TGTGACAAAACTCACACAT


CCGTGGAGAAGACAGTG






GCCCACCGTGCCCAGCACC


GCCCCTACAGAATGTTC






TGACTCCTGGGGGGACCGT


ATAGAAGCTTGGCCGCC






CAGTCTTCCTCTTCCCCCCA


ATGGCCCAACTTGTTTAT






AACCCAAGGACACCCTCAT


TGCAGCTTATAATGGTTA






GATCTCCCGGACCCCTGAG


CAAATAAAGCAATAGCA






TCACATGNCGNGGNGGNGG


TNNNNAATTTCACAAAT






NCGTGNNCCACNAANANCC


AAAGCATTTTTTTCACTG






TGAGNNAGTTCAACTGGNA


CATTCTAGTTGTGGTTTG






CGTNNNGGNNNNGNNNNN


TCCAAACTCATCNATGN






GCANNNNNNNNNANNAAA


ANNTTATCATGNNCTGG






NNNNCNGGNAGGANNANN


ATNGGGNATNANTNNNN






ANNANNANCNCNTNCNNNN


NNAGCNNCNTGGNNTGN






NGNNCNNNCGNNNNNNNC


AANNCNNNTNAANNNGA






NNCNNNNCNNNNNNNNNN


NTTGGNNNNGTANCTTN






NNANNGNNNNNNNNNANA


NNNNNNNNGGNANNACC






NANNNNANNNNNNNNNNN


NTNNNGNGNNGNGNNTC






NNNNNNNNNNNNNNNNNN


AGTNNNNNNGANNNCCN






NCNNNNNCNNNNCNNNNG


NGNNNCCNNNNGNNNNN









NNGNANNCNTGCANNNN






CGNNGGNNGNGGNCGTGA


AAATAAAGCATTTTTTTC






GCCANNAANANNCTGANNC


ACTGCATNCCNANTTGT






ANNNANTGNNNCNNNGNN


GGTTTGTCCAAACTCATC






GGGCNNGGNNGGTNCATAA


AATGTATCTTATCATGTC






NGNNANANAAGCNNNNGG


TGGATCGGGAATTAANT






NNNGNANCANNACANNNN


TNNGCGCANCACCATGN






NNNTACCGNNNNNNANCNN


NNTGAAATNACCTCTGA






CNNNNNNCGTCNNNNNNCN


AAGANGAACTNNNNTAN






GNNNNNNNNNNNGNNAGG


GTACCTTCTGNNNNNAA






NNNNNNNNNNNNNNNNNA


GNANNTCNNNGNNTGNN






NNNANNNNCTNCNNNNCCC


NNNNCNNNNGGGNGNN






ATNNGNANNNNNNTNNNN


GNANNTCCCAGNNNCCC






NNNNNANNGNCNNNCCNC


NNNNGNANANNNATGNN






NNNNNNNNNNNNNNN


NNATNCATNNNNNNNNC






(SEQ ID NO: 3565)


ANCANNNNNNGNNNNN









NNNCCNNNNNCCNNNGN









NANNTGCANNNNANGNN









ANNNNNNNTNNNNNNNN









NNNNCANANNNCNNNNN









CCNNNN (SEQ ID NO:









3567)








V-C044
ANNNNNNNNATGNATCNTA
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNNNNNNNTGN
CAGTCTGTGCTGACTCAGCC
COV047_




CACATACGATTTAGGTGAC
CTGGAGGAGGCTTGATCCA
P3_D7
NTNNTANNCATACGATT
TGCCTCCGTGTCTGGGTCTC
P3_D7




ACTATAGAATAACATCCAC
GCCTGGGGGGTCCCTGAGA

TAGGTGACACTATAGAA
CTGGACAGTCGATCACCATC





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

TAACATCCACTTTGCCTT
TCCTGCACTGGAACCAGCAG





TGTCCACTCCCAGGTCCAA
GTTCACCGTCAGTAACAAC

TCTCTCCACAGGTGTCCA
TGACGTTGGTGGTTATAACT





CTGCACCTCGGTTCTATCGA
TACATGAGCTGGGTCCGCC

CTCCCAGGTCCAACTGC
ATGTCTCCTGGTACCAACAA





TTGAATTCCACCATGGGAT
AGGCTCCAGGGAAGGGGCT

ACCTCGGTTCTATCGATT
CACCCAGGCAAAGCCCCCA





GGTCATGTATCATCCTTTTT
GGAGTGGGTCTCAGTTATTT

GAATTCCACCATGGGAT
AACTCATGATTTATGATGTC





CTAGTAGCAACTGCAACCG
ATAGCGGTGGTAGCACATA

GGTCATGTATCATCCTTT
AGTAATCGGCCCTCAGGGGT





GTGTACATTCTGAGGTGCA
CTACGCAGACTCCGTGAAG

TTCTAGTAGCAACTGCA
TTCTAATCGCTTCTCTGGCT





GCTGGTGGAGTCTGGAGGA
GGCCGATTCACCATCTCCA

ACCGGTTCCTGGGCCCA
CCAAGTCTGGCAACACGGC





GGCTTGATCCAGCCTGGGG
GAGACAAATCCAAGAACAC

GTCTGCCCTGACTCAGCC
CTCCCTGACCATCTCTGGGC





GGTCCCTGAGACTCTCCTGT
GCTGTATCTTCAAATGAAC

TGCCTCCGTGTCTGGGTC
TCCAGGCTGAGGACGAGGC





GCAGCCTCTGGGTTCACCG
AGGCTGAGAGCCGAGGACA

TCCTGGACAGTCGATCA
TGATTATTACTGCAGCTCAT





TCAGTAACAACTACATGAG
CGGCCGTGTATTATTGTGCG

CCATCTCCTGCACTGGAA
ATACAAGCAGCAGCACTCG





CTGGGTCCGCCAGGCTCCA
AGAGAAGGGGAGGTAGAA

CCAGCAGTGACGTTGGT
AGTCTTCGGAACTGGGACCA





GGGAAGGGGCTGGAGTGGG
GGGTATAACGATTTTTGGA

GGTTATAACTATGTCTCC
AGGTCACCGTCCTAG (SEQ





TCTCAGTTATTTATAGCGGT
GTGGTTATTCTAGAGACCG

TGGTACCAACAACACCC
ID NO: 3572)





GGTAGCACATACTACGCAG
TTACTACTTTGACTACTGGG

AGGCAAAGCCCCCAAAC






ACTCCGTGAAGGGCCGATT
GCCAGGGAACCCTGGTCAC

TCATGATTTATGATGTCA






CACCATCTCCAGAGACAAA
CGTCTCCTCAG (SEQ 

GTAATCGGCCCTCAGGG






TCCAAGAACACGCTGTATC
ID NO: 3570)

GTTTCTAATCGCTTCTCT






TTCAAATAAACAGGCTGAG


GGCTCCAAGTCTGGCAA






AGCCGAGGACACGGCCGTG


CACGGCCTCCCTGACCAT






TATTATTGTGCGAGAGAAG


CTCTGGGCTCCAGGCTG






GGGAGGTAGAAGGGTATAA


AGGACGAGGCTGATTAT






CGATTTTTGGAGTGGTTATT


TACTGCAGCTCATATACA






CTAGAGACCGTTACTACTTT


AGCAGCAGCACTCGAGT






GACTACTGGGGCCAGGGAA


CTTCGGAACTGGGACCA






CCCTGGTCACCGTCTCCTCA


AGGTCACCGTCCTAGGT






GCGTCGACCAAGGGCCCAT


CAGCCCAAGGCCAACCC






CGGTCTTCCCCCTGGCACCC


CACTGTCACTCTGTTCCC






TCCTCCAAGAGCACCTCTG


ACCCTCGAGTGAGGAGC






GGGGCACAGCGGCCCTGGG


TTCAAGCCAACAAGGCC






CTGCCTGGTCAAGGACTAC


ACACTGGTGTGTCTCATA






TTCCCCGAACCTGTGACGG


AGTGACTTCTACCCGGG






TCTCGTGGAACTCAGGCGC


AGCCGTGACAGTGGCCT






CCTGACCAGCGGCGTGCAC


GGAAGGCAGATAGCAGC






ACCTTCCCGGCTGTCCTACA


CCCGTCAAGGCGGGAGT






GTCCTCANGACTCTACTCCC


GGAGACCACCACACCCT






TCANCAGCGTGGGGANNCN


CCAAACAAAGCAACAAC






GNNCNCCTCCANCANTTTG


AAGTACGCGGCCAGCAG






GGCNNCCNNAAANCTANNT


CTACCTGAGCCTGACGC






TNNGCAACGTNAANTCAAN


CTGAGCAGTGGAAGTCC






ANCCCAGCANCNNCCAAGG


CACAGAAGCTACAGCTG






NGNNNANAAAANTTGANCC


CCAGGTCACGCATGAAG






CAAATCTTGNGACAAAACT


GGAGCACCGTGGAGAAG






CACACATGCCCCANCGTGC


ACAGTGGCCCCTACAGA






CCAGCNCNGACTNCTGGGG


ATGTTCATAGAAGCTTG






GGACNTCAGTNTCNNTNCC


GCCGCCATGGCCCAACT






CNNAANCNNNNNNCCTNAT


TGTTTATTGCAGCTTATA






GATCNCCNNCCCNGAGTCA


ATGGTTACAAATAAAGC






NNTGNNNGTGNNGNNNTGA


AATAGCATCACAAATTT






NCNNGANACCNGAGNCAGT


CACAAATAAAGCATTTTT






CACTNNNCNTGNNGNNNNN


TTCACTGCATTCTAGTTG






NNGNNCANANNCNNANNA


TGGTTTGTCCAAACTCAT






NCNNNNNNNNNNCANNNN


CAATGTATCTTATCATGT






NNGTNCNNGNNGTNNNNTC


CTGGNTCGGGAATTAAT






NNNCGTCNNNNNNGNANTG


TCNGNGNCANCNCCATG






NNNNNNNNNNNNNNNNNN


GCCTGAAATAACNNNTG






NNNNNNNNNANCNNCNNN


AAAGANNNCTTGGTNGN






CNNNNAANNNNNNNCNAN


ACCTTCTGAGNGNAANN






NCNNNNNNNNN (SEQ


ANNNTCTGNNGAANNNN






ID NO: 3569)


NNTCAGTTNGGNNNNNN









AAGTCCCCNGNNNCCCN









NNNGNNNAANNNNGCA









AGCATGCATCTCANNNN









NAGCANNNNNNNNNNCC









NNGNTCCNNNNGNNNNT









GCNNNNNNNNNANNNN









NNNNNNNCNNNNNNNN









NCNNNCCCCNTANN









(SEQ ID NO: 3571)








V-C045
NNNNNNNNNATGNNTCNTA
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNCNNTATGNATN
CAGTCTGTGCTGACTCAGCC
COV047_




CACATACGATTTAGGTGAC
CTGGAGGAGGCTTGATCCA
P5_E1
NTACACATACGATTTAG
TGCCTCCGTGTCTGGGTCTC
P5_E1




ACTATAGAATAACATCCAC
GCCTGGGGGGTCCCTGAGA

GTGACACTATAGAATAA
CTGGACAGTCGATCACCATC





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

CATCCACTTTGCCTTTCT
TCCTGCACTGGAACCAGCAG





TGTCCACTCCCAGGTCCAA
GTTCAGCGTCAGTAGCAAC

CTCCACAGGTGTCCACTC
TGACGTTGGTGGTTATAACT





CTGCACCTCGGTTCTATCGA
TACATGAGCTGGGTCCGCC

CCAGGTCCAACTGCACC
ATGTCTCCTGGTACCAACAA





TTGAATTCCACCATGGGAT
AGGCTCCAGGGAAGGGGCT

TCGGTTCTATCGATTGAA
CACCCAGGCAAAGCCCCCA





GGTCATGTATCATCCTTTTT
GGAGTGGGTCTCAGTTATTT

TTCCACCATGGGATGGTC
AACTCATGATTTATGATGTC





CTAGTAGCAACTGCAACCG
ATAGCGGTGGTAGTACATA

ATGTATCATCCTTTTTCT
AGTAATCGGCCCTCAGGGGT





GTGTACATTCTGAGGTGCA
CTACGCAGACTCCGTGAAG

AGTAGCAACTGCAACCG
TTCTAATCGCTTCTCTGGCT





GCTGGTGGAGTCTGGAGGA
GGCCGATTCACCATCTCCA

GTTCCTGGGCCCAGTCTG
CCAAGTCTGGCAACACGGC





GGCTTGATCCAGCCTGGGG
GAGACAATTCCAAGAACAC

CCCTGACTCAGCCTGCCT
CTCCCTGACCATCTCTGGGC





GGTCCCTGAGACTCTCCTGT
GCTGTATCTTCAAATGAAC

CCGTGTCTGGGTCTCCTG
TCCAGGCTGAGGACGAGGC





GCAGCCTCTGGGTTCAGCG
AGCCTGAGAGCCGAGGACA

GACAGTCGATCACCATC
TGATTATTACTGCAGCTCAT





TCAGTAGCAACTACATGAG
CGGCCGTGTATTACTGTGC

TCCTGCACTGGAACCAG
ATACAAGCAGCACCACTCG





CTGGGTCCGCCAGGCTCCA
GAGAGAAGGGGAGGTAGA

CAGTGACGTTGGTGGTT
AGTCTTCGGAACTGGGACCA





GGGAAGGGGCTGGAGTGGG
AGGGTATTACGATTTTTGG

ATAACTATGTCTCCTGGT
GGGTCACCGTCCTAG (SEQ





TCTCAGTTATTTATAGCGGT
AGTGGTTATTCTAGAGACC

ACCAACAACACCCAGGC
ID NO: 3576)





GGTAGTACATACTACGCAG
GTTACTACTTTGACTACTGG

AAAGCCCCCAAACTCAT






ACTCCGTGAAGGGCCGATT
GGCCAGGGAACCCTGGTCA

GATTTATGATGTCAGTAA






CACCATCTCCAGAGACAAT
CCGTCTCCTCAG (SEQ

TCGGCCCTCAGGGGTTTC






TCCAAGAACACGCTGTATC
ID NO: 315)

TAATCGCTTCTCTGGCTC






TTCAAATGAACAGCCTGAG


CAAGTCTGGCAACACGG






AGCCGAGGACACGGCCGTG


CCTCCCTGACCATCTCTG






TATTACTGTGCGAGAGAAG


GGCTCCAGGCTGAGGAC






GGGAGGTAGAAGGGTATTA


GAGGCTGATTATTACTGC






NNANNNGNNNN (SEQ ID


ATNNNCNNNNNGNNNNN






NO: 3573)


NNAGNNNNNNNNNANG









NNAANNNNAANCNNNN









NNNNNNANNN (SEQ









ID NO: 3575)








V-C046
NNNNNNNNNATGNATCNTA
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNATGTATCNT
CAGTCTGCCCTGACTCAGCC
COV047_




CACATACGATTTAGGTGAC
CTGGGGGAGGCCTGGTCAA
P3_F12
ACACATACGATTTAGGT
TGCCTCCGTGTCTGGGTCTC
P3_F12




ACTATAGAATAACATCCAC
GCCTGGGGGGTCCCTGAGA

GACACTATAGAATAACA
CTGGACAGTCGATCACCATC





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
TCCTGCACTGGAACCAGCAG





TGTCCACTCCCAGGTCCAA
ACTCACCTTCACTGCCTATA

CCACAGGTGTCCACTCCC
TGACATTGGTGTTTATAACT





CTGCACCTCGGTTCTATCGA
GAATGAATTGGGTCCGCCA

AGGTCCAACTGCACCTC
ATATCTCCTGGAGCCAACAA





TTGAATTCCACCATGGGAT
GGCTCCAGGGAAGGGGCTG

GGTTCTATCGATTGAATT
CACCCAGGCAAAGCCCCCA





GGTCATGTATCATCCTTTTT
GAGTGGCTCTCATCAATTA

CCACCATGGGATGGTCA
AAGTCATGATTTATGATGTC





CTAGTAGCAACTGCAACCG
GTAATACAAATGGCGACAT

TGTATCATCCTTTTTCTA
ACTAATCGGCCCTCAGGGGT





GTGTACATTCTGAGGTGCA
ATACTATGCAGACTCAGTG

GTAGCAACTGCAACCGG
TTCTAATCGCTTCTCTGGCT





GCTGGTGGAGTCTGGGGGA
AAGGGCCGATTCACCATCT

TTCCTGGGCCCAGTCTGC
CCAAGTCTGGCAACACGGC





GGCCTGGTCAAGCCTGGGG
CCAGAGACAACGCCAAGAA

CCTGACTCAGCCTGCCTC
CTCCCTGACCATCTCTGGGC





GGTCCCTGAGACTCTCCTGT
TTCTCTGTATCTGCAAATGA

CGTGTCTGGGTCTCCTGG
TCCAGGCTGAGGACGAGGC





GCAGCCTCTGGACTCACCTT
ACAGCCTGAGGGCCGACGA

ACAGTCGATCACCATCTC
TGATTATTATTGCAGCTCAT





CACTGCCTATAGAATGAAT
CACGGCTGTATATTACTGTG

CTGCACTGGAACCAGCA
ATAGAGGCAGCAGCACTCC





TGGGTCCGCCAGGCTCCAG
CGAGAGATGTTGCATCTAA

GTGACATTGGTGTTTATA
CTATGTCTTCGGAACTGGGA





GGAAGGGGCTGGAGTGGCT
CTACGCTTACTTTGACCTTT

ACTATATCTCCTGGAGCC
CCAAGGTCACCNTCCTAG





CTCATCAATTAGTAATACA
GGGGCCAGGGAACCCTGGT

AACAACACCCAGGCAAA
(SEQ ID NO: 3580)





AATGGCGACATATACTATG
CACCGTCTCCTCAG (SEQ

GCCCCCAAAGTCATGAT






CAGACTCAGTGAAGGGCCG
ID NO: 3578)

TTATGATGTCACTAATCG






ATTCACCATCTCCAGAGAC


GCCCTCAGGGGTTTCTAA






AACGCCAAGAATTCTCTGT


TCGCTTCTCTGGCTCCAA






ATCTGCAAATGAACAGCCT


GTCTGGCAACACGGCCT






GAGGGCCGACGACACGGCT


CCCTGACCATCTCTGGGC






GTATATTACTGTGCGAGAG


TCCAGGCTGAGGACGAG






ATGTTGCATCTAACTACGCT


GCTGATTATTATTGCAGC






TACTTTGACCTTTGGGGCCA


TCATATAGAGGCAGCAG






GGGAACCCTGGTCACCGTC


CACTCCCTATGTCTTCGG






TCCTCAGCGTCGACCAAGG


AACTGGGACCAAGGTCA






GCCCATCGGTCTTCCCCCTG


CCGTCCTAGGTCAGCCC






GCACCCTCCTCCAAGAGCA


AAGGCCAACCCCACTGT






CCTCTGGGGGCACAGCGGC


CACTCTGTTCCCACCCTC






CCTGGGCTGCCTGGTCAAG


GAGTGAGGAGCTTCAAG






GACTACTTCCCCGAACCTGT


CCAACAAGGCCACACTG






GACGGTCTCGTGGAACTCA


GTGTGTCTCATAAGTGAC

















GGCGCCCTGACCAGCGGCG


TTCTACCCGGGAGCCGT





TGCACACCTTCCCGGCTGTC


GACAGTGGCCTGGAAGG





CTACAGTCCTCAGGANTCT


CAGATAGCAGCCCCGTC





ACTCCCTCAGCAGCGTGGT


AAGGCGGGAGTGGAGAC





GACCGTGCCCTCCAGCAGC


CACCACACCCTCCAAAC





TTGGGCACCCAGACCTACA


AAAGCAACAACAAGTAC





TCTGCAANGTGAANNNCAA


GCGGCCAGCAGCTACCT





NCCCANNAACACCNNANGN


GAGCCTGACGCCTGAGC





GNGANANNAGANNNNAGA


AGTGGAAGTCCCACAGA





NCCNANATTNNTGAGANAA


AGCTACAGCTGCCAGGT





AACTCACACATGCCCCACC


CACGCATGAAGGGAGCA





GTGCCCAGCANCTGAACTC


CCGTGGAGAAGACAGTG





CTGGGGGGACCGTCAGTCT


GCCCCTACAGAATGNTC





TCCTCNTCCCCCAAACCCA


ATAGAAGCTTGGCCGCC





NNNCACCTCATGATCTCCN


ATGGCCCAACTTGTTTAT





GACCNNGANNCACNTGCGT


TGCANCTTATNATGGTTA





NNNNNNCGTGAGCCACGAN


CGNATANAGCAATAGCA





ACCNGANTCAGTCACTNNN


TCACNNTCNCACATTTCN





CNNGNNGGCGTNNNNNCAT


NANANNAANCTTTNTTT





ANGCNNACAAGCNCGGGA


NTNNCTGCATTCTANTTN





GNNNAGTNNNANNGNNNG


NNGNNNNGNNCNAACNT





TNCNNGNNGNCANCNTCNN


CNNNNNNNGNNTNCNTA





NCNTCCTGNNNNGNNNGNN


NNNNGGNNNGNNNCNN





TNNNTGNNNNNNNTANNNN


NANNNANNNNNNCANCA





NNNNGNNTCNNNNNANNN


CNTGNNNTGAAATNACN





NNNNNNNNNNNNNNNNNN


NCTGAAGAGANTNNNNN





CAANNNNNGNNNNNNNNA


GTACTNCTGAGNNNANA





NNCNNGNNTANCCNNNN


CNTCNGNGANGNNNNNC





(SEQ ID NO: 3577)


ANTNGGNNNNNNNNCCC








CNGNTNCCNNCAGNNNA








ANNNNGNANCATGCATN








NNATNNNNCNNNNNNGN








NNNGANNCCNNNNNNNN








NNNNGNNNNNNNTNNNN








ANNNNNNNNNNNNNNNN








(SEQ ID NO: 3579)



















