NEUTRALIZING ANTIBODIES TO THE ALPHA V BETA 8 INTEGRIN COMPLEX FOR IMMUNOTHERAPY

Abstract
New antibodies and methods of use are described.
Description
REFERENCE TO A “SEQUENCE LISTING” SUBMITTED AS ASCII TEXT FILES VIA EFS-WEB

The Sequence Listing written in file 081906-1369766-224040US_SL.xml created on May 18, 2023, 1,212,017 bytes, is hereby incorporated by reference in its entirety for all purposes.


BACKGROUND OF THE INVENTION

Transforming growth factor β (TGFβ) was originally characterized as an oncogene capable of inducing a transformed phenotype in non-neoplastic cells. A number of TGFβ family members have since been characterized, based on the presence of similar amino acid domains.


Some TGF-β isoforms are expressed ubiquitously in mammals (TGF-β 1-3), but are maintained in an inactive form by non-covalent interaction with a propeptide, the latency associated domain of TGF-β (LAP). For TGFβ to signal, it must be released from its inactive complex by a process called TGFβ activation. The latent TGF complex includes 3 components: the active (mature) TGFβ dimmer, LAP (latency associated peptide) and LTBP (latent TGFβ binding protein). LAP is a dimer, linked by a disulfide bond, that represents the N-terminal end of the TGFβ precursor protein. The mature TGFβ protein represents the C terminal end (about 25 kD) of the precursor. The bond between the TGFβs and LAP is proteolytically cleaved within the Golgi, but the TGF-β propeptide remains bound to TGFβ by non-covalent interactions. The complex of TGFβ and LAP is called the small latent complex (SLC). It is the association of LAP and TGFβ that confers latency. LAP-TGFβ binding is reversible and the isolated purified components can recombine to form an inactive SLC. Both the SLC and the larger complex are referred to herein as latent TGFβ, as both are inactive.


In general, integrins are adhesion molecules and mediate the attachment of cells to extracellular matrix proteins. Integrin αvβ8 binds to the LAP of TGF-β and mediates the activation of TGF-β1 and 3 (Mu et al. (2002) J Cell Biol. 159:493). Integrin αvβ8-mediated activation of TGF-β is required for in vivo activation of TGF-β (i.e., release of the mature TGF-β polypeptide), thus αvβ8 is a gatekeeper of TGF-β function. Integrin αvβ8 is expressed in normal epithelia (e.g., airway epithelia), mesenchymal cells, and neuronal tissues.


The integrin β8 (Itgb8) has been associated with forkhead box P3 (Foxp3)-positive T cells and T-regulatory-specific epigenetic remodeling. See, e.g., Vandenbon, et al., Proc. Natl. Acad. Sci. USA vol. 113 no. 17 pp. E2393-E2402 (2016). FoxP3 is a transcription factor involved in the development of T-regulatory (Treg) cells. Human and mouse effector Treg cells express functional TGF-β-activating integrin αvβ8. See, Worthington, Immunity Volume 42, Issue 5, pp. 903-915 (May 2015). Treg cell integrin αvβ8-mediated TGF-β activation is not needed for T cell homeostasis and integrin αvβ8 expression by Treg cells suppresses active inflammation.


Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by a person of ordinary skill in the art. See, e.g., Lackie, DICTIONARY OF CELL AND MOLECULAR BIOLOGY, Elsevier (4th ed. 2007); Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, Cold Springs Harbor Press (Cold Springs Harbor, NY 1989). Any methods, devices and materials similar or equivalent to those described herein can be used in the practice of this invention. The following definitions are provided to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.


The terms “anti-αvβ8 antibody,” “αvβ8 specific antibody,” “αvβ8 antibody,” and “anti-αvβ8” are used synonymously herein to refer to an antibody that specifically binds to αvβ8. Similarly, an anti-β8 antibody (and like terms) refer to an antibody that specifically binds to β8. The anti-αvβ8 antibodies and anti-β8 antibodies described herein bind to the protein expressed on αvβ8 expressing cells.


An αvβ8-associated disorder is a condition characterized by the presence of αvβ8-expressing cells, either cells expressing an increased level of αvβ8, or increased number of αvβ8-expressing cells relative to a normal, non-diseased control. TGFβ-associated disorders (disorders characterized by higher than normal TGFβ activity) include αvβ8-associated disorders, as αvβ8 is involved in activating TGFβ in certain circumstances, as described herein.


“Nucleic acid” refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, and complements thereof. The term “polynucleotide” refers to a linear sequence of nucleotides. The term “nucleotide” typically refers to a single unit of a polynucleotide, i.e., a monomer. Nucleotides can be ribonucleotides, deoxyribonucleotides, or modified versions thereof. Examples of polynucleotides contemplated herein include single and double stranded DNA, single and double stranded RNA, and hybrid molecules having mixtures of single and double stranded DNA and RNA.


The words “complementary” or “complementarity” refer to the ability of a nucleic acid in a polynucleotide to form a base pair with another nucleic acid in a second polynucleotide. For example, the sequence A-G-T is complementary to the sequence T-C-A. Complementarity may be partial, in which only some of the nucleic acids match according to base pairing, or complete, where all the nucleic acids match according to base pairing.


The words “protein”, “peptide”, and “polypeptide” are used interchangeably to denote an amino acid polymer or a set of two or more interacting or bound amino acid polymers. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.


The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.


Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.


“Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. One of skill will recognize that in certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, silent variations of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not with respect to actual probe sequences.


As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. The following amino acids are typically conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).


The terms “identical” or “percent identity,” in the context of two or more nucleic acids, or two or more polypeptides, refer to two or more sequences or subsequences that are the same or have a specified percentage of nucleotides, or amino acids, that are the same (i.e., about 60% identity, preferably 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters, or by manual alignment and visual inspection. See e.g., the NCBI web site at ncbi.nlm.nih.gov/BLAST. Such sequences are then said to be “substantially identical.” This definition also refers to, or may be applied to, the compliment of a nucleotide test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the algorithms can account for gaps and the like. Typically, identity exists over a region comprising an antibody epitope, or a sequence that is at least about 25 amino acids or nucleotides in length, or over a region that is 50-100 amino acids or nucleotides in length, or over the entire length of the reference sequence.


The term “recombinant” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.


The term “heterologous” when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).


The term “isolated,” when applied to a nucleic acid or protein, denotes that the nucleic acid or protein is essentially free of other cellular components with which it is associated in the natural state. It is preferably in a homogeneous state. It can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein that is the predominant species present in a preparation is substantially purified. In particular, an isolated gene is separated from open reading frames that flank the gene and encode a protein other than the gene of interest. The term “purified” denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure.


The term “antibody” refers to a polypeptide comprising a framework region encoded by an immunoglobulin gene, or fragments thereof, that specifically bind and recognize an antigen, e.g., human αvβ8, a particular cell surface marker, or any desired target. Typically, the “variable region” contains the antigen-binding region of the antibody (or its functional equivalent) and is most critical in specificity and affinity of binding. See Paul, Fundamental Immunology (2003).


An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these light and heavy chains respectively.


An “isotype” is a class of antibodies defined by the heavy chain constant region. Antibodies described herein can be of any isotype of isotype class. Immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the isotype classes, IgG, IgM, IgA, IgD and IgE, respectively.


Antibodies can exist as intact immunoglobulins or as any of a number of well-characterized fragments that include specific antigen-binding activity. Such fragments can be produced by digestion with various peptidases. Pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′2, a dimer of Fab which itself is a light chain joined to VH-CH1 by a disulfide bond. The F(ab)′2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)′2 dimer into an Fab′ monomer. The Fab′ monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990)).


For preparation of monoclonal or polyclonal antibodies, any technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4:72 (1983); Cole et al., Monoclonal Antibodies and Cancer Therapy, pp. 77-96. Alan R. Liss, Inc. 1985). Techniques for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., supra; Marks et al., Biotechnology, 10:779-783, (1992)).


Methods for humanizing or primatizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988) and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some complementary determining region (“CDR”) residues and possibly some framework (“FR”) residues are substituted by residues from analogous sites in rodent antibodies.


Antibodies or antigen-binding molecules of the invention further includes one or more immunoglobulin chains that are chemically conjugated to, or expressed as, fusion proteins with other proteins. It also includes bispecific antibody. A bispecific or bifunctional antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Other antigen-binding fragments or antibody portions of the invention include bivalent scFv (diabody), bispecific scFv antibodies where the antibody molecule recognizes two different epitopes, single binding domains (dAbs), and minibodies.


The various antibodies or antigen-binding fragments described herein can be produced by enzymatic or chemical modification of the intact antibodies, or synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv), or identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554, 1990). For example, minibodies can be generated using methods described in the art, e.g., Vaughan and Sollazzo, Comb Chem High Throughput Screen. 4:417-30 2001. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. Immunol. 79:315-321 (1990); Kostelny et al., J. Immunol. 148, 1547-1553 (1992). Single chain antibodies can be identified using phage display libraries or ribosome display libraries, gene shuffled libraries. Such libraries can be constructed from synthetic, semi-synthetic or native and immunocompetent sources.


A “monoclonal antibody” refers to a clonal preparation of antibodies with a single binding specificity and affinity for a given epitope on an antigen. A “polyclonal antibody” refers to a preparation of antibodies that are raised against a single antigen, but with different binding specificities and affinities.


As used herein, “V-region” refers to an antibody variable region domain comprising the segments of Framework 1, CDR1, Framework 2, CDR2, Framework 3, CDR3, and Framework 4. These segments are included in the V-segment as a consequence of rearrangement of the heavy chain and light chain V-region genes during B-cell differentiation.


As used herein, “complementarity-determining region (CDR)” refers to the three hypervariable regions in each chain that interrupt the four “framework” regions established by the light and heavy chain variable regions. The CDRs are primarily responsible for binding to an epitope of an antigen. The CDRs of each chain are typically referred to as CDR1, CDR2, and CDR3, numbered sequentially starting from the N-terminus, and are also typically identified by the chain in which the particular CDR is located. Thus, a VH CDR3 is located in the variable domain of the heavy chain of the antibody in which it is found, whereas a VL CDR1 is the CDR1 from the variable domain of the light chain of the antibody in which it is found.


The sequences of the framework regions of different light or heavy chains are relatively conserved within a species. The framework region of an antibody, that is the combined framework regions of the constituent light and heavy chains, serves to position and align the CDRs in three dimensional space.


The amino acid sequences of the CDRs and framework regions can be determined using various well known definitions in the art, e.g., Kabat, Chothia, international ImMunoGeneTics database (IMGT), and AbM (see, e.g., Johnson and Wu, Nucleic Acids Res. 2000 Jan. 1; 28(1): 214-218 and Johnson et al., Nucleic Acids Res., 29:205-206 (2001); Chothia & Lesk, (1987)J Mol. Biol. 196, 901-917; Chothia et al. (1989) Nature 342, 877-883; Chothia et al. (1992) J. Mol. Biol. 227, 799-817; Al-Lazikani et al., J. Mol. Biol 1997, 273(4)). Unless otherwise indicated, CDRs are determined according to Kabat. Definitions of antigen combining sites are also described in the following: Ruiz et al. Nucleic Acids Res., 28, 219-221 (2000); and Lefranc Nucleic Acids Res. January 1; 29(1):207-9 (2001); MacCallum et al., J. Mol. Biol., 262: 732-745 (1996); and Martin et al, Proc. Natl Acad. Sci. USA, 86, 9268-9272 (1989); Martin, et al, Methods Enzymol., 203: 121-153, (1991); Pedersen et al, Immunomethods, 1, 126, (1992); and Rees et al, In Sternberg M. J. E. (ed.), Protein Structure Prediction. Oxford University Press, Oxford, 141-172 1996).


A “chimeric antibody” is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region, CDR, or portion thereof) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody (e.g., an enzyme, toxin, hormone, growth factor, drug, etc.); or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity (e.g., CDR and framework regions from different species).


A “humanized” antibody is an antibody that retains the reactivity of a non-human antibody while being less immunogenic in humans. This can be achieved, for instance, by retaining the non-human CDR regions and replacing the remaining parts of the antibody with their human counterparts. See, e.g., Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984); Morrison and Oi, Adv. Immunol., 44:65-92 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988); Padlan, Molec. Immun., 28:489-498 (1991); Padlan, Molec. Immun., 31(3):169-217 (1994).


The antibody binds to an “epitope” on the antigen. The epitope is the specific antibody binding interaction site on the antigen, and can include a few amino acids or portions of a few amino acids, e.g., 5 or 6, or more, e.g., 20 or more amino acids, or portions of those amino acids. In some cases, the epitope includes non-protein components, e.g., from a carbohydrate, nucleic acid, or lipid. In some cases, the epitope is a three-dimensional moiety. Thus, for example, where the target is a protein, the epitope can be comprised of consecutive amino acids, or amino acids from different parts of the protein that are brought into proximity by protein folding (e.g., a discontinuous epitope). The same is true for other types of target molecules that form three-dimensional structures.


The term “specifically bind” refers to a molecule (e.g., antibody or antibody fragment) that binds to a target with at least 2-fold greater affinity than non-target compounds, e.g., at least 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 20-fold, 25-fold, 50-fold, or 100-fold greater affinity. For example, an antibody that specifically binds β8 will typically bind to β8 with at least a 2-fold greater affinity than a non-β8 target (e.g., a different integrin subunit, e.g., β6).


The term “binds” with respect to a cell type (e.g., an antibody that binds fibrotic cells, hepatocytes, chondrocytes, etc.), typically indicates that an agent binds a majority of the cells in a pure population of those cells. For example, an antibody that binds a given cell type typically binds to at least ⅔ of the cells in a population of the indicated cells (e.g., 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%). One of skill will recognize that some variability will arise depending on the method and/or threshold of determining binding.


As used herein, a first antibody, or an antigen-binding portion thereof, “competes” for binding to a target with a second antibody, or an antigen-binding portion thereof, when binding of the second antibody with the target is detectably decreased in the presence of the first antibody compared to the binding of the second antibody in the absence of the first antibody. The alternative, where the binding of the first antibody to the target is also detectably decreased in the presence of the second antibody, can, but need not be the case. That is, a second antibody can inhibit the binding of a first antibody to the target without that first antibody inhibiting the binding of the second antibody to the target. However, where each antibody detectably inhibits the binding of the other antibody to its cognate epitope or ligand, whether to the same, greater, or lesser extent, the antibodies are said to “cross-compete” with each other for binding of their respective epitope(s). Both competing and cross-competing antibodies are encompassed by the present invention. The term “competitor” antibody can be applied to the first or second antibody as can be determined by one of skill in the art. In some cases, the presence of the competitor antibody (e.g., the first antibody) reduces binding of the second antibody to the target by at least 10%, e.g., 20%, 30%, 40%, 50%, 60%, 70%, 80%, or more, e.g., so that binding of the second antibody to target is undetectable in the presence of the first (competitor) antibody.


The term “differentially expressed” or “differentially regulated” refers generally to a protein or nucleic acid biomarker that is overexpressed (upregulated) or underexpressed (downregulated) in one sample compared to at least one other sample. In the context of the present invention, the term generally refers to overexpression of a biomarker (e.g., αvβ8) on a diseased cell compared to a normal cell.


For example, the terms “overexpressed” or “upregulated” interchangeably refer to a protein or nucleic acid, generally a biomarker, that is transcribed or translated at a detectably greater than control level. The term includes overexpression due to transcription, post transcriptional processing, translation, post-translational processing, cellular localization (e.g., organelle, cytoplasm, nucleus, cell surface), and RNA and protein stability. Overexpression can be detected using conventional techniques for detecting biomarkers, whether mRNA (i.e., RT-PCR, hybridization) or protein (i.e., flow cytometry, imaging, ELISA, immunohistochemical techniques). Overexpression can be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more in comparison to a normal cell.


The terms “agonist,” “activator,” “inducer” and like terms refer to molecules that increase activity or expression as compared to a control. Agonists are agents that, e.g., bind to, stimulate, increase, activate, enhance activation, sensitize or upregulate the activity of the target. The expression or activity can be increased 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 100% or more than that in a control. In certain instances, the activation is 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, or more in comparison to a control.


The terms “inhibitor,” “repressor” or “antagonist” or “downregulator” interchangeably refer to a substance that results in a detectably lower expression or activity level as compared to a control. The inhibited expression or activity can be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or less than that in a control. In certain instances, the inhibition is 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, or more in comparison to a control.


A “control” sample or value refers to a sample that serves as a reference, usually a known reference, for comparison to a test sample. For example, a test sample can be taken from a test condition, e.g., in the presence of a test compound, and compared to samples from known conditions, e.g., in the absence of the test compound (negative control), or in the presence of a known compound (positive control). A control can also represent an average value gathered from a number of tests or results. One of skill in the art will recognize that controls can be designed for assessment of any number of parameters. For example, a control can be devised to compare therapeutic benefit based on pharmacological data (e.g., half-life) or therapeutic measures (e.g., comparison of benefit and/or side effects). Controls can be designed for in vitro applications. One of skill in the art will understand which controls are valuable in a given situation and be able to analyze data based on comparisons to control values. Controls are also valuable for determining the significance of data. For example, if values for a given parameter are widely variant in controls, variation in test samples will not be considered as significant.


A “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include 32P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into a peptide or antibody specifically reactive with a target peptide. Any method known in the art for conjugating an antibody to the label may be employed, e.g., using methods described in Hermanson, Bioconjugate Techniques 1996, Academic Press, Inc., San Diego.


A “labeled” molecule (e.g., nucleic acid, protein, or antibody) is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the molecule may be detected by detecting the presence of the label bound to the molecule.


The term “diagnosis” refers to a relative probability that a disorder such as cancer or an inflammatory condition is present in the subject. Similarly, the term “prognosis” refers to a relative probability that a certain future outcome may occur in the subject. For example, prognosis can refer to the likelihood that an individual will develop a TGFβ or αvβ8 associated disorder, have recurrence, or the likely severity of the disease (e.g., severity of symptoms, rate of functional decline, survival, etc.). The terms are not intended to be absolute, as will be appreciated by any one of skill in the field of medical diagnostics.


“Biopsy” or “biological sample from a patient” as used herein refers to a sample obtained from a patient having, or suspected of having, a TGFβ or αvβ8 associated disorder. In some embodiments, the sample may be a tissue biopsy, such as needle biopsy, fine needle biopsy, surgical biopsy, etc. The sample can also be a blood sample or blood fraction, e.g., white blood cell fraction, serum, or plasma. The sample can comprise a tissue sample harboring a lesion or suspected lesion, although the biological sample may be also be derived from another site, e.g., a site of suspected metastasis, a lymph node, or from the blood. In some cases, the biological sample may also be from a region adjacent to the lesion or suspected lesion.


A “biological sample” can be obtained from a patient, e.g., a biopsy, from an animal, such as an animal model, or from cultured cells, e.g., a cell line or cells removed from a patient and grown in culture for observation. Biological samples include tissues and bodily fluids, e.g., blood, blood fractions, lymph, saliva, urine, feces, etc.


The terms “therapy,” “treatment,” and “amelioration” refer to any reduction in the severity of symptoms. In the case of treating an inflammatory condition, the treatment can refer to reducing, e.g., blood levels of inflammatory cytokines, blood levels of active mature TGFβ, pain, swelling, recruitment of immune cells, etc. In the case of treating cancer, treatment can refer to reducing, e.g., tumor size, number of cancer cells, growth rate, metastatic activity, cell death of non-cancer cells, etc. As used herein, the terms “treat” and “prevent” are not intended to be absolute terms. Treatment and prevention can refer to any delay in onset, amelioration of symptoms, improvement in patient survival, increase in survival time or rate, etc. Treatment and prevention can be complete (no detectable symptoms remaining) or partial, such that symptoms are less frequent of severe than in a patient without the treatment described herein. The effect of treatment can be compared to an individual or pool of individuals not receiving the treatment, or to the same patient prior to treatment or at a different time during treatment. In some aspects, the severity of disease is reduced by at least 10%, as compared, e.g., to the individual before administration or to a control individual not undergoing treatment. In some aspects the severity of disease is reduced by at least 25%, 50%, 75%, 80%, or 90%, or in some cases, no longer detectable using standard diagnostic techniques.


The terms “effective amount,” “effective dose,” “therapeutically effective amount,” etc. refer to that amount of the therapeutic agent sufficient to ameliorate a disorder, as described above. For example, for the given parameter, a therapeutically effective amount will show an increase or decrease of therapeutic effect at least 5%, 10%, 15%, 20%, 25%, 40%, 50%, 60%, 75%, 80%, 90%, or at least 100%. Therapeutic efficacy can also be expressed as “-fold” increase or decrease. For example, a therapeutically effective amount can have at least a 1.2-fold, 1.5-fold, 2-fold, 5-fold, or more effect over a control.


As used herein, the term “pharmaceutically acceptable” is used synonymously with physiologically acceptable and pharmacologically acceptable. A pharmaceutical composition will generally comprise agents for buffering and preservation in storage, and can include buffers and carriers for appropriate delivery, depending on the route of administration.


The terms “dose” and “dosage” are used interchangeably herein. A dose refers to the amount of active ingredient given to an individual at each administration. For the present invention, the dose can refer to the concentration of the antibody or associated components, e.g., the amount of therapeutic agent or dosage of radiolabel. The dose will vary depending on a number of factors, including frequency of administration; size and tolerance of the individual; severity of the condition; risk of side effects; the route of administration; and the imaging modality of the detectable moiety (if present). One of skill in the art will recognize that the dose can be modified depending on the above factors or based on therapeutic progress. The term “dosage form” refers to the particular format of the pharmaceutical, and depends on the route of administration. For example, a dosage form can be in a liquid, e.g., a saline solution for injection.


“Subject,” “patient,” “individual” and like terms are used interchangeably and refer to, except where indicated, mammals such as humans and non-human primates, as well as rabbits, rats, mice, goats, pigs, and other mammalian species. The term does not necessarily indicate that the subject has been diagnosed with a particular disease, but typically refers to an individual under medical supervision. A patient can be an individual that is seeking treatment, monitoring, adjustment or modification of an existing therapeutic regimen, etc.


An “inflammatory condition” refers to any inflammation in an individual, and can be transient (e.g., in response to exposure to a pathogen or allergen) or chronic. Inflammation is characterized by inflammatory cytokines such as IFN-gamma, IL-6, and TNF-alpha that recruit and activate macrophages and other leukocytes. In some cases, inflammation can develop into a chronic, harmful condition or autoimmune condition (e.g., MS, lupus, rheumatoid arthritis, Crohn's disease). Inflammation can be evident locally (e.g., at a localized site of infection or exposure) or systemically (e.g., atherosclerosis, high blood pressure). In some embodiments, the antibody compositions and methods described herein can be used to treat inflammatory conditions.


“Cancer”, “tumor,” “transformed” and like terms include precancerous, neoplastic, transformed, and cancerous cells, and can refer to a solid tumor, or a non-solid cancer (see, e.g., Edge et al. AJCC Cancer Staging Manual (7th ed. 2009); Cibas and Ducatman Cytology: Diagnostic principles and clinical correlates (3rd ed. 2009)). Cancer includes both benign and malignant neoplasms (abnormal growth). “Transformation” refers to spontaneous or induced phenotypic changes, e.g., immortalization of cells, morphological changes, aberrant cell growth, reduced contact inhibition and anchorage, and/or malignancy (see, Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed. 1994)). Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen.


The term “cancer” can refer to carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, solid and lymphoid cancers, etc. Examples of different types of cancer include, but are not limited to, lung cancer (e.g., non-small cell lung cancer or NSCLC), ovarian cancer, prostate cancer, colorectal cancer, liver cancer (i.e., hepatocarcinoma), renal cancer (i.e., renal cell carcinoma), bladder cancer, breast cancer, thyroid cancer, pleural cancer, pancreatic cancer, uterine cancer, cervical cancer, testicular cancer, anal cancer, pancreatic cancer, bile duct cancer, gastrointestinal carcinoid tumors, esophageal cancer, gall bladder cancer, appendix cancer, small intestine cancer, stomach (gastric) cancer, cancer of the central nervous system, skin cancer, choriocarcinoma; head and neck cancer, blood cancer, osteogenic sarcoma, fibrosarcoma, neuroblastoma, glioma, melanoma, B-cell lymphoma, non-Hodgkin's lymphoma, Burkitt's lymphoma, Small Cell lymphoma, Large Cell lymphoma, monocytic leukemia, myelogenous leukemia, acute lymphocytic leukemia, acute myelocytic leukemia (AML), chronic myeloid leukemia (CIVIL), and multiple myeloma. In some embodiments, the antibody compositions and methods described herein can be used for treating cancer.


The term “co-administer” refers to the simultaneous presence of two active agents in the blood of an individual. Active agents that are co-administered can be concurrently or sequentially delivered.


BRIEF SUMMARY OF THE INVENTION

In some aspects, an antibody is provided that specifically binds human αvβ8 and blocks binding of TGFβ peptide to αvβ8, wherein the antibody binds to an epitope on human αvβ8 comprising amino acids D148, A149, D150, G151, and Y178 of human αv as occurs in SEQ ID NO:393 and amino acids H118, S170, D171, Y172, N173 L174, D175, H200, and R201 of human β8 as occurs in SEQ ID NO:394.


In some embodiments, an antibody (optionally a chimeric or humanized antibody) is provided that comprises heavy chain CDRs SEQ ID NO:562, SEQ ID NO: 563, and SEQ ID NO; 564 and light chain CDRs SEQ ID NO:569, SEQ ID NO: 570, and SEQ ID NO: 571.


In some embodiments, an antibody (optionally a chimeric or humanized antibody) is provided that comprises:

    • heavy chain CDRs SEQ ID NO:313, SEQ ID NO:314, and SEQ ID NO:315; and light chain CDRs SEQ ID NO:334, SEQ ID NO:335, and SEQ ID NO:336; or
    • heavy chain CDRs SEQ ID NO:319, SEQ ID NO:320, and SEQ ID NO:321; and light chain CDRs SEQ ID NO:340, SEQ ID NO:341, and SEQ ID NO:342; or
    • heavy chain CDRs SEQ ID NO:316, SEQ ID NO:317, and SEQ ID NO:318; and light chain CDRs SEQ ID NO:337, SEQ ID NO:338, and SEQ ID NO:339; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:343, SEQ ID NO:344, and SEQ ID NO:345; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:346, SEQ ID NO:347, and SEQ ID NO:348; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:349, SEQ ID NO:350, and SEQ ID NO:351; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:352, SEQ ID NO:353, and SEQ ID NO:354; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:355, SEQ ID NO:356, and SEQ ID NO:357; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:358, SEQ ID NO:359, and SEQ ID NO:360; or
    • heavy chain CDRs SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:364, SEQ ID NO:365, and SEQ ID NO:366; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369; and light chain CDRs SEQ ID NO:376, SEQ ID NO:377, and SEQ ID NO:378; or
    • heavy chain CDRs SEQ ID NO:370, SEQ ID NO:371, and SEQ ID NO:372; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333; and light chain CDRs SEQ ID NO:382, SEQ ID NO:383, and SEQ ID NO:384; or
    • heavy chain CDRs SEQ ID NO:379, SEQ ID NO:380, and SEQ ID NO:381; and light chain CDRs SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363; or
    • heavy chain CDRs SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333; and light chain CDRs SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363; or
    • heavy chain CDRs SEQ ID NO:508, SEQ ID NO:509, and SEQ ID NO:510; and light chain CDRs SEQ ID NO:529, SEQ ID NO:530, and SEQ ID NO:531; or
    • heavy chain CDRs SEQ ID NO:511, SEQ ID NO:512, and SEQ ID NO:513; and light chain CDRs SEQ ID NO:532, SEQ ID NO:533, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:514, SEQ ID NO:515, and SEQ ID NO:516; and light chain CDRs SEQ ID NO:535, SEQ ID NO:536, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:517, SEQ ID NO:518, and SEQ ID NO:519; and light chain CDRs SEQ ID NO:538, SEQ ID NO:539, and SEQ ID NO:540; or
    • heavy chain CDRs SEQ ID NO:520, SEQ ID NO:521, and SEQ ID NO:522; and light chain CDRs SEQ ID NO:541, SEQ ID NO:542, and SEQ ID NO:543; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:544, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:526, SEQ ID NO:527, and SEQ ID NO:528; and light chain CDRs SEQ ID NO:547, SEQ ID NO:548, and SEQ ID NO:549; or
    • other antibodies described herein.


In some embodiments, the antibody is linked to a detectable label.


In some embodiments, the antibody further comprises heavy chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 558, SEQ ID NO: 559, SEQ ID NO: 560, and SEQ ID NO: 561, respectively, and light chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 565, SEQ ID NO: 566, SEQ ID NO: 567, and SEQ ID NO: 568, respectively.


In some embodiments, the antibody further comprises heavy chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 550, SEQ ID NO: 551, SEQ ID NO: 552, and SEQ ID NO: 553, respectively, and light chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 554, SEQ ID NO: 555, SEQ ID NO: 556, and SEQ ID NO: 557, respectively.


In some embodiments, the antibody is humanized. In some embodiments, the humanized antibody comprises SEQ ID NO:395, SEQ ID NO:403, SEQ ID NO:411; SEQ ID NO:419, SEQ ID NO:427, SEQ ID NO:443, SEQ ID NO:451, SEQ ID NO:459, SEQ ID NO:467; SEQ ID NO:475, SEQ ID NO:484, or SEQ ID NO:500.


Also provided is an antibody that binds to αvβ8 and αvβ6 and comprising a light chain CDR1 comprising the sequence RGDL. In some embodiments, the antibody comprises variable regions comprising heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:544, SEQ ID NO:545, and SEQ ID NO:546; or heavy chain CDRs SEQ ID NO:526, SEQ ID NO:527, and SEQ ID NO:528; and light chain CDRs SEQ ID NO:547, SEQ ID NO:548, and SEQ ID NO:549.


In some embodiments, the antibody further comprises heavy chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 558, SEQ ID NO: 559, SEQ ID NO: 560, and SEQ ID NO: 561, respectively, and light chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 565, SEQ ID NO: 566, SEQ ID NO: 567, and SEQ ID NO: 568, respectively.


In some embodiments, the antibody further comprises heavy chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 550, SEQ ID NO: 551, SEQ ID NO: 552, and SEQ ID NO: 553, respectively, and light chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 554, SEQ ID NO: 555, SEQ ID NO: 556, and SEQ ID NO: 557, respectively.


In some embodiments, the antibody is humanized.


In some embodiments, the antibody is linked to a detectable label.


Also provided is an antibody that specifically binds human αvβ8 and blocks binding of TGFβ peptide to αvβ8, wherein the antibody binds to the specificity determining loop (SDL) of human β8. In some embodiments, the antibody further binds to one, two, or all three of the human αv-head domain, the α1 helix of human β8, or the α2 helix of human β8. In some embodiments, the antibody is humanized or chimeric. In some embodiments, the antibody is linked to a detectable label.


Also provided is a pharmaceutical composition comprising an antibody as described above or elsewhere herein in a pharmaceutically acceptable excipient.


Also provided is a method of enhancing an immune response to a viral infection in a human individual. In some embodiments, the method comprises administering a sufficient amount of an antibody as described above or elsewhere herein to the individual, thereby enhancing an immune response to the viral infection.


In some embodiments, the viral infection is a hepatitis infection. In some embodiments, the viral infection is a hepatitis B infection.


Also provided is a method of enhancing an immune response to a viral infection in a human individual, the method comprising administering a sufficient amount of the antibody to the individual, wherein the antibody specifically binds to human αvβ8 and blocks binding of TGFβ peptide to αvβ8 or blocks activation of αvβ8 by binding of TGFβ human αvβ8, thereby enhancing an immune response to the viral infection.


Also provided is a method of enhancing an immune response to cancer in a human individual, the method comprising administering a sufficient amount of an antibody as described above or elsewhere herein to the individual, thereby enhancing an immune response to the cancer.


In some embodiments, the cancer is lung cancer. In some embodiments, the cancer is a metastatic cancer. In some embodiments, the cancer is a primary cancer.


Also provided is a method of enhancing an immune response to H. pyroli in a human individual, the method comprising administering a sufficient amount of an antibody as described above or elsewhere herein to the individual, thereby enhancing an immune response to H. pyroli.


In some embodiments, the human individual has a peptide ulcer, gastric carcinoma or MALT lymphoma.


Also provided is an antibody that specifically binds to human αvβ8 and that comprises human heavy chain CDRs SEQ ID NO:299, SEQ ID NO:301, and SEQ ID NO:303; and light chain CDRs SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311. Alternatively, any antibodies having heavy chain CDRs or a heavy chain variable region as set forth in FIG. 53 and light chain CDRs or a light chain variable region from a corresponding sequence as set forth in FIG. 54 can be used


In some embodiments, the antibody is linked to a detectable label.


Also provided is a method of detecting the presence, absence, or quantity of human in a sample, the method comprising, contacting to the sample an antibody that specifically binds to human αvβ8 and that comprises human heavy chain CDRs SEQ ID NO:299, SEQ ID NO:301, and SEQ ID NO:303; and light chain CDRs SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311, and detecting or quantifying binding of the antibody to the sample.


