Neutralizing antibodies to the αvβ8 integrin complex for immunotherapy

Abstract
Provided is an antibody that specifically binds human αvββ and blocks binding of TGFp peptide to αvβ8, wherein the antibody binds to the specificity determining loop (SDL) of human β8. In some embodiments, the antibody further binds to one, two, or all three of the human av-head domain, the al helix of human β8, or the al helix of human β8. In some embodiments, the antibody is humanized or chimeric. In some embodiments, the antibody is linked to a detectable label. Also provided is a method of enhancing an immune response in a human individual, comprising administering a sufficient amount of the antibody to the individual, thereby enhancing an immune response. Also provided are pharmaceutical compositions comprising the anti-αvββ antibodies or antigen-binding molecules thereof.
Description
REFERENCE TO A “SEQUENCE LISTING” SUBMITTED AS ASCII TEXT FILES VIA EFS-WEB

The Sequence Listing written in file 081906-1062335 (224020PC)_SequenceListing.txt created on Sep. 29, 2017, 396,159 bytes, machine format IBM-PC, MS-Windows operating system, in accordance with 37 C.F.R. §§ 1.821- to 1.825, is hereby incorporated by reference in its entirety for all purposes.


BACKGROUND OF THE INVENTION

Transforming growth factor β (TGFβ) was originally characterized as an oncogene capable of inducing a transformed phenotype in non-neoplastic cells. A number of TGFβ family members have since been characterized, based on the presence of similar amino acid domains.


Some TGF-β isoforms are expressed ubiquitously in mammals (TGF-β 1-3), but are maintained in an inactive form by non-covalent interaction with a propeptide, the latency associated domain of TGF-β (LAP). For TGFβ to signal, it must be released from its inactive complex by a process called TGFβ activation. The latent TGF complex includes 3 components: the active (mature) TGFβ dimmer, LAP (latency associated peptide) and LTBP (latent TGFβ binding protein). LAP is a dimer, linked by a disulfide bond, that represents the N-terminal end of the TGFβ precursor protein. The mature TGFβ protein represents the C terminal end (about 25 kD) of the precursor. The bond between the TGFβs and LAP is proteolytically cleaved within the Golgi, but the TGF-β propeptide remains bound to TGFβ by non-covalent interactions. The complex of TGFβ and LAP is called the small latent complex (SLC). It is the association of LAP and TGFβ that confers latency. LAP-TGF binding is reversible and the isolated purified components can recombine to form an inactive SLC. Both the SLC and the larger complex are referred to herein as latent TGFβ, as both are inactive.


In general, integrins are adhesion molecules and mediate the attachment of cells to extracellular matrix proteins. Integrin αvβ8 binds to the LAP of TGF-β and mediates the activation of TGF-β1 and 3 (Mu et al. (2002) J. Cell Biol. 159:493). Integrin αvβ8-mediated activation of TGF-β is required for in vivo activation of TGF-β (i.e., release of the mature TGF-β polypeptide), thus αvβ8 is a gatekeeper of TGF-β function. Integrin αvβ8 is expressed in normal epithelia (e.g., airway epithelia), mesenchymal cells, and neuronal tissues.


The integrin β8 (Itgb8) has been associated with forkhead box P3 (Foxp3)-positive T cells and T-regulatory-specific epigenetic remodeling. See, e.g., Vandenbon, et al., Proc. Natl. Acad. Sci. USA vol. 113 no. 17 pp. E2393-E2402 (2016). FoxP3 is a transcription factor involved in the development of T-regulatory (Treg) cells. Human and mouse effector Treg cells express functional TGF-β-activating integrin αvβ8. See, Worthington, Immunity Volume 42, Issue 5, pp. 903-915 (May 2015). Treg cell integrin αvβ8-mediated TGF-0 activation is not needed for T cell homeostasis and integrin αvβ8 expression by Treg cells suppresses active inflammation.


Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by a person of ordinary skill in the art. See, e.g., Lackie, DICTIONARY OF CELL AND MOLECULAR BIOLOGY, Elsevier (4th ed. 2007); Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, Cold Springs Harbor Press (Cold Springs Harbor, N.Y. 1989). Any methods, devices and materials similar or equivalent to those described herein can be used in the practice of this invention. The following definitions are provided to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.


The terms “anti-αvβ8 antibody,” “αvβ8 specific antibody,” “αvβ8 antibody,” and “anti-αvβ8” are used synonymously herein to refer to an antibody that specifically binds to αvβ8. Similarly, an anti-β8 antibody (and like terms) refer to an antibody that specifically binds to β8. The anti-αvβ8 antibodies and anti-β8 antibodies described herein bind to the protein expressed on αvβ8 expressing cells.


An αvβ8-associated disorder is a condition characterized by the presence of αvβ8-expressing cells, either cells expressing an increased level of αvβ8, or increased number of αvβ8-expressing cells relative to a normal, non-diseased control. TGFβ-associated disorders (disorders characterized by higher than normal TGFβ activity) include αvβ8-associated disorders, as αvβ8 is involved in activating TGFβ in certain circumstances, as described herein.


“Nucleic acid” refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, and complements thereof. The term “polynucleotide” refers to a linear sequence of nucleotides. The term “nucleotide” typically refers to a single unit of a polynucleotide, i.e., a monomer. Nucleotides can be ribonucleotides, deoxyribonucleotides, or modified versions thereof. Examples of polynucleotides contemplated herein include single and double stranded DNA, single and double stranded RNA, and hybrid molecules having mixtures of single and double stranded DNA and RNA.


The words “complementary” or “complementarity” refer to the ability of a nucleic acid in a polynucleotide to form a base pair with another nucleic acid in a second polynucleotide. For example, the sequence A-G-T is complementary to the sequence T-C-A. Complementarity may be partial, in which only some of the nucleic acids match according to base pairing, or complete, where all the nucleic acids match according to base pairing.


The words “protein”, “peptide”, and “polypeptide” are used interchangeably to denote an amino acid polymer or a set of two or more interacting or bound amino acid polymers. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.


The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.


Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.


“Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. One of skill will recognize that in certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, silent variations of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not with respect to actual probe sequences.


As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. The following amino acids are typically conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).


The terms “identical” or “percent identity,” in the context of two or more nucleic acids, or two or more polypeptides, refer to two or more sequences or subsequences that are the same or have a specified percentage of nucleotides, or amino acids, that are the same (i.e., about 60% identity, preferably 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99/o, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters, or by manual alignment and visual inspection. See e.g., the NCBI web site at ncbi.nlm.nih.gov/BLAST. Such sequences are then said to be “substantially identical.” This definition also refers to, or may be applied to, the compliment of a nucleotide test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the algorithms can account for gaps and the like. Typically, identity exists over a region comprising an antibody epitope, or a sequence that is at least about 25 amino acids or nucleotides in length, or over a region that is 50-100 amino acids or nucleotides in length, or over the entire length of the reference sequence.


The term “recombinant” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.


The term “heterologous” when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).


The term “isolated,” when applied to a nucleic acid or protein, denotes that the nucleic acid or protein is essentially free of other cellular components with which it is associated in the natural state. It is preferably in a homogeneous state. It can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein that is the predominant species present in a preparation is substantially purified. In particular, an isolated gene is separated from open reading frames that flank the gene and encode a protein other than the gene of interest. The term “purified” denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure.


The term “antibody” refers to a polypeptide comprising a framework region encoded by an immunoglobulin gene, or fragments thereof, that specifically bind and recognize an antigen, e.g., human αvβ8, a particular cell surface marker, or any desired target. Typically, the “variable region” contains the antigen-binding region of the antibody (or its functional equivalent) and is most critical in specificity and affinity of binding. See Paul, Fundamental Immunology (2003).


An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these light and heavy chains respectively.


An “isotype” is a class of antibodies defined by the heavy chain constant region. Antibodies described herein can be of any isotype of isotype class. Immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the isotype classes, IgG, IgM, IgA, IgD and IgE, respectively.


Antibodies can exist as intact immunoglobulins or as any of a number of well-characterized fragments that include specific antigen-binding activity. Such fragments can be produced by digestion with various peptidases. Pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′2, a dimer of Fab which itself is a light chain joined to VH-CH1 by a disulfide bond. The F(ab)′2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)′2 dimer into an Fab′ monomer. The Fab′ monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990)).


For preparation of monoclonal or polyclonal antibodies, any technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4:72 (1983); Cole et al., Monoclonal Antibodies and Cancer Therapy, pp. 77-96. Alan R. Liss, Inc. 1985). Techniques for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., supra; Marks et al., Biotechnology, 10:779-783, (1992)).


Methods for humanizing or primatizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988) and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some complementary determining region (“CDR”) residues and possibly some framework (“FR”) residues are substituted by residues from analogous sites in rodent antibodies.


Antibodies or antigen-binding molecules of the invention further includes one or more immunoglobulin chains that are chemically conjugated to, or expressed as, fusion proteins with other proteins. It also includes bispecific antibody. A bispecific or bifunctional antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Other antigen-binding fragments or antibody portions of the invention include bivalent scFv (diabody), bispecific scFv antibodies where the antibody molecule recognizes two different epitopes, single binding domains (dAbs), and minibodies.


The various antibodies or antigen-binding fragments described herein can be produced by enzymatic or chemical modification of the intact antibodies, or synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv), or identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554, 1990). For example, minibodies can be generated using methods described in the art, e.g., Vaughan and Sollazzo, Comb Chem High Throughput Screen. 4:417-30 2001. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. Immunol. 79:315-321 (1990); Kostelny et al., J. Immunol. 148, 1547-1553 (1992). Single chain antibodies can be identified using phage display libraries or ribosome display libraries, gene shuffled libraries. Such libraries can be constructed from synthetic, semi-synthetic or native and immunocompetent sources.


A “monoclonal antibody” refers to a clonal preparation of antibodies with a single binding specificity and affinity for a given epitope on an antigen. A “polyclonal antibody” refers to a preparation of antibodies that are raised against a single antigen, but with different binding specificities and affinities.


As used herein, “V-region” refers to an antibody variable region domain comprising the segments of Framework 1, CDR1, Framework 2, CDR2, Framework 3, CDR3, and Framework 4. These segments are included in the V-segment as a consequence of rearrangement of the heavy chain and light chain V-region genes during B-cell differentiation.


As used herein, “complementarity-determining region (CDR)” refers to the three hypervariable regions in each chain that interrupt the four “framework” regions established by the light and heavy chain variable regions. The CDRs are primarily responsible for binding to an epitope of an antigen. The CDRs of each chain are typically referred to as CDR1, CDR2, and CDR3, numbered sequentially starting from the N-terminus, and are also typically identified by the chain in which the particular CDR is located. Thus, a VH CDR3 is located in the variable domain of the heavy chain of the antibody in which it is found, whereas a VL CDR1 is the CDR1 from the variable domain of the light chain of the antibody in which it is found.


The sequences of the framework regions of different light or heavy chains are relatively conserved within a species. The framework region of an antibody, that is the combined framework regions of the constituent light and heavy chains, serves to position and align the CDRs in three dimensional space.


The amino acid sequences of the CDRs and framework regions can be determined using various well known definitions in the art, e.g., Kabat, Chothia, international ImMunoGeneTics database (IMGT), and AbM (see, e.g., Johnson and Wu, Nucleic Acids Res. 2000 Jan. 1; 28(1): 214-218 and Johnson et al., Nucleic Acids Res., 29:205-206 (2001); Chothia & Lesk, (1987) J. Mol. Biol. 196, 901-917; Chothia et al. (1989) Nature 342, 877-883; Chothia et al. (1992) J. Mol. Biol. 227, 799-817; Al-Lazikani et al., J. Mol. Biol 1997, 273(4)). Unless otherwise indicated, CDRs are determined according to Kabat. Definitions of antigen combining sites are also described in the following: Ruiz et al. Nucleic Acids Res., 28, 219-221 (2000); and Lefranc Nucleic Acids Res. Jan. 1; 29(1):207-9 (2001); MacCallum et al., J. Mol. Biol., 262: 732-745 (1996); and Martin et al, Proc. Natl Acad. Sci. USA, 86, 9268-9272 (1989); Martin, et al, Methods Enzymol., 203: 121-153, (1991); Pedersen et al, Immunomethods, 1, 126, (1992); and Rees et al, In Sternberg M. J. E. (ed.), Protein Structure Prediction. Oxford University Press, Oxford, 141-172 1996).


A “chimeric antibody” is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region, CDR, or portion thereof) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody (e.g., an enzyme, toxin, hormone, growth factor, drug, etc.); or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity (e.g., CDR and framework regions from different species).


A “humanized” antibody is an antibody that retains the reactivity of a non-human antibody while being less immunogenic in humans. This can be achieved, for instance, by retaining the non-human CDR regions and replacing the remaining parts of the antibody with their human counterparts. See, e.g., Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984); Morrison and Oi, Adv. Immunol., 44:65-92 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988); Padlan, Molec. Immun., 28:489-498 (1991); Padlan, Molec. Immun., 31(3):169-217 (1994).


The antibody binds to an “epitope” on the antigen. The epitope is the specific antibody binding interaction site on the antigen, and can include a few amino acids or portions of a few amino acids, e.g., 5 or 6, or more, e.g., 20 or more amino acids, or portions of those amino acids. In some cases, the epitope includes non-protein components, e.g., from a carbohydrate, nucleic acid, or lipid. In some cases, the epitope is a three-dimensional moiety. Thus, for example, where the target is a protein, the epitope can be comprised of consecutive amino acids, or amino acids from different parts of the protein that are brought into proximity by protein folding (e.g., a discontinuous epitope). The same is true for other types of target molecules that form three-dimensional structures.


The term “specifically bind” refers to a molecule (e.g., antibody or antibody fragment) that binds to a target with at least 2-fold greater affinity than non-target compounds, e.g., at least 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 20-fold, 25-fold, 50-fold, or 100-fold greater affinity. For example, an antibody that specifically binds β8 will typically bind to β8 with at least a 2-fold greater affinity than a non-β8 target (e.g., a different integrin subunit, e.g., β6).


The term “binds” with respect to a cell type (e.g., an antibody that binds fibrotic cells, hepatocytes, chondrocytes, etc.), typically indicates that an agent binds a majority of the cells in a pure population of those cells. For example, an antibody that binds a given cell type typically binds to at least ⅔ of the cells in a population of the indicated cells (e.g., 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%). One of skill will recognize that some variability will arise depending on the method and/or threshold of determining binding.


As used herein, a first antibody, or an antigen-binding portion thereof, “competes” for binding to a target with a second antibody, or an antigen-binding portion thereof, when binding of the second antibody with the target is detectably decreased in the presence of the first antibody compared to the binding of the second antibody in the absence of the first antibody. The alternative, where the binding of the first antibody to the target is also detectably decreased in the presence of the second antibody, can, but need not be the case. That is, a second antibody can inhibit the binding of a first antibody to the target without that first antibody inhibiting the binding of the second antibody to the target. However, where each antibody detectably inhibits the binding of the other antibody to its cognate epitope or ligand, whether to the same, greater, or lesser extent, the antibodies are said to “cross-compete” with each other for binding of their respective epitope(s). Both competing and cross-competing antibodies are encompassed by the present invention. The term “competitor” antibody can be applied to the first or second antibody as can be determined by one of skill in the art. In some cases, the presence of the competitor antibody (e.g., the first antibody) reduces binding of the second antibody to the target by at least 10%, e.g., 20%, 30%, 40%, 50%, 60%, 70%, 80%, or more, e.g., so that binding of the second antibody to target is undetectable in the presence of the first (competitor) antibody.


The term “differentially expressed” or “differentially regulated” refers generally to a protein or nucleic acid biomarker that is overexpressed (upregulated) or underexpressed (downregulated) in one sample compared to at least one other sample. In the context of the present invention, the term generally refers to overexpression of a biomarker (e.g., αvβ8) on a diseased cell compared to a normal cell.


For example, the terms “overexpressed” or “upregulated” interchangeably refer to a protein or nucleic acid, generally a biomarker, that is transcribed or translated at a detectably greater than control level. The term includes overexpression due to transcription, post transcriptional processing, translation, post-translational processing, cellular localization (e.g., organelle, cytoplasm, nucleus, cell surface), and RNA and protein stability. Overexpression can be detected using conventional techniques for detecting biomarkers, whether mRNA (i.e., RT-PCR, hybridization) or protein (i.e., flow cytometry, imaging, ELISA, immunohistochemical techniques). Overexpression can be 100/%, 20%, 30%, 40%, 50%, 60%, 70%, 800/0, 90% or more in comparison to a normal cell.


The terms “agonist,” “activator,” “inducer” and like terms refer to molecules that increase activity or expression as compared to a control. Agonists are agents that, e.g., bind to, stimulate, increase, activate, enhance activation, sensitize or upregulate the activity of the target. The expression or activity can be increased 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 100% or more than that in a control. In certain instances, the activation is 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, or more in comparison to a control.


The terms “inhibitor,” “repressor” or “antagonist” or “downregulator” interchangeably refer to a substance that results in a detectably lower expression or activity level as compared to a control. The inhibited expression or activity can be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or less than that in a control. In certain instances, the inhibition is 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, or more in comparison to a control.


A “control” sample or value refers to a sample that serves as a reference, usually a known reference, for comparison to a test sample. For example, a test sample can be taken from a test condition, e.g., in the presence of a test compound, and compared to samples from known conditions, e.g., in the absence of the test compound (negative control), or in the presence of a known compound (positive control). A control can also represent an average value gathered from a number of tests or results. One of skill in the art will recognize that controls can be designed for assessment of any number of parameters. For example, a control can be devised to compare therapeutic benefit based on pharmacological data (e.g., half-life) or therapeutic measures (e.g., comparison of benefit and/or side effects). Controls can be designed for in vitro applications. One of skill in the art will understand which controls are valuable in a given situation and be able to analyze data based on comparisons to control values. Controls are also valuable for determining the significance of data. For example, if values for a given parameter are widely variant in controls, variation in test samples will not be considered as significant.


A “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include 32P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into a peptide or antibody specifically reactive with a target peptide. Any method known in the art for conjugating an antibody to the label may be employed, e.g., using methods described in Hermanson, Bioconjugate Techniques 1996, Academic Press, Inc., San Diego.


A “labeled” molecule (e.g., nucleic acid, protein, or antibody) is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the molecule may be detected by detecting the presence of the label bound to the molecule.


The term “diagnosis” refers to a relative probability that a disorder such as cancer or an inflammatory condition is present in the subject. Similarly, the term “prognosis” refers to a relative probability that a certain future outcome may occur in the subject. For example, prognosis can refer to the likelihood that an individual will develop a TGFβ or αvβ8 associated disorder, have recurrence, or the likely severity of the disease (e.g., severity of symptoms, rate of functional decline, survival, etc.). The terms are not intended to be absolute, as will be appreciated by any one of skill in the field of medical diagnostics.


“Biopsy” or “biological sample from a patient” as used herein refers to a sample obtained from a patient having, or suspected of having, a TGFβ or αvβ8 associated disorder. In some embodiments, the sample may be a tissue biopsy, such as needle biopsy, fine needle biopsy, surgical biopsy, etc. The sample can also be a blood sample or blood fraction, e.g., white blood cell fraction, serum, or plasma. The sample can comprise a tissue sample harboring a lesion or suspected lesion, although the biological sample may be also be derived from another site, e.g., a site of suspected metastasis, a lymph node, or from the blood. In some cases, the biological sample may also be from a region adjacent to the lesion or suspected lesion.


A “biological sample” can be obtained from a patient, e.g., a biopsy, from an animal, such as an animal model, or from cultured cells, e.g., a cell line or cells removed from a patient and grown in culture for observation. Biological samples include tissues and bodily fluids, e.g., blood, blood fractions, lymph, saliva, urine, feces, etc.


The terms “therapy,” “treatment,” and “amelioration” refer to any reduction in the severity of symptoms. In the case of treating an inflammatory condition, the treatment can refer to reducing, e.g., blood levels of inflammatory cytokines, blood levels of active mature TGFβ, pain, swelling, recruitment of immune cells, etc. In the case of treating cancer, treatment can refer to reducing, e.g., tumor size, number of cancer cells, growth rate, metastatic activity, cell death of non-cancer cells, etc. As used herein, the terms “treat” and “prevent” are not intended to be absolute terms. Treatment and prevention can refer to any delay in onset, amelioration of symptoms, improvement in patient survival, increase in survival time or rate, etc. Treatment and prevention can be complete (no detectable symptoms remaining) or partial, such that symptoms are less frequent of severe than in a patient without the treatment described herein. The effect of treatment can be compared to an individual or pool of individuals not receiving the treatment, or to the same patient prior to treatment or at a different time during treatment. In some aspects, the severity of disease is reduced by at least 10%, as compared, e.g., to the individual before administration or to a control individual not undergoing treatment. In some aspects the severity of disease is reduced by at least 25%, 50%, 75%, 80%, or 90%, or in some cases, no longer detectable using standard diagnostic techniques.


The terms “effective amount,” “effective dose,” “therapeutically effective amount,” etc. refer to that amount of the therapeutic agent sufficient to ameliorate a disorder, as described above. For example, for the given parameter, a therapeutically effective amount will show an increase or decrease of therapeutic effect at least 5%, 10%, 15%, 20%, 25%, 40%, 50%, 60%, 75%, 80%, 90%, or at least 100%. Therapeutic efficacy can also be expressed as “-fold” increase or decrease. For example, a therapeutically effective amount can have at least a 1.2-fold, 1.5-fold, 2-fold, 5-fold, or more effect over a control.


As used herein, the term “pharmaceutically acceptable” is used synonymously with physiologically acceptable and pharmacologically acceptable. A pharmaceutical composition will generally comprise agents for buffering and preservation in storage, and can include buffers and carriers for appropriate delivery, depending on the route of administration.


The terms “dose” and “dosage” are used interchangeably herein. A dose refers to the amount of active ingredient given to an individual at each administration. For the present invention, the dose can refer to the concentration of the antibody or associated components, e.g., the amount of therapeutic agent or dosage of radiolabel. The dose will vary depending on a number of factors, including frequency of administration; size and tolerance of the individual; severity of the condition; risk of side effects; the route of administration; and the imaging modality of the detectable moiety (if present). One of skill in the art will recognize that the dose can be modified depending on the above factors or based on therapeutic progress. The term “dosage form” refers to the particular format of the pharmaceutical, and depends on the route of administration. For example, a dosage form can be in a liquid, e.g., a saline solution for injection.


“Subject,” “patient,” “individual” and like terms are used interchangeably and refer to, except where indicated, mammals such as humans and non-human primates, as well as rabbits, rats, mice, goats, pigs, and other mammalian species. The term does not necessarily indicate that the subject has been diagnosed with a particular disease, but typically refers to an individual under medical supervision. A patient can be an individual that is seeking treatment, monitoring, adjustment or modification of an existing therapeutic regimen, etc.


An “inflammatory condition” refers to any inflammation in an individual, and can be transient (e.g., in response to exposure to a pathogen or allergen) or chronic. Inflammation is characterized by inflammatory cytokines such as IFN-gamma, IL-6, and TNF-alpha that recruit and activate macrophages and other leukocytes. In some cases, inflammation can develop into a chronic, harmful condition or autoimmune condition (e.g., MS, lupus, rheumatoid arthritis, Crohn's disease). Inflammation can be evident locally (e.g., at a localized site of infection or exposure) or systemically (e.g., atherosclerosis, high blood pressure). In some embodiments, the antibody compositions and methods described herein can be used to treat inflammatory conditions.


“Cancer”, “tumor,” “transformed” and like terms include precancerous, neoplastic, transformed, and cancerous cells, and can refer to a solid tumor, or a non-solid cancer (see, e.g., Edge et al. AJCC Cancer Staging Manual (7th ed. 2009); Cibas and Ducatman Cytology: Diagnostic principles and clinical correlates (3rd ed. 2009)). Cancer includes both benign and malignant neoplasms (abnormal growth). “Transformation” refers to spontaneous or induced phenotypic changes, e.g., immortalization of cells, morphological changes, aberrant cell growth, reduced contact inhibition and anchorage, and/or malignancy (see, Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed. 1994)). Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen.


The term “cancer” can refer to carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, solid and lymphoid cancers, etc. Examples of different types of cancer include, but are not limited to, lung cancer (e.g., non-small cell lung cancer or NSCLC), ovarian cancer, prostate cancer, colorectal cancer, liver cancer (i.e., hepatocarcinoma), renal cancer (i.e., renal cell carcinoma), bladder cancer, breast cancer, thyroid cancer, pleural cancer, pancreatic cancer, uterine cancer, cervical cancer, testicular cancer, anal cancer, pancreatic cancer, bile duct cancer, gastrointestinal carcinoid tumors, esophageal cancer, gall bladder cancer, appendix cancer, small intestine cancer, stomach (gastric) cancer, cancer of the central nervous system, skin cancer, choriocarcinoma; head and neck cancer, blood cancer, osteogenic sarcoma, fibrosarcoma, neuroblastoma, glioma, melanoma, B-cell lymphoma, non-Hodgkin's lymphoma, Burkitt's lymphoma, Small Cell lymphoma, Large Cell lymphoma, monocytic leukemia, myelogenous leukemia, acute lymphocytic leukemia, acute myelocytic leukemia (AML), chronic myeloid leukemia (CML), and multiple myeloma. In some embodiments, the antibody compositions and methods described herein can be used for treating cancer.


The term “co-administer” refers to the simultaneous presence of two active agents in the blood of an individual. Active agents that are co-administered can be concurrently or sequentially delivered.


BRIEF SUMMARY OF THE INVENTION

In some aspects, an antibody is provided that specifically binds human αvβ8 and blocks binding of TGFβ peptide to αvβ8, wherein the antibody binds to an epitope on human αvβ8 comprising amino acids D148, A149, D150, G151, and Y178 of human αv as occurs in SEQ ID NO:393 and amino acids H118, S170, D171, Y172, N173 L174, D175, H200, and R201 of human β8 as occurs in SEQ ID NO:394.


In some embodiments, an antibody (optionally a chimeric or humanized antibody) is provided that comprises heavy chain CDRs SEQ ID NO:562, SEQ ID NO: 563, and SEQ ID NO; 564 and light chain CDRs SEQ ID NO:569, SEQ ID NO: 570, and SEQ ID NO: 571.


In some embodiments, an antibody (optionally a chimeric or humanized antibody) is provided that comprises:


heavy chain CDRs SEQ ID NO:313, SEQ ID NO:314, and SEQ ID NO:315; and light chain CDRs SEQ ID NO:334, SEQ ID NO:335, and SEQ ID NO:336; or


heavy chain CDRs SEQ ID NO:319, SEQ ID NO:320, and SEQ ID NO:321; and light chain CDRs SEQ ID NO:340, SEQ ID NO:341, and SEQ ID NO:342; or


heavy chain CDRs SEQ ID NO:316, SEQ ID NO:317, and SEQ ID NO:318; and light chain CDRs SEQ ID NO:337, SEQ ID NO:338, and SEQ ID NO:339; or


heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:343, SEQ ID NO:344, and SEQ ID NO:345; or


heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:346, SEQ ID NO:347, and SEQ ID NO:348; or


heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:349, SEQ ID NO:350, and SEQ ID NO:351; or


heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:352, SEQ ID NO:353, and SEQ ID NO:354; or


heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:355, SEQ ID NO:356, and SEQ ID NO:357; or


heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:358, SEQ ID NO:359, and SEQ ID NO:360; or


heavy chain CDRs SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or


heavy chain CDRs SEQ ID NO:364, SEQ ID NO:365, and SEQ ID NO:366; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or


heavy chain CDRs SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369; and light chain CDRs SEQ ID NO:376, SEQ ID NO:377, and SEQ ID NO:378; or


heavy chain CDRs SEQ ID NO:370, SEQ ID NO:371, and SEQ ID NO:372; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or


heavy chain CDRs SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333; and light chain CDRs SEQ ID NO:382, SEQ ID NO:383, and SEQ ID NO:384; or


heavy chain CDRs SEQ ID NO:379, SEQ ID NO:380, and SEQ ID NO:381; and light chain CDRs SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363; or


heavy chain CDRs SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333; and light chain CDRs SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363; or


heavy chain CDRs SEQ ID NO:508, SEQ ID NO:509, and SEQ ID NO:510; and light chain CDRs SEQ ID NO:529, SEQ ID NO:530, and SEQ ID NO:531; or


heavy chain CDRs SEQ ID NO:511, SEQ ID NO:512, and SEQ ID NO:513; and light chain CDRs SEQ ID NO:532, SEQ ID NO:533, and SEQ ID NO:534; or


heavy chain CDRs SEQ ID NO:514, SEQ ID NO:515, and SEQ ID NO:516; and light chain CDRs SEQ ID NO:535, SEQ ID NO:536, and SEQ ID NO:537; or


heavy chain CDRs SEQ ID NO:517, SEQ ID NO:518, and SEQ ID NO:519; and light chain CDRs SEQ ID NO:538, SEQ ID NO:539, and SEQ ID NO:540; or


heavy chain CDRs SEQ ID NO: 520, SEQ ID NO:521, and SEQ ID NO:522; and light chain CDRs SEQ ID NO:541, SEQ ID NO:542, and SEQ ID NO:543; or


heavy chain CDRs SEQ ID NO: 523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:544, SEQ ID NO:545, and SEQ ID NO:546; or


heavy chain CDRs SEQ ID NO: 526, SEQ ID NO:527, and SEQ ID NO:528; and light chain CDRs SEQ ID NO:547, SEQ ID NO:548, and SEQ ID NO:549; or


other antibodies described herein.


In some embodiments, the antibody is linked to a detectable label.


In some embodiments, the antibody further comprises heavy chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 558, SEQ ID NO: 559, SEQ ID NO: 560, and SEQ ID NO: 561, respectively, and light chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 565, SEQ ID NO: 566, SEQ ID NO: 567, and SEQ ID NO: 568, respectively.


In some embodiments, the antibody further comprises heavy chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 550, SEQ ID NO: 551, SEQ ID NO: 552, and SEQ ID NO: 553, respectively, and light chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 554, SEQ ID NO: 555, SEQ ID NO: 556, and SEQ ID NO: 557, respectively.


In some embodiments, the antibody is humanized. In some embodiments, the humanized antibody comprises SEQ ID NO:395, SEQ ID NO:403, SEQ ID NO:411; SEQ ID NO:419, SEQ ID NO:427, SEQ ID NO:443, SEQ ID NO:451, SEQ ID NO:459, SEQ ID NO:467; SEQ ID NO:475, SEQ ID NO:484, or SEQ ID NO:500.


Also provided is an antibody that binds to αvβ8 and αvβ6 and comprising a light chain CDR1 comprising the sequence RGDL. In some embodiments, the antibody comprises variable regions comprising heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:544, SEQ ID NO:545, and SEQ ID NO:546; or heavy chain CDRs SEQ ID NO:526, SEQ ID NO:527, and SEQ ID NO:528; and light chain CDRs SEQ ID NO:547, SEQ ID NO:548, and SEQ ID NO:549.


In some embodiments, the antibody further comprises heavy chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 558, SEQ ID NO: 559, SEQ ID NO: 560, and SEQ ID NO: 561, respectively, and light chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 565, SEQ ID NO: 566, SEQ ID NO: 567, and SEQ ID NO: 568, respectively.


In some embodiments, the antibody further comprises heavy chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 550, SEQ ID NO: 551, SEQ ID NO: 552, and SEQ ID NO: 553, respectively, and light chain framework sequences FR1, FR2, FR3, and FR4 as SEQ ID NO: 554, SEQ ID NO: 555, SEQ ID NO: 556, and SEQ ID NO: 557, respectively.


In some embodiments, the antibody is humanized.


In some embodiments, the antibody is linked to a detectable label.


Also provided is an antibody that specifically binds human αvβ8 and blocks binding of TGFβ peptide to αvβ8, wherein the antibody binds to the specificity determining loop (SDL) of human β8. In some embodiments, the antibody further binds to one, two, or all three of the human αv-head domain, the α1 helix of human β8, or the α2 helix of human β8. In some embodiments, the antibody is humanized or chimeric. In some embodiments, the antibody is linked to a detectable label.


Also provided is a pharmaceutical composition comprising an antibody as described above or elsewhere herein in a pharmaceutically acceptable excipient.


Also provided is a method of enhancing an immune response to a viral infection in a human individual. In some embodiments, the method comprises administering a sufficient amount of an antibody as described above or elsewhere herein to the individual, thereby enhancing an immune response to the viral infection.


In some embodiments, the viral infection is a hepatitis infection. In some embodiments, the viral infection is a hepatitis B infection.


Also provided is a method of enhancing an immune response to a viral infection in a human individual, the method comprising administering a sufficient amount of the antibody to the individual, wherein the antibody specifically binds to human αvβ8 and blocks binding of TGFβ peptide to αvβ8 or blocks activation of αvβ8 by binding of TGFβ human αvβ8, thereby enhancing an immune response to the viral infection.


Also provided is a method of enhancing an immune response to cancer in a human individual, the method comprising administering a sufficient amount of an antibody as described above or elsewhere herein to the individual, thereby enhancing an immune response to the cancer.


In some embodiments, the cancer is lung cancer. In some embodiments, the cancer is a metastatic cancer. In some embodiments, the cancer is a primary cancer.


