This patent application is subsequent to my Feb. 12, 2009 patent application titled “Solid Iron Solenoid Neutron Initiator for Nuclear Reactor”. The present application utilizes a specially configured electrical solid iron solenoid and an optical laser to produce photoneutrons from a heavy metal target.
In November 2006, work was started on the ITER, International Thermonuclear Experimental Reactor located in Cadarche France. This is a version of the Tokamak thermonuclear nuclear fusion reactor invented in the 1950s by Russian scientists and worked on for years at Princeton and Los Alamos. This reactor is expected to produce more heat from nuclear fusion than is required to heat the plasma to fusion temperatures. Deuterium-tritium plasma instability is a major problem, and the ITER nuclear fusion project is expected to last for decades. The ITER thermonuclear fusion process is based on proton-proton fusion reactions. High temperatures and pressures are required to overcome the coulomb electrical barrier between two positively charged proton nuclear particles. The neutron nuclear fusion reactions of this subject invention are between electrically neutral neutron particles that have no electrical coulomb barrier to overcome. High temperatures and pressures are not required for neutron nuclear fusion reactions.
Neutron generators in the past have been based on alpha-neutron (α,n) nuclear reactions in radium-beryllium sources, and based also on hydrogen thermonuclear reactions in a deuterium-tritium high voltage accelerator.
The subject Neutron and Multi-Neutron Generator has an optical laser to produce photoneutrons from a thin heavy metal target. By virtue of their magnetic moment, these photoneutrons are anti-polarized in the magnetic field at a pole of a specially designed solid iron electrical solenoid. These anti-polar neutrons then strike polarized neutrons in iron atoms located at the opposite magnetic pole of the solid iron solenoid. These neutrons with opposite polarity then interact to form multi-neutron particles that can react with each other and with other neutrons to continue the process in a chain reaction fashion. The process can be either steady-state or pulsed mode.
These neutron generators can be stacked in a cascade, or series, so that one generator feeds neutron particles into the next neutron generator. One neutron generator is the source of neutrons for the next neutron generator in the series. Neutron output flux density is increased in this manner.
The purpose of this invention is to produce neutrons and multi-neutron particles that can be used to stimulate nuclear reactions in other nuclear systems, and to provide the means for releasing nuclear binding energy in certain nuclear configurations for commercial and industrial applications.
As shown in
In
Neutrons are fundamental particles that have no electric charge. Free neutrons are radioactive with a half-life of 10.6 minutes. Neutron particles have a diameter of 1.2×10−13 cm. They can penetrate solid iron. Neutrons and protons are called nucleons. They have half integer angular momentum, or spin. Therefore, they are classified as fermion particles, and they are subject to the Pauli exclusion principal which does not allow particles in an atomic nucleus to have the same set of quantum numbers. This problem is averted here in this invention because neutrons to be fused together are made to have opposite polarity in solid iron electric solenoid 1.