In some embodiments, the sample is a formalin-fixed sample.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates heavy chain amino acid sequences for clones used in the construction of the composite antibody C6D4. B13C4 15-8: all sequences (SEQ ID NO:1), Framework 1 (SEQ ID NO:2), CDR1 (SEQ ID NO:3), Framework 2 (SEQ ID NO:4), CDR2 (SEQ ID NO:5), Framework 3 (SEQ ID NO:6), CRD3 (SEQ ID NO:7), and Framework 4 (SEQ ID NO:8); B13C4 15-10: all sequences (SEQ ID NO:9), Framework 1 (SEQ ID NO:10), CDR1 (SEQ ID NO:11), Framework 2 (SEQ ID NO:12), CDR2 (SEQ ID NO:13), Framework 3 (SEQ ID NO:14), CRD3 (SEQ ID NO:15), and Framework 4 (SEQ ID NO:16); B13H3.2: all sequences (SEQ ID NO:17), Framework 1 (SEQ ID NO:18), CDR1 (SEQ ID NO:19), Framework 2 (SEQ ID NO:20), CDR2 (SEQ ID NO:21), Framework 3 (SEQ ID NO:22), CRD3 (SEQ ID NO:23), and Framework 4 (SEQ ID NO:24); B13C1231015: all sequences (SEQ ID NO:25), Framework 1 (SEQ ID NO:26), CDR1 (SEQ ID NO:27), Framework 2 (SEQ ID NO:28), CDR2 (SEQ ID NO:29), Framework 3 (SEQ ID NO:30), CRD3 (SEQ ID NO:31), and Framework 4 (SEQ ID NO:32); B15B11VH: all sequences (SEQ ID NO:33), Framework 1 (SEQ ID NO:34), CDR1 (SEQ ID NO:35), Framework 2 (SEQ ID NO:36), CDR2 (SEQ ID NO:37), Framework 3 (SEQ ID NO:38), CRD3 (SEQ ID NO:39), and Framework 4 (SEQ ID NO:40); B2B2 15-9: all sequences (SEQ ID NO:41), Framework 1 (SEQ ID NO:42), CDR1 (SEQ ID NO:43), Framework 2 (SEQ ID NO:44), CDR2 (SEQ ID NO:45), Framework 3 (SEQ ID NO:46), CRD3 (SEQ ID NO:47), and Framework 4 (SEQ ID NO:48); R11D12715.3: all sequences (SEQ ID NO:49), Framework 1 (SEQ ID NO:50), CDR1 (SEQ ID NO:51), Framework 2 (SEQ ID NO:52), CDR2 (SEQ ID NO:53), Framework 3 (SEQ ID NO:54), CRD3 (SEQ ID NO:55), and Framework 4 (SEQ ID NO:56); RSDLVH-1: all sequences (SEQ ID NO:57 and SEQ ID NO:65), Framework 1 (SEQ ID NO:58 and SEQ ID NO:66), CDR1 (SEQ ID NO:59 and SEQ ID NO:67), Framework 2 (SEQ ID NO:60 and SEQ ID NO:68), CDR2 (SEQ ID NO:61 and SEQ ID NO:69), Framework 3 (SEQ ID NO:62 and SEQ ID NO:70), CRD3 (SEQ ID NO:63 and SEQ ID NO:71), and Framework 4 (SEQ ID NO:64 and SEQ ID NO:72); RSDLVH-3: all sequences (SEQ ID NO:73), Framework 1 (SEQ ID NO:74), CDR1 (SEQ ID NO:75), Framework 2 (SEQ ID NO:76), CDR2 (SEQ ID NO:77), Framework 3 (SEQ ID NO:78), CRD3 (SEQ ID NO:79), and Framework 4 (SEQ ID NO:80); RSDLVH-16: all sequences (SEQ ID NO:81), Framework 1 (SEQ ID NO:82), CDR1 (SEQ ID NO:83), Framework 2 (SEQ ID NO:84), CDR2 (SEQ ID NO:85), Framework 3 (SEQ ID NO:86), CRD3 (SEQ ID NO:87), and Framework 4 (SEQ ID NO:88); both 29 and 44: all sequences (SEQ ID NO:89), Framework 1 (SEQ ID NO:90), CDR1 (SEQ ID NO:91), Framework 2 (SEQ ID NO:92), CDR2 (SEQ ID NO:93), Framework 3 (SEQ ID NO:94), CRD3 (SEQ ID NO:95), and Framework 4 (SEQ ID NO:96); A1=B4=F9: all sequences (SEQ ID NO:97), Framework 1 (SEQ ID NO:98), CDR1 (SEQ ID NO:99), Framework 2 (SEQ ID NO:100), CDR2 (SEQ ID NO:101), Framework 3 (SEQ ID NO:102), CRD3 (SEQ ID NO:103), and Framework 4 (SEQ ID NO:104); A5=C6: all sequences (SEQ ID NO:105), Framework 1 (SEQ ID NO:106), CDR1 (SEQ ID NO:107), Framework 2 (SEQ ID NO:108), CDR2 (SEQ ID NO:109), Framework 3 (SEQ ID NO:110), CRD3 (SEQ ID NO:111), and Framework 4 (SEQ ID NO:112); D4=E6: all sequences (SEQ ID NO:113), Framework 1 (SEQ ID NO:114), CDR1 (SEQ ID NO:115), Framework 2 (SEQ ID NO:116), CDR2 (SEQ ID NO:117), Framework 3 (SEQ ID NO:118), CRD3 (SEQ ID NO:119), and Framework 4 (SEQ ID NO:120); and C6D4: all sequences (SEQ ID NO:121), Framework 1 (SEQ ID NO:122), CDR1 (SEQ ID NO:123), Framework 2 (SEQ ID NO:124), CDR2 (SEQ ID NO:125), Framework 3 (SEQ ID NO:126), CRD3 (SEQ ID NO:127), and Framework 4 (SEQ ID NO:128).



FIG. 2 illustrates light chain amino acid sequences for clones used in the construction of the composite antibody C6D4. B2B2 35-20: all sequences (SEQ ID NO:129), Framework 1 (SEQ ID NO:130), CDR1 (SEQ ID NO:131), Framework 2 (SEQ ID NO:132), CDR2 (SEQ ID NO:133), Framework 3 (SEQ ID NO:134), CRD3 (SEQ ID NO:135), and Framework 4 (SEQ ID NO:136); B2B2 35-26: all sequences (SEQ ID NO:137), Framework 1 (SEQ ID NO:138), CDR1 (SEQ ID NO:139), Framework 2 (SEQ ID NO:140), CDR2 (SEQ ID NO:141), Framework 3 (SEQ ID NO:142), CRD3 (SEQ ID NO:143), and Framework 4 (SEQ ID NO:144); B15B11vk34-26: all sequences (SEQ ID NO:145), Framework 1 (SEQ ID NO:146), CDR1 (SEQ ID NO:147), Framework 2 (SEQ ID NO:148), CDR2 (SEQ ID NO:149), Framework 3 (SEQ ID NO:150), CRD3 (SEQ ID NO:151), and Framework 4 (SEQ ID NO:152); B15B11vk33-24: all sequences (SEQ ID NO:153), Framework 1 (SEQ ID NO:154), CDR1 (SEQ ID NO:155), Framework 2 (SEQ ID NO:156), CDR2 (SEQ ID NO:157), Framework 3 (SEQ ID NO:158), CRD3 (SEQ ID NO:159), and Framework 4 (SEQ ID NO:160); B15B11vk35-26: all sequences (SEQ ID NO:161), Framework 1 (SEQ ID NO:162), CDR1 (SEQ ID NO:163), Framework 2 (SEQ ID NO:164), CDR2 (SEQ ID NO:165), Framework 3 (SEQ ID NO:166), CRD3 (SEQ ID NO:167), and Framework 4 (SEQ ID NO:168); B13C12134-25: all sequences (SEQ ID NO:169), Framework 1 (SEQ ID NO:170), CDR1 (SEQ ID NO:171), Framework 2 (SEQ ID NO:172), CDR2 (SEQ ID NO:173), Framework 3 (SEQ ID NO:174), CRD3 (SEQ ID NO:175), and Framework 4 (SEQ ID NO:176); B13C12133-26: all sequences (SEQ ID NO:177), Framework 1 (SEQ ID NO:178), CDR1 (SEQ ID NO:179), Framework 2 (SEQ ID NO:180), CDR2 (SEQ ID NO:181), Framework 3 (SEQ ID NO:182), CRD3 (SEQ ID NO:183), and Framework 4 (SEQ ID NO:184); B13C4 35-20: all sequences (SEQ ID NO:185), Framework 1 (SEQ ID NO:186), CDR1 (SEQ ID NO:187), Framework 2 (SEQ ID NO:188), CDR2 (SEQ ID NO:189), Framework 3 (SEQ ID NO:190), CRD3 (SEQ ID NO:191), and Framework 4 (SEQ ID NO:192); B15B11v1c35-20: all sequences (SEQ ID NO:193), Framework 1 (SEQ ID NO:194), CDR1 (SEQ ID NO:195), Framework 2 (SEQ ID NO:196), CDR2 (SEQ ID NO:197), Framework 3 (SEQ ID NO:198), CRD3 (SEQ ID NO:199), and Framework 4 (SEQ ID NO:200); B13C12335-25: all sequences (SEQ ID NO:201), Framework 1 (SEQ ID NO:202), CDR1 (SEQ ID NO:203), Framework 2 (SEQ ID NO:204), CDR2 (SEQ ID NO:205), Framework 3 (SEQ ID NO:206), CRD3 (SEQ ID NO:207), and Framework 4 (SEQ ID NO:208); B13C1233520: all sequences (SEQ ID NO:209), Framework 1 (SEQ ID NO:210), CDR1 (SEQ ID NO:211), Framework 2 (SEQ ID NO:212), CDR2 (SEQ ID NO:213), Framework 3 (SEQ ID NO:214), CRD3 (SEQ ID NO:215), and Framework 4 (SEQ ID NO:216); RSDLVK-1: all sequences (SEQ ID NO:217), Framework 1 (SEQ ID NO:218), CDR1 (SEQ ID NO:219), Framework 2 (SEQ ID NO:220), CDR2 (SEQ ID NO:221), Framework 3 (SEQ ID NO:222), CRD3 (SEQ ID NO:223), and Framework 4 (SEQ ID NO:224); RSDLVK-6: all sequences (SEQ ID NO:225), Framework 1 (SEQ ID NO:226), CDR1 (SEQ ID NO:227), Framework 2 (SEQ ID NO:228), CDR2 (SEQ ID NO:229), Framework 3 (SEQ ID NO:230), CRD3 (SEQ ID NO:231), and Framework 4 (SEQ ID NO:232); RSDLVK-10: all sequences (SEQ ID NO:233), Framework 1 (SEQ ID NO:234), CDR1 (SEQ ID NO:235), Framework 2 (SEQ ID NO:236), CDR2 (SEQ ID NO:237), Framework 3 (SEQ ID NO:238), CRD3 (SEQ ID NO:239), and Framework 4 (SEQ ID NO:240); RSDLVK-13: all sequences (SEQ ID NO:241), Framework 1 (SEQ ID NO:242), CDR1 (SEQ ID NO:243), Framework 2 (SEQ ID NO:244), CDR2 (SEQ ID NO:245), Framework 3 (SEQ ID NO:246), CRD3 (SEQ ID NO:247), and Framework 4 (SEQ ID NO:248); 29: all sequences (SEQ ID NO:249), Framework 1 (SEQ ID NO:250), CDR1 (SEQ ID NO:251), Framework 2 (SEQ ID NO:252), CDR2 (SEQ ID NO:253), Framework 3 (SEQ ID NO:254), CRD3 (SEQ ID NO:255), and Framework 4 (SEQ ID NO:256); 44: all sequences (SEQ ID NO:257), Framework 1 (SEQ ID NO:258), CDR1 (SEQ ID NO:259), Framework 2 (SEQ ID NO:260), CDR2 (SEQ ID NO:261), Framework 3 (SEQ ID NO:262), CRD3 (SEQ ID NO:263), and Framework 4 (SEQ ID NO:264); A1=B4=F9: all sequences (SEQ ID NO:265), Framework 1 (SEQ ID NO:266), CDR1 (SEQ ID NO:267), Framework 2 (SEQ ID NO:268), CDR2 (SEQ ID NO:269), Framework 3 (SEQ ID NO:270), CRD3 (SEQ ID NO:271), and Framework 4 (SEQ ID NO:272); A5=C6: all sequences (SEQ ID NO:273), Framework 1 (SEQ ID NO:274), CDR1 (SEQ ID NO:275), Framework 2 (SEQ ID NO:276), CDR2 (SEQ ID NO:277), Framework 3 (SEQ ID NO:278), CRD3 (SEQ ID NO:279), and Framework 4 (SEQ ID NO:280); D4=E6: all sequences (SEQ ID NO:281), Framework 1 (SEQ ID NO:282), CDR1 (SEQ ID NO:283), Framework 2 (SEQ ID NO:284), CDR2 (SEQ ID NO:285), Framework 3 (SEQ ID NO:286), CRD3 (SEQ ID NO:287), and Framework 4 (SEQ ID NO:288); and C6D4: all sequences (SEQ ID NO:289), Framework 1 (SEQ ID NO:290), CDR1 (SEQ ID NO:291), Framework 2 (SEQ ID NO:292), CDR2 (SEQ ID NO:293), Framework 3 (SEQ ID NO:294), CRD3 (SEQ ID NO:295), and Framework 4 (SEQ ID NO:296).



FIG. 3 is a plot of transforming growth factor-beta (TGF-β) binding inhibition percentages for different concentrations of the allosteric inhibitor B5 and the composite antibody C6D4.



FIG. 4 illustrates conservation of epitope among mammals, indicating the antibodies can be useful in multiple preclinical animal models and have broad utility, including in veterinary applications. Human αv (SEQ ID NO:591); Chimp αv (SEQ ID NO:592); Rhesus αv (SEQ ID NO:593); Cyno αv (SEQ ID NO:594); Cow αv (SEQ ID NO:595); Pig αv (SEQ ID NO:596); Horse αv (SEQ ID NO:597); Mouse αv (SEQ ID NO:598); Rat αv (SEQ ID NO:599); Armadillo αv (SEQ ID NO:600); Platypus αv (SEQ ID NO:601); Human β8 (SEQ ID NO:602); Chimp β8 (SEQ ID NO:603); Rhesus β8 (SEQ ID NO:604); Cyno β8 (SEQ ID NO:605); Cow β8 (SEQ ID NO:606); Pig β8 (SEQ ID NO:607); Horse β8 (SEQ ID NO:608); Mouse β8 (SEQ ID NO:609); Rat β8 (SEQ ID NO:610); Armadillo β8 (SEQ ID NO:611); and Platypus β8 (SEQ ID NO:612).



FIG. 5 illustrates integrin alphaV (SEQ ID NO:394) and beta8 (SEQ ID NO:395) sequences. The epitope for C6D4 is in bold underlined italics.



FIG. 6 illustrates cryoEM results, highlighting the interactions between C6D4 and the (SDL) loop of β8, the α1 and α2 helices of β8, and the head of αv.



FIG. 7 illustrates the residues of the SDL and β8 α1 and α2 helices and αv head of integrin αvβ8 that directly interact with C6D4 upon binding. The head sequence of integrin αv is FNLDVDSPAEYSGPEGSYFGFAVDFFVPSASSRMFLLVGAPKANTTQPGIVEGGQVLKC DWSSTRRCQPIEFDATGNRDYAKDDPLEFKSHQWFGASVRSKQDKILACAPLYHWRTE MKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGGFSIDFTKADRVLLGGPGS FYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFDDSYLGYSVAVGDFNGD GIDDFVSGVPRAARTLGMVYIYDGKNMSSLYNFTGEQMAAYFGFSVAATDINGDDYAD VFIGAPLFMDRGSDGKLQEVGQVSVSLQRASGDFQTTKLNGFEVFARFGSAIAPLGDLD QDGFNDIAIAAPYGGEDKKGIVYIFNGRSTGLNAVPSQILEGQWAARSMPPSFGYSMKG ATDIDKNGYPDLIVGAFGVDRAILYRARP (SEQ ID NO:623). Sequences C6D4 VH CDR1 (SEQ ID NO:613); C6D4 VH CDR2 (SEQ ID NO:614); C6D4 VH CDR3 (SEQ ID NO:615); C6D4 Vk CDR1 (SEQ ID NO:616); C6D4 Vk CDR2 (SEQ ID NO:617); C6D4 Vk CDR3 (SEQ ID NO:618); β8, α1 helix (SEQ ID NO:619); β8, SDL (SEQ ID NO:620); β8, α2 helix (SEQ ID NO:621); and αV, β-propeller domain blade W3 (SEQ ID NO:622).



FIG. 8 illustrates the overlapping of the C6D4 epitope with the ligand binding pocket of integrin αvβ8, in relation to the association of the integrin with latent TGF-β.



FIG. 9 is a plot of percent survival of mice injected with Lewis lung carcinoma (LLC) cells. The primary tumors were removed and the animals treated with C6D4 murine IgG2a or SV5 isotype control at a dosage of 7 mg/kg once per week. In this model, mice are euthanized after losing 20% body weight due to recurrence of the primary tumor or due to metastasis.



FIG. 10 is a table of HepB surface antigen (HBSag) clearance from a chronic infection mouse model as a result of treatment with C6D4.



FIG. 11A-B illustrate amino acid sequences for clones used in the construction of the engineered antibody 4F1F9, an antibody used for detection of αvβ8 in human tissues. FIG. 11A Sequences—4F1: all sequences (SEQ ID NO:624), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:628), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:634), Framework 3 (SEQ ID NO:637), CDR3 (SEQ ID NO:651), Framework 4 (SEQ ID NO:655), 6B9: all sequences (SEQ ID NO:656), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:635), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:652), Framework 4 (SEQ ID NO:655), 6B9.1: all sequences (SEQ ID NO:657), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:653), Framework 4 (SEQ ID NO:655), A1: all sequences (SEQ ID NO:658), Framework 1 (SEQ ID NO:626), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:639), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A2: all sequences (SEQ ID NO:659), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:640), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A8: all sequences (SEQ ID NO:660), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:641), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A11: all sequences (SEQ ID NO:661), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:630), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), B1: all sequences (SEQ ID NO:662), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:642), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), B3: all sequences (SEQ ID NO:663), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:643), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C4=F10: all sequences (SEQ ID NO:664), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:644), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C7=D1: all sequences (SEQ ID NO:665), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:644), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D3=F1: all sequences (SEQ ID NO:666), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:645), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D10=E5: all sequences (SEQ ID NO:667), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), G4: all sequences (SEQ ID NO:668), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:647), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C4: all sequences (SEQ ID NO:669), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:650), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D10: all sequences (SEQ ID NO:670), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1A11: all sequences (SEQ ID NO:671), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:650), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E1: all sequences (SEQ ID NO:672), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1G3: all sequences (SEQ ID NO:673), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:648), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E10: all sequences (SEQ ID NO:674), Framework 1 (SEQ ID NO:627), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E9: all sequences (SEQ ID NO:675), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1H12: all sequences (SEQ ID NO:676), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:649), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), F9: all sequences (SEQ ID NO:677), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), and Framework 4 (SEQ ID NO:655). FIG. 11B Sequences—4F1: all sequences (SEQ ID NO:678), Framework 1 (SEQ ID NO:692), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), 6B9: all sequences (SEQ ID NO:679), Framework 1 (SEQ ID NO:699), CDR1 (SEQ ID NO:700), Framework 2 (SEQ ID NO:701), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:702), Framework 4 (SEQ ID NO:698), 6B9.1: all sequences (SEQ ID NO:680), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A1=A2=C4=C7=D1=D10=E5=F1=F10=G4: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A8: all sequences (SEQ ID NO:682), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A11: all sequences (SEQ ID NO:683), Framework 1 (SEQ ID NO:704), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), B1: all sequences (SEQ ID NO:684), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), B3: all sequences (SEQ ID NO:685), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), D10=E5: all sequences (SEQ ID NO:686), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), C4: all sequences (SEQ ID NO:687), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:706), D10: all sequences (SEQ ID NO:688), Framework 1 (SEQ ID NO:699), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:706), 4F1E1=1F1G3=4F1B5=4F1G11=4F1A9=4F1B9=4F1H9=4F1D10=4F1E9=4F1F10=4F1H11=4F1H12: all sequences (SEQ ID NO:689), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), 4FA11: all sequences (SEQ ID NO:690), Framework 1 (SEQ ID NO:705), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), F9: all sequences (SEQ ID NO:691), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), and Framework 4 (SEQ ID NO:706).



FIG. 12 demonstrates how the C6D4 epitope overlaps directly with the ligand binding pocket of integrin αVβ8, preventing association of integrin αVβ8 with L-TGFβ and thus activation of L-TGFβ. Representative class averages of integrin complexes observed by negative staining electron microscopy.



FIGS. 13A-B illustrate a model of how the complex is generated from the crystal structure of αVβ3 (PDB ID: 3IJE), with the β8 model based on β3 using CHIMERA and MODELLER (Yang et al., J Struct Biol. 2012 September; 179(3):269-78). Refinement of the model to the cryo-electron microscopy map is done in rigid body in COOT (Emsley P, et al., Acta Crystallographica Section D—Biological Crystallography. 2010, 66:486-501), followed by complete refinement in PHENIX (Adams et al., Acta Cryst. 2010; D66:213-221).



FIG. 14 illustrates interaction of C6D4 Vk CDR1 (SEQ ID NO:616) with integrin αV (SEQ ID NO:622, positions 46-52 and 75-79): Model of the αVβ8/C6D4 Fab complex. Interacting residues are represented as sticks. The dashed lines represent inter-atom distances comprised between 2.5 and 4.0 Å indicating potential interactions.



FIG. 15 illustrates interaction of C6D4 with the SDL region of integrin β8: Model of the αVβ8/C6D4 Fab complex. Interacting residues are represented as sticks. The dashed lines represent inter-atom distances comprised between 2.5 and 4.0 Å indicating potential interactions. C6D4 VH CDR1 (SEQ ID NO:707), C6D4 VH CDR3 (SEQ ID NO:615), β8, SDL (SEQ ID NO:620), C6D4 Vk CDR1 (SEQ ID NO:616), C6D4 Vk CDR2 (SEQ ID NO:708), and C6D4 Vk CDR3 (SEQ ID NO:618).



FIG. 16 illustrates interaction of C6D4 Vk CDR2 (SEQ ID NO:617) with the α1 helix of integrin β8 (SEQ ID NO:619): Model of the αVβ8/C6D4 Fab complex. Interacting residues are represented as sticks. The dashed lines represent inter-atom distances comprised between 2.5 and 4.0 Å indicating potential interactions.



FIG. 17 illustrates interaction of C6D4 Vk CDR1 (SEQ ID NO:613) with the α2 helix of integrin β8 (SEQ ID NO:621): Model of the αVβ8/C6D4 Fab complex. Interacting residues are represented as sticks. The dashed lines represent inter-atom distances comprised between 2.5 and 4.0 Å indicating potential interactions.



FIG. 18 illustrates that C6D4 blocks the access of L-TGFβ to the ligand binding pocket of integrin β8 and C6D4 bound to integrin αVβ8 directly clashes with the position of the RGDLGRLKK loop of L-TGFβ (SEQ ID NO:712). The surface of the αVβ8/C6D4 Fab complex is shown. The surface is αVβ8, while the cartoon is C6D4. In sticks are superimposed the residues RGDLGRLKK (SEQ ID NO:712) from the integrin binding loop of L-TGFβ as found when bound to integrin αVβ6 (PDB 4UM9) ((4) Structural determinants of integrin β-subunit specificity for latent TGF-β. Dong X, et al. Nat. Struct. Mol. Biol. 2014 December; 21(12):1091-6).



FIG. 19 shows that C6D4 is a potent inhibitor of binding of secreted αvβ8 to L-TGF-b3 peptide.



FIG. 20 shows that C6D4 is a potent inhibitor of cell αvβ8-mediated cell adhesion to L-TGF-b3 peptide.



FIGS. 21A-D show immunodetection of the integrin b8 subunit in formalin fixed paraffin embedded sections from patient infected with H. pylori (A,B) or showing normal histology (C,D). The sections were stained with clone F9 in rabbit IgG format and detected using TSA signal amplification (Perkin Elmer). The brown precipitate indicates positive staining and the nuclei are counterstained with hematoxylin. The arrows indicate examples of positive crypts with stained crypt epithelial cells. The results show that the b8 integrin subunit is increased in expression in the stomachs of patients with H. pylori.



FIG. 22 shows quantification of Immunodetection of the integrin b8 subunit in formalin fixed paraffin embedded sections from patient infected with H. pylori, showing normal histology or mild chronic inflammation. The sections were stained with clone F9 in rabbit IgG format and detected using TSA signal amplification (Perkin Elmer). The following scoring system was devised to capture the crypto-epithelial staining, 0=no stain, 1=just contrast+, 2=scattered, 3=diffuse and stromal staining, 0=no stain, 1=just contrast+, 2=scattered, 3=diffuse. Shown is a combined score and the n is shown. ANOVA with Sidak's multiple comparisons test. **p<0.01, *p<0.05



FIG. 23 shows binding assay of alkaline phosphatase (AP) αvβ3, αvβ6 and αvβ8 fusion proteins to CagL, the MAP RGD peptide derived from the TGFB3 sequence DDHGRGDLGRLK (SEQ ID NO:713), Fibronectin, Vitronectin or a MAP peptide derived from the TGFB2 sequence that corresponds to the RGD containing sequence of TGFB1 and TGFB3. All proteins are coated on ELISA plates at 5 μg/ml and input of AP receptors are normalized to AP activity. Results shown represent signal above BSA coated wells. The results show that αvβ8 (and αvβ6) binds to CagL as well as to TGFb3 peptide, whereas αvβ3 binds to FN and VN, poorly to TGFB3 and not at all to CagL. αvβ3 and αvβ8 show no binding and αvβ6 shows very weak binding to the control TGFb2 peptide. Shown are S.E.M.



FIG. 24 shows binding assay of alkaline phosphatase (AP) αvβ8 fusion protein to CagL in the presence of C6D4, an allosteric inhibitor, B5, or a non-blocking antibody to the same epitope as B5, clone 68 which serves as a negative control. CagL is coated on ELISA plates at 5 μg/ml. Results shown represent signal above BSA coated wells. The results show that αvβ8 binding to CagL is completely inhibited by C6D4 and are partially inhibited by B5.



FIG. 25 shows adhesion assay of CHO Lec cells stably expressing human ITGAV and ITGB8 to recombinant CagL protein at the indicated concentrations (gift of Eric. Sundberg, University of Maryland, MD). Binding is compared to wells coated with a multiple antigen presenting peptide containing the RGD peptide derived from the TGFB3 sequence DDHGRGDLGRLK (SEQ ID NO:713), which corresponds to aa 257-268 of human TGF-b3 (NP_003230). 50×10{circumflex over ( )}3 cells were allowed to attach to the wells for 30 min at RT. Unbound cells were washed off with PBS. Results were presented as stained cells detected after staining with crystal violet (OD590). Results shown represent signal above the nominal binding of mock transfected CHO Lec cells to CagL or TGFB3 peptide coated wells (5 μg·ml). The results show that αvβ8 mediates cell adhesion to CagL as well as to TGFb3 peptide. Shown are S.E.M. Significance was determined by ANOVA and Sidak's multiple comparison test. ****=p<0.00001



FIG. 26 shows adhesion assay of CHO Lec cells stably expressing human ITGAV and ITGB8 to the TGF-b3 RGD MAP peptide (DDHGRGDLGRLK (SEQ ID NO:713)) (coating concentration 5 μg/ml). 50×10{circumflex over ( )}3 cells were preincubated with cagL at the indicated concentrations of CagL vs PBS control for 15 min at RT and then the cells allowed to attach to the wells for 30 min at RT. Unbound cells were washed off with PBS. Results were presented as stained cells detected after staining with crystal violet (OD590). Results shown represent signal above the nominal binding of mock transfected CHO Lec cells to TGFB3 peptide coated wells (5 μg/ml). The results show that αvβ8 mediates cell adhesion to CagL is RGD dependent. Shown are S.E.M. N=3



FIG. 27 shows adhesion assay of modified Chinese Hamster Ovary Cells (CHO Lec) cells stably expressing human ITGAV and ITGB8 to recombinant CagL protein at 5 μg/ml coating concentration, 50×10{circumflex over ( )}3 cells were mixed with the Mabs at the indicated concentrations and allowed to attach to the wells for 30 min at RT. B5 is a previously described allosteric inhibitor of αvβ8-binding to TGF-B and L230 is a previously described anti-av blocking antibody. Unbound cells were washed off with PBS. Results are presented as stained cells detected after staining with crystal violet (0D590). Results shown represent % inhibition relative to the control binding defined by binding in presence of an isotype control antibody (anti-SV5) at the same concentration. Shown are S.E.M. Significance was determined by ANOVA and Sidak's multiple comparison test. ****=p<0.00001, ***p<0.001, *<0.05. The results show that C6D4 more efficiently blocks αvβ8 mediates cell adhesion to CagL than B5 or L230.



FIG. 28 shows a mouse model for evaluating lung metastasis using the LLC tumor cell line which does not express integrins αvβ6 or αvβ8. The LLC tumor cell line is syngenic to the host C57B/6 strain. The LLC.1 cell line has been passed though mice one time and regrown from lung metastasis. After two weeks, subcutaneously injected tumor (1×106) LLC.1 cells form large tumor nodules (˜1 cm). The tumors are removed surgically and when animals lose 20% body weight they are euthanized.



FIGS. 29A and 29B show the effect of C6D4 on mouse survival using the LLC tumor cell line model set forth in FIG. 28. Survival curves (FIG. 29A) represent mice euthanized for reasons of local recurrence or weight loss. FIG. 29B shows the survivial curve when animals removed for local recurrence are excluded. At autopsy, the animals with 20% weight loss all have metastatic implants in their lungs. Here, C6D4 antibodies have been injected for up to 90 days in surviving animals. This experiment was performed eleven times, each time providing similar results (data not shown). Additionally, post-mortem examination did not reveal any abnormal inflammatory response in the tissues examined.



FIGS. 30A-F show the effect of CD64 on tumor growth and tumor immune response using the LLC tumor cell line model set forth in FIG. 28. Here, resected LLC.1 primary tumors in mice that received two injections of isotype control (B5, which only reacts with human and not mouse b8) or C6D4 (which cross reacts with mouse and human), the primary tumor weights are recorded, dimensions are measured, and tumors are enzymatically disaggregated and immune cells isolated and counted. Flow cytometry was performed on the tumor infiltrating immune cells, and the tumor infiltrating immune cells are separated from tumor cells using Percoll gradient centrifugation. Shown here is one of three experiments each providing similar results. In each group n is equal to or greater than 10.



FIG. 31 shows a mouse model for evaluating metastatic disease using B16-F10 tumor cells. The B16-F10 highly metastatic tumor cell line is syngenic to the host C57B/6 strain. This line does not express integrins αvβ6 or αvβ8. The B16-F10 was transfected with murine itgb8 and after selection and sorting expresses surface αvβ8 at high levels. When injected intravenously via the tail vein, visible lung metastases appear by 14 days.



FIGS. 32A-H are lung adenocarcinoma samples stained with anti-b8 (FIGS. 32E-H) or anti-PD-L1 (E1L3N, Cell signaling) FIG. 32A-D. Here, it was observed that beta 8 expression inversely correlated with PD-L1 expression.



FIG. 33A shows distribution of lung adenocarcinoma samples of FIG. 32 (n=29) with staining for either PD-L1 or beta 8. FIG. 33B shows in all cases that stained at least 30% for beta 8 or PD-L1 were grouped together and the staining proportions were correlated.



FIGS. 34A-C shows the inhibition of B16 lung metastases as compared to an isotype sample. FIG. 34A are photographs of representative lungs in anterior and posterior views and visible lung metastases were counted and the total lung surface area involved with metastases was assessed. FIG. 34B shows the effect of C6D4 on total number of lung metastases. The B16-F10 highly metastatic tumor cell line is syngenic to the host C57B/6 strain and does not express integrins αvβ6 or αvβ8. The B16-F10 tumor cells were transfected with murine itgb8. After selection in G418 and two rounds of sorting a pool of high expressing αvβ8 cells was injected intravenously via the tail vein. After three injections (i.p.) of isotype control (SV5) or C6D4, both at 7 mg/kg at days 0, 7 and 14, the mice were euthanized at day 18. FIG. 34C shows the effect of C6D4 as measured by percentage of total lung surface area involved by metastatic melanoma.



FIGS. 35A-H show that C6D4 effects macrophage polarization to a proinflammatory phenotype. Increases in MHCII expression by tumor associated macrophages and dendritic cells is important in host immune responses to tumor antigens.



