1. Field of the Invention
This invention generally relates to solid state neutron detectors and, more specifically, to neutron detectors made with Gd-containing oxide and nitride heterojunctions, and corresponding fabrication processes.
2. Related Art
There are several approaches to detecting and monitoring neutrons, including use of neutron scintillation detectors, 3He detectors, solid-state conversion layer detectors, and neutron-absorbing semiconductor solid-state detectors. In every case, neutrons are captured. Generally, the commercially available neutron detectors based on 3He [1] and CdZnTe [2], [3] are not sensitive enough, are too bulky, have considerable power requirements and are too expensive to be widely applicable for fissile material interdiction operations. This is partly because the operational devices tend to require higher voltages even for the detection of thermal neutrons. In addition, efficiency is largely dependent upon the efficient capture of the neutron, which is 3840 and 2454 barns for thermal neutrons in 3He and Cd respectively. The resulting unstable atom decays by emitting more easily detected radiation, such as an alpha particle. Moreover, these devices are bulky and require more power for operation and signal generation, while at the same time have more limited lifetimes. Furthermore, it is clear that supplies of 3He are in increasingly short supply so less expensive alternatives must be sought.
A problem with this thermal neutron detection method is that neutrons emitted by fissile materials are fast, with an average energy of 1.5 MeV, while the capture cross section is greatest for slow (epithermal to thermal) neutrons. For this reason, neutron detectors based on 3He or Cd need a thick moderating layer (at least several centimeters) in order to thermalize the neutrons to ˜30 meV or less which reduces the efficiency owing to inelastic scattering losses in the moderator. Moreover, these devices are bulky and require more power for operation and signal generation, while at the same time have more limited lifetimes. Furthermore, it is clear that supplies of 3He are increasingly short supply so in expensive alternatives must be sought.
Solid-state neutron detectors may potentially increase efficiency without adding to the overall volume (bulk) of the detection system, provided an appropriate capture material can be used. Semiconductor detectors can be relatively inexpensive, robust and reliable, and exhibit a compact volume, and require less power. Thus, a neutron detector based upon a semiconducting medium could be made portable and powered by batteries with an extended operational lifetime.
An important milestone was recently achieved with the development and demonstration of a 10B-based boron-carbide semiconductor neutron detector [4], [5]. By using B as a capture material within the semiconductor, the device lifetime was greatly increased, and the power consumption greatly reduced. However, owing to 10B neutron capture cross-sections, the system still requires a thick moderating layer to achieve practicable performance. Thus an ideal efficiency and compactness was not realized.
The extremely large thermal neutron absorption cross section of gadolinium (Gd) is an attractive property for creating a high efficiency neutron detector. Natural Gd has a thermal neutron capture cross section of 46,000 barns, while 15.65% abundant 157Gd has a cross section of 255,000 barns [6-10]. Additionally, the Gd cross section remains significant out to neutron energies of about 200 meV [8-10].
This cutoff energy is higher than, for example, boron whose cross section drops greatly above 25-30 meV [8-10] and hence allows the use of less moderating material if detection of high energy neutrons is desired [1,1]. With the significant natural abundance of large cross section isotopes of Gd, isotopic enrichment is not necessary even for a thin film device of fairly modest thickness. Indeed for a 15% Gd doped HfO2 layer, the neutron absorption for 100 meV neutrons is comparable to a boron carbide layer for 30 meV neutrons; requiring a layer in the region of 30-40 microns for the same opacity. Enriched 157Gd is commercially available and may be used to quintuple the absorption, if needed. The 157Gd(n,γ)158Gd and 155Gd(n,γ)156Gd reactions involve the emission of energetic gamma particles which do not significantly contribute to local energy transfer, as well as low-energy X-rays, conversion electrons, and Auger electrons. The conversion electrons are emitted at about 220 keV for 155Gd and through a number of decay channels for 157Gd, of which the 79.5 keV and 182 keV ones are dominant[12-15]; in addition, Auger electrons are emitted at 40 keV (K-shell transitions accompanied by a 44 keV X-ray photon) and 5-8 keV (L-shell transitions). The M-shell binding energy is only 1.8 keV, producing a peak close to the direct 79.5 keV channel.