V-C047
NNNNNNNNNNNNTATGNN
GAGGTGCAGCTGGTGCAGT
COV047_
NNNNNNNNTTANGNATC
CAGTCTGTGCTGACTCAGGA
COV047_




NNNACACATACGATTTAGG
CTGGAGCAGAGGTGAAAAA
P3_H7
NTACACATACGATTTAG
GCCCTCACTGACTGTGTCCC
P3_H7




TGACACTATAGAATAACAT
GCCCGGGGAGTCTCTGAAG

GTGACACTATAGAATAA
CAGGAGGGACAGTCACTCT





CCACTTTGCCTTTCTCTCCA
ATCTCCTGTAAGGGTTCTGG

CATCCACTTTGCCTTTCT
CACCTGTGGCTCCAGCACTG





CAGGTGTCCACTCCCAGGT
ATACAGATTTACCAACTAC

CTCCACAGGTGTCCACTC
GAGCTGTCACCAGTGGTCAT





CCAACTGCACCTCGGTTCTA
TGGATCGGCTGGGTGCGCC

CCAGGTCCAACTGCACC
TATCCCTACTGGTTCCAGCA





TCGATTGAATTCCACCATG
AGATGCCCGGGAAAGGCCT

TCGGTTCTATCGATTGAA
GAAGTCTGGCCAAGCCCCC





GGATGGTCATGTATCATCCT
GGAGTGGATGGGGATCATC

TTCCACCATGGGATGGTC
AGGACACTGATTTATGAAAC





TTTTCTAGTAGCAACTGCAA
TATCCTGGTGACTCTGATAC

ATGTATCATCCTTTTTCT
AAGCATCAAACACTCCTGG





CCGGTGTACATTCCGAGGT
CAGATACAGCCCGTCCTTC

AGTAGCAACTGCAACCG
ACCCCTGCCCGGTTCTCAGG





GCAGCTGGTGCAGTCTGGA
CAAGGCCAGGTCACCATCT

GTTCCAATTCCCAGGCTG
CTCCCTCCTTGGGGGCAAAG





GCAGAGGTGAAAAAGCCCG
CAGCCGACAAGTCCATCAC

TGGTGACCCAGGAGCCC
CTGCCCTGACCCTTTCGGGT





GGGAGTCTCTGAAGATCTC
CACCGCCTACCTGCAGTGG

TCACTGACTGTGTCCCCA
GCGCAGCCTGAGGATGAGG





CTGTAAGGGTTCTGGATAC
AGCAGCCTGAAGGCCTCGG

GGAGGGACAGTCACTCT
CTGATTATTACTGCTTGCTC





AGATTTACCAACTACTGGA
ACACCGCCATGTATTACTGT

CACCTGTGGCTCCAGCA
TCCTATAGTGGTGCTCGGCC





TCGGCTGGGTGCGCCAGAT
GCGAGACTCAGTGACCGCT

CTGGAGCTGTCACCAGT
GGTGTTCGGCGGAGGGACC





GCCCGGGAAAGGCCTGGAG
GGTACAGTCCGTTCGACCC

GGTCATTATCCCTACTGG
AAGCTGACCGTCCTAG





TGGATGGGGATCATCTATC
CTGGGGCCAGGGAACCCTG

TTCCAGCAGAAGTCTGG
(SEQ ID NO: 3584)





CTGGTGACTCTGATACCAG
GTCACCGTCTCCTCAG 

CCAAGCCCCCAGGACAC






ATACAGCCCGTCCTTCCAA
(SEQ ID NO: 3582)

TGATTTATGAAACAAGC






GGCCAGGTCACCATCTCAG


ATCAAACACTCCTGGAC






CCGACAAGTCCATCACCAC


CCCTGCCCGGTTCTCAGG






CGCCTACCTGCAGTGGAGC


CTCCCTCCTTGGGGGCAA






AGCCTGAAGGCCTCGGACA


AGCTGCCCTGACCCTTTC






CCGCCATGTATTACTGTGCG


GGGTGCGCAGCCTGAGG






AGACTCAGTGACCGCTGGT


ATGAGGCTGATTATTACT






ACAGTCCGTTCGACCCCTG


GCTTGCTCTCCTATAGTG






GGGCCAGGGAACCCTGGTC


GTGCTCGGCCGGTGTTCG






ACCGTCTCCTCAGCGTCGA


GCGGAGGGACCAAGCTG






CCAAGGGCCCATCGGTCTT


ACCGTCCTAGGTCAGCC






CCCCCTGGCACCCTCCTCCA


CAAGGCTGCCCCCTCGG






AGAGCACCTCTGGGGGCAC


TCACTCTGTTCCCACCCT






AGCGGCCCTGGGCTGCCTG


CGAGTGAGGAGCTTCAA






GTCAAGGACTACTTCCCCG


GCCAACAAGGCCACACT






AACCTGTGACGGTCTCGTG


GGTGTGTCTCATAAGTG






GAACTCAGGCGCCCTGACC


ACTTCTACCCGGGAGCC






AGCGGCGTGCACACCTTCC


GTGACAGTGGCCTGGAA






CGGCTGTCCTACAGTCCTCA


GGCAGATAGCAGCCCCG






GGACTCTACTCCCTCAGCA


TCAAGGCGGGAGTGGAG






GCGTGGTGACCGTGCCCTC


ACCACCACACCCTCCAA






CAGCAGCTTGGGCACCCAG


ACAAAGCAACAACAAGT






ACCTACATCTGCAACGTGA


ACGCGGCCAGCAGCTAC






ATCACAAGCCCAGCAACAC


CTGAGCCTGACGCCTGA






CAAGGTGGACAAGAGAGTT


GCAGTGGAAGTCCCACA






GAGCCCAAATCTTGTGACA


GAAGCTACAGCTGCCAG






AAACTCACACATGCCCACC


GTCACGCATGAAGGGAG






GTGCCCAGCACCTGAACTC


CACCGTGGAGAAGACAG






CTGGGGGGACCGTCAGTCT


TGGCCCCTACAGAATGTT






TCCTCTTNCCCCCNAAACCC


CATAGAAGCTTGGCCGC






AAGGACACCCTCNTGATCT


CATGGCCCAACTTGTTTA






CCCGGACCCCTGANGTCAC


TTGCAGCTTATAATGGTT






ATGCGTGGTGGTGGANGTG


ACAAATAAAGCAATAGC






AGCCACGAANANCCTGANG


ATCACAAATTTCACAAA






NCAGGTCAACTGNTNNGTN


TAAAGCATTTTTTTCACT






GACGGCGNGGANNTGNNN


GCATTCTANTTGTGGTTN






NTGNCAAGACNAANNNNAC


NNCCAAACTCATCAATG






ANGNNNNNNNNGGANNNN


TATNNNATCATGTNTGG






NNNANGNNNNGNNNNNNN


NNCGGGAATNANNNNNT






CNGGGNNNNNNNNNNNCN


NNNNNCNNCNNNNNNNN






NCCCCNNNNCNNGNNCNGA


NNNNNNNNNNNNNNNA






ANNNNAGNNNNNNNNGNN


NNNNNNNNAANNNANN






NGATNNNNNNNTNNNNGN


NANNNNNNNNNNNNCN






NNNNCNNNNNCCCNTNCNN


NNNNGNANGCNNAAAN






NNCNCNNTCNANAANNNNN


NANCATNNTGNNNGNAN






NNNNNNNCCNAANNNNGC


NNNNNGNNANTNNGGNN






NNNCCCNNCNNNAANNNN


NNNANNTCCCNGNTCCC






NNNGNNNGNNNNNCN 


ANNNGNANAANTNTNNN






(SEQ ID NO: 3581)


NCNNNNNTNNNNNNNCA









NNNNNNNNGNNNNNCN









NNNNNNNNGNNNNNNN









NANAGNNATNNNNNNNN









NNNNNNNNNNNNNNCN









NCNN (SEQ ID NO:









3583)








V-C048
NNNNNNNNNNNTGNATCNT
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNCNNATGNATNNT
GAAATAGTGATGACGCAGT
COV047_




ACACATACGATTTAGGTGA
CTGGGGGAGGCTTGGTCCA
P3_B12
ACACATACGATTTAGGT
CTCCAGCCACCCTGTCTGTG
P3_B12




CACTATAGAATAACATCCA
GCCTGGGGGGTCCCAGAGA

GACACTATAGAATAACA
TCTCCAGGGGAAAGAGCCA





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
CCCTCTCCTGCAGGGCCAGT





GTGTCCACTCCCAGGTCCA
ATTCACCGTCAGTAGCAAT

CCACAGGTGTCCACTCCC
CAGAGTGTTAGCAGCCACTT





ACTGCACCTCGGTTCTATCG
TACATGAGCTGGATCCGCC

AGGTCCAACTGCACCTC
AGCCTGGTACCAGCAGAAA





ATTGAATTCCACCATGGGA
AGGCTCCAGGGAAGGGGCT

GGTTCTATCGATTGAATT
CCTGGCCAGGCTCCCAGGCT





TGGTCATGTATCATCCTTTT
GGAGTGGGTCTCAGTTATTT

CCACCATGGGATGGTCA
CCTCATCTATGGTGCATCCA





TCTAGTAGCAACTGCAACC
ATAGCGGTGGTAGCGCATA

TGTATCATCCTTTTTCTA
CCAGGGCCACTGGTATCCCA





GGTGTACATTCTGAGGTGC
CTACGTAGACTCCGTGAAG

GTAGCAACTGCAACCGG
ACCAGGTTCAGTGGCAGTG





AGCTGGTGGAGTCTGGGGG
GGCAGATTCACCATCTCCA

TGTACATTCAGAAATAG
GGTCTGGGACAGAGTTCACT





AGGCTTGGTCCAGCCTGGG
GAGACAATTCCAAGAACAC

TGATGACGCAGTCTCCA
CTCACCATCAGCAGCCTGCA





GGGTCCCAGAGACTCTCCT
CCTGTATCTTCAAATGAAC

GCCACCCTGTCTGTGTCT
GTCTGAAGATTTTGCAGTTT





GTGCAGCCTCTGGATTCAC
AGCCTGAGACCCGAGGACA

CCAGGGGAAAGAGCCAC
ATTACTGCCAGCAGTATAAT





CGTCAGTAGCAATTACATG
CGGCTGTGTATTACTGTGCG

CCTCTCCTGCAGGGCCA
AACTGGCCTCCGCTCACTTT





AGCTGGATCCGCCAGGCTC
AGAATCGCAAACTACATGG

GTCAGAGTGTTAGCAGC
CGGCGGAGGGACCAAGGTG





CAGGGAAGGGGCTGGAGTG
ACGTCTGGGGCAAAGGGAC

CACTTAGCCTGGTACCA
GAGATCAAAC (SEQ ID





GGTCTCAGTTATTTATAGCG
CACGGTCACCGTCTCCTCA

GCAGAAACCTGGCCAGG
NO: 3588)





GTGGTAGCGCATACTACGT
(SEQ ID NO: 3586)

CTCCCAGGCTCCTCATCT






AGACTCCGTGAAGGGCAGA


ATGGTGCATCCACCAGG






TTCACCATCTCCAGAGACA


GCCACTGGTATCCCAAC






ATTCCAAGAACACCCTGTA


CAGGTTCAGTGGCAGTG






TCTTCAAATGAACAGCCTG


GGTCTGGGACAGAGTTC






AGACCCGAGGACACGGCTG


ACTCTCACCATCAGCAG






TGTATTACTGTGCGAGAAT


CCTGCAGTCTGAAGATTT






CGCAAACTACATGGACGTC


TGCAGTTTATTACTGCCA






TGGGGCAAAGGGACCACGG


GCAGTATAATAACTGGC






TCACCGTCTCCTCAGCGTCG


CTCCGCTCACTTTCGGCG






ACCAAGGGCCCATCGGTCT


GAGGGACCAAGGTGGAG






TCCCCCTGGCACCCTCCTCC


ATCAAACGTACGGTGGC






AAGAGCACCTCTGGGGGCA


TGCACCATCTGTCTTCAT






CAGCGGCCCTGGGCTGCCT


CTTCCCGCCATCTGATGA






GGTCAAGGACTACTTCCCC


GCAGTTGAAATCTGGAA






GAACCTGTGACGGTCTCGT


CTGCCTCTGTTGTGTGCC






GGAACTCAGGCGCCCTGAC


TGCTGAATAACTTCTATC






CAGCGGCGTGCACACCTTC


CCAGAGAGGCCAAAGTA






CCGGCTGTCCTACAGTCCTC


CAGTGGAAGGTGGATAA






AGGACTCTACTCCCTCAGC


CGCCCTCCAATCGGGTA






AGCGTGGTGACCGTGCCCT


ACTCCCAGGAGAGTGTC






CCAGCAGCTTGGGCACCCA


ACAGAGCAGGACAGCAA






GACCTACATCTGCAACGTG


GGACAGCACCTACAGCC






AATCACAAGCCCAGCAACA


TCAGCAGCACCCTGACG






CCAAGGTGGACAAGAGAGT


CTGAGCAAAGCAGACTA






TGAGCCCAAATCTTGTGAC


CGAGAAACACAAAGTCT






AAAACTNNNNNNNNNCCCC


ACGCCTGCGAAGTCACC






CGNNNCCNNNNCNCNNNNN


CATCAGGGCCTGAGCTC






CNNCNGGGGGNGANNNNN


GCCCGTCACAAAGAGCT






NANTNTTCTNNTNCCCCCA


TCAACAGGGGAGAGTGT






AANCCNAGGNNNNCCNNN


TAGAAGCTTGGCCGCCA






NNNNNNTTNNNCNNGNCCC


TGGNNCCANNTNNNTNT






NNNNNGNNNNNTGNGNGN


ATNNCAGNNNANAATGN






GNNGGGNNNNNGNGNNCN


NTNCAAATAAAGCNATA






AAAAANNCNCNNGAGNNN


NCATCACANATTTCACA






NNNTTNNNNNNNGNNNNN


AATAAAGCATTTTTTTCA






NNANNNNNNGNANGNNNN


CTGCNTNCTAGTGTGGNT






NTNANNNNNANANNNNCN


TGTNNNCANNNCNNNNN






GNNNNNANGNNNNNNNAC


NNNNNNNNNNNNNNNN






AACNNNNCNTNCGNGNNNN


NCNNNNNNNNNNNNNN






NGNNNCTNNNNNTCNNNNC


NNNNNNCGCANCACNNG






NNNACTNNNGNANGNANG


NNNTNAAANTNNCTNNN






NANNNNNNNANNNNNANN


NAANNNNNNNNNNNGN






NNNNCNNNNNNTNNNNCNT


NNCNNNGAGGNNAANN






NNANNNNNNNNNNANNNN


ANCNNNNNNNNNNNGTC






NNNNNCNNNNNNNNNNGN


ANTNNGNNGNNNNNNNN






GNANNNNN (SEQ ID


NNCCNNNNGNNNANNNG






NO: 3585)


NNANCNTNNNTNANNNN









CNNNNNNNNNNNNCCNN









NNNNANGNANNGNANCN









(SEQ ID NO: 3587)








V-C049
NNNNNNNNNNNNNNNNNN
CAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNNATGNATCN
GACATCCAGATGACCCAGTC
COV047_




TCNTACACATACGATTTAG
CTGGGGGAGGCGTGGTCCA
P5_F8
TACACNTACGATTTAGGT
TCCATCCTCCCTGTCTGCAT
P5_F8




GTGACACTATAGAATAACA
GCCTGGGAGGTCCCTGAGA

GACACTATAGAATAACA
CTGTAGGAGACAGAGTCAC





TCCACTTTGCCTTTCTCTCC
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
CATCACTTGCCGGGCAAGTC





ACAGGTGTCCACTCCCAGG
ATTCACCTTCAGTACCTATG

CCACAGGTGTCCACTCCC
AGAGCATTAGCAGTTATTTA





TCCAACTGCACCTCGGTTCT
GCATGCACTGGGTCCGCCA

AGGTCCAACTGCACCTC
AATTGGTATCAGCAGAAAC





ATCGATTGAATTCCACCAT
GGCTCCAGGCAAGGGGCTG

GGTTCTATCGATTGAATT
CAGGGAAAGTCCCTAAGCT





GGGATGGTCATGTATCATC
GAGTGGGTGGCCGTTATAT

CCACCATGGGATGGTCA
CCTGATCTATGCTGCATCCA





CTTTTTCTAGTAGCAACTGC
CATATGATGGAAGTAATAA

TGTATCATCCTTTTTCTA
GTTTGCAAAGTGGGGTCCCA





AACCGGTGTACATTCTCAG
ATACTTTGCAGACTCCGTG

GTAGCAACTGCAACCGG
TCAAGGTTCAGTGGCAGTGG





GTGCAGCTGGTGGAGTCTG
AAGGGCCGATTCACCATCT

GTACATTCTGACATCCAG
ATCTGGGACAGACTTCACTC





GGGGAGGCGTGGTCCAGCC
CCAGAGACAATTCCAAGAA

ATGACCCAGTCTCCATCC
TCACCATCAGCAGTCTGCAA





TGGGAGGTCCCTGAGACTC
CACGCTTTATTTGCAAATGA

TCCCTGTCTGCATCTGTA
CCTGAAGATTTTGCAACTTA





TCCTGTGCAGCCTCTGGATT
ACAGCCTGAGACCTGAGGA

GGAGACAGAGTCACCAT
CTACTGTCAACAGAGTTACA





CACCTTCAGTACCTATGGC
CACGGCTGTATATTACTGTG

CACTTGCCGGGCAAGTC
GAACCCCGCTCACTTTCGGC





ATGCACTGGGTCCGCCAGG
CGAAAGTGGGGATGGAGTA

AGAGCATTAGCAGTTAT
GGAGGGACCAAGGTGGAGA





CTCCAGGCAAGGGGCTGGA
CAGCAGTGGCTGGTACGGG

TTAAATTGGTATCAGCA
TCAAAC (SEQ ID NO:





GTGGGTGGCCGTTATATCA
GAAGAAATTGACTTCTGGG

GAAACCAGGGAAAGTCC
3592)





TATGATGGAAGTAATAAAT
GCCAGGGAACCCTGGTCAC

CTAAGCTCCTGATCTATG






ACTTTGCAGACTCCGTGAA
CGTCTCCTCAG (SEQ ID

CTGCATCCAGTTTGCAAA






GGGCCGATTCACCATCTCC
NO: 3590)

GTGGGGTCCCATCAAGG






AGAGACAATTCCAAGAACA


TTCAGTGGCAGTGGATCT






CGCTTTATCTGCAAATGAA


GGGACAGACTTCACTCT






CAGCCTGAGACCTGAGGAC


CACCATCAGCAGTCTGC






ACGGCTGTATATTACTGTGC


AACCTGAAGATTTTGCA






GAAAGTGGGGATGGAGTAC


ACTTACTACTGTCAACAG






AGCAGTGGCTGGTACGGGG


AGTTACAGAACCCCGCT






AAGAAATTGACTTCTGGGG


CACTTTCGGCGGAGGGA






CCAGGGAACCCTGGTCACC


CCAAGGTGGAGATCAAA






GTCTCCTCAGCGTCGACCA


CGTACGGTGGCTGCACC






AGGGCCCATCGGTCTTCCC


ATCTGTCTTCATCTTCCC






CCTGGCACCCTCCTCCAAG


GCCATCTGATGAGCAGT






AGCACCTCTGGGGGCACAG


TGAAATCTGGAACTGCC






CGGCCCTGGGCTGCCTGGT


TCTGTTGTGTGCCTGCTG






CAAGGACTACTTCCCCGAA


AATAACTTCTATCCCAGA






CCTGTGACGGTCTCGTGGA


GAGGCCAAAGTACAGTG






ACTCAGGCGCCCTGACCAG


GAAGGTGGATAACGCCC






CGGCGTGCACACCTTCCCG


TCCAATCGGGTAACTCCC






GCTGTCCTACAGTCCTCAG


AGGAGAGTGTCACAGAG






GACTCTACTCCCTCAGCAG


CAGGACAGCAAGGACAG






CGTGGTGACCGTGCCCTCC


CACCTACAGCCTCAGCA






AGCAGCTTGGGCACCCAGA


GCACCCTGACGCTGAGC






CCTACATCTGCAACGTGAA


AAAGCAGACTACGAGAA






TCACAAGCCCAGCAACACC


ACACAAAGTCTACGCCT






AAGGTGGACAAGAGAGTTG


GCGAAGTCACCCATCAG






AGCCCAAATCTTGTGACAA


GGCCTGAGCTCGCCCGT






AACTCACACATGCCCACCG


CACAAAGAGCTTCAACA






TGCCCAGCACCTGANNTCC


GGGGAGAGTGTTAGAAG






TGGGGGGACCGTCAGTCTT


CTTGGCCGCCATGGCCC






CCTCTTCCCCCCAAAACCN


AACTTGTTTATTGCAGCT






NNGACACCCTCATGATCNN


TATAATGGTTACAAATA






CCGGACCCCTGAGGTCACA


AAGCAATAGCATCACAA






TGCGTGGTGGNNGGACGTG


ATTTCACAAATAAAGCA






AGCCACGAANANCCTGAGG


TTTTTTTCACTGCATTCT






TCAAGTTCAACTGGNACNT


AGTTGTGGNTTGTCCAA






NNCGGCGNNGGNANGGNN


ACTCATCAATGNATCTTA






CATANATGNNCNNNNNNNN


TCATGTCTGNNTCGGGA






NNNCNNNGGGNAGNANCA


ATTNATTCNGCGCAGCN






GTTACAANCAGCNNCNTAC


NNTNNNNGAANNNANNC






NNGNTNGTGGTCANCNTCC


TGAAANAGNACTNNNNN






TCNCGTCNGCNNCANNNAN


NNACNNNGAGNGAANN






TGNNTTNAANNGNNAGGAN


ACNTCTGNNNNGNNNGT






NNCNAGNGNANGGGTNNN


CANTNGGNNNNGAAGTC






CANNAANNCCNTNCCNNNC


CCAGNTCCCNNCNGNNN






CCCATTNNANAAAANNCNN


AANNATGCAANNNNGCA






TNNNNNNNNNNNNNGGNN


NNNNNNNNNNCANNNNC






NAANCNNCNNNNAANNNN


NNNNNNNNNANNNNNN






NGGNGNNACNNNNNNNNC


NNNCNNNNGNNAAANNT






CCCNCNNNNNNCCNNGNNN


GNANNNNNNNNNNNNN






NNNN (SEQ ID NO:


NNNNNNNNNNNNNNCNC






3589)


CCNANTNGNNNNN









(SEQ ID NO: 3591)








V-C050
NNNNNNNNNNATGNATNNT
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNNATGNATCN
CAGTCTGTGCTGACTCAGCC
COV047_




ACNCATACGATTTAGGTGA
CCGGGGGAGGCTTAGTTCA
P3_C1
TACACATACGATTTAGGT
TGCCTCCGTGTCTGGGTCTC
P3_C1




CACTATAGAATAACATCCA
GCCTGGGGGGTCCCTGAGA

GACACTATAGAATAACA
CTGGACAGTCGATCACCATC





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGTAGCCTCTGG

TCCACTTTGCCTTTCTCT
TCCTGCACTGGAACCAGCAG





GTGTCCACTCCCAGGTCCA
ATTCACCTTCAGTAGCTACT

CCACAGGTGTCCACTCCC
TGACGTTGGTTATTATAACT





ACTGCACCTCGGTTCTATCG
GGATGCACTGGGTCCGCCA

AGGTCCAACTGCACCTC
TTGTCTCCTGGTACCAACAA





ATTGAATTCCACCATGGGA
AGTCCCAGGGAAGGGGCCG

GGTTCTATCGATTGAATT
CACCCAGGCAAAGCCCCCA





TGGTCATGTATCATCCTTTT
GTGTGGGTCTCACATATTA

CCACCATGGGATGGTCA
AACTCATGATTTATGAGGTC





TCTAGTAGCAACTGCAACC
ACAGTGAAGGGAGTAGCAC

TGTATCATCCTTTTTCTA
AGTAATCGGCCCTCTGGGGT





GGTGTACATTCTGAGGTGC
AAACTACGCGGACTCCGTG

GTAGCAACTGCAACCGG
TTCTAATCGCTTCTCTGGCT





AGCTGGTGGAGTCCGGGGG
AGGGGCCGATTCACCATCT

TTCCTGGGCCCAGTCTGC
CCAAGTCTGGCAACACGGC





AGGCTTAGTTCAGCCTGGG
CCAGAGACAACGCCAAGGA

CCTGACTCAGCCTGCCTC
CTCCCTGATCATCTCTGGGC





GGGTCCCTGAGACTCTCCT
CACGCTATATCTTCAAATG

CGTGTCTGGGTCTCCTGG
TCCAGGCTGAGGACGAGGC





GTGTAGCCTCTGGATTCACC
AACAATCTGAGAGCCGAGG

ACAGTCGATCACCATCTC
TGATTATTACTGCAGCTCAT





TTCAGTAGCTACTGGATGC
ACACGGCTGTATATTACTGT

CTGCACTGGAACCAGCA
ATAGAAGCAGCAGCACTCT





ACTGGGTCCGCCAAGTCCC
GCAAGACCGACGGCTGTAG

GTGACGTTGGTTATTATA
GGTGTTCGGCGGGGGGACC





AGGGAAGGGGCCGGTGTGG
CAGCAGCTGGCAATTACTT

ACTTTGTCTCCTGGTACC
AAGCTGACCGTCCTAG





GTCTCACATATTAACAGTG
CTACTACTACGGTATGGAC

AACAACACCCAGGCAAA
(SEQ ID NO: 3596)