Also provided is a method of enhancing an immune response to H. pyroli in a human individual, the method comprising administering a sufficient amount of an antibody as described above or elsewhere herein to the individual, thereby enhancing an immune response to H. pyroli.


In some embodiments, the human individual has a peptide ulcer, gastric carcinoma or MALT lymphoma.


Also provided is an antibody that specifically binds to human αvβ8 and that comprises human heavy chain CDRs SEQ ID NO:299, SEQ ID NO:301, and SEQ ID NO:303; and light chain CDRs SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311. Alternatively, any antibodies having heavy chain CDRs or a heavy chain variable region as set forth in FIG. 53 and light chain CDRs or a light chain variable region from a corresponding sequence as set forth in FIG. 54 can be used


In some embodiments, the antibody is linked to a detectable label.


Also provided is a method of detecting the presence, absence, or quantity of human in a sample, the method comprising, contacting to the sample an antibody that specifically binds to human αvβ8 and that comprises human heavy chain CDRs SEQ ID NO:299, SEQ ID NO:301, and SEQ ID NO:303; and light chain CDRs SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311, and detecting or quantifying binding of the antibody to the sample.


In some embodiments, the sample is a formalin-fixed sample.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates heavy chain amino acid sequences for clones used in the construction of the composite antibody C6D4. B13C4 15-8: all sequences (SEQ ID NO: 1), Framework 1 (SEQ ID NO:2), CDR1 (SEQ ID NO:3), Framework 2 (SEQ ID NO:4), CDR2 (SEQ ID NO:5), Framework 3 (SEQ ID NO:6), CRD3 (SEQ ID NO:7), and Framework 4 (SEQ ID NO:8); B13C4 15-10: all sequences (SEQ ID NO:9), Framework 1 (SEQ ID NO:10), CDR1 (SEQ ID NO:11), Framework 2 (SEQ ID NO:12), CDR2 (SEQ ID NO:13), Framework 3 (SEQ ID NO:14), CRD3 (SEQ ID NO:15), and Framework 4 (SEQ ID NO:16); B13H3.2: all sequences (SEQ ID NO:17), Framework 1 (SEQ ID NO:18), CDR1 (SEQ ID NO:19), Framework 2 (SEQ ID NO:20), CDR2 (SEQ ID NO:21), Framework 3 (SEQ ID NO:22), CRD3 (SEQ ID NO:23), and Framework 4 (SEQ ID NO:24); B13C1231015: all sequences (SEQ ID NO:25), Framework 1 (SEQ ID NO:26), CDR1 (SEQ ID NO:27), Framework 2 (SEQ ID NO:28), CDR2 (SEQ ID NO:29), Framework 3 (SEQ ID NO:30), CRD3 (SEQ ID NO:31), and Framework 4 (SEQ ID NO:32); B15B11Vh: all sequences (SEQ ID NO:33), Framework 1 (SEQ ID NO:34), CDR1 (SEQ ID NO:35), Framework 2 (SEQ ID NO:36), CDR2 (SEQ ID NO:37), Framework 3 (SEQ ID NO:38), CRD3 (SEQ ID NO:39), and Framework 4 (SEQ ID NO:40); B2B2 15-9: all sequences (SEQ ID NO:41), Framework 1 (SEQ ID NO:42), CDR1 (SEQ ID NO:43), Framework 2 (SEQ ID NO:44), CDR2 (SEQ ID NO:45), Framework 3 (SEQ ID NO:46), CRD3 (SEQ ID NO:47), and Framework 4 (SEQ ID NO:48); R11D12715.3: all sequences (SEQ ID NO:49), Framework 1 (SEQ ID NO:50), CDR1 (SEQ ID NO:51), Framework 2 (SEQ ID NO:52), CDR2 (SEQ ID NO:53), Framework 3 (SEQ ID NO:54), CRD3 (SEQ ID NO:55), and Framework 4 (SEQ ID NO:56); RSDLVH-1: all sequences (SEQ ID NO:57 and SEQ ID NO:65), Framework 1 (SEQ ID NO:58 and SEQ ID NO:66), CDR1 (SEQ ID NO:59 and SEQ ID NO:67), Framework 2 (SEQ ID NO:60 and SEQ ID NO:68), CDR2 (SEQ ID NO:61 and SEQ ID NO:69), Framework 3 (SEQ ID NO:62 and SEQ ID NO:70), CRD3 (SEQ ID NO:63 and SEQ ID NO:71), and Framework 4 (SEQ ID NO:64 and SEQ ID NO:72); RSDLVH-3: all sequences (SEQ ID NO:73), Framework 1 (SEQ ID NO:74), CDR1 (SEQ ID NO:75), Framework 2 (SEQ ID NO:76), CDR2 (SEQ 1D NO:77), Framework 3 (SEQ ID NO:78), CRD3 (SEQ ID NO:79), and Framework 4 (SEQ ID NO:80); RSDLVH-16: all sequences (SEQ ID NO:81), Framework 1 (SEQ ID NO:82), CDR1 (SEQ ID NO:83), Framework 2 (SEQ ID NO:84), CDR2 (SEQ ID NO:85), Framework 3 (SEQ ID NO:86), CRD3 (SEQ ID NO:87), and Framework 4 (SEQ ID NO:88); both 29 and 44: all sequences (SEQ ID NO:89), Framework 1 (SEQ ID NO:90), CDR1 (SEQ ID NO:91), Framework 2 (SEQ ID NO:92), CDR2 (SEQ ID NO:93), Framework 3 (SEQ ID NO:94), CRD3 (SEQ ID NO:95), and Framework 4 (SEQ ID NO:96); A1=B4=F9: all sequences (SEQ ID NO:97), Framework 1 (SEQ ID NO:98), CDR1 (SEQ ID NO:99), Framework 2 (SEQ ID NO:100), CDR2 (SEQ ID NO:101), Framework 3 (SEQ ID NO:102), CRD3 (SEQ ID NO:103), and Framework 4 (SEQ ID NO:104); A5=C6: all sequences (SEQ ID NO:105), Framework 1 (SEQ ID NO:106), CDR1 (SEQ ID NO:107), Framework 2 (SEQ ID NO: 108), CDR2 (SEQ ID NO: 109), Framework 3 (SEQ ID NO:110), CRD3 (SEQ ID NO: 111), and Framework 4 (SEQ ID NO: 112); D4=E6: all sequences (SEQ ID NO:113), Framework 1 (SEQ ID NO:114), CDR1 (SEQ ID NO:115), Framework 2 (SEQ ID NO: 116), CDR2 (SEQ ID NO: 117), Framework 3 (SEQ ID NO: 118), CRD3 (SEQ ID NO: 119), and Framework 4 (SEQ ID NO: 120); and C6D4: all sequences (SEQ ID NO: 121), Framework 1 (SEQ ID NO:122), CDR1 (SEQ ID NO:123), Framework 2 (SEQ ID NO: 124), CDR2 (SEQ ID NO:125), Framework 3 (SEQ ID NO: 126), CRD3 (SEQ ID NO:127), and Framework 4 (SEQ ID NO: 128).



FIG. 2 illustrates light chain amino acid sequences for clones used in the construction of the composite antibody C6D4. B2B2 35-20: all sequences (SEQ ID NO: 129), Framework 1 (SEQ ID NO:130), CDR1 (SEQ ID NO:131), Framework 2 (SEQ ID NO: 132), CDR2 (SEQ ID NO:133), Framework 3 (SEQ ID NO: 134), CRD3 (SEQ ID NO:135), and Framework 4 (SEQ ID NO: 136); B2B2 35-26: all sequences (SEQ ID NO: 137), Framework 1 (SEQ ID NO: 138), CDR1 (SEQ ID NO:139), Framework 2 (SEQ ID NO:140), CDR2 (SEQ ID NO:141), Framework 3 (SEQ ID NO: 142), CRD3 (SEQ ID NO:143), and Framework 4 (SEQ ID NO:144); B15B11vk34-26: all sequences (SEQ ID NO: 145), Framework 1 (SEQ ID NO:146), CDR1 (SEQ ID NO: 147), Framework 2 (SEQ ID NO: 148), CDR2 (SEQ ID NO: 149), Framework 3 (SEQ ID NO:150), CRD3 (SEQ ID NO: 151), and Framework 4 (SEQ ID NO: 152); B15B11vk33-24: all sequences (SEQ ID NO: 153), Framework 1 (SEQ ID NO: 154), CDR1 (SEQ ID NO:155), Framework 2 (SEQ ID NO: 156), CDR2 (SEQ ID NO: 157), Framework 3 (SEQ ID NO:158), CRD3 (SEQ ID NO:159), and Framework 4 (SEQ ID NO:160); B15B11vk35-26: all sequences (SEQ ID NO:161), Framework 1 (SEQ ID NO: 162), CDR1 (SEQ ID NO:163), Framework 2 (SEQ ID NO:164), CDR2 (SEQ ID NO:165), Framework 3 (SEQ ID NO:166), CRD3 (SEQ ID NO:167), and Framework 4 (SEQ ID NO:168); B13C12134-25: all sequences (SEQ ID NO:169), Framework 1 (SEQ ID NO:170), CDR1 (SEQ ID NO:171), Framework 2 (SEQ ID NO:172), CDR2 (SEQ ID NO:173), Framework 3 (SEQ ID NO:174), CRD3 (SEQ ID NO: 175), and Framework 4 (SEQ ID NO: 176); B13C12133-26: all sequences (SEQ ID NO: 177), Framework 1 (SEQ ID NO: 178), CDR1 (SEQ ID NO: 179), Framework 2 (SEQ ID NO:180), CDR2 (SEQ ID NO:181), Framework 3 (SEQ ID NO:182), CRD3 (SEQ ID NO:183), and Framework 4 (SEQ ID NO:184); B13C4 35-20: all sequences (SEQ ID NO:185), Framework 1 (SEQ ID NO: 186), CDR1 (SEQ ID NO: 187), Framework 2 (SEQ ID NO: 188), CDR2 (SEQ ID NO:189), Framework 3 (SEQ ID NO:190), CRD3 (SEQ ID NO:191), and Framework 4 (SEQ ID NO: 192); B15B11vk35-20: all sequences (SEQ ID NO: 193), Framework 1 (SEQ ID NO: 194), CDR1 (SEQ ID NO: 195), Framework 2 (SEQ ID NO: 196), CDR2 (SEQ ID NO: 197), Framework 3 (SEQ ID NO: 198), CRD3 (SEQ ID NO:199), and Framework 4 (SEQ ID NO:200); B13C12335-25: all sequences (SEQ ID NO:201), Framework 1 (SEQ ID NO:202), CDR1 (SEQ ID NO:203), Framework 2 (SEQ ID NO:204), CDR2 (SEQ ID NO:205), Framework 3 (SEQ ID NO:206), CRD3 (SEQ ID NO:207), and Framework 4 (SEQ ID NO:208); B13C1233520: all sequences (SEQ ID NO:209), Framework 1 (SEQ ID NO:210), CDR1 (SEQ ID NO:211), Framework 2 (SEQ ID NO:212), CDR2 (SEQ ID NO:213), Framework 3 (SEQ ID NO:214), CRD3 (SEQ ID NO:215), and Framework 4 (SEQ ID NO:216); RSDLVK-1: all sequences (SEQ ID NO:217), Framework 1 (SEQ ID NO:218), CDR1 (SEQ ID NO:219), Framework 2 (SEQ ID NO:220), CDR2 (SEQ ID NO:221), Framework 3 (SEQ ID NO:222), CRD3 (SEQ ID NO:223), and Framework 4 (SEQ ID NO:224); RSDLVK-6: all sequences (SEQ ID NO:225), Framework 1 (SEQ ID NO:226), CDR1 (SEQ ID NO:227), Framework 2 (SEQ ID NO:228), CDR2 (SEQ ID NO:229), Framework 3 (SEQ ID NO:230), CRD3 (SEQ ID NO:231), and Framework 4 (SEQ ID NO:232); RSDLVK-10: all sequences (SEQ ID NO:233), Framework 1 (SEQ ID NO:234), CDR1 (SEQ ID NO:235), Framework 2 (SEQ ID NO:236), CDR2 (SEQ ID NO:237), Framework 3 (SEQ ID NO:238), CRD3 (SEQ ID NO:239), and Framework 4 (SEQ ID NO:240); RSDLVK-13: all sequences (SEQ ID NO:241), Framework 1 (SEQ ID NO:242), CDR1 (SEQ ID NO:243), Framework 2 (SEQ ID NO:244), CDR2 (SEQ ID NO:245), Framework 3 (SEQ ID NO:246), CRD3 (SEQ ID NO:247), and Framework 4 (SEQ ID NO:248); 29: all sequences (SEQ ID NO:249), Framework 1 (SEQ ID NO:250), CDR1 (SEQ ID NO:251), Framework 2 (SEQ ID NO:252), CDR2 (SEQ ID NO:253), Framework 3 (SEQ ID NO:254), CRD3 (SEQ ID NO:255), and Framework 4 (SEQ ID NO:256); 44: all sequences (SEQ ID NO:257), Framework 1 (SEQ ID NO:258), CDR1 (SEQ ID NO:259), Framework 2 (SEQ ID NO:260), CDR2 (SEQ ID NO:261), Framework 3 (SEQ ID NO:262), CRD3 (SEQ ID NO:263), and Framework 4 (SEQ ID NO:264); A1=B4=F9: all sequences (SEQ ID NO:265), Framework 1 (SEQ ID NO:266), CDR1 (SEQ ID NO:267), Framework 2 (SEQ ID NO:268), CDR2 (SEQ ID NO:269), Framework 3 (SEQ ID NO:270), CRD3 (SEQ ID NO:271), and Framework 4 (SEQ ID NO:272); A5=C6: all sequences (SEQ ID NO:273), Framework 1 (SEQ ID NO:274), CDR1 (SEQ ID NO:275), Framework 2 (SEQ ID NO:276), CDR2 (SEQ ID NO:277), Framework 3 (SEQ ID NO:278), CRD3 (SEQ ID NO:279), and Framework 4 (SEQ ID NO:280); D4=E6: all sequences (SEQ ID NO:281), Framework 1 (SEQ ID NO:282), CDR1 (SEQ ID NO:283), Framework 2 (SEQ ID NO:284), CDR2 (SEQ ID NO:285), Framework 3 (SEQ ID NO:286), CRD3 (SEQ ID NO:287), and Framework 4 (SEQ ID NO:288); and C6D4: all sequences (SEQ ID NO:289), Framework 1 (SEQ ID NO:290), CDR1 (SEQ ID NO:291), Framework 2 (SEQ ID NO:292), CDR2 (SEQ ID NO:293), Framework 3 (SEQ ID NO:294), CRD3 (SEQ ID NO:295), and Framework 4 (SEQ ID NO:296).



FIG. 3 is a plot of transforming growth factor-beta (TGF-β) binding inhibition percentages for different concentrations of the allosteric inhibitor B5 and the composite antibody C6D4.



FIG. 4 illustrates conservation of epitope among mammals, indicating the antibodies can be useful in multiple preclinical animal models and have broad utility, including in veterinary applications. Human αv (SEQ ID NO:591); Chimp αv (SEQ ID NO:592); Rhesus av (SEQ ID NO:593); Cyno αv (SEQ ID NO:594); Cow αv (SEQ ID NO:595); Pig αv (SEQ ID NO:596); Horse αv (SEQ ID NO:597); Mouse αv (SEQ ID NO:598); Rat αv (SEQ ID NO:599); Armadillo αv (SEQ ID NO:600); Platypus αv (SEQ ID NO:601); Human β8 (SEQ ID NO:602); Chimp β8 (SEQ ID NO:603); Rhesus β8 (SEQ ID NO:604); Cyno β8 (SEQ ID NO:605); Cow β8 (SEQ ID NO:606); Pig β8 (SEQ ID NO:607); Horse β8 (SEQ ID NO:608); Mouse β8 (SEQ ID NO:609); Rat β8 (SEQ ID NO:610); Armadillo β8 (SEQ ID NO:611); and Platypus β8 (SEQ ID NO:612).



FIG. 5 illustrates integrin alphaV (SEQ ID NO:394) and beta8 (SEQ ID NO:395) sequences. The epitope for C6D4 is in bold underlined italics.



FIG. 6 illustrates cryoEM results, highlighting the interactions between C6D4 and the (SDL) loop of β8, the α1 and α2 helices of β8, and the head of αv.



FIG. 7 illustrates the residues of the SDL and β8α1 and α2 helices and αv head of integrin αvβ8 that directly interact with C6D4 upon binding. The head sequence of integrin αv is FNLDVDSPAEYSGPEGSYFGFAVDFFVPSASSRMFLLVGAPKANTTQPGIVEGGQVLKC DWSSTRRCQPIEFDATGNRDYAKDDPLEFKSHQWFGASVRSKQDKILACAPLYHWRTE MKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGGFSIDFTKADRVLLGGPGS FYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFDDSYLGYSVAVGDFNGD GIDDFVSGVPRAARTLGMVYIYDGKNMSSLYNFTGEQMAAYFGFSVAATDINGDDYAD VFIGAPLFMDRGSDGKLQEVGQVSVSLQRASGDFQTTKLNGFEVFARFGSAIAPLGDLD QDGFNDIAIAAPYGGEDKKGIVYIFNGRSTGLNAVPSQILEGQWAARSMPPSFGYSMKG ATDIDKNGYPDLIVGAFGVDRAILYRARP (SEQ ID NO:623). Sequences C6D4 Vh CDR1 (SEQ ID NO:613); C6D4 Vh CDR2 (SEQ ID NO:614); C6D4 Vh CDR3 (SEQ ID NO:615); C6D4 Vk CDR1 (SEQ ID NO:616); C6D4 Vk CDR2 (SEQ ID NO:617); C6D4 Vk CDR3 (SEQ ID NO:618); β8, α1 helix (SEQ ID NO:619); 08, SDL (SEQ ID NO:620); β8, α2 helix (SEQ ID NO:621); and αV, β-propeller domain blade W3 (SEQ ID NO:622).



FIG. 8 illustrates the overlapping of the C6D4 epitope with the ligand binding pocket of integrin αvβ8, in relation to the association of the integrin with latent TGF-β.



FIG. 9 is a plot of percent survival of mice injected with Lewis lung carcinoma (LLC) cells. The primary tumors were removed and the animals treated with C6D4 murine IgG2a or SV5 isotype control at a dosage of 7 mg/kg once per week. In this model, mice are euthanized after losing 20% body weight due to recurrence of the primary tumor or due to metastasis.



FIG. 10 is a table of HepB surface antigen (HBSag) clearance from a chronic infection mouse model as a result of treatment with C6D4.



FIG. 11A-B illustrate amino acid sequences for clones used in the construction of the engineered antibody 4F1F9, an antibody used for detection of αvβ8 in human tissues. FIG. 11A Sequences—4F1: all sequences (SEQ ID NO:624), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:628), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:634), Framework 3 (SEQ ID NO:637), CDR3 (SEQ ID NO:651), Framework 4 (SEQ ID NO:655), 6B9: all sequences (SEQ ID NO:656), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:635), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:652), Framework 4 (SEQ ID NO:655), 6B9.1: all sequences (SEQ ID NO:657), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:653), Framework 4 (SEQ ID NO:655), A1: all sequences (SEQ ID NO:658), Framework 1 (SEQ ID NO:626), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:639), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A2: all sequences (SEQ ID NO:659), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:640), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A8: all sequences (SEQ ID NO:660), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:641), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A11: all sequences (SEQ ID NO:661), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:630), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), B1: all sequences (SEQ ID NO:662), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:642), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), B3: all sequences (SEQ ID NO:663), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:643), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C4=F10: all sequences (SEQ ID NO:664), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:644), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C7=D1: all sequences (SEQ ID NO:665), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:644), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D3=F1: all sequences (SEQ ID NO:666), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:645), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D10=E5: all sequences (SEQ ID NO:667), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), G4: all sequences (SEQ ID NO:668), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:647), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C4: all sequences (SEQ ID NO:669), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:650), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D10: all sequences (SEQ ID NO:670), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1A11: all sequences (SEQ ID NO:671), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:650), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E1: all sequences (SEQ ID NO:672), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1G3: all sequences (SEQ ID NO:673), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:648), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E10: all sequences (SEQ ID NO:674), Framework 1 (SEQ ID NO:627), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E9: all sequences (SEQ ID NO:675), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1H12: all sequences (SEQ ID NO:676), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:649), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), F9: all sequences (SEQ ID NO:677), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), and Framework 4 (SEQ ID NO:655). FIG. 11B Sequences—4F1: all sequences (SEQ ID NO:678), Framework 1 (SEQ ID NO:692), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), 6B9: all sequences (SEQ ID NO:679), Framework 1 (SEQ ID NO:699), CDR1 (SEQ ID NO:700), Framework 2 (SEQ ID NO:701), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:702), Framework 4 (SEQ ID NO:698), 6B9.1: all sequences (SEQ ID NO:680), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A1=A2=C4=C7=D1=D10=E5=F1=F10=G4: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A8: all sequences (SEQ ID NO:682), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A11: all sequences (SEQ ID NO:683), Framework 1 (SEQ ID NO:704), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), B1: all sequences (SEQ ID NO:684), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), B3: all sequences (SEQ ID NO:685), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), D10=E5: all sequences (SEQ ID NO:686), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), C4: all sequences (SEQ ID NO:687), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:706), D10: all sequences (SEQ ID NO:688), Framework 1 (SEQ ID NO:699), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:706), 4F1E1=1F1G3=4F1B5=4F1G11=4F1A9=4F1B9=4F1H9=4F1D10=4F1E9=4F1F10=4FH11=4F1H12: all sequences (SEQ ID NO:689), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), 4FA11: all sequences (SEQ ID NO:690), Framework 1 (SEQ ID NO:705), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), F9: all sequences (SEQ ID NO:691), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), and Framework 4 (SEQ ID NO:706).



FIG. 12 demonstrates how the C6D4 epitope overlaps directly with the ligand binding pocket of integrin αVβ8, preventing association of integrin αVβ8 with L-TGFβ and thus activation of L-TGFβ. Representative class averages of integrin complexes observed by negative staining electron microscopy.



FIG. 13 illustrates a model of how the complex is generated from the crystal structure of αVβ3 (PDB ID: 3IJE), with the 08 model based on 03 using CHIMERA and MODELLER (Yang et al., J Struct Biol. 2012 Sep.; 179(3):269-78). Refinement of the model to the cryo-electron microscopy map is done in rigid body in COOT (Emsley P, et al., Acta Crystallographica Section D—Biological Crystallography. 2010, 66:486-501), followed by complete refinement in PHENIX (Adams et al., Acta Cryst. 2010; D66:213-221).



FIG. 14 illustrates interaction of C6D4 Vk CDR1 (SEQ ID NO:616) with integrin αV (SEQ ID NO:622, positions 46-52 and 75-79): Model of the αVβ8/C6D4 Fab complex. Interacting residues are represented as sticks. The dashed lines represent inter-atom distances comprised between 2.5 and 4.0 Å indicating potential interactions.



FIG. 15 illustrates interaction of C6D4 with the SDL region of integrin β8: Model of the αVβ8/C6D4 Fab complex. Interacting residues are represented as sticks. The dashed lines represent inter-atom distances comprised between 2.5 and 4.0 Å indicating potential interactions. C6D4 Vh CDR1 (SEQ ID NO:707), C6D4 Vh CDR3 (SEQ ID NO:615), β8, SDL (SEQ ID NO:620), C6D4 Vk CDR1 (SEQ ID NO:616), C6D4 Vk CDR2 (SEQ ID NO:708), and C6D4 Vk CDR3 (SEQ ID NO:618).



FIG. 16 illustrates interaction of C6D4 Vk CDR2 (SEQ ID NO:617) with the α1 helix of integrin β8 (SEQ ID NO:619): Model of the αVβ8/C6D4 Fab complex. Interacting residues are represented as sticks. The dashed lines represent inter-atom distances comprised between 2.5 and 4.0 Å indicating potential interactions.



FIG. 17 illustrates interaction of C6D4 Vk CDR1 (SEQ ID NO:613) with the α2 helix of integrin β8 (SEQ ID NO:621): Model of the αVβ8/C6D4 Fab complex. Interacting residues are represented as sticks. The dashed lines represent inter-atom distances comprised between 2.5 and 4.0 Å indicating potential interactions.



FIG. 18 illustrates that C6D4 blocks the access of L-TGFβ to the ligand binding pocket of integrin β8 and C6D4 bound to integrin αVβ8 directly clashes with the position of the RGDLGRLKK loop of L-TGFβ (SEQ ID NO:712). The surface of the αVβ8/C6D4 Fab complex is shown. The surface is αVβ8, while the cartoon is C6D4. In sticks are superimposed the residues RGDLGRLKK (SEQ ID NO:712) from the integrin binding loop of L-TGFβ as found when bound to integrin αVβ6 (PDB 4UM9) ((4) Structural determinants of integrin 1-subunit specificity for latent TGF-β. Dong X, et al. Nat. Struct. Mol. Biol. 2014 Dec.; 21(12):1091-6).



FIG. 19 shows that C6D4 is a potent inhibitor of binding of secreted αvβ8 to L-TGF-b3 peptide.



FIG. 20 shows that C6D4 is a potent inhibitor of cell αvβ8-mediated cell adhesion to L-TGF-b3 peptide.



FIG. 21 shows immunodetection of the integrin b8 subunit in formalin fixed paraffin embedded sections from patient infected with H. Pylori (A,B) or showing normal histology (C,D). The sections were stained with clone F9 in rabbit IgG format and detected using TSA signal amplification (Perkin Elmer). The brown precipitate indicates positive staining and the nuclei are counterstained with hematoxylin. The arrows indicate examples of positive crypts with stained crypt epithelial cells. The results show that the b8 integrin subunit is increased in expression in the stomachs of patients with H. Pylori.



FIG. 22 shows quantification of Immunodetection of the integrin b8 subunit in formalin fixed paraffin embedded sections from patient infected with H. Pylori, showing normal histology or mild chronic inflammation. The sections were stained with clone F9 in rabbit IgG format and detected using TSA signal amplification (Perkin Elmer). The following scoring system was devised to capture the crypto-epithelial staining, 0=no stain, 1=just contrast+, 2=scattered, 3=diffuse and stromal staining, 0=no stain, 1=just contrast+, 2=scattered, 3=diffuse. Shown is a combined score and the n is shown. ANOVA with Sidak's multiple comparisons test. **p<0.01, *p<0.05



FIG. 23 shows binding assay of alkaline phosphatase (AP) αvβ3, αvβ6 and αvβ8 fusion proteins to CagL, the MAP RGD peptide derived from the TGFB3 sequence DDHGRGDLGRLK (SEQ ID NO:713), Fibronectin, Vitronectin or a MAP peptide derived from the TGFB2 sequence that corresponds to the RGD containing sequence of TGFB1 and TGFB3. All proteins are coated on ELISA plates at 5 ug/ml and input of AP receptors are normalized to AP activity. Results shown represent signal above BSA coated wells. The results show that αvβ8 (and αvβ6) binds to CagL as well as to TGFb3 peptide, whereas αvβ3 binds to FN and VN, poorly to TGFB3 and not at all to CagL. αvβ3 and αvβ8 show no binding and αvβ6 shows very weak binding to the control TGFb2 peptide. Shown are S.E.M.



FIG. 24 shows binding assay of alkaline phosphatase (AP) αvβ8 fusion protein to CagL in the presence of C6D4, an allosteric inhibitor, B5, or a non-blocking antibody to the same epitope as B5, clone 68 which serves as a negative control. CagL is coated on ELISA plates at 5 ug/ml. Results shown represent signal above BSA coated wells. The results show that αvβ8 binding to CagL is completely inhibited by C6D4 and are partially inhibited by B5.



FIG. 25 shows adhesion assay of Cho Lec cells stably expressing human ITGAV and ITGB8 to recombinant CagL protein at the indicated concentrations (gift of Eric. Sundberg, University of Maryland, Md.). Binding is compared to wells coated with a multiple antigen presenting peptide containing the RGD peptide derived from the TGFB3 sequence DDHGRGDLGRLK (SEQ ID NO:713), which corresponds to as 257-268 of human TGF-b3 (NP_003230). 50×10{circumflex over ( )}3 cells were allowed to attach to the wells for 30 min at RT. Unbound cells were washed off with PBS. Results were presented as stained cells detected after staining with crystal violet (OD590). Results shown represent signal above the nominal binding of mock transfected Cho Lec cells to CagL or TGFB3 peptide coated wells (5 ug·ml). The results show that αvβ8 mediates cell adhesion to CagL as well as to TGFb3 peptide. Shown are S.E.M. Significance was determined by ANOVA and Sidak's multiple comparison test. ****=p<0.00001



FIG. 26 shows adhesion assay of Cho Lec cells stably expressing human ITGAV and ITGB8 to the TGF-b3 RGD MAP peptide (DDHGRGDLGRLK (SEQ ID NO:713)) (coating concentration 5 ug/ml). 50×10{circumflex over ( )}3 cells were preincubated with cagL at the indicated concentrations of CagL vs PBS control for 15 min at RT and then the cells allowed to attach to the wells for 30 min at RT. Unbound cells were washed off with PBS. Results were presented as stained cells detected after staining with crystal violet (OD590). Results shown represent signal above the nominal binding of mock transfected Cho Lec cells to TGFB3 peptide coated wells (5 ug/ml). The results show that αvβ8 mediates cell adhesion to CagL is RGD dependent. Shown are S.E.M. N=3



FIG. 27 shows adhesion assay of modified Chinese Hamster Ovary Cells (Cho Lec) cells stably expressing human ITGAV and ITGB8 to recombinant CagL protein at 5 ug/ml coating concentration, 50×10{circumflex over ( )}3 cells were mixed with the Mabs at the indicated concentrations and allowed to attach to the wells for 30 min at RT. B5 is a previously described allosteric inhibitor of αvβ8-binding to TGF-B and L230 is a previously described anti-av blocking antibody. Unbound cells were washed off with PBS. Results are presented as stained cells detected after staining with crystal violet (OD590). Results shown represent % inhibition relative to the control binding defined by binding in presence of an isotype control antibody (anti-SV5) at the same concentration. Shown are S.E.M. Significance was determined by ANOVA and Sidak's multiple comparison test. ****=p<0.00001, ***p<0.001, *<0.05. The results show that C6D4 more efficiently blocks αvβ8 mediates cell adhesion to CagL than B5 or L230.



FIG. 28 shows a mouse model for evaluating lung metastasis using the LLC tumor cell line which does not express integrins αvβ6 or αvβ8. The LLC tumor cell line is syngenic to the host C57B/6 strain. The LLC. 1 cell line has been passed though mice one time and regrown from lung metastasis. After two weeks, subcutaneously injected tumor (1×106) LLC.1 cells form large tumor nodules (˜1 cm). The tumors are removed surgically and when animals lose 20% body weight they are euthanized.



FIGS. 29A and 29B show the effect of C6D4 on mouse survival using the LLC tumor cell line model set forth in FIG. 28. Survival curves (FIG. 29A) represent mice euthanized for reasons of local recurrence or weight loss. FIG. 29B shows the survival curve when animals removed for local recurrence are excluded. At autopsy, the animals with 20% weight loss all have metastatic implants in their lungs. Here, C6D4 antibodies have been injected for up to 90 days in surviving animals. This experiment was performed eleven times, each time providing similar results (data not shown). Additionally, post-mortem examination did not reveal any abnormal inflammatory response in the tissues examined.



FIGS. 30A-F show the effect of CD64 on tumor growth and tumor immune response using the LLC tumor cell line model set forth in FIG. 28. Here, resected LLC. 1 primary tumors in mice that received two injections of isotype control (B5, which only reacts with human and not mouse b8) or C6D4 (which cross reacts with mouse and human), the primary tumor weights are recorded, dimensions are measured, and tumors are enzymatically disaggregated and immune cells isolated and counted. Flow cytometry was performed on the tumor infiltrating immune cells, and the tumor infiltrating immune cells are separated from tumor cells using Percoll gradient centrifugation. Shown here is one of three experiments each providing similar results. In each group n is equal to or greater than 10.



FIG. 31 shows a mouse model for evaluating metastatic disease using B16-F10 tumor cells. The B16-F10 highly metastatic tumor cell line is syngenic to the host C57B/6 strain. This line does not express integrins αvβ6 or αvβ8. The B16-F0 was transfected with murine itgb8 and after selection and sorting expresses surface αvβ8 at high levels. When injected intravenously via the tail vein, visible lung metastases appear by 14 days.



FIGS. 32A-H are lung adenocarcinoma samples stained with anti-b8 (FIGS. 32E-H) or anti-PD-L1 (E1L3N, Cell signaling) FIG. 32A-D. Here, it was observed that beta 8 expression inversely correlated with PD-L1 expression.



FIG. 33A shows distribution of lung adenocarcinoma samples of FIG. 32 (n=29) with staining for either PD-L1 or beta 8. FIG. 33B shows in all cases that stained at least 300% for beta 8 or PD-L were grouped together and the staining proportions were correlated.