Thermal neutron reactions with Gd differ significantly from 10B or 6Li interactions because it nearly always results in an (n,γ) reaction, as in:
157Gd(n,γ)→158Gd+γ+X-rays+IC e−+ACK e−, (1)
which leads to the emission of low-energy gamma rays and conversion electrons. 10B or 6Li interactions undergo (n,α) reactions with a large Q-value, such as the 10B(n,α)7Li neutron capture reactions:
10B+n→7Li(0.84 MeV)+4He(1.47 MeV)+γ(0.48 MeV)94% (2)
10B+n→7Li(1.02 MeV)+4He(1.78 MeV)6% (3)
and 6Li(n,α)Tneutron capture reaction:
6Li+n→3H++4He2++4.5 MeV. (4)
The relatively low energy of the conversion electrons produced by the 157Gd (20-40 times smaller than the 10B(n,α)7Li reaction) is the main drawback of using Gd as a neutron detector. This does not necessarily reduce detection efficiency, as long as the current pulses from 79.5 keV and other conversion electrons can be reliably identified. But the devices will require large depletion or charge collection regions of 50-60 microns in the total neutron if the generated signal is to be obtained. We show below that all these electrons can be detected, because Gd-based devices can have much smaller leakage currents (and hence noise) compared to boron-carbide devices. Furthermore the host semiconductors can be fabricated so that while only a few microns is required for neutron opacity, the semiconductor device can retain a fairly large (50 micron) charge collection region. Indeed the host semiconductors are well known to be compatible with having the necessary 1-10 fF charge to voltage amplifier constructed right on the detector heterostructure itself, thus leading to other improvements in noise rejection.
Neutron and other similar heavy particle detectors present an increasingly important component of national safety and security. Ideally, handheld solid-state detectors will allow inspectors to track the shipment of radioactive materials intra-state and inter-state. There is ideally a method by which every ship entering every harbor in the United States, and every vehicle crossing every national boundary, as well as truck weigh stations distributed throughout the National highway system, can be monitored, so that the safety of known shipments of radioactive materials can be documented, and the introduction of unwanted materials can be kept from elements adverse to the interests of a nation. A solid state detector, which permitted both qualitative (i.e., there is radioactive material present) and quantitative (how much material is present) outputs would advance these interests significantly. Representative neutron detectors are disclosed in U.S. Pat. Nos. 6,771,730 and 7,368,794, both of which are incorporated herein-by-reference.
Incorporating Gd into a semiconductor diode detector has many of the potential advantages associated with diode detectors such as an increased number of carriers, compact size, relatively fast timing response and a controllable depletion depth [16]. Hafnium oxide (HfO2) is an obvious choice to incorporate Gd into a diode detector because Gd is readily incorporated into the HfO2 lattice [17-21], with the Gd occupying the Hf sites. The high resistivity and high thermodynamic stability of HfO2 in contact with Si also indicates [22] that a Gd doped HfO2/Si heterojunction has the potential to make a useful device [19-20]. Other possibilities including Gd doped GaN or Gd containing oxide heterojunctions with lithium borates or with B doped Si as well as heterojunctions of Gd containing nitrides to boron nitride will be discussed later. It should be mentioned here that these semiconductor heterojunction diode detectors are fundamentally different from the conversion layer devices based on Gd foils and films [23].
In addition to neutron detection for homeland security purposes, the advantages of the solid state neutron detector, including vibration resistance, high temperature operation and low power consumption, make them desirable for oil well logging. In such a process, a neutron source and a detector are lowered into the well as it is being drilled. The detector measures the amount of neutrons that scatters back from the well's surroundings, which indicates the porosity of the rocks and abundance and quality of the hydrocarbon zones in the geological formations below the Earth's crust.