FIGS. 36A-F shows that C6D4 increases MHCII expression by tumor associated dendritic cells. Increases in MHCII by antigen presenting cells will increase antigen presentation.



FIGS. 37A-G are scatterplots showing integrin mediated differentiation of mouse Treg cells. Tumor associated CD4+T regulatory cells play an important role in suppressing the host immune response and help tumors escape immune surveillance. The differentiation of Treg requires TGF-beta. It is thought that TGF-beta provided by mechanisms such as integrin αvβ8 mediated activation are important for Treg differentiation and function. Here, we immobilized the ectodomains of various integrins (2 mg/ml) on ELISA plates (co-coated with anti-CD3) and plate naïve murine splenic CD4+ cells with hIL-2 and retinoic acid. After 5 days the cells were fixed, permeabilized and stained with anti-CD4 and FoxP3. As a positive and negative control, cells were plated on wells with only anti-CD3 (no integrin) in the presence (+) or absence (−) of rTGF-b. The percentage of FoxP3 expressing cells are shown in each of the scatterplots (Q2).



FIGS. 38A-D shows structural representations of a C6D4 derivative (termed “RGD3” or “CD64-RGD3”) that is cross-reactive to αvβ6 and αvβ8 but not αvβ1, αvβ3, or αvβ5. FIG. 38A shows a close-up view of C6D4-RGD3 (gold) in complex with αvβ8 derived from cryoEM maps. Green is the av subunit and blue is the β8 subunit. Shown in red is the LTGF-B1 peptide derived from structures of Latent-TGFB1 in complex with the integrin αvβ6. (αvβ6 (SEQ ID NO:709), αIIbβ3 (SEQ ID NO:710 (GRGDSP) and SEQ ID NO:711 (AKQRGDV). FIG. 38B shows sequence alignments of hTGFβ1-3 and the position of the RGD domains in TGFβ1 (SEQ ID NO:714) and TGFβ3 (SEQ ID NO:715). TGFβ2 (SEQ ID NO:716) does not have an RGD sequence. FIG. 38C shows the sequence of three mutant D4 Vk CDR1 loops containing portions of the hTGFB3 RGD sequence (in red) developed herein (C6D4 vk (SEQ ID NO:717); C6D4-RDG1 (SEQ ID NO:718); C6D4-RDG2 (SEQ ID NO:719); and C6D4-RDG3 (SEQ ID NO:720). FIG. 38D shows a zoomed image of the D4 loop (shown in gold) and the clash with the position of the bound RGD sequence of TGFβ1 in complex with integrin αvβ6.



FIG. 39 shows cell surface staining experiments of C6VH expressed with either RGD1, RGD2 or RGD3 mutants (as set forth in FIG. 38) as rabbit IgG. Binding to human Cho cells expressing αvβ8 was expressed as a percentage of binding of C6D4.



FIG. 40 shows cell surface staining experiments of C6VH expressed with either D4 Vk or RGD1, RGD2 or RGD3 mutants as rabbit IgG. Binding to Cho cells expressing human αvβ8 or SW480 cells expressing αvβ6 are shown. Relative binding is defined as staining compared to staining of non-transfected Cho or SW480 cells.



FIG. 41 shows binding experiments of C6VH expressed with either D4 Vk or RGD1, RGD2 or RGD3 mutants as rabbit IgG, to various av-integrins. All integrins were coated on ELISA plates at 2 mg/ml, blocked with BSA, and antibodies were allowed to bind. Binding of C6D4 and C6D4-RGD3 were detected with anti-rabbit HRP. The results are shown relative to control wells coated with anti-av (clone 8B8) where av-integrins were detected with another av-antibody recognizing an non-overlapping epitope (L230-biotin), followed by SA-HRP.



FIG. 42 shows the effect of cations on the binding of C6D4 and C6D4-RGD3 to various receptors. Binding in EDTA containing buffer defines cation-dependence because EDTA binds to Ca++ and Mg++. Magnesium cation buffers contains 1 mM Ca++ and 1 mM Mg ++. Here, the results are relative to anti-av, clone 11D12V2. All antibodies were coated on ELISA plates at 5 μg/ml. The αvβ8 or αvβ6 receptors (0.5 μg/ml) were bound for 1 hour and were then detected with biotinylated anti-av clone 8B8. The small amount of αvβ8 binding to C6D4-RGD3 in EDTA buffer (compared with no αvβ6 binding to C6D4-RGD3 in EDTA buffer) suggests that the binding to αvβ6 is more dependent on the RGD binding loop of Vk CDR1 than the binding to αvβ8.



FIGS. 43A and 43B show inhibition of αvβ8 adhesion and TGF-beta activation. Cho 3.2.8.1 cells transfected with b8 were used in adhesion assays to wells coated with branched GRGDLGRLK peptide (SEQ ID NO:721) (10 μg/ml). Cho-b8 cells were allowed to bind in adhesion assays (FIG. 43A) in the presence of C6D4, RGD3 or control Mab at various concentrations. Cho-b8 cells were allowed to attach to wells with TMLC TGF-β reporter cells in the presence of C6D4, RGD3 or control Mab at various concentrations (FIG. 43B). The values are shown as a proportion of control Mab (SV5) control. The results indicate that C6D4-RGD3 and C6D4 block αvβ8 function similarly.



FIGS. 44A-B show adhesion assays and FIGS. 44C-D show TGF-beta activation. Here, Cho3.2.8.1 cells were transfected with GARP and LTGFB1. GARP (LRRC32) is a cell surface scaffolding molecule present on the surface of Treg cells and binds LTGF-b to the cell surface. Upper panels (FIGS. 44A and 44B) show adhesion assays of Cho cells expressing GARP/LTGFB adhering to immobilized αvβ8 (FIG. 44A) or αvβ6 (FIG. 44B) performed in the presence of anti-β8 (C6D4), 3G9 (anti-β6) or the bispecific antibody RGD3 (anti-β6 and anti-β8). In the lower panels (FIGS. 44C and 44D), the TGF-beta reporters cells TMLC, were added to each well to determine the amount of TGF-β activation in response to αvβ8 (FIG. 44C) or αvβ6 (FIG. 44D) performed in the presence of anti-β8 (C6D4), 3G9 (anti-β6) or the bispecific antibody RGD3 (anti-β6 and anti-β8). The results are reported as relative luciferase activity to wells treated with isotype control antibody (SV5). Below each graph is the EC50 of each inhibitory antibody.



FIG. 45 shows binding assay of αvβ6 to TGFβ3 peptide. Mab 3G9 is a potent inhibitor of αvβ6-mediated TGF-b activation. C6D4-RGD3 shows cross-competition with 3G9 binding suggesting that they have overlapping binding footprints or allosterically influence each other's binding. However, these antibodies have different modes of action as 3G9 binding to αvβ6 is not cation-dependent while C6D4-RGD3 binding is cation dependent.



FIG. 46 illustrates heavy and light chain amino acid sequences for clones used in the construction of the composite humanized antibody C6D4. VH sequences—C6D4: all sequences (SEQ ID NO:722), Framework 1 (SEQ ID NO:732), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:734), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:736), CDR3 (SEQ ID NO:737), Framework 4 (SEQ ID NO:738); HuC6D4 V1: all sequences (SEQ ID NO:723), Framework 1 (SEQ ID NO:739), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:740), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:741), CDR3 (SEQ ID NO:737), Framework 4 (SEQ ID NO:738); Mutclone A3: all sequences (SEQ ID NO:724), Framework 1 (SEQ ID NO:739), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:740), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:741), CDR3 (SEQ ID NO:737), Framework 4 (SEQ ID NO:738); Mutclone B7: all sequences (SEQ ID NO:725), Framework 1 (SEQ ID NO:742), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:740), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:743), CDR3 (SEQ ID NO:744), Framework 4 (SEQ ID NO:738); Mutclone E5: all sequences (SEQ ID NO:726), Framework 1 (SEQ ID NO:739), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:740), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:741), CDR3 (SEQ ID NO:744), and Framework 4 (SEQ ID NO:738). VK sequences—C6D4: all sequences (SEQ ID NO:727), Framework 1 (SEQ ID NO:745), CDR1 (SEQ ID NO:746), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:749), CDR3 (SEQ ID NO:750), Framework 4 (SEQ ID NO:751); HuC6D4 V1: all sequences (SEQ ID NO:728), Framework 1 (SEQ ID NO:752), CDR1 (SEQ ID NO:746), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:753), CDR3 (SEQ ID NO:750), Framework 4 (SEQ ID NO:754); Mutclone A3: all sequences (SEQ ID NO:729), Framework 1 (SEQ ID NO:755), CDR1 (SEQ ID NO:756), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:753), CDR3 (SEQ ID NO:750), Framework 4 (SEQ ID NO:754); Mutclone B7: all sequences (SEQ ID NO:730), Framework 1 (SEQ ID NO:757), CDR1 (SEQ ID NO:746), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:758), CDR3 (SEQ ID NO:750), Framework 4 (SEQ ID NO:754); Mutclone E5: all sequences (SEQ ID NO:731), Framework 1 (SEQ ID NO:752), CDR1 (SEQ ID NO:756), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:753), CDR3 (SEQ ID NO:750), and Framework 4 (SEQ ID NO:754).



FIG. 47 shows binding assay of humanized C6D4 or RDG3 to recombinant αvβ8. Humanized C6D4 or RGD3 (Frameworks and CH1 are human; hinge and CH2-3 are mouse) were immobilized on ELISA plates at the indicated concentrations. As a negative control, some wells were coated with anti-SV5 at the same concentrations. Non-specific binding sites were blocked with BSA. Recombinant αvβ8 ectodomain (0.5 μg/ml) was added to each well and after binding and washing in binding buffer (1 mM Ca and Mg), the bound αvβ8 was detected with biotinylated anti-αv (8b8) and detected with SA-HRP. Results are shown as specific binding (minus SV5 control).



FIG. 48A-D shows superposition of C6D4/αvβ8 cartoon model with wire map of C6D4/αvβ8 (FIGS. 48A and 48C) compared to a superposition of the same C6D4/αvβ8 cartoon model with wire map of C6D4-RGD3/αvβ8 (FIGS. 48B and D). The comparison of the two maps shows a different orientation of the CDR1 Vk loop of C6D4-RGD3 towards the beta8 subunit ligand binding site.



FIGS. 49A-C shows CryoEM maps of C6D4 and C6D4-RGD αvβ8 complexes having similar positioning. Here, C6D4 Fab-αvβ8 (FIG. 49A) is compared with RGD3-αvβ8 map (FIG. 49B), or in overlay (FIG. 49C), based on cryoEM derived density maps. The anti-αv 11D12V2 Fab was used to increase molecular mass of the complex and to assist in particle orientation.



FIG. 50 illustrates heavy chain amino acid sequences for clones used in the construction of the composite humanized antibodies C6D4 and C6D4-RGD3. Consensus sequences for the humanized version of C6D4 and C6D4-RGD3 are provided. VH sequences—HuC6D4V1: all (SEQ ID NO:395), Framework 1 (SEQ ID NO:396), CDR1 (SEQ ID NO:397), Framework 2 (SEQ ID NO:398), CDR2 (SEQ ID NO:399), Framework 3 (SEQ ID NO:400), CDR3 (SEQ ID NO:401), and Framework 4 (SEQ ID NO:402); HuC6D4A3: all (SEQ ID NO:403), Framework 1 (SEQ ID NO:404), CDR1 (SEQ ID NO:405), Framework 2 (SEQ ID NO:406), CDR2 (SEQ ID NO:407), Framework 3 (SEQ ID NO:408), CDR3 (SEQ ID NO:409), and Framework 4 (SEQ ID NO:410); HuC6D4B7: all (SEQ ID NO:411), Framework 1 (SEQ ID NO:412), CDR1 (SEQ ID NO:413), Framework 2 (SEQ ID NO:414), CDR2 (SEQ ID NO:415), Framework 3 (SEQ ID NO:416), CDR3 (SEQ ID NO:417), and Framework 4 (SEQ ID NO:418); HuC6D4E5: all (SEQ ID NO:419), Framework 1 (SEQ ID NO:420), CDR1 (SEQ ID NO:421), Framework 2 (SEQ ID NO:422), CDR2 (SEQ ID NO:423), Framework 3 (SEQ ID NO:424), CDR3 (SEQ ID NO:425), and Framework 4 (SEQ ID NO:426); C6D4: all sequences (SEQ ID NO:722), Framework 1 (SEQ ID NO:732), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:734), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:736), CDR3 (SEQ ID NO:737), and Framework 4 (SEQ ID NO:738); HuC6D4: all (SEQ ID NO:427), Framework 1 (SEQ ID NO:428), CDR1 (SEQ ID NO:429), Framework 2 (SEQ ID NO:430), CDR2 (SEQ ID NO:431), Framework 3 (SEQ ID NO:432), CDR3 (SEQ ID NO:433), and Framework 4 (SEQ ID NO:434); C6D4-RGD3: all (SEQ ID NO:435), Framework 1 (SEQ ID NO:436), CDR1 (SEQ ID NO:437), Framework 2 (SEQ ID NO:438), CDR2 (SEQ ID NO:439), Framework 3 (SEQ ID NO:440), CDR3 (SEQ ID NO:441), and Framework 4 (SEQ ID NO:442); HuC6D4-RGD3: all (SEQ ID NO:443), Framework 1 (SEQ ID NO:444), CDR1 (SEQ ID NO:445), Framework 2 (SEQ ID NO:446), CDR2 (SEQ ID NO:447), Framework 3 (SEQ ID NO:448), CDR3 (SEQ ID NO:449), and Framework 4 (SEQ ID NO:450); and Consensus VH: Framework 1 (SEQ ID NO:558), CDR1 (SEQ ID NO:563), Framework 2 (SEQ ID NO:559), CDR2 (SEQ ID NO:563), Framework 3 (SEQ ID NO:560), CDR3 (SEQ ID NO:564), and Framework 4 (SEQ ID NO:561).



FIG. 51 illustrates light chain amino acid sequences for clones used in the construction of the composite humanized antibodies C6D4 and C6D4-RGD3. Consensus sequences for the humanized version of C6D4 and C6D4-RGD3 are provided. VL sequences—HuC6D4V1: all (SEQ ID NO:451), Framework 1 (SEQ ID NO:452), CDR1 (SEQ ID NO:453), Framework 2 (SEQ ID NO:454), CDR2 (SEQ ID NO:455), Framework 3 (SEQ ID NO:456), CDR3 (SEQ ID NO:457), and Framework 4 (SEQ ID NO:458); HuC6D4A3: all (SEQ ID NO:459), Framework 1 (SEQ ID NO:460), CDR1 (SEQ ID NO:461), Framework 2 (SEQ ID NO:462), CDR2 (SEQ ID NO:463), Framework 3 (SEQ ID NO:464), CDR3 (SEQ ID NO:465), and Framework 4 (SEQ ID NO:466); HuC6D4B7: all (SEQ ID NO:467), Framework 1 (SEQ ID NO:468), CDR1 (SEQ ID NO:469), Framework 2 (SEQ ID NO:470), CDR2 (SEQ ID NO:471), Framework 3 (SEQ ID NO:472), CDR3 (SEQ ID NO:473), and Framework 4 (SEQ ID NO:474); HuC6D4E5: all (SEQ ID NO:475), Framework 1 (SEQ ID NO:476), CDR1 (SEQ ID NO:478), Framework 2 (SEQ ID NO:479), CDR2 (SEQ ID NO:480), Framework 3 (SEQ ID NO:481), CDR3 (SEQ ID NO:482), and Framework 4 (SEQ ID NO:483); C6D4: all sequences (SEQ ID NO:727), Framework 1 (SEQ ID NO:745), CDR1 (SEQ ID NO:746), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:749), CDR3 (SEQ ID NO:750), and Framework 4 (SEQ ID NO:751); HuC6D4: all sequences (SEQ ID NO:484), Framework 1 (SEQ ID NO:485), CDR1 (SEQ ID NO:486), Framework 2 (SEQ ID NO:487), CDR2 (SEQ ID NO:488), Framework 3 (SEQ ID NO:489), CDR3 (SEQ ID NO:490), and Framework 4 (SEQ ID NO:491); C6D4-RGD3: all (SEQ ID NO:492), Framework 1 (SEQ ID NO:493), CDR1 (SEQ ID NO:494), Framework 2 (SEQ ID NO:495), CDR2 (SEQ ID NO:496), Framework 3 (SEQ ID NO:497), CDR3 (SEQ ID NO:498), and Framework 4 (SEQ ID NO:499); HuC6D4-RGD3: all (SEQ ID NO:500), Framework 1 (SEQ ID NO:501), CDR1 (SEQ ID NO:502), Framework 2 (SEQ ID NO:503), CDR2 (SEQ ID NO:504), Framework 3 (SEQ ID NO:505), CDR3 (SEQ ID NO:506), and Framework 4 (SEQ ID NO:507); and Consensus VL: Framework 1 (SEQ ID NO:565), CDR1 (SEQ ID NO:569), Framework 2 (SEQ ID NO:566), CDR2 (SEQ ID NO:570), Framework 3 (SEQ ID NO:567), CDR3 (SEQ ID NO:571), and Framework 4 (SEQ ID NO:568). RDG3 loop (SEQ ID NO:721).



FIG. 52 illustrates heavy chain amino acid sequences for clones used in the construction of the composite antibody F9. Sequences—4F1: all sequences (SEQ ID NO:624), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:628), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:634), Framework 3 (SEQ ID NO:637), CDR3 (SEQ ID NO:651), Framework 4 (SEQ ID NO:655), 6B9: all sequences (SEQ ID NO:656), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:635), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:652), Framework 4 (SEQ ID NO:655), 6B9.1: all sequences (SEQ ID NO:657), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:653), Framework 4 (SEQ ID NO:655), A1: all sequences (SEQ ID NO:658), Framework 1 (SEQ ID NO:626), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:639), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A2: all sequences (SEQ ID NO:659), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:640), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A8: all sequences (SEQ ID NO:660), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:641), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A11: all sequences (SEQ ID NO:661), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:630), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), B1: all sequences (SEQ ID NO:662), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:642), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), B3: all sequences (SEQ ID NO:663), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:643), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C4=F10: all sequences (SEQ ID NO:664), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:644), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C7=D1: all sequences (SEQ ID NO:665), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:644), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D3=F1: all sequences (SEQ ID NO:666), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:645), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D10=E5: all sequences (SEQ ID NO:667), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), E8: all sequences (SEQ ID NO:667), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), F2: all sequences (SEQ ID NO:667), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), G4: all sequences (SEQ ID NO:668), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:647), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C4: all sequences (SEQ ID NO:669), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:650), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D10: all sequences (SEQ ID NO:670), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1A11: all sequences (SEQ ID NO:671), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:650), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E1: all sequences (SEQ ID NO:672), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1G3: all sequences (SEQ ID NO:673), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:648), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E10: all sequences (SEQ ID NO:674), Framework 1 (SEQ ID NO:627), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E9: all sequences (SEQ ID NO:675), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1H12: all sequences (SEQ ID NO:676), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:649), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), F9: all sequences (SEQ ID NO:677), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), and Framework 4 (SEQ ID NO:655).



FIG. 53 illustrates light chain amino acid sequences for clones used in the construction of the composite antibody F9. VL Sequences—4F1: all sequences (SEQ ID NO:678), Framework 1 (SEQ ID NO:692), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), 6B9: all sequences (SEQ ID NO:679), Framework 1 (SEQ ID NO:699), CDR1 (SEQ ID NO:700), Framework 2 (SEQ ID NO:701), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:702), Framework 4 (SEQ ID NO:698), 6B9.1: all sequences (SEQ ID NO:680), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A1: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A2: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A8: all sequences (SEQ ID NO:682), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A11: all sequences (SEQ ID NO:683), Framework 1 (SEQ ID NO:704), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), B1: all sequences (SEQ ID NO:684), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), B3: all sequences (SEQ ID NO:685), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), C4=F10: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), C7=D1: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), D3=F1: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), D10=E5: all sequences (SEQ ID NO:686), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), E8: all sequences (SEQ ID NO:686), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:755), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), F2: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), G4: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), C4: all sequences (SEQ ID NO:687), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:706), D10: all sequences (SEQ ID NO:688), Framework 1 (SEQ ID NO:699), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:706), 4F1E1=1F1G3=4F1B5=4F1G11=4F1A9=4F1B9=4F1H9=4F1D10=4F1E9=4F1F10=4F1H11=4F1H12: all sequences (SEQ ID NO:689), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), 4FA11: all sequences (SEQ ID NO:690), Framework 1 (SEQ ID NO:705), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), F9: all sequences (SEQ ID NO:691), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), and Framework 4 (SEQ ID NO:706).



FIG. 54A-54D are graphs showing percentage of cells staining positive for various cell surface markers. Mice were injected with Lewis lung carcinoma (LLC) cells and SV5 (isotype control) or C6D4 at a dosage of 7 mg/kg once per week.





DETAILED DESCRIPTION OF THE INVENTION
I. Introduction

The inventors have discovered certain antibodies that bind to human integrin αvβ8 and cause at least partial reduction in ligand binding function. Based on that discovery, they have developed detailed structural models to aid in the discovery of antibodies that bind to integrin αvβ8 at particular epitopes that optimally block the ligand binding site of integrin αvβ8. Some of the antibodies identified bind to both the av-integrin subunit head domain and the β8-integrin subunit head domain to effectively cover the ligand binding site of the integrin αvβ8 without engaging to the ligand binding site itself (i.e. acting as a ligand-mimetic).


Further, the inventors have discovered that blocking ligand binding to integrin αvβ8 is effective in inhibiting cancer (including but not limited to metastatic cancer) and also is effective in treating viral infections. Without intending to limit the scope of the described invention, it is believed that integrin αvβ8 plays a role in blocking regulatory T cells (Tregs) function and/or development and thus that the antibodies described herein stimulate immunity to tumor cells and viruses. Accordingly, antibodies and methods of their use, among other aspects, are provided herein.


The inventors have also identified introduced an “RGDL” sequence (SEQ ID NO:756) into a CDR of the anti-αvβ8 antibody and have shown that such an introduction renders the antibody able to bind αvβ6 while maintaining substantially the same binding activity for αvβ8.


II. Antibodies

Provided herein are antibodies that bind human (and in some embodiments other mammalian, e.g., such as mouse, guinea pig, pig, and rabbit) integrin αvβ8. In some embodiments, the antibodies are isolated, are chimeric (comprising at least some heterologous amino acid sequence), are labeled or covalently linked to another molecule such a cytotoxic agent or a combination thereof. In some embodiments, the antibodies specifically bind human integrin αvβ8 and block binding of a ligand to human integrin αvβ8. Exemplary ligands can include, for example, TGFβ and LAP. In some embodiments, the antibodies bind in a cation-dependent manner or have enhanced binding in the presence of cations.


In some embodiments the epitope bound by the antibodies described herein on human integrin αvβ8 comprise amino acids in (1) the specificity determining loop (SDL) of the integrin β8 protein (e.g., TVSPYISIHPERIHNQCSDYNLDCMPPH (SEQ ID NO:620)), (2) in the α1 (e.g., SASMHNNIEKLNSVGNDLSRKMAFFS (SEQ ID NO:619)) or α2 (e.g., NITEFEKAVHR (SEQ ID NO:621)) helices of the β8 integrin protein, (3) the head of the αv protein (e.g., DADGQ (SEQ ID NO:757); SFYWQ (SEQ ID NO:758); FDDSY (SEQ ID NO:759)) or other portions of KQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGG FSIDFTKADRVLLGGPGSFYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFD (SEQ ID NO:760) or (4) a combination thereof (e.g., 1 and 2, 2 and 3, 1 and 3, or 1, 2, and 3) as they occur in the native human integrin αvβ8 protein, including for example to all of the listed portions of human integrin αvβ8. In some embodiments, the antibody binds to one or more or all amino acid in the SDL selected from: D175 (e.g., in NLDCM (SEQ ID NO:761)), L174 (e.g., in YNLDC (SEQ ID NO:762)), or S170, D171, or Y172 (e.g., in QCSDYNL (SEQ ID NO:763)), or combinations thereof, wherein the numbering is based on the human integrin β8 protein (SEQ ID NO:394). See, e.g., FIG. 7. In some embodiments, the antibody binds to the amino acid H118 (e.g., in SMHNN) (SEQ ID NO:764) in the α1 helix of the β8 integrin protein), wherein the numbering is based on the human integrin β8 protein (SEQ ID NO:394). In some embodiments, the antibody binds to the amino acid H200 or R201 (e.g., in AVHRQ) in the α2 helix of the β8 integrin protein, or combinations thereof, wherein the numbering is based on the human integrin β8 protein (SEQ ID NO:394). In some embodiments, the antibody binds to one or more or all amino acid (underlined) in the head of the αv protein selected from: D148, A149, D150, G151, or Y178 (e.g., in SFYWQ (SEQ ID NO:758)) or combinations thereof, wherein the numbering is based on the human integrin αv protein (SEQ ID NO:393). In some embodiments, the antibody binds to each of the above indicated (underlined) amino acids described in this paragraph. As can be seen from FIGS. 12-18, interaction with the above-described domains of integrin αvβ8 is beneficial.


As noted above, in some embodiments, the antibodies specifically bind human integrin αvβ8 and block binding of a ligand to human integrin αvβ8. The ability of an antibody to block αvβ8 integrin binding of a ligand can be determined by inhibition of binding of a soluble form of αvβ8 or a full-length form of αvβ8 expressed on the surface of cells to immobilized latent-TGF-beta or a portion thereof containing the sequence RGDL See, e.g., Ozawa, A, et al. J Biol Chem. 291(22):11551-65 (2016).


In some embodiments, the antibodies comprise one or more CDR (or all of the heavy chain CDRs of a clone, or all of the light chain CDRs of a clone) as follows:






















CDR3 VH


Heavy
Clone
CDR1 VH
CDR2 VH
(SEQ


Chains
name
(SEQ ID:)
(SEQ ID:)
ID:)





Heavy
B2B2
TFTDYSMH (313)
RINTETGEPTFAD
YYYGRDS





DFGG (314)
(315)





Heavy
B13C4
TFTDYSMH (316)
WIKTETGEPTYAD
YYYGRDS





DFKG (317)
(318)





Heavy
B13H3
TFTDYSMH (319)
WIKTETDEPTYAD
YYYGRDS





DFKE (320)
(321)





Heavy
B15B11
TFTDYSMH (322)
RINTETGEPTFAD
YYYGRDS





DFRG (323)
(324)





Heavy
B13C12
TFTDYSIH (325)
WIKTETGEPTYAD
YYYGRDS





DFNG (326)
(327)





Heavy
A1
TFTDYSMH (328)
RINTETGEPTFAD
YYYGRDT





DFRG (329)
(330)





Heavy
C6
TFTDYSMH (331)
RINTETGEPTFAD
FYYGRDS





DFRG (332)
(333)





Light
Clone





Chains
name
CDR1 Vk
CDR2 Vk
CDR3 Vk





Light
B2B2
KASQDINSYLS
RANRLVD (335)
LQYDEFP




(334)

PLT






(336)





Light
B13C4
KSSQSLLNSRTRK
WASTRES (338)
KQSYNLL




NYLA (337)

T (339)





Light
B13H3
KSSQSLLNSRIRK
WASTRES (341)
KQSYNLL




NYLA (340)

T (342)





Light
B15B11.1
SASSSVSYMH
DTSNLAS (344)
QQWSSNP




(343)

LT






(345)





Light
B15B11.2
SASSSVSYMH
DTSNLAS (347)
QQWSSNP




(346)

PT






(348)





Light
B15B11.3
KSSQSLLNSRTRK
WASTRES (350)
KQSYNLL




NYLA (349)

T (351)





Light
B13C12.1
SASSSVSYMH
DTSKLAS (353)
QQWSSNP




(352)

FT






(354)





Light
B13C12.2
SASSSVSYMH
GTSNLAS (356)
QQWSSNP




(355)

PT






(357)





Light
B13C12.3
KSSQSLLHSRTRK
WASTRES (359)
KQSYNLL




NYLA (358)

T (360)





Light
D4
KSSQSLLNSRTRK
WASTRES (362)
KQSYNLL




NYLA (361)

S (363)









In some embodiments, the antibodies comprise one or more CDR (or all of the heavy chain CDRs of a clone, or all of the light chain CDRs of a clone) as follows:


















Heavy
Clone
CDR1L VH
CDR2 VH
CDR3 VH


Chains
name
(SEQ ID:)
(SEQ ID:)
(SEQ ID





Heavy
HuC6D4V1
DYSMH (397)
RINTETGEPTFA
FYYGRDS





DDFRG (399)
(401)





Heavy
HuC6D4A3
DYSMH (405)
RINTETGEPTFA
FYYGRDS





DDERG (407)
(409)





Heavy
HuC6D4B7
DYSMH (413)
RINTETGEPTFA
FYYGRDT





DDFRG (415)
(417)





Heavy
HuC6D4E5
DYSMH (421)
RINTETGEPTFA
FYYGRDT





DDFRG (423)
(425)





Heavy
HuC6D4
DYSMH (429)
RINTETGEPTFA
FYYGRDT





DDFRG (431)
(433)





Heavy
C6D4-
DYSMH (437)
RINTETGEPTFA
FYYGRDS



RGD3

DDFRG (439)
(441)





Heavy
HuC6D4-
DYSMH (445)
RINTETGEPTFA
FYYGRDT



RGD3

DDFRG (447)
(449)





Light
Clone
CDR1 Vk
CDR2 Vk
CDR3 Vk


Chains
name
(SEQ ID:)
(SEQ ID:)
(SEQ ID:





Light
HuC6D4V1
KSSQSLLNSRT
WASTRES (530)
KQSYNLLS




RKNYLA (529)

(531)





Light
HuC6D4A3
KSSQSLLNSRS
WASTRES (533)
KQSYNLLS




RKNYLA (532)

(534)





Light
HuC6D4B7
KSSQSLLNSRT
WASTRES (536)
KQSSNLIS




(RKNYLA 535)

(537)





Light
HuC6D4E5
KSSQSLLNSRS
WASTRES (539)
KQSYNLLS




RKNYLA (538)

(540)





Light
HuC6D4
KSSQSLLNSRS
WASTRES (542)
KQSYNLLS




RKNYLA (541)

(543)





Light
C6D4-
KSSQSLLGRGD
WASTRES (545)
KQSYNLLS



RGD3
LGRLKKNALA

(546)




(544)







Light
HuC6D4-
KSSQSLLGRGD
WASTRES (548)
KQSYNLLS



RGD3
LGRLKKNALA

(549)




(547)









In some embodiments, an antibody described herein comprises heavy and light chain CDRs as paired in the following table:
















Combi-






nations
Clone





(H + L
name
CDR1 (SEQ ID:)
CDR2 (SEQ ID:)
CDR3 (SEQ ID:)







H
B2B2
TFTDYSMH (313)
RINTETGEPTFADDFGG
YYYGRDS (315)





(314)






L
B2B2
KASQDINSYLS
RANRLVD (335)
LQYDEFPPLT




(334)

(33text missing or illegible when filed





H
B13H3
TFTDYSMH (319)
WIKTETDEPTYADDFKE
YYYGRDS (321)





(320)






L
B13H3
KSSQSLLNSRIRKNYLA
WASTRES (341)
KQSYNLLT (342)




(340)







H
B13C4
TFTDYSMH (316)
WIKTETGEPTYADDFKG
YYYGRDS (318





(317(






L
B13C4
KSSQSLLNSRTRKNYLA
WASTRES (338)
KQSYNLLT (339)




(337)







H
B15B11
TFTDYSMH (322)
RINTETGEPTFADDFRG
YYYGRDS (324)





(323)






H
B15B11.1
SASSSVSYMH (343)
DTSNLAS (344)
QQWSSNPLT (345





H
B15B11
TFTDYSMH (322)
RINTETGEPTFADDFRG
YYYGRDS (324)





(323)






L
B15B11.2
SASSSVSYMH (346)
DTSNLAS (347)
QQWSSNPPT (348





H
B15B11
TFTDYSMH (322)
RINTETGEPTFADDFRG
YYYGRDS (324)





(323






L
B15B11.3
KSSQSLLNSRTRKNYLA
WASTRES (359)
KQSYNLLT (360)




(358)







H
B13C12
TFTDYSIH (325)
WIKTETGEPTYADDFNG
YYYGRDS (327)





(326






L
B13C12.1
SASSSVSYMH (352)
DTSKLAS (353)
QQWSSNPFT (354





H
B13C12
TFTDYSIH (325)
WIKTETGEPTYADDENG
YYYGRDS (327)





(326)






L
B13C12.2
SASSSVSYMH (355)
GTSNLAS (356)
QQWSSNPPT (357





H
B13C12
TFTDYSIH (325)
WIKTETGEPTYADDFNG
YYYGRDS (327)





(326)






L
B13C12.3
KSSQSLLHSRTRKNYLA
WASTRES (359)
KQSYNLLT (360)




(358)







H
RSDLVH-3
TFTDYSIH (367)
WIKTETGEPTYADDFNG
YYYGRDS (369)





(368)