FIGS. 34A-C shows the inhibition of B16 lung metastases as compared to an isotype sample. FIG. 34A are photographs of representative lungs in anterior and posterior views and visible lung metastases were counted and the total lung surface area involved with metastases was assessed. FIG. 34B shows the effect of C6D4 on total number of lung metastases. The B16-F10 highly metastatic tumor cell line is syngenic to the host C57B/6 strain and does not express integrins αvβ6 or αvβ8. The B16-F10 tumor cells were transfected with murine itgb8. After selection in G418 and two rounds of sorting a pool of high expressing αvβ8 cells was injected intravenously via the tail vein. After three injections (i.p.) of isotype control (SV5) or C6D4, both at 7 mg/kg at days 0, 7 and 14, the mice were euthanized at day 18. FIG. 34C shows the effect of C6D4 as measured by percentage of total lung surface area involved by metastatic melanoma.



FIGS. 35A-H show that C6D4 effects macrophage polarization to a proinflammatory phenotype. Increases in MHCII expression by tumor associated macrophages and dendritic cells is important in host immune responses to tumor antigens.



FIGS. 36A-F shows that C6D4 increases MHCII expression by tumor associated dendritic cells. Increases in MHCII by antigen presenting cells will increase antigen presentation.



FIGS. 37A-G are scatterplots showing integrin mediated differentiation of mouse Treg cells. Tumor associated CD4+ T regulatory cells play an important role in suppressing the host immune response and help tumors escape immune surveillance. The differentiation of Treg requires TGF-beta. It is thought that TGF-beta provided by mechanisms such as integrin αvβ8 mediated activation are important for Treg differentiation and function. Here, we immobilized the ectodomains of various integrins (2 mg/ml) on ELISA plates (co-coated with anti-CD3) and plate naïve murine splenic CD4+ cells with hIL-2 and retinoic acid. After 5 days the cells were fixed, permeabilized and stained with anti-CD4 and FoxP3. As a positive and negative control, cells were plated on wells with only anti-CD3 (no integrin) in the presence (+) or absence (−) of rTGF-b. The percentage of FoxP3 expressing cells are shown in each of the scatterplots (Q2).



FIGS. 38A-D shows structural representations of a C6D4 derivative (termed “RGD3” or “CD64-RGD3”) that is cross-reactive to αvβ6 and αvβ8 but not αvβ1, αvβ3, or αvβ5. FIG. 38A shows a close-up view of C6D4-RGD3 (gold) in complex with αvβ8 derived from cryoEM maps. Green is the αv subunit and blue is the β8 subunit. Shown in red is the LTGF-B1 peptide derived from structures of Latent-TGFB1 in complex with the integrin αvβ6. (αvβ6 (SEQ ID NO:709), αIIbβ3 (SEQ ID NO:710 (GRGDSP) and SEQ ID NO:711 (AKQRGDV). FIG. 38B shows sequence alignments of hTGFβ1-3 and the position of the RGD domains in TGFβ1 (SEQ ID NO:714) and TGFβ3 (SEQ ID NO:715). TGFβ2 (SEQ ID NO:716) does not have an RGD sequence. FIG. 38C shows the sequence of three mutant D4 Vk CDR1 loops containing portions of the hTGFB3 RGD sequence (in red) developed herein (C6D4 vk (SEQ ID NO:717); C6D4-RDG1 (SEQ ID NO:718); C6D4-RDG2 (SEQ ID NO:719); and C6D4-RDG3 (SEQ ID NO:720). FIG. 38D shows a zoomed image of the D4 loop (shown in gold) and the clash with the position of the bound RGD sequence of TGFβ1 in complex with integrin αvβ6.



FIG. 39 shows cell surface staining experiments of C6Vh expressed with either RGD1, RGD2 or RGD3 mutants (as set forth in FIG. 38) as rabbit IgG. Binding to human Cho cells expressing αvβ8 was expressed as a percentage of binding of C6D4.



FIG. 40 shows cell surface staining experiments of C6Vh expressed with either D4 Vk or RGD1, RGD2 or RGD3 mutants as rabbit IgG. Binding to Cho cells expressing human αvβ8 or SW480 cells expressing αvβ6 are shown. Relative binding is defined as staining compared to staining of non-transfected Cho or SW480 cells.



FIG. 41 shows binding experiments of C6Vh expressed with either D4 Vk or RGD1, RGD2 or RGD3 mutants as rabbit IgG, to various αv-integrins. All integrins were coated on ELISA plates at 2 mg/ml, blocked with BSA, and antibodies were allowed to bind. Binding of C6D4 and C6D4-RGD3 were detected with anti-rabbit HRP. The results are shown relative to control wells coated with anti-αv (clone 8B8) where αv-integrins were detected with another αv-antibody recognizing an non-overlapping epitope (L230-biotin), followed by SA-HRP.



FIG. 42 shows the effect of cations on the binding of C6D4 and C6D4-RGD3 to various receptors. Binding in EDTA containing buffer defines cation-dependence because EDTA binds to Ca++ and Mg++. Magnesium cation buffers contains 1 mM Ca++ and 1 mM Mg++. Here, the results are relative to anti-av, clone 11D12V2. All antibodies were coated on ELISA plates at 5 μg/ml. The αvβ8 or αvβ6 receptors (0.5 μg/ml) were bound for 1 hour and were then detected with biotinylated anti-av clone 8B8. The small amount of αvβ8 binding to C6D4-RGD3 in EDTA buffer (compared with no αvβ6 binding to C6D4-RGD3 in EDTA buffer) suggests that the binding to αvβ6 is more dependent on the RGD binding loop of Vk CDR1 than the binding to αvβ8.



FIGS. 43A and 43B show inhibition of αvβ8 adhesion and TGF-beta activation. Cho 3.2.8.1 cells transfected with b8 were used in adhesion assays to wells coated with branched GRGDLGRLK peptide (SEQ ID NO:721) (10 ug/ml). Cho-b8 cells were allowed to bind in adhesion assays (FIG. 43A) in the presence of C6D4, RGD3 or control Mab at various concentrations. Cho-b8 cells were allowed to attach to wells with TMLC TGF-β reporter cells in the presence of C6D4, RGD3 or control Mab at various concentrations (FIG. 43B). The values are shown as a proportion of control Mab (SV5) control. The results indicate that C6D4-RGD3 and C6D4 block αvβ8 function similarly.



FIGS. 44A-B show adhesion assays and FIGS. 44C-D show TGF-beta activation. Here, Cho3.2.8.1 cells were transfected with GARP and LTGFB1. GARP (LRRC32) is a cell surface scaffolding molecule present on the surface of Treg cells and binds LTGF-b to the cell surface. Upper panels (FIGS. 44A and 44B) show adhesion assays of Cho cells expressing GARP/LTGFB adhering to immobilized αvβ8 (FIG. 44A) or αvβ6 (FIG. 44B) performed in the presence of anti-β8 (C6D4), 3G9 (anti-β6) or the bispecific antibody RGD3 (anti-β6 and anti-β8). In the lower panels (FIGS. 44C and 44D), the TGF-beta reporters cells TMLC, were added to each well to determine the amount of TGF-β activation in response to αvβ8 (FIG. 44C) or αvβ6 (FIG. 44D) performed in the presence of anti-β8 (C6D4), 3G9 (anti-β6) or the bispecific antibody RGD3 (anti-β6 and anti-β8). The results are reported as relative luciferase activity to wells treated with isotype control antibody (SV5). Below each graph is the EC50 of each inhibitory antibody.



FIG. 45 shows binding assay of αvβ6 to TGFβ3 peptide. Mab 3G9 is a potent inhibitor of αvβ6-mediated TGF-b activation. C6D4-RGD3 shows cross-competition with 3G9 binding suggesting that they have overlapping binding footprints or allosterically influence each other's binding. However, these antibodies have different modes of action as 3G9 binding to αvβ6 is not cation-dependent while C6D4-RGD3 binding is cation dependent.



FIG. 46 illustrates heavy and light chain amino acid sequences for clones used in the construction of the composite humanized antibody C6D4. VH sequences—C6D4: all sequences (SEQ ID NO:722), Framework 1 (SEQ ID NO:732), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:734), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:736), CDR3 (SEQ ID NO:737), Framework 4 (SEQ ID NO:738); HuC6D4 V1: all sequences (SEQ ID NO:723), Framework 1 (SEQ ID NO:739), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:740), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:741), CDR3 (SEQ ID NO:737), Framework 4 (SEQ ID NO:738); Mutclone A3: all sequences (SEQ ID NO:724), Framework 1 (SEQ ID NO:739), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:740), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:741), CDR3 (SEQ ID NO:737), Framework 4 (SEQ ID NO:738); Mutclone B7: all sequences (SEQ ID NO:725), Framework 1 (SEQ ID NO:742), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:740), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:743), CDR3 (SEQ ID NO:744), Framework 4 (SEQ ID NO:738); Mutclone E5: all sequences (SEQ ID NO:726), Framework 1 (SEQ ID NO:739), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:740), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:741), CDR3 (SEQ ID NO:744), and Framework 4 (SEQ ID NO:738). VK sequences—C6D4: all sequences (SEQ ID NO:727), Framework 1 (SEQ ID NO:745), CDR1 (SEQ ID NO:746), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:749), CDR3 (SEQ ID NO:750), Framework 4 (SEQ ID NO:751); HuC6D4 V1: all sequences (SEQ ID NO:728), Framework 1 (SEQ ID NO:752), CDR1 (SEQ ID NO:746), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:753), CDR3 (SEQ ID NO:750), Framework 4 (SEQ ID NO:754); Mutclone A3: all sequences (SEQ ID NO:729), Framework 1 (SEQ ID NO:755), CDR1 (SEQ ID NO:756), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:753), CDR3 (SEQ ID NO:750), Framework 4 (SEQ ID NO:754); Mutclone B7: all sequences (SEQ ID NO:730), Framework 1 (SEQ ID NO:757), CDR1 (SEQ 1D NO:746), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:758), CDR3 (SEQ ID NO:750), Framework 4 (SEQ ID NO:754); Mutclone E5: all sequences (SEQ ID NO:731), Framework 1 (SEQ ID NO:752), CDR1 (SEQ ID NO:756), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:753), CDR3 (SEQ ID NO:750), and Framework 4 (SEQ ID NO:754).



FIG. 47 shows binding assay of humanized C6D4 or RDG3 to recombinant αvβ8. Humanized C6D4 or RGD3 (Frameworks and CH1 are human; hinge and CH2-3 are mouse) were immobilized on ELISA plates at the indicated concentrations. As a negative control, some wells were coated with anti-SV5 at the same concentrations. Non-specific binding sites were blocked with BSA. Recombinant αvβ8 ectodomain (0.5 ug/ml) was added to each well and after binding and washing in binding buffer (1 mM Ca and Mg), the bound αvβ8 was detected with biotinylated anti-αv (8b8) and detected with SA-HRP. Results are shown as specific binding (minus SV5 control).



FIG. 48 shows superposition of C6D4/αvβ8 cartoon model with wire map of C6D4/αvβ8 (FIGS. 48A and 48C) compared to a superposition of the same C6D4/αvβ8 cartoon model with wire map of C6D4-RGD3/αvβ8 (FIGS. 48B and D). The comparison of the two maps shows a different orientation of the CDR1 Vk loop of C6D4-RGD3 towards the beta8 subunit ligand binding site.



FIGS. 49A-C shows CryoEM maps of C6D4 and C6D4-RGD αvβ8 complexes having similar positioning. Here, C6D4 Fab-αvβ8 (FIG. 49A) is compared with RGD3-αvβ8 map (FIG. 49B), or in overlay (FIG. 49C), based on cryoEM derived density maps. The anti-av 11D12V2 Fab was used to increase molecular mass of the complex and to assist in particle orientation.



FIG. 50 illustrates heavy chain amino acid sequences for clones used in the construction of the composite humanized antibodies C6D4 and C6D4-RGD3. Consensus sequences for the humanized version of C6D4 and C6D4-RGD3 are provided. VH sequences—HuC6D4V1: all (SEQ ID NO:395), Framework 1 (SEQ ID NO:396), CDR1 (SEQ ID NO:397), Framework 2 (SEQ ID NO:398), CDR2 (SEQ ID NO:399), Framework 3 (SEQ ID NO:400), CDR3 (SEQ ID NO:401), and Framework 4 (SEQ ID NO:402); HuC6D4A3: all (SEQ ID NO:403), Framework 1 (SEQ ID NO:404), CDR1 (SEQ ID NO:405), Framework 2 (SEQ ID NO:406), CDR2 (SEQ ID NO:407), Framework 3 (SEQ ID NO:408), CDR3 (SEQ ID NO:409), and Framework 4 (SEQ ID NO:410); HuC6D4B7: all (SEQ ID NO:411), Framework 1 (SEQ ID NO:412), CDR1 (SEQ ID NO:413), Framework 2 (SEQ ID NO:414), CDR2 (SEQ ID NO:415), Framework 3 (SEQ ID NO:416), CDR3 (SEQ ID NO:417), and Framework 4 (SEQ ID NO:418); HuC6D4E5: all (SEQ ID NO:419), Framework 1 (SEQ ID NO:420), CDR1 (SEQ ID NO:421), Framework 2 (SEQ ID NO:422), CDR2 (SEQ ID NO:423), Framework 3 (SEQ ID NO:424), CDR3 (SEQ ID NO:425), and Framework 4 (SEQ ID NO:426); C6D4: all sequences (SEQ ID NO:722), Framework 1 (SEQ ID NO:732), CDR1 (SEQ ID NO:733), Framework 2 (SEQ ID NO:734), CDR2 (SEQ ID NO:735), Framework 3 (SEQ ID NO:736), CDR3 (SEQ ID NO: 737), and Framework 4 (SEQ ID NO:738); HuC6D4: all (SEQ ID NO:427), Framework 1 (SEQ ID NO:428), CDR1 (SEQ ID NO:429), Framework 2 (SEQ ID NO:430), CDR2 (SEQ ID NO:431), Framework 3 (SEQ ID NO:432), CDR3 (SEQ ID NO:433), and Framework 4 (SEQ ID NO:434); C6D4-RGD3: all (SEQ ID NO:435), Framework 1 (SEQ ID NO:436), CDR1 (SEQ ID NO:437), Framework 2 (SEQ ID NO:438), CDR2 (SEQ ID NO:439), Framework 3 (SEQ ID NO:440), CDR3 (SEQ ID NO:441), and Framework 4 (SEQ ID NO:442); HuC6D4-RGD3: all (SEQ ID NO:443), Framework 1 (SEQ ID NO:444), CDR1 (SEQ ID NO:445), Framework 2 (SEQ ID NO:446), CDR2 (SEQ ID NO:447), Framework 3 (SEQ ID NO:448), CDR3 (SEQ ID NO:449), and Framework 4 (SEQ ID NO:450); and Consensus VH: Framework 1 (SEQ ID NO:558), CDR1 (SEQ ID NO:563), Framework 2 (SEQ ID NO:559), CDR2 (SEQ ID NO:563), Framework 3 (SEQ ID NO:560), CDR3 (SEQ ID NO:564), and Framework 4 (SEQ ID NO:561).



FIG. 51 illustrates light chain amino acid sequences for clones used in the construction of the composite humanized antibodies C6D4 and C6D4-RGD3. Consensus sequences for the humanized version of C6D4 and C6D4-RGD3 are provided. VL sequences—HuC6D4V1: all (SEQ ID NO:451), Framework 1 (SEQ ID NO:452), CDR1 (SEQ ID NO:453), Framework 2 (SEQ ID NO:454), CDR2 (SEQ ID NO:455), Framework 3 (SEQ ID NO:456), CDR3 (SEQ ID NO:457), and Framework 4 (SEQ ID NO:458); HuC6D4A3: all (SEQ ID NO:459), Framework 1 (SEQ ID NO:460), CDR1 (SEQ ID NO:461), Framework 2 (SEQ ID NO:462), CDR2 (SEQ ID NO:463), Framework 3 (SEQ ID NO:464), CDR3 (SEQ ID NO:465), and Framework 4 (SEQ ID NO:466); HuC6D4B7: all (SEQ ID NO:467), Framework 1 (SEQ ID NO:468), CDR1 (SEQ ID NO:469), Framework 2 (SEQ ID NO:470), CDR2 (SEQ ID NO:471), Framework 3 (SEQ ID NO:472), CDR3 (SEQ ID NO:473), and Framework 4 (SEQ ID NO:474); HuC6D4E5: all (SEQ ID NO:475), Framework 1 (SEQ ID NO:476), CDR1 (SEQ ID NO:478), Framework 2 (SEQ ID NO:479), CDR2 (SEQ ID NO:480), Framework 3 (SEQ ID NO:481), CDR3 (SEQ ID NO:482), and Framework 4 (SEQ ID NO:483); C6D4: all sequences (SEQ ID NO:727), Framework 1 (SEQ ID NO:745), CDR1 (SEQ ID NO:746), Framework 2 (SEQ ID NO:747), CDR2 (SEQ ID NO:748), Framework 3 (SEQ ID NO:749), CDR3 (SEQ ID NO:750), and Framework 4 (SEQ ID NO:751); HuC6D4: all sequences (SEQ ID NO:484), Framework 1 (SEQ ID NO:485), CDR1 (SEQ ID NO:486), Framework 2 (SEQ ID NO:487), CDR2 (SEQ ID NO:488), Framework 3 (SEQ ID NO:489), CDR3 (SEQ ID NO:490), and Framework 4 (SEQ ID NO:491); C6D4-RGD3: all (SEQ ID NO:492), Framework 1 (SEQ ID NO:493), CDR1 (SEQ ID NO:494), Framework 2 (SEQ ID NO:495), CDR2 (SEQ ID NO:496), Framework 3 (SEQ ID NO:497), CDR3 (SEQ ID NO:498), and Framework 4 (SEQ ID NO:499); HuC6D4-RGD3: all (SEQ ID NO:500), Framework 1 (SEQ ID NO:501), CDR1 (SEQ ID NO:502), Framework 2 (SEQ ID NO:503), CDR2 (SEQ ID NO:504), Framework 3 (SEQ ID NO:505), CDR3 (SEQ ID NO: 506), and Framework 4 (SEQ ID NO:507); and Consensus VL: Framework 1 (SEQ ID NO:565), CDR1 (SEQ ID NO:569), Framework 2 (SEQ ID NO:566), CDR2 (SEQ ID NO:570), Framework 3 (SEQ ID NO:567), CDR3 (SEQ ID NO:571), and Framework 4 (SEQ ID NO:568). RDG3 loop (SEQ ID NO:721).



FIG. 52 illustrates heavy chain amino acid sequences for clones used in the construction of the composite antibody F9. Sequences—4F1: all sequences (SEQ ID NO:624), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:628), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:634), Framework 3 (SEQ ID NO:637), CDR3 (SEQ ID NO:651), Framework 4 (SEQ ID NO:655), 6B9: all sequences (SEQ ID NO:656), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:635), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:652), Framework 4 (SEQ ID NO:655), 6B9.1: all sequences (SEQ ID NO:657), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:653), Framework 4 (SEQ ID NO:655), A1: all sequences (SEQ ID NO:658), Framework 1 (SEQ ID NO:626), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:639), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A2: all sequences (SEQ ID NO:659), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:640), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A8: all sequences (SEQ ID NO:660), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:641), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), A11: all sequences (SEQ ID NO:661), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:630), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), B1: all sequences (SEQ ID NO:662), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:642), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), B3: all sequences (SEQ ID NO:663), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:643), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C4=F10: all sequences (SEQ ID NO:664), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:644), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C7=D1: all sequences (SEQ ID NO:665), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:644), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D3=F1: all sequences (SEQ ID NO:666), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:645), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D10=E5: all sequences (SEQ ID NO:667), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), E8: all sequences (SEQ ID NO:667), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), F2: all sequences (SEQ ID NO:667), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), G4: all sequences (SEQ ID NO:668), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:647), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), C4: all sequences (SEQ ID NO:669), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:650), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), D10: all sequences (SEQ ID NO:670), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:633), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:646), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1A11: all sequences (SEQ ID NO:671), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:650), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E1: all sequences (SEQ ID NO:672), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1G3: all sequences (SEQ ID NO:673), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:648), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E10: all sequences (SEQ ID NO:674), Framework 1 (SEQ ID NO:627), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1E9: all sequences (SEQ ID NO:675), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:629), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), 4F1H12: all sequences (SEQ ID NO:676), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:649), CDR3 (SEQ ID NO:654), Framework 4 (SEQ ID NO:655), F9: all sequences (SEQ ID NO:677), Framework 1 (SEQ ID NO:625), CDR1 (SEQ ID NO:631), Framework 2 (SEQ ID NO:632), CDR2 (SEQ ID NO:636), Framework 3 (SEQ ID NO:638), CDR3 (SEQ ID NO:654), and Framework 4 (SEQ ID NO:655).



FIG. 53 illustrates light chain amino acid sequences for clones used in the construction of the composite antibody F9. VL Sequences—4F1: all sequences (SEQ ID NO:678), Framework 1 (SEQ ID NO:692), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), 6B9: all sequences (SEQ ID NO:679), Framework 1 (SEQ ID NO:699), CDR1 (SEQ ID NO:700), Framework 2 (SEQ ID NO:701), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:702), Framework 4 (SEQ ID NO:698), 6B9.1: all sequences (SEQ ID NO:680), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A1: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A2: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A8: all sequences (SEQ ID NO:682), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), A11: all sequences (SEQ ID NO:683), Framework 1 (SEQ ID NO:704), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), B1: all sequences (SEQ ID NO:684), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), B3: all sequences (SEQ ID NO:685), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), C4=F10: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), C7=D1: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), D3=F1: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), D10=E5: all sequences (SEQ ID NO:686), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), E8: all sequences (SEQ ID NO:686), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:755), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), F2: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), G4: all sequences (SEQ ID NO:681), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), C4: all sequences (SEQ ID NO:687), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:706), D10: all sequences (SEQ ID NO:688), Framework 1 (SEQ ID NO:699), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:706), 4F1E1=1F1G3=4F1B5=4F1G11=4F1A9=4F1B9=4F1H9=4F1D10=4F1E9=4F1F0=4F1H11=4F1H12: all sequences (SEQ ID NO:689), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), 4FA1: all sequences (SEQ ID NO:690), Framework 1 (SEQ ID NO:705), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), Framework 4 (SEQ ID NO:698), F9: all sequences (SEQ ID NO:691), Framework 1 (SEQ ID NO:703), CDR1 (SEQ ID NO:693), Framework 2 (SEQ ID NO:694), CDR2 (SEQ ID NO:695), Framework 3 (SEQ ID NO:696), CDR3 (SEQ ID NO:697), and Framework 4 (SEQ ID NO:706).



FIG. 54A-54D are graphs showing percentage of cells staining positive for various cell surface markers. Mice were injected with Lewis lung carcinoma (LLC) cells and SV5 (isotype control) or C6D4 at a dosage of 7 mg/kg once per week.





DETAILED DESCRIPTION OF THE INVENTION

I. Introduction


The inventors have discovered certain antibodies that bind to human integrin αvβ8 and cause at least partial reduction in ligand binding function. Based on that discovery, they have developed detailed structural models to aid in the discovery of antibodies that bind to integrin αvβ8 at particular epitopes that optimally block the ligand binding site of integrin αvβ8. Some of the antibodies identified bind to both the αv-integrin subunit head domain and the β8-integrin subunit head domain to effectively cover the ligand binding site of the integrin αvβ8 without engaging to the ligand binding site itself (i.e. acting as a ligand-mimetic).


Further, the inventors have discovered that blocking ligand binding to integrin αvβ8 is effective in inhibiting cancer (including but not limited to metastatic cancer) and also is effective in treating viral infections. Without intending to limit the scope of the described invention, it is believed that integrin αvβ8 plays a role in blocking regulatory T cells (Tregs) function and/or development and thus that the antibodies described herein stimulate immunity to tumor cells and viruses. Accordingly, antibodies and methods of their use, among other aspects, are provided herein.


The inventors have also identified introduced an “RGDL” sequence (SEQ ID NO:756) into a CDR of the anti-αvβ8 antibody and have shown that such an introduction renders the antibody able to bind αvβ6 while maintaining substantially the same binding activity for αvβ8.


II. Antibodies


Provided herein are antibodies that bind human (and in some embodiments other mammalian, e.g., such as mouse, guinea pig, pig, and rabbit) integrin αvβ8. In some embodiments, the antibodies are isolated, are chimeric (comprising at least some heterologous amino acid sequence), are labeled or covalently linked to another molecule such a cytotoxic agent or a combination thereof. In some embodiments, the antibodies specifically bind human integrin αvβ8 and block binding of a ligand to human integrin αvβ8. Exemplary ligands can include, for example, TGFβ and LAP. In some embodiments, the antibodies bind in a cation-dependent manner or have enhanced binding in the presence of cations.


In some embodiments the epitope bound by the antibodies described herein on human integrin αvβ8 comprise amino acids in (1) the specificity determining loop (SDL) of the integrin β8 protein (e.g., TVSPYISIHPERIHNQCSDYNLDCMPPH (SEQ ID NO:620)), (2) in the cal (e.g., SASMHNNIEKLNSVGNDLSRKMAFFS (SEQ ID NO:619)) or α2 (e.g., NITEFEKAVHR (SEQ ID NO:621)) helices of the β8 integrin protein, (3) the head of the αv protein (e.g., DADGQ (SEQ ID NO:757); SFYWQ (SEQ ID NO:758); FDDSY (SEQ ID NO:759)) or other portions of KQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGG FSIDFTKADRVLLGGPGSFYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFD (SEQ ID NO:760) or (4) a combination thereof (e.g., 1 and 2, 2 and 3, 1 and 3, or 1, 2, and 3) as they occur in the native human integrin αvβ8 protein, including for example to all of the listed portions of human integrin αvβ8. In some embodiments, the antibody binds to one or more or all amino acid in the SDL selected from: D175 (e.g., in NLDCM (SEQ ID NO:761)), L174 (e.g., in YNLDC (SEQ ID NO:762)), or S170, D171, or Y172 (e.g., in QCSDYNL (SEQ ID NO:763)), or combinations thereof, wherein the numbering is based on the human integrin (38 protein (SEQ ID NO:394). See, e.g., FIG. 7. In some embodiments, the antibody binds to the amino acid H118 (e.g., in SMHNN) (SEQ ID NO:764) in the al helix of the β8 integrin protein), wherein the numbering is based on the human integrin β8 protein (SEQ ID NO:394). In some embodiments, the antibody binds to the amino acid H200 or R201 (e.g., in AVHRJQ) in the α2 helix of the β8 integrin protein, or combinations thereof, wherein the numbering is based on the human integrin β8 protein (SEQ ID NO:394). In some embodiments, the antibody binds to one or more or all amino acid (underlined) in the head of the αv protein selected from: D148, A149, D150, G151, or Y178 (e.g., in SFYWQ (SEQ ID NO:758)) or combinations thereof, wherein the numbering is based on the human integrin aov protein (SEQ ID NO:393). In some embodiments, the antibody binds to each of the above indicated (underlined) amino acids described in this paragraph. As can be seen from FIGS. 12-18, interaction with the above-described domains of integrin αvβ8 is beneficial.


As noted above, in some embodiments, the antibodies specifically bind human integrin αvβ8 and block binding of a ligand to human integrin αvβ8. The ability of an antibody to block αvβ8 integrin binding of a ligand can be determined by inhibition of binding of a soluble form of αvβ8 or a full-length form of αvβ8 expressed on the surface of cells to immobilized latent-TGF-beta or a portion thereof containing the sequence RGDL See, e.g., Ozawa, A, et al. J Biol Chem. 291(22):11551-65 (2016).


In some embodiments, the antibodies comprise one or more CDR (or all of the heavy chain CDRs of a clone, or all of the light chain CDRs of a clone) as follows:


















Heavy
Clone 


CDR3 Vh (SEQ


Chains
name
CDR1 Vh (SEQ ID:)
CDR2 Vh (SEQ ID:)
ID:)





Heavy
B2B2
TFTDYSMH (313)
RINTETGEPTFADDFGG
YYYGRDS (315)





(314)






Heavy
B13C4
TFTDYSMH (316)
WIKTETGEPTYADDFKG
YYYGRDS (318)





(317)






Heavy
B13H3
TFTDYSMH (319)
WIKTETDEPTYADDFKE
YYYGRDS (321)





(320)






Heavy
B15B11
TFTDYSMH (322)
RINTETGEPTFADDFRG
YYYGRDS (324)





(323)






Heavy
B13C12
TFTDYSIH (325)
WIKTETGEPTYADDFNG
YYYGRDS (327)





(326)






Heavy
A1
TFTDYSMH (328)
RINTETGEPTFADDFRG
YYYGRDT (330)





(329)






Heavy
C6
TFTDYSMH (331)
RINTETGEPTFADDFRG
FYYGRDS (333)





(332)





Light
Clone 





Chains
name
CDR1 Vk
CDR2 Vk
CDR3 Vk





Light
B2B2
KASQDINSYLS (334)
RANRLVD (335)
LQYDEFPPLT (336)





Light
B13C4
KSSQLLNSRTRKNYLA
WASTRES (338)
KQSYNLLT (339)




(337)







Light
B13H3
KSSQSLLNSRIRKNYLA
WASTRES (341)
KQSYNLLT (342)




(340)







Light
B15B11.1
SASSSVSYMH (343)
DTSNLAS (344)
QQWSSNPLT (345)





Light
B15B11.2
SASSSVSYMH (346)
DTSNLAS (347)
QQWSSNPPT (348)





Light
B15B11.3
KSSQSLLNSRTRKNYLA
WASTRES (350)
KQSYNLLT (351)




(349)







Light
B13C12.1
SASSSVSYMH (352)
DTSKLAS (353)
QQWSSNPFT (354)





Light
B13C12.2
SASSSVSYMH (355)
GTSNLAS (356)
QQWSSNPPT (357)





Light
B13C12.3
KSSQSLLHSRTRKNYLA
WASTRES (359)
KQSYNLLT (360)




(358)







Light
D4
KSSQSLLNSRTRKNYLA
WASTRES (362)
KQSYNLLS (363)




(361)









In some embodiments, the antibodies comprise one or more CDR (or all of the heavy chain CDRs of a clone, or all of the light chain CDRs of a clone) as follows:


















Heavy 



CDR3 Vh (SEQ


Chains
Clone name
CDR1 Vh (SEQ ID:)
CDR2 Vh (SEQ ID:)
 ID





Heavy
HuC6D4V1
DYSMH (397)
RINTETGEPTFADDFRG
FYYGRDS (401)





(399)






Heavy
HuC6D4A3
DYSMH (405)
RINTETGEPTFADDFRG
FYYGRDS (409)





(407)






Heavy
HuC6D4B7
DYSMH (413)
RINTETGEPTFADDFRG
FYYGRDT (417)





(415)






Heavy
HuC6D4E5
DYSMH (421)
RINTETGEPTFADDFRG
FYYGRDT (425)





(423)






Heavy
HuC6D4
DYSMH (429)
RINTETGEPTFADDFRG
FYYGRDT (433)





(431)






Heavy
C6D4-RGD3
DYSMH (437)
RINTETGEPTFADDFRG
FYYGRDS (441)





(439)






Heavy
HuC6D4-RGD3
DYSMH (445)
RINTETGEPTFADDFRG
FYYGRDT (449)





(447)





Light 



CDR3 Vk (SEQ


Chains
Clone name
CDR1 Vk (SEQ ID:)
CDR2 Vk (SEQ ID:)
ID:





Light
HuC6D4V1
KSSQSLLNSRTRKNYLA
WASTRES (530)
KQSYNLLS (531)




(529)







Light
HuC6D4A3
KSSQSLLNSRSRKNYLA
WASTRES (533)
KQSYNLIS (534)




(532)







Light
HuC6D4B7
KSSQSLLNSRTRKNYLA
WASTRES (536)
KQSSNLIS (537)




(535)







Light
HuC6D4E5
KSSQSLLNSRSRKNYLA
WASTRES (539)
KQSYNLLS (540)




(538)







Light
HuC6D4
KSSQSLLNSRSRKNYLA
WASTRES (542)
KQSYNLLS (543)




(541)







Light
C6D4-RGD3
KSSQSLLGRGDLGRLKKNALA
WASTRES (545)
KQSYNLLS (546)




(544)







Light
HuC6D4-RGD3
KSSQSLLGRGDLGRLKKNALA
WASTRES (548)
KQSYNLLS (549)




(547)









In some embodiments, an antibody descrnbed herein comprises heavy and light chain CDRs as paired in the following table:
















Combina-






tions
Clone





(H + L
name
CDR1 (SEQ ID:)
CDR2 (SEQ ID:)
CDR3 (SEQ ID:)







H
B2B2
TFTDYSMH (313)
RINTETGEPTFADDFGG
YYYGRDS (315)





(314)



L
B2B2
KASQDINSYLS
RANRLVD (335)
LQYDEFPPLT (33)




(334)







H
B13H3
TFTDYSMH (319)
WIKTETDEPTYADDFKE
YYYGRDS (321)





(320)



L
B13H3
KSSQSLLNSRIRKNYLA
WASTRES (341)
KQSYNLLT (342)




(340)







H
B13C4
TFTDYSMH (316)
WIKTETGEPTYADDFKG
YYYGRDS (318)





(317(



L
B13C4
KSSQSLLNSRTRKNYLA
WASTRES (338)
KQSYNLLT (339)




(337)







H
B15B11
TFTDYSMH (322)
RINTETGEPTFADDFRG
YYYGRDS (324)





(323)



H
B15B11.1
SASSSVSYMH (343)
DTSNLAS (344)
QQWSSNPLT (345)





H
B15B11
TFTDYSMH (322)
RINTETGEPTFADDFRG
YYYGRDS (324)





(323)