AAGGGAGTAGCACAAACTA
GTCTGGGGCCAAGGGACCA

GCCCCCAAACTCATGATT






CGCGGACTCCGTGAGGGGC
CGGTCACCGTCTCTTCA

TATGAGGTCAGTAATCG






CGATTCACCATCTCCAGAG
(SEQ ID NO: 3594)

GCCCTCTGGGGTTTCTAA






ACAACGCCAAGGACACGCT


TCGCTTCTCTGGCTCCAA






ATATCTTCAAATGAACAAT


GTCTGGCAACACGGCCT






CTGAGAGCCGAGGACACGG


CCCTGATCATCTCTGGGC






CTGTATATTACTGTGCAAG


TCCAGGCTGAGGACGAG






ACCGACGGCTGTAGCAGCA


GCTGATTATTACTGCAGC






GCTGGCAATTACTTCTACTA


TCATATAGAAGCAGCAG






CTACGGTATGGACGTCTGG


CACTCTGGTGTTCGGCGG






GGCCAAGGGACCACGGTCA


GGGGACCAAGCTGACCG






CCGTCTCCTCAGCGTCGACC


TCCTAGGTCAGCCCAAG






AAGGGCCCATCGGTCTTCC


GCTGCCCCCTCGGTCACT






CCCTGGCACCCTCCTCCAA


CTGTTCCCACCCTCGAGT






GAGCACCTCTGGGGGCACA


GAGGAGCTTCAAGCCAA






GCGGCCCTGGGCTGCCTGG


CAAGGCCACACTGGTGT






TCAAGGACTACTTCCCCGA


GTCTCATAAGTGACTTCT






ACCTGTGACGGTCTCGTGG


ACCCGGGAGCCGTGACA






AACTCAGGCGCCCTGACCA


GTGGCCTGGAAGGCAGA






GCGGCGTGCACACCTTCCC


TAGCAGCCCCGTCAAGG






GGCTGTCCTACAGTCCTCA


CGGGAGTGGAGACCACC






GGACTCTACTCCCTCAGCA


ACACCCTCCAAACAAAG






GCGTGGTGACCGTGCCCTC


CAACAACAAGTACGCGG






CAGCAGCTTGGGCACCCAG


CCAGCAGCTACCTGAGC






ACCTACATCTGCAACGTGA


CTGACGCCTGAGCAGTG






ATCACAAGCCCAGCAACAC


GAAGTCCCACAGAAGCT






CNAAGTGGACAAGAGAGTT


ACAGCTGCCAGGTCACG






GAGCCCAAATCTTGTGACA


CATGAAGGGAGCACCGT






AAACTCACACATGCCCACC


GGAGAAGACAGTGGCCC






GTGCCCAGCACCTGAACTC


CTACAGAATGTTCATAG






NTGGGGGGGACNNTCAGTC


AAGCTTGGCCGCCATGG






TTCNTCTTCNNCCCNNNAA


CNCAACNNGTTTNTTNN






NNCAANNGANANNNTCNTG


NGCTNNTTATGATGGNT






ATNNNNNCTNNCCNNNGNN


ACNAATAAAGCAATAGC






GNNNNNTGNNNTGGTGGNG


ATCACNANTTTCACAAA






GGNNGNGANNNNNNAACN


TAAAGCATTTTTTTCACT






ANCCAANNNNNNCNNGNN


GCATTCTANTTGTGNNTG






NNNANNTNNNNNNNNNGN


TCCNAACTCATCATGTAT






NNNNNNNNNNNNNNNNNN


NTNTCATGNCTGGNTCG






NNNCNNNANNNCNNANAN


GNANTAANNNNGCAGCN






NAANNNNNGGNANNAANA


CATGNCTGNNNNNNNCN






NNNCNANNNNNNGTNCNN


NANNANANNNNNNGTAC






NNNNNNNNNNNNCTNNCCN


TCNNNNNGANNNNNCNN






NNCNNNNNNNNNNANNGN


NGANGANGNNGNNNNTN






NNANGGNNANGNNNNNNN


GGNGNNNNANNNNNCN






ANNNNNNNNANANNNNNN


NNCNNCNNNNGNNNNNN






NANCATGNANNNTTNANCN


NNNCNNNCNTNCNNNNN






NNNNNNNNCNNNNNNN


NNNNNNNNNNNNNNNN






(SEQ ID NO: 3593)


NNNNCNNNGNCCNNNNN









GNNNNNTGNNNNNNNN









(SEQ ID NO: 3595)








V-C051
NNNNNNCNNATGNATCNTA
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNNNNATGNAT
AATTTTATGCTGACTCAGCC
COV047_




CACATACGATTTAGGTGAC
CTGGGGGAGGCCTGGTCAA
P5_B12
CNTACNCATACGATTTA
CCACTCTGTGTCGGAGTCTC
P5_B12




ACTATAGAATAACATCCAC
GCCTGGGGGGTCCCTGAGA

GGTGACACTATAGAATA
CGGGGAAGACGGTAACCAT





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

ACATCCACTTTGCCTTTC
CTCCTGCACCGGCAGCAGTG





TGTCCACTCCCAGGTCCAA
ATTCACCTTCAGTAGCTATA

TCTCCACAGGTGTCCACT
GCAGCATTGCCAGCAACTAT





CTGCACCTCGGTTCTATCGA
ACATGAACTGGGTCCGCCA

CCCAGGTCCAACTGCAC
GTGCAGTGGTACCAGCAGC





TTGAATTCCACCATGGGAT
GGCTCCAGGGAAGGGGCTG

CTCGGTTCTATCGATTGA
GCCCGGGCAGTGCCCCCACC





GGTCATGTATCATCCTTTTT
GAGTGGGTCTCATGCATTA

ATTCCACCATGGGATGG
ACTGTGATCTATGAGGATAA





CTAGTAGCAACTGCAACCG
GTAGTAGTAGTAGTTACAT

TCATGTATCATCCTTTTT
CCAAAGACCCTCTGGGGTCC





GTGTACATTCTGAGGTGCA
ATACTACGCAGACTCAGTG

CTAGTAGCAACTGCAAC
CTGATCGGTTCTCTGGCTCC





GCTGGTGGAGTCTGGGGGA
AAGGGCCGATTCACCATCT

CGGTTCTTGGGCCAATTT
ATCGACAGCTCCTCCAACTC





GGCCTGGTCAAGCCTGGGG
CCAGAGACAACGCCAAGAA

TATGCTGACTCAGCCCCA
TGCCTCCCTCACCATCTCTG





GGTCCCTGAGACTCTCCTGT
CTCACTGTATCTGCAAATG

CTCTGTGTCGGAGTCTCC
GACTGAAGACTGAGGACGA





GCAGCCTCTGGATTCACCTT
AACAGCCTGAGAGCCGAGG

GGGGAAGACGGTAACCA
GGCTGACTACTACTGTCAGT





CAGTAGCTATAACATGAAC
ACACGGCTGTGTATTACTGT

TCTCCTGCACCGGCAGC
CTTATGATAGCAGCAATTAT





TGGGTCCGCCAGGCTCCAG
GCGAGAGAGAGGGGGTATG

AGTGGCAGCATTGCCAG
TGGGTGTTCGGCGGAGGGA





GGAAGGGGCTGGAGTGGGT
ACGGTGGTAAAACCCCCCC

CAACTATGTGCAGTGGT
CCAAGCTGACCGTCCTAG





CTCATGCATTAGTAGTAGT
ATTTCTTGGGGGCCAGGGA

ACCAGCAGCGCCCGGGC
(SEQ ID NO: 3600)





AGTAGTTACATATACTACG
ACCCTGGTCACCGTCTCCTC

AGTGCCCCCACCACTGT






CAGACTCAGTGAAGGGCCG
AG (SEQ ID NO: 3598)

GATCTATGAGGATAACC






ATTCACCATCTCCAGAGAC


AAAGACCCTCTGGGGTC






AACGCCAAGAACTCACTGT


CCTGATCGGTTCTCTGGC






ATCTGCAAATGAACAGCCT


TCCATCGACAGCTCCTCC






GAGAGCCGAGGACACGGCT


AACTCTGCCTCCCTCACC






GTGTATTACTGTGCGAGAG


ATCTCTGGACTGAAGAC






AGAGGGGGTATGACGGTGG


TGAGGACGAGGCTGACT






TAAAACCCCCCCATTTCTTG


ACTACTGTCAGTCTTATG






GGGGCCAGGGAACCCTGGT


ATAGCAGCAATTATTGG






CACCGTCTCCTCAGCGTCG


GTGTTCGGCGGAGGGAC






ACCAAGGGCCCATCGGTCT


CAAGCTGACCGTCCTAG






TCCCCCTGGCACCCTCCTCC


GTCAGCCCAAGGCTGCC






AAGAGCACCTCTGGGGGCA


CCCTCGGTCACTCTGTTC






CAGCGGCCCTGGGCTGCCT


CCGCCCTCGAGTGAGGA






GGTCAAGGACTACTTCCCC


GCTTCAAGCCAACAAGG






GAACCTGTGACGGTCTCGT


CCACACTGGTGTGTCTCA






GGAACTCAGGCGCCCTGAC


TAAGTGACTTCTACCCGG






CAGCGGCGTGCACACCTTC


GAGCCGTGACAGTGGCC






CCGGCTGTCCTACAGTCCTC


TGGAAGGCAGATAGCAG






AGGACTCTACTCCCTCAGC


CCCCGTCAAGGCGGGAG






AGCGTGGTGACCGTGCCCT


TGGAGACCACCACACCC






CCAGCAGCTTGGGCACCCA


TCCAAACAAAGCAACAA






GACCTACATCTGCAACGTG


CAAGTACGCGGCCAGCA






AATCACAAGCCCAGCAACA


GCTACCTGAGCCTGACG






CCNANNTGGACAAGAGAGT


CCTGAGCAGTGGAAGTC






TGAGCCCCAATCTTGTGAC


CCACAGAAGCTACAGCT






AAAACTCACACATGCCCAC


GCCAGGTCACGCATGAA






CGTGCCCANCACCTGNANT


GGGAGCACCGTGGAGAA






CNNNNGGGGGAGGGNNNG


GACAGTGGCCCCTACAG






TCTTNTTNTTNNTCNNCCCN


AATGTTCATAGAAGCTT






NCCNAAANNNNAGGANNN


GGCCGCCATGGCCCNAC






NCNTNNTNNTTNNCCCGGA


TNGTTGNTTATNGCANCT






CCNNTGANGNTNNCNNGGN


TATGNTGGTTANNAATA






GTGGGGGGNGGNNNNTGN


AAGCAATATCATCACAN






NNNACNAANNCCCNGNAG


NTTTCACAAATAAAGCA






GTCAAGTTCAACTGGNACG


ttttntttcnntgcnntc






TGGNCGGNNTNNNNTGCNN


TANNNNNGGNTTGTCNN






NNNNCAANAANNAAGCCG


ACTCNTCAATGTATCTNN






CNGGANGNNNNNTANANA


TCATGNCNGGNTCGNGA






GCACNNACCGNNGNGNNN


ATTAANTCNNCNCNNCN






NNCNNCNTCNCCGTCNGNN


CNTGNNNNNNNNNNAAN






NNNNNTNNNNANNGNANN


NNNNNGNANNNNNNAN






NNNANNNNNNNNNNNNAN


GTAGNNNNNNNNNNCNN






ANCNTNCNNNNCCNNNGNN


NNNNGNNGNNNACNAN






NACNNNCAANNNCANNNN


NNNCNGANNNNGGTNNG






NNNCNNNNANNNNNNNTA


TNAGNTAGGGGNGNNGN






NNNNCNNNNCCCNCNCNNN


NNNNNNCNNNCNNNNNN






(SEQ ID NO: 3597)


NNAGNNNNANNNATGNN









NNNNTNCANNNNNNNNC









NNNNNNNNNNNNNANN









CCNANNNNNNNNNNGNN









NNNGNANNNNNNNANTN









NNNNNNNANNNNTNNNN









CNNNNNNNNNNNN 









(SEQ ID NO: 3599)








V-C052
NNNNNNNNNTGNATCNTAC
CAGGTTCAGCTGGTGCAGT
COV047_
NNNNNNNNNATGNATNN
GACATCCAGATGACCCAGTC
COV047_




ACATACGATTTAGGTGACA
CTGGAGCTGAGGTGAAGAA
P3_A10
TACACATACGATTTAGGT
TCCATCCTCCCTGTCTGCAT
P3_A10




CTATAGAATAACATCCACT
GCCTGGGGCCTCAGTGAAG

GACACTATAGAATAACA
CTGTAGGAGACAGAGTCAC





TTGCCTTTCTCTCCACAGGT
GTCTCCTGCAAGGCTTCTGG

TCCACTTTGCCTTTCTCT
CATCACTTGCCGGGCGAGTC





GTCCACTCCCAGGTCCAAC
TTACACCTTTACCAGCTACG

CCACAGGTGTCCACTCCC
AGGGCATAAGCAATTACTTA





TGCACCTCGGTTCTATCGAT
GTATCAGCTGGGTGCGACA

AGGTCCAACTGCACCTC
GCCTGGTATCAGCAGAGAC





TGAATTCCACCATGGGATG
GGCCCCTGGACAAGGGCTT

GGTTCTATCGATTGAATT
CAGGGAAAGTTCCTAAGCTC





GTCATGTATCATCCTTTTTC
GAGTGGATGGGATGGATCA

CCACCATGGGATGGTCA
CTGATCTTTGCTGCATCCAC





TAGTAGCAACTGCAACCGG
GCGCTTACAATGGTAACAC

TGTATCATCCTTTTTCTA
TTTGCAATCAGGGGTCCCAT





TGTACATTCCCAGGTTCAGC
AAACTATGCACAGAAGCTC

GTAGCAACTGCAACCGG
CTCGGTTCAGTGGCAGTGGA





TGTGCAGTCTGGAGCTGAG
CAGGGCAGAGTCACCATGA

TGTACATTCTGACATCCA
TCTGGGACAGATTTCACTCT





GTGAAGAAGCCTGGGGCCT
CCACAGACACATCCACGAG

GATGACCCAGTCTCCATC
CACCATCAGCAGCCTGCAGC





CAGTGAAGGTCTCCTGCAA
CACAGCCTACATGGAGCTG

CTCCCTGTCTGCATCTGT
CTGAAGATGTTGCAACTTAT





GGCTTCTGGTTACACCTTTA
AGGAGCCTGAGATCTGACG

AGGAGACAGAGTCACCA
TACTGTCAAAAGTATAACAG





CCAGCTACGGTATCAGCTG
ACACGGCCGTGTTTTACTGT

TCACTTGCCGGGCGAGT
TGCCCCTCGGACGTTCGGCC





GGTGCGACAGGCCCCTGGA
GCGAGAGATCGGGGGGGGC

CAGGGCATAAGCAATTA
AAGGGACCAAGGTGGAAAT





CAAGGGCTTGAGTGGATGG
ACGATTTTTGGAGTGGTTAT

CTTAGCCTGGTATCAGCA
CAAAC (SEQ ID NO:





GATGGATCAGCGCTTACAA
GGGTTCTACTACTACTACG

GAGACCAGGGAAAGTTC
3604)





TGGTAACACAAACTATGCA
GTATGGACGTCTGGGGCCA

CTAAGCTCCTGATCTTTG






CAGAAGCTCCAGGGCAGAG
AGGGACCACGGTCACCGTC

CTGCATCCACTTTGCAAT






TCACCATGACCACAGACAC
TCCTCA (SEQ ID NO:

CAGGGGTCCCATCTCGG






ATCCACGAGCACAGCCTAC
3602)

TTCAGTGGCAGTGGATCT






ATGGAGCTGAGGAGCCTGA


GGGACAGATTTCACTCTC






GATCTGACGACACGGCCGT


ACCATCAGCAGCCTGCA






GTTTTACTGTGCGAGAGAT


GCCTGAAGATGTTGCAA






CGGGGGGGGCACGATTTTT


CTTATTACTGTCAAAAGT






GGAGTGGTTATGGGTTCTA


ATAACAGTGCCCCTCGG






CTACTACTACGGTATGGAC


ACGTTCGGCCAAGGGAC






GTCTGGGGCCAAGGGACCA


CAAGGTGGAAATCAAAC






CGGTCACCGTCTCCTCAGC


GTACGGTGGCTGCACCA






GTCGACCAAGGGCCCATCG


TCTGTCTTCATCTTCCCG






GTCTTCCCCCTGGCACCCTC


CCATCTGATGAGCAGTT






CTCCAAGAGCACCTCTGGG


GAAATCTGGAACTGCCT






GGCACAGCGGCCCTGGGCT


CTGTTGTGTGCCTGCTGA






GCCTGGTCAAGGACTACTT


ATAACTTCTATCCCAGAG






CCCCGAACCTGTGACGGTC


AGGCCAAAGTACAGTGG






TCGTGGAACTCANGCGCCC


AAGGTGGATAACGCCCT






TGACCAGCGGCGTGCACAC


CCAATCGGGTAACTCCC






CTTCCCGGCTGTCCTACAGT


AGGAGAGTGTCACAGAG






CCTCANGACTCTACTCCCTC


CAGGACAGCAAGGACAG






AGCAGCGTGGTGACCGTGC


CACCTACAGCCTCAGCA






CCTNCCNNNNNNTTGGGNC


GCACCCTGACGCTGAGC






NCNNACANNTATNTGTGNN


AAAGCAGACTACGAGAA






ANGNGAANTCACAANCCCC


ACACAAAGTCTACGCCT






ANCAACACNNNGNNNNAA


GCGAAGTCACCCATCAG






GANAGTTGAGCCCAAATCT


GGCCTGAGCTCGCCCGT






TGTGANAAACTCACACATG


CACAAAGAGCTTCAACA






CCCACCGTGCCCAGCACCT


GGGGGAGAGTGTTAGAA






GACTCNGGGGGGACGTCAG


GCTTGGCCGCCATGGCC






TCTTCNNTCCCCCNNNCCN


CAACTTGTTTATTGCAGC






NNNNCCCTCATGATCTCCG


TTATAATGGNTACAAAT






ACCCTGAGTCANNTGCGTG


AAAGCAATAGCATCACA






NGNGNCGTGANCNCNANAN


AATTTCACAAATAAAGC






CNTGANGNCAGTCANTGNA


ATTTTTTTCACTGCATTC






CNTGNNGGNNNNNNGNNC


TAGTTGTGGTTTGTCCAA






NTANNCANANNANCNNNG


ACTCATCAATGTATNTNT






GAGNNNANTNNANNNNNN


CATGTCTGGATCGGNAN






GNNNCNNNNNGNNANCNN


TNANTNGNGCAGNNCNT






CNNNCNNNCNNNNNNNNN


NNNTGAAANACNCTGAA






NTGNNNNANNNNNNNNNN


NAGNNNTNNNNNNGTAC






NNNNNNNNNNNNNNNNAN


TNCTGAGNGNAGANNNN






NNNNNNNNNNNNNNNNNC


CNNNGANNNNNGTCANN






NTNNAANCNNNGGGNNNC


NNNNGGNGNANNNNCCN






NCNNNNA (SEQ ID 


NNGCNNNCNNCNGNNNA






NO: 3601)


NNNNNNNAGCATGCNTN









CNNNNNNNNNNNNNNN









NGNAGNNNACNNNCNNN









NNNNGNNNNNNNNNNN









GCNANNNNNNCNNNNNN









TN (SEQ ID NO: 









3603)








V-C053
NNNNNNNNTTATGTATCNT
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNCNNATGNATNN
CAGTCTGCCCTGACTCAGCC
COV047_




ACACATACGATTTAGGTGA
CTGGAGGAGGCTTGATCCA
P5_E10
TACACATACGATTTAGGT
TGCCTCCGTGTCTGGGTCTC
P5_E10




CACTATAGAATAACATCCA
GCCTGGGGGGTCCCTGAGA

GACACTATAGAATAACA
CTGGACAGTCGATCACCATC





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
TCCTGCACTGGAACCAGCAG





GTGTCCACTCCCAGGTCCA
GTTCACCGTCAGTAGCAAC

CCACAGGTGTCCACTCCC
TGATGTTGGGAGTTATAACC





ACTGCACCTCGGTTCTATCG
TACATGAGCTGGGTCCGCC

AGGTCCAACTGCACCTC
TTGTCTCCTGGTACCAACAG





ATTGAATTCCACCATGGGA
AGGCTCCAGGGAAGGGGCT

GGTTCTATCGATTGAATT
CACCCAGGCAAAGCCCCCA





TGGTCATGTATCATCCTTTT
GGAGTGGGTCTCAGTTATTT

CCACCATGGGATGGTCA
AACTCATGATTTATGAGGGC





TCTAGTAGCAACTGCAACC
ATAGCGGTTATAGCACATA

TGTATCATCCTTTTTCTA
AGTAAGCGGCCCTCAGGGG





GGTGTACATTCTGAGGTGC
CTACGTAGACTCCGTGAAG

GTAGCAACTGCAACCGG
TTTCTAATCGCTTCTCTGGCT





AGCTGGTGGAGTCTGGAGG
GGCCGATTCACCATCTCCA

TTCCTGGGCCCAGTCTGC
CCAAGTCTGGCAACACGGC





AGGCTTGATCCAGCCTGGG
GAGACAATTCCAAGAACAC

CCTGACTCAGCCTGCCTC
CTCCCTGACAATCTCTGGGC





GGGTCCCTGAGACTCTCCT
GCTGTATCTTCAAATGAAC

CGTGTCTGGGTCTCCTGG
TCCAGGCTGAGGACGAGGC





GTGCAGCCTCTGGGTTCAC
AGCCTGAGAGCCGAGGACA

ACAGTCGATCACCATCTC
TGATTATTACTGCTGCTCAT





CGTCAGTAGCAACTACATG
CGGCCGTGTATTACTGTGC

CTGCACTGGAACCAGCA
ATGCAGGTAGTAGCACTTGG





AGCTGGGTCCGCCAGGCTC
GAGAGTGGGGGGAGCACAT

GTGATGTTGGGAGTTAT
GTGTTCGGCGGAGGGACCA





CAGGGAAGGGGCTGGAGTG
AGTGGCTACGACGGATCCT

AACCTTGTCTCCTGGTAC
AGCTGACCGTCCTAG (SEQ





GGCCTCAGTTATTTATAGCG
TTGACTACTGGGGCCAGGG

CAACAGCACCCAGGCAA
ID NO: 3608)