L
RSDLVK-10
KSSQSLLNSRTRKNYLA
WASTRES (374)
KQSYNLLT (375)




(373)







H
RSDLVH-1
TFTDYSIH (364)
WIKTETGEPTYADDFKG
YYYGRDS (366)





(365)






L
RSDLVK-10
KSSQSLLNSRTRKNYLA
WASTRES (374)
KQSYNLLT (375)




(373)







H
RSDLVH-3
TFTDYSIH (367)
WIKTETGEPTYADDENG
YYYGRDS (369)





(368)






L
RSDLVK-13
KSSQSLLHSRTRKNYLA
WASTRES (377)
KQSYNLLT (378)




(376)







H
RSDLVH-16
TFTDYSMH (370)
RINTETGEPTFADDERG
YYYGRDS (372)





(37text missing or illegible when filed






L
RSDLVK-10
KSSQSLLNSRTRKNYLA
WASTRES (374)
KQSYNLLT (375)




(373)







H
C6H
TFTDYSMH (766)
RINTETGEPTFADDFRG
FYYGRDS (768)





(767)






L
C6K
KSSQSLLNSRTRKNYLA
WASTRES (383)
KQSYNLLT (384)




(382)







H
D4H
TFTDYSMH (379)
RINTETGEPTFADDFRG
YYYGRDS (381)





(380






L
D4K
KSSQSLLNSRTRKNYLA
WASTRES (362)
KQSYNLLS (363)




(361)







H
C6H
TFTDYSMH (766)
RINTETGEPTFADDFRG
FYYGRDS (768)





(767)






L
D4K
KSSQSLLNSRTRKNYLA
WASTRES (362)
KQSYNLLS (363)




(361)






text missing or illegible when filed indicates data missing or illegible when filed







In some embodiments, an antibody described herein comprises heavy and light chain CDRs as paired in the following table:
















Combi-






nations
Clone
CDR1
CDR2
CDR3


(H + L)
name
(SEQ ID:)
(SEQ ID:)
(SEQ ID







H
HuC6D4V1
DYSMH (397)
RINTETGEPTFADDFRG
FYYGRDS





(398)
(399





L
HuC6D4V1
KSSQSLLNSRTRKNYLA (529)
WASTRES (530)
KQSYNLLS






(531)





H
HuC6D4A3
DYSMH (405)
RINTETGEPTFADDFRG
FYYGRDS





(407)
(409)





L
HuC6D4A3
KSSQSLLNSRSRKNYLA (532)
WASTRES (533)
KQSYNLLS






(534)





H
HuC6D4B7
DYSMH (413)
RINTETGEPTFADDFRG
FYYGRDT





(415)
(417)





L
HuC6D4B7
KSSQSLLNSRTRKNYLA (535)
WASTRES (536)
KQSSNLIS






(537)





H
HuC6D4E5
DYSMH (421)
RINTETGEPTFADDFRG
FYYGRDT





(423)
(425)





L
HuC6D4E5
KSSQSLLNSRSRKNYLA
WASTRES (539)
KQSYNLLS




(538)

(540)





H
HuC6D4
DYSMH (429)
RINTETGEPTFADDFRG
FYYGRDT





(431)
(433)





L
HuC6D4
KSSQSLLNSRSRKNYLA (541)
WASTRES (542)
KQSYNLLS






(543)





H
C6D4-RGD3
DYSMH (437)
RINTETGEPTFADDFRG
FYYGRDS





(439)
(441)





L
C6D4-RGD3
KSSQSLLGRGDLGRLKKNALA
WASTRES
KQSYNLLS




(544)
(545)
(546)





H
HuC6D4-
DYSMH (445)
RINTETGEPTFADDERG
FYYGRDT



RGD3

(447)
(449)





L
HuC6D4-
KSSQSLLGRGDLGRLKKNALA
WASTRES (548)
KQSYNLLS



RGD3
(547)

(549)





H
C6D4
DYSMH (123)
RINTETGEPTFADDFRG
FYYGRDS





(125)
(127)





L
C6D4
KSSQSLLNSRSRKNYLA (291)
WASTRES (293)
KQSYNLLS






(295)





H
C6RGD2
DYSMH (769)
RINTETGEPTFADDERG
FYYGRDS





(770)
(771)





L
C6RGD2
KSSQSLLNSGRGDLGNALA
WASTRES (773)
KQSYNLLS




(772)

(774)





H
C6RGD3-1
DYSMH (775)
RINTETGEPTFADDFRG
FYYGRDT





(776)
(777)





L
C6RGD3-1
KSSQSLLGRGDLGRLKKQKDHNA
WASTRES
KQSSNLIS




LA(778)
(779)
(780)





H
C6RGD3-2
DYSMH (781)
RINTETGEPTFADDERG
FYYGRDY





(782)
(783)





L
C6RGD3-2
KSSQSLLGRGDLGRLKKQKDNAL
WASTRES (785)
KQSYNLLS




A (784)

(786)





H
C6RGD3-3
DYSMH (787)
RINTETGEPTFADDFRG
FYYGRDT





(788)
(789)





L
C6RGD3-3
KSSQSLLGRGDLGRLKKQKNALA
WASTRES
KQSYNLLS




(790)
(791)
(792)





H
C6RGD3-4
DYSMH (793)
RINTETGEPTFADDFRG
FYYGRDS





(794)
(795)





L
C6RGD3-4
KSSQSLLGRGDLGRLKKQNALA
WASTRES
KQSYNLLS




(796
(797)
(798)





H
C6RGD3
DYSMH (799)
RINTETGEPTFADDERG
FYYGRDT





(800)
(801





L
C6RGD3
KSSQSLLGRGDLGRLKKNALA
WASTRES (803)
KQSYNLLS




(802)

(804)





H
C6RGD3-6
DYSMH (805)
RINTETGEPTFADDFRG
FYYGRDS





(806)
(807





L
C6RGD3-6
KSSQSLLGRGDLGRLKNALA
WASTRES (809)
KQSYNLLS




(808)

(810)





H
C6RDG3-7
DYSMH (811)
RINTETGEPTFADDFRG
FYYGRDS





(812)
(813)





L
C6RGD3-7
KSSQSLLGRGDLGRLNALA
WASTRES (815)
KQSYNLLS




(814)

(816)





H
C6RGD3-8
DYSMH (817)
RINTETGEPTFADDERG
FYYGRDT





(818)
(819)





L
C6RGD3-8
KSSQSLLGRGDLGRNALA
WASTRES (821)
KQSSNLIS




(820)

(822)





H
C6RGD1
DYSMH (823)
RINTETGEPTFADDFRG
FYYGRDY





(824)
(825)





L
C6RGD1
KSSQSLLGRGDLGNALA (826)
WASTRES (827)
KQSYNLLS






(828)





H
C6RGD3-9
DYSMH (829)
RINTETGEPTFADDFRG
FYYGRDT





(830)
(831)





L
C6RGD3-9
KSSQSLLGRGDLGRLKKQKDHH
WASTRES (833)
KQSYNLLS




(832)

(834)





H
C6RGD3-10
DYSMH (835)
RINTETGEPTFADDERG
FYYGRDS





(836)
(837)





L
C6RGD3-10
KSSQSLLGRGDLGRLKKQKDH
WASTRES (839)
KQSYNLLS




(838)

(840)





H
C6RGD3-11
DYSMH (841)
RINTETGEPTFADDFRG
FYYGRDT





(842)
(843)





L
C6RGD3-11
KSSQSLLGRGDLGRLKKQKD
WASTRES (845)
KQSYNLLS




(844

(846)





H
C6RGD3-12
DYSMH (847)
RINTETGEPTFADDFRG
FYYGRDT





(848
(849)





L
C6RGD3-12
KSSQSLLGRGDLGRLKKQK
WASTRES (851)
KQSSNLIS




(850)

(852)





H
C6RGD3-13
DYSMH (853)
RINTETGEPTFADDFRG
FYYGRDY





(854)
(855)





L
C6RGD3-13
KSSQSLLGRGDLGRLKKQ
WASTRES (857)
KQSYNLLS




(856)

(858)





H
C6RGD3-14
DYSMH (859)
RINTETGEPTFADDFRG
FYYGRDT





(860)
(861)





L
C6RGD3-14
KSSQSLLGRGDLGRLKK (862)
WASTRES (863)
KQSYNLLS






(864)





H
C6RGD3-15
DYSMH (865)
RINTETGEPTFADDFRG
FYYGRDS





(866)
(867)





L
C6RGD3-15
KSSQSLLGRGDLGRLK (868)
WASTRES (869)
KQSYNLLS






(870)





H
C6RGD3-16
DYSMH (871)
RINTETGEPTFADDFRG
FYYGRDT





(872)
(873)





L
C6RGD3-16
KSSQSLLGRGDLGRL (874)
WASTRES (875)
KQSYNLLS






(876)









In some embodiments, an antibody as described herein comprises one, two, three or all four of the framework sequences as provided here:
















Frameworks
Fr1 (SEQ ID NO:)
Fr2 (SEQ ID NO:)





H
(Q)IQL(L)(Q)SGPELKKPGETVKISCKASGY
WVKQAPGKGLKW(V)A



(385)
(386)






 E     M  E
             M






Where (X) can be specified AA






L
(D)IVM(T)QSPSSLAV(S)AGE(K)VT(M)SC
WYQQKPGQSP(R)LLIY



(389)
(390)






 E     S          P     N    V
           K






Where (X) can be specified AA all




alternatives listed under





Frameworks
Fr3 (SEQ ID NO:)
Fr4 (SEQ ID NO:)





H
RFA(V)SLETSASTAYLQINNLKNEDTATYFCA
WGQGTT(L)TVSS



I (387(
(388






    F
       V





L
GVPDRFTGSGSGTDFTLTISSVQAEDLAVY(Y)
FGAGT(K)LE(L)K



C (391)
(392)






                               F
      R    I









In some embodiments, an antibody as described herein comprises one, two, three or all four of the framework sequences as provided here:
















Frameworks
Fr 1 (SEQ ID NO:)
Fr2 (SEQ ID NO:)





H
QIQLVQSG(P)(E)(L)KKPG(E)(T)VKISCKASGYTFT (550)
WV(K)QAPG(K)GL(K)WVA (551)






         A  K  V      A  S
   R      Q    E






Where (X) can be specified AA






L
(D)IVMTQ(S)P(S)(S)L(A)VS(A)GE(K)VTMSC (554)
WYQQKPGQSPRLLIY (555)






 E       T   A  T   S    P    R
        A






             V                I













Frameworks








Fr3 (SEQ ID NO:)



H
RF(A)V(S)L(E)TS(A)STAYL(Q)I(N)(N)L(K)(N)(E)DTA(T)




YFCAI (552)







   T   T   D    T       E   R  S   R  S  D     V







   S                        T







Where (X) can be specified AA all




alternatives listed under






L
(G)VP(D)RF(T)GSGSGT(D)FTLTISSVQ(A)ED(L)AVYYC (556)







 D    A    S        E           S    F







Fr4 (SEQ ID NO:)



H
WGQGT(T)LTVSS (553)







      A






L
FG(A)GT(K)LE(L)KR (557)







   Q    V    I









In some embodiments, an antibody as described herein comprises one, two, three or all four of the framework sequences as provided here:
















Frameworks
Fr1 (SEQ ID NO:)
Fr2 (SEQ ID NO:)





H
QIQL(V)QSG(P)(E)(L)KKPG(E)(T)VKISCKASGYTFT (550)
WV(K)QAPG(K)GL(K)W(V)(A) (877)



     L     A  K  V      A  S
   R      Q    E   M  G






Where (X) can be specified AA



L
(D)IVM(T)Q(S)P(S)(S)L(A)VS(A)GE(K)VTMSC (880)
WYQQKPGQ(S)PRLLIY (881)






 E     S   T   A  T   S    P    R
         A






               V                I













Frameworks








Fr3 (SEQ ID NO:)



H
RF(A)(V)(S)L(E)TS(A)(S)TA(Y)L(Q)I(N)(N)L(K)(N)(E)DTA(T)YFCAI (878)




   T  F  T   D    T  T    N   E   R  S   R  S  D     V







   S                              I                  K







                            T







Where (X) can be specified AA all







alternatives listed under






L
(G)VP(D)RF(T)GSGSGT(D)FTLTISSVQ(A)ED(L)AVYYC (882)







 D    A    S        E           S    F







                                D




Fr4 (SEQ ID NO:)



H
WGQGT(T)LTVSS (879)







      A






L
FG(A)GT(K)LE(I)KR (883)







   Q    V    L









In some embodiments, the antibodies comprise the CDR1, CDR2, and CDR3 heavy chain sequences as provided herein, including but not limited to, e.g.,

    • SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7;
    • SEQ ID NO:11, SEQ ID NO:13, and SEQ ID NO:15;
    • SEQ ID NO:19, SEQ ID NO:21, and SEQ ID NO:23;
    • SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31;
    • SEQ ID NO:35, SEQ ID NO:37, and SEQ ID NO:39;
    • SEQ ID NO:43, SEQ ID NO:45, and SEQ ID NO:47;
    • SEQ ID NO:51, SEQ ID NO:53, and SEQ ID NO:55;
    • SEQ ID NO:59, SEQ ID NO:61, and SEQ ID NO:63;
    • SEQ ID NO:67, SEQ ID NO:69, and SEQ ID NO:71;
    • SEQ ID NO:75, SEQ ID NO:77, and SEQ ID NO:79;
    • SEQ ID NO:83, SEQ ID NO:85, and SEQ ID NO:87;
    • SEQ ID NO:91, SEQ ID NO:93, and SEQ ID NO:95;
    • SEQ ID NO:99, SEQ ID NO:101, and SEQ ID NO:103;
    • SEQ ID NO:107, SEQ ID NO:109, and SEQ ID NO:111;
    • SEQ ID NO:115, SEQ ID NO:117, and SEQ ID NO:119;
    • SEQ ID NO:123, SEQ ID NO:125, and SEQ ID NO:127;
    • SEQ ID NO:291, SEQ ID NO:293, and SEQ ID NO:295;
    • SEQ ID NO:313, SEQ ID NO:314, and SEQ ID NO:315;
    • SEQ ID NO:316, SEQ ID NO:317, and SEQ ID NO:318;
    • SEQ ID NO:319, SEQ ID NO:320, and SEQ ID NO:321;
    • SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324;
    • SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327;
    • SEQ ID NO:328, SEQ ID NO:329, and SEQ ID NO:330;
    • SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333;
    • SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369;
    • SEQ ID NO:364, SEQ ID NO:365, and SEQ ID NO:366;
    • SEQ ID NO:370, SEQ ID NO:371, and SEQ ID NO:372;
    • SEQ ID NO:379, SEQ ID NO:380, and SEQ ID NO:381;
    • SEQ ID NO:397, SEQ ID NO:399, and SEQ ID NO:401;
    • SEQ ID NO:405, SEQ ID NO:407, and SEQ ID NO:409;
    • SEQ ID NO:413, SEQ ID NO:415, and SEQ ID NO:417;
    • SEQ ID NO:421, SEQ ID NO:423, and SEQ ID NO:425; or
    • SEQ ID NO:429, SEQ ID NO:431, and SEQ ID NO:433.


In some embodiments, the antibodies comprise the heavy chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


In some embodiments, the antibodies comprise the light chain CDR1, CDR2, and CDR3 sequences as provided herein, including but not limited to, e.g.,

    • SEQ ID NO:131, SEQ ID NO:133, and SEQ ID NO:135;
    • SEQ ID NO:139, SEQ ID NO:141, and SEQ ID NO:143;
    • SEQ ID NO:147, SEQ ID NO:149, and SEQ ID NO:151;
    • SEQ ID NO:155, SEQ ID NO:157, and SEQ ID NO:159;
    • SEQ ID NO:163, SEQ ID NO:165, and SEQ ID NO:167;
    • SEQ ID NO:171, SEQ ID NO:173, and SEQ ID NO:175;
    • SEQ ID NO:179, SEQ ID NO:181, and SEQ ID NO:183;
    • SEQ ID NO:187, SEQ ID NO:189, and SEQ ID NO:191;
    • SEQ ID NO:195, SEQ ID NO:197, and SEQ ID NO:199;
    • SEQ ID NO:203, SEQ ID NO:205, and SEQ ID NO:207;
    • SEQ ID NO:211, SEQ ID NO:213, and SEQ ID NO:215;
    • SEQ ID NO:219, SEQ ID NO:221, and SEQ ID NO:223;
    • SEQ ID NO:227, SEQ ID NO:229, and SEQ ID NO:231;
    • SEQ ID NO:243, SEQ ID NO:245, and SEQ ID NO:247;
    • SEQ ID NO:251, SEQ ID NO:253, and SEQ ID NO:255;
    • SEQ ID NO:259, SEQ ID NO:261, and SEQ ID NO:263;
    • SEQ ID NO:267, SEQ ID NO:269, and SEQ ID NO:271;
    • SEQ ID NO:275, SEQ ID NO:277, and SEQ ID NO:279;
    • SEQ ID NO:283, SEQ ID NO:285, and SEQ ID NO:287;
    • SEQ ID NO:291, SEQ ID NO:293, and SEQ ID NO:295;
    • SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311;
    • SEQ ID NO:334, SEQ ID NO:335, and SEQ ID NO:336;
    • SEQ ID NO:337, SEQ ID NO:338, and SEQ ID NO:339;
    • SEQ ID NO:340, SEQ ID NO:341, and SEQ ID NO:342;
    • SEQ ID NO:343, SEQ ID NO:344, and SEQ ID NO:345;
    • SEQ ID NO:346, SEQ ID NO:347, and SEQ ID NO:348;
    • SEQ ID NO:349, SEQ ID NO:350, and SEQ ID NO:351;
    • SEQ ID NO:352, SEQ ID NO:353, and SEQ ID NO:354;
    • SEQ ID NO:355, SEQ ID NO:356, and SEQ ID NO:357;
    • SEQ ID NO:358, SEQ ID NO:359, and SEQ ID NO:360;
    • SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363;
    • SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375;
    • SEQ ID NO:376, SEQ ID NO:377, and SEQ ID NO:378;
    • SEQ ID NO:382, SEQ ID NO:383, and SEQ ID NO:384;
    • SEQ ID NO:453, SEQ ID NO:455, and SEQ ID NO:457;
    • SEQ ID NO:461, SEQ ID NO:463, and SEQ ID NO:465;
    • SEQ ID NO:469, SEQ ID NO:471, and SEQ ID NO:473;
    • SEQ ID NO:478, SEQ ID NO:480, and SEQ ID NO:482; or
    • SEQ ID NO:486, SEQ ID NO:488, and SEQ ID NO:490.


In some embodiments, the antibodies comprise the light chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above. In some embodiments, the light chain CDR1 sequence is 12-18 amino acids long, e.g., 14-17, e.g., 12, 13, 14, 15, 16, 17, or 18 amino acids long.


In some embodiments, the antibodies comprise the heavy and light chain CDR1, CDR2, and CDR3 sequences as provided herein, including but not limited to, e.g.,

    • heavy chain CDRs SEQ ID NO:313, SEQ ID NO:314, and SEQ ID NO:315; and light chain CDRs SEQ ID NO:334, SEQ ID NO:335, and SEQ ID NO:336; or
    • heavy chain CDRs SEQ ID NO:319, SEQ ID NO:320, and SEQ ID NO:321; and light chain CDRs SEQ ID NO:340, SEQ ID NO:341, and SEQ ID NO:342; or
    • heavy chain CDRs SEQ ID NO:316, SEQ ID NO:317, and SEQ ID NO:318; and light chain CDRs SEQ ID NO:337, SEQ ID NO:338, and SEQ ID NO:339; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:343, SEQ ID NO:344, and SEQ ID NO:345; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:346, SEQ ID NO:347, and SEQ ID NO:348; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:349, SEQ ID NO:350, and SEQ ID NO:351; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:352, SEQ ID NO:353, and SEQ ID NO:354; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:355, SEQ ID NO:356, and SEQ ID NO:357; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:358, SEQ ID NO:359, and SEQ ID NO:360; or
    • heavy chain CDRs SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:364, SEQ ID NO:365, and SEQ ID NO:366; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369; and light chain CDRs SEQ ID NO:376, SEQ ID NO:377, and SEQ ID NO:378; or
    • heavy chain CDRs SEQ ID NO:370, SEQ ID NO:371, and SEQ ID NO:372; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333; and light chain CDRs SEQ ID NO:382, SEQ ID NO:383, and SEQ ID NO:384; or
    • heavy chain CDRs SEQ ID NO:379, SEQ ID NO:380, and SEQ ID NO:381; and light chain CDRs SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363; or
    • heavy chain CDRs SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333; and light chain CDRs SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363; or
    • heavy chain CDRs SEQ ID NO:508, SEQ ID NO:509, and SEQ ID NO:510; and light chain CDRs SEQ ID NO:529, SEQ ID NO:530, and SEQ ID NO:531; or
    • heavy chain CDRs SEQ ID NO:511, SEQ ID NO:512, and SEQ ID NO:513; and light chain CDRs SEQ ID NO:532, SEQ ID NO:533, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:514, SEQ ID NO:515, and SEQ ID NO:516; and light chain CDRs SEQ ID NO:535, SEQ ID NO:536, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:517, SEQ ID NO:518, and SEQ ID NO:519; and light chain CDRs SEQ ID NO:538, SEQ ID NO:539, and SEQ ID NO:540; or
    • heavy chain CDRs SEQ ID NO:520, SEQ ID NO:521, and SEQ ID NO:522; and light chain CDRs SEQ ID NO:541, SEQ ID NO:542, and SEQ ID NO:543; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:544, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:526, SEQ ID NO:527, and SEQ ID NO:528; and light chain CDRs SEQ ID NO:547, SEQ ID NO:548, and SEQ ID NO:549.


In some embodiments, the antibodies comprise the heavy and light chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


In some embodiments, any antibody described herein can comprise a light chain CDR1 comprising a RGD sequence, e.g., as provided in the following table:













CDRL1
Vk







KSSQSLLNSRSRKNYLA (SEQ ID NO: 572)
D4





KSSQSLLNSGRGDLGNALA (SEQ ID NO: 574)
RGD2





KSSQSLLGRGDLGRLKKQKDHNALA (SEQ ID NO: 576)
RGD3-1





KSSQSLLGRGDLGRLKKQKDNALA (SEQ ID NO: 577)
RGD3-2





KSSQSLLGRGDLGRLKKQKNALA (SEQ ID NO: 578)
RGD3-3





KSSQSLLGRGDLGRLKKQNALA(SEQ ID NO: 579)
RGD3-4





KSSQSLLGRGDLGRLKKNALA (SEQ ID NO: 575)
RGD3





KSSQSLLGRGDLGRLKNALA (SEQ ID NO: 580)
RGD3-6





KSSQSLLGRGDLGRLNALA(SEQ ID NO: 581)
RGD3-7





KSSQSLLGRGDLGRNALA (SEQ ID NO: 582)
RGD3-8





KSSQSLLGRGDLGNALA (SEQ ID NO: 573)
RGD1





KSSQSLLGRGDLGRLKKQKDHH (SEQ ID NO: 583)
RGD3-9





KSSQSLLGRGDLGRLKKQKDH (SEQ ID NO: 584)
RGD3-10





KSSQSLLGRGDLGRLKKQKD (SEQ ID NO: 585)
RGD3-11





KSSQSLLGRGDLGRLKKQK (SEQ ID NO: 586)
RGD3-12





KSSQSLLGRGDLGRLKKQ (SEQ ID NO: 587)
RGD3-13





KSSQSLLGRGDLGRLKK (SEQ ID NO: 588)
RGD3-14





KSSQSLLGRGDLGRLK (SEQ ID NO: 589)
RGD3-15





KSSQSLLGRGDLGRL (SEQ ID NO: 590)
RGD3-16









In some embodiments, any of the antibodies described herein can comprise as CDR1 one of the CDRs selected from SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, and SEQ ID NO:590.


In some embodiments, the antibody can comprise heavy and light chain CDR1, CDR2, and CDR3 sequences as provided below, including but not limited to, e.g.,

    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:572, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:573, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:574, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:575, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:576, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:577, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:578, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:579, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:580, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:581, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:582, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:583, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:584, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:585, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:586, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:587, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:589, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:590, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:572, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:573, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:574, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:575, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:576, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:577, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:578, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:579, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:580, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:581, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:582, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:583, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:584, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:585, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:586, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:587, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:588, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:589, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:590, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:572, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:573, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:574, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:575, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:576, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:577, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:578, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:579, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:580, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:581, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:582, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:583, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:584, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:585, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:586, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:587, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:588, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:589, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:590, SEQ ID NO:545, and SEQ ID NO:537.


In some embodiments, the antibodies comprise the heavy and light chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


In some embodiments, any of the antibodies disclosed herein can comprise one of the heavy chain variable regions selected from SEQ ID NO:1, SEQ ID NO:9, SEQ ID NO:17, SEQ ID NO:25, SEQ ID NO:33, SEQ ID NO:41, SEQ ID NO:49, SEQ ID NO:57, SEQ ID NO:65, SEQ ID NO:73, SEQ ID NO:81, SEQ ID NO:89, SEQ ID NO:97, SEQ ID NO:105, SEQ ID NO:113, SEQ ID NO:121, or SEQ ID NO:297, or SEQ ID NO:395, SEQ ID NO:403, SEQ ID NO:411, SEQ ID NO:419, SEQ ID NO:427, SEQ ID NO:435, or SEQ ID NO:443.


In some embodiments, any of the antibodies disclosed herein can comprise one of the light chain variable regions selected from SEQ ID NO:129, SEQ ID NO:137, SEQ ID NO:145, SEQ ID NO:153, SEQ ID NO:161, SEQ ID NO:169, SEQ ID NO:177, SEQ ID NO:185, SEQ ID NO:193, SEQ ID NO:201, SEQ ID NO:209, SEQ ID NO:217, SEQ ID NO:225, SEQ ID NO:233, SEQ ID NO:241, SEQ ID NO:249, SEQ ID NO:257, SEQ ID NO:265, SEQ ID NO:273, SEQ ID NO:281, SEQ ID NO:289, SEQ ID NO:305, or SEQ ID NO:451, SEQ ID NO:459, SEQ ID NO:467, SEQ ID NO:475, SEQ ID NO:484, SEQ ID NO:492, or SEQ ID NO:500.


In some embodiments, the antibodies disclosed here can comprise one or more or all of the light chain variable regions (CDRs or framework regions) selected from SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, or SEQ ID NO:571.


In some embodiments, any of the antibodies disclosed herein can comprise one or more or all of the heavy chain variable regions (CDRs or framework regions) selected from SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, or SEQ ID NO:564.


Heavy chain variable regions can be paired with light chain regions as desired, including or not limited to for variable regions comprising the paired CDRs as set forth above.


In addition, as noted above, the inventors have discovered that an RGDL sequence (SEQ ID NO:756) can be inserted into a light chain CDR1 sequence in an αvβ8-binding antibody to obtain an antibody that has six CDRs in total and that binds both αvβ8 and αvβ6. The antibodies at least partially block ligand binding function. See, e.g., FIGS. 38A-D. Thus in some embodiments, antibodies are provided that bind to αvβ8 and αvβ6 and comprise an RGDL sequence (SEQ ID NO:756) in the light chain CDR1 sequence. For instance, in some embodiments the light chain CDR1 is between 20-22 amino acids (e.g., 21 amino acids) an optionally comprises KSSQSLLGRGDLGRLKK (SEQ ID NO:765) or a sequence containing 1, 2, or 3 conservative amino acid substitutions.


Additionally, the inventors have discovered that an RGDL sequence (SEQ ID NO:756) can be inserted into a light chain CDR1 sequence in an αvβ8-binding antibody to obtain an antibody that has six CDRs and that binds αvβ8, αvβ6 and αvβ3 (i.e., is tri-specific). See, Example 12.


In some embodiments, any antibody described herein can comprise a light chain CDR1 sequence selected from, but not limited to, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, and SEQ ID NO:590. In some embodiments, any of the light chain CDR1 sequences set forth in this paragraph can be combined with any light chain CDR2, light chain CDR3, heavy chain CDR1, heavy chain CDR2 and heavy chain CDR3, set forth herein.


In some embodiments, antibodies comprising the light chain CDR1 sequences described in the preceding paragraph can contain 1, 2, or 3 conservative amino acid substitutions in the CDR1 sequence compared to those listed above (i.e., SEQ ID NO:572-590).


In some embodiments, the antibodies can comprise the heavy chain CDR1, CDR2, and CDR3 sequences as provided herein, including but not limited to, e.g.,

    • SEQ ID NO:437, SEQ ID NO:439, and SEQ ID NO:441; or
    • SEQ ID NO:445, SEQ ID NO:447, and SEQ ID NO:449.


In some embodiments, the antibodies can comprise the heavy chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


In some embodiments, the antibodies can comprise the light chain CDR1, CDR2, and CDR3 sequences as provided herein, including but not limited to, e.g.,

    • SEQ ID NO:494, SEQ ID NO:496, and SEQ ID NO:498; or
    • SEQ ID NO:502, SEQ ID NO:504, and SEQ ID NO:506.


In some embodiments, the antibodies can comprise the light chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


Heavy chain variable regions can be paired with light chain regions as desired, including or not limited to for variable regions comprising the paired CDRs as set forth above.


For preparation and use of suitable antibodies as described herein, e.g., recombinant, monoclonal, or polyclonal antibodies, many techniques known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4: 72 (1983); Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985); Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies, A Laboratory Manual (1988); and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986)). The genes encoding the heavy and light chains of an antibody of interest can be cloned from a cell, e.g., the genes encoding a monoclonal antibody can be cloned from a hybridoma and used to produce a recombinant monoclonal antibody. Gene libraries encoding heavy and light chains of monoclonal antibodies can also be made from hybridoma or plasma cells. Random combinations of the heavy and light chain gene products generate a large pool of antibodies with different antigenic specificity (see, e.g., Kuby, Immunology (3rd ed. 1997)). Techniques for the production of single chain antibodies or recombinant antibodies (U.S. Pat. Nos. 4,946,778, 4,816,567) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, can be used to express humanized or human antibodies (see, e.g., U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, Marks et al., Bio/Technology 10:779-783 (1992); Lonberg et al., Nature 368:856-859 (1994); Morrison, Nature 368:812-13 (1994); Fishwild et al., Nature Biotechnology 14:845-51 (1996); Neuberger, Nature Biotechnology 14:826 (1996); and Lonberg & Huszar, Intern. Rev. Immunol. 13:65-93 (1995)). Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)). Antibodies can also be made bispecific, i.e., able to recognize two different antigens (see, e.g., WO 93/08829, Traunecker et al., EMBO 1 10:3655-3659 (1991); and Suresh et al., Methods in Enzymology 121:210 (1986)). Antibodies can also be heteroconjugates, e.g., two covalently joined antibodies, or immunotoxins (see, e.g., U.S. Pat. No. 4,676,980, WO 91/00360; WO 92/200373; and EP 03089).


Antibodies can be produced using any number of expression systems, including prokaryotic and eukaryotic expression systems. In some embodiments, the expression system is a mammalian cell expression, such as a hybridoma, or a CHO cell expression system. Many such systems are widely available from commercial suppliers. In embodiments in which an antibody comprises both a VH and VL region, the VH and VL regions may be expressed using a single vector, e.g., in a di-cistronic expression unit, or under the control of different promoters. In other embodiments, the VH and VL region may be expressed using separate vectors. A VH or VL region as described herein may optionally comprise a methionine at the N-terminus.


An antibody as described herein can also be produced in various formats, including as a Fab, a Fab′, a F(ab′)2, a scFv, or a dAB. The antibody fragments can be obtained by a variety of methods, including, digestion of an intact antibody with an enzyme, such as pepsin (to generate (Fab′)2 fragments) or papain (to generate Fab fragments); or de novo synthesis. Antibody fragments can also be synthesized using recombinant DNA methodology. In some embodiments, an anti-β8 antibody comprises F(ab′)2 fragments that specifically bind 138. An antibody of the invention can also include a human constant region. See, e.g., Fundamental Immunology (Paul ed., 4d ed. 1999); Bird, et al., Science 242:423 (1988); and Huston, et al., Proc. Natl. Acad. Sci. USA 85:5879 (1988).


Methods for humanizing or primatizing non-human antibodies are also known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988) and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Such humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.


In some cases, the antibody or antibody fragment can be conjugated to another molecule, e.g., polyethylene glycol (PEGylation) or serum albumin, to provide an extended half-life in vivo. Examples of PEGylation of antibody fragments are provided in Knight et al. Platelets 15:409, 2004 (for abciximab); Pedley et al., Br. J. Cancer 70:1126, 1994 (for an anti-CEA antibody); Chapman et al., Nature Biotech. 17:780, 1999; and Humphreys, et al., Protein Eng. Des. 20: 227,2007). The antibody or antibody fragment can also be labeled, or conjugated to a therapeutic agent as described below.