L
B15B11.2
SASSSVSYMH (346)
DTSNLAS (347)
QQWSSNPPT (348)





H
B15B11
TFTDYSMH (322)
RINTETGEPTFADDFRG
YYYGRDS(324)





(323 )



L
B15B11.3
KSSQSLLNSRTRKNYLA
WASTRES (359)
KQSYNLLT (360)




(358)







H
B13C12
TFTDYSIH (325)
WIKTETGEPTYADDFNG
YYYGRDS (327)





(326)



L
B13C12.1
SASSSVSYMH (352)
DTSKLAS (353)
QQWSSNPFT (354)





H
B13C12
TFTDYSIH (325)
WIKTETGEPTYADDFNG
YYYGRDS (327)





(326)



L
B13C12.2
SASSSVSYMH (355)
GTSNLAS (356)
QQWSSNPPT (357)





H
B13C12
TFTDYSIH (325)
WIKTETGEPTYADDFNG
YYYGRDS (327)





(326)



L
B13C12.3
KSSQSLLHSRTRKNYLA
WASTRES (359)
KQSYNLLT (360)




(358 )







H
RSDLVH-3
TFTDYSIH (367)
WIKTETGEPTYADDFNG
YYYGRDS (369)





(368)



L
RSDLVK-10
KSSQSLLNSRTRKNYLA
WASTRES (374)
KQSYNLLT (375)




(373)







H
RSDLVH-1
TFTDYSIH (364)
WIKTETGEPTYADDFKG
YYYGRDS (366)





(365)



L
RSDLVK-10
KSSQSLLNSRTRKNYLA
WASTRES (374)
KQSYNLLT (375)




(373)







H
RSDLVH-3
TFTDYSIH (367)
WIKTETGEPTYADDFNG
YYYGRDS (369)





(368)



L
RSDLVK-13
KSSQSLLHSRTRKNYLA
WASTRES (377)
KQSYNLLT (378)




(376)







H
RSDLVH-16
TFTDYSMH (370)
RINTETGEPTFADDFRG(37)
YYYGRDS (372)


L
RSDLVK-10
KSSQLLNSRTRKNYLA
WASTRES (374)
KQSYNLLT (375)




(373)







H
C6H
TFTDYSMH (766)
RINTETGEPTFADDFRG
FYYGRDS (768)





(767)



L
C6K
KSSQSLLNSRTRKNYLA
WASTRES (383)
KQSYNLLT (384)




(382)







H
D4H
TFTDYSMH (379)
RINTETGEPTFADDFRG
YYYGRDS (381)





(380)



L
D4K
KSSQLLNSRTRKNYLA
WASTRES (362)
KQSYNLLS (363)




(361)







H
C6H
TFTDYSMH (766)
RINTETGEPTFADDFRG
FYYGRDS (768)





(767)



L
D4K
KSSQLLNSRTRKNYLA
WASTRES (362)
KQSYNLLS (363)




(361)









In some embodiments, an antibody described herein comprises heavy and light chain CDRs as paired in the following table:
















Combina-






tions






(H + L)
Clone name
CDR1 (SEQ ID:)
CDR2 (SEQ ID:)
CDR3 (SEQ ID







H
HuC6D4V1
DYSMH (397)
RINTETGEPTFADDFRG
FYYGRDS (399)





(398)



L
HuC6D4V1
KSSQLLNSRTRKNYLA (529)
WASTRES (530)
KQSYNLLS






(531)





H
HuC6D4A3
DYSMH (405)
RINTETGEPTFADDFRG
FYYGRDS





(407)
(409)


L
HuC6D4A3
KSSQSLLNSRSRKNYLA (532)
WASTRES (533)
KQSYNLIS






(534)





H
HuC6D4B7
DYSMH (413)
RINTETGEPTFADDFRG
FYYGRDT





(415)
(417)


L
HuC6D4B7
KSSQSLLNSRTRKNYLA (535)
WASTRES (536)
KQSSNLIS






(537)





H
HuC6D4E5
DYSMH (421)
RINTETGEPTFADDFRG
FYYGRDT





(423)
(425)


L
HuC6D4E5
KSSQSLLNSRSRKNYLA
WASTRES (539)
KQSYNLLS




(538)

(540)





H
HuC6D4
DYSMH (429)
RINTETGEPTFADDFRG
FYYGRDT





(431)
(433)


L
HuC6D4
KSSQLLNSRSRKNYLA (541)
WASTRES (542)
KQSYNLLS






(543)





H
C6D4-RGD3
DYSMH (437)
RINTETGEPTFADDFRG
FYYGRDS





(439)
(441)


L
C6D4-RGD3
KSSQSLLGRGDLGRLKKNALA
WASTRES
KQSYNLLS




(544)
(545)
(546)





H
HuC6D4-RGD3
DYSMH (445)
RINTETGEPTFADDFRG
FYYGRDT





(447)
(449)


L
HuC6D4-RGD3
KSSQLLGRGDLGRLKKNALA
WASTRES (548)
KQSYNLLS




(547)

(549)





H
C6D4
DYSMH (123)
RINTETGEPTFADDFRG
FYYGRDS





(125)
(127)


L
C6D4
KSSQSLLNSRSRKNYLA (291)
WASTRES (293)
KQSYNLLS






(295)





H
C6RGD2
DYSMH (769)
RINTETGEPTFADDFRG
FYYGRDS





(770)
(771)


L
C6RGD2
KSSQSLLNSGRGDLGNALA
WASTRES (773)
KQSYNLIS




(772)

(774)





H
C6RGD3-1
DYSMH (775)
RINTETGEPTFADDFRG
FYYGRDT





(776)
(777)


L
C6RGD3-1
KSSQSLLGRGDLGRLKKQKDHNALA
WASTRES
KQSSNLIS




(778)
(779)
(780)





H
C6RGD3-2
DYSMH (781)
RINTETGEPTFADDFRG
FYYGRDY





(782)
(783)


L
C6RGD3-2
KSSQSLLGRGDLGRLKXQKDNALA
WASTRES (785)
KQSYNLLS




(784)

(786)





H
C6RGD3-3
DYSMH (787)
RINTETGEPTFADDFRG
FYYGRDT





(788)
(789)


L
C6RGD3-3
KSSQLLGRGDLGRLKKQKNALA
WASTRES
KQSYNLLS




(790)
(791)
(792)





H
C6RGD3-4
DYSMH (793)
RINTETGEPTFADDFRG
FYYGRDS





(794)
(795)


L
C6RGD3-4
KSSQSLLGRGDLGRLKKQNALA
WASTRES
KQSYNLLS




(796)
(797)
(798)





H
C6RGD3
DYSMH (799)
RINTETGEPTFADDFRG
FYYGRDT (801)





(800)



L
C6RGD3
KSSQSLLGRGDLGRLKKNALA
WASTRES (803)
KQSYNLLS




(802)

(804)





H
C6RGD3-6
DYSMH (805)
RINTETGEPTFADDFRG
FYYGRDS (807)





(806)



L
C6RGD3-6
KSSQSLLGRGDLGRLKNALA
WASTRES (809)
KQSYNLLS




(808)

(810)





H
C6RDG3-7
DYSMH (811)
RINTETGEPTFADDFRG
FYYGRDS





(812)
(813)


L
C6RGD3-7
KSSQSLLGRGDLGRLNALA
WASTRES (815)
KQSYNLIS




(814)

(816)





H
C6RGD3-8
DYSMH (817)
RINTETGEPTFADDFRG
FYYGRDT





(818)
(819)


L
C6RGD3-8
KSSQSLLGRGDLGRNALA
WASTRES (821)
KQSSNLIS




(820)

(822)





H
C6RGD1
DYSMH (823)
RINTETGEPTFADDFRG
FYYGRDY





(824)
(825)


L
C6RGD1
KSSQSLLGRGDLGNALA (826)
WASTRES (827)
KQSYNLLS






(828)





H
C6RGD3-9
DYSMH (829)
RINTETGEPTFADDFRG
FYYGRDT





(830)
(831)


L
C6RGD3-9
KSSQSLLGRGDLGRLKKQKDHH
WASTRES (833)
KQSYNLLS




(832)

(834)





H
C6RGD3-10
DYSMH (835)
RINTETGEPTFADDFRG
FYYGRDS





(836)
(837)


L
C6RGD3-10
KSSQSLLGRGDLGRLKKQKDH
WASTRES (839)
KQSYNLLS




(838)

(840)





H
C6RGD3-11
DYSMH (841)
RINTETGEPTFADDFRG
FYYGRDT





(842)
(843)


L
C6RGD3-11
KSSQSLLGRGDLGRLKKQKD (844)
WASTRES (845)
KQSYNLLS






(846)





H
C6RGD3-12
DYSMH (847)
RINTETGEPTFADDFRG
FYYGRDT





(848)
(849)


L
C6RGD3-12
KSSQLLGRGDLGRLKKQK
WASTRES (851)
KQSSNLIS




(850)

(852)





H
C6RGD3-13
DYSMH (853)
RINTETGEPTFADDFRG
FYYGRDY





(854)
(855)


L
C6RGD3-13
KSSQSLLGRGDLGRLKKQ (856)
WASTRES (857)
KQSYNLLS






(858)





H
C6RGD3-14
DYSMH (859)
RINTETGEPTFADDFRG
FYYGRDT





(860)
(861)


L
C6RGD3-14
KSSQSLLGRGDLGRLKK (862)
WASTRES (863)
KQSYNLLS






(864)





H
C6RGD3-15
DYSMH (865)
RINTETGEPTFADDFRG
FYYGRDS





(866)
(867)


L
C6RGD3-15
KSSQSLLGRGDLGRLK (868)
WASTRES (869)
KQSYNLLS






(870)





H
C6RGD3-16
DYSMH (871)
RINTETGEPTFADDFRG
FYYGRDT





(872)
(873)


L
C6RGD3-16
KSSQSLLGRGDLGRL (874)
WASTRES (875)
KQSYNLLS






(876)









In some embodiments, an antibody as described herein comprises one, two, three or all four of the framework sequences as provided here:
















Frameworks
Fr 1 (SEQ ID NO:
Fr2 (SEQ ID NO:)





H
(Q)IQL(L)(Q)SGPELKKPGETVKISCKASGY (385)
WVKQAPGKGLKW(V)A (386)



 E     M  E
             M



Where (X) can be specified AA






L
(D)IVM(T)QSPSSLAV(S)AGE(K)VT(M)SC (389)
WYQQKPGQSP(R)LLIY (390)



 E     S          P     N    V
           K



Where (X) can be specified AA all




alternatives listed under 





Frameworks
Fr3 (SEQ ID NO:)
Fr4 (SEQ ID NO:)





H
RFA(V)SLETSASTAYLQINNLKNEDTATYFCAI (387(
WGQGTT(L)TVSS (388



    F
       V





L
GVPDRFTGSGSGTDFTLTISSVQAEDLAVY(Y)C (391)
FGAGT(K)LE(L)K (392)



                               F
      R    I









In some embodiments, an antibody as described herein comprises one, two, three or all four of the framework sequences as provided here:
















Frameworks 
Fr 1 (SEQ ID NO:)
Fr2 (SEQ ID NO:)





H
QIQLVQSG(P)(E)(L)KKPG(E)(T)VKISCKASGYTFT (550)
WV(K)QAPG(K)GL(K)WVA (551)



         A  K  V      A  S
   R      Q    E



Where (X) can be specified AA






L
(D)IVMTQ(S)P(S)(S)L(A)VS(A)GE(K)VTMSC (554)
WYQQKPGQSPRLLIY (555)



 E       T   A  T   S    P    R
        A



             V                I











Frameworks 
Fr3 (SEQ ID NO:)





H
RF(A)V(S)L(E)TS(A)STAYL(Q)I(N)(N)L(K)(N)(E)DTA(T)YFCAI (552)



   T   T   D    T       E   R  S   R  S  D     V



   S                        T



Where (X) can be specified AA all



alternatives listed under





L
(G)VP(D)RF(T)GSGSGT(D)FTLTISSVQ(A)ED(L)AVYYC (556)



 D    A    S        E           S    F





Frameworks
Fr4 (SEQ ID NO:)





H
WGQGT(T)LTVSS (553)



      A





L
FG(A)GT(K)LE(L)KR (557)



   Q    V    I









In some embodiments, an antibody as described herein comprises one, two, three or all four of the framework sequences as provided here:
















Frame-




works
Fr 1 (SEQ ID NO:)
Fr2 (SEQ ID NO:)





H
QIQL(V)QSG(P)(E)(L)KKPG(E)(T)VKISCKASGYTFT (550)
WV(K)QAPG(K)GL(K)W(V)(A) (877)



     L     A  K  V      A  S
   R      Q    E  M   G



Where (X) can be specified AA






L
(D)IVM(T)Q(S)P(S)(S)L(A)VS(A)GE(K)VTMSC (880)
WYQQKPGQ(S)PRLLIY (881)



 E     S   T   A  T   S    P    R
         A



               V                I











Frame-



works
Fr3 (SEQ ID NO:)





H
RF(A)(V)(S)L(E)TS(A)(S)TA(Y)L(Q)I(N)(N)L(K)(N)(E)DTA(T)YFCAI (878)



   T  F  T   D    T  T    N   E   R  S   R  S  D     V



   S                              I                  K



                            T



Where (X) can be specified AA all



alternatives listed under





L
(G)VP(D)RF(T)GSGSGT(D)FTLTISSVQ(A)ED(L)AVYYC (882)



 D    A    S        E           S    F



                                D





Frame-



works
Fr4 (SEQ ID NO:)





H
WGQGT(T)LTVSS (879)



      A





L
FG(A)GT(K)LE(I)KR (883)



   Q    V    L









In some embodiments, the antibodies comprise the CDR1, CDR2, and CDR3 heavy chain sequences as provided herein, including but not limited to, e.g.,


SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7;


SEQ ID NO: 11, SEQ ID NO:13, and SEQ ID NO:15;


SEQ ID NO:19, SEQ ID NO:21, and SEQ ID NO:23;


SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31;


SEQ ID NO:35, SEQ ID NO:37, and SEQ ID NO:39;


SEQ ID NO:43, SEQ ID NO:45, and SEQ ID NO:47;


SEQ ID NO:51, SEQ ID NO:53, and SEQ ID NO:55;


SEQ ID NO:59, SEQ ID NO:61, and SEQ ID NO:63;


SEQ ID NO:67, SEQ ID NO:69, and SEQ ID NO:71;


SEQ ID NO:75, SEQ ID NO:77, and SEQ ID NO:79;


SEQ ID NO:83, SEQ ID NO:85, and SEQ ID NO:87;


SEQ ID NO:91, SEQ ID NO:93, and SEQ ID NO:95;


SEQ ID NO:99, SEQ ID NO:101, and SEQ ID NO:103;


SEQ ID NO: 107, SEQ ID NO:109, and SEQ ID NO: 111;


SEQ ID NO: 115, SEQ ID NO:117, and SEQ ID NO: 119;


SEQ ID NO: 123, SEQ ID NO: 125, and SEQ ID NO: 127,


SEQ ID NO:291, SEQ ID NO:293, and SEQ ID NO:295;


SEQ ID NO:313, SEQ ID NO:314, and SEQ ID NO:315;


SEQ ID NO:316, SEQ ID NO:317, and SEQ ID NO:318;


SEQ ID NO:319, SEQ ID NO:320, and SEQ ID NO:321;


SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324;


SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327;


SEQ ID NO:328, SEQ ID NO:329, and SEQ ID NO:330;


SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333;


SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369;


SEQ ID NO:364, SEQ ID NO:365, and SEQ ID NO:366;


SEQ ID NO:370, SEQ ID NO:371, and SEQ ID NO:372;


SEQ ID NO:379, SEQ ID NO:380, and SEQ ID NO:381;


SEQ ID NO:397, SEQ ID NO:399, and SEQ ID NO:401;


SEQ ID NO:405, SEQ ID NO:407, and SEQ ID NO:409;


SEQ ID NO:413, SEQ ID NO:415, and SEQ ID NO:417;


SEQ ID NO:421, SEQ ID NO:423, and SEQ ID NO:425; or


SEQ ID NO:429, SEQ ID NO:431, and SEQ ID NO:433.


In some embodiments, the antibodies comprise the heavy chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


In some embodiments, the antibodies comprise the light chain CDR1, CDR2, and CDR3 sequences as provided herein, including but not limited to, e.g.,


SEQ ID NO:131, SEQ ID NO:133, and SEQ ID NO:135;


SEQ ID NO: 139, SEQ ID NO:141, and SEQ ID NO:143;


SEQ ID NO:147, SEQ ID NO:149, and SEQ ID NO:151;


SEQ ID NO: 155, SEQ ID NO:157, and SEQ ID NO: 159;


SEQ ID NO:163, SEQ ID NO:165, and SEQ ID NO:167;


SEQ ID NO:171, SEQ ID NO:173, and SEQ ID NO:175;


SEQ ID NO:179, SEQ ID NO:181, and SEQ ID NO: 183.


SEQ ID NO:187, SEQ ID NO:189, and SEQ ID NO:191;


SEQ ID NO:195, SEQ ID NO:197, and SEQ ID NO: 199.


SEQ ID NO:203, SEQ ID NO:205, and SEQ ID NO:207;


SEQ ID NO:211, SEQ ID NO:213, and SEQ ID NO:215.


SEQ ID NO:219, SEQ ID NO:221, and SEQ ID NO:223;


SEQ ID NO:227, SEQ ID NO:229, and SEQ ID NO:231.


SEQ ID NO:243, SEQ ID NO:245, and SEQ ID NO:247;


SEQ ID NO:251, SEQ ID NO:253, and SEQ ID NO:255;


SEQ ID NO:259, SEQ ID NO:261, and SEQ ID NO:263;


SEQ ID NO:267, SEQ ID NO:269, and SEQ ID NO:271;


SEQ ID NO:275, SEQ ID NO:277, and SEQ ID NO:279;


SEQ ID NO:283, SEQ ID NO:285, and SEQ ID NO:287;


SEQ ID NO:291, SEQ ID NO:293, and SEQ ID NO:295;


SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311;


SEQ ID NO:334, SEQ ID NO:335, and SEQ ID NO:336;


SEQ ID NO:337, SEQ ID NO:338, and SEQ ID NO:339;


SEQ ID NO:340, SEQ ID NO:341, and SEQ ID NO:342;


SEQ ID NO:343, SEQ ID NO:344, and SEQ ID NO:345;


SEQ ID NO:346, SEQ ID NO:347, and SEQ ID NO:348


SEQ ID NO:349, SEQ ID NO:350, and SEQ ID NO:351;


SEQ ID NO:352, SEQ ID NO:353, and SEQ ID NO:354;


SEQ ID NO:355, SEQ ID NO:356, and SEQ ID NO:357;


SEQ ID NO:358, SEQ ID NO:359, and SEQ ID NO:360


SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363;


SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375;


SEQ ID NO:376, SEQ ID NO:377, and SEQ ID NO:378;


SEQ ID NO:382, SEQ ID NO:383, and SEQ ID NO:384;


SEQ ID NO:453, SEQ ID NO:455, and SEQ ID NO:457;


SEQ ID NO:461, SEQ ID NO:463, and SEQ ID NO:465;


SEQ ID NO:469, SEQ ID NO:471, and SEQ ID NO:473;


SEQ ID NO:478, SEQ ID NO:480 and SEQ ID NO:482; or


SEQ ID NO:486, SEQ ID NO:488, and SEQ ID NO:490.


In some embodiments, the antibodies comprise the light chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above. In some embodiments, the light chain CDR1 sequence is 12-18 amino acids long, e.g., 14-17, e.g., 12, 13, 14, 15, 16, 17, or 18 amino acids long.


In some embodiments, the antibodies comprise the heavy and light chain CDR1, CDR2, and CDR3 sequences as provided herein, including but not limited to, e.g.,

    • heavy chain CDRs SEQ ID NO:313, SEQ ID NO:314, and SEQ ID NO:315; and light chain CDRs SEQ ID NO:334, SEQ ID NO:335, and SEQ ID NO:336; or
    • heavy chain CDRs SEQ ID NO:319, SEQ ID NO:320, and SEQ ID NO:321; and light chain CDRs SEQ ID NO:340, SEQ ID NO:341, and SEQ ID NO:342; or
    • heavy chain CDRs SEQ ID NO:316, SEQ ID NO:317, and SEQ ID NO:318; and light chain CDRs SEQ ID NO:337, SEQ ID NO:338, and SEQ ID NO:339; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:343, SEQ ID NO:344, and SEQ ID NO:345; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:346, SEQ ID NO:347, and SEQ ID NO:348; or
    • heavy chain CDRs SEQ ID NO:322, SEQ ID NO:323, and SEQ ID NO:324; and light chain CDRs SEQ ID NO:349, SEQ ID NO:350, and SEQ ID NO:351; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:352, SEQ ID NO:353, and SEQ ID NO:354; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:355, SEQ ID NO:356, and SEQ ID NO:357; or
    • heavy chain CDRs SEQ ID NO:325, SEQ ID NO:326, and SEQ ID NO:327; and light chain CDRs SEQ ID NO:358, SEQ ID NO:359, and SEQ ID NO:360; or
    • heavy chain CDRs SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:364, SEQ ID NO:365, and SEQ ID NO:366; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:367, SEQ ID NO:368, and SEQ ID NO:369; and light chain CDRs SEQ ID NO:376, SEQ ID NO:377, and SEQ ID NO:378; or
    • heavy chain CDRs SEQ ID NO:370, SEQ ID NO:371, and SEQ ID NO:372; and light chain CDRs SEQ ID NO:373, SEQ ID NO:374, and SEQ ID NO:375; or
    • heavy chain CDRs SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333; and light chain CDRs SEQ ID NO:382, SEQ ID NO:383, and SEQ ID NO:384; or
    • heavy chain CDRs SEQ ID NO:379, SEQ ID NO:380, and SEQ ID NO:381; and light chain CDRs SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363; or
    • heavy chain CDRs SEQ ID NO:331, SEQ ID NO:332, and SEQ ID NO:333; and light chain CDRs SEQ ID NO:361, SEQ ID NO:362, and SEQ ID NO:363; or
    • heavy chain CDRs SEQ ID NO:508, SEQ ID NO:509, and SEQ ID NO:510; and light chain CDRs SEQ ID NO:529, SEQ ID NO:530, and SEQ ID NO:531; or
    • heavy chain CDRs SEQ ID NO:511, SEQ ID NO:512, and SEQ ID NO:513; and light chain CDRs SEQ ID NO:532, SEQ ID NO:533, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:514, SEQ ID NO:515, and SEQ ID NO:516; and light chain CDRs SEQ ID NO:535, SEQ ID NO:536, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:517, SEQ ID NO:518, and SEQ ID NO:519; and light chain CDRs SEQ ID NO:538, SEQ ID NO:539, and SEQ ID NO:540; or
    • heavy chain CDRs SEQ ID NO:520, SEQ ID NO:521, and SEQ ID NO:522; and light chain CDRs SEQ ID NO:541, SEQ ID NO:542, and SEQ ID NO:543; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525 and light chain CDRs SEQ ID NO:544, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:526, SEQ ID NO: 527, and SEQ ID NO:528; and light chain CDRs SEQ ID NO: 547, SEQ ID NO:548, and SEQ ID NO:549.


In some embodiments, the antibodies comprise the heavy and light chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


In some embodiments, any antibody described herein can comprise a light chain CDR1 comprising a RGD sequence, e.g., as provided in the following table:













CDRL1
Vk







KSSQSLLNSRSRKNYLA (SEQ ID NO: 572)
D4





KSSQSLLNSGRGDLGNALA (SEQ ID NO: 574)
RGD2





KSSQSLLGRGDLGRLKKQKDHTNALA (SEQ ID NO: 576)
RGD3-1





KSSQSLLGRGDLGRLKKQKDNALA (SEQ ID NO: 577)
RGD3-2





KSSQSLLGRGDLGRLKKQKNALA (SEQ ID NO: 578)
RGD3-3





KSSQSLLGRGDLGRLKKQNALA (SEQ ID NO: 579)
RGD3-4





KSSQSLLGRGDLGRLKKNALA (SEQ ID NO: 575)
RGD3





KSSQSLLGRGDLGRLKNALA (SEQ ID NO: 580)
RGD3-6





KSSQSLLGRGDLGRINALA (SEQ ID NO: 581)
RGD3-7





KSSQSLLGRGDLGRNALA (SEQ ID NO: 582)
RGD3-8





KSSQSLLGRGDLGNALA (SEQ ID NO: 573)
RGD1





KSSQSLLGRGDLGRLKKQKDHH (SEQ ID NO: 583)
RGD3-9





KSSQSLLGRGDLGRLKKQKDH (SEQ ID NO: 584)
RGD3-10





KSSQSLLGRGDLGRLKKQKD (SEQ ID NO: 585)
RGD3-11





KSSQSLLGRGDLGRLKKQK (SEQ ID NO: 586)
RGD3-12





KSSQSLLGRGDLGRLKKQ (SEQ ID NO: 587)
RGD3-13





KSSQSLLGRGDLGRLKK (SEQ ID NO: 588)
RGD3-14





KSSQSLLGRGDLGRLK (SEQ ID NO: 589)
RGD3-15





KSSQSLLGRGDLGRL (SEQ ID NO: 590)
RGD3-16









In some embodiments, any of the antibodies described herein can comprise as CDR1 one of the CDRs selected from SEQ ID NO: 572, SEQ ID NO:573, SEQ ID NO: 574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, and SEQ ID NO:590.


In some embodiments, the antibody can comprise heavy and light chain CDR1, CDR2, and CDR3 sequences as provided below, including but not limited to, e.g.,

    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:572, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:573, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:574, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:575, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 576, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 577, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 578, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:579, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:580, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:581, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:582, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:583, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:584, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:585, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:586, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 587, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 589, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 590, SEQ ID NO:545, and SEQ ID NO:546; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 572, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:573, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:574, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:575, SEQ ID NO:545, and SEQ ID NO: 534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:576, SEQ ID NO:545, and SEQ ID NO: 534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:577, SEQ ID NO:545, and SEQ ID NO: 534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:578, SEQ ID NO:545, and SEQ ID NO: 534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:579, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:580, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:581, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:582, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:583, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 584, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 585, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 586, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 587, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:588, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:589, SEQ ID NO:545, and SEQ ID NO:534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:590, SEQ ID NO:545, and SEQ ID NO: 534; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:572, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:573, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:574, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:575, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:576, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:577, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:578, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:579, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 580, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:581, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 582, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO: 583, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:584, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:585, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:586, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:587, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:588, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO:524, and SEQ ID NO:525; and light chain CDRs SEQ ID NO:589, SEQ ID NO:545, and SEQ ID NO:537; or
    • heavy chain CDRs SEQ ID NO:523, SEQ ID NO: 524, and SEQ ID NO:525, and light chain CDRs SEQ ID NO:590, SEQ ID NO:545, and SEQ ID NO:537.


In some embodiments, the antibodies comprise the heavy and light chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


In some embodiments, any of the antibodies disclosed herein can comprise one of the heavy chain variable regions selected from SEQ ID NO: 1, SEQ ID NO:9, SEQ ID NO: 17, SEQ ID NO:25, SEQ ID NO:33, SEQ ID NO:41, SEQ ID NO:49, SEQ ID NO:57, SEQ ID NO:65, SEQ ID NO:73, SEQ ID NO:81, SEQ ID NO:89, SEQ ID NO:97, SEQ ID NO:105, SEQ ID NO:113, SEQ ID NO:121, or SEQ ID NO:297, or SEQ ID NO:395, SEQ ID NO:403, SEQ ID NO:411, SEQ ID NO:419, SEQ ID NO:427, SEQ ID NO:435, or SEQ ID NO:443.


In some embodiments, any of the antibodies disclosed herein can comprise one of the light chain variable regions selected from SEQ ID NO:129, SEQ ID NO:137, SEQ ID NO: 145, SEQ ID NO:153, SEQ ID NO:161, SEQ ID NO:169, SEQ ID NO:177, SEQ ID NO:185, SEQ ID NO:193, SEQ ID NO:201, SEQ ID NO:209, SEQ ID NO:217, SEQ ID NO:225, SEQ ID NO:233, SEQ ID NO:241, SEQ ID NO:249, SEQ ID NO:257, SEQ ID NO:265, SEQ ID NO:273, SEQ ID NO:281, SEQ ID NO:289, SEQ ID NO:305, or SEQ ID NO:451, SEQ ID NO:459, SEQ ID NO:467, SEQ ID NO:475, SEQ ID NO:484, SEQ ID NO:492, or SEQ ID NO: 500.


In some embodiments, the antibodies disclosed here can comprise one or more or all of the light chain variable regions (CDRs or framework regions) selected from SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, or SEQ ID NO:571.


In some embodiments, any of the antibodies disclosed herein can comprise one or more or all of the heavy chain variable regions (CDRs or framework regions) selected from SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO: 563, or SEQ ID NO: 564.


Heavy chain variable regions can be paired with light chain regions as desired, including or not limited to for variable regions comprising the paired CDRs as set forth above.


In addition, as noted above, the inventors have discovered that an RGDL sequence (SEQ ID NO:756) can be inserted into a light chain CDR1 sequence in an αvβ8-binding antibody to obtain an antibody that has six CDRs in total and that binds both αvβ8 and αvβ6.


The antibodies at least partially block ligand binding function. See, e.g., FIGS. 38A-D. Thus in some embodiments, antibodies are provided that bind to αvβ8 and αvβ6 and comprise an RGDL sequence (SEQ ID NO:756) in the light chain CDR1 sequence. For instance, in some embodiments the light chain CDR1 is between 20-22 amino acids (e.g., 21 amino acids) an optionally comprises KSSQSLLGRGDLGRLKK (SEQ ID NO:765) or a sequence containing 1, 2, or 3 conservative amino acid substitutions.


Additionally, the inventors have discovered that an RGDL sequence (SEQ ID NO:756) can be inserted into a light chain CDR1 sequence in an αvβ8-binding antibody to obtain an antibody that has six CDRs and that binds αvβ8, αvβ6 and αvβ3 (i.e., is tri-specific). See, Example 12.


In some embodiments, any antibody described herein can comprise a light chain CDR1 sequence selected from, but not limited to, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO: 577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO: 583, SEQ ID NO:584, SEQ ID NO: 585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO: 589, and SEQ ID NO:590. In some embodiments, any of the light chain CDR1 sequences set forth in this paragraph can be combined with any light chain CDR2, light chain CDR3, heavy chain CDR1, heavy chain CDR2 and heavy chain CDR3, set forth herein.


In some embodiments, antibodies comprising the light chain CDR1 sequences described in the preceding paragraph can contain 1, 2, or 3 conservative amino acid substitutions in the CDR1 sequence compared to those listed above (i.e., SEQ ID NO:572-590).


In some embodiments, the antibodies can comprise the heavy chain CDR1, CDR2, and CDR3 sequences as provided herein, including but not limited to, e.g.,

    • SEQ ID NO:437, SEQ ID NO:439, and SEQ ID NO:441; or
    • SEQ ID NO:445, SEQ ID NO:447, and SEQ ID NO:449.


In some embodiments, the antibodies can comprise the heavy chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


In some embodiments, the antibodies can comprise the light chain CDR1, CDR2, and CDR3 sequences as provided herein, including but not limited to, e.g.,

    • SEQ ID NO:494, SEQ ID NO:496, and SEQ ID NO:498; or
    • SEQ ID NO:502, SEQ ID NO:504, and SEQ ID NO:506.


In some embodiments, the antibodies can comprise the light chain CDR1, CDR2, and CDR3 sequences described above but contain 1, 2, or 3 conservative amino acid substitutions in one, two or more CDR sequences compared to those listed above.


Heavy chain variable regions can be paired with light chain regions as desired, including or not limited to for variable regions comprising the paired CDRs as set forth above.


For preparation and use of suitable antibodies as described herein, e.g., recombinant, monoclonal, or polyclonal antibodies, many techniques known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4: 72 (1983); Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985); Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies, A Laboratory Manual (1988); and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986)). The genes encoding the heavy and light chains of an antibody of interest can be cloned from a cell, e.g., the genes encoding a monoclonal antibody can be cloned from a hybridoma and used to produce a recombinant monoclonal antibody. Gene libraries encoding heavy and light chains of monoclonal antibodies can also be made from hybridoma or plasma cells. Random combinations of the heavy and light chain gene products generate a large pool of antibodies with different antigenic specificity (see. e.g., Kuby, Immunology (3rd ed. 1997)). Techniques for the production of single chain antibodies or recombinant antibodies (U.S. Pat. Nos. 4,946,778, 4,816,567) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, can be used to express humanized or human antibodies (see, e.g., U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, Marks et al., Bio/Technology 10:779-783 (1992); Lonberg et al., Nature 368:856-859 (1994); Morrison, Nature 368:812-13 (1994); Fishwild et al., Nature Biotechnology 14:845-51 (1996); Neuberger, Nature Biotechnology 14:826 (1996); and Lonberg & Huszar, Intern. Rev. Inmmunol. 13:65-93 (1995)). Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)). Antibodies can also be made bispecific, i.e., able to recognize two different antigens (see, e.g., WO 93/08829, Traunecker et al., EMBO J. 10:3655-3659 (1991); and Suresh et al., Methods in Enzymology 121:210 (1986)). Antibodies can also be heteroconjugates, e.g., two covalently joined antibodies, or immunotoxins (see, e.g., U.S. Pat. No. 4,676,980, WO 91/00360; WO 92/200373; and EP 03089).