GTTATAGCACATACTACGT
AACCCTGGTCACCGTCTCCT

AGCCCCCAAACTCATGA






AGACTCCGTGAAGGGCCGA
CAG (SEQ ID NO:

TTTATGAGGGCAGTAAG






TTCACCATCTCCAGAGACA
3606)

CGGCCCTCAGGGGTTTCT






ATTCCAAGAACACGCTGTA


AATCGCTTCTCTGGCTCC






TCTTCAAATGAACAGCCTG


AAGTCTGGCAACACGGC






AGAGCCGAGGACACGGCCG


CTCCCTGACAATCTCTGG






TGTATTACTGTGCGAGAGT


GCTCCAGGCTGAGGACG






GGGGGGAGCACATAGTGGC


AGGCTGATTATTACTGCT






TACGACGGATCCTTTGACT


GCTCATATGCAGGTAGT






ACTGGGGCCAGGGAACCCT


AGCACTTGGGTGTTCGG






GGTCACCGTCTCCTCAGCGT


CGGAGGGACCAAGCTGA






CGACCAAGGGCCCATCGGT


CCGTCCTAGGTCAGCCC






CTTCCCCCTGGCACCCTCCT


AAGGCTGCCCCCTCGGT






CCAAGAGCACCTCTGGGGG


CACTCTGTTCCCACCCTC






CACAGCGGCCCTGGGCTGC


GAGTGAGGAGCTTCAAG






CTGGTCAAGGACTACTTCC


CCAACAAGGCCACACTG






CCGAACCTGTGACGGTCTC


GTGTGTCTCATAAGTGAC






GTGGAACTCAGGCGCCCTG


TTCTACCCGGGAGCCGT






ACCAGCGGCGTGCACACCT


GACAGTGGCCTGGAAGG






TCCCGGCTGTCCTACAGTCC


CAGATAGCAGCCCCGTC






TCAGGACTCTACTCCCTCAG


AAGGCGGGAGTGGAGAC






CAGCGTGGTGACCGTGCCC


CACCACACCCTCCAAAC






TCCAGCAGCTTGGGCACCC


AAAGCAACAACAAGTAC






AGACCTACATCTGCAACGT


GCGGCCAGCAGCTACCT






GAATCACAAGCCCAGCAAC


GAGCCTGACGCCTGAGC






ACCAAGGTGGACAAGAGAG


AGTGGAAGTCCCACAGA






TTGAGCCCAAATCTTGTGA


AGCTACAGCTGCCAGGT






CAAAACTCACACATGCCCA


CACGCATGAAGGGAGCA






CCGTGCCCAGCACCTGAAC


CCGTGGAGAAGACAGTG






TCCTGGGGGGACCGTCAGT


GCCCCTACAGAATGTTC






CTTCCTCTTCCCCCCAAAAC


ATAGAAGCTTGGCCGNC






CCAANGACACCCTCATGAT


NNNGNCCNANNTTNGTT






CTCCCGGACCCCTGANNCA


ANNTNNNNNNTTANNNN






CATGCGTGGTGGNGGACGT


GNTTACANATAANGCNA






GAGCCACGAAGACCTGANN


TANTCATCACANATTTTC






CAAGTTCANTGGTACNTGG


ACANAATAANAGNNNTT






NNNGCNTGNNNGCATGATG


TTNTTNNCTGNNNTTCTA






NCNNNANNANNCNNNNNA


GTNGTGNGTTNTGNNNA






GANNNGTNNNNNANNANN


NNTCNNCNTCAGTGTAT






TANCNGGNNNNNNNCNGTG


CATNANNGTNTNNNNNA






NNNGNNCNNNNNTNCNCNN


TCGANNANTTANNTNNN






NNCTNNNNNNNANNNGGG


CGCANCNNNNNGNCNGN






NNNNANNGGNANNNNNNN


AANNNNCNNNTNNNNNN






NNNNNNANNGGNNTNNNN


NNNNNNNNAGNNCTNCT






NNANNNNNNNNNNCNNNN


GAGNNNNNNNCNTCNGN






NNNNANNNNNNNNNNNNN


GNNNGNNNNCAGTNGNN






NNNNNNNNAAANCNNNNN


CNNNNNNNCCNNNNCCN






GGNNNNNCCCN (SEQ


NCAGCNNANNNGCANNC






ID NO: 3605)


ATNNNTNNANNANNNNN









NNNNNNNNAGTCCNGNC









NNNGNNNNNNANNNNN









NNNNNNNNNN (SEQ









ID NO: 3607)








V-C054
NNNNNNNNNNNNNNNNNN
CAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNNNTGNATCN
GACATCCAGATGACCCAGTC
COV047_




NNNTACACNTACGATTTAG
CTGGGGGAGGCGTGGTCCA
P5_H7
TACACATACGATTTAGGT
TCCATCCTCCCTGTCTGCAT
P5_H7




GTGACACTATAGAATAACA
GCCTGGGAGGTCCCTGAGA

GACACTATAGAATAACA
CTGTAGGAGACAGAGTCAC





TCCACTTTGCCTTTCTCTCC
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
CATCACTTGCCAGGCGAGTC





ACAGGTGTCCACTCCCAGG
ATTCACCTTCAGTCGCTATG

CCACAGGTGTCCACTCCC
AGGGCATTAGCAACTATTTA





TCCAACTGCACCTCGGTTCT
GCATGCACTGGGTCCGCCA

AGGTCCAACTGCACCTC
AATTGGTATCAGCAGAAAC





ATCGATTGAATTCCACCAT
GGCTCCAGGCAAGGGGCTG

GGTTCTATCGATTGAATT
CAGGGAAAGCCCCTAAGCT





GGGATGGTCATGTATCATC
GAGTGGGTGGCAGTTATGT

CCACCATGGGATGGTCA
CCTGATCTACGATGCATCCA





CTTTTTCTAGTAGCAACTGC
CATATGATGGAAGTAGTAA

TGTATCATCCTTTTTCTA
ATTTGGAAACAGGGGTCCC





AACCGGTGTACATTCTCAG
ATACTATGCAGACTCCGTG

GTAGCAACTGCAACCGG
ATCAAGGTTCAGTGGAAGT





GTGCAGCTGGTGGAGTCTG
AAGGGCCGATTCACCATCT

TGTACATTCTGACATCCA
GGATCTGGGACAGATTTTAC





GGGGAGGCGTGGTCCAGCC
CCAGAGACAATTCCAAGAA

GATGACCCAGTCTCCATC
TTTCACCATCAGCAGCCTGC





TGGGAGGTCCCTGAGACTC
CACGCTGTGTCTGCAAATG

CTCCCTGTCTGCATCTGT
AGCCTGAAGATATTGCAAC





TCCTGTGCAGCCTCTGGATT
AACAGCCTGAGAGCTGAGG

AGGAGACAGAGTCACCA
ATATTACTGTCAACAGTATG





CACCTTCAGTCGCTATGGC
ACACGGCTGTGTATTACTGT

TCACTTGCCAGGCGAGT
ATAATCTCCCGATCACCTTC





ATGCACTGGGTCCGCCAGG
GCGAAACAGGCGGGCCCAT

CAGGGCATTAGCAACTA
GGCCAAGGGACACGACTGG





CTCCAGGCAAGGGGCTGGA
ATTGTAGTGGTGGTAGCTG

TTTAAATTGGTATCAGCA
AGATTAAAC (SEQ ID NO:





GTGGGTGGCAGTTATGTCA
CTACTCCGCGCCCTTTGACT

GAAAccAGGGAAAGccc
3612)





TATGATGGAAGTAGTAAAT
ACTGGGGCCAGGGAACCCT

CTAAGCTCCTGATCTACG






ACTATGCAGACTCCGTGAA
GGTCACCGTCTCCTCAG

ATGCATCCAATTTGGAA






GGGCCGATTCACCATCTCC
(SEQ ID NO: 3610)

ACAGGGGTCCCATCAAG






AGAGACAATTCCAAGAACA


GTTCAGTGGAAGTGGAT






CGCTGTGTCTGCAAATGAA


CTGGGACAGATTTTACTT






CAGCCTGAGAGCTGAGGAC


TCACCATCAGCAGCCTG






ACGGCTGTGTATTACTGTGC


CAGCCTGAAGATATTGC






GAAACAGGCGGGCCCATAT


AACATATTACTGTCAAC






TGTAGTGGTGGTAGCTGCT


AGTATGATAATCTCCCG






ACTCCGCGCCCTTTGACTAC


ATCACCTTCGGCCAAGG






TGGGGCCAGGGAACCCTGG


GACACGACTGGAGATTA






TCACCGTCTCCTCAGCGTCG


AACGTACGGTGGCTGCA






ACCAAGGGCCCATCGGTCT


CCATCTGTCTTCATCTTC






TCCCCCTGGCACCCTCCTCC


CCGCCATCTGATGAGCA






AAGAGCACCTCTGGGGGCA


GTTGAAATCTGGAACTG






CAGCGGCCCTGGGCTGCCT


CCTCTGTTGTGTGCCTGC






GGTCAAGGACTACTTCCCC


TGAATAACTTCTATCCCA






GAACCTGTGACGGTCTCGT


GAGAGGCCAAAGTACAG






GGAACTCAGGCGCCCTGAC


TGGAAGGTGGATAACGC






CAGCGGCGTGCACACCTTC


CCTCCAATCGGGTAACTC






CCGGCTGTCCTACAGTCCTC


CCAGGAGAGTGTCACAG






AGGACTCTACTCCCTCAGC


AGCAGGACAGCAAGGAC






AGCGTGGTGACCGTGCCCT


AGCACCTACAGCCTCAG






CCAGCAGCTTGGGCACCCA


CAGCACCCTGACGCTGA






GACCTACATCTGCAACGTG


GCAAAGCAGACTACGAG






AATCACAAGCCCAGCAACA


AAACACAAAGTCTACGC






CCAAGGTGGACAAGAGAGT


CTGCGAAGTCACCCATC






TGAGCCCAAATCTTGTGAC


AGGGCCTGAGCTCGCCC






AAAACTCACACATGCCCAC


GTCACAAAGAGCTTCAA






CGTGCCCAGCACCTGAACT


CAGGGGAGAGTGTTAGA






CCTGGGGGGACCGTCAGTC


AGCTTGGCCGCCATGGC






TTCCTCTTCCCCCCAAAACC


CCAACTTGTTTATTGCAG






CAANGACACCCTCNTGATC


CTTATAATGGTTACAAAT






TCCCGGACCCCTGAGGTCN


AAAGCAATAGCATCACA






NATGCGTGGTGGTGGNNGT


AATTTCACAAATAAAGC






GAGCCACGAAGACCCNGAN


ATTTTTTTCACTGCATTC






NCNAGTTCAACTGGNACGN


TNNNNTGTGGGNTTNTG






GGACGGNGNNNNGGNGCA


NNNNANNNNNNNNNNN






NNANGCCAAGACAAAGCCG


GTNTCATANCNNNTCGG






CGGGAGGANCNNT ANNAN


GGNNNGGGNNATTAATT






NAGCACNNACCGNNNNGNC


CGNNGCAGCNNNTGNNN






AGCGNNCCNTNNNCGNCNG


GAAANANNNTGAAAGAG






NNCCNNNNACTNNNNAANG


NNNNNNNNNACTNNGAG






GCNNNNTACANNNCNNGNN


NGAANAACNNCNGNNNN






NTCCANNNANNNNNNNNN


GNNNNGTCAGTNGNNGN






NCNTNNNNAANCNNNNNN


NGAAAGTCNNNGNTCCN






NCAANNNNNNNNNNNNCC


NNNGNNNANNNATGNNA






CCCNNNNNNN (SEQ ID NO:


ANNNTNNNNNNNNTNNN






3609)


CNGCANCNGNNNNNNNA









NNNNNNNNNNNNNGGN









NNNNNANNNNNNNNNN









NNNNNNNNNNCCNNNNN









NNNNN (SEQ ID 









NO: 3611)








V-CO55
NNNNNNNNNNNNTGNNNN
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNNATGTATCN
GAAATAGTGATGACGCAGT
COV047_




NTACANNTACGATTTAGGT
CTGGAGGAGGCTTGATCCA
P5_C3
TACACATACGATTTAGGT
CTCCAGCCACCCTGTCTGTG
P5_C3




GACACTATAGAATAACATC
GCCTGGGGGGTCCCTGAGA

GACACTATAGAATAACA
TCTCCAGGGGAAAGAGCCA





CACTTTGCCTTTCTCTCCAC
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
CCCTCTCCTGCAGGGCCAGT





NNGNGTCCACTCCCAGGTC
GTTCATCGTCAGTAGCAAC

CCACAGGTGTCCACTCCC
CAGAGTGTTAGCAGCAACTT





CAACTGCACCTCGGTTCTAT
TACATGAGCTGGGTCCGCC

AGGTCCAACTGCACCTC
AGCCTGGTACCAGCAGAAA





CGATTGAATTCCACCATGG
AGGCTCCAGGGAAGGGCCT

GGTTCTATCGATTGAATT
CCTGGCCAGGCTCCCAGGCT





GATGGTCATGTATCATCCTT
GGAGTGGGTCTCAGTTATTT

CCACCATGGGATGGTCA
CCTCATCTATGGTGCATCCA





TTTCTAGTAGCAACTGCAA
ATAGCGGTGGTAGCACATT

TGTATCATCCTTTTTCTA
CCAGGGCCACTGCTATCCCA





CCGGTGTACATTCTGAGGT
CTACGCAGACTCCGTGAAG

GTAGCAACTGCAACCGG
GCCAGGTTCAGTGGCAGTG





GCAGCTGGTGGAGTCTGGA
GGCCGATTCACCATCTCCA

TGTACATTCAGAAATAG
GGTCTGGGACAGAGTTCACT





GGAGGCTTGATCCAGCCTG
GAGACAATTCCAAGAACAC

TGATGACGCAGTCTCCA
CTCACCATCAGCAGCCTGCA





GGGGGTCCCTGAGACTCTC
GCTGTATCTTCAAATGAAC

GCCACCCTGTCTGTGTCT
GTCTGAAGATTTTGCAGTTT





CTGTGCAGCCTCTGGGTTCA
AGCCTGAGAGCCGAGGACA

CCAGGGGAAAGAGCCAC
ATTACTGTCAGCAGTATAAT





TCGTCAGTAGCAACTACAT
CGGCCGTGTATTACTGTGC

CCTCTCCTGCAGGGCCA
AACTGGCCTCGGACGTTCGG





GAGCTGGGTCCGCCAGGCT
GAGAGATTTTGGAGAGTTC

GTCAGAGTGTTAGCAGC
CCAAGGGACCAAGGTGGAA





CCAGGGAAGGGCCTGGAGT
TACTTTGACTACTGGGGCC

AACTTAGCCTGGTACCA
ATCAAAC (SEQ ID NO:





GGGTCTCAGTTATTTATAGC
AGGGAACCCTGGTCACCGT

GCAGAAACCTGGCCAGG
3616)





GGTGGTAGCACATTCTACG
CTCCTCAG (SEQ ID

CTCCCAGGCTCCTCATCT






CAGACTCCGTGAAGGGCCG
NO: 3614)

ATGGTGCATCCACCAGG






ATTCACCATCTCCAGAGAC


GCCACTGCTATCCCAGCC






AATTCCAAGAACACGCTGT


AGGTTCAGTGGCAGTGG






ATCTTCAAATGAACAGCCT


GTCTGGGACAGAGTTCA






GAGAGCCGAGGACACGGCC


CTCTCACCATCAGCAGCC






GTGTATTACTGTGCGAGAG


TGCAGTCTGAAGATTTTG






ATTTTGGAGAGTTCTACTTT


CAGTTTATTACTGTCAGC






GACTACTGGGGCCAGGGAA


AGTATAATAACTGGCCT






CCCTGGTCACCGTCTCCTCA


CGGACGTTCGGCCAAGG






GCGTCGACCAAGGGCCCAT


GACCAAGGTGGAGATCA






CGGTCTTCCCCCTGGCACCC


AACGTACGGTGGCTGCA






TCCTCCAAGAGCACCTCTG


CCATCTGTCTTCATCTTC






GGGGCACAGCGGCCCTGGG


CCGCCATCTGATGAGCA






CTGCCTGGTCAAGGACTAC


GTTGAAATCTGGAACTG






TTCCCCGAACCTGTGACGG


CCTCTGTTGTGTGCCTGC






TCTCGTGGAACTCAGGCGC


TGAATAACTTCTATCCCA






CCTGACCAGCGGCGTGCAC


GAGAGGCCAAAGTACAG






ACCTTCCCGGCTGTCCTACA


TGGAAGGTGGATAACGC






GTCCTCAGGACTCTACTCCC


CCTCCAATCGGGTAACTC






TCAGCAGCGTGGTGACCGT


CCAGGAGAGTGTCACAG






GCCCTCCAGCAGCTTGGGC


AGCAGGACAGCAAGGAC






ACCCAGACCTACATCTGCA


AGCACCTACAGCCTCAG






ACGTGAATCACAAGCCCAG


CAGCACCCTGACGCTGA






CAACACCAAGGTGGACAAG


GCAAAGCAGACTACGAG






AGAGTTGAGCCCAAATCTT


AAACACAAAGTCTACGC






GTGACAAAACTCACACATG


CTGCGAAGTCACCCATC






CCCACCGTGCCCAGCACCT


AGGGCCTGAGCTCGCCC






GAACTCCTGGGGGGANCGT


GTCACAAAGAGCTTCAA






CAGTCTTCCTCTTCCCCCCA


CAGGGGAGAGTGTTAGA






AAACCCAAGGACACCCTCA


AGCTTGGNCCGCCATGG






TGATCTCCCGGACCCCTGA


NNNCNNCNNNTTGTNTA






GGTCACATGCGTGGTGGNG


NNGCATCTTATNNTGNTT






GNACGTGANCCACGAAGAC


ACAAATAAGCAATANCA






CCTNNNGTCAGTTCAACTG


TCACNAATTTCACAAAT






GNACNNGGAANGGNNNTG


AAAGCATTTTTNTCACTG






GANGTGCNNNATGNCAAGA


CATNTANNNTGNTTGTCC






ANNAAGCCNCGGGNANGG


NAACTCNTNANGTATCT






ANCAGTACACAGCACGTAC


NNNNTGNNNNNNCNGNA






CGNNNNGGNCANCNNCCNN


NNNTNNNNCANNNCNTG






CNNCGTNCNNCACCANNNC


NNNGNAATANNCTGAAN






TNNNNANNNNANNNNNNA


AGAANTNNNGTACTCTN






CANNGCAGNNNNCANCAA


AGNGNNNNAANANCNN






ANCCCNNNNNCCCNNTNNN


NNNNNNNGNNNNNNNN






NNANNNNNNNNANNNNNN


GNNGNGNNANNNNNCN






NNNNNNNNNANNNNGGNN


NNNNCNNNNNNNNNNN






NANNCCNNNNNNNNTNNCC


NNNNNNANGNTNNNNNN






NNNNNNNN (SEQ ID


NNNNNCNGNNNNNNNCC






NO: 3613)


NNNNNNNNN (SEQ ID









NO: 3615)











V-C056
NNNNNNNNNNNNNNGNGN
CAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNCNNATGNATCN
TCCTATGTGCTGACTCAGCC
COV047_




TNNTNNNNNTACGATTTAN
CTGGGGGAGGCGTGGTCCA
P3_F4
TACACATACGATTTAGGT
ACCCTCGGTGTCAGTGGCCC
P3_F4




GTGACACTATANAATAACA
GCCTGGGAGGTCCCTGAGA

GACACTATAGAATAACA
CAGGACAGACGGCCAGGAT





TCCACTTTGCCTTTCTCTCC
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
TTCCTGTGGGGGAAACAAC





ACNGGTGTCCACTCCCAGG
ATTCACCTTCAGTAACTATG

CCACAGGTGTCCACTCCC
ATTGGAAGTAAAAATGTGC





TCCAACTGCACCTCGGTTCT
GCATGCACTGGGTCCGCCA

AGGTCCAACTGCACCTC
ACTGGTACCAGCAGAAGCC





ATCGATTGAATTCCACCAT
GGCTCCAGGCAAGGGGCTG

GGTTCTATCGATTGAATT
AGGCCAGGCCCCTGTGCTGG





GGGATGGTCATGTATCATC
GAGTGGGTGGCAGTTATAT

CCACCATGGGATGGTCA
TCGTCTATGATGATAGCGAC





CTTTTTCTAGTAGCAACTGC
CATATGATGGAAATAATAA

TGTATCATCCTTTTTCTA
CGGCCCTCAGGGATCCCTGA





AACCGGTGTACATTCTCAG
ATACTATGCAGACTCCGTG

GTAGCAACTGCAACCGG
GCGATTCTCTGGCTCCAACT





GTGCAGCTGGTGGAGTCTG
AAGGGCCGATTCACCATCT

TTCTGTGACCTCCTATGA
CTGGGAACACGGCCACCCT





GGGGAGGCGTGGTCCAGCC
CCAGAGACAATTCCAAGAA

GCTGACTCAGCCACCCTC
GACCATCAGCAGGGTCGAA





TGGGAGGTCCCTGAGACTC
CACGCTGTATCTGCAAATG

GGTGTCAGTGGCCCCAG
GCCGGGGATGAGGCCGACT





TCCTGTGCAGCCTCTGGATT
AACAGCCTGAGAGCTGAGG

GACAGACGGCCAGGATT
ATTACTGTCAGGTGTGGGAT





CACCTTCAGTAACTATGGC
ACACGGCTGTGTATTACTGT

TCCTGTGGGGGAAACAA
AGTAGTAGTGATCCTTGGGT





ATGCACTGGGTCCGCCAGG
GCGAAAGATCCTTTCCCCTT

CATTGGAAGTAAAAATG
GTTCGGCGGAGGGACCAAG





CTCCAGGCAAGGGGCTGGA
AGCAGTGGCTGGGACGGGC

TGCACTGGTACCAGCAG
CTGACCGTCCTAG (SEQ





GTGGGTGGCAGTTATATCA
TACTTTGACTACTGGGGCC

AAGccAGGccAGGcccc
ID NO: 3620)





TATGATGGAAATAATAAAT
AGGGAACCCTGGTCACCGT

TGTGCTGGTCGTCTATGA






ACTATGCAGACTCCGTGAA
CTCCTCAG (SEQ ID NO:

TGATAGCGACCGGCCCT






GGGCCGATTCACCATCTCC
3618)