The specificity of antibody binding can be defined in terms of the comparative dissociation constants (Kd) of the antibody for the target (e.g., β8) as compared to the dissociation constant with respect to the antibody and other materials in the environment or unrelated molecules in general. Typically, the Kd for the antibody with respect to the unrelated material will be at least 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 20-fold, 50-fold, 100-fold, 200-fold or higher than Kd with respect to the target.


The desired affinity for an antibody, e.g., high (pM to low nM), medium (low nM to 100 nM), or low (about 100 nM or higher), may differ depending upon whether it is being used as a diagnostic or therapeutic. For example, an antibody with medium affinity may be more successful in localizing to desired tissue as compared to one with a high affinity. Thus, antibodies having different affinities can be used for diagnostic and therapeutic applications.


A targeting moiety will typically bind with a Kd of less than about 1000 nM, e.g., less than 250, 100, 50, 20 or lower nM. In some embodiments, the Kd of the affinity agent is less than 15, 10, 5, or 1 nM. In some embodiments, the Kd is 1-100 nM, 0.1-50 nM, 0.1-10 nM, or 1-20 nM. The value of the dissociation constant (Kd) can be determined by well-known methods, and can be computed even for complex mixtures by methods as disclosed, e.g., in Caceci et al., Byte (1984) 9:340-362.


Affinity of an antibody, or any targeting agent, for a target can be determined according to methods known in the art, e.g., as reviewed in Ernst et al. Determination of Equilibrium Dissociation Constants, Therapeutic Monoclonal Antibodies (Wiley & Sons ed. 2009).


Quantitative ELISA, and similar array-based affinity methods can be used. ELISA (Enzyme linked immunosorbent signaling assay) is an antibody-based method. In some cases, an antibody specific for target of interest is affixed to a substrate, and contacted with a sample suspected of containing the target. The surface is then washed to remove unbound substances. Target binding can be detected in a variety of ways, e.g., using a second step with a labeled antibody, direct labeling of the target, or labeling of the primary antibody with a label that is detectable upon antigen binding. In some cases, the antigen is affixed to the substrate (e.g., using a substrate with high affinity for proteins, or a Strepavidin-biotin interaction) and detected using a labeled antibody (or other targeting moiety). Several permutations of the original ELISA methods have been developed and are known in the art (see Lequin (2005) Clin. Chem. 51:2415-18 for a review).


The Kd, Kon, and Koff can also be determined using surface plasmon resonance (SPR), e.g., as measured by using a Biacore T100 system or using kinetic exclusion assays (e.g., KinExA®). SPR techniques are reviewed, e.g., in Hahnfeld et al. Determination of Kinetic Data Using SPR Biosensors, Molecular Diagnosis of Infectious Diseases (2004). In a typical SPR experiment, one interactant (target or targeting agent) is immobilized on an SPR-active, gold-coated glass slide in a flow cell, and a sample containing the other interactant is introduced to flow across the surface. When light of a given frequency is shined on the surface, the changes to the optical reflectivity of the gold indicate binding, and the kinetics of binding. Kinetic exclusion assays is the preferred method to determine affinity unless indicated otherwise. This technique is described in, e.g. Darling et al., Assay and Drug Development Technologies Vol. 2, number 6 647-657 (2004).


Binding affinity can also be determined by anchoring a biotinylated interactant to a streptavidin (SA) sensor chip. The other interactant is then contacted with the chip and detected, e.g., as described in Abdessamad et al. (2002) Nuc. Acids Res. 30:e45.


Also provided are polynucleotides encoding the antibodies described herein, or binding fragments thereof comprising at least heavy chain or light chain CDRs or both, e.g., polynucleotides, expression cassettes (e.g., a promoter linked to a coding sequence), or expression vectors encoding heavy or light chain variable regions or segments comprising the complementary determining regions as described herein. In some embodiments, the polynucleotide sequence is optimized for expression, e.g., optimized for mammalian expression or optimized for expression in a particular cell type.


III. Methods of Treatment

The anti-αvβ8 antibodies described herein (including αvβ8 binding fragments thereof, labeled antibodies, immunoconjugates, pharmaceutical compositions, etc.) as well as antibodies that bind both αvβ8 and αvβ6 as described herein or binding fragments thereof can be used to detect, treat, ameliorate, or prevent chronic obstructive pulmonary disease (COPD) and asthma, inflammatory bowel disease, inflammatory brain autoimmune disease, multiple sclerosis, a demylinating disease (e.g., transverse myelitis, Devic's disease, Guillain-Barré syndrome), neuroinflammation, kidney disease, or glioma, arthritis, fibrotic disorders, such as airway fibrosis, idiopathic pulmonary fibrosis, non-specific interstitial pneumonia, post-infectious lung fibrosis, diffuse alveolar damage, collagen-vascular disease associated lung fibrosis, drug-induced lung fibrosis, silicosis, asbestos-related lung fibrosis, respiratory bronchiolitis, respiratory bronchiolitis interstitial lung disease, desquamative interstitial fibrosis, cryptogenic organizing pneumonia, chronic hypersensitivity pneumonia, drug-related lung or hepatic fibrosis, renal fibrosis, and liver fibrosis (e.g., induced by alcohol, drug use, steatohepatitis, viral infection (e.g., hepatitis B or C), choleostasis, etc., and cancer, including but not limited to adenocarcinoma, squamous carcinoma, breast carcinoma, and cancer growth and metastasis. Accordingly, the antibodies and pharmaceutical compositions described herein can be administered to a human having or suspected of having one of the above-listed diseases in an appropriate dosage to ameliorate or treat one of the disease or at least one symptom thereof.


Without intending to limit the scope of the invention, in some embodiments it is believed that antibodies described herein function in part by triggering an increase in MHCII expression in antigen presenting cells. See, e.g., FIG. 36A-F.


Moreover, the anti-αvβ8 antibodies described herein (including αvβ8 binding fragments thereof, labeled antibodies, immunoconjugates, pharmaceutical compositions, etc.) can be used to treat, ameliorate, or prevent viral infections (e.g., by stimulating an immune response). Other antibodies that specifically bind to αvβ8 and that block binding of one or more αvβ8 ligand, for example such as described in WO2011/103490 or WO2015/026004 can also be used to treat, ameliorate, or prevent viral infections. Exemplary viral infections include but are not limited to hepatitis A, B (HBV), and C (HCV), herpes simplex virus (e.g., HSVI, HSVII), HIV, and influenza infections, all of which are enhanced by Treg-mediated immune suppression (Keynan, Y, et al., Clin Infect Dis. 2008 Apr. 1; 46(7):1046-52.


Also provided are pharmaceutical compositions comprising the present anti-αvβ8 antibodies or antigen-binding molecules as well as antibodies that bind both αvβ8 and αvβ6 as described herein or binding fragments thereof, either of which can be formulated together with a pharmaceutically acceptable carrier. The compositions can additionally contain other therapeutic agents that are suitable for treating or preventing a given disorder. Pharmaceutically carriers can enhance or stabilize the composition, or to facilitate preparation of the composition. Pharmaceutically acceptable carriers include solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.


A pharmaceutical composition as described herein can be administered by a variety of methods known in the art. The route and/or mode of administration vary depending upon the desired results. It is preferred that administration be intravenous, intramuscular, intraperitoneal, or subcutaneous, or administered proximal to the site of the target. The pharmaceutically acceptable carrier should be suitable for intravenous, intramuscular, subcutaneous, parenteral, intranasal, inhalational, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound, i.e., antibody, may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.


The antibodies, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be “nebulized”) to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.


In some embodiments, the composition is sterile and fluid. Proper fluidity can be maintained, for example, by use of coating such as lecithin, by maintenance of required particle size in the case of dispersion and by use of surfactants. In many cases, it is preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol or sorbitol, and sodium chloride in the composition. Long-term absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.


Pharmaceutical compositions of the invention can be prepared in accordance with methods well known and routinely practiced in the art. Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention. Applicable methods for formulating the antibodies and determining appropriate dosing and scheduling can be found, for example, in Remington: The Science and Practice of Pharmacy, 21st Ed., University of the Sciences in Philadelphia, Eds., Lippincott Williams & Wilkins (2005); and in Martindale: The Complete Drug Reference, Sweetman, 2005, London: Pharmaceutical Press, and in Martindale, Martindale: The Extra Pharmacopoeia, 31st Edition, 1996, Amer Pharmaceutical Assn, and Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978, each of which are hereby incorporated herein by reference. Pharmaceutical compositions are preferably manufactured under GMP conditions. Typically, a therapeutically effective dose or efficacious dose of the anti-αvβ8 antibody is employed in the pharmaceutical compositions of the invention. The anti-αvβ8 antibodies are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art. Dosage regimens are adjusted to provide the desired response (e.g., a therapeutic response). In determining a therapeutically or prophylactically effective dose, a low dose can be administered and then incrementally increased until a desired response is achieved with minimal or no undesired side effects. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.


Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention can be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level depends upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors.


In some embodiments, the pharmacological compositions comprise a mixture of the anti-αvβ8 antibody or antigen binding molecule (e.g. that blocks ligand binding or blocks activation by ligand binding) and a second pharmacological agent. Without intending to limit the invention, it is noted that the inventors have found that thymic stromal lymphopoietin (TSLP) is an inducer of viral clearance in a mouse model of acute and chronic HBV and thus is useful to combine TSLP with an antbody as described herein for anti-viral treatments. Moreover, the inventors have found that OX40 agonists are effective in stimulating an immune response to HBV in combination with an antbody as described herein.


As an alternative to mixing the anti-αvβ8 antibody and second pharmacological agent in a pharmacological composition, the anti-αvβ8 antibody and second pharmacological agent can be separately administered to the human in need thereof within a time frame (e.g., within 3, 2, or 1 day or within 24, 13, 6, or 3 hours of each other).


IV. Diagnostic Compositions and Applications

Integrin αvβ8 is expressed on fibroblasts, stellate cells, chondrocytes, activated macrophages and subsets of T and B-cells. Integrin αvβ8 is increased in expression in fibroblasts in COPD and pulmonary fibrosis, and can be used as a surrogate marker for increased fibroblast cell mass. Thus the presently disclosed antibodies can be broadly applicable to bioimaging strategies to detect fibroinflammatory processes. The presently described therapeutic and diagnostic antibodies can be applied to: inflammatory bowel disease (IBD), chronic obstructive pulmonary disease (COPD), asthma, arthritis, a hepatic fibroinflammatory disorder, alcohol induced liver injury, non-alcoholic steatohepatitis (NASH), viral hepatitis, and primary biliary cirrhosis (PBC), graft rejection after liver transplantation, autoimmune hepatitis, an autoimmune disorder, lupus erythematosus, scleroderma, dermatomyositis, bullous pemphigoid, pemphigus vulgaris, a pulmonary fibrotic disorder, an inflammatory brain autoimmune disease, multiple sclerosis, a demyelinating disease, neuroinflammation, kidney disease, glomerulonephritis, hepatocellular carcinoma (HCC), adenocarcinoma, squamous carcinoma, glioma, melanoma, prostate, ovarian, uterine and breast carcinoma.


The inventors have found that β8 and PD-L1 expression inversely correlate. Thus, anti-αvβ8 antibodies described herein can be used as a marker for PD-L1 expression and optionally for selecting individuals most likely to benefit from anti-αvβ8 treatment.


Anti-αvβ8 antibodies described herein (including αvβ8 binding fragments thereof, affinity matured variants, or scFvs) can be used for diagnosis, either in vivo or in vitro (e.g., using a biological sample obtained from an individual). In addition to the above-described antibodies, antibodies having the following CDRs can be used for diagnosis and prognosis: heavy chain CDRs SEQ ID NO:299, SEQ ID NO:301, and SEQ ID NO:303; and light chain CDRs SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311. In some embodiments, the antibodies have a heavy chain variable region comprising SEQ ID NO:297 and a light chain variable region of SEQ ID NO:305. Alternatively, any antibodies having heavy chain CDRs or a heavy chain variable region as set forth in FIG. 53 and light chain CDRs or a light chain variable region from a corresponding sequence as set forth in FIG. 54 can be used. The antibodies are particularly useful in detecting αvβ8 in samples that have been fixed, for example in formalin-fixed samples, including for example formalin-fixed paraffin-embedded (FFPE) biological (e.g., tissue or cell) samples.


When used for detection or diagnosis, the antibody is typically conjugated or otherwise associated with a detectable label. The association can be direct e.g., a covalent bond, or indirect, e.g., using a secondary binding agent, chelator, or linker.


A labeled antibody can be provided to an individual to determine the applicability of an intended therapy. For example, a labeled antibody may be used to detect the integrin 138 density within a diseased area. For therapies intended to target TGFβ or αvβ8 activity (to reduce TGFβ or αvβ8 activity), the density of β8 is typically high relative to non-diseased tissue. A labeled antibody can also indicate that the diseased area is accessible for therapy. Patients can thus be selected for therapy based on imaging results. Anatomical characterization, such as determining the precise boundaries of a cancer, can be accomplished using standard imaging techniques (e.g., CT scanning, MM, PET scanning, etc.). Such in vivo methods can be carried out using any of the presently disclosed antibodies.


Any of the presently disclosed antibodies can also be used for in vitro diagnostic or monitoring methods, e.g., using cells or tissue from a patient sample. In some embodiments, labeled F9 (or a β8 binding fragment or affinity-matured variant) is used, as it can bind fixed cells as well as non-fixed cells.


In some embodiments, the diagnostic antibody is a single-chain variable fragment (scFv). Intact antibodies (e.g., IgG) can be used for radioimmunotherapy or targeted delivery of therapeutic agents because they exhibit high uptake and retention. In some cases, the persistence in circulation of intact mAbs can result in high background (Olafsen et al. (2012) Tumour Biol. 33:669-77; Cai et al. (2007) J Nucl Med. 48:304-10). ScFvs, typically with a molecular mass of 25 kD, are rapidly excreted by the kidneys, but are monovalent and can have lower affinity. The issues of monovalency can be overcome with advanced antibody engineering (as shown herein), where affinities can be improved to the low nM to pM range. Such antibodies have short enough half-lives to be useful as imaging agents and have suitable binding characteristics for tissue targeting (Cortez-Retamozo et al. (2004) Cancer Res. 64:2853-7). As shown herein, we have created a very high affinity scFV antibody derivatives of 4F1, 6B9, called F9, that can be converted to humanized scFV platforms. These improved antibodies are not function blocking, and thus can be used in combination with a therapeutic agent that targets 138.


A diagnostic agent comprising an antibody described herein can include any diagnostic agent known in the art, as provided, for example, in the following references: Armstrong et al., Diagnostic Imaging, 5th Ed., Blackwell Publishing (2004); Torchilin, V. P., Ed., Targeted Delivery of Imaging Agents, CRC Press (1995); Vallabhajosula, S., Molecular Imaging: Radiopharmaceuticals for PET and SPECT, Springer (2009). The terms “detectable agent,” “detectable moiety,” “label,” “imaging agent,” and like terms are used synonymously herein. A diagnostic agent can be detected by a variety of ways, including as an agent providing and/or enhancing a detectable signal. Detectable signals include, but are not limited to, gamma-emitting, radioactive, echogenic, optical, fluorescent, absorptive, magnetic, or tomography signals. Techniques for imaging the diagnostic agent can include, but are not limited to, single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, positron emission tomography (PET), computed tomography (CT), x-ray imaging, gamma ray imaging, and the like. PET is particularly sensitive and quantitative, and thus valuable for characterizing fibrotic processes in vivo (Olafsen et al. (2012) Tumour Biol. 33:669-77; Cai et al. (2007) J Nucl Med. 48:304-10). This is useful beyond a companion diagnostic and would be generally useful to diagnose, clinically stage and follow fibrotic patients during any treatment regimen.


A radioisotope can be incorporated into the diagnostic agents described herein and can include radionuclides that emit gamma rays, positrons, beta and alpha particles, and X-rays. Suitable radionuclides include but are not limited to 225Ac, 72As, 211At, 11B, 128Ba, 212Bi, 75Br, 77Br, 14C, 109Cd, 62Cu, 64Cu, 67Cu, 18F, 67Ga, 68Ga, 3H, 166Ho, 123I, 124I, 125I, 130I, 131I, 177Lu, 13N, 15O, 32P, 33P, 212Pb, 103Pd, 186Re, 188Re, 47Sc, 153Sm, 89Sr, 99mTc, 88Y and 90Y. In certain embodiments, radioactive agents can include 111In-DTPA, 99mTc(CO)3-DTPA, 99mTc(CO)3-ENPy2, 62/64/67Cu-TETA, 99mTc(CO)3-IDA, and 99mTc(CO)3triamines (cyclic or linear). In other embodiments, the agents can include DOTA and its various analogs with 111In, 177Lu, 153Sm, 88/90Y, 62/64/67Cu, or 67/68Ga. In some embodiments, a nanoparticle can be labeled by incorporation of lipids attached to chelates, such as DTPA-lipid, as provided in the following references: Phillips et al., Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(1): 69-83 (2008); Torchilin, V. P. & Weissig, V., Eds. Liposomes 2nd Ed.: Oxford Univ. Press (2003); Elbayoumi, T. A. & Torchilin, V. P., Eur. J Nucl. Med. Mol. Imaging 33:1196-1205 (2006); Mougin-Degraef, M. et al., Int'l J. Pharmaceutics 344:110-117 (2007).


In some embodiments, a diagnostic agent can include chelators that bind, e.g., to metal ions to be used for a variety of diagnostic imaging techniques. Exemplary chelators include but are not limited to ethylenediaminetetraacetic acid (EDTA), [4-(1,4,8, 11-tetraazacyclotetradec-1-yl) methyl] benzoic acid (CPTA), Cyclohexanediaminetetraacetic acid (CDTA), ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA), diethylenetriaminepentaacetic acid (DTPA), citric acid, hydroxyethyl ethylenediamine triacetic acid (HEDTA), iminodiacetic acid (IDA), triethylene tetraamine hexaacetic acid (TTHA), 1,4,7, 10-tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid) (DOTP), 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), N1,N1-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (ENPy2) and derivatives thereof.


In some embodiments, the diagnostic agent can be associated with a secondary binding ligand or to an enzyme (an enzyme tag) that will generate a colored product upon contact with a chromogenic substrate. Examples of suitable enzymes include urease, alkaline phosphatase, (horseradish) hydrogen peroxidase and glucose oxidase. Secondary binding ligands include, e.g., biotin and avidin or streptavidin compounds as known in the art.


In some embodiments, the diagnostic agents can include optical agents such as fluorescent agents, phosphorescent agents, chemiluminescent agents, and the like. Numerous agents (e.g., dyes, probes, labels, or indicators) are known in the art and can be used in the present invention. (See, e.g., Invitrogen, The Handbook—A Guide to Fluorescent Probes and Labeling Technologies, Tenth Edition (2005)). Fluorescent agents can include a variety of organic and/or inorganic small molecules or a variety of fluorescent proteins and derivatives thereof. For example, fluorescent agents can include but are not limited to cyanines, phthalocyanines, porphyrins, indocyanines, rhodamines, phenoxazines, phenylxanthenes, phenothiazines, phenoselenazines, fluoresceins, benzoporphyrins, squaraines, dipyrrolo pyrimidones, tetracenes, quinolines, pyrazines, corrins, croconiums, acridones, phenanthridines, rhodamines, acridines, anthraquinones, chalcogenopyrylium analogues, chlorins, naphthalocyanines, methine dyes, indolenium dyes, azo compounds, azulenes, azaazulenes, triphenyl methane dyes, indoles, benzoindoles, indocarbocyanines, benzoindocarbocyanines, and BODIPY™ derivatives.


EXAMPLES

The following examples are offered to illustrate, but not to limit the claimed invention.


Example 1. Construction of Composite Antibody C6D4

ITGB-8 knockout mice were immunized with recombinant Human Integrin alpha V beta 8 (αvβ8) protein. Approximately 5000 hybridomas were generated and screened for their ability to bind to αvβ8 in an enzyme-linked immunosorbent assay (ELISA). Results were confirmed by cell staining, and function blocking was determined with the use of a transforming growth factor-beta (TGF-β) bioassay. Blocking antibodies were screened against a recombinant form of αvβ8 engineered to lack the specificity determining loop (SDL) of the β8 head domain. Antibodies not binding this engineered αvβ8 were then selected.


Variable (V) genes from eight hybridomas were next isolated, sequenced, and found to comprise seven VH and eleven VK genes that were unique but related. FIG. 1 and FIG. 2 provide sequence information for the products of these VH and VK genes. Sequence information is using the Kabat numbering scheme. Each V gene was amplified under mutagenic conditions, and a single-chain variable fragment (scFV) library was constructed by mixing the amplified cDNA and using splice overlap. The library served as an amplification template using primers designed to complement rabbit IgG expressing dual VH and VL vectors. Eleven distinct VH genes and sixteen distinct VK genes were identified after sequencing >100 random clones and transfected in 165 different combinations into 293 cells. The eight pairs that produced the best binders were determined by cell staining and FACS analysis, and by measuring binding affinity for CHO cells expressing αvβ8. The eight pairs each comprised a VH domain selected from RSDLVH-1, RSDLVH-3, and RSDLVH-16; and a VK domain selected from RSDLVK-1, RSDLVK-6, RSDLVK-10, and RSDLVK-13; the sequences of which are shown in FIG. 1 and FIG. 2.


These eight rabbit IgG VH/VK pairs were then used to create a new mutagenic scFV yeast display library that was inserted into a yeast expression library vector. Two high-affinity binders from this selection and affinity maturation step were identified and designated clone 29 and clone 44. Random mutation mutagenic libraries were next made from genes of clones 29 and 44, and from these libraries the higher-affinity binding clones C6 and D4 were selected and determined (FIG. 1 and FIG. 2). Mutations in the complementarity-determining regions (CDRs) of C6 VH and D4 VK were identified, and the two chains were combined to create the composite antibody C6D4 (FIG. 1 and FIG. 2).


Example 2. Characterization of C6D4 Binding Affinity

A Kinetic Exclusion Assay (KINEXA®) was used to measure the binding affinity of C6D4. The affinity as a murine IgG2a was measured as 832 pM. As a recombinant IgG, C6D4 was found to result in substantially complete blockage of αvβ8-mediated TGF-β activation. This result implies blockage that is better than with B5, an allosteric inhibitor of αvβ8-mediated TGF-β activation. (Minagawa, et al, Sci Trans Med. 2014 Jun. 18; 6(241):241ra79)


C6D4 was also shown to block adhesion of cells to immobilized latent TGF-β. A peptide with the sequence DDHGRGDLGRLK (SEQ ID NO:713), which corresponds to aa 257-268 of human TGF-β3 (NP_003230) was synthesized on an 8 lysine core (Multiple antigen presenting peptide, BioSyn) and used at 1 μg/ml to coat a 96 well ELISA plate. A truncated secreted form of αvβ8 which was fused in frame to alkaline phosphatase (Gline S E, et al. J Biol Chem. 2004 Dec. 24; 279(52):54567-72) was added with Mab at the indicated concentrations. The results (FIG. 19) show the superiority of C6D4 over B5 and the improvement of C6D4 compared to Clone 13C12. The table gives the IC50 values in μg/ml.


Further, a peptide with the sequence DDHGRGDLGRLK (SEQ ID NO:713), which corresponds to aa 257-268 of human TGF-β3 (NP_003230) was synthesized on an 8 lysine core (Multiple antigen presenting peptide, BioSyn) and used at 0.51 μg/ml to coat a 96 well ELISA plate. CHO lec cells stably transfected with αvβ8 were allowed to bind to the peptide coated wells for 30 min at RT. Unbound cells were washed off with PBS. The Mab C6D4 was added at the indicated concentrations. Results were presented as stained cells detected after staining with crystal violet (OD590). The results (FIG. 20) show that C6D4 almost completely blocks cell adhesion to the peptide.


Example 3. Characterization of C6D4 Binding Structure

The current understanding of integrin structure is faced with the hurdle of having to reconcile two polar opposite views of integrin conformation. One camp proposes that integrins are always bent. The other believes that integrins must undergo a significant conformational “switchblade” change from a bent conformation to an extended conformation upon activation, opening the “headpieces” of the integrins to be fully functional. This model of integrin extension proposes one of the largest tertiary and quaternary structural rearrangements in biology.


Proof of such conformational extremes has been hampered by compromises and shortcomings associated with techniques routinely used in structural biology. Traditional crystallography produces crystal structures with atomic resolution but is reliant on the conformations and conditions under which crystals can be formed. In the case of integrins, only compact, closed conformations have been seen by crystallography. Alternatively, size exclusion chromatography (SEC) of integrins under activating conditions have demonstrated large shifts in size consistent with integrin extension. Such changes in conformation have been directly visualized using negative stain electron microscopy (EM) studies but at low resolution. Thus, the atomic details of the integrin ligand binding and the integrin activation mechanism remains unresolved.


Single-particle cryo-electron microscopy (cryoEM) can be used to determine the structure of biological macromolecules without crystals, thus offering an alternative that circumvents the obstacles of crystalizing integrins in the extended form. Recent hardware and software developments demonstrate that single-particle cryoEM has the power to provide atomic-level structural understanding of molecules that are traditionally challenging to study. Because single-particle cryoEM does not require the formation of crystals, and allows examination in the native functional conformations unaffected by crystal packing forces or high-salt crystallization buffers, this method is uniquely suited to understanding structures of proteins or integrin-ligand or integrin-Fab complexes that are difficult to crystallize. Here, we have used single particle cryoEM to address some of the biggest mysteries in structural biology, the structural mechanisms of integrin activation and conversely the mechanism of action of integrin inhibitors.


Previously published crystal structures of the latent TGF-β arginine-glycyine-aspartic acid (RGD) peptide of αvβ6 show the positioning of the TGF-β RGD in the αvβ6 binding pocket, as well as the positioning of the R of the TGF-β RGD proximate to the αv head. Cryo-electron microscopy of the new composite antibody C6D4 structure have now produced a ˜4-5-angstrom-resolution structure of the C6D4 Fab binding to αvβ8. To generate the structures of αvβ8 in complex with C6D4, purified recombinant αvβ8 and C6D4 Fab complexes were isolated by size exclusion chromatography and then plunge frozen on grids in liquid nitrogen. Images of ˜61,000 individual particle images captured by electron microscopy were selected to produce a 3D electron density map which was used to build model of αvβ8 in complex with C6D4 Fab using existing Protein Data Bank (PDB) entries for the integrin αvβ3, αIIbβ3, and Fabs with similar CDRs.



FIGS. 13A and 13B presents cryoEM results showing binding of the C6D4 Fab to the integrin αvβ8 at the head domain. FIGS. 13A and 13B illustrate this binding between C6D4 and αvβ8 in closer detail. From the C6D4 antibody footprint of FIG. 6, it can be seen that C6D4 binds primarily to the SDL loop of β8, making additional contacts with other secondary structures on the β8 α1 and α2 helices and on the head of ay. Together, these components of the binding configuration result in the almost complete occlusion of the ligand binding pocket. The residues of the β8 α1 and α2 helices and αv head that directly interact with C6D4 are further detailed in FIG. 7.


The elucidated structure shows that the CDR1 domain of the D4 VL binds close to the contact site for the R of RGD in the previously published αvβ6-RGD crystal structure. Because the αv subunit is shared by both αvβ6 and αvβ8, this finding suggests that the CDR1 loop of D4 VL is optimally positioned to sterically inhibit the binding of the R of RGD of latent TGF-β to αvβ8. On the other side of the SDL is a hydrophobic binding pocket having an L that immediately follows the RGD, forming an RGDL peptide. This hydrophobic pocket has been shown to be essential as a secondary binding site for the binding of the latent TGF-β RGD peptide to αvβ6. See, e.g., Shi M, et al., Nature 474(7351):343-9 (2011). The L or RGDL has also been shown to be essential for the binding of the latent TGF-β RGD peptide to αvβ8. (See, e.g., Ozawa, A, et al. J Boil Chem. 291(22):11551-65 (2016). The CDR3 loop of C6 VH has now been shown to bind in such a way as to substantially cover the hydrophobic binding pocket located on the β8 subunit head domain. Additionally, C6D4 was found to interact extensively with the SDL of β8. FIG. 8 illustrates the overlapping of the C6D4 epitope with the ligand binding pocket of integrin αvβ8, showing how it can prevent the association of the integrin with latent TGF-β, and thus the activation of latent TGF-β. Importantly, all contact residues with C6D4 are believed to be conserved in αvβ8 across all mammalian species. This is in contrast to the allosteric inhibitor B5, which only reacts significantly against human αvβ8.


Example 4. Modeling of C6D4 Effects on Lung Cancer Survival

Syngeneic models for the study of lung cancer are very limited. The Lewis lung carcinoma (LLC) model is the only reproducible syngeneic lung cancer model currently widely in use. LLC is a cell line established from the lung of a C57BL mouse bearing a primary Lewis lung carcinoma. This line is highly tumorigenic and is used to model pulmonary metastasis that results after resection of the primary tumor. In this way the model mimics the clinical scenario closely. It is a useful model for evaluating the efficacy of chemotherapeutic agents in vivo. An advantage of the LLC model is that tumor cells are immunologically compatible, unlike the immunodeficient strains used in most other xenograft models. The LLC model was used as a preclinical model to evaluate vinorelbine prior to its use in clinical trials. The LLC cell line is injected subcutaneously into the subcutis of C57B6 mice, and within two weeks primary tumors reproducibly reach sizes of 10 mm. After resection of the primary tumor, lung metastasis appears in 2-4 weeks. The primary endpoints in this model are weight loss and lung metastasis number.



FIG. 9 presents result indicating that C6D4 increases survival in the LLC model. Mice received intraperitoneal injections of either C6D4 murine IgG2a or SV5 isotype control (7 mg/kg) at the time of primary tumor removal (day 0), and then once every week until weight loss exceeded 20%. The positive results indicate the first demonstration of an anti-β8 antibody inhibiting lung cancer metastasis. The fact that C6D4 inhibits lung cancer metastasis in this model indicates its potential as a treatment to prevent lung cancer metastasis. Because the mechanism of this antibody in cancer likely involves inhibiting the function or development of immunosuppressive Treg cells, C6D4 can have broad applications to any number of cancers where Treg cells play an immunosuppressive role.



FIG. 28 provides a schematic of the LLC model used herein to evaluate lung metastasis. The LLC tumor cell line is syngeneic to the host C57B/6 strain. This cell line does not express the integrins αvβ6 or αvβ8. The LLC.1 cell line has been passed though mice one time and regrown from lung metastasis. After two weeks, subcutaneously injected tumor (1×106) LLC.1 cells form large tumor nodules (˜1 cm). The tumors are removed surgically and when animals lose 20% of their body weight they are euthanized.


The LLC model lung metastasis experiment described in the preceding paragraph was repeated eleven (11) times and the results in each of the eleven experiments were found to be similar (data not shown). FIGS. 29A and 29B present data from the eleventh experiment indicating that C6D4 increases survival in the LLC model. In each instance, mice received intraperitoneal injections of either C6D4 murine IgG2a or SV5 isotype control (7 mg/kg) at the time of primary tumor removal (day 0), and then once every week until weight loss exceeded 20%. The results indicate the anti-β8 antibody (C6D4) inhibits lung cancer metastasis. Survival curves in FIG. 29A represent mice euthanized for reasons of local recurrence or weight loss. In FIG. 29B, the animals removed for local recurrence are excluded. At autopsy, the animals with 20% weight loss all have metastatic implants in their lungs. The C6D4 antibodies were injected for up to 90 days in surviving animals. Interestingly, post-mortem examination did not reveal any abnormal inflammatory response in the tissues examined. The fact that C6D4 inhibits lung cancer metastasis in this model indicates its potential as a treatment to prevent lung cancer metastasis. Because the mechanism of this antibody in cancer likely involves inhibiting the function or development of immunosuppressive Treg cells, C6D4 can have broad applications to any number of cancers where Treg cells play an immunosuppressive role.


The effect of C6D4 was also evaluated with respect to tumor growth and tumor immune response. From the resected LLC.1 primary tumors in mice that received two injections of isotype control (B5, which only cross reacts with human and not mouse b8) or C6D4 (which cross-reacts with mouse and human), the primary tumor weights were recorded and dimensions measured. The tumors were enzymatically disaggregated and immune cells isolated and counted. Flow cytometry was performed and tumor infiltrating immune cells separated from tumor cells using Percoll gradient centrifugation. FIGS. 30A-F is one of three experiments with similar results (remaining data not shown). In each experiment, n was greater than, or equal to, 10 in each test group.


Example 5. C6D4 Effects on Metastatic Disease Using a Melanoma Disease Model

A model for the study of metastasis was tested herein that utilized the B16-F10 tumor cell line. The B16-F10 highly metastatic tumor cell line is syngenic to the host C57B/6 strain. This line does not express the integrins αvβ6 or αvβ8. The B16-F10 cell line was transfected with murine ITGb8 and after selection in G418 and two rounds of sorting, a pool of high expressing αvβ8 cells were identified. When injected intravenously via the tail vein, visible lung metastases appeared within 14 days. A schematic of the metastatic disease melanoma model described in this paragraph is provided in FIG. 31. After three injections (i.p.) of isotype control (SV5) or C6D4, both at 7 mg/kg, at days 0, 7 and 14, the mice were euthanized at day 18. FIG. 34A shows photographs of representative lungs in anterior and posterior views; visible lung metastases were counted and the total lung surface area involved with metastases was assessed. FIG. 34B shows the total number of metastases and FIG. 34C shows the percentage of total lung surface area involved in metastatic melanoma.