Antibodies can be produced using any number of expression systems, including prokaryotic and eukaryotic expression systems. In some embodiments, the expression system is a mammalian cell expression, such as a hybridoma, or a CHO cell expression system. Many such systems are widely available from commercial suppliers. In embodiments in which an antibody comprises both a VH and VL region, the VH and VL regions may be expressed using a single vector, e.g., in a di-cistronic expression unit, or under the control of different promoters. In other embodiments, the VH and VL region may be expressed using separate vectors. A VH or VL region as described herein may optionally comprise a methionine at the N-terminus.


An antibody as described herein can also be produced in various formats, including as a Fab, a Fab′, a F(ab′)2, a scFv, or a dAB. The antibody fragments can be obtained by a variety of methods, including, digestion of an intact antibody with an enzyme, such as pepsin (to generate (Fab′)2 fragments) or papain (to generate Fab fragments); or de novo synthesis. Antibody fragments can also be synthesized using recombinant DNA methodology. In some embodiments, an anti-β8 antibody comprises F(ab′)2 fragments that specifically bind β8. An antibody of the invention can also include a human constant region. See, e.g., Fundamental Immunology (Paul ed., 4d ed. 1999); Bird, et al., Science 242:423 (1988); and Huston, et al., Proc. Natl. Acad. Sci. USA 85:5879 (1988).


Methods for humanizing or primatizing non-human antibodies are also known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988) and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Such humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.


In some cases, the antibody or antibody fragment can be conjugated to another molecule, e.g., polyethylene glycol (PEGylation) or serum albumin, to provide an extended half-life in vivo. Examples of PEGylation of antibody fragments are provided in Knight et al. Platelets 15:409, 2004 (for abciximab); Pedley et al., Br. J. Cancer 70:1126, 1994 (for an anti-CEA antibody); Chapman et al., Nature Biotech. 17:780, 1999; and Humphreys, et al., Protein Eng. Des. 20: 227, 2007). The antibody or antibody fragment can also be labeled, or conjugated to a therapeutic agent as described below.


The specificity of antibody binding can be defined in terms of the comparative dissociation constants (Kd) of the antibody for the target (e.g., β8) as compared to the dissociation constant with respect to the antibody and other materials in the environment or unrelated molecules in general. Typically, the Kd for the antibody with respect to the unrelated material will be at least 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 20-fold, 50-fold, 100-fold, 200-fold or higher than Kd with respect to the target.


The desired affinity for an antibody, e.g., high (pM to low nM), medium (low nM to 100 nM), or low (about 100 nM or higher), may differ depending upon whether it is being used as a diagnostic or therapeutic. For example, an antibody with medium affinity may be more successful in localizing to desired tissue as compared to one with a high affinity. Thus, antibodies having different affinities can be used for diagnostic and therapeutic applications.


A targeting moiety will typically bind with a Kd of less than about 1000 nM, e.g., less than 250, 100, 50, 20 or lower nM In some embodiments, the Kd of the affinity agent is less than 15, 10, 5, or 1 nM. In some embodiments, the Kd is 1-100 nM, 0.1-50 nM. 0.1-10 nM, or 1-20 nM. The value of the dissociation constant (Kd) can be determined by well-known methods, and can be computed even for complex mixtures by methods as disclosed, e.g., in Caceci et al., Byte (1984) 9:340-362.


Affinity of an antibody, or any targeting agent, for a target can be determined according to methods known in the art, e.g., as reviewed in Ernst et al. Determination of Equilibrium Dissociation Constants, Therapeutic Monoclonal Antibodies (Wiley & Sons ed. 2009).


Quantitative ELISA, and similar array-based affinity methods can be used. ELISA (Enzyme linked immunosorbent signaling assay) is an antibody-based method. In some cases, an antibody specific for target of interest is affixed to a substrate, and contacted with a sample suspected of containing the target. The surface is then washed to remove unbound substances. Target binding can be detected in a variety of ways, e.g., using a second step with a labeled antibody, direct labeling of the target, or labeling of the primary antibody with a label that is detectable upon antigen binding. In some cases, the antigen is affixed to the substrate (e.g., using a substrate with high affinity for proteins, or a Strepavidin-biotin interaction) and detected using a labeled antibody (or other targeting moiety). Several permutations of the original ELISA methods have been developed and are known in the art (see Lequin (2005) Clin. Chem. 51:2415-18 for a review).


The Kd, Kon, and Koff can also be determined using surface plasmon resonance (SPR), e.g., as measured by using a Biacore T100 system or using kinetic exclusion assays (e.g., KinExA®). SPR techniques are reviewed, e.g., in Hahnfeld et al. Determination of Kinetic Data Using SPR Biosensors, Molecular Diagnosis of Infectious Diseases (2004). In a typical SPR experiment, one interactant (target or targeting agent) is immobilized on an SPR-active, gold-coated glass slide in a flow cell, and a sample containing the other interactant is introduced to flow across the surface. When light of a given frequency is shined on the surface, the changes to the optical reflectivity of the gold indicate binding, and the kinetics of binding. Kinetic exclusion assays is the preferred method to determine affinity unless indicated otherwise. This technique is described in, e.g. Darling et al., Assay and Drug Development Technologies Vol. 2, number 6 647-657 (2004).


Binding affinity can also be determined by anchoring a biotinylated interactant to a streptavidin (SA) sensor chip. The other interactant is then contacted with the chip and detected, e.g., as described in Abdessamad et al. (2002) Nuc. Acids Res. 30:e45.


Also provided are polynucleotides encoding the antibodies described herein, or binding fragments thereof comprising at least heavy chain or light chain CDRs or both, e.g., polynucleotides, expression cassettes (e.g., a promoter linked to a coding sequence), or expression vectors encoding heavy or light chain variable regions or segments comprising the complementary determining regions as described herein. In some embodiments, the polynucleotide sequence is optimized for expression, e.g., optimized for mammalian expression or optimized for expression in a particular cell type.


III. Methods of treatment


The anti-αvβ8 antibodies described herein (including αvβ8 binding fragments thereof, labeled antibodies, immunoconjugates, pharmaceutical compositions, etc.) as well as antibodies that bind both αvβ8 and αvβ6 as described herein or binding fragments thereof can be used to detect, treat, ameliorate, or prevent chronic obstructive pulmonary disease (COPD) and asthma, inflammatory bowel disease, inflammatory brain autoimmune disease, multiple sclerosis, a demylinating disease (e.g., transverse myelitis, Devic's disease, Guillain-Barré syndrome), neuroinflammation, kidney disease, or glioma, arthritis, fibrotic disorders, such as airway fibrosis, idiopathic pulmonary fibrosis, non-specific interstitial pneumonia, post-infectious lung fibrosis, diffuse alveolar damage, collagen-vascular disease associated lung fibrosis, drug-induced lung fibrosis, silicosis, asbestos-related lung fibrosis, respiratory bronchiolitis, respiratory bronchiolitis interstitial lung disease, desquamative interstitial fibrosis, cryptogenic organizing pneumonia, chronic hypersensitivity pneumonia, drug-related lung or hepatic fibrosis, renal fibrosis, and liver fibrosis (e.g., induced by alcohol, drug use, steatohepatitis, viral infection (e.g., hepatitis B or C), choleostasis, etc., and cancer, including but not limited to adenocarcinoma, squamous carcinoma, breast carcinoma, and cancer growth and metastasis.


Accordingly, the antibodies and pharmaceutical compositions described herein can be administered to a human having or suspected of having one of the above-listed diseases in an appropriate dosage to ameliorate or treat one of the disease or at least one symptom thereof.


Without intending to limit the scope of the invention, in some embodiments it is believed that antibodies described herein function in part by triggering an increase in MHCII expression in antigen presenting cells. See, e.g., FIG. 36A-F.


Moreover, the anti-αvβ8 antibodies described herein (including αvβ8 binding fragments thereof, labeled antibodies, immunoconjugates, pharmaceutical compositions, etc.) can be used to treat, ameliorate, or prevent viral infections (e.g., by stimulating an immune response). Other antibodies that specifically bind to αvβ8 and that block binding of one or more αvβ8 ligand, for example such as described in WO2011/103490 or WO2015/026004 can also be used to treat, ameliorate, or prevent viral infections. Exemplary viral infections include but are not limited to hepatitis A, B (HBV), and C (HCV), herpes simplex virus (e.g., HSVI, HSVII), HIV, and influenza infections, all of which are enhanced by Treg-mediated immune suppression (Keynan, Y, et al., Clin Infect Dis. 2008 Apr. 1; 46(7): 1046-52.


Also provided are pharmaceutical compositions comprising the present anti-αvβ8 antibodies or antigen-binding molecules as well as antibodies that bind both αvβ8 and αvβ6 as described herein or binding fragments thereof, either of which can be formulated together with a pharmaceutically acceptable carrier. The compositions can additionally contain other therapeutic agents that are suitable for treating or preventing a given disorder. Pharmaceutically carriers can enhance or stabilize the composition, or to facilitate preparation of the composition. Pharmaceutically acceptable carriers include solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.


A pharmaceutical composition as described herein can be administered by a variety of methods known in the art. The route and/or mode of administration vary depending upon the desired results. It is preferred that administration be intravenous, intramuscular, intraperitoneal, or subcutaneous, or administered proximal to the site of the target. The pharmaceutically acceptable carrier should be suitable for intravenous, intramuscular, subcutaneous, parenteral, intranasal, inhalational, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound, i.e., antibody, may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.


The antibodies, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be “nebulized”) to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.


In some embodiments, the composition is sterile and fluid. Proper fluidity can be maintained, for example, by use of coating such as lecithin, by maintenance of required particle size in the case of dispersion and by use of surfactants. In many cases, it is preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol or sorbitol, and sodium chloride in the composition. Long-term absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.


Pharmaceutical compositions of the invention can be prepared in accordance with methods well known and routinely practiced in the art. Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention. Applicable methods for formulating the antibodies and determining appropriate dosing and scheduling can be found, for example, in Remington: The Science and Practice of Pharmacy, 21st Ed., University of the Sciences in Philadelphia, Eds., Lippincott Williams & Wilkins (2005); and in Martindale: The Complete Drug Reference, Sweetman, 2005, London: Pharmaceutical Press., and in Martindale, Martindale: The Extra Pharmacopoeia, 31st Edition., 1996, Amer Pharmaceutical Assn, and Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978, each of which are hereby incorporated herein by reference. Pharmaceutical compositions are preferably manufactured under GMP conditions. Typically, a therapeutically effective dose or efficacious dose of the anti-αvβ8 antibody is employed in the pharmaceutical compositions of the invention. The anti-αvβ8 antibodies are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art. Dosage regimens are adjusted to provide the desired response (e.g., a therapeutic response). In determining a therapeutically or prophylactically effective dose, a low dose can be administered and then incrementally increased until a desired response is achieved with minimal or no undesired side effects. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.


Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention can be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level depends upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors.


In some embodiments, the pharmacological compositions comprise a mixture of the anti-αvβ8 antibody or antigen binding molecule (e.g. that blocks ligand binding or blocks activation by ligand binding) and a second pharmacological agent. Without intending to limit the invention, it is noted that the inventors have found that thymic stromal lymphopoietin (TSLP) is an inducer of viral clearance in a mouse model of acute and chronic HBV and thus is useful to combine TSLP with an antibody as described herein for anti-viral treatments. Moreover, the inventors have found that OX40 agonists are effective in stimulating an immune response to HBV in combination with an antibody as described herein.


As an alternative to mixing the anti-αvβ8 antibody and second pharmacological agent in a pharmacological composition, the anti-αvβ8 antibody and second pharmacological agent can be separately administered to the human in need thereof within a time frame (e.g., within 3, 2, or 1 day or within 24, 13, 6, or 3 hours of each other).


IV. Diagnostic Compositions and Applications


Integrin αvβ8 is expressed on fibroblasts, stellate cells, chondrocytes, activated macrophages and subsets of T and B-cells. Integrin αvβ8 is increased in expression in fibroblasts in COPD and pulmonary fibrosis, and can be used as a surrogate marker for increased fibroblast cell mass. Thus the presently disclosed antibodies can be broadly applicable to bioimaging strategies to detect fibroinflammatory processes. The presently described therapeutic and diagnostic antibodies can be applied to: inflammatory bowel disease (IBD), chronic obstructive pulmonary disease (COPD), asthma, arthritis, a hepatic fibroinflammatory disorder, alcohol induced liver injury, non-alcoholic steatohepatitis (NASH), viral hepatitis, and primary biliary cirrhosis (PBC), graft rejection after liver transplantation, autoimmune hepatitis, an autoimmune disorder, lupus erythematosus, scleroderma, dermatomyositis, bullous pemphigoid, pemphigus vulgaris, a pulmonary fibrotic disorder, an inflammatory brain autoimmune disease, multiple sclerosis, a demyelinating disease, neuroinflammation, kidney disease, glomerulonephritis, hepatocellular carcinoma (HCC), adenocarcinoma, squamous carcinoma, glioma, melanoma, prostate, ovarian, uterine and breast carcinoma.


The inventors have found that β8 and PD-L1 expression inversely correlate. Thus, anti-αvβ8 antibodies described herein can be used as a marker for PD-L1 expression and optionally for selecting invenniduals most likely to benefit from anti-αvβ8 treatment.


Anti-αvβ8 antibodies described herein (including αvβ8 binding fragments thereof, affinity matured variants, or scFvs) can be used for diagnosis, either in vivo or in vitro (e.g., using a biological sample obtained from an individual). In addition to the above-described antibodies, antibodies having the following CDRs can be used for diagnosis and prognosis: heavy chain CDRs SEQ ID NO:299, SEQ ID NO:301, and SEQ ID NO:303; and light chain CDRs SEQ ID NO:307, SEQ ID NO:309, and SEQ ID NO:311. In some embodiments, the antibodies have a heavy chain variable region comprising SEQ ID NO:297 and a light chain variable region of SEQ ID NO:305. Alternatively, any antibodies having heavy chain CDRs or a heavy chain variable region as set forth in FIG. 53 and light chain CDRs or a light chain variable region from a corresponding sequence as set forth in FIG. 54 can be used. The antibodies are particularly useful in detecting αvβ8 in samples that have been fixed, for example in formalin-fixed samples, including for example formalin-fixed paraffin-embedded (FFPE) biological (e.g., tissue or cell) samples.


When used for detection or diagnosis, the antibody is typically conjugated or otherwise associated with a detectable label. The association can be direct e.g., a covalent bond, or indirect, e.g., using a secondary binding agent, chelator, or linker.


A labeled antibody can be provided to an individual to determine the applicability of an intended therapy. For example, a labeled antibody may be used to detect the integrin β8 density within a diseased area. For therapies intended to target TGFβ or αvβ8 activity (to reduce TGFβ or αvβ8 activity), the density of β8 is typically high relative to non-diseased tissue. A labeled antibody can also indicate that the diseased area is accessible for therapy. Patients can thus be selected for therapy based on imaging results. Anatomical characterization, such as determining the precise boundaries of a cancer, can be accomplished using standard imaging techniques (e.g., CT scanning, MRI, PET scanning, etc.). Such in vivo methods can be carried out using any of the presently disclosed antibodies.


Any of the presently disclosed antibodies can also be used for in vitro diagnostic or monitoring methods, e.g., using cells or tissue from a patient sample. In some embodiments, labeled F9 (or a β8 binding fragment or affinity-matured variant) is used, as it can bind fixed cells as well as non-fixed cells.


In some embodiments, the diagnostic antibody is a single-chain variable fragment (scFv). Intact antibodies (e.g., IgG) can be used for radioimmunotherapy or targeted delivery of therapeutic agents because they exhibit high uptake and retention. In some cases, the persistence in circulation of intact mAbs can result in high background (Olafsen et al. (2012) Tumour Biol. 33:669-77; Cai et al. (2007) J Nucl Med. 48:304-10). ScFvs, typically with a molecular mass of ˜25 kD, are rapidly excreted by the kidneys, but are monovalent and can have lower affinity. The issues of monovalency can be overcome with advanced antibody engineering (as shown herein), where affinities can be improved to the low nM to pM range. Such antibodies have short enough half-lives to be useful as imaging agents and have suitable binding characteristics for tissue targeting (Cortez-Retamozo et al. (2004) Cancer Res. 64:2853-7). As shown herein, we have created a very high affinity scFV antibody derivatives of 4F1, 6B9, called F9, that can be converted to humanized scFV platforms. These improved antibodies are not function blocking, and thus can be used in combination with a therapeutic agent that targets 138.


A diagnostic agent comprising an antibody described herein can include any diagnostic agent known in the art, as provided, for example, in the following references: Armstrong et al., Diagnostic Imaging, 5th Ed., Blackwell Publishing (2004); Torchilin, V. P., Ed., Targeted Delivery of Imaging Agents, CRC Press (1995); Vallabhajosula, S., Molecular Imaging: Radiopharmaceuticals for PETand SPECT, Springer (2009). The terms “detectable agent,” “detectable moiety,” “label,” “imaging agent,” and like terms are used synonymously herein. A diagnostic agent can be detected by a variety of ways, including as an agent providing and/or enhancing a detectable signal. Detectable signals include, but are not limited to, gamma-emitting, radioactive, echogenic, optical, fluorescent, absorptive, magnetic, or tomography signals. Techniques for imaging the diagnostic agent can include, but are not limited to, single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, positron emission tomography (PET), computed tomography (CT), x-ray imaging, gamma ray imaging, and the like. PET is particularly sensitive and quantitative, and thus valuable for characterizing fibrotic processes in vivo (Olafsen et al. (2012) Tumour Biol. 33:669-77; Cai et al. (2007) J Nucl Med. 48:304-10). This is useful beyond a companion diagnostic and would be generally useful to diagnose, clinically stage and follow fibrotic patients during any treatment regimen.


A radioisotope can be incorporated into the diagnostic agents described herein and can include radionuclides that emit gamma rays, positrons, beta and alpha particles, and X-rays. Suitable radionuclides include but are not limited to 225Ac, 72As, 211At, 11B, 128Ba, 212Bi, 75Br, 77Br, 14C, 109Cd, 62Cu, 64Cu, 67Cu, 18F, 67Ga, 68Ga, 3H, 166Ho, 123I, 124I, 125I, 130I, 131I, 111In, 177Lu, 13N, 15O, 32P, 33P, 212Pb, 103Pd, 186Re, 188Re, 47Sc, 153Sm, 89Sr, 99mTc, 88Y and 90Y. In certain embodiments, radioactive agents can include 111In-DTPA, 99mTc(CO)3-DTPA, 99mTc(CO)3-ENPy2, 62/64/67Cu-TETA, 99mTc(CO)3-IDA, and 99mTc(CO)3triamines (cyclic or linear). In other embodiments, the agents can include DOTA and its various analogs with 111In, 177Lu, 153Sm, 88/90Y, 62/64/67Cu, or 67/68Ga. In some embodiments, a nanoparticle can be labeled by incorporation of lipids attached to chelates, such as DTPA-lipid, as provided in the following references: Phillips et al., Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(1): 69-83 (2008); Torchilin, V. P. & Weissig, V., Eds. Liposomes 2nd Ed.: Oxford Univ. Press (2003); Elbayoumi, T. A. & Torchilin, V. P., Eur. J. Nucl. Med. Mol. Imaging 33:1196-1205 (2006); Mougin-Degraef, M. et al., Int'l J. Pharmaceutics 344:110-117 (2007).


In some embodiments, a diagnostic agent can include chelators that bind, e.g., to metal ions to be used for a variety of diagnostic imaging techniques. Exemplary chelators include but are not limited to ethylenediaminetetraacetic acid (EDTA), [4-(1,4,8,11-tetraazacyclotetradec-1-yl)methyl] benzoic acid (CPTA), Cyclohexanediaminetetraacetic acid (CDTA), ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA), diethylenetriaminepentaacetic acid (DTPA), citric acid, hydroxyethyl ethylenediamine triacetic acid (HEDTA), iminodiacetic acid (IDA), triethylene tetraamine hexaacetic acid (TTHA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid) (DOTP), 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), N1,N1-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (ENPy2) and derivatives thereof.


In some embodiments, the diagnostic agent can be associated with a secondary binding ligand or to an enzyme (an enzyme tag) that will generate a colored product upon contact with a chromogenic substrate. Examples of suitable enzymes include urease, alkaline phosphatase, (horseradish) hydrogen peroxidase and glucose oxidase. Secondary binding ligands include, e.g., biotin and avidin or streptavidin compounds as known in the art.


In some embodiments, the diagnostic agents can include optical agents such as fluorescent agents, phosphorescent agents, chemiluminescent agents, and the like. Numerous agents (e.g., dyes, probes, labels, or indicators) are known in the art and can be used in the present invention. (See, e.g., Invitrogen, The Handbook—A Guide to Fluorescent Probes and Labeling Technologies, Tenth Edition (2005)). Fluorescent agents can include a variety of organic and/or inorganic small molecules or a variety of fluorescent proteins and derivatives thereof. For example, fluorescent agents can include but are not limited to cyanines, phthalocyanines, porphyrins, indocyanines, rhodamines, phenoxazines, phenylxanthenes, phenothiazines, phenoselenazines, fluoresceins, benzoporphyrins, squaraines, dipyrrolo pyrimidones, tetracenes, quinolines, pyrazines, corrins, croconiums, acridones, phenanthridines, rhodamines, acridines, anthraquinones, chalcogenopyrylium analogues, chlorins, naphthalocyanines, methine dyes, indolenium dyes, azo compounds, azulenes, azaazulenes, triphenyl methane dyes, indoles, benzoindoles, indocarbocyanines, benzoindocarbocyanines, and BODIPY™ derivatives.


EXAMPLES

The following examples are offered to illustrate, but not to limit the claimed invention.


Example 1. Construction of Composite Antibody C6D4

ITGB-8 knockout mice were immunized with recombinant Human Integrin alpha V beta 8 (αvβ8) protein. Approximately 5000 hybridomas were generated and screened for their ability to bind to αvβ8 in an enzyme-linked immunosorbent assay (ELSA). Results were confirmed by cell staining, and function blocking was determined with the use of a transforming growth factor-beta (TGF-β) bioassay. Blocking antibodies were screened against a recombinant form of αvβ8 engineered to lack the specificity determining loop (SDL) of the β8 head domain. Antibodies not binding this engineered αvβ8 were then selected.


Variable (V) genes from eight hybridomas were next isolated, sequenced, and found to comprise seven VH and eleven VK genes that were unique but related. FIG. 1 and FIG. 2 provide sequence information for the products of these VH and VK genes. Sequence information is using the Kabat numbering scheme. Each V gene was amplified under mutagenic conditions, and a single-chain variable fragment (scFV) library was constructed by mixing the amplified cDNA and using splice overlap. The library served as an amplification template using primers designed to complement rabbit IgG expressing dual VH and VL vectors. Eleven distinct VH genes and sixteen distinct VK genes were identified after sequencing >100 random clones and transfected in 165 different combinations into 293 cells. The eight pairs that produced the best binders were determined by cell staining and FACS analysis, and by measuring binding affinity for CHO cells expressing αvβ8. The eight pairs each comprised a VH domain selected from RSDLVH-1, RSDLVH-3, and RSDLVH-16; and a VK domain selected from RSDLVK-1, RSDLVK-6, RSDLVK-10, and RSDLVK-13; the sequences of which are shown in FIG. 1 and FIG. 2.


These eight rabbit IgG VH/VK pairs were then used to create a new mutagenic scFV yeast display library that was inserted into a yeast expression library vector. Two high-affinity binders from this selection and affinity maturation step were identified and designated clone 29 and clone 44. Random mutation mutagenic libraries were next made from genes of clones 29 and 44, and from these libraries the higher-affinity binding clones C6 and D4 were selected and determined (FIG. 1 and FIG. 2). Mutations in the complementarity-determining regions (CDRs) of C6 VH and D4 VK were identified, and the two chains were combined to create the composite antibody C6D4 (FIG. 1 and FIG. 2).


Example 2. Characterization of C6D4 Binding Affinity

A Kinetic Exclusion Assay (KINEXA®) was used to measure the binding affinity of C6D4. The affinity as a murine IgG2a was measured as 832 pM. As a recombinant IgG, C6D4 was found to result in substantially complete blockage of αvβ8-mediated TGF-β activation. This result implies blockage that is better than with B5, an allosteric inhibitor of αvβ8-mediated TGF-β activation. (Minagawa, et al, Sci Trans Med. 2014 Jun. 18; 6(241):241ra79)


C6D4 was also shown to block adhesion of cells to immobilized latent TGF-β. A peptide with the sequence DDHGRGDLGRLK (SEQ ID NO:713), which corresponds to as 257-268 of human TGF-β3 (NP_003230) was synthesized on an 8 lysine core (Multiple antigen presenting peptide, BioSyn) and used at 1 ug/ml to coat a 96 well ELISA plate. A truncated secreted form of αvβ8 which was fused in frame to alkaline phosphatase (Gline S E, et al. J Biol Chem. 2004 Dec. 24; 279(52):54567-72) was added with Mab at the indicated concentrations. The results (FIG. 19) show the superiority of C6D4 over B5 and the improvement of C6D4 compared to Clone 13C12. The table gives the IC50 values in μg/ml.


Further, a peptide with the sequence DDHGRGDLGRLK (SEQ ID NO:713), which corresponds to as 257-268 of human TGF-β3 (NP 003230) was synthesized on an 8 lysine core (Multiple antigen presenting peptide, BioSyn) and used at 0.51 ug/ml to coat a 96 well ELISA plate. CHO lec cells stably transfected with αvβ8 were allowed to bind to the peptide coated wells for 30 min at RT. Unbound cells were washed off with PBS. The Mab C6D4 was added at the indicated concentrations. Results were presented as stained cells detected after staining with crystal violet (OD590). The results (FIG. 20) show that C6D4 almost completely blocks cell adhesion to the peptide.


Example 3. Characterization of C6D4 Binding Structure

The current understanding of integrin structure is faced with the hurdle of having to reconcile two polar opposite views of integrin conformation. One camp proposes that integrins are always bent. The other believes that integrins must undergo a significant conformational “switchblade” change from a bent conformation to an extended conformation upon activation, opening the “headpieces” of the integrins to be fully functional. This model of integrin extension proposes one of the largest tertiary and quaternary structural rearrangements in biology.


Proof of such conformational extremes has been hampered by compromises and shortcomings associated with techniques routinely used in structural biology. Traditional crystallography produces crystal structures with atomic resolution but is reliant on the conformations and conditions under which crystals can be formed. In the case of integrins, only compact, closed conformations have been seen by crystallography. Alternatively, size exclusion chromatography (SEC) of integrins under activating conditions have demonstrated large shifts in size consistent with integrin extension. Such changes in conformation have been directly visualized using negative stain electron microscopy (EM) studies but at low resolution. Thus, the atomic details of the integrin ligand binding and the integrin activation mechanism remains unresolved.


Single-particle cryo-electron microscopy (cryoEM) can be used to determine the structure of biological macromolecules without crystals, thus offering an alternative that circumvents the obstacles of crystalizing integrins in the extended form. Recent hardware and software developments demonstrate that single-particle cryoEM has the power to provide atomic-level structural understanding of molecules that are traditionally challenging to study. Because single-particle cryoEM does not require the formation of crystals, and allows examination in the native functional conformations unaffected by crystal packing forces or high-salt crystallization buffers, this method is uniquely suited to understanding structures of proteins or integrin-ligand or integrin-Fab complexes that are difficult to crystallize. Here, we have used single particle cryoEM to address some of the biggest mysteries in structural biology, the structural mechanisms of integrin activation and conversely the mechanism of action of integrin inhibitors.


Previously published crystal structures of the latent TGF-β arginine-glycyine-aspartic acid (RGD) peptide of αvβ6 show the positioning of the TGF-β RGD in the αvβ6 binding pocket, as well as the positioning of the R of the TGF-β RGD proximate to the αv head. Cryo-electron microscopy of the new composite antibody C6D4 structure have now produced a ˜4-5-angstrom-resolution structure of the C6D4 Fab binding to αvβ8. To generate the structures of αvβ8 in complex with C6D4, purified recombinant αvβ8 and C6D4 Fab complexes were isolated by size exclusion chromatography and then plunge frozen on grids in liquid nitrogen. Images of ˜61,000 individual particle images captured by electron microscopy were selected to produce a 3D electron density map which was used to build model of αvβ8 in complex with C6D4 Fab using existing Protein Data Bank (PDB) entries for the integrin αvβ3, aIIbβ3, and Fabs with similar CDRs.



FIGS. 13A and 13B presents cryoEM results showing binding of the C6D4 Fab to the integrin αvβ8 at the head domain. FIGS. 13A and 13B illustrate this binding between C6D4 and αvβ8 in closer detail. From the C6D4 antibody footprint of FIG. 6, it can be seen that C6D4 binds primarily to the SDL loop of β8, making additional contacts with other secondary structures on the β8 α1 and α2 helices and on the head of av. Together, these components of the binding configuration result in the almost complete occlusion of the ligand binding pocket. The residues of the β8 α1 and α2 helices and αv head that directly interact with C6D4 are further detailed in FIG. 7.


The elucidated structure shows that the CDR1 domain of the D4 VL binds close to the contact site for the R of RGD in the previously published αvβ6-RGD crystal structure. Because the αv subunit is shared by both αvβ6 and αvβ8, this finding suggests that the CDR1 loop of D4 VL is optimally positioned to sterically inhibit the binding of the R of RGD of latent TGF-β to αvβ8. On the other side of the SDL is a hydrophobic binding pocket having an L that immediately follows the RGD, forming an RGDL peptide. This hydrophobic pocket has been shown to be essential as a secondary binding site for the binding of the latent TGF-β RGD peptide to αvβ6. See, e.g., Shi M, et al., Nature 474(7351):343-9 (2011). The L or RGDL has also been shown to be essential for the binding of the latent TGF-β RGD peptide to αvβ8. (See, e.g., Ozawa, A, et al. J Biol Chem. 291(22): 11551-65 (2016). The CDR3 loop of C6 VH has now been shown to bind in such a way as to substantially cover the hydrophobic binding pocket located on the β8 subunit head domain. Additionally, C6D4 was found to interact extensively with the SDL of β8. FIG. 8 illustrates the overlapping of the C6D4 epitope with the ligand binding pocket of integrin αvβ8, showing how it can prevent the association of the integrin with latent TGF-β, and thus the activation of latent TGF-β. Importantly, all contact residues with C6D4 are believed to be conserved in αvβ8 across all mammalian species. This is in contrast to the allosteric inhibitor B5, which only reacts significantly against human αvβ8.


Example 4. Modeling of C6D4 Effects on Lung Cancer Survival

Syngeneic models for the study of lung cancer are very limited. The Lewis lung carcinoma (LLC) model is the only reproducible syngeneic lung cancer model currently widely in use. LLC is a cell line established from the lung of a C57BL mouse bearing a primary Lewis lung carcinoma. This line is highly tumorigenic and is used to model pulmonary metastasis that results after resection of the primary tumor. In this way the model mimics the clinical scenario closely. It is a useful model for evaluating the efficacy of chemotherapeutic agents in vivo. An advantage of the LLC model is that tumor cells are immunologically compatible, unlike the immunodeficient strains used in most other xenograft models. The LLC model was used as a preclinical model to evaluate vinorelbine prior to its use in clinical trials. The LLC cell line is injected subcutaneously into the subcutis of C57B6 mice, and within two weeks primary tumors reproducibly reach sizes of 10 mm. After resection of the primary tumor, lung metastasis appears in 2-4 weeks. The primary endpoints in this model are weight loss and lung metastasis number.



FIG. 9 presents result indicating that C6D4 increases survival in the LLC model. Mice received intraperitoneal injections of either C6D4 murine IgG2a or SV5 isotype control (7 mg/kg) at the time of primary tumor removal (day 0), and then once every week until weight loss exceeded 20%. The positive results indicate the first demonstration of an anti-β8 antibody inhibiting lung cancer metastasis. The fact that C6D4 inhibits lung cancer metastasis in this model indicates its potential as a treatment to prevent lung cancer metastasis. Because the mechanism of this antibody in cancer likely involves inhibiting the function or development of immunosuppressive Treg cells, C6D4 can have broad applications to any number of cancers where Treg cells play an immunosuppressive role.



FIG. 28 provides a schematic of the LLC model used herein to evaluate lung metastasis. The LLC tumor cell line is syngeneic to the host C57B/6 strain. This cell line does not express the integrins αvβ6 or αvβ8. The LLC. 1 cell line has been passed though mice one time and regrown from lung metastasis. After two weeks, subcutaneously injected tumor (1×106) LLC.1 cells form large tumor nodules (˜1 cm). The tumors are removed surgically and when animals lose 20% of their body weight they are euthanized.