CAGGGATCCCTGAGCGA






AGAGACAATTCCAAGAACA


TTCTCTGGCTCCAACTCT






CGCTGTATCTGCAAATGAA


GGGAACACGGCCACCCT






CAGCCTGAGAGCTGAGGAC


GACCATCAGCAGGGTCG






ACGGCTGTGTATTACTGTGC


AAGCCGGGGATGAGGCC






GAAAGATCCTTTCCCCTTAG


GACTATTACTGTCAGGTG






CAGTGGCTGGGACGGGCTA


TGGGATAGTAGTAGTGA






CTTTGACTACTGGGGCCAG


TCCTTGGGTGTTCGGCGG






GGAACCCTGGTCACCGTCT


AGGGACCAAGCTGACCG






CCTCAGCGTCGACCAAGGG


TCCTAGGTCAGCCCAAG






CCCATCGGTCTTCCCCCTGG


GCTGCCCCCTCGGTCACT






CACCCTCCTCCAAGAGCAC


CTGTTCCCGCCCTCGAGT






CTCTGGGGGCACAGCGGCC


GAGGAGCTTCAAGCCAA






CTGGGCTGCCTGGTCAAGG


CAAGGCCACACTGGTGT






ACTACTTCCCCGAACCTGTG


GTCTCATAAGTGACTTCT






ACGGTCTCGTGGAACTCAG


ACCCGGGAGCCGTGACA






GCGCCCTGACCAGCGGCGT


GTGGCCTGGAAGGCAGA






GCACACCTTCCCGGCTGTCC


TAGCAGCCCCGTCAAGG






TACAGTCCTCAGGACTCTA


CGGGAGTGGAGACCACC






CTCCCTCAGCAGCGTGGTG


ACACCCTCCAAACAAAG






ACCGTGCCCTCCAGCAGCT


CAACAACAAGTACGCGG






TGGGCACCCAGACCTACAT


CCAGCAGCTACCTGAGC






CTGCAACGTGAATCACAAG


CTGACGCCTGAGCAGTG






CCCAGCAACACCAAGGTGG


GAAGTCCCACAGAAGCT






ACAAGAGAGTTGAGCCCAA


ACAGCTGCCAGGTCACG






ATCTTGTGACAAAACTCAC


CATGAAGGGAGCACCGT






ACATGCCCACCGTGCCCAG


GGAGAAGACAGTGGCCC






CACCTGAACTCCTGGGGGG


CTACAGAATGTTCATAG






ACCGTCAGTCTTCCTCTTCC


AAGCTTGGCCGCCATGG






CCCCAAAACCCAAGGACAC


CCCAACTTGTTTATTGCA






CCTCNNTGATCTCCCNGNA


GCTTATAATGGTTACAA






CCCCTGAGGTCACATGCGT


ATAAAGCAATAGCATCA






GGTGGNGGACGTGAGCCAC


CAAATTTCACAAATAAA






GAANACCCTGAGNCAAGTT


GCATTTTTTTTCACTGCA






TCAACTGGNNACNTGGANG


TTCTAGTTGTGGTTTGNC






GCGNNNNNNGCATNANGCC


CAAACTCATCAATGTATC






NANNNAAAGCCNNNGAGG


TTATCATGTCTGGATCGG






ANCAGTANANNGCACGTNN


GAATNANTTCTGCNCAG






CCGNNNNNNANNNTCNTCN


CNCCATGGNCCTGGNNN






NCGNNCNNCACCNNNNTNN


TAGCACTGANNNNNNAN






NNANNNNAGNANNANANN


NNNGNNNNNGNNNNNN






NNAGNNNCNACAANNCNTN


NTTNNNNTNNNANNNNN






CCNNCNNNNNNNANNNNNT


ANCNNNNNNNNCNNTNN






NNANNNNANNNNNCCCNC


NNNNNNATGNNGTGTCA






NNNNNNNNNNNGNNNNNN


GNTNNGNNNNNNNANNN






N(SEQ ID NO: 3617)


TCCNCNGGNNNCCCNNN









AGNANANNNTNNNNNNC









NTNCATNTCNNNNNCNN









NANCNNGNNNNNNANN









NNCCNNNNNNCNNNNNG









NNNNNNNNNNNNNANN









NNNNNNNNNNNNNNNN









NNNNNNNNNNNNCNNA









ANC (SEQ ID NO:









3619)








V-C057
NNNNNNNNTATGTATCNTA
GAGGTGCAGCTGTTGGAGT
COV047_
NNNNNNNCNTATGNATC
GACATCGTGATGACCCAGTC
COV047_




CACNTACGATTTAGGTGAC
CTGGGGGAGGCTTGGTACA
P3_C5
NTACACATACGATTTAG
TCCAGACTCCCTGGCTGTGT
P3_C5




ACTATAGAATAACATCCAC
ACCTGGGGGGTCCCTGAGA

GTGACACTATAGAATAA
CNNTGGGCGAGAGGGCCAC





TTTGCCTTTCTCTCCACAGG
CTCTCCTGTGCAGCCTCTGG

CATCCACTTTGCCTTTCT
CATCAACTGCAAGTCCAGCC





TGTCCACTCCCAGGTCCAA
ATTCACCTTTAGCAGCTATG

CTCCACAGGTGTCCACTC
AGAATGTTTTATACAGCTCC





CTGCACCTCGGTTCTATCGA
CCATGAGCTGGGTCCGCCA

CCAGGTCCAACTGCACC
AACAATAAGAACTACTTAG





TTGAATTCCACCATGGGAT
GGCTCCAGGGAAGGGGCTG

TCGGTTCTATCGATTGAA
CTTGGTACCAGCAGAAACC





GGTCATGTATCATCCTTTTT
GAGTGGGTCTCAGCTACCA

TTCCACCATGGGATGGTC
AAGACAGCCTCCTAAACTGC





CTAGTAGCAACTGCAACCG
GTGATAGTGGTGGTACCAC

ATGTATCATCCTTTTTCT
TCATTTACTGGGCATCTACC





GTGTACATTCTGAGGTGCA
ATACTACGCAGACTCCGTG

AGTAGCAACTGCAACCG
CGGGAATCCGGGGTCCCTG





GCTGTTGGAGTCTGGGGGA
AAGGGGCGGTTCACCATCT

GTGTACATTCGGACATC
ACCGATTCAGTGGCAGCGG





GGCTTGGTACAACCTGGGG
CCAGAGACAATTCCAAGAA

GTGATGACCCAGTCTCC
GTCTGGGACAGATTTCACTC





GGTCCCTGAGACTCTCCTGT
CACGCTGTATCTGCAAATG

AGACTCCCTGGCTGTGTC
TCACCATCAGCAGCCTGCAG





GCAGCCTCTGGATTCACCTT
AATAGTCTGAGAGCCGAGG

TCTGGGCGAGAGGGCCA
GCCGAAGATGTGGCAGTTTA





TAGCAGCTATGCCATGAGC
ACACGGCCATATATTACTG

CCATCAACTGCAAGTCC
TTACTGTCAGCAATATTATA





TGGGTCCGCCAGGCTCCAG
TGCGAGGAGAGGAAATAGT

AGCCAGAATGTTTTATAC
CTCTTCGTTGGACGTTCGGC





GGAAGGGGCTGGAGTGGGT
GGGAGCTACCCTGACCCTG

AGCTCCAACAATAAGAA
CAAGGGACCAAGGTGGAAA





CTCAGCTACCAGTGATAGT
ACTACTGGGGCCAGGGAAC

CTACTTAGCTTGGTACCA
TCAAAC (SEQ ID NO:





GGTGGTACCACATACTACG
CCTGGTCACCNTCTCCTCAG

GCAGAAACCAAGACAGC
3624)





CAGACTCCGTGAAGGGGCG
(SEQ ID NO: 3622)

CTCCTAAACTGCTCATTT






GTTCACCATCTCCAGAGAC


ACTGGGCATCTACCCGG






AATTCCAAGAACACGCTGT


GAATCCGGGGTCCCTGA






ATCTGCAAATGAATAGTCT


CCGATTCAGTGGCAGCG






GAGAGCCGAGGACACGGCC


GGTCTGGGACAGATTTC






ATATATTACTGTGCGAGGA


ACTCTCACCATCAGCAG






GAGGAAATAGTGGGAGCTA


CCTGCAGGCCGAAGATG






CCCTGACCCTGACTACTGG


TGGCAGTTTATTACTGTC






GGCCAGGGAACCCTGGTCA


AGCAATATTATACTCTTC






CCGTCTCCTCAGCGTCGACC


GTTGGACGTTCGGCCAA






AAGGGCCCATCGGTCTTCC


GGGACCAAGGTGGAAAT






CCCTGGCACCCTCCTCCAA


CAAACGTACGGTGGCTG






GAGCACCTCTGGGGGCACA


CACCATCTGTCTTCATCT






GCGGCCCTGGGCTGCCTGG


TCCCGCCATCTGATGAGC






TCAAGGACTACTTCCCCGA


AGTTGAAATCTGGAACT






ACCTGTGACGGTCTCGTGG


GCCTCTGTTGTGTGCCTG






AACTCAGGCGCCCTGACCA


CTGAATAACTTCTATCCC






GCGGCGTGCACACCTTCCC


AGAGAGGCCAAAGTACA






GGCTGTCCTACAGTCCTCA


GTGGAAGGTGGATAACG






GGACTCTACTCCCTCAGCA


CCCTCCAATCGGGTAACT






GCGTGGTGACCGTGCCCTC


CCCAGGAGAGTGTCACA






CAGCAGCTTGGGCACCCAG


GAGCAGGACAGCAAGGA






ACCTACATCTGCAACGTGA


CAGCACCTACAGCCTCA






ATCACAAGCCCAGCAACAC


GCAGCACCCTGACGCTG






CAAGGTGGACAAGAGAGTT


AGCAAAGCAGACTACGA






GAGCCCAAATCTTGTGACA


GAAACACAAAGTCTACG






AAACTCACACATGCCCACC


CCTGCGAAGTCACCCAT






GTGCCCAGCACCTGAACTC


CAGGGCCTGAGCTCGCC






CTGGGGGGACCGTCAGTCT


CGTCACAAAGAGCTTCN






TCCTCTTCCCCCCAAAACCC


ANNNGGGGGAGAGTGTT






ANNNCACCCTCATGATCTC


AGAAGCTTGGNCCGCCA






CCGGACCCCTGAGGTCACA


TGGCCCAACTTGNTTTNT






TGCGTGGTGGTGGAGGTGA


TNGCAGNTNTATANNNN






GNCACGAGACCNNGAAGN


TNNCAAATAAAGCAATA






NNNNNNAGNNNNGNTNNA


GCATCACAAATTTCACA






GNTNGGNANNGNNANGGC


AATAAAGCATTTTTTTCA






NTNGNAGGTGCATAATGNN


CTGCATTCTAGTTGTGGT






NNNNAAANNCCNNNGGGA


TTGTCCAAACTCATCAAN






NGANCAGTACAANNGCACN


GNATNTNATCATGNCTG






NACCNNNNNGGNNNNNNN


GNTCGNNATNATTCGNG






NNNNNNNCNGTNCNNNNN


CAGCNNCATNNNCTGAA






NNN(SEQ ID NO:


TACNTCTGAANAGACTN






3621)


NNNNACTNNGAGNGAAG









ANNNCNNNGANGGNNN









GTCNNTNNNNNGGGGNA









NNNNNNCCNNNNNC









(SEQ ID NO: 3623)








V-C058
NNNNNNNNNNNTGNNTCNT
CAGGTGCAGCTGGTGCAGT
COV047_
NNNNNNNNNNNNNNTGT
GACATCCAGATGACCCAGTC
COV047_




ACACNTACGATTTAGGTGA
CTGGGGCTGAGGTGAAGAA
P5_F6
NTNNACNCNTACGATTT
TCCATCCTCCCTGTCTGCAT
P5_F6




CACTATAGAATAACATCCA
GCCTGGGGCCTCAGTGAAG

AGGTGACACTATAGAAT
CTGTAGGAGACAGAGTCAC





CTTTGCCTTTCTCTCCACAG
GTTTCCTGCAAGGCATCTG

AACATCCACTTTGCCTTT
CATCACTTGCCGGGCAAGTC





GTGTCCACTCCCAGGTCCA
GATACACCTTCATCAGCTA

CTCTCCACAGGTGTCCAC
AGAGCATTAGCAGCTATTTA





ACTGCACCTCGGTTCTATCG
CTATATGCACTGGGTGCGA

TCCCAGGTCCAACTGCA
AATTGGTATCAGCAGAAAC





ATTGAATTCCACCATGGGA
CAGGCCCCTGGACAAGGGC

CCTCGGTTCTATCGATTG
CAGGGAAAGCCCCTAAGCT





TGGTCATGTATCATCCTTTT
TTGAGTGGATGGGAATAAT

AATTCCACCATGGGATG
CCTGATCTATGCTGCATCCA





TCTAGTAGCAACTGCAACC
CAACCCTAGTGGTGGTAGC

GTCATGTATCATCCTTTT
GTTTGCAAAGTGGGGTCCCA





GGTGTACATTCCCAGGTGC
ACAAGCTACGCACAGAAGT

TCTAGTAGCAACTGCAA
TCAAGGTTCAGTGGCAGTGG





AGCTGGTGCAGTCTGGGGC
TCCAGGGCAGAGTCACCAT

CCGGTGTACATTCTGACA
ATCTGGGACAGATTTCACTC





TGAGGTGAAGAAGCCTGGG
GACCAGGGACACGTCCACG

TCCAGATGACCCAGTCTC
TCACCATCAGCAGTCTGCAA





GCCTCAGTGAAGGTTTCCT
AGCACAGTCTACATGGAGC

CATCCTCCCTGTCTGCAT
CCTGAAGATTTTGCAACTTA





GCAAGGCATCTGGATACAC
TGAGCAGCCTGAGATCTGA

CTGTAGGAGACAGAGTC
CTACTGTCAACAGAGTTACA





CTTCATCAGCTACTATATGC
GGACACGGCCGTGTATTAC

ACCATCACTTGCCGGGC
GTACCCCTCCGGAGGGCAGT





ACTGGGTGCGACAGGCCCC
TGTGCTAGGGCAAATGAGG

AAGTCAGAGCATTAGCA
TTTGGCCAGGGGACCAAGCT





TGGACAAGGGCTTGAGTGG
GAGCAGCTGTTTCATTTGAC

GCTATTTAAATTGGTATC
GGAGATCAAAC (SEQ ID





ATGGGAATAATCAACCCTA
TACTGGGGCCAGGGAACCC

AGCAGAAACCAGGGAAA
NO: 3628)





GTGGTGGTAGCACAAGCTA
TGGTCACCNTNTCCTCAG

GCCCCTAAGCTCCTGATC






CGCACAGAAGTTCCAGGGC
(SEQ ID NO: 3626)

TATGCTGCATCCAGTTTG






AGAGTCACCATGACCAGGG


CAAAGTGGGGTCCCATC






ACACGTCCACGAGCACAGT


AAGGTTCAGTGGCAGTG






CTACATGGAGCTGAGCAGC


GATCTGGGACAGATTTC






CTGAGATCTGAGGACACGG


ACTCTCACCATCAGCAGT






CCGTGTATTACTGTGCTAGG


CTGCAACCTGAAGATTTT






GCAAATGAGGGAGCAGCTG


GCAACTTACTACTGTCAA






TTTCATTTGACTACTGGGGC


CAGAGTTACAGTACCCC






CAGGGAACCCTGGTCACCG


TCCGGAGGGCAGTTTTG






TCTCCTCAGCGTCGACCAA


GCCAGGGGACCAAGCTG






GGGCCCATCGGTCTTCCCCC


GAGATCAAACGTACGGT






TGGCACCCTCCTCCAAGAG


GGCTGCACCATCTGTCTT






CACCTCTGGGGGCACAGCG


CATCTTCCCGCCATCTGA






GCCCTGGGCTGCCTGGTCA


TGAGCAGTTGAAATCTG






AGGACTACTTCCCCGAACC


GAACTGCCTCTGTTGTGT






TGTGACGGTCTCGTGGAAC


GCCTGCTGAATAACTTCT






TCAGGCGCCCTGACCAGCG


ATCCCAGAGAGGCCAAA






GCGTGCACACCTTCCCGGC


GTACAGTGGAAGGTGGA






TGTCCTACAGTCCTCAGGA


TAACGCCCTCCAATCGG






CTCTACTCCCTCAGCAGCGT


GTAACTCCCAGGAGAGT






GGTGACCGTGCCCTCCAGC


GTCACAGAGCAGGACAG






AGCTTGGGCACCCAGACCT


CAAGGACAGCACCTACA






ACATCTGCAACGTGAATCA


GCCTCAGCAGCACCCTG






CAAGCCCAGCAACACCAAN


ACGCTGAGCAAAGCAGA






GTGGACAAGAGAGTTGAGC


CTACGAGAAACACAAAG






CCAAATCTTGTGACAAAAC


TCTACGCCTGCGAAGTC






TCACACATGCCCACCGTGC


ACCCATCANGGCCTGAG






CCAGCACCTGAACTCCTGG


CTCGCCCGTCACAAAGA






GGGGGANCGTCAGTCTTNN


GCTTCAACAGGGGAGAG






TCTTNNNNNCNNAANANAA


TGTTAGAAGCTTGGCCG






NGNANANGNNCNNNNNNN


NCCATGNCCCAACTTGTT






NNNNNTNCCCGNNNNNNNG


TATTGCAGCTTATAATGG






NNGNNNCNTGGGGTGGNNG


TTACAAATAAAGCAATA






GTGNNNNNGANCNNNNAA


GCATCACAAATTTCACA






NANCCNNGANGTCAAGTTC


AATAAAGCATTTTTTTCA






AACTGGNACNGTNGNNGGG


CTGCATTCTAGTTGTGGT






CGTNNNNGCANNANGNCAA


TTGTCCAAACTCATCAAT






NANNAGCCNNNGGANGNN


GTATCTNATCATGTCTGG






CANTANANAGCNCGTACCG


NTCGGGAATTNATTCGN






NGNNNGNCAGCGTCCTNNN


CGCAGCANCATGNNNNA






NNCNGCNCANNACNGGNTG


ANNACTNNGANNNANNN






AANGGNANGGNANTNNNA


NNNNNNNNNNNNNNNN






NNNNNN (SEQ ID 


NNNNTGAGCGAAAGAAC






NO: 3625)


ATCTGNNGANTNNGNGT









CANTTNNNNNGN (SEQ









ID NO: 3627)








V-CO59
NNNNNNNNNNNANGNNTC
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNTTATGTATN
CAGTCTGCCCTGACTCAGCC
COV047_




NTACACATACGATTTAGGT
CTGGGGGAGACTTGGTCCA
P5_G9
NNCNCATACGATTTAGG
TGCCTCCGTGTCTGGGTCTC
P5_G9




GACACTATAGAATAACATC
GCCTGGGGGGTCCCTGAGA

TGACACTATAGAATAAC
CTGGACAGTCGATCACCATC





CACTTTGCCTTTCTCTCCAC
CTCTCCTGTTCAGCCTCTGG

ATCCACTTTGCCTTTCTC
TCCTGCACTGGAACCAGCAG





AGGTGTCCACTCCCAGGTC
ATTCACCTTCAGTAGCTATG

TCCACAGGTGTCCACTCC
TGACATTGGTGATTATAACT





CAACTGCACCTCGGTTCTAT
CTATGCACTGGGTCCGCCA

CAGGTCCAACTGCACCT
ATGTCTCCTGGTACCAACAC





CGATTGAATTCCACCATGG
GGCTCCAGGGAAGGGACTG

CGGTTCTATCGATTGAAT
CACCCAGGCAAAGCCCCCA





GATGGTCATGTATCATCCTT
GAATATGTTTCAGTTATTAG

TCCACCATGGGATGGTC
AACTCATGATTTATGAAGTC





TTTCTAGTAGCAACTGCAA
TAATACTGGGGGTGACACA

ATGTATCATCCTTTTTCT
AGTAATCGGCCCTCAGGGGT





CCGGTGTACATTCTGAGGT
TACTACGCAGACTCCGTGA

AGTAGCAACTGCAACCG
TTCTAATCGCTTCTCTGGCT





GCAGCTGGTGGAGTCTGGG
AGGGCAGATTCACCATCTC

GTTCCTGGGCCCAGTCTG
CCAAGTCTGGCAACACGGC





GGAGACTTGGTCCAGCCTG
CAGAGACAATTCCAAGAAC

CCCTGACTCAGCCTGCCT
CTCCCTGACCATCTCTGGGC





GGGGGTCCCTGAGACTCTC
ACGTTGTATCTTCAAGTGA

CCGTGTCTGGGTCTCCTG
TCCAGGCTGAGGACGAGAC





CTGTTCAGCCTCTGGATTCA
GCAGTCTGAGACCTGAAGA

GACAGTCGATCACCATC
TGATTATTACTGCATCTCAT





CCTTCAGTAGCTATGCTATG
CACGGCTGTGTATTACTGTG

TCCTGCACTGGAACCAG
ATACAAGCAGCAGCACTCTT





CACTGGGTCCGCCAGGCTC
TGAAAGATCAAGGGGGCCG

CAGTGACATTGGTGATT
CCCTATGTCTTCGGAACTGG





CAGGGAAGGGACTGGAATA
GGGGTGGCCAAGTTACTAC

ATAACTATGTCTCCTGGT
GACCAAGGTCACCGTCCTAG





TGTTTCAGTTATTAGTAATA
TACTACCACTACATGGACG

ACCAACACCACCCAGGC
(SEQ ID NO: 3632)





CTGGGGGTGACACATACTA
TCTGGGGCAAAGGGACCAC

AAAGCCCCCAAACTCAT






CGCAGACTCCGTGAAGGGC
GGTCACCGTCTCCTCA 

GATTTATGAAGTCAGTA






AGATTCACCATCTCCAGAG
(SEQ ID NO: 3630)

ATCGGCCCTCAGGGGTTT






ACAATTCCAAGAACACGTT


CTAATCGCTTCTCTGGCT






GTATCTTCAAGTGAGCAGT


CCAAGTCTGGCAACACG






CTGAGACCTGAAGACACGG


GCCTCCCTGACCATCTCT






CTGTGTATTACTGTGTGAAA


GGGCTCCAGGCTGAGGA






GATCAAGGGGGCCGGGGGT


CGAGACTGATTATTACTG






GGCCAAGTTACTACTACTA


CATCTCATATACAAGCA






CCACTACATGGACGTCTGG


GCAGCACTCTTCCCTATG






GGCAAAGGGACCACGGTCA


TCTTCGGAACTGGGACC






CCGTCTCCTCAGCGTCGACC


AAGGTCACCGTCCTAGG






AAGGGCCCATCGGTCTTCC


TCAGCCCAAGGCCAACC






CCCTGGCACCCTCCTCCAA


CCACTGTCACTCTGTTCC






GAGCACCTCTGGGGGCACA


CACCCTCGAGTGAGGAG






GCGGCCCTGGGCTGCCTGG


CTTCAAGCCAACAAGGC






TCAAGGACTACTTCCCCGA


CACACTGGTGTGTCTCAT






ACCTGTGACGGTCTCGTGG


AAGTGACTTCTACCCGG






AACTCAGGCGCCCTGACCA


GAGCCGTGACAGTGGCC






GCGGCGTGCACACCTTCCC


TGGAAGGCAGATAGCAG






GGCTGTCCTACAGTCCTCA


CCCCGTCAAGGCGGGAG






GGACTCTACTCCCTCAGCA


TGGAGACCACCACACCC






GCGTGGTGACCGTGCCCTC


TCCAAACAAAGCAACAA






CAGCAGCTTGGGCACCCAG


CAAGTACGCGGCCAGCA






ACCTACATCTGCAACGTGA


GCTACCTGAGCCTGACG






ATCACAAGCCCAGCAACAC


CCTGAGCAGTGGAAGTC






CAAGGTGGACAAGAGAGTT


CCACAGAAGCTACAGCT






GAGCCCAAATCTTGTGACA


GCCAGGTCACGCATGAA






AAACTCACACATGCCCACC


GGGAGCACCGTGGAGAA






GTGCCCAGCACCTGAACTC


GACAGTGGCCCCTACAG






CTGGGGGGACCGTCAGTCT


AATGTTCATAGAAGCTT






TCCTCTTCCCCCCAAAACCC


GGCCGCCATGGCCCAAC






AAGGACACCCTCATGATCT


TTGTTTATTGTNNCNNNN






CCCGGACCCCTGAGGTCAC


TATNNTGATTACNAAAT






ATGCGTGGGNGGNGGANNT


AAAGCAATAGCATCACA






GANCCACNANACCCTGAGN


AATTTCACAAATAAAGC






CAAGTTCAACTGGNACNNG


ATTTTTTTCACTGCATTC






GNNGGCGNNGAGGTGCATA


TAGTTGTGGTTNGTCCAA






ATGNNAANAANNAANNCG


ACTCATCNATGNNNNNN






CGGGAGGANCAGTACNANN


TTATCNTGNCTGGATCNG






NGCNNNTACCGNNNGGNNA


GAATNNNNNNNGCANCN






GNCNNNNNNNNNNCNNNN


CNTNNNNAAATNACCNN






NNNNNANTGNNNNAANGG


TGAANNNNNNANTNNNN






NN (SEQ ID NO: 