Example 6. Modeling of C6D4 Effects on Hepatitis B Infection and Disease Outcome

Because the hepatitis B virus (HBV) does not infect mice, research has typically focused on using transgenic and knockout mouse models to study HBV immunity. In this model, viral antigens in the liver are exposed to an immune system that is not immunologically tolerant, and that has not been previously exposed to HBV. The goal is to mimic the immunologic events that would normally occur during primary HBV infection. In addition, this model permits manipulation of the immune system that is exposed to the virus, to be able to identify and dissect the cells, cytokines, and chemokines contributing to chronic hepatitis or disease resolution.


To generate the model, the resident (tolerized) immune system of the HBV-transgenic mice is ablated by backcrossing to immune-deficient strains (Mombaerts et al. (1992) Nature 360:225 and Mombaerts et al. (1992) Cell 68:869). This breeding strategy generates animals expressing high levels of viral antigen (HBV-Env) or virus (HBV-replication) in the liver, in the absence of a tolerant immune system (Baron et al. (2002) Immunity 16:583). Into these mice, HBV-naive syngeneic splenocytes (the equivalent of a whole spleen) are transferred from wild-type mice to reconstitute the immune system, mimic the point of primary infection, and test the importance of cellular and soluble mediators in HBV pathogenesis. Careful monitoring of immune responses and pathologic outcomes has revealed the utility of this model in mimicking or modifying acute and chronic HBV infection (Publicover et al. (2011) J Clin. Investigation 2011:1154 and Publicover et al. (2013) J Clin. Investigation 123:3728). In this way, the mouse model provides an experimental system to examine the reversibility of the altered immune priming that facilitates HBV persistence, and to test immune-modulatory therapeutics.


Results shown in FIG. 10 indicate that C6D4 induces HBV viral clearance in the chronic infection mouse model without causing hepatitis. In the figure, HepB surface antigen (HBSag) is a surrogate for intact HBV. Clearance of HBSag is a marker of HBV clearance. ALT is the liver enzyme monitored to measure liver inflammation and damage. The normal range of ALT in mice is 15-40. It can be seen from the data that the C6D4 antibody promoted HBsAg clearance in three of four chronic HBV model mice.


Example 7. Construction and Characterization of Composite Antibody 4F1F9

A yeast display scFV library was created using V-genes from hybridoma clones 6B9 and 4F1, a new clone 6B9.1 was selected from this library, then another yeast display scFV library was created using the V-gene of 6B9.1 and random mutagenesis, sixteen affinity-matured variant from this second library were characterized in terms of binding affinity and two clones C4 and D10 were transformed in to rabbit IgG format, both reacts weakly with human β8 in formalin-fixed paraffin-embedded tissue. A third mutagenic scFV library was then created from the variable regions of these two antibodies and inserted in a phage display vector and displayed as scFv on the phage surface (FIG. 11A-B). The induced phage library was screened against immobilized paraffin-embedded human αvβ8. Multiple rounds of selection were carried out, and fifteen phage clones were characterized in detail before the final clone F9 (FIG. 11A-B) was picked and transformed into IgG format for in vitro characterization.


Clone F9 in the IgG format was found to work efficiently in formalin-fixed paraffin-embedded tissues. The clone can be suitable for use as a companion diagnostic, for example to determine tumors expressing αvβ8 or infiltrated by immune cells expressing αvβ8 (i.e. dendritic cells, Treg cells), as a bioimaging reagent for measuring β8-specific tumor uptake and for informing C6D4 treatment decisions. The F9 antibody can also be used to detect αvβ8 in fluid or tissue lysate samples using ELISA.


Example 8. Methods to Inhibit and/or Treat H. pylori Pathogenicity

The bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately half of the world's population and is associated with peptic ulcer disease, gastric carcinoma and gastric lymphoma (MALToma). The pathogenicity of Helicobacter pylori is linked to a type IV secretion system and the cytotoxicity-associated gene pathogenicity island cagPAI. The cagPAI proteins are transcribed from a 40 kb stretch of H. pylori DNA encoding ˜31 genes of which one, cagL, contains an RGDL integrin binding motif. This RGDL motif is thought to act as a receptor for integrins so that the H. pylori pilus can interact with gastric epithelial cells and then penetrate the cell membrane and the oncogenic toxin cagA can be injected into the cell (see Kwok, et al, Nature, 2007449, 862-866, and Barden, et al, Journal of Molecular Biology, 2015, 427 (6) Part B, 1304-1315). We have used the anti-β8 clone F9 to stain human stomach biopsies and have found that the integrin αvβ8 is expressed by gastric crypt epithelial cells and this expression is increased in patients with chronic active gastritis due to H. pylori infection (see FIGS. 21 and 22). The ectodomain of integrins αvβ6 and αvβ8, but not other RGD-binding integrins (αvβ1, αvβ3, αvβ5 and α5β1) have been shown to preferentially bind to CagL via an RGDL dependent mechanism (see Barden, et al, Gastroenterology, 2010, 138(3). Previously, it was thought that the α5 β1 integrin was the main CagL receptor on gastric epithelial cells (see Kwok, et al, Nature, 2007, 449 (7164):862-6. We have found that the integrins αvβ6 and αvβ8 bind with similar efficiency to CagL while the αvβ3 integrin does not bind to CagL (See FIG. 23). The αvβ8-mediated binding to CagL can be efficiently blocked by C6D4 (See FIG. 24). The αvβ8 integrin also mediates strong cell adhesion to CagL (see FIG. 25) and CagL can compete for αvβ8-mediated cell adhesion to the TGF-β3 RGD peptide, indicating that αvβ8 binds to the RGD site of CagL (See FIG. 26). C6D4 can efficiently block cell adhesion to CagL (See FIG. 27).


Blocking αvβ8-mediated binding of CagL with C6D4 or its derivatives (i.e. IgA, monomeric or dimeric) can be used as a method to inhibit H. pylori pathogenicity (i.e. peptic ulcer disease, gastric carcinoma or MALToma) by blocking entry of the oncogenic toxin CagA. In addition, C6D4 could provide protection against H. pylori itself or from its indirect oncogenic and toxic effects by inhibiting Treg function and increasing more effective immunity against H. pylori, gastric carcinoma, and MALToma. Such effects can be predicted by findings in murine models where H. pylori immune escape has been shown to be mediated by dendritic cell-induced Treg skewing and Th17 suppression (see Kao, et al, Gastroenterology, 2010 138(3):1046-54). Because the integrin αvβ8-mediated TGF-β activation has been shown to be required for Treg development and function (see Worthington, et al, Immunity, 2015, Volume 42, Issue 5, pp. 903-915), inhibiting αvβ8-mediated TGF-β activation using C6D4 or its derivatives will protect against the oncogenic effects of H. pylori infection by enhancing immunity to H. Pylori itself while simultaneously increasing anti-tumoral immunity. Another possible mechanism by which blocking αvβ8-mediated TGF-β activation with C6D4 or its derivatives could block Treg function is by inhibiting migration of Tregs to the H. pylori infected gastric mucosa. The chemokine CCL20 is a potent chemokine for Tregs and dendritic cells, which are required for Treg differentiation, and αvβ8-mediated TGF-β activation provides a major contribution to CCL20 production and function (see Cook, et al, Gut (2014), 63(10):1550-9; Brand, et al, J Biol Chem, 2015, 290(23):14717-28, Hashimoto, et al, J Immunol 195(3):1182-90). Therefore, treating patients with C6D4 or another anti-αvβ8 antibody alone, in combination with antibodies to other CagL binding integrins (α5β1, Act-1, or αvβ6, 3G9) or in combination with standard H. pylori therapy (i.e. bismuth salts, proton pump inhibitors, macrolides, amoxicillin, metronidazole) would treat not only the pathogenic mechanism of H. pylori but would enhance immunity to more efficiently eliminate H. pylori, while at the same time protecting and/or treating the malignant complications of chronic H. pylori infection.


Example 9. Construction of Composite Humanized Antibody C6D4


FIG. 46, FIG. 50, and FIG. 51, show sequence alignment of various C6D4 humanized clones. FIGS. 50 and 51 also provide heavy chain and light chain amino acid consensus sequences for the humanized C6D4 related clones. The C6D4 antibody humanization focused on the V domain framework region of both the heavy and light chain. The humanization process was performed to include three criteria:

    • (1) The humanized version of antibody (HuC6D4) should have similar or improved affinity and specificity for αvβ8 as the murine version C6D4;
    • (2) The final amino acid in the HuC6D4 antibody framework region should be as close as possible to the translated antibody framework region of the human germline version that was selected as the target gene family (VH1/VK3);
    • (3) Production levels of the final humanized version (HuC6D4) in IgG or other format should be scalable for industry application.


We designed a potential humanized lead version of the murine C6D4 based on the chosen germline of human antibody (VH1/VK3), and the humanization algorithm developed at UCSF, and other published information for antibody human drug development, with main consideration on IgG general structure, VH-VL interface, IgG folding packing, surface accessibility, vernier zone impact, humanization hotspots and other risk factors.


These designed lead versions were synthesized and expressed as scFV using yeast display. The measured Kd showed an approximate 2-fold decrease from the parent murine C6D4 scFv.


Next, a random mutation based yeast scFv display library was created using the humanized lead version as the starting point, and FACS sorting performed to pick the best binders to αvβ from the displayed yeast library. Three mutant candidates (C6D4-RGD1, C6D4-RGD2 and C6D4-RGD3) were chosen for further testing in IgG format (See, for example FIG. 38C and FIG. 39).


Example 10. Characterization of Humanized C6D4 and CD64-RGD3 Binding Affinity

Shown in FIG. 39 is cell surface staining experiments of C6VH expressed with either RGD1, RGD2, or RGD3 mutants (as disclosed in Example 8) as rabbit IgG. Binding to human Cho cells expressing αvβ8 was expressed as a percentage of binding of C6D4. The results show that RGD3 mutant has substantially higher relative binding to αvβ8 as compared to wildtype C6D4, RGD1 mutant or RDG2 mutant.



FIG. 40 shows cell surface staining experiments of C6VH expressed with either D4 Vk or RGD1, RGD2 or RGD3 mutants (as disclosed in Example 8) as rabbit IgG. Binding to Cho cells expressing human αvβ8 or SW480 cells expressing αvβ6 are shown. Relative binding is defined as staining compared to staining of non-transfected Cho or SW480 cells. The results show that the C6D4-RGD3 mutant has substantially higher relative binding to αvβ6 as compared to wildtype C6D4, RGD1 mutant, or RDG2 mutant.


Shown in FIG. 41 is a binding experiment of C6VH expressed with either D4 Vk or RGD1, RGD2 or RGD3 mutants (as disclosed in Example 8) as rabbit IgG to various av-integrins. The integrins αvβ1, αvβ3, αvβ5, αvβ6 and αvβ8 were purchased from R&D systems. All integrins were coated on ELISA plates at 2 mg/ml, blocked with BSA, and antibodies were allowed to bind. Binding of C6D4 and RGD3 was detected with anti-rabbit HRP. The results shown are relative to control wells coated with anti-av (clone 8B8) where av-integrins were detected with another av-antibody recognizing an non-overlapping epitope (L230-biotin), followed by SA-HRP. The results show that RGD3 mutant has substantially higher binding to αvβ6, while C6D4 has higher relative binding to αvβ8.


C6D4 and C6D4-RGD3 were also shown to bind avidly to αvβ8. Humanized C6D4 or C6D4-RGD3 (Frameworks and CH1 are human; hinge and CH2-3 are mouse) were immobilized on ELISA plates at the indicated concentrations. As a negative control, some wells were coated with anti-SV5 at the same concentrations. Non-specific binding sites were blocked with BSA. Recombinant αvβ8 ectodomain (0.5 μg/ml) was added to each well and after binding and washing in binding buffer (1 mM Ca++ and Mg++), the bound αvβ8 was detected with biotinylated anti-αv (8b8) and detected with SA-HRP. The results of this experiment are shown as specific binding (minus SV5 control)(FIG. 47). The results show that C6D4 and C6D4-RGD3 outperform murine C6D4 and C6D4-RGD3 antibodies by avidly binding αvβ8.


Example 11. Characterization of Humanized C6D4-RGD3 Binding Structure

As set forth in Example 3, modeling and CryoEM maps can be used to provide structural information with respect to antibody binding. FIG. 48A-D presents a map of RGD3 binding to the ligand pocket of αvβ8. The map is derived from C6D4 in complex with αvβ8 and is compared to C6D4-RGD3 in complex with αvβ8. The density map when compared with the headpiece of αvβ6 in complex with LTGFβ1 shows the similarity of the position of the RGD residues of LTGFB1 with the RGD residues of C6D4-RGD3. Magenta wire represent s RGD3+αvβ8 density map, Black represents C6D4+αvβ8 density map; Gold represents C6D4 Fab; Green represents the αv subunit; Blue represents the 138 subunit.



FIG. 49 is a cryoEM map showing the CDR Vk1 loop of C6D4-RGD3 occupies the ligand binding pocket of αvβ8. Here, models of C6D4 Fab-αvβ8 (FIG. 49A) are compared with RGD3-αvβ8 map (FIG. 49B) or in overlay (FIG. 49C) based on cryoEM derived density maps. The anti-αv 11D12V2 Fab was used to increase molecular mass of the complex and to assist in particle orientation. The results show that the C6D4 and C6D4-RGD3 complexes possess highly similar positioning.


Example 12. Characterization of D4-RGD3 Mutants Having Various Loop Length of the RGD and Flanking Sequence of Pro-TGF-Beta 3

There is an amphipathic alpha-helix following the R-G-D sequence of Latent-TGF-beta1 and Latent-TGF-beta3. Of the 3 engineered versions (RGD1, RGD2, RGD3) of D4 only RGD3 contained the amphipathic helix. Therefore, we engineered various loops containing portions of the RGD and flanking sequences of Pro-TGF-beta 3 to determine if loop length altered affinity, specificity or production of each clone. Because the VH was not altered, we cloned all new constructs into the CDRL1 region of the C6D4 murine IgG expression vector and transfected the various new D4-RGD3-mutants into 293 cells. After 10 days, protein expression was compared using an murine IgG ELISA (shown as relative expression levels in the Table provided below). Integrins αvβ1, αvβ3, αvβ5, αvβ6 or αvβ8 (R&D systems) were coated on Immulon 4HBX ELISA plates (Thermo Scientific) for 1 hour at room temperature followed by blocking with a 5% bovine serum albumin solution (Sigma-Aldrich) overnight at 4° C. Supernatants with various RGD3 mutant antibodies were applied at 1/10 dilutions onto the wells for 1 hour at room temperature. Antibodies bound to the integrins were detected with an anti-mouse IgG-HRP antibody (GE Healthcare) and revealed with TMB substrate (Pierce). Binding was quantified by intensity as 0-4 (0 representing no apparent binding; 4 representing robust binding) and results normalized to expression. As can be seen from the data provided in the table below, different CDRL1 swaps into Vk D4 show distinct binding specificities. As a result, we identified several mutants having bi-specific (e.g., RGD3-2 and RGD3-3) or tri-specific (e.g., RGD3-7 and RGD3-8) binding specificities.
















Murine





IgG

Binding to


Inserted Vk CDRL1
H + L
IgG ELISA
recombinant


domain swap into D4
Vector
Expression
human integrins















CDRL1
VH
Vk
Level
αvβ1
αvβ3
αvβ5
αvβ6
αvβ8





KSSQSLLNSRSRKNYLA
C6
D4
4
0
0
0
0
4


(SEQ ID NO: 572)













KSSQSLLNSGRGDLGNALA
C6
RGD2
4
0
0
0
0
2


(SEQ ID NO: 574)













KSSQSLLGRGDLGRLKKQKDHNALA
C6
RGD3-
3
0
0
0
4
1


(SEQ ID NO: 576)

1











KSSQSLLGRGDLGRLKKQKDNALA
C6
RGD3-
3
0
0
0
4
4


(SEQ ID NO: 577)

2











KSSQSLLGRGDLGRLKKQKNALA
C6
RGD3-
3
0
0
0
4
4


(SEQ ID NO: 578)

3











KSSQSLLGRGDLGRLKKQNALA
C6
RGD3-
3
0
0
0
4
4


(SEQ ID NO: 579)

4











KSSQSLLGRGDLGRLKKNALA
C6
RGD3
3
0
0
0
4
4


(SEQ ID NO: 575)













KSSQSLLGRGDLGRLKNALA
C6
RGD3-
3
0
0
0
4
4


(SEQ ID NO: 580)

6











KSSQSLLGRGDLGRLNALA
C6
RGD3-
3
0
4
0
2
2


(SEQ ID NO: 581)

7











KSSQSLLGRGDLGRNALA
C6
RGD3-
3
0
3
0
3
3


(SEQ ID NO: 582)

8











KSSQSLLGRGDLGNALA
C6
RGD1
2
0
0
0
0
1


(SEQ ID NO: 573)













KSSQSLLGRGDLGRLKKQKDHH
C6
RGD3-
1
0
0
0
3
0


(SEQ ID NO: 583)

9











KSSQSLLGRGDLGRLKKQKDH
C6
RGD3-
2
0
0
0
1
0


(SEQ ID NO: 584)

10











KSSQSLLGRGDLGRLKKQKD
C6
RGD3-
2
0
0
0
2
1


(SEQ ID NO: 585)

11











KSSQSLLGRGDLGRLKKQK
C6
RGD3-
2
0
1
0
2
0


(SEQ ID NO: 586)

12











KSSQSLLGRGDLGRLKKQ
C6
RGD3-
2
0
0
0
2
0


(SEQ ID NO: 587)

13











KSSQSLLGRGDLGRLKK
C6
RGD3-
3
0
0
0
1
1


(SEQ ID NO: 588)

14











KSSQSLLGRGDLGRLK
C6
RGD3-
3
0
0
0
0
0


(SEQ ID NO: 589)

15











KSSQSLLGRGDLGRL
C6
RGD3-
3
0
0
0
0
0


(SEQ ID NO: 590)

16









Example 13. C6D4 Induces Th1 Bias and Increases CD8 IFN-γ Producing Cells

Seventeen C57B/7 mice were injected with 106 Lewis lung carcinoma (LLC) tumor cells and 8 were injected IP with anti-SV5 (isotype control) or 9 mice with C6D4 (both groups at 7 mg/kg). Mab injections were repeated at day 7 and tumors were harvested at day 11. Tumor infiltrating lymphoid cells were isolated from tumors by enzyme digestion and Percoll gradient centrifugation and stained for CD45, TCRb, CD4, CD8 and surface capture assay for IFNg. Live CD45+ cells were gated and B220, Ly6g, CD11c, CD11b negative, TCRb positive cells were segregated in CD4, CD8, IFN-g positive subsets. The results from this experiment are shown in FIG. 54A-54D. Shown are percentages. * p<0.05, **p<0.01.


All documents (for example, patents, patent applications, books, journal articles, or other publications) cited herein are incorporated by reference in their entirety and for all purposes, to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. To the extent such documents incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any contradictory material.


Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only and are not meant to be limiting in any way. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.










Informal Sequence Listing



B13C4 15-8


SEQ ID NO: 1


EVQLQQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWMG WIKTETGEPTYADDFKG





RFAFSLETSATTAYLQINNLKNEDTAKYFCAI YYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 2


EVQLQQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 3


TFTDYSMH





VH Framework 2


SEQ ID NO: 4


WVKQAPGKGLKWMG





VH CDR2


SEQ ID NO: 5


WIKTETGEPTYADDFKG





VH Framework 3


SEQ ID NO: 6


RFAFSLETSATTAYLQINNLKNEDTAKYFCAI





VH CDR3


SEQ ID NO: 7


YYYGRDS





VH Framework 4


SEQ ID NO: 8


WGQGTTLTVSS





B13C4 15-10


SEQ ID NO: 9


QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWMG WIKTETGEPTYADDFKG 





RFAFSLETSATTAYLQINNLKNEDTAKYFCAI YYYGRDS WGOGTTLTVSS





VH Framework 1


SEQ ID NO: 10


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 11


TFTDYSMH





VH Framework 2


SEQ ID NO: 12


WVKQAPGKGLKWMG





VH CDR2


SEQ ID NO: 13


WIKTETGEPTYADDFKG





VH Framework 3


SEQ ID NO: 14


RFAFSLETSATTAYLQINNLKNEDTAKYFCAI





VH CDR3


SEQ ID NO: 15


YYYGRDS





VH Framework 4


SEQ ID NO: 16


WGQGTTLTVSS





B13H3.2


SEQ ID NO: 17


QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWMG WIKTETDEPTYADDFKE





RFAFSLETSASTANLQIINLKNEDTATYFCAI YYYGRDS WGQGTTLTVSSSEQ





VH Framework 1


SEQ ID NO: 18


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 19


TFTDYSMH





VH Framework 2


SEQ ID NO: 20


WVKQAPGKGLKWMG





VH CDR2


SEQ ID NO: 21


WIKTETDEPTYADDFKE





VH Framework 3


SEQ ID NO: 22


RFAFSLETSASTANLQIINLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 23


YYYGRDS





VH Framework 4


SEQ ID NO: 24


WGQGTTLTVSSSEQ





B13C1231015


SEQ ID NO: 25


QIQLLQSGPELKKPGETVKISCKASGY TFTDYSIH WVKQAPGKGLKWMG WIKTETGEPTYADDFNG 


RFAFSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 26


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 27


TFTDYSIH





VH Framework 2


SEQ ID NO: 28


WVKQAPGKGLKWMG





VH CDR2


SEQ ID NO: 29


WIKTETGEPTYADDENG





VH Framework 3


SEQ ID NO: 30


RFAFSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 31


YYYGRDS





VH Framework 4


SEQ ID NO: 32


WGQGTTLTVSS





B15B11VH


SEQ ID NO: 33


QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFRG 





RFAVSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 34


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 35


TFTDYSMH





VH Framework 2


SEQ ID NO: 36


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 37


RINTETGEPTFADDERG





VH Framework 3


SEQ ID NO: 38


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 39


YYYGRDS





VH Framework 4


SEQ ID NO: 40


WGQGTTLTVSS





B2B2 15-9


SEQ ID NO: 41


QIQLLQSGPELKKPGETVKISCLASGY TFTDYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFGG 





RFAVSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 42


QIQLLQSGPELKKPGETVKISCLASGY





VH CDR1


SEQ ID NO: 43


TFTDYSMH





VH Framework 2


SEQ ID NO: 44


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 45


RINTETGEPTFADDEGG





VH Framework 3


SEQ ID NO: 46


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 47


YYYGRDS





VH Framework 4


SEQ ID NO: 48


WGQGTTLTVSS





R11D12715.3


SEQ ID NO: 49


EVQLVESGGGLVQPGGSLKLSCAASGF TFSSFGMS WVRQTPDKRLELVA TINSNGGSTYYPDNMKG 





RFTISRDNAKNTLYLQMSSLKSEDTAMYYCAS ACYRYGAFFDY WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 50


EVQLVESGGGLVQPGGSLKLSCAASGF





VH CDR1


SEQ ID NO: 51


TFSSFGMS





VH Framework 2


SEQ ID NO: 52


WVRQTPDKRLELVA





VH CDR2


SEQ ID NO: 53


TINSNGGSTYYPDNMKG





VH Framework 3


SEQ ID NO: 54


RFTISRDNAKNTLYLQMSSLKSEDTAMYYCAS





VH CDR3


SEQ ID NO: 55


ACYRYGAFFDY





VH Framework 4


SEQ ID NO: 56


WGQGTTLTVSS





RSDLVH-1


SEQ ID NO: 57


EVQLLESGPELKKPGETVKISCKASGY TFTDYSIH WVKQAPGKGLKWMG WIKTETGEPTYADDFKG





RFAFSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTVTVSS





VH Framework 1


SEQ ID NO: 58


EVQLLESGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 59


TFTDYSIH





VH Framework 2


SEQ ID NO: 60


WVKQAPGKGLKWMG





VH CDR2


SEQ ID NO: 61


WIKTETGEPTYADDFKG





VH Framework 3


SEQ ID NO: 62


RFAFSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 63


YYYGRDS





VH Framework 4


SEQ ID NO: 64


WGQGTTVTVSS





RSDLVH-1


SEQ ID NO: 65


EVQLLESGPELKKPGETVKISCKASGY TFTDYSIH WVKQAPGKGLKWMG WIKTETGEPTYADDFKG 





RFAFSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTVTVSS





VH Framework 1


SEQ ID NO: 66


EVQLLESGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 67


TETDYSIH





VH Framework 2


SEQ ID NO: 68


WVKQAPGKGLKWMG





VH CDR2


SEQ ID NO: 69


WIKTETGEPTYADDFKG





VH Framework 3


SEQ ID NO: 70


RFAFSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 71


YYYGRDS





VH Framework 4


SEQ ID NO: 72


WGQGTTVTVSS





RSDLVH-3


SEQ ID NO: 73


QVQLMQSGPELKKPGETVKISCKASGY TFTDYSIH WVKQAPGKGLKWMG WIKTETGEPTYADDFNG 





RFAFSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 74


QVQLMQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 75


TFTDYSIH





VH Framework 2


SEQ ID NO: 76


WVKQAPGKGLKWMG





VH CDR2


SEQ ID NO: 77


WIKTETGEPTYADDENG





VH Framework 3


SEQ ID NO: 78


RFAFSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 79


YYYGRDS





VH Framework 4


SEQ ID NO: 80


WGQGTTLTVSS





RSDLVH-16


SEQ ID NO: 81


QIQLQQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFRG 





RFAVSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 82


QIQLQQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 83


TFTDYSMH





VH Framework 2


SEQ ID NO: 84


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 85


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 86


RFAVSLETSAS





VH CDR3


SEQ ID NO: 87


YYYGRDS





VH Framework 4


SEQ ID NO: 88


WGQGTTLTVSS





29 and 44


SEQ ID NO: 89


QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFRG 





RFAVSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 90


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 91


TFTDYSMH





VH Framework 2


SEQ ID NO: 92


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 93


RINTETGEPTFADDERG





VH Framework 3


SEQ ID NO: 94


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 95


YYYGRDS





VH Framework 4


SEQ ID NO: 96


WGQGTTLTVSS





A1 = B4 = F9


SEQ ID NO: 97


QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFRG 





RFAVSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDT WGQGTTLSVSS





VH Framework 1


SEQ ID NO: 98


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 99


TFTDYSMH





VH Framework 2


SEQ ID NO: 100


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 101


RINTETGEPTFADDERG





VH Framework 3


SEQ ID NO: 102


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 103


YYYGRDT





VH Framework 4


SEQ ID NO: 104


WGQGTTLSVSS





A5 = C6


SEQ ID NO: 105


QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFRG 





RFAVSLETSASTAYLQINNLKNEDTATYFCAI FYYGRDS WGQGTALTVSS





VH Framework 1


SEQ ID NO: 106


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 107


TFTDYSMH





VH Framework 2


SEQ ID NO: 108


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 109


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 110


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 111


FYYGRDS





VH Framework 4


SEQ ID NO: 112


WGQGTALTVSS





D4 = E6


SEQ ID NO: 113


QIQLLOSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFRG 





RFAVSLETSASTAYLQINNLKNEDTATYFCAI YYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 114


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 115


TFTDYSMH





VH Framework 2


SEQ ID NO: 116


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 117


RINTETGEPTFADDERG





VH Framework 3


SEQ ID NO: 118


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 119


YYYGRDS





VH Framework 4


SEQ ID NO: 120


WGQGTTLTVSS





C6D4


SEQ ID NO: 121


QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFRG 





RFAVSLETSASTAYLQINNLKNEDTATYFCAI FYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 122


QIQLLQSGPELKKPGETVKISCKASGY





VH CDR1


SEQ ID NO: 123


TFTDYSMH





VH Framework 2


SEQ ID NO: 124


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 125


RINTETGEPTFADDERG





VH Framework 3


SEQ ID NO: 126


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 127


FYYGRDS





VH Framework 4


SEQ ID NO: 128


WGQGTTLTVSS





B2B2 35-20


SEQ ID NO: 129


DIVMSQSPSSMYASLGERVTITC KASQDINSYLS WFQQKPGKSPKTLIY RANRLVD 





GVPSRFSGSGSGQDYSLTISSLEYEDMGIYYC LQYDEFPPLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 130


DIVMSQSPSSMYASLGERVTITC





VL CDR1


SEQ ID NO: 131


KASQDINSYLS





VL Framework 2


SEQ ID NO: 132


WFQQKPGKSPKTLIY





VL CDR2


SEQ ID NO: 133


RANRLVD





VL Framework 3


SEQ ID NO: 134


GVPSRFSGSGSGQDYSLTISSLEYEDMGIYYC





VL CDR3


SEQ ID NO: 135


LQYDEFPPLT





VL Framework 4


SEQ ID NO: 136


FGAGTKLELKA





B2B2 35-26


SEQ ID NO: 137


QIVLTQSPSSMYASLGERVTITC KASQDINSYLS WFQQKPGKSPKTLIY RANRLVD GVPSRFSGSG





SGQDYSLTISSLEYEDMGIYYC LQYDEFPPLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 138


QIVLTQSPSSMYASLGERVTITC





VL CDR1


SEQ ID NO: 139


KASQDINSYLS





VL Framework 2


SEQ ID NO: 140


WFQQKPGKSPKTLIY





VL CDR2


SEQ ID NO: 141


RANRLVD





VL Framework 3


SEQ ID NO: 142


GVPSRFSGSGSGQDYSLTISSLEYEDMGIYYC





VL CDR3


SEQ ID NO: 143


LQYDEFPPLT





VL Framework 4


SEQ ID NO: 144


FGAGTKLELKA





B15B11vk34-26


SEQ ID NO: 145


QIVLTQSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKPGTSPKLWIY DTSNLAS GVPARFSGSGS





GTSYSLTISSMEAEDAATYYC QQWSSNPLT FGSGTKLEIKA





VL Framework 1


SEQ ID NO: 146


QIVLTQSPAIMSASPGEKVTMTC





VL CDR1


SEQ ID NO: 147


SASSSVSYME





VL Framework 2


SEQ ID NO: 148


WYQQKPGTSPKLWIY





VL CDR2


SEQ ID NO: 149


DTSNLAS





VL Framework 3


SEQ ID NO: 150


GVPARFSGSGSGTSYSLTISSMEAEDAATYYC





VL CDR3


SEQ ID NO: 151


QQWSSNPLT





VL Framework 4


SEQ ID NO: 152





FGSGTKLEIKA





B15B11vk33-24


SEQ ID NO: 153


EIVLTQSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKPGSSPKLWIY DTSNLAS GVPARFSGSGS





GTSYSLTISSMEAEDAATYYC QQWSSNPLT FGDGTRLEIKA





VL Framework 1


SEQ ID NO: 154


EIVLTQSPAIMSASPGEKVTMTC





VL CDR1


SEQ ID NO: 155


SASSSVSYMH





VL Framework 2


SEQ ID NO: 156


WYQQKPGSSPKLWIY





VL CDR2


SEQ ID NO: 157


DTSNLAS





VL Framework 3


SEQ ID NO: 158


GVPARESGSGS





VL CDR3


SEQ ID NO: 159


QQWSSNPLT





VL Framework 4


SEQ ID NO: 160


FGDGTRLEIKA





B15B11vk35-26


SEQ ID NO: 161


QIVLTQSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKSGTSPKLWIY DTSNLAS GVPARFSGSGS





GTSYSLTISSMEAEDAATYYC QQWSSNPPT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 162