The LLC model lung metastasis experiment described in the preceding paragraph was repeated eleven (11) times and the results in each of the eleven experiments were found to be similar (data not shown). FIGS. 29A and 29B present data from the eleventh experiment indicating that C6D4 increases survival in the LLC model. In each instance, mice received intraperitoneal injections of either C6D4 murine IgG2a or SV5 isotype control (7 mg/kg) at the time of primary tumor removal (day 0), and then once every week until weight loss exceeded 200%. The results indicate the anti-β8 antibody (C6D4) inhibits lung cancer metastasis. Survival curves in FIG. 29A represent mice euthanized for reasons of local recurrence or weight loss. In FIG. 29B, the animals removed for local recurrence are excluded. At autopsy, the animals with 20% weight loss all have metastatic implants in their lungs. The C6D4 antibodies were injected for up to 90 days in surviving animals. Interestingly, post-mortem examination did not reveal any abnormal inflammatory response in the tissues examined. The fact that C6D4 inhibits lung cancer metastasis in this model indicates its potential as a treatment to prevent lung cancer metastasis. Because the mechanism of this antibody in cancer likely involves inhibiting the function or development of immunosuppressive Treg cells, C6D4 can have broad applications to any number of cancers where Treg cells play an immunosuppressive role.


The effect of C6D4 was also evaluated with respect to tumor growth and tumor immune response. From the resected LLC. I1 primary tumors in mice that received two injections of isotype control (B5, which only cross reacts with human and not mouse b8) or C6D4 (which cross-reacts with mouse and human), the primary tumor weights were recorded and dimensions measured. The tumors were enzymatically disaggregated and immune cells isolated and counted. Flow cytometry was performed and tumor infiltrating immune cells separated from tumor cells using Percoll gradient centrifugation. FIGS. 30A-F is one of three experiments with similar results (remaining data not shown). In each experiment, n was greater than, or equal to, 10 in each test group.


Example 5. C6D4 Effects on Metastatic Disease Using a Melanoma Disease Model

A model for the study of metastasis was tested herein that utilized the B16-F10 tumor cell line. The B16-F10 highly metastatic tumor cell line is syngenic to the host C57B/6 strain. This line does not express the integrins αvβ6 or αvβ8. The B16-F10 cell line was transfected with murine ITGb8 and after selection in G418 and two rounds of sorting, a pool of high expressing αvβ8 cells were identified. When injected intravenously via the tail vein, visible lung metastases appeared within 14 days. A schematic of the metastatic disease melanoma model described in this paragraph is provided in FIG. 31. After three injections (i.p.) of isotype control (SV5) or C6D4, both at 7 mg/kg, at days 0, 7 and 14, the mice were euthanized at day 18. FIG. 34A shows photographs of representative lungs in anterior and posterior views; visible lung metastases were counted and the total lung surface area involved with metastases was assessed. FIG. 34B shows the total number of metastases and FIG. 34C shows the percentage of total lung surface area involved in metastatic melanoma.


Example 6. Modeling of C6D4 Effects on Hepatitis B Infection and Disease Outcome

Because the hepatitis B virus (HBV) does not infect mice, research has typically focused on using transgenic and knockout mouse models to study HBV immunity. In this model, viral antigens in the liver are exposed to an immune system that is not immunologically tolerant, and that has not been previously exposed to HBV. The goal is to mimic the immunologic events that would normally occur during primary HBV infection. In addition, this model permits manipulation of the immune system that is exposed to the virus, to be able to identify and dissect the cells, cytokines, and chemokines contributing to chronic hepatitis or disease resolution.


To generate the model, the resident (tolerized) immune system of the HBV-transgenic mice is ablated by backcrossing to immune-deficient strains (Mombaerts et al. (1992) Nature 360:225 and Mombaerts et al. (1992) Cell 68:869). This breeding strategy generates animals expressing high levels of viral antigen (HBV-Env) or virus (HBV-replication) in the liver, in the absence of a tolerant immune system (Baron et al. (2002) Immunity 16:583). Into these mice, HBV-naive syngeneic splenocytes (the equivalent of a whole spleen) are transferred from wildtype mice to reconstitute the immune system, mimic the point of primary infection, and test the importance of cellular and soluble mediators in HBV pathogenesis. Careful monitoring of immune responses and pathologic outcomes has revealed the utility of this model in mimicking or modifying acute and chronic HBV infection (Publicover et al. (2011) J. Clin. Investigation 2011:1154 and Publicover et al. (2013) J. Clin. Investigation 123:3728). In this way, the mouse model provides an experimental system to examine the reversibility of the altered immune priming that facilitates HBV persistence, and to test immune-modulatory therapeutics.


Results shown in FIG. 10 indicate that C6D4 induces HBV viral clearance in the chronic infection mouse model without causing hepatitis. In the figure, HepB surface antigen (HBSag) is a surrogate for intact HBV. Clearance of HBSag is a marker of HBV clearance. ALT is the liver enzyme monitored to measure liver inflammation and damage. The normal range of ALT in mice is 15-40. It can be seen from the data that the C6D4 antibody promoted HBsAg clearance in three of four chronic HBV model mice.


Example 7. Construction and Characterization of Composite Antibody 4F1F9

A yeast display scFV library was created using V-genes from hybridoma clones 6B9 and 4F1, a new clone 6B9.1 was selected from this library, then another yeast display scFV library was created using the V-gene of 6B9.1 and random mutagenesis, sixteen affinity-matured variant from this second library were characterized in terms of binding affinity and two clones C4 and D10 were transformed in to rabbit IgG format, both reacts weakly with human β8 in formalin-fixed paraffin-embedded tissue. A third mutagenic scFV library was then created from the variable regions of these two antibodies and inserted in a phage display vector and displayed as scFv on the phage surface (FIG. 11A-B). The induced phage library was screened against immobilized paraffin-embedded human αvβ8. Multiple rounds of selection were carried out, and fifteen phage clones were characterized in detail before the final clone F9 (FIG. 11A-B) was picked and transformed into IgG format for in vitro characterization.


Clone F9 in the IgG format was found to work efficiently in formalin-fixed paraffin-embedded tissues. The clone can be suitable for use as a companion diagnostic, for example to determine tumors expressing αvβ8 or infiltrated by immune cells expressing αvβ8 (i.e. dendritic cells, Treg cells), as a bioimaging reagent for measuring β8-specific tumor uptake and for informing C6D4 treatment decisions. The F9 antibody can also be used to detect αvβ8 in fluid or tissue lysate samples using ELISA.


Example 8. Methods to Inhibit and/or Treat H. Pylori Pathogenicity

The bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately half of the world's population and is associated with peptic ulcer disease, gastric carcinoma and gastric lymphoma (MALToma). The pathogenicity of Helicobacter pylori is linked to a type IV secretion system and the cytotoxicity-associated gene pathogenicity island cagPAI. The cagPAI proteins are transcribed from a 40 kb stretch of H. pylori DNA encoding ˜31 genes of which one, cagL, contains an RGDL integrin binding motif. This RGDL motif is thought to act as a receptor for integrins so that the H. pylori pilus can interact with gastric epithelial cells and then penetrate the cell membrane and the oncogenic toxin cagA can be injected into the cell (see Kwok, et al, Nature, 2007449, 862-866, and Barden, et al, Journal of Molecular Biology, 2015, 427 (6) Part B, 1304-1315). We have used the anti-β8 clone F9 to stain human stomach biopsies and have found that the integrin αvβ8 is expressed by gastric crypt epithelial cells and this expression is increased in patients with chronic active gastritis due to H. pylori infection (see FIGS. 21 and 22). The ectodomain of integrins αvβ6 and αvβ8, but not other RGD-binding integrins (αvβ1, αvβ3, αvβ5 and α5β1) have been shown to preferentially bind to CagL via an RGDL dependent mechanism (see Barden, et al, Gastroenterology, 2010, 138(3). Previously, it was thought that the α5β1 integrin was the main CagL receptor on gastric epithelial cells (see Kwok, et al, Nature, 2007, 449 (7164):862-6. We have found that the integrins αvβ6 and αvβ8 bind with similar efficiency to CagL while the αvβ3 integrin does not bind to CagL (See FIG. 23). The αvβ8-mediated binding to CagL can be efficiently blocked by C6D4 (See FIG. 24). The αvβ8 integrin also mediates strong cell adhesion to CagL (see FIG. 25) and CagL can compete for αvβ8-mediated cell adhesion to the TGF-β3 RGD peptide, indicating that αvβ8 binds to the RGD site of CagL (See FIG. 26). C6D4 can efficiently block cell adhesion to CagL (See FIG. 27).


Blocking αvβ8-mediated binding of CagL with C6D4 or its derivatives (i.e. IgA, monomeric or dimeric) can be used as a method to inhibit H. Pylori pathogenicity (i.e. peptic ulcer disease, gastric carcinoma or MALToma) by blocking entry of the oncogenic toxin CagA. In addition, C6D4 could provide protection against H. Pylori itself or from its indirect oncogenic and toxic effects by inhibiting Treg function and increasing more effective immunity against H. Pylori, gastric carcinoma, and MALToma. Such effects can be predicted by findings in murine models where H. Pylori immune escape has been shown to be mediated by dendritic cell-induced Treg skewing and Th17 suppression (see Kao, et al, Gastroenterology, 2010 138(3): 1046-54). Because the integrin αvβ8-mediated TGF-β activation has been shown to be required for Treg development and function (see Worthington, et al, Immunity, 2015, Volume 42, Issue 5, pp. 903-915), inhibiting αvβ8-mediated TGF-β activation using C6D4 or its derivatives will protect against the oncogenic effects of H. Pylori infection by enhancing immunity to H. Pylori itself while simultaneously increasing anti-tumoral immunity. Another possible mechanism by which blocking αvβ8-mediated TGF-β activation with C6D4 or its derivatives could block Treg function is by inhibiting migration of Tregs to the H. Pylori infected gastric mucosa. The chemokine CCL20 is a potent chemokine for Tregs and dendritic cells, which are required for Treg differentiation, and αvβ8-mediated TGF-β activation provides a major contribution to CCL20 production and function (see Cook, et al, Gut (2014), 63(10):1550-9; Brand, et al, J Biol Chem, 2015, 290(23):14717-28, Hashimoto, et al, J Immunol 195(3):1182-90.). Therefore, treating patients with C6D4 or another anti-αvβ8 antibody alone, in combination with antibodies to other CagL binding integrins (α5β1, Act-1, or αvβ6, 3G9) or in combination with standard H. Pylori therapy (i.e. bismuth salts, proton pump inhibitors, macrolides, amoxicillin, metronidazole) would treat not only the pathogenic mechanism of H. Pylori but would enhance immunity to more efficiently eliminate H. Pylori, while at the same time protecting and/or treating the malignant complications of chronic H. pylori infection.


Example 9. Construction of Composite Humanized Antibody C6D4


FIG. 46, FIG. 50, and FIG. 51, show sequence alignment of various C6D4 humanized clones. FIGS. 50 and 51 also provide heavy chain and light chain amino acid consensus sequences for the humanized C6D4 related clones. The C6D4 antibody humanization focused on the V domain framework region of both the heavy and light chain. The humanization process was performed to include three criteria:


(1) The humanized version of antibody (HuC6D4) should have similar or improved affinity and specificity for αvβ8 as the murine version C6D4;


(2) The final amino acid in the HuC6D4 antibody framework region should be as close as possible to the translated antibody framework region of the human germline version that was selected as the target gene family (VH1/VK3);


(3) Production levels of the final humanized version (HuC6D4) in IgG or other format should be scalable for industry application.


We designed a potential humanized lead version of the murine C6D4 based on the chosen germline of human antibody (VH1/VK3), and the humanization algorithm developed at UCSF, and other published information for antibody human drug development, with main consideration on IgG general structure, VH-VL interface, IgG folding packing, surface accessibility, vernier zone impact, humanization hotspots and other risk factors.


These designed lead versions were synthesized and expressed as scFV using yeast display. The measured Kd showed an approximate 2-fold decrease from the parent murine C6D4 scFv.


Next, a random mutation based yeast scFv display library was created using the humanized lead version as the starting point, and FACS sorting performed to pick the best binders to αvβ from the displayed yeast library. Three mutant candidates (C6D4-RGD1, C6D4-RGD2 and C6D4-RGD3) were chosen for further testing in IgG format (See, for example FIG. 38C and FIG. 39).


Example 10. Characterization of Humanized C6D4 and CD64-RGD3 Binding Affinity

Shown in FIG. 39 is cell surface staining experiments of C6Vh expressed with either RGD1, RGD2, or RGD3 mutants (as disclosed in Example 8) as rabbit IgG. Binding to human Cho cells expressing αvβ8 was expressed as a percentage of binding of C6D4. The results show that RGD3 mutant has substantially higher relative binding to αvβ8 as compared to wildtype C6D4, RGD1 mutant or RDG2 mutant.



FIG. 40 shows cell surface staining experiments of C6Vh expressed with either D4 Vk or RGD1, RGD2 or RGD3 mutants (as disclosed in Example 8) as rabbit IgG. Binding to Cho cells expressing human αvβ8 or SW480 cells expressing αvβ6 are shown. Relative binding is defined as staining compared to staining of non-transfected Cho or SW480 cells. The results show that the C6D4-RGD3 mutant has substantially higher relative binding to αvβ6 as compared to wildtype C6D4, RGD1 mutant, or RDG2 mutant.


Shown in FIG. 41 is a binding experiment of C6Vh expressed with either D4 Vk or RGD1, RGD2 or RGD3 mutants (as disclosed in Example 8) as rabbit IgG to various av-integrins. The integrins αvβ1, αvβ3, αvβ5, αvβ6 and αvβ8 were purchased from R&D systems. All integrins were coated on ELISA plates at 2 mg/ml, blocked with BSA, and antibodies were allowed to bind. Binding of C6D4 and RGD3 was detected with anti-rabbit HRP. The results shown are relative to control wells coated with anti-av (clone 8B8) where av-integrins were detected with another av-antibody recognizing an non-overlapping epitope (L230-biotin), followed by SA-HRP. The results show that RGD3 mutant has substantially higher binding to αvβ6, while C6D4 has higher relative binding to αvβ8.


C6D4 and C6D4-RGD3 were also shown to bind avidly to αvβ8. Humanized C6D4 or C6D4-RGD3 (Frameworks and CH1 are human; hinge and CH2-3 are mouse) were immobilized on ELISA plates at the indicated concentrations. As a negative control, some wells were coated with anti-SV5 at the same concentrations. Non-specific binding sites were blocked with BSA. Recombinant αvβ8 ectodomain (0.5 ug/ml) was added to each well and after binding and washing in binding buffer (1 mM Ca“and Mg”), the bound αvβ8 was detected with biotinylated anti-αv (8b8) and detected with SA-HRP. The results of this experiment are shown as specific binding (minus SV5 control)(FIG. 47). The results show that C6D4 and C6D4-RGD3 outperform murine C6D4 and C6D4-RGD3 antibodies by avidly binding αvβ8.


Example 11. Characterization of Humanized C6D4-RGD3 Binding Structure

As set forth in Example 3, modeling and CryoEM maps can be used to provide structural information with respect to antibody binding. FIG. 48 presents a map of RGD3 binding to the ligand pocket of αvβ8. The map is derived from C6D4 in complex with αvβ8 and is compared to C6D4-RGD3 in complex with αvβ8. The density map when compared with the headpiece of αvβ6 in complex with LTGFβ1 shows the similarity of the position of the RGD residues of LTGFβ1 with the RGD residues of C6D4-RGD3. Magenta wire represent s RGD3+αvβ8 density map, Black represents C6D4+αvβ8 density map; Gold represents C6D4 Fab; Green represents the αv subunit; Blue represents the 18 subunit.



FIG. 49 is a cryoEM map showing the CDR Vk1 loop of C6D4-RGD3 occupies the ligand binding pocket of αvβ8. Here, models of C6D4 Fab-αvβ8 (FIG. 49A) are compared with RGD3-αvβ8 map (FIG. 49B) or in overlay (FIG. 49C) based on cryoEM derived density maps. The anti-αv 11D12V2 Fab was used to increase molecular mass of the complex and to assist in particle orientation. The results show that the C6D4 and C6D4-RGD3 complexes possess highly similar positioning.


Example 12. Characterization of D4-RGD3 Mutants Having Various Loop Length of the RGD and Flanking Sequence of Pro-TGF-Beta 3

There is an amphipathic alpha-helix following the R-G-D sequence of Latent-TGF-beta1 and Latent-TGF-beta3. Of the 3 engineered versions (RGD1, RGD2, RGD3) of D4 only RGD3 contained the amphipathic helix. Therefore, we engineered various loops containing portions of the RGD and flanking sequences of Pro-TGF-beta 3 to determine if loop length altered affinity, specificity or production of each clone. Because the Vh was not altered, we cloned all new constructs into the CDRL1 region of the C6D4 murine IgG expression vector and transfected the various new D4-RGD3-mutants into 293 cells. After 10 days, protein expression was compared using an murine IgG ELISA (shown as relative expression levels in the Table provided below). Integrins αvβ1, αvβ3, αvβ5, αvβ6 or αvβ8 (R&D systems) were coated on Immulon 4HBX ELISA plates (Thermo Scientific) for 1 hour at room temperature followed by blocking with a 5% bovine serum albumin solution (Sigma-Aldrich) overnight at 4° C. Supernatants with various RGD3 mutant antibodies were applied at 1/10 dilutions onto the wells for 1 hour at room temperature. Antibodies bound to the integrins were detected with an anti-mouse IgG-HRP antibody (GE Healthcare) and revealed with TMB substrate (Pierce). Binding was quantified by intensity as 0-4 (0 representing no apparent binding; 4 representing robust binding) and results normalized to expression. As can be seen from the data provided in the table below, different CDRL1 swaps into Vk D4 show distinct binding specificities. As a result, we identified several mutants having bi-specific (e.g., RGD3-2 and RGD3-3) or tri-specific (e.g., RGD3-7 and RGD3-8) binding specificities.















Murine











Inserted Vk CDRL1 domain
IgG H + L
IgG ELISA
Binding to recombinant human


swap into D4
Vector
Expression
integrins















CDRL1
Vh
Vk
Level
αvβ1
αvβ3
αvβ5
αvβ6
αvβ8





KSSQSLLNSRSRKNYLA
C6
D4
4
0
0
0
0
4


(SEQ ID NO: 572)













KSSQSLLNSGRGDLGNALA
C6
RGD2
4
0
0
0
0
2


(SEQ ID NO: 574)













KSSQSLLGRGDLGRLKKQKDHNALA
C6
RGD3-1
3
0
0
0
4
1


(SEQ ID NO: 576)













KSSQSLLGRGDLGRLKKQKDNALA
C6
RGD3-2
3
0
0
0
4
4


(SEQ ID NO: 577)













KSSQSLLGRGDLGRLKKQKNALA
C6
RGD3-3
3
0
0
0
4
4


(SEQ ID NO: 578)













KSSQSLLGRGDLGRLKKQNALA
C6
RGD3-4
3
0
0
0
4
4


(SEQ ID NO: 579)













KSSQSLLGRGDLGRLKKNALA
C6
RGD3
3
0
0
0
4
4


(SEQ ID NO: 575)













KSSQSLLGRGDLGRLKNALA
C6
RGD3-6
3
0
0
0
4
4


(SEQ ID NO: 580)













KSSQSLLGRGDLGRLNALA
C6
RGD3-7
3
0
4
0
2
2


(SEQ ID NO: 581)













KSSQSLLGRGDLGRNALA
C6
RGD3-8
3
0
3
0
3
3


(SEQ ID NO: 582)













KSSQSLLGRGDLGNALA
C6
RGD1
2
0
0
0
0
1


(SEQ ID NO: 573)













KSSQSLLGRGDLGRLKKQKDHH
C6
RGD3-9
1
0
0
0
3
0


(SEQ ID NO: 583)













KSSQSLLGRGDLGRLKKQKDH
C6
RGD3-10
2
0
0
0
1
0


(SEQ ID NO: 584)













KSSQSLLGRGDLGRLKKQKD
C6
RGD3-11
2
0
0
0
2
1


(SEQ ID NO: 585)













KSSQSLLGRGDLGRLKKQK
C6
RGD3-12
2
0
1
0
2
0


(SEQ ID NO: 586)













KSSQSLLGRGDLGRLKKQ
C6
RGD3-13
2
0
0
0
2
0


(SEQ ID NO: 587)













KSSQSLLGRGDLGRLKK
C6
RGD3-14
3
0
0
0
1
1


(SEQ ID NO: 588)













KSSQSLLGRGDLGRLK
C6
RGD3-15
3
0
0
0
0
0


(SEQ ID NO: 589)













KSSQSLLGRGDLGRL
C6
RGD3-16
3
0
0
0
0
0


(SEQ ID NO: 590)









Example 13. C6D4 Induces Th1 Bias and Increases CD8 IFN-γ Producing Cells

Seventeen C57B/7 mice were injected with 106 Lewis lung carcinoma (LLC) tumor cells and 8 were injected IP with anti-SV5 (isotype control) or 9 mice with C6D4 (both groups at 7 mg/kg). Mab injections were repeated at day 7 and tumors were harvested at day 11. Tumor infiltrating lymphoid cells were isolated from tumors by enzyme digestion and Percoll gradient centrifugation and stained for CD45, TCRb, CD4, CD8 and surface capture assay for IFNg. Live CD45+ cells were gated and B220, Ly6g, CD11c, CD11b negative, TCRb positive cells were segregated in CD4, CD8, IFN-g positive subsets. The results from this experiment are shown in FIG. 54A-54D. Shown are percentages. *p<0.05, **p<0.01.


All documents (for example, patents, patent applications, books, journal articles, or other publications) cited herein are incorporated by reference in their entirety and for all purposes, to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. To the extent such documents incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any contradictory material.


Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only and are not meant to be limiting in any way. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.












Informal Sequence Listing

















SEQ ID NO: 1
B13C4 15-8
EVQLQQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWMG




WIKTETGEPTYADDFKG RFAFSLETSATTAYLQINNLKNEDTAKYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 2
VH Framework 1
EVQLQQSGPELKKPGETVKISCKASGY





SEQ ID NO: 3
VH CDR1
TFTDYSMH





SEQ ID NO: 4
VH Framework 2
WVKQAPGKGLKWMG





SEQ ID NO: 5
VH CDR2
WIKTETGEPTYADDFKG





SEQ ID NO: 6
VH Framework 3
RFAFSLETSATTAYLQINNLKNEDTAKYFCAI





SEQ ID NO: 7
VH CDR 3
YYYGRDS





SEQ ID NO: 8
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 9
B13C4 15-10
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWMG




WIKTETGEPTYADDFKG RFAFSLETSATTAYLQINNLKNEDTAKYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 10
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGY





SEQ ID NO: 11
VH CDR1
TFTDYSMH





SEQ ID NO: 12
VH Framework 2
WVKQAPGKGLKWMG





SEQ ID NO: 13
VH CDR2
WIKTETGEPTYADDFKG





SEQ ID NO: 14
VH Framework 3
RFAFSLETSATTAYLQINNLKNEDTAKYFCAI





SEQ ID NO: 15
VH CDR 3
YYYGRDS





SEQ ID NO: 16
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 17
B13H3.2
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWMG




WIKTETDEPTYADDFKE RFAFSLETSASTANLQIINLKNEDTATYFCAI




YYYGRDS WGQGTTLTVSSSEQ





SEQ ID NO: 18
VH Framework 1
QIQLLQSGEPLKKPGETVKISCKASGY





SEQ ID NO: 19
VH CDR1
TFTDYSMH





SEQ ID NO: 20
VH Framework 2
WVKQAPGKGLKWMG





SEQ ID NO: 21
VH CDR2
WIKTETDEPTYADDFKE





SEQ ID NO: 22
VH Framework 3
RFAFSLETSASTANLQIINLKNEDTATYFCAI





SEQ ID NO: 23
VH CDR 3
YYYGRDS





SEQ ID NO: 24
VH Framework 4
WGQGTTLTVSSSEQ





SEQ ID NO: 25
B13C1231015
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSIH WVKQAPGKGLKWMG




WIKTETGEPTYADDFNG RFAFSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 26
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGY





SEQ ID NO: 27
VH CDR1
TFTDYSIH





SEQ ID NO: 28
VH Framework 2
WVKQAPGKGLKWMG





SEQ ID NO: 29
VH CDR2
WIKTETGEPTYADDFNG





SEQ ID NO: 30
VH Framework 3
RFAFSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 31
VH CDR 3
YYYGRDS





SEQ ID NO: 32
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 33
B15B11Vh
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 34
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGY





SEQ ID NO: 35
VH CDR1
TFTDYSMH





SEQ ID NO: 36
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 37
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 38
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 39
VH CDR 3
YYYGRDS





SEQ ID NO: 40
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 41
B2B2 15-9
QIQLLQSGPELKKPGETVKISCLASGY TFTDYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFGG RFAVSLETSASTAYLQINNLKENDTATYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 42
VH Framework 1
QIQLLQSGPELKKPGETVKISCLASGY





SEQ ID NO: 43
VH CDR1
TFTDYSMH





SEQ ID NO: 44
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 45
VH CDR2
RNTETGEPTFADDFGG





SEQ ID NO: 46
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 47
VH CDR 3
YYYGRDS





SEQ ID NO: 48
VH Framework 4
WGQGTTLTVSSS





SEQ ID NO: 49
R11D12715.3
EVQLVESGGGLVQPGGSLKLSCAASGF TFSSFGMS WVRQTPDKRLELVA




TINSNGGSTYYPDNMKG TFTISRDNAKNTLYLQMNSSLKSEDTAMYYCAS




ACYRYGAFFDY WGQGTTLTVSS





SEQ ID NO: 50
VH Framework 1
EVQLVESGGGLVQPGGSLKLSCAASGF





SEQ ID NO: 51
VH CDR1
TFSSFGMS





SEQ ID NO: 52
VH Framework 2
WVRQTPDKRLELVA





SEQ ID NO: 53
VH CDR2
TINSNGGSTYYPDNMKG





SEQ ID NO: 54
VH Framework 3
RFTISRDNAKNTLYLQMSSLKSEDTAMYYCAS





SEQ ID NO: 55
VH CDR 3
ACYRYGAFFDY





SEQ ID NO: 56
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 57
RSDLVH-1
EVQLLESGPELKKPGETVKISCKASGY TFTDYSIH WVKQAPGKGLKWMG




WIKTETGEPTYADDFKG RFAFSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDS WGQGTTVTVSS





SEQ ID NO: 58
VH Framework 1
EVQLLESGPELKKPGETVKISCKASGY





SEQ ID NO: 59
VH CDR1
TFTDYSIH





SEQ ID NO: 60
VH Framework 2
WVKQAPGKGLKWMG





SEQ ID NO: 61
VH CDR2
WIKTETPGETYADDFKG





SEQ ID NO: 62
VH Framework 3
RFAFSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 63
VH CDR 3
YYYGRDS





SEQ ID NO: 64
VH Framework 4
WGQGTTVTVSS





SEQ ID NO: 65
RSDLVH-1
EVQLLESGPELKKPGETVKISCKASGY TFTDYSIH WVKQAPGKGLKWMG




WIKTETGEPTYADDFKG RFAFSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDS WGQGTTVTVSS





SEQ ID NO: 66
VH Framework 1
EVQLLESGPELKKPGETVKISCKASGY





SEQ ID NO: 67
VH CDR1
TFTDYSIH





SEQ ID NO: 68
VH Framework 2
WVKQAPGKGLKWMG





SEQ ID NO: 69
VH CDR2
WIKTETGEPTYADDFKG





SEQ ID NO: 70
VH Framework 3
WFAFSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 71
VH CDR 3
YYYGRDS





SEQ ID NO: 72
VH Framework 4
WGQGTTVTVSS





SEQ ID NO: 73
RSDLVH-3
QVQLMQSGPELKKPGETVKISCKASGY TFTDYSIH WVKQAPGKGLKWMG




WIKTETGEPTYADDFNG RFAFSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 74
VH Framework 1
QVQLMQSGPELKKPGETVKISCKASGY


SEQ ID NO: 75
VH CDR1
TFTDYSIH


SEQ ID NO: 76
VH Framework 2
WVKQAPGKGLKWMG


SEQ ID NO: 77
VH CDR2
WIKTETGEPTYADDFNG


SEQ ID NO: 78
VH Framework 3
RFAFSLETSASTAYLQINNLKNEDTATYFCAI


SEQ ID NO: 79
VH CDR 3
YYYGRDS


SEQ ID NO: 80
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 81
RSDLVH-16
QIQLQQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 82
VH Framework 1
QIQLQQSGPELKKPGETVKISCKASGY





SEQ ID NO: 83
VH CDR1
TFTDYSMH





SEQ ID NO: 84
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 85
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 86
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 87
VH CDR 3
YYYGRDS





SEQ ID NO: 88
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 89
29 and 44
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 90
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGY





SEQ ID NO: 91
VH CDR1
TFTDYSMH





SEQ ID NO: 92
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 93
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 94
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 95
VH CDR 3
YYYGRDS





SEQ ID NO: 96
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 97
A1 = B4 = F9
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDT WGQGTTLSVSS





SEQ ID NO: 98
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGY





SEQ ID NO: 99
VH CDR1
TFTDYSMH





SEQ ID NO: 100
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 101
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 102
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 103
VH CDR 3
YYYGRDT





SEQ ID NO: 104
VH Framework 4
WGQGTTLSVSS





SEQ ID NO: 105
A5 = C6
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVSLETSASTAYLQINNLKNEDTATYFCAI




FYYGRDS WGQGTALTVSS





SEQ ID NO: 106
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGY





SEQ ID NO: 107
VH CDR1
TFTDYSMH





SEQ ID NO: 108
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 109
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 110
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 111
VH CDR 3
FYYGRDS





SEQ ID NO: 112
VH Framework 4
WGQGTALTVSS





SEQ ID NO: 113
D4 = E6
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVSLETSASTAYLQINNLKNEDTATYFCAI




YYYGRDS WGQGTTLTVSS





SEQ ID NO: 114
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGY





SEQ ID NO: 115
VH CDR1
TFTDYSMH





SEQ ID NO: 116
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 117
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 118
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 119
VH CDR 3
YYYGRDS





SEQ ID NO: 120
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 121
C6D4
QIQLLQSGPELKKPGETVKISCKASGY TFTDYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVSLETSASTAYLQINNLKNEDTATYFCAI




FYYGRDS WGQGTTLTVSS





SEQ ID NO: 122
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGY





SEQ ID NO: 123
VH CDR1
TFTDYSMH





SEQ ID NO: 124
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 125
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 126
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 127
VH CDR 3
FYYGRDS





SEQ ID NO: 128
VH Framework 4
WGQGTTLVTVSS





SEQ ID NO: 129
35-20
DIVMSQSPSSMYASLGERVTITC KASQDINSYLS WFQQKPGKSPKTLIY




RANRLVD GVPSRFSGSGSGQDYSLTISSLEYEDMGIYYC LQYDEFPPLT




FGAGTKLELKA





SEQ ID NO: 130
VL Framework 1
DIVMSQSPSSMYASLGERVTITC





SEQ ID NO: 131
VL CDR1
KASQDINSYLS





SEQ ID NO: 132
VL Framework 2
WFQQKPGKSPKTLIY





SEQ ID NO: 133
VL CDR2
RANRLVD





SEQ ID NO: 134
VL Framework 3
GVPSRFSGSGSGQDYSLTISSLEYEDMGIYYC





SEQ ID NO: 135
VL CDR 3
LQYDEFPPLT





SEQ ID NO: 136
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 137
B2B2 35-26
QIVLTQSPSSMYASLGETVTITC KASQDINSYLS WFQQKPGKSPKTLIY




RANRLVD GVPSRFSGSGSGQDYSLTISSLEYEDMGIYYC LQYDEFPPLT




FGAGTKLELKA





SEQ ID NO: 138
VL Framework 1
QIVLTQSPSSMYASLGERVTITC





SEQ ID NO: 139
VL CDR1
KASQDINSYLS





SEQ ID NO: 140
VL Framework 2
WFQQKPGKSPKTLIY





SEQ ID NO: 141
VL CDR2
RANRLVD





SEQ ID NO: 142
VL Framework 3
GVPSRFSGSGSGQDYSLTISSLEYEDMGIYYC





SEQ ID NO: 143
VL CDR 3
LQYDEFPPLT





SEQ ID NO: 144
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 145
B15B11vk34-26
QIVLTQSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKPGTSPKLWIY




STSNLAS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QQWSSNPLT




RGSGTKLEIKA





SEQ ID NO: 146
VL Framework 1
QIVLTQSPAIMSASPGEKVTMTC





SEQ ID NO: 147
VL CDR1
SASSSVSYMH





SEQ ID NO: 148
VL Framework 2
WYQQKPGTSPKLWIY





SEQ ID NO: 148
VL CDR2
DTSNALS





SEQ ID NO: 150
VL Framework 3
GVPARFSGSGSGTSYSLTISSMEAEDAATYYC





SEQ ID NO: 151
VL CDR 3
QQWSSNPLT





SEQ ID NO: 152
VL Framework 4
FGSGTKLEIKA





SEQ ID NO: 153
B15B11vk33-24
EIVLTQSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKPGSSPKLWIY




DTSNLAS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QQWSSNPLT




FGDGTRLEIKA





SEQ ID NO: 154
VL Framework 1
EIVLTQSPAIMSASPGEKVTMTC





SEQ ID NO: 155
VL CDR1
SASSSVSYMH





SEQ ID NO: 156
VL Framework 2
WYQQKPGSSPKLWIY





SEQ ID NO: 157
VL CDR2
DTSNALS





SEQ ID NO: 158
VL Framework 3
GVPARFSGSGSGTSYSLTISSMEAEDAATYYC

















SEQ ID NO: 159
VL CDR 3
QQWSSNPLT





SEQ ID NO: 160
VL Framework 4
FGDGTRLEIKA





SEQ ID NO: 161
B15B11vk35-26
QIVLTQSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKSGTSPKLWIY




DTSNALS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QQWSSNPPT




FGAGTKLELKA





SEQ ID NO: 162
VL Framework 1
QIVLTQSPAIMSASPGEKVTMTC





SEQ ID NO: 163
VL CDR1
SASSSVSYMH





SEQ ID NO: 164
VL Framework 2
WYQQKSGTSPKLWIY





SEQ ID NO: 165
VL CDR2
DTSNLAS





SEQ ID NO: 166
VL Framework 3
GVPARFSGSGSGTSYSLTISSMEAEDAATYYC





SEQ ID NO: 167
VL CDR 3
QQWSSNPPT





SEQ ID NO: 168
VL Framework 4
FGSGTKLELKA





SEQ ID NO: 169
B13C12134-25
DIKMTQSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKSGTSPKRWIY




DTSKLAS GVPARFSGSGSGTSYSLTISSMEAEDAATYYC QQWSSNPFT




FGSGTKLEIKA





SEQ ID NO: 170
VL Framework 1
DIKMTQSPAIMSASPGEKVTMTC





SEQ ID NO: 171
VL CDR1
SASSSVSYMH





SEQ ID NO: 172
VL Framework 2
WYQQKSGTSPKRWIY





SEQ ID NO: 173
VL CDR2
DTSKLAS





SEQ ID NO: 174
VL Framework 3
GVPARFSGSGSGTSYSLTISSMEAEDAATYYC





SEQ ID NO: 175
VL CDR 3
QQWSSNPFT





SEQ ID NO: 176
VL Framework 4
FGSGTKLEIKA





SEQ ID NO: 177
B13C12133-26
QMVLTHSPAIMSASPGEKVTMTC SASSSVSYMH WYQQKPGSSPKPWIY




GTSNLAS GVPARFSGSGSGTSYSLTISRMEAEDAATYYC QQWSSNPPT




FGDGTRLEIKA





SEQ ID NO: 178
VL Framework 1
QMVLTHSPAIMSASPGEKVTMTC





SEQ ID NO: 179
VL CDR1
SASSSVSYMH





SEQ ID NO: 180
VL Framework 2
WYQQKPGSSPKPWIY





SEQ ID NO: 181
VL CDR2
GTSNLAS





SEQ ID NO: 182
VL Framework 3
GVPARFSGSGSGTSYSLTISRMEAEDAATYYC





SEQ ID NO: 183
VL CDR 3
QQWSSNPPT





SEQ ID NO: 184
VL Framework 4
FGDGTRLEIKA





SEQ ID NO: 185
B13C4-20
DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





SEQ ID NO: 186
VL Framework 1
DIVMSQSPSSLAVSAGEKVTMSC





SEQ ID NO: 187
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 188
VL Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 189
VL CDR2
WASTRES





SEQ ID NO: 190
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 191
VL CDR 3
KQSYNLLT





SEQ ID NO: 192
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 193
B15B11vk35-20
DIVMSQSPSSLAVSAGENVTVSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPKLLIY WASTRES




QVPDRFTGSGSGTDFTLTISSVQAEDLAVYFC KQSYNLLT FGAGTKLELKA





SEQ ID NO: 194
VL Framework 1
DIVMSQSPSSLAVSAGENVTVSC





SEQ ID NO: 195
VL CDR1
DIVMSQSPSSLAVSAGENVTVSC





SEQ ID NO: 196
VL Framework 2
WYQQKPGQSPKLLIY





SEQ ID NO: 197
VL CDR2
WASTRES





SEQ ID NO: 198
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYFC





SEQ ID NO: 199
VL CDR 3
KQSYNLLT





SEQ ID NO: 200
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 201
B13C12335-25
DIKMTQSPSSLAVSPGEKVTMSC KSSQSLLHSRTRKNYLA




WYQQKPGQSPKLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKELEKA





SEQ ID NO: 202
VL Framework 1
DIKMTQSPSSLAVSPGKEVTMSC





SEQ ID NO: 203
VL CDR1
KSSQSLLHSRTRKNYLA





SEQ ID NO: 204
VL Framework 2
WYQQKPGQSPKLLIY





SEQ ID NO: 205
VL CDR2
WASTRES





SEQ ID NO: 206
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 207
VL CDR 3
KQSYNLLT





SEQ ID NO: 208
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 209
B13C1233520
DIVMSQSPSSLAVSPGEKVTMSC KSSQSLLHSRTRKNYLA




WYQQKPGQSPKLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





SEQ ID NO: 210
VL Framework 1
DIVMSQSPSSLAVSPGEKVTMSC





SEQ ID NO: 211
VL CDR1
KSSQSLLHSRTRKNYLA





SEQ ID NO: 212
VL Framework 2
WYQQKPGQSPKLLIY





SEQ ID NO: 213
VL CDR2
WASTRES





SEQ ID NO: 214
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 215
VL CDR 3
KQSYNLLT





SEQ ID NO: 216
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 217
RSDLVK-1
DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKR





SEQ ID NO: 218
VL Framework 1
DIVMTQSPSSLAVSAGEKVTMSC





SEQ ID NO: 219
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 220
VL Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 221
VL CDR2
WASTRES





SEQ ID NO: 222
VL Framework 3
WVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 223
VL CDR 3
KQSYNLLT





SEQ ID NO: 224
VL Framework 4
FGAGTKLELKR





SEQ ID NO: 225 
RSDLVK-6
DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTRLEIKR





SEQ ID NO: 226
VL Framework 1
DIVMTQSPSSLAVSAGEKVTMSC





SEQ ID NO: 227
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 228
VL Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 229
VL CDR2
WASTRES





SEQ ID NO: 230
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 231
VL CDR 3
KQSYNLLT





SEQ ID NO: 232
VL Framework 4
FGAGTRLEIKR





SEQ ID NO: 233
RSDLVK-10
DIVMTQSPSSLAVSAGENVTVSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPKLLIY WASTRES




GVPDRFTGSGSGTGFTLTISSVQAEDLAVYFC KQSYNLLT FGAGTRLEIKR





SEQ ID NO: 234
VL Framework 1
DIVMTQSPSSLAVSAGENVTVSC





SEQ ID NO: 235
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 236
VL Framework 2
WYQQKPGQSPKLLIY





SEQ ID NO: 237
VL CDR2
WASTRES





SEQ ID NO: 238
VL Framework 3
GVPDRFTGSGSGTGFTLTISSVQAEDLAVYFC





SEQ ID NO: 239
VL CDR 3
KQSYNLLT





SEQ ID NO: 240
VL Framework 4
FGAGTRLEIKR





SEQ ID NO: 241
RSDLVK-13
DIVMSQSPSSLAVSPGEKVTMSC KSSQSLLHSRTRKNYLA




WYQQKPGQSPKLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKR





SEQ ID NO: 242
VL Framework 1
DIVMSQSPSSLAVSPGEKVTMSC





SEQ ID NO: 243
VL CDR1
KSSQSLLHSRTRKNYLA





SEQ ID NO: 244
VL Framework 2
WYQQKPGQSPKLLIY





SEQ ID NO: 245
VL CDR2
WASTRES





SEQ ID NO: 246
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 247
VL CDR 3
KQSYNLLT





SEQ ID NO: 248
VL Framework 4
FGAGTKLELKR





SEQ ID NO: 249
29
DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





SEQ ID NO: 250
VL Framework 1
DIVMSQSPSSLAVSAGEKVTMSC





SEQ ID NO: 251
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 252
VL Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 253
VL CDR2
WASTRES





SEQ ID NO: 254
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 255
VL CDR 3
KQSYNLLT





SEQ ID NO: 256
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 257
44
DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQDEDLAVYYC KQSYNLLT FGAGTKLELKA





SEQ ID NO: 258
VL Framework 1
DIVMSQSPSSLAVSAGEKVTMSC





SEQ ID NO: 259
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 260
VL Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 261
VL CDR2
WASTRES





SEQ ID NO: 262
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQDEDLAVYYC





SEQ ID NO: 263
VL CDR 3
KQSYNLLT





SEQ ID NO: 264
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 265
A1 = B4 = F9
DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





SEQ ID NO: 266
VL Framework 1
DIVMSQSPSSLAVSAGEKVTMSC





SEQ ID NO: 267
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 268
VL Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 269
VL CDR2
WASTRES





SEQ ID NO: 270
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 271
VL CDR 3
KQSYNLLT





SEQ ID NO: 272
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 273
A5 = C6
DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLT FGAGTKLELKA





SEQ ID NO: 274
VL Framework 1
DIVMSQSPSSLAVSAGEKVTMSC





SEQ ID NO: 275
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 276
VL Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 277
VL CDR2
WASTRES





SEQ ID NO: 278
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 279
VL CDR 3
KQSYNLLT





SEQ ID NO: 280
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 281
D4 = E6
DIVMSQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQXPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQDEDLAVYYC KQSYNLLS FGAGTKLELKA





SEQ ID NO: 282
VL Framework 1
DIVMSQSPSSLAVSAGEKVTMSC





SEQ ID NO: 283
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 284
VL Framework 2
WYQQKPGQXPRLLIY





SEQ ID NO: 285
VL CDR2
WASTRES





SEQ ID NO: 286
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQDEDLAVYYC





SEQ ID NO: 287
VL CDR 3
KQSYNLLS





SEQ ID NO: 288
VL Framework 4
FGAGTKLELKA





SEQ ID NO: 289
C6D4
DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLS FGAGTKLELKR





SEQ ID NO: 290
VL Framework 1
DIVMTQSPSSLAVSAGEKVTMSC





SEQ ID NO: 291
VL CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 292
VL Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 293
VL CDR2
WASTRES





SEQ ID NO: 294
VL Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 295
VL CDR 3
KQSYNLLS





SEQ ID NO: 296
VL Framework 4
FGAGTKLELKR





SEQ ID NO: 297
F9 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 298
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 299
VH CDR1
AFTDYLIQ





SEQ ID NO: 300
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 301
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 302
VH Framework 3
KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 303
VH CDR 3
EAGNYIYAMDY





SEQ ID NO: 304
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 305
F9 VL
DIVMTQSPAFLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKR





SEQ ID NO: 306
VL Framework 1
DIVMTQSPAFLSASVGETVTITC





SEQ ID NO: 307
VL CDR1
RASVNIYSYLV





SEQ ID NO: 308
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 309
VL CDR2
NAKTLAE





SEQ ID NO: 310
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 311
VL CDR 3
QHHHGTPYT





SEQ ID NO: 312
VL Framework 4
FGGGTKLEIKR





SEQ ID NO: 313
B2B2 VH CDR1
TFTDYSMH





SEQ ID NO: 314
B2B2 VH VDR2
RINTETGEPTFADDFGG





SEQ ID NO: 315
B2B2 VH CDR3
YYYGRDS





SEQ ID NO: 316
B13C4 VH CDR1
TFTDYSMH





SEQ ID NO: 317
B13C4 VH CDR2
WIKTETGEPTYADDFKG





SEQ ID NO: 318
B13C4 VH CDR3
YYYGRDS





SEQ ID NO: 319
B13H3 VH CDR1
TFTDYSMH





SEQ ID NO: 320
B13H3 VH CDR2
WIKTETDEPTYADDFKE





SEQ ID NO: 321
B13H3 VH CDR3
YYYGRDS





SEQ ID NO: 322
B15B11 VH CDR1
TFTDYSMH





SEQ ID NO: 323
B15B11 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 324
B15B11 VH CDR3
YYYGRDS





SEQ ID NO: 325
B13C12 VH CDR1
TFTDYSIH





SEQ ID NO: 326
B13C12 VH CDR2
WIKTETGEPTYADDFNG





SEQ ID NO: 327
B13C12 VH CDR3
YYYGRDS





SEQ ID NO: 328
A1 VH CDR1
TFTDYSMH





SEQ ID NO: 329
A1 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 330
A1 VH CDR3
YYYGRDT





SEQ ID NO: 331
C6 VH CDR1
TFTDYSMH





SEQ ID NO: 332
C6 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 333
C6 VH CDH4
FYYGRDS





SEQ ID NO: 334
B2B2 Vk CDR1
KASQDINSYLS





SEQ ID NO: 335
B2B2 Vk CDR2
RANRLVD





SEQ ID NO: 336
B2B2 Vk CDR3
LQYDEFPPLT





SEQ ID NO: 337
B13C4 Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 338
B13C4 Vk CDR2
WASTRES





SEQ ID NO: 339
B13C4 Vk CDR3
KQSYNLLT





SEQ ID NO: 340
B13H3 Vk CDR1
KSSQSLLNSRIRKNYLA





SEQ ID NO: 341
B13H3 Vk CDR2
WASTRES





SEQ ID NO: 342
B13H3 Vk CDR3
KQSYNLLT





SEQ ID NO: 343
B15B11.1 Vk CDR1
SASSSVSYMH





SEQ ID NO: 344
B15B11.1 Vk CDR2
DTSNLAS





SEQ ID NO: 345
B15B11.1 Vk CDR3
QQWSSNPLT





SEQ ID NO: 346
B15B11.2 Vk CDR1
SASSSVSYMH





SEQ ID NO: 347
B15B11.2 Vk CDR2
DTSNLAS





SEQ ID NO: 348
B15B11.2 Vk CDR3
QQWSSNPPT





SEQ ID NO: 349
B15B11.3 Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 350
B15B11.3 Vk CDR2
WASTRES





SEQ ID NO: 351
B15B11.3 Vk CDR3
KQSYNLLT





SEQ ID NO: 352
B13C12.1 Vk CDR1
SASSSVSYMH





SEQ ID NO: 353
B13C12.1 Vk CDR2
DTSKLAS





SEQ ID NO: 354
B13C12.1 Vk CDR3
QQWSSNPFT





SEQ ID NO: 355
B13C12.2 Vk CDR1
SASSSVSYMH





SEQ ID NO: 356
B13C12.2 Vk CDR2
GTSNLAS





SEQ ID NO: 357
B13C12.2 Vk CDR3
QQWSSNPPT





SEQ ID NO: 358
B13C12.3 Vk CDR1
KSSQSLLHSRTRKNYLA





SEQ ID NO: 359
B13C12.3 Vk CDR2
WASTRES





SEQ ID NO: 360
B13C12.3 Vk CDR3
KQSYNLLT





SEQ ID NO: 361
D4 Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 362
D4 Vk CDR2
WASTRES





SEQ ID NO: 363
D4 Vk CDR3
KQSYNLLS





SEQ ID NO: 364
RSDLVH-1 VH CDR1
TFTDYSIH





SEQ ID NO: 365
RSDLVH-1 VH CDR2
WIKTETGEPTYADDFKG





SEQ ID NO: 366
RSDLVH-1 VH CDR3
YYYGRDS





SEQ ID NO: 367
RSDLVH-3 VH CDR1
TFTDYSIH





SEQ ID NO: 368
RSDLVH-3 VH CDR2
WIKTETGEPTYADDFNG





SEQ ID NO: 369
RSDLVH-3 VH CDR3
YYYGRDS





SEQ ID NO: 370
RSDLVH-16 VH CDR1
TFTDYSMH





SEQ ID NO: 371
RSDLVH-16 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 372
RSDLVH-16 VH CDR3
YYYGRDS





SEQ ID NO: 373
RSDLVK-10 Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 374
RSDLVK-10 Vk CDR2
WASTRES





SEQ ID NO: 375
RSDLVK-10 Vk CDR3
KQSYNLLT





SEQ ID NO: 376
RSDLVK-13 Vk CDR1
KSSQSLLHSRTRKNYLA





SEQ ID NO: 377
RSDLVK-13 Vk CDR2
WASTRES





SEQ ID NO: 378
RSDLVK-13 Vk CDR3
KQSYNLLT





SEQ ID NO: 379
D4H VH CDR1
TFTDYSMH





SEQ ID NO: 380
D4H VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 381
D4H VH CDR3
YYYGRDS





SEQ ID NO: 382
C6k Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 383
C6k Vk CDR2
WASTRES





SEQ ID NO: 384
C6k Vk CDR3
KQSYNLLT





SEQ ID NO: 385
heavy chain FR1
(Q/E)IQL(L/M)(Q/E)SGPELKKPGETVKISCKASGY





SEQ ID NO: 386
heavy chain FR2
WVKQAPGKGLKW(V/M)A





SEQ ID NO: 387
heavy chain FR3
RFA(V/F)SLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 388
heavy chain FR4
WYQQKPGQSP(K/R)LLIY





SEQ ID NO: 389
light chain FR1
(D/E)IVM(T/S)QSPSSLAV(/PS)AGE(K/N)VT(M/V)SC





SEQ ID NO: 390
light chain FR2
WYQQKPGQSP(K/R)LLIY





SEQ ID NO: 391
light chain FR3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVY(Y/F)C





SEQ ID NO: 392
light chain FR4
FGAGT(R/K)LE(L/I)K










SEQ ID NO: 393 Human αv


   1 FNLDVDSPAEYSGPEGSYFGFAVDFFVPSASSRMFLLVGAPKANTTQPGI   50


  51 VEGGQVLKCDWSSTRRCQPEIFDATGNRDYAKDDPLEFKSHQWFGASVRS  100


 101 KQDKILACAPLYHWRTEMKQEREPVGTCVLQDGTKTVEYAPCRSQDIDAD  150


 151 GQGFCQGGFSIDFTKADRVLLGGPGSFYWQGQLISDQVAEIVSKYDPNVY  200


 201 SIKYNNQLATRTAQAIFDDSYLGYSVAVGDFNGDGIDDFVSGVPRAARTL  250


 251 GMVYIYDGKNMSSLYNFTGEQMAAYFGFSVAATDINGDDYADVFIGAPLF  300


 301 MDRGSDGKLQEVGQVSVSLQRASGDFQTTKLNGFEVFARFGSAIAPLGDL  350


 351 DQDGFNDIAIAAPYGGEDKKGIVYIFNGRSTGLNAVPSQILEGQWAARSM  400


 401 PPSFGYSMKGATDIDKNGYPDLIVGAFGVDRAILYRARPVITVNAGLEVY  450


 451 PSILNQDNKTCSLPGTALKVSCFNVRFCLKADGKGVLPRKLNFQVELLLD  500


 501 KLKQKGAIRRALFLYSRSPSHSKNMTISRGGLMQCEELIAYLRDESEFRD  550


 551 KLTPITIFMEYRLDYRTAADTTGLQPILNQFTPANISRQAHILLDCGEDN  600


 601 VCKPKLEVSVDSDQKKIYIGDDNPLTLIVKAQNQGEGAYEAELIVSIPLQ  650


 651 ADFIGVVRNNEALARLSCAFKTENQTRQVVCDLGNPMKAGTQLLAGLRFS  700


 701 VHQQSEMDTSVKFDLQIQSSNLFDKVSPVVSHKVDLAVLAAVEIRGVSSP  750


 751 DHVFLPIPNWHEKENPETEEDVGPVVQHIYELRNNGPSSFSKAMLHLQWP  800


 801 YKYNNNTLLYILHYDIDGPMNCTSDMEINPLRIKISSLQTTEKNDTVAGQ  850


 851 GERDHLITKRDLALSEGDIHTLGCGVAQCLKIVCQVGRLDRGKSAILYVK  900


 901 SLLWTETFMNKENQNHSYSLKSSASFNVIEFPYKNLPIEDITNSTLVTTN  950


 951 VTWGIQPAPMPVPVWVIILAVLAGLLLLAVLVFVMYRMGFFKRVRPPQEE 1000


1001 QEREQLQPEHNGEGNSET                                 1018





SEQ ID NO: 394 Human β8


   1 EDNRCASSNAASCARCLALGPECGWCVQEDFISGGSRSERCDIVSNLISK   50


  51 GCSVDSIEYPSVHVIIPTENENITQVTPGEVSIQLRPGAEANFMLKVHPL  100


 101 KKYPVDLYYLVDVSASMHNNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYV  150


 151 DKTVSPYISIHPERIHNQCSGYNLDCMPPHGYIHVLSLTENITEFEKAVH  200


 201 RQKISGNIDTPEGGFDAMLQAAVCESHIGWRKEAKRLLLVMTDQTSHALA  250


 251 DSKLAGIVVPNDGNCHLKNNVYVKSTTMEHPSLGQLSEKLIDNNINVIFA  300


 301 VQGKQFHWYKDLLPLLPGTIAGEIESKAANLNNLVVEAYQKLISEVKVQV  350


 351 ENQVQGIYFNITAICPDGSRKPGMEGCRNVTSNDEVLFNVTVTMKKCDVT  400


 401 GGKNYAIIKPIGFNETAKIHIHRNCSCQCEDNRGPKGKCVDETFLDSKCF  450


 451 QCDENKCHFDEDQFSSESCKSHKDQPVCSGRGVCVCGKCSCHKIKLGKVY  500


 501 GKYCEKDDFSCPYHHGNLCAGHGECEAGRCQCFSGWEGDRCQCPSAAAQH  550


 551 CVNSKGQVCSGRGTCVCGRCECTDPRSIGRFCEHCPTCYTACKENWNCMQ  600


 601 CLHPHNLSQAILDQCKTSCALMEQQHYVDQTSECFSSPSYLRIFFIIFIV  650


 651 TFLIGLLKVLIIRQVILQWNSNKIKSSSDYRVSASKKDKLILQSVCTRAV  700


 701 TYRREKPEEIKMDISKLNAHETFRCNF                         727












SEQ ID NO: 395
HuC6D4V1
QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDS WGQGTTLVTVSS





SEQ ID NO: 396
VH Framework 1
QIQLVQSGAEVKKPGASVKISCKASGYTFT





SEQ ID NO: 397
VH CDR1
DYSMH





SEQ ID NO: 398
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 399
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 400
VH Framework 3
RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 401
VH CDR 3
FYYGRDS





SEQ ID NO: 402
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 403
HuC6D4A3
QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDS WGQGTTLTVSS





SEQ ID NO: 404
VH Framework 1
QIQLVQSGAEVKKPGASVKISCKASGYTFT





SEQ ID NO: 405
VH CDR1
DYSMH





SEQ ID NO: 406
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 407
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 408
VH Framework 3
RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 409
VH CDR 3
FYYGRDS





SEQ ID NO: 410
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 411
HuC6D4B7
QIQLVQSGAKVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFSVTLDTSTSTAYLEITSLRSDDTAVYFCAI




FYYGRDT WGQGTALTVSS





SEQ ID NO: 412
VH Framework 1
QIQLVQSGAKVKKPGASVKISCKASGYTFT





SEQ ID NO: 413
VH CDR1
DYSMH





SEQ ID NO: 414
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 415
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 416
VH Framework 3
RFSVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 417
VH CDR 3
FYYGRDT





SEQ ID NO: 418
VH Framework 4
WGQGTALTVSS





SEQ ID NO: 419
HuC6D4E5
QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDT WGQGTTLTVSS





SEQ ID NO: 420
VH Framework 1
QIQLVQSGAEVKKPGASVKISCKASGYTFT





SEQ ID NO: 421
VH CDR1
DYSMH





SEQ ID NO: 422
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 423
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 424
VH Framework 3
RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 425
VH CDR 3
FYYGRDT





SEQ ID NO: 426
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 427
HuC6D4
QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDT WGQGTTLTVSS





SEQ ID NO: 428
VH Framework 1
QIQLVQSGAEVKKPGASVKISCKASGYTFT





SEQ ID NO: 429
VH CDR1
DYSMH





SEQ ID NO: 430
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 431
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 432
VH Framework 3
RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 433
VH CDR 3
FYYGRDT





SEQ ID NO: 434
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 435
C6D4-RGD3
QIQLLQSGPELKKPGETVKISCKASGYTFT DYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVLSETSASTAYLQINNLKNEDTATYFCAI




FYYGRDS WGQGTTLTVSS





SEQ ID NO: 436
VH Framework 1
QIQLLQSGPELKKPGETVKISCKASGYTFT





SEQ ID NO: 437
VH CDR1
DYSMH





SEQ ID NO: 438
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 439
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 440
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 441
VH CDR 3
FYYGRDS





SEQ ID NO: 442
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 443
HuC6DR-RGD3
QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDT WGQGTTLTVSS





SEQ ID NO: 444
VH Framework 1
QIQLVQSGAEVKKPGASVKISCKASGYTFT





SEQ ID NO: 445
VH CDR1
DYSMH





SEQ ID NO: 446
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 447
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 448
VH Framework 3
RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 449
VH CDR 3
FYYGRDT





SEQ ID NO: 450
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 451
HuC6D4V1
EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQAPRLLIY WASTRES




GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





SEQ ID NO: 452
Vk Framework 1
EIVMTQSPATLSVSPGERVTMSC





SEQ ID NO: 453
Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 454
Vk Framework 2
WYQQKPGQAPRLLIY





SEQ ID NO: 455
Vk CDR2
WASTRES





SEQ ID NO: 456
Vk Framework 3
GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 457
Vk CDR 3
KQSYNLLS





SEQ ID NO: 458
Vk Framework 4
FGQGTVLEIKR





SEQ ID NO: 459
HuC6D4A3
EIVMTQSPATLSVSPGEIVTMSC KSSQSLLNSRSRKNYLA




WYQQKPGQAPRLLIY WASTRES




GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLIS FGQGTVLEIKR





SEQ ID NO: 460
Vk Framework 1
EIVMTQSPATLSVSPGEIVTMSC





SEQ ID NO: 461
Vk CDR1
KSSQSLLNSRSRKNYLA





SEQ ID NO: 462
Vk Framework 2
WYQQKPGQAPRLLIY





SEQ ID NO: 463
Vk CDR2
WASTRES





SEQ ID NO: 464
Vk Framework 3
GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 465
Vk CDR 3
KQSYNLIS





SEQ ID NO: 466
Vk Framework 4
FGQGTVLEIKR





SEQ ID NO: 467
HuC6D4B7
EIVMTQTPVTLSVSPGERVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQAPRLLIY WASTRES




DVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSSNLIS FGQGTVLEIKR





SEQ ID NO: 468
Vk Framework 1
EIVMTQTPVTLSVSPGERVTMSC





SEQ ID NO: 469
Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 470
Vk Framework 2
WYQQKPGQAPRLLIY





SEQ ID NO: 471
Vk CDR2
WASTRES





SEQ ID NO: 472
Vk Framework 3
DVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 473
Vk CDR 3
KQSSNLIS





SEQ ID NO: 474
Vk Framework 4
FGQGTVLEIKR





SEQ ID NO: 475
HuC6D4E5
EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRSRKNYLA




WYQQKPGQAPRLLIY WASTRES




GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





SEQ ID NO: 476
Vk Framework 1
EIVMTQSPATLSVSPGETVTMSC





SEQ ID NO: 478
Vk CDR1
KSSQSLLNSRSRKNYLA





SEQ ID NO: 479
Vk Framework 2
WYQQKPGQAPRLLIY





SEQ ID NO: 480
Vk CDR2
WASTRES





SEQ ID NO: 481
Vk Framework 3
GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 482
Vk CDR 3
KQSYNLLS





SEQ ID NO: 483
Vk Framework 4
FGQGTVLEIKR





SEQ ID NO: 484
HuC6D4
EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRSRKNYLA




WYQQKPGQAPRLLIY WASTRES




GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





SEQ ID NO: 485
Vk Framework 1
EIVMTQSPATLSVSPGERVTMSC





SEQ ID NO: 486
Vk CDR1
KSSQSLLNSRSRKNYLA





SEQ ID NO: 487
Vk Framework 2
WYQQKPGQAPRLLIY





SEQ ID NO: 488
Vk CDR2
WASTRES





SEQ ID NO: 489
Vk Framework 3
GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 490
Vk CDR 3
KQSYNLLS





SEQ ID NO: 491
Vk Framework 4
FGQGTVLEIKR





SEQ ID NO: 492
C6D4-RGD3
DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLGRGDLGRLKKNALA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLS FGAGTKLELKR





SEQ ID NO: 493
Vk Framework 1
DIVMTQSPSSLAVSAGEKVTMSC





SEQ ID NO: 494
Vk CDR1
KSSQSLLGRGDLGRLKKNALA





SEQ ID NO: 495
Vk Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 496
Vk CDR2
WASTRES





SEQ ID NO: 497
Vk Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 498
Vk CDR 3
KQSYNLLS





SEQ ID NO: 499
Vk Framework 4
FGAGTKLELKR





SEQ ID NO: 500
HuC6D4-RGD3
EIVMTQSPATLSVSPGERTMSC KSSQSLLGRGDLGRLKKNALA




WYQQKPGQAPRLLIY WASTRES




GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





SEQ ID NO: 501
Vk Framework 1
EIVMTQSPATLSVSPGERVTMSC





SEQ ID NO: 502
Vk CDR1
KSSQSLLGRGDLGRLKKNALA





SEQ ID NO: 503
Vk Framework 2
WYQQKPGQAPRLLIY





SEQ ID NO: 504
Vk CDR2
WASTRES





SEQ ID NO: 505
Vk Framework 3
GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 506
Vk CDR 3
KQSYNLLS





SEQ ID NO: 507
Vk Framework 4
FGQGTVLEIKR





SEQ ID NO: 508
HuC6D4V1 VH CDR1
DYSMH





SEQ ID NO: 509
HuC6D4V1 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 510
HuC6D4V1 VH CDR3
FYYGRDS





SEQ ID NO: 511
HuC6D4A3 VH CDR1
DYSMH





SEQ ID NO: 512
HuC6D4A3 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 513
HuC6D4A3 VH CDR3
FYYGRDS





SEQ ID NO: 514
HuC6D4B7 VH CDR1
DYSMH





SEQ ID NO: 515
HuC6D4B7 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 516
HuC6D4B7 VH CDR3
FYYGRDT





SEQ ID NO: 517
HuC6D4E5 VH CDR1
DYSMH





SEQ ID NO: 518
HuC6D4E5 VH CDR2
DINTETGEPTFADDFRG





SEQ ID NO: 519
HuC6D4E5 VH CDR3
FYYGRDT





SEQ ID NO: 520
HuC6D4 VH CDR1
DYSMH





SEQ ID NO: 521
HuC6D4 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 522
HuC6D4 VH CDR3
FYYGRDT





SEQ ID NO: 523
C6D4-RGD3 VH CDR1
DYSMH





SEQ ID NO: 524
C6D4-RGD3 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 525
C6D4-RGD3 VH CDR3
FYYGRDS





SEQ ID NO: 526
HuC6D4-RGD3 VH CDR1
DYSMH





SEQ ID NO: 527
HuC6D4-RGD3 VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 528
HuC6D4-RGD3 VH CDR3
FYYGRDT





SEQ ID NO: 529
HuC6D4V1 Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 530
HuC6D4V1 Vk CDR2
WASTRES





SEQ ID NO: 531
HuC6D4V1 Vk CDR3
KQSYNLLS





SEQ ID NO: 532
HuC6D4A3 Vk CDR1
KSSQSLLNSRSRKNYLA





SEQ ID NO: 533
HuC6D4A3 Vk CDR2
WASTRES





SEQ ID NO: 534
HuC6D4A3 Vk CDR3
KQSYNLIS





SEQ ID NO: 535
HuC6D4B7 Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 536
HuC6D4B7 Vk CDR2
WASTRES





SEQ ID NO: 537
HuC6D4B7 Vk CDR3
KQSSNLIS





SEQ ID NO: 538
HuC6D4E5 Vk CDR1
KSSQSLLNSRSRKNYLA





SEQ ID NO: 539
HuC6D4E5 Vk CDR2
WASTRES





SEQ ID NO: 540
HuC6D4E5 Vk CDR3
KQSYNLLS





SEQ ID NO: 541
HuC6D4 Vk CDR1
KSSQSLLNSRSRKNYLA





SEQ ID NO: 542
HuC6D4 Vk CDR2
WASTRES





SEQ ID NO: 543
HuC6D4 Vk CDR3
KQSYNLLS





SEQ ID NO: 544
C6D4-RGD3 Vk CDR1
KSSQSLLGRGDLGRLKKNALA





SEQ ID NO: 545
C6D4-RGD3 Vk CDR2
WASTRES





SEQ ID NO: 546
C6D4-RGD3 Vk CDR3
KQSYNLLS





SEQ ID NO: 547
HuC6D4-RGD3 Vk CDR1
KSSQSLLGRGDLGRLKKNALA





SEQ ID NO: 548
HuC6D4-RGD3 Vk CDR2
WASTRES





SEQ ID NO: 549
HuC6D4-RGD3 Vk CDR3
KQSYNLLS





SEQ ID NO: 550
heavy chain FR1
QIQLVQSG(P/A)(E/K)(L/V)KKPG(E/A)(T/S)VKISCKASGYTFT





SEQ ID NO: 551
heavy chain FR2
WV(K/R)WAPG(K/Q)GL(K/E)WVA





SEQ ID NO: 552
heavy chain FR3
RF(A/T/S)V(S/T)L(E/D)TS(A/T)STAYL(Q/E)I(N/R/T)(N/S)L




(K/R)(N/S)(E/D)DTA(T/V)YFCAI





SEQ ID NO: 553
heavy chain FR4
WGQGT(T/A)LTVSS





SEQ ID NO: 554
light chain FR1
(D/E)IVMTQ(S/T)P(S/A/V)(S/T)L(A/S)VS(A/P)GE(K/R/I)




VTMSC





SEQ ID NO: 555
light chain FR2
WYQQKPGQ(S/A)PRLLIY





SEQ ID NO: 556
light chain FR3
(G/D)VP(D/A)RF(T/S)GSGSGT(D/E)FTLTISSVQ(A/S)ED(L/F)




AVYYC





SEQ ID NO: 557
light chain FR4
FG(A/Q)GT(K/V)LE(L/I)KR





SEQ ID NO: 558
heavy chain FR1
QIQLxQSGx2x3x34KKPGx4x5VKISCKASGYTFT





SEQ ID NO: 559
heavy chain FR2
WVx6QAPGx7GLx8Wx9x10





SEQ ID NO: 560
heavy chain FR3
RFx17x18x19Lx20TSx21x22TAx23Lx24Ix25x26Lx27x28x29DTA




x30YFCAI





SEQ ID NO: 561
heavy chain FR4
WGQGTx33LVTVSS





SEQ ID NO: 562
heavy chain CDR1
DYSMH





SEQ ID NO: 563
heavy chain CDR2
x11Ix12TETx13EPTx14ADDFx15x16





SEQ ID NO: 564
heavy chain CDR3
x31YYGRDx32







where x1 = V or L, x2 = A or P, x3 = E or K, x4 = A or E, x5 = S or T, x6 = R or K,


x7 = Q or K, x8 = E or K, x9 = V or M, x10 = A or G, x11 = R or W, x12 = N or K, x13 =


G or D, x14 = F or Y, x15 = R, N, K or G, x16 = G or E, x17 = T, A, or S, x18 = V or F,


x19 = T or S, x20 = D or E, x21 = T or A, x22 = S or T, x23 = Y or N, x24 = E or Q,


x25 = R, N, I or T, x26 = S or N, x27 = R or K, x28 = S or N, x29 = D or E, x30 = V, T,


or K, x31 = F or Y, x32 = T or S, x33 = T or A, x34 = V or L












SEQ ID NO: 565
light chain FR1
x40IVMx41Qx42Px43x44Lx45VSx46GEx47VTMSC





SEQ ID NO: 566
light chain FR2
WYQQKPGQx49PRLLIY





SEQ ID NO: 567
light chain FR3
x50VPx51RFx52GSGSGTx53FTLTISSVQx54EDx55AVYYC





SEQ ID NO: 568
light chain FR4
FGx56GTx57LEx58KR





SEQ ID NO: 569
light chain CDR1
KSSQSLLNSRx48RKNYLA





SEQ ID NO: 570
light chain CDR2
WASTRES





SEQ ID NO: 571
light chain CDR3
KQSYNLLS







where x40 = E or D, x41 = T or S, x42 = S or T, x43 = A, S or V, x44 = T, S, x45 = S or


A, x46 = P or A, x47 = R, K or I, x48 = S or T, x49 = A or S, x50 = G or D, x51 = A or


D, x52 = S or T, x53 = E or D, x54 = S, D or A, x55 = F or L, x56 = Q or A, x57 = V or


K, x58 = I or L.