NNGTACTNNNNNNNGNN






3629)


NNNNNAACNNNNNNNG









NANNNNNNNGTNNNNNT









NNNNNNNAANNNCCNNG









NNNNNNNNNGGNANNN









NTNNNNNAANNNNNN









(SEQ ID NO: 3631)








V-C060
NNNNNNNCNNATGTATCNT
CAGGTTCAGCTGGTGCAGT
COV107_
NNNNNNNTATGTATCNT
TCCTATGTGCTGACTCAGCC
COV107_




ACNCATACGATTTAGGTGA
CTGGAGCTGAGGTGAAGAA
P3_E5
ACACNTACGATTTAGGT
ACCCTCGGTGTCAGTGTCCC
P3_E5




CACTATAGAATAACATCCA
GCCTGGGGCCTCAGTGAAG

GACACTATAGAATAACA
CAGGACAGACGGCCAGGAT





CTTTGCCTTTCTCTCCACAG
GTCTCCTGCAAGGCTTCTGG

TCCACTTTGCCTTTCTCT
CACCTGCTCTGGAGATGCAT





GTGTCCACTCCCAGGTCCA
TTACACCTTTACCAGCTACG

CCACAGGTGTCCACTCCC
TGCCAAAGCAATATGCTTAT





ACTGCACCTCGGTTCTATCG
GTATCAGCTGGGTGCGACA

AGGTCCAACTGCACCTC
TGGTACCAGCAGAAGCCAG





ATTGAATTCCACCATGGGA
GGCCCCTGGACAAGGGCTT

GGTTCTATCGATTGAATT
GCCAGGCCCCTGTGCTGGTG





TGGTCATGTATCATCCTTTT
GAGTGGATGGGATGGATCA

CCACCATGGGATGGTCA
ATATATAAAGACAGTGAGA





TCTAGTAGCAACTGCAACC
GCGCTTACAATGGTAACAC

TGTATCATCCTTTTTCTA
GGCCCTCAGGGATCCCTGAG





GGTGTACATTCCCAGGTTC
AAACTATGCACAGAAGCTC

GTAGCAACTGCAACCGG
CGATTCTCTGGCTCCAGCTC





AGCTGGTGCAGTCTGGAGC
CAGGGCAGAGTCACCATGA

TTCTGTGACCTCCTATGA
AGGGACAACAGTCACGTTG





TGAGGTGAAGAAGCCTGGG
CCACAGACACATCCACGAG

GCTGACACAGCCACCCT
ACCATCAGTGGAGTCCAGG





GCCTCAGTGAAGGTCCCCT
CACAGCCTACATGGAGCTG

CGGTGTCAGTGTCCCCA
CAGAAGACGAGGCTGACTA





GCAAGGCTTCTGGTTACAC
AGGAGCCTGAGATCTGACG

GGACAGACGGCCAGGAT
TTACTGTCAATCAGCAGACA





CTTTACCAGCTACGGTATCA
ACACGGCCGTGTATTACTG

CACCTGCTCTGGAGATG
GCAGTGGTACTCTTTGGGTG





GCTGGGTGCGACAGGCCCC
TGCGAGAGTTCCCGCCTCG

CATTGCCAAAGCAATAT
TTCGGCGGAGGGACCAAGC





TGGACAAGGGCTTGAGTGG
TACGGTGACGACGATTACT

GCTTATTGGTACCAGCA
TGACCGTCCTAG (SEQ ID





ATGGGATGGATCAGCGCTT
ACTACTACTACGGTATGGA

GAAGCCAGGCCAGGCCC
NO: 3636)





ACAATGGTAACACAAACTA
CGTCTGGGGCCAAGGGACC

CTGTGCTGGTGATATATA






TGCACAGAAGCTCCAGGGC
ACGGTCACCGTCTCCTCA

AAGACAGTGAGAGGCCC






AGAGTCACCATGACCACAG
(SEQ ID NO: 339)

TCAGGGATCCCTGAGCG






ACACATCCACGAGCACAGC


ATTCTCTGGCTCCAGCTC






CTACATGGAGCTGAGGAGC


AGGGACAACAGTCACGT






CTGAGATCTGACGACACGG


TGACCATCAGTGGAGTC






CCGTGTATTACTGTGCGAG


CAGGCAGAAGACGAGGC






AGTTCCCGCCTCGTACGGT


TGACTATTACTGTCAATC






GACGACGATTACTACTACT


AGCAGACAGCAGTGGTA






ACTACGGTATGGACGTCTG


CTCTTTGGGTGTTCGGCG






GGGCCAAGGGACCACGGTC


GAGGGACCAAGCTGACC






ACCGTCTCCTCAGCGTCGA


GTCCTAGGTCAGCCCAA






CCAAGGGCCCATCGGTCTT


GGCTGCCCCCTCGGTCAC






CCCCCTGGCACCCTCCTCCA


TCTGTTCCCACCCTCGAG






AGAGCACCTCTGGGGGCAC


TGAGGAGCTTCAAGCCA






AGCGGCCCTGGGCTGCCTG


ACAAGGCCACACTGGTG






GTCAAGGACTACTTCCCCG


TGTCTCATAAGTGACTTC






AACCTGTGACGGTCTCGTG


TACCCGGGAGCCGTGAC






GAACTCAGGCGCCCTGACC


AGTGGCCTGGAAGGCAG






AGCGGCGTGCACACCTTCC


ATAGCAGCCCCGTCAAG






CGGCTGTCCTACAGTCCTCA


GCGGGAGTGGAGACCAC






GGACTCTACTCCCTCAGCA


CACACCCTCCAAACAAA






GCGTGGTGACCGTGCCCTC


GCAACAACAAGTACGCG






CAGCAGCTTGGGCACCCAG


GCCAGCAGCTACCTGAG






ACCTACATCTGCAACGTGA


CCTGACGCCTGAGCAGT






ATCACAAGCCCAGCAACAC


GGAAGTCCCACAGAAGC






CNANGTGGACAAGAGAGTT


TACAGCTGCCAGGTCAC






GAGCCCAAATCTTGTGACA


GCATGAAGGGAGCACCG






AAACTCACACATGCCCACC


TGGAGAAGACAGTGGCC






GTGCCCAGCACCTGAACTC


CCNANNNNNAATGTTCA






CTGGGGGGACCGTCAGTCT


TAGAAGCTTGGCCCGCC






TCCTCTTCCCCCCAAAACCC


ATGGCCCAACTTGTTTAT






AAGGNNNCCCTCATGATNN


TGCAGCTTATAATGGTTA






NCCCGNACCCCNGAGGTCA


CAAATAAAGCAATAGCA






CATGCGTGGNGGTGGACGT


TCACAAATTTCACAAAT






GANCCACGAANACCCTGAG


AAAGCATTTTTTTCACTG






NCAAGTTCAACTGGNACNN


CATTCTAGTTGTGGTTTG






GGNNGGCNNNNNNGCATA


TCCAAACTCATCAATGN






ANGNNANAANNAAGCCGN


NTCTTATCATGTCTGGNT






NGGNAGGANCANNNNNNN


CGGGNATTNATTTNGNN






NAGCNCGNNCCGNGNNNN


GCAGCNNNTGNNNGAAN






NCANNNTTCNNN (SEQ


NANNNTGAAAGAGNNTN






ID NO: 3633)


NNNNGNNCTTCTGAGNG









AANACNTCNNNNGANNN









NNGTCANTNNNNNGAAN









GTCCCAGNTCCCNNNNG









GNNNNTNNGNNNNNNNN









NNNTNNNCANTNNNTCA









NNNNNN (SEQ ID NO:









3635)








V-C061
NNNNNNNNCNNATGTATCN
CAGGTGCAGCTACAGCAGT
COV107_
NNNNNNNNNNNTATGNN
GAAATTGTGTTGACGCAGTC
COV107_




TACNCNTACGATTTAGGTG
GGGGCGCAGGACTGTTGAA
P1_G12
TCNTACNCATACGATTTA
TCCAGGCACCCTGTCTTTGT
P1_G12




ACACTATAGAATAACATCC
GCCTTCGGAGACCCTGTCTC

GGTGACACTATAGAATA
CTCCAGGGGAAAGAGCCAC





ACTTTGCCTTTCTCTCCACA
TCACCTGCGCTGTCTCTGGT

ACATCCACTTTGCCTTTC
CCTCTCCTGCAGGGCCAGTC





GGTGTCCACTCCCAGGTCC
GGGTCACTCAGTGGTTTCTA

TCTCCACAGGTGTCCACT
AGACTCTTACCGCCAACTAC





AACTGCACCTCGGTTCTATC
CTGGACCTGGATCCGCCAG

CCCAGGTCCAACTGCAC
TTAGCCTGGTACCAGCAGAA





GATTGAATTCCACCATGGG
CCCCCCGGAAAGGGGCTGG

CTCGGTTCTATCGATTGA
ACCTGGCCAGGCTCCCAGAC





ATGGTCATGTATCATCCTTT
AGTGGATTGGGGAAACCAA

ATTCCACCATGGGATGG
TCCTCATCTATGGTGCATCC





TTCTAGTAGCAACTGCAAC
TCATTTTGGAAGCACCGAC

TCATGTATCATCCTTTTT
AAGAGGGCCACTGGCATCC





CGGTGTACATTCCCAGGTG
TACAAGCCGTCCCTCAAGA

CTAGTAGCAACTGCAAC
CAGACAGGTTCAGTGGCAG





CAGCTACAGCAGTGGGGCG
GTCGAGTCACCATATCAGT

CGGTGTACATTCAGAAA
TGGGTCTGGGACAGACTTCA





CAGGACTGTTGAAGCCTTC
AGACATGTCCAGGAACCAA

TTGTGTTGACGCAGTCTC
CTCTCAGCATCAGCAGACTG





GGAGACCCTGTCTCTCACCT
TTTTCCCTGATTATGACCTC

CAGGCACCCTGTCTTTGT
GAGCCTGAAGATTTTGCAGT





GCGCTGTCTCTGGTGGGTC
TGTGACCGCCGCGGACACG

CTCCAGGGGAAAGAGCC
GTATTACTGTCAGCAGTATG





ACTCAGTGGTTTCTACTGGA
GCTGTGTATTACTGTGCGA

ACCCTCTCCTGCAGGGCC
GTACTACACCTCGGACTTTC





CCTGGATCCGCCAGCCCCC
GAAAGACCCTCCTCTTCAG

AGTCAGACTCTTACCGCC
GGCGGAGGGACCAAGGTGG





CGGAAAGGGGCTGGAGTGG
TGACTTTTCTCCTGGTGCTT

AACTACTTAGCCTGGTAC
AGATCAA (SEQ ID NO:





ATTGGGGAAACCAATCATT
TTGATATCTGGGGCCAAGG

CAGCAGAAACCTGGCCA
3640)





TTGGAAGCACCGACTACAA
GACAATGGTCGTAGTCTCTT

GGCTCCCAGACTCCTCAT






GCCGTCCCTCAAGAGTCGA
CAG (SEQ ID NO: 

CTATGGTGCATCCAAGA






GTCACCATATCAGTAGACA
3638)

GGGCCACTGGCATCCCA






TGTCCAGGAACCAATTTTCC


GACAGGTTCAGTGGCAG






CTGATTATGACCTCTGTGAC


TGGGTCTGGGACAGACT






CGCCGCGGACACGGCTGTG


TCACTCTCAGCATCAGCA






TATTACTGTGCGAGAAAGA


GACTGGAGCCTGAAGAT






CCCTCCTCTTCAGTGACTTT


TTTGCAGTGTATTACTGT






TCTCCTGGTGCTTTTGATAT


CAGCAGTATGGTACTAC






CTGGGGCCAAGGGACAATG


ACCTCGGACTTTCGGCG






GTCACCGTCTCTTCAGCGTC


GAGGGACCAAGGTGGAA






GACCAAGGGCCCATCGGTC


ATCAAACGTACGGTGGC






TTCCCCCTGGCACCCTCCTC


TGCACCATCTGTCTTCAT






CAAGAGCACCTCTGGGGGC


CTTCCCGCCATCTGATGA






ACAGCGGCCCTGGGCTGCC


GCAGTTGAAATCTGGAA






TGGTCAAGGACTACTTCCC


CTGCCTCTGTTGTGTGCC






CGAACCTGTGACGGTCTCG


TGCTGAATAACTTCTATC






TGGAACTCAGGCGCCCTGA


CCAGAGAGGCCAAAGTA






CCAGCGGCGTGCACACCTT


CAGTGGAAGGTGGATAA






CCCGGCTGTCCTACAGTCCT


CGCCCTCCAATCGGGTA






CAGGACTCTACTCCCTCAG


ACTCCCAGGAGAGTGTC






CAGCGTGGTGACCGTGCCC


ACAGAGCAGGACAGCAA






TCCAGCAGCTTGGGCACCC


GGACAGCACCTACAGCC






AGACCTACATCTGCAACGT


TCAGCAGCACCCTGACG






GAATCACAAGCCCAGCAAC


CTGAGCAAAGCAGACTA






ACCAAGGTGGACAAGAGAG


CGAGAAACACAAAGTCT






TTGAGCCCAAATCTTGTGA


ACGCCTGCGAAGTCACC






CAAAACTCACACATGCCCA


CATCAGGGCCTGAGCTC






CCGTGCCCAGCACCTGAAC


GCCCGTCACAAAGAGCT






TCCTGGGGGGACCGTCAGT


TCAACAGGGGANANNNN






CTTCCTCTTCCCCCCAAAAC


NGAAGCTTNGGCCNCCN






CCAAGGACACCCTCATGAT


TGNGCCCNCNNNNTGTN






NNNCCGGACCCCTGANGTC


TNNNNNNNNTNNNNNNN






NNNTGCNTGGTGGTGGACG


NTNACAAATAAAGCAAT






TGAGCCACGANNACCCTGN


ANCATCNCANNTTCNCA






NNCAGTCANTGGNACGNNG


AAAAANNNNTTTTTTTNT






NNGGNNNGNAGGTNCATAA


CACTGCATNNNGTGNGN






TGNCAANANNAAGCCNNNG


TTGTCCAACTCATCATGN






GNAGGAGCAGNNNNANCA


NNCTNNCATGNCNGNTC






GCNNCGTACCCNNNNNNNN


GGNNTNNNGNGCANCAC






ANCNNN (SEQ ID NO:


NTNNNNANNNNNNNGNA






3637)


NNGANTGNNNGTACTNN









NNNNGNAANACNTCNGN









GANGNNNNCAGTNGGNG









NNGANGTCCCNGNNNN









(SEQ ID NO: 3639)








V-C062
NNNNNNNNNATGNATCNTA
CAGGTGCAGCTACAGCAGT
COV107_
NNNNNNNNNNNNATGNA
GAAATTGTGTTGACGCAGTC
COV107_




CACATACGATTTAGGTGAC
GGGGCGCAGGACTGTTGAA
P1_A11
TNNNCACNTACGATTTA
TCCAGGCACCCTGTCTTTGT
P1_A11




ACTATAGAATAACATCCAC
GCCTTCGGAGACCCTGTCC

GGTGACACTATAGAATA
CTCCAGGGGAAAGAGCCAC





TTTGCCTTTCTCTCCACAGG
CTCACCTGCGCTGTCTCTGG

ACATCCACTTTGCCTTTC
CCTCTCCTGCAGGGCCAGTC





TGTCCACTCCCAGGTCCAA
TGGGTCACTCAGTGGTTTCT

TCTCCACAGGTGTCCACT
AGACTCTTACCGCCAACTAC





CTGCACCTCGGTTCTATCGA
ACTGGACCTGGATCCGCCA

CCCAGGTCCAACTGCAC
TTAGCCTGGTACCAGCAGAA





TTGAATTCCACCATGGGAT
GCCCCCAGGAAAGGGGCTG

CTCGGTTCTATCGATTGA
ACCTGGCCAGGCTCCCAGAC





GGTCATGTATCATCCTTTTT
GAGTGGATTGGGGAAACCA

ATTCCACCATGGGATGG
TCCTCATCTATGGTGCATCC





CTAGTAGCAACTGCAACCG
ATCATTTTGGAAGCACCGA

TCATGTATCATCCTTTTT
AAGAGGGCCGCTGGCATCC





GTGTACATTCCCAGGTGCA
CTACAAGGCGTCCCTCAAG

CTAGTAGCAACTGCAAC
CAGACAGGTTCAGTGGCAG





GCTACAGCAGTGGGGCGCA
AGTCGAGTCACCATATCAG

CGGTGTACATTCAGAAA
TGGGTCTGGGACAGACTTCA





GGACTGTTGAAGCCTTCGG
TAGGCATGTCCAGGAACCA

TTGTGTTGACGCAGTCTC
CTCTCAGCATCACCAGACTG





AGACCCTGTCCCTCACCTGC
ATTTTCCCTGAAGGTGACTT

CAGGCACCCTGTCTTTGT
GAGCCTGAAGATTTTGCAGT





GCTGTCTCTGGTGGGTCACT
CTCTGACCGCCGCGGACAC

CTCCAGGGGAAAGAGCC
GTATTACTGTCAGCAGTATC





CAGTGGTTTCTACTGGACCT
GGCTGTGTATTACTGTGCG

ACCCTCTCCTGCAGGGCC
ATACTACACCTCGGACTTTC





GGATCCGCCAGCCCCCAGG
AGAAAGCCCCTCCTCTACA

AGTCAGACTCTTACCGCC
GGCGGAGGGACCAAGGTGG





AAAGGGGCTGGAGTGGATT
GTGACTTTTCTCCTGGTGCT

AACTACTTAGCCTGGTAC
AGATCAA (SEQ ID NO:





GGGGAAACCAATCATTTTG
TTTGATATCTGGGGCCAAG

CAGCAGAAACCTGGCCA
344)





GAAGCACCGACTACAAGGC
GGACAATGATCGTAGTCTC

GGCTCCCAGACTCCTCAT






GTCCCTCAAGAGTCGAGTC
TTCAG (SEQ ID NO:

CTATGGTGCATCCAAGA






ACCATATCAGTAGGCATGT
3642)

GGGCCGCTGGCATCCCA






CCAGGAACCAATTTTCCCT


GACAGGTTCAGTGGCAG






GAAGGTGACTTCTCTGACC


TGGGTCTGGGACAGACT






GCCGCGGACACGGCTGTGT


TCACTCTCAGCATCACCA






ATTACTGCGCGAGAAAGCC


GACTGGAGCCTGAAGAT






CCTCCTCTACAGTGACTTTT


TTTGCAGTGTATTACTGT






CTCCTGGTGCTTTTGATGTC


CAGCAGTATCATACTAC






TGGGGCCAAGGGACAATGG


ACCTCGGACTTTCGGCG






TCACCGTCTCTTCAGCGTCG


GAGGGACCAAGGTGGAG






ACCAAGGGCCCATCGGTCT


ATCAAACGTACGGTGGC






TCCCCCTGGCACCCTCCTCC


TGCACCATCTGTCTTCAT






AAGAGCACCTCTGGGGGCA


CTTCCCGCCATCTGATGA






CAGCGGCCCTGGGCTGCCT


GCAGTTGAAATCTGGAA






GGTCAAGGACTACTTCCCC


CTGCCTCTGTTGTGTGCC






GAACCTGTGACGGTCTCGT


TGCTGAATAACTTCTATC






GGAACTCAGGCGCCCTGAC


CCAGAGAGGCCAAAGTA






CAGCGGCGTGCACACCTTC


CAGTGGAAGGTGGATAA






CCGGCTGTCCTACAGTCCTC


CGCCCTCCAATCGGGTA






AGGACTCTACTCCCTCAGC


ACTCCCAGGAGAGTGTC






AGCGTGGTGACCGTGCCCT


ACAGAGCAGGACAGCAA






CCAGCAGCTTGGGCACCCA


GGACAGCACCTACAGCC






GACCTACATCTGCAACGTG


TCAGCAGCACCCTGACG






AATCACAAGCCCAGCAACA


CTGAGCAAAGCAGACTA






CCAAGGTGGACAAGAGAGT


CGAGAAACACAAAGTCT






TGAGCCCAAATCTTGTGAC


ACGCCTGCGAAGTCACC






AAAACTCACACATGCCCAC


CATCAGGGCCTGAGCTC






CGTGCCCAGCACCTGAACT


GCCCGTCACAAAGAGCT






CCTGGGGGGACCGTCAGTC


TCAACAGGGGAGAGTGT






TTCCTCTTCCCCCCAAAACC


TAGAAGCTTGGCCGCCA






CAAGGACNNCCTCATGATC


TGGCCCAACTTGTTTATT






TCCCGGACCCCTGNNNCAC


GCAGCTTATAATGGNTA






ATGCGTGNNNNGACGTGAG


CAAATAAAGCAATAGCA






CCACGAANANCCTGANTCA


TCACAAATTTCACAAAT






GTCANTGGNACGNNGNNGG


AAAGCATTTTTTTCACTG






CNNNNNNGCATANNCNNAN


CATTCTAGTTGTGGNTNG






AAGCNNNGGANGANCANT


TCCAAACTCATCAATGN






ANANAGCACGTACCGNGNN


ATCTTATCATGTCTGGAT






NCAGCGTCNTNNNGTCNGN


CGGNNNNNNCGNNNCAG






NCCNGANTGNNGAATGNN


CNNNNNNNNAANNNNN






(SEQ ID NO: 3641)


NNTGAANNNNCTNGNNG









TACTNCTGAGNGAANAA









CNTCNGNNNANNNNNNN









NCAGTAGGGNNNNNGAA









GTCCCNNGGNNC (SEQ









ID NO: 3643)