QIVLTQSPAIMSASPGEKVTMTC





VL CDR1


SEQ ID NO: 163


SASSSVSYMH





VL Framework 2


SEQ ID NO: 164


WYQQKSGTSPKLWIY





VL CDR2


SEQ ID NO: 165


DTSNLAS





VL Framework 3


SEQ ID NO: 166


GVPARFSGSGSGTSYSLTISSMEAEDAATYYC





VL CDR3


SEQ ID NO: 167


QQWSSNPPT





VL Framework 4


SEQ ID NO: 168


FGAGTKLELKA





B13C12134-25


SEQ ID NO: 169


DIKMTQSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKSGTSPKRWIY DTSKLAS GVPARFSGSGS





GTSYSLTISSMEAEDAATYYC QQWSSNPFT FGSGTKLEIKA





VL Framework 1


SEQ ID NO: 170


DIKMTQSPAIMSASPGEKVTMTC





VL CDR1


SEQ ID NO: 171


SASSSVSYMH





VL Framework 2


SEQ ID NO: 172


WYQQKSGTSPKRWIY





VL CDR2


SEQ ID NO: 173


DTSKLAS





VL Framework 3


SEQ ID NO: 174


GVPARFSGSGSGTSYSLTISSMEAEDAATYYC





VL CDR3


SEQ ID NO: 175


QQWSSNPFT





VL Framework 4


SEQ ID NO: 176


FGSGTKLEIKA





B13C12133-26


SEQ ID NO: 177


QMVLTHSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKPGSSPKPWIY GTSNLAS GVPARFSGSGS





GTSYSLTISRMEAEDAATYYC QQWSSNPPT FGDGTRLEIKA





VL Framework 1


SEQ ID NO: 178


QMVLTHSPAIMSASPGEKVTMTC





VL CDR1


SEQ ID NO: 179


SASSSVSYMH





VL Framework 2


SEQ ID NO: 180


WYQQKPGSSPKPWIY





VL CDR2


SEQ ID NO: 181


GTSNLAS





VL Framework 3


SEQ ID NO: 182


GVPARFSGSGSGTSYSLTISRMEAEDAATYYC





VL CDR3


SEQ ID NO: 183


QQWSSNPPT





VL Framework 4


SEQ ID NO: 184


FGDGTRLEIKA





B13C4 35-20


SEQ ID NO: 185


DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 186


DIVMSQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 187


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 188


WYQQKPGQSPRLLIY





VL CDR2


SEQ ID NO: 189


WASTRES





VL Framework 3


SEQ ID NO: 190


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 191


KQSYNLLT





VL Framework 4


SEQ ID NO: 192


FGAGTKLELKA





B15B11vk35-20


SEQ ID NO: 193


DIVMSQSPSSLAVSAGENVTVSC KSSQSLLNSRTRKNYLA WYQQKPGQSPKLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYFC KQSYNLLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 194


DIVMSQSPSSLAVSAGENVTVSC





VL CDR1


SEQ ID NO: 195


DIVMSQSPSSLAVSAGENVTVSC





VL Framework 2


SEQ ID NO: 196


WYQQKPGQSPKLLIY





VL CDR2


SEQ ID NO: 197


WASTRES





VL Framework 3


SEQ ID NO: 198


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYFC





VL CDR3


SEQ ID NO: 199


KQSYNLLT





VL Framework 4


SEQ ID NO: 200


FGAGTKLELKA





B13C12335-25


SEQ ID NO: 201


DIKMTQSPSSLAVSPGEKVTMSC KSSQSLLHSRTRKNYLA WYQQKPGQSPKLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 202


DIKMTQSPSSLAVSPGEKVTMSC





VL CDR1


SEQ ID NO: 203


KSSQSLLHSRTRKNYLA





VL Framework 2


SEQ ID NO: 204


WYQQKPGQSPKLLIY





VL CDR2


SEQ ID NO: 205


WASTRES





VL Framework 3


SEQ ID NO: 206


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 207


KQSYNLLT





VL Framework 4


SEQ ID NO: 208


FGAGTKLELKA





B13C1233520


SEQ ID NO: 209


DIVMSQSPSSLAVSPGEKVTMSC KSSQSLLHSRTRKNYLA WYQQKPGQSPKLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 210


DIVMSQSPSSLAVSPGEKVTMSC





VL CDR1


SEQ ID NO: 211


KSSQSLLHSRTRKNYLA





VL Framework 2


SEQ ID NO: 212


WYQQKPGQSPKLLIY





VL CDR2


SEQ ID NO: 213


WASTRES





SEQ ID NO: 214


VL Framework 3


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 215


KQSYNLLT





VL Framework 4


SEQ ID NO: 216


FGAGTKLELKA





RSDLVK-1


SEQ ID NO: 217


DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKR





VL Framework 1


SEQ ID NO: 218


DIVMTQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 219


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 220


WYQQKPGQSPRLLIY





VL CDR2


SEQ ID NO: 221


WASTRES





VL Framework 3


SEQ ID NO: 222


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 223


KQSYNLLT





VL Framework 4


SEQ ID NO: 224


FGAGTKLELKR





RSDLVK-6


SEQ ID NO: 225


DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTRLEIKR





VL Framework 1


SEQ ID NO: 226


DIVMTQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 227


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 228


WYQQKPGQSPRLLIY





VL CDR2


SEQ ID NO: 229


WASTRES





VL Framework 3


SEQ ID NO: 230


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 231


KQSYNLLT





VL Framework 4


SEQ ID NO: 232


FGAGTRLEIKR





RSDLVK-10


SEQ ID NO: 233


DIVMTQSPSSLAVSAGENVTVSC KSSQSLLNSRTRKNYLA WYQQKPGQSPKLLIY WASTRES GVPD





RFTGSGSGTGFTLTISSVQAEDLAVYFC KQSYNLLT FGAGTRLEIKR





VL Framework 1


SEQ ID NO: 234


DIVMTQSPSSLAVSAGENVTVSC





VL CDR1


SEQ ID NO: 235


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 236


WYQQKPGQSPKLLIY





VL CDR2


SEQ ID NO: 237


WASTRES





VL Framework 3


SEQ ID NO: 238


GVPDRFTGSGSGTGFTLTISSVQAEDLAVYFC





VL CDR3


SEQ ID NO: 239


KQSYNLLT





VL Framework 4


SEQ ID NO: 240


FGAGTRLEIKR





RSDLVK-13


SEQ ID NO: 241


DIVMSQSPSSLAVSPGEKVTMSC KSSQSLLHSRTRKNYLA WYQQKPGQSPKLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKR





VL Framework 1


SEQ ID NO: 242


DIVMSQSPSSLAVSPGEKVTMSC





VL CDR1


SEQ ID NO: 243


KSSQSLLHSRTRKNYLA





VL Framework 2


SEQ ID NO: 244


WYQQKPGQSPKLLIY





VL CDR2


SEQ ID NO: 245


WASTRES





VL Framework 3


SEQ ID NO: 246


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 247


KQSYNLLT





VL Framework 4


SEQ ID NO: 248


FGAGTKLELKR





29


SEQ ID NO: 249


DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYCKQSYNLLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 250


DIVMSQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 251


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 252


WYQQKPGQSPRLLIY





VL CDR2


SEQ ID NO: 253


WASTRES





VL Framework 3


SEQ ID NO: 254


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 255


KQSYNLLT





VL Framework 4


SEQ ID NO: 256


FGAGTKLELKA





44


SEQ ID NO: 257


DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQDEDLAVYYC KQSYNLLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 258


DIVMSQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 259


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 260


WYQQKPGQSPRLLIY





VL CDR2


SEQ ID NO: 261


WASTRES





VL Framework 3


SEQ ID NO: 262


GVPDRFTGSGSGTDFTLTISSVQDEDLAVYYC





VL CDR3


SEQ ID NO: 263


KQSYNLLT





VL Framework 4


SEQ ID NO: 264


FGAGTKLELKA





A1 = B4 = F9


SEQ ID NO: 265


DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 266


DIVMSQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 267


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 268


WYQQKPGQSPRLLIY





VL CDR2


SEQ ID NO: 269


WASTRES





VL Framework 3


SEQ ID NO: 270


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 271


KQSYNLLT





VL Framework 4


SEQ ID NO: 272


FGAGTKLELKA





A5 = C6


SEQ ID NO: 273


DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





VL Framework 1


SEQ ID NO: 274


DIVMSQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 275


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 276


WYQQKPGQSPRLLIY





VL CDR2


SEQ ID NO: 277


WASTRES





VL Framework 3


SEQ ID NO: 278


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 279


KQSYNLLT





VL Framework 4


SEQ ID NO: 280


FGAGTKLELKA





D4 = E6


SEQ ID NO: 281


DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQXPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQDEDLAVYYC KQSYNLLS FGAGTKLELKA





VL Framework 1


SEQ ID NO: 282


DIVMSQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 283


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 284


WYQQKPGQXPRLLIY





VL CDR2


SEQ ID NO: 285


WASTRES





VL Framework 3


SEQ ID NO: 286


GVPDRFTGSGSGTDFTLTISSVQDEDLAVYYC





VL CDR3


SEQ ID NO: 287


KQSYNLLS





VL Framework 4


SEQ ID NO: 288


FGAGTKLELKA





C6D4


SEQ ID NO: 289


DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLS FGAGTKLELKR





VL Framework 1


SEQ ID NO: 290


DIVMTQSPSSLAVSAGEKVTMSC





VL CDR1


SEQ ID NO: 291


KSSQSLLNSRTRKNYLA





VL Framework 2


SEQ ID NO: 292


WYQQKPGQSPRLLIY





VL CDR2


SEQ ID NO: 293


WASTRES





VL Framework 3


SEQ ID NO: 294


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VL CDR3


SEQ ID NO: 295


KQSYNLLS





VL Framework 4


SEQ ID NO: 296


FGAGTKLELKR





F9 VH


SEQ ID NO: 297


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIQ WVKQRPGQGLEWIGVINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 298


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 299


AFTDYLIQ





VH Framework 2


SEQ ID NO: 300


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 301


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 302


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 303


EAGNYTYAMDY





VH Framework 4


SEQ ID NO: 304


WGQGTSVTVSS





F9 VL


SEQ ID NO: 305


DIVMTQSPAFLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLQPEDFGSYYC QHHHGTPYT FGGGTKLEIKR





VL Framework 1


SEQ ID NO: 306


DIVMTQSPAFLSASVGETVTITC





VL CDR1


SEQ ID NO: 307


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 308


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 309


NAKTLAE





VL Framework 3


SEQ ID NO: 310


GVPSRFSGSGSGTQFSLKINSLOPEDFGSYYC





VL CDR3


SEQ ID NO: 311


QHHHGTPYT





VL Framework 4


SEQ ID NO: 312


FGGGTKLEIKR





B2B2 VH CDR1


SEQ ID NO: 313


TFTDYSMH





B2B2 VH CDR2


SEQ ID NO: 314


RINTETGEPTFADDFGG





B2B2 VH CDR3


SEQ ID NO: 315


YYYGRDS





B13C4 VH CDR1


SEQ ID NO: 316


TETDYSMH





B13C4 VH CDR2


SEQ ID NO: 317


WIKTETGEPTYADDFKG





B13C4 VH CDR3


SEQ ID NO: 318


YYYGRDS





B13H3 VH CDR1


SEQ ID NO: 319


TFTDYSMH





B13H3 VH CDR2


SEQ ID NO: 320


WIKTETDEPTYADDFKE





B13H3 VH CDR3


SEQ ID NO: 321


YYYGRDS





B15B11 VH CDR1


SEQ ID NO: 322


TFTDYSMH





B15B11 VH CDR2


SEQ ID NO: 323


RINTETGEPTFADDERG





B15B11 VH CDR3


SEQ ID NO: 324


YYYGRDS





B13C12 VH CDR1


SEQ ID NO: 325


TFTDYSIH





B13C12 VH CDR2


SEQ ID NO: 326


WIKTETGEPTYADDFNG





B13C12 VH CDR3


SEQ ID NO: 327


YYYGRDS





A1 VH CDR1


SEQ ID NO: 328


TFTDYSMH





A1 VH CDR2


SEQ ID NO: 329


RINTETGEPTFADDER





A1 VH CDR3


SEQ ID NO: 330


YYYGRDT





C6 VH CDR1


SEQ ID NO: 331


TFTDYSMH





C6 VH CDR2


SEQ ID NO: 332


RINTETGEPTFADDERG





C6 VH CDR3


SEQ ID NO: 333


FYYGRDS





B2B2 Vk CDR1


SEQ ID NO: 334


KASQDINSYLS





B2B2 Vk CDR2


SEQ ID NO: 335


RANRLVD





B2B2 Vk CDR3


SEQ ID NO: 336


LQYDEFPPLT





B13C4 Vk CDR1


SEQ ID NO: 337


KSSQSLLNSRTRKNYLA





B13C4 Vk CDR2


SEQ ID NO: 338


WASTRES





B13C4 Vk CDR3


SEQ ID NO: 339


KQSYNLLT





B13H3 Vk CDR1


SEQ ID NO: 340


KSSQSLLNSRIRKNYLA





B13H3 Vk CDR2


SEQ ID NO: 341


WASTRES





B13H3 Vk CDR3


SEQ ID NO: 342


KQSYNLLT





B15B11.1 Vk CDR1


SEQ ID NO: 343


SASSSVSYMH





B15B11.1 Vk CDR2


SEQ ID NO: 344


DTSNLAS





B15B11.1 Vk CDR3


SEQ ID NO: 345


QQWSSNPLT





B15B11.2 Vk CDR1


SEQ ID NO: 346


SASSSVSYMH





B15B11.2 Vk CDR2


SEQ ID NO: 347


DTSNLAS





B15B11.2 Vk CDR3


SEQ ID NO: 348


QQWSSNPPT





B15B11.3 Vk CDR1


SEQ ID NO: 349


KSSQSLLNSRTRKNYLA





B15B11.3 Vk CDR2


SEQ ID NO: 350


WASTRES





B15B11.3 Vk CDR3


SEQ ID NO: 351


KQSYNLLT





B13C12.1 Vk CDR1


SEQ ID NO: 352


SASSSVSYMH





B13C12.1 Vk CDR2


SEQ ID NO: 353


DTSKLAS





B13C12.1 Vk CDR3


SEQ ID NO: 354


QQWSSNPFT





B13C12.2 Vk CDR1


SEQ ID NO: 355


SASSSVSYMH





B13C12.2 Vk CDR2


SEQ ID NO: 356


GTSNLAS





B13C12.2 Vk CDR3


SEQ ID NO: 357


QQWSSNPPT





B13C12.3 Vk CDR1


SEQ ID NO: 358


KSSQSLLHSRTRKNYLA





B13C12.3 Vk CDR2


SEQ ID NO: 359


WASTRES





B13C12.3 VK CDR3


SEQ ID NO: 360


KQSYNLLT





D4 VK CDR1


SEQ ID NO: 361


KSSQSLLNSRIRKNYLA





D4 VK CDR2


SEQ ID NO: 362


WASTRES





D4 Vk CDR3


SEQ ID NO: 363


KQSYNLLS





RSDL VH-1 VH CDR1


SEQ ID NO: 364


TFTDYSIH





RSDL VH-1 VH CDR2


SEQ ID NO: 365


WIKTETGEPTYADDFKG





RSDI VH CDR3


SEQ ID NO: 366


YYYGRDS





RSDL VH-3 VH CDR1


SEQ ID NO: 367


TFTDYSIH





RSDL VH-3 VH CDR2


SEQ ID NO: 368


WIKTETGEPTYADDFNG





RSDL VH-3 VH CDR3


SEQ ID NO: 369


YYYGRDS





RSDLVH-16 VH CDR1


SEQ ID NO: 370


TFTDYSMH





RSDLVH-16 VH CDR2


SEQ ID NO: 371


RINTETGEPTFADDFRG





RSDLVH-16 VH CDR3


SEQ ID NO: 372


YYYGRDS





RSDLVK-10 VK CDR1


SEQ ID NO: 373


KSSQSLLNSRTRKNYLA





RSDLVK-10 VK CDR2


SEQ ID NO: 374


WASTRES





RSDLVK-10 VK CDR3


SEQ ID NO: 375


KQSYNLLT





RSDLVK-13 VK CDR1


SEQ ID NO: 376


KSSQSLLHSRTRKNYLA





RSDLVK-13 VK CDR2


SEQ ID NO: 377


WASTRES





RSDLVK-13 VK CDR3


SEQ ID NO: 378


KQSYNLLT





D4H VH CDR1


SEQ ID NO: 379


TFTDYSMH





D4H VH CDR2


SEQ ID NO: 380


RINTETGEPTFADDFRG





D4H VH CDR3


SEQ ID NO: 381


YYYGRDS





C6k Vk CDR1


SEQ ID NO: 382


KSSQSLLNSRTRKNYLA





C6k Vk CDR2


SEQ ID NO: 383


WASTRES





C6k Vk CDR3


SEQ ID NO: 384


KQSYNLLT





heavy chain FR1


SEQ ID NO: 385


(Q/E)IQL(L/M)(Q/E)SGPELKKPGETVKISCKASGY





heavy chain FR2


SEQ ID NO: 386


WVKQAPGKGLKW(V/M)A





heavy chain FR3


SEQ ID NO: 387


RFA(V/F)SLETSASTAYLQINNLKNEDTATYFCAI





heavy chain FR4


SEQ ID NO: 388


WYQQKPGQSP(K/R)LLIY





light chain FR1


SEQ ID NO: 389


(D/E)IVM(T/S)QSPSSLAV(/PS)AGE(K/N)VT(M/V)SC





light chain FR2


SEQ ID NO: 390


WYQQKPGQSP(K/R)LLTY





light chain FR3


SEQ ID NO: 391


GVPDRFTGSGSGTDFTLTISSVQAEDLAVY(Y/F)C





light chain FR4


SEQ ID NO: 392


FGAGT(R/K)LE(L/I)K





Human αv


SEQ ID NO: 393










1
FNLDVDSPAEYSGPEGSYFGFAVDFFVPSASSRMFLLVGAPKANTTQPGI
50






51
VEGGQVLKCDWSSTRRCQPIEFDATGNRDYAKDDPLEFKSHQWFGASVRS
100





101
KQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDAD
150





151

GQGFCQGGFSIDFTKADRVLLGGPGSFYWQGQLISDQVAEIVSKYDPNVY

200





201
SIKYNNQLATRTAQAIFDDSYLGYSVAVGDFNGDGIDDFVSGVPRAARTL
250





251
GMVYIYDGKNMSSLYNFTGEQMAAYFGFSVAATDINGDDYADVFIGAPLF
300





301
MDRGSDGKLQEVGQVSVSLQRASGDFQTTKLNGFEVFARFGSAIAPLGDL
350





351
DQDGFNDIAIAAPYGGEDKKGIVYIFNGRSTGLNAVPSQILEGQWAARSM
400





401
PPSFGYSMKGATDIDKNGYPDLIVGAFGVDRAILYRARPVITVNAGLEVY
450





451
PSILNQDNKTCSLPGTALKVSCFNVRFCLKADGKGVLPRKLNFQVELLLD
500





501
KLKQKGAIRRALFLYSRSPSHSKNMTISRGGLMQCEELIAYLRDESEFRD
550





551
KLTPITIFMEYRLDYRTAADTTGLQPILNQFTPANISRQAHILLDCGEDN
600





601
VCKPKLEVSVDSDQKKIYIGDDNPLTLIVKAQNQGEGAYEAELIVSIPLQ
650





651
ADFIGVVRNNEALARLSCAFKTENQTROVVCDLGNPMKAGTQLLAGLRFS
700





701
VHQQSEMDTSVKFDLQIQSSNLFDKVSPVVSHKVDLAVLAAVEIRGVSSP
750





751
DHVFLPIPNWEHKENPETEEDVGPVVQHIYELRNNGPSSFSKAMLHLQWP
800





801
YKYNNNTLLYILHYDIDGPMNCTSDMEINPLRIKISSLQTTEKNDTVAGQ
850





851
GERDHLITKRDLALSEGDIHTLGCGVAQCLKIVCQVGRLDRGKSAILYVK
900





901
SLLWTETFMNKENQNHSYSLKSSASFNVIEFPYKNLPIEDITNSTLVTTN
950





951
VTWGIQPAPMPVPVWVIILAVLAGLLLLAVLVFVMYRMGFFKRVRPPQEE
1000





1001
QEREQLQPHENGEGNSET
1018











Human β8



SEQ ID NO: 394










1
EDNRCASSNAASCARCLALGPECGWCVQEDFISGGSRSERCDIVSNLISK
50






51
GCSVDSIEYPSVHVIIPTENEINTQVTPGEVSIQLRPGAEANFMLKVHPL
100





101
KKYPVDLYYLVDVSASMHNNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYV
150





151
DKTVSPYISIHPERIHNQCSDYNLDCMPPHGYIHVLSLTENITEFEKAVH
200





201
RQKISGNIDTPEGGFDAMLQAAVCESHIGWRKEAKRLLLVMTDQTSHLAL
250





251
DSKLAGIVVPNDGNCHLKNNVYVKSTTMEHPSLGQLSEKLIDNNINVIFA
300





301
VQGKQFHWYKDLLPLLPGTIAGEIESKAANLNNLVVEAYQKLISEVKVQV
350





351
ENQVQGIYFNITAICPDGSRKPGMEGCRNVTSNDEVLFNVTVTMKKCDVT
400





401
GGKNYAIIKPIGFNETAKIHIHRNCSCQCEDNRGPKGKCVDETFLDSKCF
450





451
QCDENKCHFDEDQFSSESCKSHKDQPVCSGRGVCVCGKCSCHKIKLGKVY
500





501
GKYCEKDDFSCPYHHGNLCAGHGECEAGRCQCFSGWEGDRCQCPSAAAQH
550





551
CVNSKGQVCSGRGTCVCGRCECTDPRSIGRFCEHCPTCYTACKENWNCMQ
600





601
CLHPHNLSQAILDQCKTSCALMEQQHYVDQTSECFSSPSYLRIFFIIFIV
650





651
TFLIGLLKVLIIRQVILQWNSNKIKSSSDYRVSASKKDKLILQSVCTRAV
700





701
TYRREKPEEIKMDISKLNAHETFRCNF
727











HuC6D4V1



SEQ ID NO: 395


QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDERG 





RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI FYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 396


QIQLVQSGAEVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 397


DYSMH





VH Framework 2


SEQ ID NO: 398


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 399


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 400


RFTVILDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 401


FYYGRDS





VH Framework 4


SEQ ID NO: 402


WGQGTTLTVSS





SEQ ID NO: 403


HuC6D4A3


QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDFRG





RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI FYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 404


QIQLVQSGAEVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 405


DYSMH





VH Framework 2


SEQ ID NO: 406


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 407


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 408


RFTVILDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 409


FYYGRDS





VH Framework 4


SEQ ID NO: 410


WGQGTTLTVSS





HuC6D4B7


SEQ ID NO: 411


QIQLVQSGAKVKKPGASVKISCKASGYTFT DYSMH WVROAPGQGLEWVA RINTETGEPTFADDFRG 





RFSVTLDTSTSTAYLEITSLRSDDTAVYFCAI FYYGRDT WGQGTALTVSS





VH Framework 1


SEQ ID NO: 412


QIQLVQSGAKVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 413


DYSMH





VH Framework 2


SEQ ID NO: 414


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 415


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 416


RFSVTLDTSTSTAYLEITSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 417


FYYGRDT





VH Framework 4


SEQ ID NO: 418


WGQGTALTVSS





HuC6D4E5


SEQ ID NO: 419


QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDFRG 





RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI FYYGRDT WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 420


QIQLVQSGAEVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 421


DYSMH





VH Framework 2


SEQ ID NO: 422


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 423


RINTETGEPTE





VH Framework 3


SEQ ID NO: 424


RFTVILDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 425


FYYGRDT





VH Framework 4


SEQ ID NO: 426


WGQGTTLTVSS





HuC6D4


SEQ ID NO: 427


QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDFRG 





RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI FYYGRDT WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 428


QIQLVQSGAEVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 429


DYSMH





VH Framework 2


SEQ ID NO: 430


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 431


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 432


RFTVILDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 433


FYYGRDT





VH Framework 4


SEQ ID NO: 434


WGQGTTLTVSS





C6D4-RGD3


SEQ ID NO: 435


QIQLLQSGPELKKPGETVKISCKASGYTFT DYSMH WVKQAPGKGLKWVA RINTETGEPTFADDERG





RFAVSLETSASTAYLQINNLKNEDTATYFCAIFYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 436


QIQLLQSGPELKKPGETVKISCKASGYTFT





VH CDR1


SEQ ID NO: 437


DYSMH





VH Framework 2


SEQ ID NO: 438


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 439


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 440


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 441


FYYGRDS





VH Framework 4


SEQ ID NO: 442


WGQGTTLTVSS





HuC6D4-RGD3


SEQ ID NO: 443


QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDFRG





RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI FYYGRDT WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 444


QIQLVQSGAEVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 445


DYSMH





VH Framework 2


SEQ ID NO: 446


WVRQAPGQGLEWVA





SEQ ID NO: 447


VH CDR2


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 448


RFTVILDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 449


FYYGRDT





VH Framework 4


SEQ ID NO: 450


WGQGTTLTVSS





HuC6D4V1


SEQ ID NO: 451


EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQAPRLLIY WASTRES





GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





Vk Framework 1


SEQ ID NO: 452


EIVMTQSPATLSVSPGERVTMSC





Vk CDR1


SEQ ID NO: 453


KSSQSLLNSRTRKNYLA





Vk Framework 2


SEQ ID NO: 454


WYQQKPGQAPRLLIY





Vk CDR2


SEQ ID NO: 455


WASTRES





Vk Framework 3


SEQ ID NO: 456


GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





Vk CDR3


SEQ ID NO: 457


KQSYNLLS





Vk Framework 4


SEQ ID NO: 458


FGQGTVLEIKR





HuC6D4A3


SEQ ID NO: 459


EIVMTQSPATLSVSPGEIVTMSC KSSQSLLNSRSRKNYLA WYQQKPGQAPRLLIY WASTRES





GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





Vk Framework 1


SEQ ID NO: 460


EIVMTQSPATLSVSPGEIVTMSC





Vk CDR1


SEQ ID NO: 461


KSSQSLLNSRSRKNYLA





Vk Framework 2


SEQ ID NO: 462


WYQQKPGQAPRLLIY





Vk CDR2


SEQ ID NO: 463


WASTRES





Vk Framework 3


SEQ ID NO: 464


GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





Vk CDR3


SEQ ID NO: 465


KQSYNLLS





Vk Framework 4


SEQ ID NO: 466


FGQGTVLEIKR





HuC6D4B7


SEQ ID NO: 467


EIVMTQTPVTLSVSPGERVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQAPRLLIY WASTRES





DVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSSNLIS FGQGTVLEIKR





Vk Framework 1


SEQ ID NO: 468


EIVMTQTPVTLSVSPGERVTMSC





Vk CDR1


SEQ ID NO: 469


KSSQSLLNSRTRKNYLA





Vk Framework 2


SEQ ID NO: 470


WYQQKPGQAPRLLIY





Vk CDR2


SEQ ID NO: 471


WASTRES





Vk Framework 3


SEQ ID NO: 472


DVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





Vk CDR3


SEQ ID NO: 473


KQSSNLIS





Vk Framework 4


SEQ ID NO: 474


FGQGTVLEIKR





HuC6D4E5


SEQ ID NO: 475


EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRSRKNYLA WYQQKPGQAPRLLIY WASTRES





GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





Vk Framework 1


SEQ ID NO: 476


EIVMTQSPATLSVSPGERVTMSC





Vk CDR1


SEQ ID NO: 478


KSSQSLLNSRSRKNYLA





Vk Framework 2


SEQ ID NO: 479


WYQQKPGQAPRLLIY





Vk CDR2


SEQ ID NO: 480


WASTRES





Vk Framework 3


SEQ ID NO: 481


GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





Vk CDR3


SEQ ID NO: 482


KQSYNLLS





Vk Framework 4


SEQ ID NO: 483


FGQGTVLEIKR





HuC6D4


SEQ ID NO: 484


EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRSRKNYLA WYQQKPGQAPRLLIY WASTRES





GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





Vk Framework 1


SEQ ID NO: 485


EIVMTQSPATLSVSPGERVTMSC





Vk CDR1


SEQ ID NO: 486


KSSQSLLNSRSRKNYLA





Vk Framework 2


SEQ ID NO: 487


WYQQKPGQAPRLLIY





Vk CDR2


SEQ ID NO: 488


WASTRES





Vk Framework 3


SEQ ID NO: 489


GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





Vk CDR3


SEQ ID NO: 490


KQSYNLLS





Vk Framework 4


SEQ ID NO: 491


FGQGTVLEIKR





C6D4-RGD3


SEQ ID NO: 492


DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLGRGDLGRLKKNALA WYQQKPGQSPRLLIY WASTRES





GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLS FGAGTKLELKR 





Vk Framework 1


SEQ ID NO: 493


DIVMTQSPSSLAVSAGEKVTMSC





Vk CDR1


SEQ ID NO: 494


KSSQSLLGRGDLGRLKKNALA





Vk Framework 2


SEQ ID NO: 495


WYQQKPGQSPRLLIY





Vk CDR2


SEQ ID NO: 496


WASTRES





Vk Framework 3


SEQ ID NO: 497


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





Vk CDR3


SEQ ID NO: 498


KQSYNLLS





Vk Framework 4


SEQ ID NO: 499


FGAGTKLELKR





HuC6D4-RGD3


SEQ ID NO: 500


EIVMTQSPATLSVSPGERVTMSC KSSQSLLGRGDLGRLKKNALA WYQQKPGQAPRLLIY WASTRES





GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





Vk Framework 1


SEQ ID NO: 501


EIVMTQSPATLSVSPGERVTMSC





Vk CDR1


SEQ ID NO: 502


KSSQSLLGRGDLGRLKKNALA





Vk Framework 2


SEQ ID NO: 503


WYQQKPGQAPRLLIY





Vk CDR2


SEQ ID NO: 504


WASTRES





Vk Framework 3


SEQ ID NO: 505


GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





Vk CDR3


SEQ ID NO: 506


KQSYNLLS





Vk Framework 4


SEQ ID NO: 507


FGQGTVLEIKR





Huc6D4V1 VH CDR1


SEQ ID NO: 508


DYSMH





Huc6D4V1 VH CDR2


SEQ ID NO: 509


RINTETGEPTFADDFRG





Huc6D4V1 VH CDR3


SEQ ID NO: 510


FYYGRDS





HuC6D4A3 VH CDR1


SEQ ID NO: 511


DYSMH





HuC6D4A3 VH CDR2


SEQ ID NO: 512


RINTETGEPTFADDFRG





HuC6D4A3 VH CDR3


SEQ ID NO: 513


FYYGRDS





HuC6D4B7 VH CDR1


SEQ ID NO: 514


DYSMH





HuC6D4B7 VH CDR2


SEQ ID NO: 515


RINTETGEPTFADDERG





HuC6D4B7 VH CDR3


SEQ ID NO: 516


FYYGRDT





HuC6D4E5 VH CDR1


SEQ ID NO: 517


DYSMH





HuC6D4E5 VH CDR2


SEQ ID NO: 518


RINTETGEPTFADDERG





HuC6D4E5 VH CDR3


SEQ ID NO: 519


FYYGRDT





HuC6D4 VH CDR1


SEQ ID NO: 520


DYSMH





HuC6D4 VH CDR2


SEQ ID NO: 521


RINTETGEPTFADDFRG





HuC6D4 VH CDR3


SEQ ID NO: 522


FYYGRDT





C6D4-RGD3 VH CDR1


SEQ ID NO: 523


DYSMH





C6D4-RGD3 VH CDR2


SEQ ID NO: 524


RINTETGEPTFADDERG





C6D4-RGD3 VH CDR3


SEQ ID NO: 525


FYYGRDS





HuC6D4-RGD3 VH CDR1


SEQ ID NO: 526


DYSMH





HuC6D4-RGD3 VH CDR2


SEQ ID NO: 527


RINTETGEPTFADDFRG





HuC6D4-RGD3 VH CDR3


SEQ ID NO: 528


FYYGRDT





HuC6D4V1 Vk CDR1


SEQ ID NO: 529


KSSQSLLNSRTRKNYLA





HuC6D4V1 Vk CDR2


SEQ ID NO: 530


WASTRES





HuC6D4V1 Vk CDR3


SEQ ID NO: 531


KQSYNLLS





HuC6D4A3 Vk CDR1


SEQ ID NO: 532


KSSQSLLNSRSRKNYLA





HuC6D4A3 Vk CDR2


SEQ ID NO: 533


WASTRES





HuC6D4A3 Vk CDR3


SEQ ID NO: 534


KQSYNLLS





HuC6D4B7 Vk CDR1


SEQ ID NO: 535


KSSQSLLNSRTRKNYLA





HuC6D4B7 Vk CDR2


SEQ ID NO: 536


WASTRES





HuC6D4B7 Vk CDR3


SEQ ID NO: 537


KQSSNLIS





HuC6D4E5 Vk CDR1


SEQ ID NO: 538


KSSQSLLNSRSRKNYLA





HuC6D4E5 Vk CDR2


SEQ ID NO: 539


WASTRES





HuC6D4E5 Vk CDR3


SEQ ID NO: 540


KQSYNLLS





HuC6D4 Vk CDR1


SEQ ID NO: 541


KSSQSLLNSRSRKNYLA





HuC6D4 VK CDR2


SEQ ID NO: 542


WASTRES





HuC6D4 VK CDR3


SEQ ID NO: 543


KQSYNLLS





C6D4-RGD3 Vk CDR1


SEQ ID NO: 544


KSSQSLLGRGDLGRLKKNALA





C6D4-RGD3 Vk CDR2


SEQ ID NO: 545


WASTRES





C6D4-RGD3 Vk CDR3


SEQ ID NO: 546


KQSYNLLS





HuC6D4-RGD3 Vk CDR1


SEQ ID NO: 547


KSSQSLLGRGDLGRLKKNALA





HuC6D4-RGD3 Vk CDR2


SEQ ID NO: 548


WASTRES





HuC6D4-RGD3 Vk CDR3


SEQ ID NO: 549


KQSYNLLS





heavy chain FR1


SEQ ID NO: 550


QIQLVQSG(P/A)(E/K)(L/V)KKPG(E/A)(T/S)VKISCKASGYTFT





heavy chain FR2


SEQ ID NO: 551


WV(K/R)QAPG(K/Q)GL(K/E)WVA





heavy chain FR3


SEQ ID NO: 552


RF(A/T/S)V(S/T)L(E/D)TS(A/T)STAYL(Q/E)I(N/R/T)(N/S)L(K/R)(N/S)(E/D)DT





A(T/V)YFCAI





heavy chain FR4


SEQ ID NO: 553


WGQGT(T/A)LTVSS





light chain FR1


SEQ ID NO: 554


(D/E)IVMTQ(S/T)P(S/A/V)(S/T)L(A/S)VS(A/P)GE(K/R/I)VTMSC





light chain FR2


SEQ ID NO: 555


WYQQKPGQ(S/A)PRLLIY





light chain FR3


SEQ ID NO: 556


(G/D)VP(D/A)RF(T/S)GSGSGT(D/E)FTLTISSVQ(A/S)ED(L/F)AVYYC





light chain FR4


SEQ ID NO: 557 


FG(A/Q)GT(K/V)LE(L/I)KR





heavy chain FR1


SEQ ID NO: 558


QIQLx1QSGx2x3x34KKPGx4x5VKISCKASGYTFT





heavy chain FR2


SEQ ID NO: 559


WVx6QAPGx7GLx8Wx9x10





heavy chain FR3


SEQ ID NO: 560


RFx17x18x19Lx20TSx21x22TAx23Lx24Ix25x26Lx27x28x29DTAx30YFCAI





heavy chain FR4


SEQ ID NO: 561


WGQGTx33LVTVSS





heavy chain CDR1


SEQ ID NO: 562


DYSMH





heavy chain CDR2


SEQ ID NO: 563


x11Ix12TETx13EPTx14ADDFx15x16








heavy chain CDR3


SEQ ID NO: 564


x31YYGRDx32


where x1 = V or L, x2 = A or P, x3 = E or K, x4 = A or E, x5 = S or T,





x6 = R or K, x7 = Q or K, x8 = E or K, x9 = V or M, x10 = A or G,





x11 = R or W, x12 = Nor K, x13 = G or D, x14 = F or Y, x15 = R, N, K





or G, x16 = Gor E, x17 = T, A, or S, x18 = V or F, x19 = T or S, x20 =





D or E, x21 = T or A, x22 = S or T, x23 = Y or N, x24 = E or Q, x25 =





R, N, I or T, x26 = S or N, x27 = R or K, x28 = S or N, x29 = D or E,





x30 = V, T, or K, x31 = F or Y, x32 = T or S, x33 = T or A, x34 = V or





L.





light chain FR1


SEQ ID NO: 565


x40IVMx41Qx42Px43x44Lx45VSx46GEx47VTMSC





light chain FR2


SEQ ID NO: 566


WYQQKPGQx49PRLLIY





light chain FR3


SEQ ID NO: 567


x50VPx51RFx52GSGSGTx53FTLTISSVQx54EDx55AVYYC#





light chain FR4


SEQ ID NO: 568


FGx56GTx57LEx58KR#





light chain CDR1


SEQ ID NO: 569



#KSSQSLLNSRx48RKNYLA






light chain CDR2


SEQ ID NO: 570


WASTRES





light chain CDR3


SEQ ID NO: 571


KQSYNLLS





where x40 = E or D, x41 = T or S, x42 = S or T, x43 = A, S or V, x44 =





T, S, x45 = S or A, x46 = P or A, x47 = R, K or I, x48 = S or T, x49 =





A or S, x50 = Gor D, x51 = A or D, x52 = S or T, x53 = E or D, x54 =





S, D or A, x55 = For L, x56 = Q or A, x57 = V or K, x58 = I or L. 