SEQ ID NO: 572
(C6D4)
KSSQSLLNSRSRKNYLA





SEQ ID NO: 573
(RGD1)
KSSQSLLGRGDLGNALA





SEQ ID NO: 574
(RGD2)
KSSQSLLNSGRGDLGNALA





SEQ ID NO: 575
(RGD3)
KSSQSLLGRGDLGRLKKNALA





SEQ ID NO: 576
(RGD3-1)
KSSQSLLGRGDLGRLKKQKDHNALA





SEQ ID NO: 577
(RGD3-2)
KSSQSLLGRGDLGRLKKQKDNALA





SEQ ID NO: 578
(RGD3-3)
KSSQSLLGRGDLGRLKKQKNALA





SEQ ID NO: 579
(RGD3-4)
KSSQSLLGRGDLGRLKKQNALA





SEQ ID NO: 580
(RGD3-6)
KSSQSLLGRGDLGRLKNALA





SEQ ID NO: 581
(RGD3-7)
KSSQSLLGRGDLGRLNALA





SEQ ID NO: 582
(RGD3-8)
KSSQSLLGRGDLGRNALA





SEQ ID NO: 583
(RGD3-9)
KSSQSLLGRGDLGRLKKQKDHH





SEQ ID NO: 584
(RGD3-10)
KSSQSLLGRGDLGRLKKQKDH





SEQ ID NO: 585
(RGD3-11)
KSSQSLLGRGDLGRLKKQKD





SEQ ID NO: 586
(RGD3-12)
KSSQSLLGRGDLGRLKKQK





SEQ ID NO: 587
(RGD3-13)
KSSQSLLGRGDLGRLKKQ





SEQ ID NO: 588
(RGD3-14)
KSSQSLLGRGDLGRLKK





SEQ ID NO: 589
(RGD3-15)
KSSQSLLGRGDLGRLK





SEQ ID NO: 590
(RGD3-16)
KSSQSLLGRGDLGRL





SEQ ID NO: 591
Human αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 592
Chimp αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 593
Rhesus αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 594
Cyno αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 595
Cow αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 596
Pig αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 597
Horse αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 598
Mouse αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 599
Rat αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 600
Armadillo αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 601
Platypus αv
FLQDGTKTVEYAPCRSQDIcustom character QGFCQGGFSIDFTKADRVLLGGPGSFcustom character WQGQ





SEQ ID NO: 602
Human β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS





SEQ ID NO: 603
Chimp β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFERAVcustom character QKIS


SEQ ID NO: 604
Rhesus β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS


SEQ ID NO: 605
Cyno β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS


SEQ ID NO: 606
Cow β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS


SEQ ID NO: 607
Pig β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS


SEQ ID NO: 608
Horse β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS


SEQ ID NO: 609
Mouse β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS


SEQ ID NO: 610
Rat β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS


SEQ ID NO: 611
Armadillo β8
SASMcustom character NNIEKLNSVGNDLSRKMAFFSRDFRLGFGSYVDKTVSPYISIHPER




IHNQCcustom character CMPPHGYIHVLSLTENITEFEKAVcustom character QKIS


SEQ ID NO: 612
Platypus β8
SASMcustom character NNIEKLNSVGNDLSQKMADFTRDFRLGFGSYVDKTVSPYISIHPGR




IRNQCcustom character Qcustom character Dcustom character CMPPHGYIHVLPLTENVTEFEKAVNKQKIS





SEQ ID NO: 613
C6D4 Vh CDR1

YTFTDYSMH






SEQ ID NO: 614
C6D4 Vh CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 615
C6D4 Vh CFR3
FYYGRDS





SEQ ID NO: 616
C6D4 Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 617
C6D4 Vk CDR2

YWASTRES






SEQ ID NO: 618
C6D4 Vk CDR3
KQSYNLLS





SEQ ID NO: 619
β8, α1 helix
SASMHNNIEKLNSVGNDLSRKMAFFS





SEQ ID NO: 620
β8, SDL
TVSPYISIHPERIHNQCSDYNLDCMPPH





SEQ ID NO: 621
β8, α2 helix
NITEFEKAVHR





SEQ ID NO: 622
αv, β-propeller
KQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQG



domain blade W3
FCQGGFSIDFTKADRVLLGGPGSFYWQGQLISDQVAEIVSKYDPNVYSIKYNN




QLATRTAQAIFD










SEQ ID NO: 623: head sequence of integrin αv


FNLDVDSPAEYSGPEGSYFGFAVDFFVPSASSRMFLLVGAPKANTTQPGIVEGGQVLKCDWSSTRRCQPIEFDATGNRDYAKDDPLEF


KSHQWFGASVRSKQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGGFSIDFTKADRVLLGGPGS


FYWQGQLISDQVAEIVSKYDPNVYSIKYNNQLATRTAQAIFDDSYLGYSVAVGDFNGDGIDDFVSGVPRAARTLGMVYIYDGKNMSSL


YNFTGEQMAAYFGFSVAATDINGDDYADVFIGAPLFMDRGSDGKLQEVGQVSVSLQRASGDFQTTKLNGFEVFARFGSAIAPLGDLDQ


DGFNDIAIAAPYGGEDKKGIVYIFNGRSTGLNAVPSQILEGQWAARSMPPSFGYSMKGATDIDKNGYPDLIVGAFGVDRAILYRARP












SEQ ID NO: 624
4F1 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTNYLIE WVKQRPGQGLEWIG




VINPGTGGTNYNKKFKV KATLTADKSSSTAYMQLGGLTFDDSAVYFCAR




EGNARTYYYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 628
VH CDR1
AFTNYLIE





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 634
VH CDR2
VINPGTGGTNYNKKFKV





SEQ ID NO: 637
VH Framework 3
KATLTADKSSSTAYMQLGGLTFDDSAVYFCAR





SEQ ID NO: 651
VH CDR3
EGNARTYYYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 656
6B9 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG




VINPETGGTNYNAKFKG KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 635
VH CDR2
VINPETGGTNYNAKFKG





SEQ ID NO: 638
VH Framework 3
KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 652
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 657
6B9.1 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




AGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 638
VH Framework 3
KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 653
VH CDR3
AGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 658
A1 VH
QVQLQQSGAELVRPGASVKVSCKASGY AFTDYLIE WVRQRTGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSVYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 626
VH Framework 1
QVQLQQSGAELVRPGASVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 639
VH Framework 3
KATLTADKSSSSVYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 659
A2 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRTGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSTAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 640
VH Framework 3
KATLTADKSSSTAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 660
A8 VH
QVQLQQSGALEVRPGTSVKVSCKASGY AFTDYLIE WVRQRTGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 641
VH Framework 3
KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 661
A11 VH
QVQLQQSGALEVRPGTSVKVSCKASGY AFTDYLIE WVRQRTGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR




EGANYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 638
VH Framework 3
KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 662
B1 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSSLSSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 642
VH Framework 3
KATLTADKSSSSAYMQLSSLSSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 663
B3 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGALEVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 643
VH Framework 3
KATLTADKSSSSAYMQLSGLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 664
C4 = F10 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG




VINPETGGTNYNAKFRG RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 644
VH Framework 3
RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 665
C7 = D1 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSGSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 644
VH Framework 3
RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 666
D3 = F1 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSSLTSDDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 645
VH Framework 3
KATLTADKSSSSAYMQLSSLTSDDAAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 667
D10 = E5 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG




VINPETGGTNYNAKFRG KVTLTADKTSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 646
VH Framework 3
KVTLTADKTSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 668
G4 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG




VINPETGGTNYNAKFRG KVTLTADKSSSSAYMQLNSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGALEVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRTGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 647
VH Framework 3
KVTLTADKSSSSAYMQLNSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 669
C4 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRTGQGLEWIG




VINPETGGTNYNAKFRG RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 650
VH Framework 3
RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 670
D10 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE WVRQRPGQGLEWIG




VINPETGGTNYNAKFRG KVTLTADKTSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 633
VH Framework 2
WVRQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 646
VH Framework 3
KVTLTADKTSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 671
AF1A11 VH
QVQLQQSGALEVRPGTSVKVSCKASGY AFTDYLIE WVKQRPGQGLEWIG




VINPETGGTNYNAKFRG RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGALEVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 650
VH Framework 3
RATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 672
AF1E1 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 631
VH CDR1
AFTDYLIQ





SEQ ID NO: 632
VH Framework 2
WVKQRTGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 638
VH Framework 3
KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 673
4F1G3 VH
QVQLQQSGAELVRPGTSVRVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTANKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 631
VH CDR1
AFTDYLIQ





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 648
VH Framework 3
KATLTANKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 674
4F1E10 VH
QVQLQQSGAELVRPGTSVKVPCKASGY AFTDYLIQ WVKQRPGQGLEWIG




FINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 627
VH Framework 1
QVQLQQSGAELVRPGTSVKVPCKASGY





SEQ ID NO: 631
VH CDR1
AFTDYLIQ





SEQ ID NO: 632
VH Framework 2
EVKQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 638
VH Framework 3
KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 675
4F1E9 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIE EVKQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 629
VH CDR1
AFTDYLIE





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 638
VH Framework 3
KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 676
4F1H12 VH
QVQLQQSGAELVRPGTSVKVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYLQLSSLTSGDSAVYFCAR




EAVNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 631
VH CDR1
AFTDYLIQ





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 649
VH Framework 3
KATLTADKSSSSAYLQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 677
F9 VH
QVQLQQSGALEVRPGTSVKVSCKASGY AFTDYLIQ WVKQRPGQGLEWIG




VINPETGGTNYNAKFRG KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR




EAGNYIYAMDY WGQGTSVTVSS





SEQ ID NO: 625
VH Framework 1
QVQLQQSGAELVRPGTSVKVSCKASGY





SEQ ID NO: 631
VH CDR1
AFTDYLIQ





SEQ ID NO: 632
VH Framework 2
WVKQRPGQGLEWIG





SEQ ID NO: 636
VH CDR2
VINPETGGTNYNAKFRG





SEQ ID NO: 638
VH Framework 3
KATLTADKSSSSAYMQLSSLTSGDSAVYFCAR





SEQ ID NO: 654
VH CDR3
EAGNYIYAMDY





SEQ ID NO: 655
VH Framework 4
WGQGTSVTVSS





SEQ ID NO: 678
4F1 VL
DIQMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKA





SEQ ID NO: 692
VL Framework 1
DIQMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 679
6B9 VL
DIEMTQTPASLSASVGETVTITC RASENIYSYLV WYQQKQGKSPQVLVY




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHNGTPYT




FGGGTKLEIKA





SEQ ID NO: 699
VL Framework 1
DIEMTQTPASLSASVGETVTITC





SEQ ID NO: 700
VL CDR1
RASENIYSYLV





SEQ ID NO: 701
VL Framework 2
WYQQKQGKQPQVLVY





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 702
VL CDR3
QHHNGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 680
6B9.1 VL
DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKA





SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 681
A1 = A2 = C4 = C7 =
DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH



D1 = D10 = E5 =
NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT



F1 = F10 = G4 VL
FGGGTKLEIKA





SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 682 
A8 VL
DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSVQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKA





SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 683
A11 VL
HIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKA





SEQ ID NO: 704
VL Framework 1
HIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 684
B1 VL
DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLINKSLQPEDVGSYYC QHHHGTPYT




FGGGTKLEIKA





SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 685 
B3 VL
DIVMQTSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKA





SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 686
D10 = E5 VL
DIVMQTSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKA





SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 687
C4 VL
DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKR





SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 706
VL Framework 4
FGGGTKLEIKR





SEQ ID NO: 688
D10 VL
DIEMTQTPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




GGGTKLEIKR





SEQ ID NO: 699
VL Framework 1
DIEMTQTPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 706
VL Framework 4
FGGGTKLEIKR





SEQ ID NO: 689
4F1E1 = 1F1G3 =
DIVMTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH



4F1B5 = 4F1G11 =
NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT



AF1B9 = 4F1H9 =
FGGGTKLEIKA



4F1D10 = 4F1E9 =




4F1F10 = 4F1H11 =




4F1H12 VL






SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 690
4FA11 VL
DIVVTQSPASLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKA





SEQ ID NO: 705
VL Framework 1
DIVVTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 3
GVSPRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR3
QHHHGTPYT





SEQ ID NO: 698
VL Framework 4
FGGGTKLEIKA





SEQ ID NO: 691
F9 VL
DIVMTQSPAFLSASVGETVTITC RASVNIYSYLV WYQQKQGKSPQLLVH




NAKTLAE GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC QHHHGTPYT




FGGGTKLEIKR





SEQ ID NO: 703
VL Framework 1
DIVMTQSPASLSASVGETVTITC





SEQ ID NO: 693
VL CDR1
RASVNIYSYLV





SEQ ID NO: 694
VL Framework 2
WYQQKQGKSPQLLVH





SEQ ID NO: 695
VL CDR2
NAKTLAE





SEQ ID NO: 696
VL Framework 2
GVPSRFSGSGSGTQFSLKINSLQPEDFGSYYC





SEQ ID NO: 697
VL CDR2
QHHHGTPYT





SEQ ID NO: 706
VL Framework 4
FGGGTKLEIKR





SEQ ID NO: 707
C6D4 Vh CDR1
DYSMH





SEQ ID NO: 615
C6D4 Vh CDR3
FTTGRDS





SEQ ID NO: 620
β8, SDL
TVSPYISIHPERIHNQCSDYNLDCMPPH





SEQ ID NO: 616
C6D4 Vk CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 708
C6D4 Vk CDR2

WASTRES






SEQ ID NO: 618
C6D4 Vk CDR3
KQSYNLLS





SEQ ID NO: 709
αVβ6:
GRGDLGDLKK





SEQ ID NO: 710
αIIβ3:
GRGDSP





SEQ ID NO: 711
αIIβ3:
AKQRGDV










SEQ ID NO: 712: RGDLGRLKK-loop of L-TGFβ





SEQ ID NO: 713: DDHGRGDLGRLK (TGFB3 sequence)












SEQ ID NO: 714
TGBF1








MPPSGLRLLLLLLPLLWLLVLTPGRPAAGLSTCKTIDMELVKRKRIEAIRGQILSKLRLASPPSQGEVPPGPLPEAVLALYNSTRDRV


AGESAEPEPEPEADYYAKEVTRVLMVETHNEIYDKFKQSTHSIYMFFNTSELREAVPEPVLLSRAELRLLRLKLKVEQHVELYQKYSN


NSWRYLSNRLLAPSDSPEWLSGDVTGVVRQWLSRGGEIEGFRLSAHCSCDSRDNTLQVDINGFTTGRRGDLATIHGMNRPFLLMATPL


ERAQHLQSSRHRRALDTNYCFSSTEKNCCVRQLYIDFRKDLGWKWIHEPKGYHANFCLGPCPYIWSLDTQYSKVLALYNQHNPGASAA


PCCVPQALEPLPIVYYVGRKPKVEQLSNMIVRSCKCS












SEQ ID NO: 715
TGFB2








MHYCVLSAFLILHLVTVALSLSTCSTLDMDQFMRKRIEAIRGQILSKLKLTSPPEDYPEPEEVPPEVISIYNSTRDLLQEKASRRAAA


CERERSDEEYYAKEVYKIDMPPFFPSENAIPPTFYRPYFRIVRFDVSAMEKNASNLVKAEFRVFRLQNPKARVPEQRIELYQILKSKD


DLTSPTQRYIDSKVVKTRAEGEWLSFDVTDAVHEWLPSYRLESQQTNTTKKTALDAAYCFRVQDNCCLRPLYIDFKRDLGWKWIHEPK


GYNANFCAGACPYLWSSDTQHSRVLSLYNTINPEASASPCCVSQDLEPLTILYYIGKTPKIEQLSNMIVKSCKCS












SEQ ID NO: 716
TGFB3








MKMHLQRALVVLALLNFATVSLSLSTCTTLDFGHIKKKRVEAIRGQILSKLRLTSPPEPTVTHVPYQVLALYNSTRELLEEMHGEREE


GCTQENTESEYYAKEIHKFDMIQGLAEHNELAVCPKGITSKVFRFNVSSVEKNRTNLFRAEFRVLRVPNPSSKRNEQRIELFQILRPD


EHIAKQRYIGGKNLPTRGTAEWLSFDVTDTVREWLLRRESNLGLEISIHCPCHTFQPNGDILENIHEVMEIKFKGVDNEDDHGRGDLG


RLKKQKQHHNPHLILMMIPPHRLDNPGQGGQRKKRALDTNYVFRNLEENCCVRPLYIDFRQDLGWKWVHEPKGYYANFCSGPCPYLRS


ADTTHSTVLGLYNTLNPEASASPCCVPQDLEPLTILYYVGRTPKVEQLSNMVVKSCKCS












SEQ ID NO: 717
C6D4 vk








DIVMTQSPSSLAVSAGEKVTMSCKSSQSLLNSRTRKNYLAWYQQKGQSPRLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDL


AVYYCKQSYNLLSFGAGTKLELKAADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDST


YSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC












SEQ ID NO: 718
C6D4-RDG1
KSSQSLLGRGDLGNALA





SEQ ID NO: 719
C6D4-RGD2
KSSQSLLNSGRGDLGNALA





SEQ ID NO: 720
C6D4-RGD3
KSSQSLLGRGDLGRLKKNALA





SEQ ID NO: 721

GRGDLGRLK





SEQ ID NO: 722
C6D4 VH
QIQLVQSGPELKKPGETVKISCKASGYTFT DYSMH WVKQAPGKGLKWVA




RINTETGEPTFADDFRG RFAVSLETSASTAYLQINNLKNEDTATYFCAI




GYYGRDS WGQGTTLTVSS





SEQ ID NO: 732
VH Framework 1
QIQLVQSGPELKKPGETVKISCKASGYTFT





SEQ ID NO: 733
VH CDR1
DYSMH





SEQ ID NO: 734
VH Framework 2
WVKQAPGKGLKWVA





SEQ ID NO: 735
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 736
VH Framework 3
RFAVSLETSASTAYLQINNLKNEDTATYFCAI





SEQ ID NO: 737
VH CDR3
FYYGRDS





SEQ ID NO: 738
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 723
HuC6D4 V1 VH
QIQLVQSAGEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDS WGQGTTLTVSS





SEQ ID NO: 739
VH Framework 1
QIQLVQSAGEVKKGPASVKISCKASGYTFT





SEQ ID NO: 733
VH CDR1
DYSMH





SEQ ID NO: 740
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 735
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 741
VH Framework 3
RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 737
VH CDR3
FYYGRDS





SEQ ID NO: 738
VH Framework 4
WGQGTTLVTVSS





SEQ ID NO: 724
Mutclone A3 VH
QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDS WGQGTTLTVSS





SEQ ID NO: 739
VH Framework 1
QIQLVQSGAEVKKPGASVKISCKASGYTFT





SEQ ID NO: 733
VH CDR1
DYSMH





SEQ ID NO: 740
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 735
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 741
VH Framework 3
RFTVTLTSTSTAYLEIRSLRSDDTAVYCAI





SEQ ID NO: 737
VH CDR3
FYYGRDS





SEQ ID NO: 738
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 725
Mutclone B7 VH
QIQLVQSGAKVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFSVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDT WGQGTTLTVSS





SEQ ID NO: 742
VH Framework 1
QIQLVQSGAKVKKPGASVKISCKASGYTFT





SEQ ID NO: 733
VH CDR1
DYSMH





SEQ ID NO: 740
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 735
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 743
VH Framework 3
RFSVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 744
VH CDR3
FYYGRDT





SEQ ID NO: 738
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 726
Mutclone E5 VH
QIQLVQSGAEVKKPGASVKISCKASGYTFT DYSMH WVRQAPGQGLEWVA




RINTETGEPTFADDFRG RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI




FYYGRDT WGQGTTLTVSS





SEQ ID NO: 739
VH Framework 1
QIQLVQSGAEVKKPGASVKISCKASGYTFT





SEQ ID NO: 733
VH CDR1
DYSMH





SEQ ID NO: 740
VH Framework 2
WVRQAPGQGLEWVA





SEQ ID NO: 735
VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 741
VH Framework 3
RFTVTLDTSTSTAYLEIRSLRSDDTAVYFCAI





SEQ ID NO: 744
VH CDR3
FYYGRDT





SEQ ID NO: 738
VH Framework 4
WGQGTTLTVSS





SEQ ID NO: 727
C6D4  VK
DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQSPRLLIY WASTRES




GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLLS FGAGTKLELKR





SEQ ID NO: 745
VK Framework 1
DIVMTQSPSSLASVSAGEKVTMSC





SEQ ID NO: 746
VK CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 747
VK Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 748
VK CDR2
WASTRES





SEQ ID NO: 749
VK Framework 3
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC





SEQ ID NO: 750
VK CDR3
KSQYNLLS





SEQ ID NO: 751
VK Framework 4
FGAGTKLELKR





SEQ ID NO: 728
HuC6D4 V1 VK
EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQAPRLLIY WASTRES




GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





SEQ ID NO: 752
VK Framework 1
EIVMTQSPATLSVSPGERVTMSC





SEQ ID NO: 746
VK CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 747
VK Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 748
VK CDR2
WASTRES





SEQ ID NO: 753
VK Framework 3
GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 750
VK CDR3
KSQYNLLS





SEQ ID NO: 754
VK Framework 4
FGQGTVLEIKR





SEQ ID NO: 729
Mutclone A3 VK
EIVMTQSPATLSVSPGEIVTMSC KSSQSLLNSRSRKNYLA




WYQQKPGQAPRLLIY WASTRES




GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





SEQ ID NO: 755
VK Framework 1
EIVMTQSPATLSVSPGEIVTMSC





SEQ ID NO: 756
VK CDR1
KSSQSLLNSRSRKNYLA





SEQ ID NO: 747
VK Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 748
VK CDR2
WASTRES





SEQ ID NO: 753
VK Framework 3
GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 750
VK CDR3
KQSYNLLS





SEQ ID NO: 754
VK Framework 4
FGQGTVLEIKR





SEQ ID NO: 730
Mutclone B7 VK
EIVMTQTPVTLSVSPGERVTMSC KSSQSLLNSRTRKNYLA




WYQQKPGQAPRLLIY WASTRES




DVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSSNLLS FGQGTVLEIKR





SEQ ID NO: 757
VK Framework 1
EIVMTQTPVTLSVSPGERVTMSC





SEQ ID NO: 746
VK CDR1
KSSQSLLNSRTRKNYLA





SEQ ID NO: 747
VK Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 748
VK CDR2
WASTRES





SEQ ID NO: 758
VK Framework 3
DVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 750
VK CDR3
KSQYNLLS





SEQ ID NO: 754
VK Framework 4
FGQGTVLEIKR





SEQ ID NO: 731
Mutclone E5 VK
EIVMTQSPATLSVSPGERVTMSC KSSQSLLNSRSRKNYLA




WYQQKPGQAPRLLIY WASTRES




GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC KQSYNLLS FGQGTVLEIKR





SEQ ID NO: 752
VK Framework 1
EIVMTQSPATLSVSPGERVTMSC





SEQ ID NO: 756
VK CDR1
KSSQSLLNSRSRKNYLA





SEQ ID NO: 747
VK Framework 2
WYQQKPGQSPRLLIY





SEQ ID NO: 748
VK CDR2
WASTRES





SEQ ID NO: 753
VK Framework 3
GVPARFSGSGSGTEFTLTISSVQSEDFAVYYC





SEQ ID NO: 750
VK CDR3
KQSYNLLS





SEQ ID NO: 754
VK Framework 4
FGQGTVLEIKR





SEQ ID NO: 755
E8-VL Framework 3
GVPSRFSGSGSGTRFSLKINSLQPEDFGSYYC





SEQ ID NO: 756
RGDL






SEQ ID NO: 757
αv
DADGQ





SEQ ID NO: 758
αv
SFYWQ





SEQ ID NO: 759
αv
FDDSY










SEQ ID NO: 760


KQDKILACAPLYHWRTEMKQEREPVGTCFLQDGTKTVEYAPCRSQDIDADGQGFCQGGFSIDFTKADRVLLGGPGSFYWQGQLISDDQ


VAEIVSKYDPNVYSIKYNNQLATRTAQAIFD












SEQ ID NO: 761
β8
YNLDC





SEQ ID NO: 762
β8
QCSDYNL





SEQ ID NO: 763
β8
SMHNN





SEQ ID NO: 764
β8
AVHRQ





SEQ ID NO: 765

KSSQSLLGRGDLGRLKK





SEQ ID NO: 766
C6H-VH CDR1
TFTDYSMH





SEQ ID NO: 767
C6H-VH CDR2
RINTETGEPTFADDFRG





SEQ ID NO: 768
C6H-VH CDR3
FYYGRDS





SEQ ID NO: 877
heavy chain FR2
WV(K/R)QAPG(K/Q)GL(K/E)W(V/M)(A/G)





SEQ ID NO: 878
heavy chain FR3
RF(A/T/S)(V/F)(S/T)L(E/D)TS(A/T)(S/T)TA(Y/N)L(Q/E)I




(N/R/I/T)(N/S)L(K/R)(N/S)(E/D)DTA(T/V/K)YFCAI





SEQ ID NO: 879
heavy chain FR4
WGQGT(T/A)LTVSS





SEQ ID NO: 880
light chain FR1
(D/E)IVM(T/S)Q(S/T)P(S/A/V)(S/T)L(A/S)VS(A/P)GE




(K/R/I)VTMSC





SEQ ID NO: 881
light chain FR2
WYQQKPGQ(S/A)PRLLIY





SEQ ID NO: 882
light chain FR3
(G/D)VP(D/A)RF(T/S)GSGSGT(D/E)FTLTISSVQ(A/S/D)ED(L/F)




AVYYC





SEQ ID NO: 883
light chain FR4
FG(A/Q)GT(K/V)LE(i/LI)KR








Claims
  • 1. An antibody that specifically binds human αvβ8 and blocks binding of TGFβ peptide to αvβ8, wherein the antibody comprises: a heavy chain variable region comprising heavy chain complementarity determining regions (CDR) 1, 2, and 3 comprising SEQ ID NOS:520, 521 and 522, respectively; anda light chain variable region comprising light chain CDRs 1, 2 and 3 comprising SEQ ID NOS:541, 542 and 543, respectively.
  • 2. The antibody of claim 1, wherein the heavy chain variable region comprises SEQ ID NO:427.
  • 3. The antibody of claim 1, wherein the light chain variable region comprises SEQ ID NO:484.
  • 4. The antibody of claim 1, wherein the heavy chain variable region comprises SEQ ID NO:427 and the light chain variable region comprises SEQ ID NO:484.
  • 5. The antibody of claim 1, wherein the antibody is an IgG.
  • 6. The antibody of claim 4, wherein the antibody is an IgG.
  • 7. The antibody of claim 1, wherein the antibody is humanized.
  • 8. The antibody of claim 1, wherein the antibody is linked to a detectable label.
  • 9. A pharmaceutical composition comprising the antibody of claim 1 in a pharmaceutically acceptable excipient.
  • 10. The pharmaceutical composition of claim 9, wherein the heavy chain variable region comprises SEQ ID NO:427.
  • 11. The pharmaceutical composition of claim 9, wherein the light chain variable region comprises SEQ ID NO:484.
  • 12. The pharmaceutical composition of claim 9, wherein the heavy chain variable region comprises SEQ ID NO:427 and the light chain variable region comprises SEQ ID NO:484.
  • 13. The pharmaceutical composition of claim 9, wherein the antibody is an IgG.
  • 14. The pharmaceutical composition of claim 12, wherein the antibody is an IgG.
  • 15. The pharmaceutical composition of claim 9, wherein the antibody is humanized.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a US National Stage entry of International Application No. PCT/US2017/054306, filed Sep. 29, 2017, which claims benefit of priority to U.S. Provisional Patent Application No. 62/401,570, filed Sep. 29, 2016 and U.S. Provisional Patent Application No. 62/529,381, filed Jul. 6, 2017, both of which are incorporated by reference in its entirety for all purposes.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was made with government support under grant no. U54 HL119893, awarded by the National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/054306 9/29/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/064478 4/5/2018 WO A
US Referenced Citations (4)
Number Name Date Kind
20120251523 Unutmaz et al. Oct 2012 A1
20130064837 Nishimura et al. Mar 2013 A1
20140271478 Nishimura et al. Sep 2014 A1
20160040839 Driscoll Feb 2016 A1
Foreign Referenced Citations (4)
Number Date Country
1957522 Aug 2008 EP
2011103490 Aug 2011 WO
2014165524 Oct 2014 WO
WO-2014165524 Oct 2014 WO
Non-Patent Literature Citations (9)
Entry
Takasaka et al. Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight. 2018;3(20):e122591. (Year: 2018).
International Search Report and Written Opinion dated Mar. 8, 2018 for PCT/US2017/054306.
Stockis, et al., “Blocking Immunosuppression by Human Tregs In Vivo With Antibodies Targeting Integrin αVβ8,” Proceedings of the National Academy of Sciences, Nov. 21, 2017 (Nov. 21, 2017), vol. 114, No. 47, 1-161-10168. Entire document.
Worthington, et al., “Integrin αVβ8-Mediated TGF-62 Activation by Effector Regulatory T Cells is Essential for Suppression of T-Cell-Mediated Inflammation,” Immunity, May 19, 2015 (May 19, 2015), vol. 42, pp. 1-13. Entire document.
Wu, “Fab assisted CryoEM of asymmetrical membrane proteins,” UCSF, presentation at Yale University on Jan. 2017, pp. 1-48.
Shunsuke, Minagawa, et al., “Selective Targeting of TGF-beta Activation to Treat Fibroinflammatory Airway Disease,” Science Translation Medicine, American Association for the Advancement of Science, Jun. 18, 2014, vol. 6, No. 241, 14 pages.
Eberlein, C., et al., “A human monoclonal antibody 264RAD targeting [alpha]v&bgr;6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo,” Oncogene, Sep. 12, 2013, vol. 32, No. 37, pp. 4406-4416.
Koopman Van Aarsen, Louise A., et al., “Antibody-mediated blockade of integrin alpha(v)beta(6) inhibits tumor progression in vivo by a transforming growth factor-beta-regulated mechanism,” Cancer Research, American Association for Cancer Research, Jan. 15, 2008, vol. 68, No. 2, pp. 561-570.
Supplementary European Search Report dated Apr. 21, 2020 in European Patent Application EP17857499, 12 pages.
Related Publications (1)
Number Date Country
20190218298 A1 Jul 2019 US
Provisional Applications (2)
Number Date Country
62401570 Sep 2016 US
62529381 Jul 2017 US