V-C063
NNNNNNNNTNTGNATCNTA
CAGGTGCAGCTACAGCAGT
COV107_
NNNNNNNNNTATGNATC
GAAATTGTGTTGACGCAGTC
COV107_




CACATACGATTTAGGTGAC
GGGGCGCAGGACTGTTGAA
P2_C7
NTACACATACGATTTAG
TCCAGGCACCCTGTCTTTGT
P2_C7




ACTATAGAATAACATCCAC
GCCTTCGGAGACCCTGTCC

GTGACACTATAGAATAA
CTCCAGGGGAAAGAGCCAC





TTTGCCTTTCTCTCCACAGG
CTCACCTGCGCTGTCTCTGG

CATCCACTTTGCCTTTCT
CCTCTCCTGCAGGGCCAGTC





TGTCCACTCCCAGGTCCAA
TGGGTCACTCAGTGGTTTCT

CTCCACAGGTGTCCACTC
AGACTGTTTCCGCCAACTAC





CTGCACCTCGGTTCTATCGA
ACTGGACCTGGATCCGCCA

CCAGGTCCAACTGCACC
TTAGCCTGGTACCAGCAGAA





TTGAATTCCACCATGGGAT
GCCCCCAGGAAAGGGGCTG

TCGGTTCTATCGATTGAA
AGCTGGCCAGGCTCCCAGA





GGTCATGTATCATCCTTTTT
GAGTGGATTGGGGAAACCA

TTCCACCATGGGATGGTC
CTCCTCATCTATGGTGCATC





CTAGTAGCAACTGCAACCG
ATCATTTTGGAAGCACCGA

ATGTATCATCCTTTTTCT
CAAGAGGGCCACTGGCATC





GTGTACATTCCCAGGTGCA
CTACAAGCCGTCCCTCAAG

AGTAGCAACTGCAACCG
CCAGACAGGTTCAGTGGCA





GCTACAGCAGTGGGGCGCA
AGTCGAGTCACCATATCAG

GTGTACATTCAGAAATT
GTGGGTCTGGGACAGACTTC





GGACTGTTGAAGCCTTCGG
TAGACATGTCCAGGAACCA

GTGTTGACGCAGTCTCCA
ACTCTCAGCATCAGCAGACT





AGACCCTGTCCCTCACCTGC
GTTCTCCCTGAAGGTGACCT

GGCACCCTGTCTTTGTCT
GGAGCCTGAAGATTTTGCTG





GCTGTCTCTGGTGGGTCACT
CTGTGACCGCCGCGGACAC

CCAGGGGAAAGAGCCAC
TGTATTACTGTCAGCAGTAT





CAGTGGTTTCTACTGGACCT
GGCTGTTTATTACTGTGCGA

CCTCTCCTGCAGGGCCA
GTTACTACACCTCGGACTTT





GGATCCGCCAGCCCCCAGG
GAAAGCCCCTCCTCCACAG

GTCAGACTGTTTCCGCCA
CGGCGGAGGGACCAAGGTG





AAAGGGGCTGGAGTGGATT
TGACTTATCTCCTGGTGCTT

ACTACTTAGCCTGGTACC
GAGATCAA (SEQ ID NO:





GGGGAAACCAATCATTTTG
TTGATATCTGGGGCCAAGG

AGCAGAAAGCTGGCCAG
3648)





GAAGCACCGACTACAAGCC
GACAATGGTCGCCGTCTCTT

GCTCCCAGACTCCTCATC






GTCCCTCAAGAGTCGAGTC
CAG (SEQ ID NO:

TATGGTGCATCCAAGAG






ACCATATCAGTAGACATGT
3646)

GGCCACTGGCATCCCAG






CCAGGAACCAGTTCTCCCT


ACAGGTTCAGTGGCAGT






GAAGGTGACCTCTGTGACC


GGGTCTGGGACAGACTT






GCCGCGGACACGGCTGTTT


CACTCTCAGCATCAGCA






ATTACTGTGCGAGAAAGCC


GACTGGAGCCTGAAGAT






CCTCCTCCACAGTGACTTAT


TTTGCTGTGTATTACTGT






CTCCTGGTGCTTTTGATATC


CAGCAGTATGTTACTAC






TGGGGCCAAGGGACAATGG


ACCTCGGACTTTCGGCG






TCACCGTCTCTTCAGCGTCG


GAGGGACCAAGGTGGAA






ACCAAGGGCCCATCGGTCT


ATCAAACGTACGGTGGC






TCCCCCTGGCACCCTCCTCC


TGCACCATCTGTCTTCAT






AAGAGCACCTCTGGGGGCA


CTTCCCGCCATCTGATGA






CAGCGGCCCTGGGCTGCCT


GCAGTTGAAATCTGGAA






GGTCAAGGACTACTTCCCC


CTGCCTCTGTTGTGTGCC






GAACCTGTGACGGTCTCGT


TGCTGAATAACTTCTATC






GGAACTCAGGCGCCCTGAC


CCAGAGAGGCCAAAGTA






CAGCGGCGTGCACACCTTC


CAGTGGAAGGTGGATAA






CCGGCTGTCCTACAGTCCTC


CGCCCTCCAATCGGGTA






AGGACTCTACTCCCTCAGC


ACTCCCAGGAGAGTGTC






AGCGTGGTGACCGTGCCCT


ACAGAGCAGGACAGCAA






CCAGCAGCTTGGGCACCCA


GGACAGCACCTACAGCC






GACCTACATCTGCAACGTG


TCAGCAGCACCCTGACG






AATCACAAGCCCAGCAACA


CTGAGCAAAGCAGACTA






CCAANGTGNACAAGAGAGT


CGAGAAACACAAAGTCT






TGAGCCCNNATCTTGTGAC


ACGCCTGCGAAGTCACC






ANAACTCACACATGCNCNC


CATCAGGGCCTGAGCTC






CGTGCNCNNCACCTGANNN


GCCCGTCACAAAGAGCT






CCNNNGGGGGANNNNNCA


TCAACAGGGGAGAGTGT






NNGTTCTTCTTCCTCCTCCC


TAGAAGCTTGGCCGCCA






CCCCAAAANCNNANGACAN


TGGCCCAACTTGTTTATT






CCTCATGATCTCCCNGACCC


GCAGCTTATAATGGTTAC






CTGAGGTCACATGCGTGGT


AAATAAAGCAATAGCAT






GGNGGACGTGAGCNACGAN


CACAAATTTCACAAATA






GACCCNGNNNCAANTTCAN


AAGCATTTTTTTCACTGC






TGGNACNNNGNCGGCGTGN


ATTCTAGTTGTGGTTTGT






AGNTGCANANGNNAANAN


CCAAACTCATCAATGTAT






AANNCNNNGGGNANNANC


CTTATCATGTCTGGNTCG






ANTANACAGCNCGNNNCNN


GGAATTAATTCGGCGCA






NNNNGGNNNNNNNCNTNN


GCNCNTGNNNTGNAATA






NCNNNCNNCNNNNNNGNA


NNNTGAAAGANNANNNN






NTNNNNNGNAATGNNNNN


NNNNANNNTGAGNGAAN






NNANNNN (SEQ ID 


ACNTCTNNGANNNNNGT






NO: 3645)


CANTNGGNNGNNNNGTC









CCAGNNNCCCNNNNGNA









NAANNNTGNAAGNNNNN









NNNNNTNNNNNNCANNN









NN (SEQ ID NO:









3647)








V-C064
NNNNNNNNNNNNNNNTCNT
GAGGTGCAGCTGGTGGAGT
COV047_
NNNNNNNNTATGNATNN
CAGTCTGTGCTGACTCAGCC
COV047_




ACACATACGATTTAGGTGA
CTGGGGGAGGCTTGGTCCA
P4_A3
TACACATACGATTTAGGT
TGCCTCCGTGTCTGGGTCTC
P4_A3




CACTATAGAATAACATCCA
GCCGGGGGGGTCCCTGAGA

GACACTATAGAATAACA
CTGGACAGTCGATCACCATC





CTTTGCCTTTCTCTCCACAG
CTCTCCTGTGCAGCCTCTGG

TCCACTTTGCCTTTCTCT
TCCTGCACTGGAACCAGCAA





GTGTCCACTCCCAGGTCCA
ATTCAGTGTCAGCACCAAG

CCACAGGTGTCCACTCCC
TGATGTTGGGAGTTATACCC





ACTGCACCTCGGTTCTATCG
TACATGACATGGGTCCGTC

AGGTCCAACTGCACCTC
TTGTCTCCTGGTACCAACAG





ATTGAATTCCACCATGGGA
AGGCTCCAGGGAAGGGGCT

GGTTCTATCGATTGAATT
TACCCAGGCAAAGCCCCCA





TGGTCATGTATCATCCTTTT
GGAGTGGGTCTCAGTTCTTT

CCACCATGGGATGGTCA
AGCTCTTAATTTTTGAGGTC





TCTAGTAGCAACTGCAACC
ACAGCGGTGGTAGTGATTA

TGTATCATCCTTTTTCTA
ACTAAGCGGTCCTCAGGGAT





GGTGTACATTCTGAGGTGC
CTACGCAGACTCCGTGAAG

GTAGCAACTGCAACCGG
TTCTAATCGCTTCTCTGGTTC





AGCTGGTGGAGTCTGGGGG
GGCAGATTCACCATCTCCA

TTCCTGGGCCCAGTCTGC
CAAGTCTGGCAACACGGCCT





AGGCTTGGTCCAGCCGGGG
GAGACAATTCCAAGAACGC

CCTGACTCAGCCTGCCTC
CCCTGACAATCTCTGGGCTC





GGGTCCCTGAGACTCTCCT
TTTATATCTTCAAATGAACA

CGTGTCTGGGTCTCCTGG
CAGGGTGAAGACGAGGCTG





GTGCAGCCTCTGGATTCAG
GCTTGAGAGTCGAGGACAC

ACAGTCGATCACCATCTC
ATTATTATTGCTGCTCATAT





TGTCAGCACCAAGTACATG
GGGTGTTTATTACTGTGCCA

CTGCACTGGAACCAGCA
GCAGGTGCTAGCACTTTCGT





ACATGGGTCCGTCAGGCTC
GAGACTCGTCGGAAGTCCG

ATGATGTTGGGAGTTAT
GTTCGGCGGAGGGACCAAG





CAGGGAAGGGGCTGGAGTG
TGACCACCCCGGGCACCCA

ACCCTTGTCTCCTGGTAC
CTGACCGTCCTAG (SEQ





GGTCTCAGTTCTTTACAGCG
GGGCGCTCGGTGGGGGCTT

CAACAGTACCCAGGCAA
ID NO: 3651)





GTGGTAGTGATTACTACGC
TTGATATCTGGGGCCAAGG

AGCCCCCAAGCTCTTAAT






AGACTCCGTGAAGGGCAGA
GACAATGGTCACCGTCTCTT

TTTTGAGGTCACTAAGCG






TTCACCATCTCCAGAGACA
CAG (SEQ ID NO: 311)

GTCCTCAGGGATTTCTAA






ATTCCAAGAACGCTTTATAT


TCGCTTCTCTGGTTCCAA






CTTCAAATGAACAGCTTGA


GTCTGGCAACACGGCCT






GAGTCGAGGACACGGGTGT


CCCTGACAATCTCTGGGC






TTATTACTGTGCCAGAGACT


TCCAGGGTGAAGACGAG






CGTCGGAAGTCCGTGACCA


GCTGATTATTATTGCTGC






CCCCGGGCACCCAGGGCGC


TCATATGCAGGTGCTAG






TCGGTGGGGGCTTTTGATAT


CACTTTCGTGTTCGGCGG






CTGGGGCCAAGGGACAATG


AGGGACCAAGCTGACCG






GTCACCGTCTCTTCAGCGTC


TCCTAGGTCAGCCCAAG






GACCAAGGGCCCATCGGTC


GCTGCCCCCTCGGTCACT






TTCCCCCTGGCACCCTCCTC


CTGTTCCCACCCTCGAGT






CAAGAGCACCTCTGGGGGC


GAGGAGCTTCAAGCCAA






ACAGCGGCCCTGGGCTGCC


CAAGGCCACACTGGTGT






TGGTCAAGGACTACTTCCC


GTCTCATAAGTGACTTCT






CGAACCTGTGACGGTCTCG


ACCCGGGAGCCGTGACA






TGGAACTCAGGCGCCCTGA


GTGGCCTGGAAGGCAGA






CCAGCGGCGTGCACACCTT


TAGCAGCCCCGTCAAGG






CCCGGCTGTCCTACAGTCCT


CGGGAGTGGAGACCACC






CAGGACTCTACTCCCTCAG


ACACCCTCCAAACAAAG






CAGCGTGGTGACCGTGCCC


CAACAACAAGTACGCGG






TCCAGCAGCTTGGGCACCC


CCAGCAGCTACCTGAGC






AGACCTACATCTGCAACGT


CTGACGCCTGAGCAGTG






GAATCACAAGCCCNGCAAC


GAAGTCCCACAGAAGCT






ACCCAAGNGGACAANANA


ACAGCTGCCAGGTCACG






GATGAGNCCNNATNTTGTG


CATGAAGGGAGCACCGT






NNNAAAATNNNNNATGNNC


GGAGAAGACAGTGGCCC






TCCCCGNNNNNNNCNANNN


CTACAGAATGTTCATAG






NNNNNNGGGGGGGGGNAA


AAGCTTGGCCGCCATGG






CNTTNNTCTTTNNNNNNNC


CCCAACTTGTTTATTGCA






CCCCNAAAAANNNAANNN


GCTTATAATGGTTACAA






NNNCNNTNNTGNNNNNCNN


ATAAAGCAATAGCATCA






NNNCCNNNNANGTCNNNNN


CAAATTTCACAAATAAA






NGNGGNNGNNGNNNGTGA


GCATTTTTTTCACTGCAT






CCNNNNAAANNCCTNNNNG


TCTAGTTGTGGTTTGTCC






TCAANTTCAANNGGTNNNN


AAACTCATCAATGTATCT






GNANNN (SEQ ID NO:


TATCATGTCTGGATCGGG






3649)


AATTAATTCGGCGCAGC









ACCATGGNCTGAAATAN









CTCTGAAAGAGGACTTG









GNTAGGTACCTTCTGAN









CGGAAANNACCATCTGN









NGAATGNNTGTCANTTA









GGGTGNNGAAAGTCCCC









AGGNNNCCCNNNNNN









(SEQ ID NO: 3650)








V-C065
NNNNNNNNNNNNNNNNNN
CAGGTGCAGCTGGTGCAGT
COV072_
NNNNNNCNNNATGNATN
GAAATTGTGTTGACGCAGTC
COV072_




NNTACNCATACGATTTAGG
CTGGGGCTGAGGTGAAGAA
P3_D12
NTACNCATACGATTTAG
TCCAGGCACCCTGTCTTTGT
P3_D12




TGACACTATAGAATAACAT
GCCTGGGTCGTCGGTGAAG

GTGACACTATAGAATAA
CTCCAGGGGAAAGAGCCAC





CCACTTTGCCTTTCTCTCCA
GTCTCCTGCAAGGCTTCTGG

CATCCACTTTGCCTTTCT
CCTCTCCTGCAGGGCCAGTC





CAGGTGTCCACTCCCAGGT
AGGCACCTTCAGTAGCTAT

CTCCACAGGTGTCCACTC
AGAGTGTTAGCAGCACCTAC





CCAACTGCACCTCGGTTCTA
GCTATCAACTGGGTGCGAC

CCAGGTCCAACTGCACC
TTAGCCTGGTACCAGCAGAA





TCGATTGAATTCCACCATG
AGGCCCCTGGACAAGGGCT

TCGGTTCTATCGATTGAA
ACCTGGCCAGGCTCCCAGGC





GGATGGTCATGTATCATCCT
TGAGTGGATGGGAAGGATC

TTCCACCATGGGATGGTC
TCCTCATCTATGGTGCATCC





TTTTCTAGTAGCAACTGCAA
ATCCCTATCGTTGGTATAGC

ATGTATCATCCTTTTTCT
AGCAGGGCCACTGGCATCC





CCGGTGTACATTCCCAGGT
AAACTACGCACAGAAGTTC

AGTAGCAACTGCAACCG
CAGACAGGTTCAGTGGCAG





GCAGCTGGTGCAGTCTGGG
CAGGGCAGAGTCACGATTA

GTGTACATTCAGAAATT
TGGGTCTGGGACAGACTTCA





GCTGAGGTGAAGAAGCCTG
CGGCGGACAAATCCTCGAG

GTGTTGACGCAGTCTCCA
CTCTCACCATCAGCAGACTG





GGTCGTCGGTGAAGGTCTC
CACAGCCTACATGGAGCTG

GGCACCCTGTCTTTGTCT
GAGCCTGAAGATTTTGCAGT





CTGCAAGGCTTCTGGAGGC
AGCAGCCTGAGATCTGAGG

CCAGGGGAAAGAGCCAC
GTATTACTGTCAGCAGTATG





ACCTTCAGTAGCTATGCTAT
ACACGGCCGTGTATTACTG

CCTCTCCTGCAGGGCCA
GTAGCTCACCGTGGACGTTC





CAACTGGGTGCGACAGGCC
TGCGAGAGATCTCCTGGAC

GTCAGAGTGTTAGCAGC
GGCCAAGGGACCAAGGTGG





CCTGGACAAGGGCTTGAGT
CCCCAGCTAGATGATGCTTT

ACCTACTTAGCCTGGTAC
AAATCAAAC (SEQ ID





GGATGGGAAGGATCATCCC
TGATATCTGGGGCCAAGGG

CAGCAGAAACCTGGCCA
NO: 3655)





TATCGTTGGTATAGCAAAC
ACAATGGTCACCGTCTCTTC

GGCTCCCAGGCTCCTCAT






TACGCACAGAAGTTCCAGG
AG (SEQ ID NO: 3653)

CTATGGTGCATCCAGCA






GCAGAGTCACGATTACGGC


GGGCCACTGGCATCCCA






GGACAAATCCTCGAGCACA


GACAGGTTCAGTGGCAG






GCCTACATGGAGCTGAGCA


TGGGTCTGGGACAGACT






GCCTGAGATCTGAGGACAC


TCACTCTCACCATCAGCA






GGCCGTGTATTACTGTGCG


GACTGGAGCCTGAAGAT






AGAGATCTCCTGGACCCCC


TTTGCAGTGTATTACTGT






AGCTAGATGATGCTTTTGAT


CAGCAGTATGGTAGCTC






ATCTGGGGCCAAGGGACAA


ACCGTGGACGTTCGGCC






TGGTCACCGTCTCTTCAGCG


AAGGGACCAAGGTGGAA






TCGACCAAGGGCCCATCGG


ATCAAACGTACGGTGGC






TCTTCCCCCTGGCACCCTCC


TGCACCATCTGTCTTCAT






TCCAAGAGCACCTCTGGGG


CTTCCCGCCATCTGATGA






GCACAGCGGCCCTGGGCTG


GCAGTTGAAATCTGGAA






CCTGGTCAAGGACTACTTC


CTGCCTCTGTTGTGTGCC






CCCGAACCTGTGACGGTCT


TGCTGAATAACTTCTATC






CGTGGAACTCAGGCGCCCT


CCAGAGAGGCCAAAGTA






GACCAGCGGCGTGCACACC


CAGTGGAAGGTGGATAA






TTCCCGGCTGTCCTACAGTC


CGCCCTCCAATCGGGTA






CTCAGGACTCTACTCCCTCA


ACTCCCAGGAGAGTGTC






GCAGCGTGGTGACCGTGCC


ACAGAGCAGGACAGCAA






CTCCAGCAGCTTGGGCACC


GGACAGCACCTACAGCC






CAGACCTACATCTGCAACG


TCAGCAGCACCCTGACG






TGAATCACAAGCCCAGCAA


CTGAGCAAAGCAGACTA






CACCNNNTGGACAAGAGAG


CGAGAAACACAAAGTCT






TTGAGCCCAAATCTTGTGA


ACGCCTGCGAAGTCACC






CAAACTCACACATGCCCAC


CATCAGGGCCTGAGCTC






CGTGCCCAGCACCTGAACT


GCCCGTCACAAAGAGCT






CCTGGGGGGACCGTCAGTC


TCAACAGGGGAGAGTGT






TTCCTCTNNCCCCAAACCCA


TAGAAGCTTGGCCGCCA






ANGACNCCCTCATGATCNC


TGGCCCAACTTGTTTATT






CCNGANCCCTGANGNCNCN


GCAGCTTATAATGGTTAC






TGCGTGNNGGNGGANGNGN


AAATAAAGCAATAGCAT






GNNNNNANNANCCNNNNN


CACAAATTTCACAAATA






NNNCCNNGANNNNNAANN


AAGCATTTTTTTCACTGC






TCNNCTGGNTACNNNGGAC


ATTCTANTTGTGGTTTGN






NGCNNNGNNGGTGCATAAT


CCAAACTCATCAATGTAT






GCCANNANNAANCCNNGG


CTTATCATGTCTGGATCN






NAGNANNNNNNNNAACNG


GGNATTAATTCNGCGCA






NNCGTTNCNNNNNN (SEQ


NCACCATGNNCTGAAAT






ID NO: 3652)


NACCTCTGAAANAGGAA









CNTGNNNAAGGTACNNT









CTGAAGCCGNANNNNCA









TCNNNNGAANGNNGGTC









AAATNNNGGGGNNNGNA









ANGNNN (SEQ ID NO:









3654)
















TABLE 16







Crystallographic data collection and refinement


statistics for C105 Fab structure (related to FIG. 21)











C105 Fab




(12-1, SSRL)



PDB ID
XXXX







Data collectiona




Space group
1222



Unit cell (Å)
67.4, 120.1, 123.3



α, β, γ (°)
90, 90, 90



Wavelength (Å)
1.0



Resolution (Å)
38.9-1.80 (1.84-1.80)



Unique Reflections
46,713 (2752)



Completeness (%)
100 (99.8)



Redundancy
6.8 (6.5)



CCl/2 (%)
98.8 (54.1)



<I/σI>
5.7 (1.2)



Mosaicity (°)
0.19



Rmerge (%)
18.1 (157)



Rpim (%)
7.9 (70.5)



Wilson B -factor
16.8



Refinement and Validation




Resolution (Å)
38.9-1.80



Number of atoms




Protein
3,132



Ligand
10



Waters
477



Rwork/Rfree (%)
18.7/21.6



R.m.s. deviations




Bond lengths (Å)
0.006



Bond angles (°)
0.853



MolProbity score
1.29



Clashscore (all atom)
4.2



Poor rotamers (%)
0



Ramachandran plot




Favored (%)
97.6



Allowed (%)
2.4



Disallowed (%)
0



Average B -factor (Å)
27.1








aNumbers in parentheses correspond to the highest resolution shell














TABLE 16







Cryo-EM data collection and refinement statistics


for C105-S complex structure (related to FIG. 21).