(C6D4)


SEQ ID NO: 572


KSSQSLLNSRSRKNYLA





(RGD1)


SEQ ID NO: 573


KSSQSLLGRGDLGNALA





(RGD2)


SEQ ID NO: 574


KSSQSLLNSGRGDLGNALA





(RGD3)


SEQ ID NO: 575


KSSQSLLGRGDLGRLKKNALA





(RGD3-1)


SEQ ID NO: 576


KSSQSLLGRGDLGRLKKQKDHNALA





(RGD3-2)


SEQ ID NO: 577


KSSQSLLGRGDLGRLKKQKDNALA





(RGD3-3)


SEQ ID NO: 578


KSSQSLLGRGDLGRLKKQKNALA





(RGD3-4)


SEQ ID NO: 579


KSSQSLLGRGDLGRLKKQNALA





(RGD3-6)


SEQ ID NO: 580


KSSQSLLGRGDLGRLKNALA





(RGD3-7)


SEQ ID NO: 581


KSSQSLLGRGDLGRLNALA





(RGD3-8)


SEQ ID NO: 582


KSSQSLLGRGDLGRNALA





(RGD3-9)


SEQ ID NO: 583


KSSQSLLGRGDLGRLKKQKDHH





(RGD3-10)


SEQ ID NO: 584


KSSQSLLGRGDLGRLKKQKDH





(RGD3-11)


SEQ ID NO: 585


KSSQSLLGRGDLGRLKKQKD





(RGD3-12)


SEQ ID NO: 586


KSSQSLLGRGDLGRLKKQK





(RGD3-13)


SEQ ID NO: 587


KSSQSLLGRGDLGRLKKQ





(RGD3-14)


SEQ ID NO: 588


KSSQSLLGRGDLGRLKK





(RGD3-15)


SEQ ID NO: 589


KSSQSLLGRGDLGRLK





(RGD3-16)


SEQ ID NO: 590


KSSQSLLGRGDLGRL





Human αv


SEQ ID NO: 591


FLQDGTKTVEYAPCRSQDIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Chimp αv


SEQ ID NO: 592


FLQDGTKTVEYAPCRSQDIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Rhesus αv


SEQ ID NO: 593


FLQDGTKTVEYAPCRSQDIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Cyno αv


SEQ ID NO: 594


FLQDGTKTVEYAPCRSQDIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Cow αv


SEQ ID NO: 595


FLQDGTKTVEYAPCRSKNIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Pig αv


SEQ ID NO: 596


FLQDGTKTVEYAPCRSKNIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Horse αv


SEQ ID NO: 597


FLQDGAKTVEYAPCRSKNIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Mouse αv


SEQ ID NO: 598


FLQDGTKTVEYAPCRSKNIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Rat αv


SEQ ID NO: 599


FLQDGTKTVEYAPCRSKNIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Armadillo αv


SEQ ID NO: 600


FLQDGTKTVEYAPCRSKNIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Platypus αv


SEQ ID NO: 601


FLQDGTKTVEYAPCRSRSIcustom-character QGFCQGGFSIDFTKADRVLLGGPGSFcustom-character WQGQ





Human β8


SEQ ID NO: 602


SASMcustom-character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFEKAVcustom-character QKIS





Chimp ß8


SEQ ID NO: 603


SASMcustom-character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFERAVcustom-character QKIS





Rhesus β8


SEQ ID NO: 604


SASMcustom-character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFEKAVcustom-character QKIS





Cyno β8


SEQ ID NO: 605


SASMcustom-character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFEKAVcustom-character QKIS





Cow β8


SEQ ID NO: 606


SASMcustom-character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFEKAVcustom-character QKIS





Pig β8


SEQ ID NO: 607


SASMcustom-character NNIEKLNTVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFEKAVcustom-character QKIS





Horse β8


SEQ ID NO: 608


SASMcustom-character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFEKAVcustom-character QKIS





Mouse β8


SEQ ID NO: 609


SASMcustom-character NNIEKLNSVGNDLSKKMALYSRDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFEKAVcustom-character QKIS





Rat β8


SEQ ID NO: 610


SASMcustom-character NNIEKLNSVGNDLSKKMALFSHDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-characterDCMPPHGYI





HVLSLTENITEFEKAVcustom-character QKIS





Armadillo β8


SEQ ID NO: 611


SASMcustom-character NNIEKLNSVGNDLSRKMAFFSLDFRLGFGSYVDKTVSPYISIHPERIHNQCcustom-character CMPPHGYI





HVLSLTENITEFAKAVcustom-character QKIS





Platypus ß8


SEQ ID NO: 612


SASMcustom-character NNIEKLNSVGNDLSQKMADFTRDFRLGFGSYVDKTVSPYISIHPGRIRNQCcustom-character Qcustom-character Dcustom-character CMPPHGYI





HVLPLTENVTEFEKAVNKQKIS





C6D4 VH CDR1


SEQ ID NO: 613



YTFTDYSMH






C6D4 VH CDR2


SEQ ID NO: 614


RINTETGEPTFADDFRG





C6D4 VH CDR3


SEQ ID NO: 615


FYYGRDS





C6D4 Vk CDR1


SEQ ID NO: 616


KSSQSLLNSRTRKNYLA





C6D4 Vk CDR2


SEQ ID NO: 617



YWASTRES






C6D4 Vk CDR3


SEQ ID NO: 618


KQSYNLLS





β8, α1 helix


SEQ ID NO: 619


SASMHNNIEKLNSVGNDLSRKMAFFS





β8, SDL


SEQ ID NO: 620


TVSPYISIHPERIHNQCSDYNLDCMPPH





β8, α2 helix


SEQ ID NO: 621


NITEFEKAVHR





αV, β-propeller domain blade W3


SEQ ID NO: 622


KQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGGFSIDFTKADRVL





LGGPGSFYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFD





head sequence of integrin αv





SEQ ID NO: 623:


FNLDVDSPAEYSGPEGSYFGFAVDFFVPSASSRMFLLVGAPKANTTQPGIVEGGQVLKCDWSSTRRCQPI





EFDATGNRDYAKDDPLEFKSHQWFGASVRSKQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYA





PCRSQDIDADGQGFCQGGFSIDFTKADRVLLGGPGSFYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLAT





RTAQAIFDDSYLGYSVAVGDFNGDGIDDFVSGVPRAARTLGMVYIYDGKNMSSLYNFTGEQMAAYFGFSV





AATDINGDDYADVFIGAPLFMDRGSDGKLQEVGQVSVSLQRASGDFQTTKLNGFEVFARFGSAIAPLGDL





DQDGFNDIAIAAPYGGEDKKGIVYIFNGRSTGLNAVPSQILEGQWAARSMPPSFGYSMKGATDIDKNGYP





DLIVGAFGVDRAILYRARP





4F1 VH


SEQ ID NO: 624


QVQLQQSGAELVRPGTSVKVSCKASGY AFTNYLIE WVKQRPGQGLEWIG VINPGTGGTNYNKKFKV





KATLTADKSSSTAYMQLGGLTFDDSAVYFCAR EGNARTYYYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 628


AFTNYLIE





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 634


VINPGTGGTNYNKKFKV





VH Framework 3


SEQ ID NO: 637


KATLTADKSSSTAYMQLGGLTFDDSAVYFCAR





VH CDR3


SEQ ID NO: 651


EGNARTYYYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





6B9 VH


SEQ ID NO: 656


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG VINPETGGTNYNAKFKG





KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 635


VINPETGGTNYNAKFKG





VH Framework 3


SEQ ID NO: 638


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 652


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





6B9.1 VH


SEQ ID NO: 657


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG VINPETGGTNYNAKFRG


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR AGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 638


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 653


AGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





A1 VH


SEQ ID NO: 658


QVQLQQSGAELVRPGASVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG 


KATLTADKSSSSVYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS 





VH Framework 1


SEQ ID NO: 626


QVQLQQSGAELVRPGASVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 639


KATLTADKSSSSVYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





A2 VH


SEQ ID NO: 659


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSTAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 640


KATLTADKSSSTAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





A8 VH


SEQ ID NO: 660


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 641


KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





A11 VH


SEQ ID NO: 661


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDNLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625


VH Framework 1


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 630


AFTDNLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 638


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





B1 VH


SEQ ID NO: 662


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSSLSSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 642


KATLTADKSSSSAYMQLSSLSSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





B3 VH


SEQ ID NO: 663


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 643


KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





C4 = F10 VH


SEQ ID NO: 664


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 644


RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





C7 = D1 VH


SEQ ID NO: 665


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSGSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 644


RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYTYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





D3 = F1 VH


SEQ ID NO: 666


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSSLTSDDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 645


KATLTADKSSSSAYMQLSSLTSDDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





D10 = E5 VH


SEQ ID NO: 667


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG 





KVTLTADKTSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 646


KVTLTADKTSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





G4 VH


SEQ ID NO: 668


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





KVTLTADKSSSSAYMQLNSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 647


KVTLTADKSSSSAYMQLNSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





C4 VH


SEQ ID NO: 669


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIGVINPETGGTNYNAKFRG





RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 650


RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





D10 VH


SEQ ID NO: 670


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG VINPETGGTNYNAKFRG





KVTLTADKTSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 633


WVRQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 646


KVTLTADKTSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





4F1A11 VH


SEQ ID NO: 671


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG VINPETGGTNYNAKFRG





RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 650


RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





4F1E1 VH


SEQ ID NO: 672


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 631


AFTDYLIQ





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 638


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





4F1G3 VH


SEQ ID NO: 673


QVQLQQSGAELVRPGTSVRVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTANKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 631


AFTDYLIQ





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 648


KATLTANKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





4F1E10 VH


SEQ ID NO: 674


QVQLQQSGAELVRPGTSVKVPCKASGY AFTDYLIQ WVKQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 627


QVQLQQSGAELVRPGTSVKVPCKASGY





VH CDR1


SEQ ID NO: 631


AFTDYLIQ





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 638


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





4F1E9 VH


SEQ ID NO: 675


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 629


AFTDYLIE





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 638


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





4F1H12 VH


SEQ ID NO: 676


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYLQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 631


AFTDYLIQ





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 649


KATLTADKSSSSAYLQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





F9 VH


SEQ ID NO: 677


QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG VINPETGGTNYNAKFRG





KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR EAGNYIYAMDY WGQGTSVTVSS





VH Framework 1


SEQ ID NO: 625


QVQLQQSGAELVRPGTSVKVSCKASGY





VH CDR1


SEQ ID NO: 631


AFTDYLIQ





VH Framework 2


SEQ ID NO: 632


WVKQRPGQGLEWIG





VH CDR2


SEQ ID NO: 636


VINPETGGTNYNAKFRG





VH Framework 3


SEQ ID NO: 638


KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





VH CDR3


SEQ ID NO: 654


EAGNYIYAMDY





VH Framework 4


SEQ ID NO: 655


WGQGTSVTVSS





4F1 VL


SEQ ID NO: 678


DIQMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE





GVPSRFSGSGSGTQFSLKINSLOPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 692


DIQMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





6B9 VL


SEQ ID NO: 679


DIEMTQTPASLSASVGETVTITC RASENIYSYLV WYQQKQGKSPQVLVY NAKTLAE





GVPSRFSGSGSGTQFSLKINSLOPEDFGSYYC QHHNGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 699


DIEMTQTPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 700


RASENIYSYLV





VL Framework 2


SEQ ID NO: 701


WYQQKQGKSPQVLVY





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 702


QHHNGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





6B9.1 VL


SEQ ID NO: 680


DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLOPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





A1 = A2 = C4 = C7 = D1 = D10 = E5 = F1 = F10 = G4 VL


SEQ ID NO: 681


DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLQPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





A8 VL


SEQ ID NO: 682


DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSVQPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





A11 VL


SEQ ID NO: 683


HIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLOPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 704


HIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





SEQ ID NO: 695


VL CDR2


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





B1 VL


SEQ ID NO: 684


DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLQPEDVGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





B3 VL


SEQ ID NO: 685


DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLQPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





D10 = E5 VL


SEQ ID NO: 686


DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLOPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





C4 VL


SEQ ID NO: 687


DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLQPEDFGSYYC QHHHGTPYT FGGGTKLEIKR





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695





NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 706


FGGGTKLEIKR





D10 VL


SEQ ID NO: 688


DIEMTQTPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLQPEDFGSYYC QHHHGTPYT FGGGTKLEIKR





VL Framework 1


SEQ ID NO: 699


DIEMTQTPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 706


FGGGTKLEIKR





4F1E1 = 1F1G3 = 4F1B5 = 4F1G11 = 4F1A9 = 4F1B9 = 4F1H9 =


4F1D10 = 4F1E9 = 4F1F10 = 4F1H11 = 4F1H12 VL


SEQ ID NO: 689


DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGS





GSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





4FA11 VL


SEQ ID NO: 690


DIVVTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLOPEDFGSYYC QHHHGTPYT FGGGTKLEIKA





VL Framework 1


SEQ ID NO: 705


DIVVTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 698


FGGGTKLEIKA





F9 VL


SEQ ID NO: 691


DIVMTQSPAFLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH NAKTLAE GVPSRFSGSG





SGTQFSLKINSLQPEDFGSYYC QHHHGTPYT FGGGTKLEIKR





VL Framework 1


SEQ ID NO: 703


DIVMTQSPASLSASVGETVTITC





VL CDR1


SEQ ID NO: 693


RASVNIYSYLV





VL Framework 2


SEQ ID NO: 694


WYQQKQGKSPQLLVH





VL CDR2


SEQ ID NO: 695


NAKTLAE





VL Framework 3


SEQ ID NO: 696


GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





VL CDR3


SEQ ID NO: 697


QHHHGTPYT





VL Framework 4


SEQ ID NO: 706


FGGGTKLEIKR





C6D4 VH CDR1


SEQ ID NO: 707


DYSMH





C6D4 VH CDR3


SEQ ID NO: 615


FYYGRDS





β8, SDL


SEQ ID NO: 620


TVSPYISIHPERIHNQCSDYNLDCMPPH





C6D4 Vk CDR1


SEQ ID NO: 616


KSSQSLLNSRTRKNYLA





C6D4 Vk CDR2


SEQ ID NO: 708



WASTRES






C6D4 Vk CDR3


SEQ ID NO: 618


KQSYNLLS





αVβ6:


SEQ ID NO: 709


GRGDLGRLKK





αIIbβ3:


SEQ ID NO: 710


GRGDSP





αIIbβ3:


SEQ ID NO: 711


AKQRGDV





loop of L-TGFβ


SEQ ID NO: 712:


RGDLGRLKK





(TGFB3 sequence)


SEQ ID NO: 713:


DDHGRGDLGRLK





TGBF1


SEQ ID NO: 714


MPPSGLRLLLLLLPLLWLLVLTPGRPAAGLSTCKTIDMELVKRKRIEAIRGQILSKLRLASPPSQGEVPP





GPLPEAVLALYNSTRDRVAGESAEPEPEPEADYYAKEVTRVLMVETHNEIYDKFKQSTHSIYMFFNTSEL





REAVPEPVLLSRAELRLLRLKLKVEQHVELYQKYSNNSWRYLSNRLLAPSDSPEWLSFDVTGVVRQWLSR





GGEIEGFRLSAHCSCDSRDNTLQVDINGFTTGRRGDLATIHGMNRPFLLLMATPLERAQHLQSSRHRRAL





DTNYCFSSTEKNCCVRQLYIDFRKDLGWKWIHEPKGYHANFCLGPCPYIWSLDTQYSKVLALYNQHNPGA





SAAPCCVPQALEPLPIVYYVGRKPKVEQLSNMIVRSCKCS





TGFB2


SEQ ID NO: 715


MHYCVLSAFLILHLVTVALSLSTCSTLDMDQFMRKRIEAIRGQILSKLKLTSPPEDYPEPEEVPPEVISI





YNSTRDLLQEKASRRAAACERERSDEEYYAKEVYKIDMPPFFPSENAIPPTFYRPYFRIVRFDVSAMEKN





ASNLVKAEFRVFRLQNPKARVPEQRIELYQILKSKDLTSPTQRYIDSKVVKTRAEGEWLSFDVTDAVHEW





LPSYRLESQQTNRRKKRALDAAYCFRVQDNCCLRPLYIDFKRDLGWKWIHEPKGYNANFCAGACPYLWSS





DTQHSRVLSLYNTINPEASASPCCVSQDLEPLTILYYIGKTPKIEQLSNMIVKSCKCS





TGFB3


SEQ ID NO: 716


MKMHLQRALVVLALLNFATVSLSLSTCTTLDFGHIKKKRVEAIRGQILSKLRLTSPPEPTVTHVPYQVLA





LYNSTRELLEEMHGEREEGCTQENTESEYYAKEIHKFDMIQGLAEHNELAVCPKGITSKVFRFNVSSVEK





NRTNLFRAEFRVLRVPNPSSKRNEQRIELFQILRPDEHIAKQRYIGGKNLPTRGTAEWLSFDVTDTVREW





LLRRESNLGLEISIHCPCHTFQPNGDILENIHEVMEIKFKGVDNEDDHGRGDLGRLKKQKQHHNPHLILM





MIPPHRLDNPGQGGQRKKRALDTNYCFRNLEENCCVRPLYIDFRQDLGWKWVHEPKGYYANFCSGPCPYL





RSADTTHSTVLGLYNTLNPEASASPCCVPQDLEPLTILYYVGRTPKVEQLSNMVVKSCKCS





C6D4 vk


SEQ ID NO: 717


DIVMTQSPSSLAVSAGEKVTMSCKSSQSLLNSRTRKNYLAWYQQKPGQSPRLLIYWASTRESGVPDRFTG





SGSGTDFTLTISSVQAEDLAVYYCKQSYNLLSFGAGTKLELKAADAAPTVSIFPPSSEQLTSGGASVVCF





LNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPI





VKSFNRNEC





C6D4-RDG1


SEQ ID NO: 718


KSSQSLLGRGDLGNALA





C6D4-RDG2


SEQ ID NO: 719


KSSQSLLNSGRGDLGNALA





C6D4-RDG3


SEQ ID NO: 720


KSSQSLLGRGDLGRLKKNALA





SEQ ID NO: 721


GRGDLGRLK





C6D4 VH


SEQ ID NO: 722


QIQLVQSGPELKKPGETVKISCKASGYTFT DYSMH WVKQAPGKGLKWVA RINTETGEPTFADDFRG





RFAVSLETSASTAYLQINNLKNEDTATYFCAI FYYGRDS WGQGTTLTVSS 





VH Framework 1


SEQ ID NO: 732


QIQLVQSGPELKKPGETVKISCKASGYTFT





VH CDR1


SEQ ID NO: 733


DYSMH





VH Framework 2


SEQ ID NO: 734


WVKQAPGKGLKWVA





VH CDR2


SEQ ID NO: 735


RINTETGEPTFADDERG





VH Framework 3


SEQ ID NO: 736


RFAVSLETSASTAYLQINNLKNEDTATYFCAI





VH CDR3


SEQ ID NO: 737


FYYGRDS





VH Framework 4


SEQ ID NO: 738


WGQGTTLTVSS





HuC6D4 V1 VH


SEQ ID NO: 723


QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDFR





G RFTVTLDTSTSTAYLEIRSLRSDDAVYFCAI FYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 739


QIQLVQSGAEVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 733


DYSMH





VH Framework 2


SEQ ID NO: 740


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 735


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 741


RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 737


FYYGRDS





VH Framework 4


SEQ ID NO: 738


WGQGTTLTVSS





Mutclone A3 VH


SEQ ID NO: 724


QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDFRG





RFSVTLDTSTSTAYLEITSLRSDDTAVYFCAI FYYGRDT WGQGTTLTVSS 





VH Framework 1


SEQ ID NO: 739


QIQLVQSGAKVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 733


DYSMH





VH Framework 2


SEQ ID NO: 740


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 735


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 741


RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 737


FYYGRDS





VH Framework 4


SEQ ID NO: 738


WGQGTTLTVSS





Mutclone B7 VH


SEQ ID NO: 725


QIQLVQSGAKVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDFRG





RFSVTLDTSTSTAYLEITSLRSDDTAVYFCAI FYYGRDS WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 742


QIQLVQSGAEVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 733


DYSMH





VH Framework 2


SEQ ID NO: 740


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 735


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 743


RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 744


FYYGRDT





VH Framework 4


SEQ ID NO: 738


WGQGTTLTVSS





Mutclone E5 VH


SEQ ID NO: 726


QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA RINTETGEPTFADDFRG





RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI FYYGRDT WGQGTTLTVSS





VH Framework 1


SEQ ID NO: 739


QIQLVQSGAEVKKPGASVKISCKASGYTFT





VH CDR1


SEQ ID NO: 733


DYSMH





VH Framework 2


SEQ ID NO: 740


WVRQAPGQGLEWVA





VH CDR2


SEQ ID NO: 735


RINTETGEPTFADDFRG





VH Framework 3


SEQ ID NO: 743


RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





VH CDR3


SEQ ID NO: 744


FYYGRDT





VH Framework 4


SEQ ID NO: 738


WGQGTTLTVSS





C6D4 VK


SEQ ID NO: 727


DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQSPRLLIY WASTRES GVPD





RFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLS FGAGTKLELKR





VK Framework 1


SEQ ID NO: 745


DIVMTQSPSSLAVSAGEKVTMSC





VK CDR1


SEQ ID NO: 746


KSSQSLLNSRTRKNYLA





VK Framework 2


SEQ ID NO: 747


WYQQKPGQSPRLLIY





VK CDR2


SEQ ID NO: 748


WASTRES





VK Framework 3


SEQ ID NO: 749


GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





VK CDR3


SEQ ID NO: 750


KQSYNLLS





VK Framework 4


SEQ ID NO: 751


FGAGTKLELKR





HuC6D4 V1 VK


SEQ ID NO: 728


EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQAPRLLIY WASTRES GVPA





RFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





VK Framework 1


SEQ ID NO: 752


EIVMTQSPATLSVSPGERVTMSC





VK CDR1


SEQ ID NO: 746


KSSQSLLNSRTRKNYLA





VK Framework 2


SEQ ID NO: 747


WYQQKPGQSPRLLIY





VK CDR2


SEQ ID NO: 748


WASTRES





VK Framework 3


SEQ ID NO: 753


GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





VK CDR3


SEQ ID NO: 750


KQSYNLLS





VK Framework 4


SEQ ID NO: 754


FGQGTVLEIKR





Mutclone A3 VK


SEQ ID NO: 729


EIVMTQSPATLSVSPGEIVTMSC KSSQSLLNSRSRKNYLA WYQQKPGQAPRLLIY WASTRES GVPA





RFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





VK Framework 1


SEQ ID NO: 755


EIVMTQSPATLSVSPGEIVTMSC





VK CDR1


SEQ ID NO: 756


KSSQSLLNSRSRKNYLA





VK Framework 2


SEQ ID NO: 747


WYQQKPGQSPRLLIY





VK CDR2


SEQ ID NO: 748


WASTRES





VK Framework 3


SEQ ID NO: 753


GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





VK CDR3


SEQ ID NO: 750


KQSYNLLS





VK Framework 4


SEQ ID NO: 754


FGQGTVLEIKR





Mutclone B7 VK


SEQ ID NO: 730


EIVMTQTPVTLSVSPGERVTMSC KSSQSLLNSRTRKNYLA WYQQKPGQAPRLLIY WASTRES DVPA





RFSGSGSGTEFTLTISSVQSEDFAVYYC KQSSNLLS FGQGTVLEIKR





VK Framework 1


SEQ ID NO: 757


EIVMTQTPVTLSVSPGERVTMSC





VK CDR1


SEQ ID NO: 746


KSSQSLLNSRTRKNYLA





VK Framework 2


SEQ ID NO: 747


WYQQKPGQSPRLLIY





VK CDR2


SEQ ID NO: 748


WASTRES





VK Framework 3


SEQ ID NO: 758


DVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





VK CDR3


SEQ ID NO: 750


KQSYNLLS





VK Framework 4


SEQ ID NO: 754


FGQGTVLEIKR





Mutclone E5 VK


SEQ ID NO: 731


EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRSRKNYLA WYQQKPGQAPRLLIY WASTRES GVPA





RFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





VK Framework 1


SEQ ID NO: 752


EIVMTQSPATLSVSPGERVTMSC





VK CDR1


SEQ ID NO: 756


KSSQSLLNSRSRKNYLA





VK Framework 2


SEQ ID NO: 747


WYQQKPGQSPRLLIY





VK CDR2


SEQ ID NO: 748


WASTRES





VK Framework 3


SEQ ID NO: 753


GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





VK CDR3


SEQ ID NO: 750


KQSYNLLS





VK Framework 4


SEQ ID NO: 754


FGQGTVLEIKR





E8 - VL Framework 3


SEQ ID NO: 755


GVPSRFSGSGSGTRFSLKINSLQPEDFGSYYC





SEQ ID NO: 756


RGDL





αv


SEQ ID NO: 757


DADGQ





αv


SEQ ID NO: 758


SFYWQ





αv


SEQ ID NO: 759


FDDSY





SEQ ID NO: 760


KQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGGFSIDFTKADRVL





LGGPGSFYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFD





β8


SEQ ID NO: 761


YNLDC





β8


SEQ ID NO: 762


QCSDYNL





β8


SEQ ID NO: 763


SMHNN





β8


SEQ ID NO: 764


AVHRQ





SEQ ID NO: 765


KSSQSLLGRGDLGRLKK





C6H - VH CDR1


SEQ ID NO: 766


TFTDYSMH





C6H - VH CDR2


SEQ ID NO: 767


RINTETGEPTFADDFRG





C6H - VH CDR3


SEQ ID NO: 768


FYYGRDS





heavy chain FR2


SEQ ID NO: 877


WV(K/R)QAPG(K/Q)GL(K/E)W(V/M)(A/G)





heavy chain FR3


SEQ ID NO: 878


RF(A/T/S)(V/F)(S/T)L(E/D)TS(A/T)(S/T)TA(Y/N)L(Q/E)I(N/R/I/T)(N/S)L





(K/R)(N/S)(E/D)DTA(T/V/K)YFCAI





heavy chain FR4


SEQ ID NO: 879


WGQGT(T/A)LTVSS





light chain FR1


SEQ ID NO: 880


(D/E)IVM(T/S)Q(S/T)P(S/A/V)(S/T)L(A/S)VS(A/P)GE(K/R/I)VTMSC





light chain FR2


SEQ ID NO: 881


WYQQKPGQ(S/A)PRLLIY





light chain FR3


SEQ ID NO: 882


(G/D)VP(D/A)RF(T/S)GSGSGT(D/E)FTLTISSVQ(A/S/D)ED(L/F)AVYYC





light chain FR4


SEQ ID NO: 883


FG(A/Q)GT(K/V)LE(i/LI)KR





Claims
  • 1-32. (canceled)
  • 33. An antibody that specifically binds to human αvβ8 and that comprises heavy chain complementarity determining regions (CDRs) SEQ ID NO:299, SEQ ID NO:301, and SEQ ID NO:303; and light chain CDRs SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311.
  • 34. The antibody of claim 33, wherein the antibody comprises a heavy chain variable region comprising SEQ ID NO: 297.
  • 35. The antibody of claim 33, wherein the antibody comprises a light chain variable region comprising SEQ ID NO: 305.
  • 36. The antibody of claim 33, wherein the antibody comprises a heavy chain variable region comprising SEQ ID NO: 297 and a light chain variable region comprising SEQ ID NO: 305.
  • 37. The antibody of claim 33, wherein the antibody is a single-chain variable fragment (scFv).
  • 38. The antibody of claim 33, wherein the antibody is an IgG.
  • 39. The antibody of claim 33, wherein the antibody is linked to a detectable label.
  • 40. A method of detecting the presence, absence, or quantity of human αvβ8 in a sample, the method comprising, contacting the antibody of claim 33 to the sample, anddetecting or quantifying binding of the antibody to the sample.
  • 41. The method of claim 40, wherein the sample is a formalin-fixed sample.
  • 42. The method of claim 41, wherein the sample is a formalin-fixed paraffin-embedded (FFPE) sample.
  • 43. The method of claim 41, wherein the sample comprises fibroblasts, stellate cells, chondrocytes, activated macrophages, T cells, or B cells.
  • 44. The method of claim 41, wherein the sample is a tumor.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a divisional of Ser. No. 17/155,784 filed Jan. 22, 2021, which is a divisional of Ser. No. 16/331,902, filed Mar. 8, 2019, which is a US National Stage entry of International Application No. PCT/US2017/054306, filed Sep. 29, 2017, which claims benefit of priority to U.S. Provisional Patent Application No. 62/401,570, filed Sep. 29, 2016 and U.S. Provisional Patent Application No. 62/529,381, filed Jul. 6, 2017, all of which are incorporated by reference in their entirety for all purposes.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was made with government support under grant no. U54 HL119893, awarded by the National Institutes of Health. The government has certain rights in the invention.

Provisional Applications (2)
Number Date Country
62529381 Jul 2017 US
62401570 Sep 2016 US
Divisions (2)
Number Date Country
Parent 17155784 Jan 2021 US
Child 18153277 US
Parent 16331902 Mar 2019 US
Child 17155784 US