C105
C105



SARS-CoV-2
SARS-CoV-2


P D B
S 2P
S 2P


E M D
(state 1)
(state 2)





Microscope
Titan Krios
Titan Krios


Camera
GatanK3
GatanK3



Summit
Summit


Magnification
105,000x
105,000x


Voltage (kV)
300
300


Recording mode
counting
counting


Dose rate (e−/pixel/s)
22.1
22.1


Electron dose (e−/Å2)
60
60


Defocus range (μm)
1.0-2.5
1.0-2.5


Pixel size (Å)
0.418
0.418



(super resolution);
(super resolution);



0.836 (binned)
0.836 (binned)


Micrographs collected
5,940
5,940


Micrographs used
5,336
5,336


Total extracted particles
71,289
71,289


Refined particles
37,615
14,119


Symmetry imposed
C1
C3


Nominal Resolution (Å)




FSC 0.5
3.90/3.60
4.30/3.90


(unmasked/masked)




FSC 0.143
3.40/3.20
3.70/3.50


(unmasked · masked)




Map sharpening B -factor




Refinement and Validation




Number of atoms




Protein
25,973



Ligand
711



MapCC (global/local)
0.86/0.84



R.m.s. deviations




Bond lengths (Å)
0.008



Bond angles (°)
0.812



MolProbity score
2.17



Clashscore (all atom)
13.6



Poor rotamers (%)
0.04



Ramachandran plot




Favored (%)
90.9



Allowed (%)
9



Disallowed (%)
461
















TABLE 17







S protein mutations found in different


SARS-CoV-2 isolates (related to FIG. 22)












Frequency



Mutation
Count
(%)
Location













D614G
9688
63.2
S1 domain D


P1263L
115
0.7
S2 cytoplasmic tail


L5F
91
0.6
signal sequence


D936Y
88
0.6
S2 HR1


L54F
58
0.4
S1 domain A


G1124V
56
0.4
S2


N439K
38
0.2
S1 domain B (RBD)


H49Y
35
0.2
S1 domain A


L18F
31
0.2
S1 domain A


L8V
30
0.2
signal sequence


A831V
29
0.2
S2


D839Y
28
0.2
S2


V483A
28
0.2
S1 domain B (RBD)


Q675H
24
0.2
S1 domain D


S50L
24
0.2
S1 domain A


S943P
22
0.1
S2 HR1


A1078S
21
0.1
S2


R21I
19
0.1
S1 domain A


V367F
18
0.1
S1 domain B (RBD)


T29I
18
0.1
S1 domain A










List of SARS-CoV-2 spike mutations with a frequency ≥0.1% in a set of 15335 isolates downloaded from the Global Initiative for Sharing All Influenza Data (GISAID) SARS-CoV-2 sequence database on May 3, 2020 (Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017). The genomes were processed with the nextstrain augur pipeline (https://github.com/nextstrain/augur) (Hadfield et al., 2018), using MAFFT v7.464 (Katoh and Standley, 2013) for sequence alignment and FastTree (Price et al., 2010) to generate a phylogenetic tree. The resulting data were then analyzed with a custom Swift program.


REFERENCES



  • Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, L W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221.

  • Bell, J. M., Chen, M., Baldwin, P. R., and Ludtke, S. J. (2016). High resolution single particle refinement in EMAN2.1. Methods 100, 25-34.

  • Bianchi, M., Turner, H. L., Nogal, B., Cottrell, C. A., Oyen, D., Pauthner, M., Bastidas, R., Nedellec, R., McCoy, L. E., Wilson, I. A., et al. (2018). Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. Immunity 49, 288-300 e288.

  • Briney, B., Inderbitzin, A., Joyce, C., and Burton, D. R. (2019). Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566, 393-397.

  • Brouwer, P. J. M., Caniels, T. G., van der Straten, K., Snitselaar, J. L., Aldon, Y., Bangaru, S., Tones, J. L., Okba, N. M. A., Claireaux, M., Kerster, G., et al. (2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. bioRxiv 10.1101/2020.05.12.088716.

  • Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C., et al. (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells. Cell 10.1016/j.cell.2020.05.025. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21. Chen, X., Li, R., Pan, Z., Qian, C., Yang, Y., You, R., Zhao, J., Liu, P., Gao, L., Li, Z., et al. (2020). Human monoclonal antibodies block the binding of SARS-CoV-2 Spike protein to angiotensin converting enzyme 2. medRxiv 10.1101/2020.04.06.20055475

  • Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., Zhang, Z., Fan, P., Dong, Y., Yang, Y., et al. (2020). A potent neutralizing human antibody reveals the N-terminal domain of the Spike protein of SARS-CoV-2 as a site of vulnerability. bioRxiv 10.1101/2020.05.08.083964. Crawford, K. H. D., Eguia, R., Dingens, A. S., Loes, A. N., Malone, K. D., Wolf, C. R., Chu, H. Y., Tortorici, A. M., Veesler, D., Murphy, M., et al. (2020). Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 Spike protein for neutralization assays. bioRxiv 10.1101/2020.04.20.051219.

  • de Wit, E., van Doremalen, N., Falzarano, D., and Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14, 523-534.

  • Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A., Georges, G., Shi, J., and Deane, C. M. (2014). SAbDab: the structural antibody database. Nucleic Acids Res 42, D1140-1146. Elbe, S., and Buckland-Merrett, G. (2017). Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob Chall 1, 33-46.

  • Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501.

  • Fung, T. S., and Liu, D. X. (2019). Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol 73, 529-557.

  • Goddard, T. D., Huang, C. C., and Ferrin, T. E. (2007). Visualizing density maps with UCSF Chimera. J Struct Biol 157, 281-287.

  • Graham, R. L., Donaldson, E. F., and Baric, R. S. (2013). A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 11, 836-848.

  • Gralinski, L. E., and Baric, R. S. (2015). Molecular pathology of emerging coronavirus infections. The Journal of pathology 235, 185-195.

  • Gristick, H. B., von Boehmer, L., West, A. P., Jr., Schamber, M., Gazumyan, A., Golijanin, J., Seaman, M. S., Fatkenheuer, G., Klein, F., Nussenzweig, M. C., et al. (2016). Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat Struct Mol Biol 23, 906-915.

  • Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., and Wang, X. (2017). Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27, 119-129.

  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307-321.

  • Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., and Neher, R. A. (2018). Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121-4123.

  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278.

  • Hwang, W. C., Lin, Y., Santelli, E., Sui, J., Jaroszewski, L., Stec, B., Farzan, M., Marasco, W. A., and Liddington, R. C. (2006). Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J Biol Chem 281, 34610-34616.

  • Ju, B., Zhang, Q., Ge, X., Wang, R., Yu, J., Ge, J., Lan, J., Yuan, J., Wang, H., Zhao, J., et al. (2020). Potent human neutralizing antibodies elicited 1 by SARS-CoV-2 infection. bioRxiv 10.1101/2020.03.21.990770.

  • Kabsch, W. (2010). XDS. Acta Crystallogr D Biol Crystallogr 66, 125-132.

  • Kane, M., Zang, T. M., Rihn, S. J., Zhang, F., Kueck, T., Alim, M., Schoggins, J., Rice, C. M., Wilson, S. J., and Bieniasz, P. D. (2016). Identification of Interferon-Stimulated Genes with Antiretroviral Activity. Cell Host Microbe 20, 392-405.

  • Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772-780.

  • Kirchdoerfer, R. N., Bhandari, M., Martini, O., Sewall, L. M., Bangaru, S., Yoon, K.-J., and Ward, A. B. (2020). Structure and immune recognition of the porcine epidemic diarrhea virus spike protein. bioRxiv 10.1101/2020.02.18.955195.

  • Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., Corbett, K. S., Graham, B. S., McLellan, J. S., and Ward, A. B. (2016). Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118-121.

  • Kirchdoerfer, R. N., Wang, N., Pallesen, J., Wrapp, D., Turner, H. L., Cottrell, C. A., Corbett, K. S., Graham, B. S., McLellan, J. S., and Ward, A. B. (2018). Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific reports 8, 15701.

  • Klein, J. S., and Bjorkman, P. J. (2010). Few and far between: how HIV may be evading antibody avidity. PLoS Pathog 6, e1000908.

  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E. E., Bhattacharya, T., Parker, M. D., et al. (2020). Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv 10.1101/2020.04.29.069054. Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T., and Ben-Tal, N. (2005). ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33, W299-302.

  • Lefranc, M. P., Giudicelli, V., Duroux, P., Jabado-Michaloud, J., Folch, G., Aouinti, S., Carillon, E., Duvergey, H., Houles, A., Paysan-Lafosse, T., et al. (2015). IMGT®, the international ImMunoGeneTics information System® 25 years on. Nucleic Acids Res 43, D413-422.

  • Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454.

  • Li, Z., Tomlinson, A. C., Wong, A. H., Zhou, D., Desforges, M., Talbot, P. J., Benlekbir, S., Rubinstein, J. L., and Rini, J. M. (2019). The human coronavirus HCoV-229E S-protein structure and receptor binding. Elife 8.

  • Mastronarde, D. N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152, 36-51.

  • McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674.

  • Neuman, B. W., Kiss, G., Kunding, A. H., Bhella, D., Baksh, M. F., Connelly, S., Droese, B., Klaus, J. P., Makino, S., Sawicki, S. G., et al. (2011). A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 174, 11-22.

  • Nie, J., Li, Q., Wu, J., Zhao, C., Hao, H., Liu, H., Zhang, L., Nie, L., Qin, H., Wang, M., et al. (2020). Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 9, 680-686.

  • Nogal, B., Bianchi, M., Cottrell, C. A., Kirchdoerfer, R. N., Sewall, L. M., Turner, H. L., Zhao, F., Sok, D., Burton, D. R., Hangartner, L., et al. (2020). Mapping Polyclonal Antibody Responses in Non-human Primates Vaccinated with HIV Env Trimer Subunit Vaccines. Cell reports 30, 37553765 e3757.

  • Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., et a !. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620.

  • Pallesen, J., Wang, N., Corbett, K. S., Wrapp, D., Kirchdoerfer, R. N., Turner, H. L., Cottrell, C. A., Becker, M. M., Wang, L., Shi, W., et al. (2017). Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA 114, E7348-E7357. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.

  • Pinto, D., Park, Y.-J., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., et al. (2020). Structural and functional analysis of a potent sarbecovirus neutralizing antibody. Nature 10.1038/s41586-020-2349-y.

  • Plotkin, S. A. (2001). Immunologic correlates of protection induced by vaccination. Pediatr Infect Dis J 20, 63-75.

  • Plotkin, S. A. (2008). Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis 47, 401-409.

  • Plotkin, S. A. (2010). Correlates of protection induced by vaccination. Clin Vaccine Immunol 17, 1055-1065.

  • Prabakaran, P., Gan, J., Feng, Y., Zhu, Z., Choudhry, V., Xiao, X., Ji, X., and Dimitrov, D. S. (2006). Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem 281, 15829-15836.

  • Premkumar, L., Segovia-Chumbez, B., Jadi, R., Martinez, D. R., Raut, R., Markmann, A., Conraby, C., Barbtelt, L., Weiss, S. C., Park, Y. J., et al. (2020). The RBD Of The Spike Protein Of SARS-Group Coronaviruses Is A Highly Specific Target Of SARS-CoV-2 Antibodies But Not Other Pathogenic Human and Animal Coronavirus Antibodies. medRxiv 10.1101/2020.05.06.20093377.

  • Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.

  • Punjani, A., Rubinstein, J. L., Fleet, D. J., and Brubaker, M. A. (2017). cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296.

  • Quinlan, B. D., Mou, H., Zhang, L., Guo, Y., He, W., Ojha, A., Parcells, M. S., Luo, G., Li, W., Zhong, G., et al. (2020). The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody dependent enhancement. 10.1101/2020.04.10.036418.

  • Raj, V. S., Mou, H., Smits, S. L., Dekkers, D. H., Muller, M. A., Dijkman, R., Muth, D., Demmers, J. A., Zaki, A., Fouchier, R. A., et al. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251-254.

  • Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., and Casasnovas, J. M. (2012). Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 8, e1002859.

  • Robbiani, D. F., Gaebler, C., Muecksch, F., Cetrulo Lorenzi, J. C., Wang, Z., Cho, A., Agudelo, M., Barnes, C. O., Finkin, S., Hagglof, T., et al. (2020). Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals. bioRxiv 10.1101/2020.05.13.092619. Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., and Baric, R. (2008). Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. J Virol 82, 3220-3235.

  • Rogers, T. F., Zhao, F., Huang, D., Beutler, N., Abbott, R. K., Callaghan, S., Garcia, E., He, W.-t., Hurtado, J., Limbo, O., et al. (2020). Rapid isolation of potent SARS-CoV-2 neutralizing antibodies and protection in a small animal model. bioRxiv 10.1101/2020.05.11.088674. Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192, 216-221.

  • Scharf, L., Wang, H., Gao, H., Chen, S., McDowall, A. W., and Bjorkman, P. J. (2015). Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env. Cell 162, 1379-1390.

  • Schoofs, T., Barnes, C. O., Suh-Toma, N., Golijanin, J., Schommers, P., Gruell, H., West, A. P., Jr., Bach, F., Lee, Y. E., Nogueira, L., et al. (2019). Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity 50, 1513-1529 e1519.

  • Seydoux, E., Homad, L. J., MacCamy, A. J., Parks, K. R., Hurlburt, N. K., Jennewein, M. F., Akins, N. R., Stuart, A. B., Wan, Y.-H., Feng, J., et al. (2020). Characterization of neutralizing antibodies 1 from a SARS-CoV-2 infected individual. bioRxiv 10.1101/2020.05.12.091298.

  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., and Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature 10.1038/s41586-0202179-y.

  • Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Zhou, Y., Zhang, W., and Li, F. (2018). Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State. J Virol 92.

  • Shu, Y., and McCauley, J. (2017). GISAID: Global initiative on sharing all influenza data—from vision to reality. Euro Surveill 22.

  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539.

  • Terwilliger, T. C., Adams, P. D., Afonine, P. V., and Sobolev, O. V. (2018). A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat Methods 15, 905-908.

  • Tortorici, M. A., and Veesler, D. (2019). Structural insights into coronavirus entry. Adv Virus Res 105, 93-116.

  • Tortorici, M. A., Walls, A. C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., Boons, G. J., Bosch, B. J., Rey, F. A., de Groot, R. J., et al. (2019). Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 26, 481-489.

  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., and Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292 e286.

  • Walls, A. C., Tortorici, M. A., Bosch, B. J., Frenz, B., Rottier, P. J. M., DiMaio, F., Rey, F. A., and Veesler, D. (2016). Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114-117.

  • Walls, A. C., Tortorici, M. A., Snijder, J., Xiong, X., Bosch, B. J., Rey, F. A., and Veesler, D. (2017). Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA 114, 11157-11162.

  • Walls, A. C., Xiong, X., Park, Y. J., Tortorici, M. A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R., Dai, M., Lanzavecchia, A., et al. (2019). Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 176, 1026-1039 e1015.

  • Wan, Y., Shang, J., Graham, R., Baric, R. S., and Li, F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 94.

  • Wang, C., Li, W., Drabek, D., Okba, N. M. A., van Haperen, R., Osterhaus, A. D. M. E., van Kuppeveld, F. J. M., Haagmans, B. L., Grosveld, F., and Bosch, B.-J. (2020). A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications 11.

  • Wang, L., Shi, W., Joyce, M. G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C. R., Zhou, T., Yassine, H. M., Kanekiyo, M., et al. (2015). Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 6, 7712.

  • Widjaja, I., Wang, C., van Haperen, R., Gutierrez-Alvarez, J., van Dieren, B., Okba, N. M. A., Raj, V. S., Li, W., Fernandez-Delgado, R., Grosveld, F., et al. (2019). Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerg Microbes Infect 8, 516-530.

  • Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242.

  • Wrapp, D., and McLellan, J. S. (2019). The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. Journal of Virology 93, e00923-00919.

  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., and McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263.

  • Wu, F., Wang, A., Liu, M., Wang, Q., Chen, J., Xia, S., Ling, Y., Zhang, Y., Xun, J., Lu, L., et al. (2020a). Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. bioRxiv 10.1101/2020.03.30.20047365.

  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., et al. (2020b). A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269.

  • Wu, H., Pfarr, D. S., Tang, Y., An, L. L., Patel, N. K., Watkins, J. D., Huse, W. D., Kiener, P. A., and Young, J. F. (2005). Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization. J Mol Biol 350, 126-144.

  • Wu, Y., Wang, F., Shen, C., Peng, W., Li, D., Zhao, C., Li, Z., Li, S., Bi, Y., Yang, Y., et al. (2020c). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 10.1126/science.abc2241.

  • Xiong, H., Wu, Y., Cao, J., Yang, R., Ma, J., Qiao, X., Yao, X., Zhang, B., Zhang, Y., Hou, W., et al. (2020). Robust neutralization assay based on SARS-CoV-2 S-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressed BHK21 cells. 10.1101/2020.04.08.026948.

  • Xiong, X., Tortorici, M. A., Snijder, J., Yoshioka, C., Walls, A. C., Li, W., McGuire, A. T., Rey, F. A., Bosch, B. J., and Veesler, D. (2018). Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. J Virol 92.

  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., and Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448.

  • Yuan, M., Wu, N. C., Zhu, X., Lee, C. D., So, R. T. Y., Lv, H., Mok, C. K. P., and Wilson, I. A. (2020). A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science 10.1126/science.abb7269.

  • Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., et al. (2017). Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8, 15092.

  • Zhou, G., and Zhao, Q. (2020). Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci 16, 1718-1723.

  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.

  • Zost, S. J., Gilchuk, P., Chen, R. E., Case, J. B., Reidy, J. X., Trivette, A., Nargi, R. S., Sutton, R. E., Suryadevara, N., Chen, E. C., et al. (2020). Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. bioRxiv 10.1101/2020.05.12.091462.


Claims
  • 1. A recombinantly produced anti-SARS-CoV-2 antibody or antigen-binding fragment thereof that binds specifically to a SARS-CoV-2 antigen comprising a Spike (S) polypeptide of a human or an animal SARS-CoV-2, comprising a heavy chain variable region (HCVR) having the amino acid sequence of SEQ ID NO: 2900 and a light chain variable region (LCVR) having the amino acid sequence of SEQ ID NO: 2912.
  • 2. The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody or antigen-binding fragment thereof is capable of neutralizing a plurality of SARS-CoV-2 strains.
  • 3. A recombinantly produced anti-SARS-CoV-2 antibody or antigen-binding fragment thereof that binds specifically to a SARS-CoV-2 antigen comprising a Spike (S) polypeptide of a human or an animal SARS-CoV-2, comprising a heavy chain/light chain sequence pair of SEQ ID NOs: 2886/2898, 2886/2899, 2887/2898, 2887/2899, 2910/2921, 2910/2922, 2911/2921, or 2911/2922.
  • 4. The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody or antigen-binding fragment thereof is a multivalent antibody comprising (a) a first target binding site that specifically binds to an epitope within the Spike (S) polypeptide, and (b) a second target binding site that binds to an epitope on a different epitope on the Spike (S) polypeptide or a different molecule.
  • 5. The antibody or antigen-binding fragment thereof of claim 4, wherein the multivalent antibody is a bivalent or bispecific antibody.
  • 6. The antibody or the antigen-binding fragment thereof of claim 1, further comprising a variant Fc constant region.
  • 7. The antibody or the antigen-binding fragment thereof of claim 1, wherein the variant Fc constant region comprises M428L and N434S substitutions according to the EU numbering.
  • 8. The antibody or the antigen-binding fragment thereof of claim 1, wherein the antibody is a chimeric antibody, a humanized antibody, or humanized monoclonal antibody.
  • 9. A pharmaceutical composition comprising the antibody or antigen-binding fragment thereof of claim 1 and a pharmaceutically acceptable carrier or excipient.
  • 10. The pharmaceutical composition of claim 9, further comprising a second therapeutic agent.
  • 11. A kit comprising a pharmaceutically acceptable dose unit of the antibody or antigen-binding fragment thereof of claim 1.
  • 12. A kit for the diagnosis, prognosis or monitoring treatment of SARS-CoV-2 in a subject, comprising: the antibody or antigen-binding fragment thereof of claim 1; and a least one detection reagent that binds specifically to the antibody or antigen-binding fragment thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 63/016,569, filed Apr. 28, 2020, to U.S. Provisional Patent Application No. 63/021,387, filed May 7, 2020, to U.S. Provisional Patent Application No. 63/032,112, filed May 29, 2020, to U.S. Provisional Patent Application No. 63/038,384, filed Jun. 12, 2020, and to U.S. Provisional Patent Application No. 63/119,088, filed Nov. 30, 2020. The foregoing applications are incorporated by reference herein in their entireties.

STATEMENT REGARDING FEDERALLY FUNDED RESEARCH

This invention was made with government support under grant nos. P01-AI138398-S1 and 2U19AI111825 awarded by the National Institutes of Health. The government has certain rights in the invention.

US Referenced Citations (5)
Number Name Date Kind
8546543 Lazar Oct 2013 B2
9676863 Lo Jun 2017 B2
10407502 Waksal et al. Sep 2019 B2
11053304 Glanville Jul 2021 B1
20060121580 Ter Meulen Jun 2006 A1
Non-Patent Literature Citations (15)
Entry
Janeway et al., Immunology Third Edition, Garland Publishing Inc. 1997, Chapters, Structure of the Antibody Molecule and Immunoglobulin Genes, pp. 3:1-3:11. (Year: 1997).
Rudikoff et al., PNAS. 1982 vol. 79 p. 1979-83. (Year: 1982).
Edwards et al. J. Mol. Biol. 2003, 334:103-118. (Year: 2003).
Lloyd et al. Protein Engineering Design & Selection. 2009, 22;3:159-168. (Year: 2009).
Goel et al. The Journal of Immunology. 2004, 173:7358-7367. (Year: 2004).
Kanyavuz et al. Nature Review Immunology. 2019, 19:355-368. (Year: 2019).
Tian et al. Emerging Microbes & Infections. Published online Feb. 17, 2020, 9:382-385. (Year: 2020).
Robbiani et al. “Convergent antibody responses to SARS-CoV-2 in convalescent individuals”, Nature, vol. 584, Aug. 20, 2020, published online Jun. 18, 2020, pp. 437-442, https://doi.org/10.1038/s41586-020-2456-9, 23 pages.
Barnes et al. “SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies”, Nature. Dec. 2020; 588(7839): 682-687. doi:10.1038/s41586-020-2852-1, 36 pages.
Chen et al., “Human monoclonal antibodies block the binding of SARS-Co V-2 spike protein to angiotensin converting enzyme 2 receptor”, Cellular & Molecular Immunology, Chinese Society of Immunology, CH, vol. 17, No. 6, Apr. 20, 2020 (Apr. 20, 2020), pp. 647-649.
Wang et al., “A human monoclonal antibody blocking SARS-CoV-2 infection”, bioRxiv, Mar. 12, 2020 (Mar. 12, 2020), 24 pages.
Pinto et al., “Structural and functional analysis of a potent sarbecovirus neutralizing antibody”, bioRxiv, Apr. 10, 2020 (Apr. 10, 2020), 28 pages.
Ju et al., “Potent human neutralizing antibodies elicited by SARS-CoV-2 infection”, Mar. 26, 2020 (Mar. 26, 2020), 42 pages.
Barnes et al, “Structions of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies”, Cell, vol. 182, No. 4, Aug. 20, 2020 (Aug. 20, 2020), pp. 828-842.
Partial International Search Report dated Oct. 5, 2021 in related International Application No. PCT/US2021/070472, 16 pages.
Related Publications (1)
Number Date Country
20210332110 A1 Oct 2021 US
Provisional Applications (5)
Number Date Country
63119088 Nov 2020 US
63038384 Jun 2020 US
63032112 May 2020 US
63021387 May 2020 US
63016569 Apr 2020 US