We have developed novel semiconducting materials and diode-like device architectures utilizing 157Gd, 10B, 6Li isotopes as the neutron absorbers. The appeal of 157Gd stems from its very high neutron capture cross-section, which remains usable at significantly higher neutron energies (up to 200-300 MeV) compared to 10B or other common absorbers. Gd containing semiconducting materials, especially when combined with B and Li detectors, require only a 2 to 4 cm moderator layer to thermalize neutrons; have superior sensitivity and broadened neutron spectral range; offer robust, inexpensive and compact solutions suitable for an unsophisticated user; and, because of the need for only a small Gd-doped layer thickness of ˜30 μm (made possible by the large Gd cross-section), discriminate neutrons from gamma radiation from fissile materials. These detectors will potentially be cheaper, lighter, faster, and more sensitive than anything currently available and ideally suited for homeland security needs.
The new class of wide-gap neutron-absorbing semiconducting materials, including Gd-doped HfO2, Gd-doped Li2B4O7 and Gd2O3 as well as Gd-doped GaN will be included in three types of device structures: (1) a p-n heterostructure diode with a ˜30 μm Gd-loaded semiconductor grown on a conventional semiconductor (Si or B-doped Si); (2) a p-n junction or a p-i-n trilayer diode with a Gd-loaded semiconductor on one side and single-crystal semiconducting Li2B4O7 layer on the other side of the heterojunction; and(3) a p-n junction or a p-i-n trilayer diode with a Gd-loaded semiconductor on one side and a boron nitride (BN) semiconductor layer on the other side of the heterojunction. The p-i-n trilayer structure referred to in part (2) and (3) can be more efficient compared to a p-n diode if the insulating region also contains Gd, since the vastly greater depletion region should improve signal detection. Boron nitride (BN) is used as the companion to Gd containing nitrides for a more desirable nitride-to-nitride interface at the heterojunctions. To maximize gamma ray “blindness” a p-i-n structure (p-type semiconductor—insulator-n-type semiconductor) is preferred. Representative insulators include SiO2 and Al2O3.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.
Gadolinium-doped films of GaN, and related thin films are prepared as reported in Eur. Physical J. Applied Physics 55, 3. 31303 (2011) and Eur. Physical J. Applied Physics 56, 1, 11301 (2011) incorporated herein-by-reference-for their disclosure of methods of preparing thin films of Gd-doped rare earth materials. The films of this invention can be prepared as is done for the Gd-doped GaN films. The Gd doped thin films (50-300 nm, but ideally 4-60 microns) are fabricated on an active substrate such as Si(111) or an insulating substrate such as SiO2 or sapphire Al2O3 substrates by RF plasma (EPI 620) assisted molecular beam epitaxy (MBE). The growth parameters for the deposition of Gd-doped (in situ) GaN thin films are a base pressure of 10-11 Torr, nitrogen flux of 0.75-1.0, RF power of 500 W, substrate temperature of 850-900° C., Ga cell temperature of 850° C., and Gd cell temperatures of 1050-1100° C.
The thickness of the films is measured with a surface profilometer and atomic force microscopy. The orientation, crystal structure, and phase purity of the films are established by Cu Kα (=1.5406 A) radiation X-ray diffraction using a Siemens D5000 X-ray diffractometer. The X-ray diffraction (XRD) patterns of Gd-doped GaN films show c-axis orientation and a high degree of crystallinity. The presence of any secondary phases or spurious peaks was not observed. Slight shifts in diffraction peak positions towards lower Bragg angles has been observed with Gd-doped GaN thin films (50-300 nm) fabricated on Si(111), which is indicative of some lattice expansion, as is expected. The elemental compositions of the Gd-doped GaN thin films grown under different conditions were characterized by energy dispersive spectroscopy (EDS) and a VG Microtech XPS attached to the MBE growth system (VG Microtech). The measured concentrations were found to be at 1-2%, as confirmed from the Ga 2p3/2, Gd 4d, and N is core level XPS intensities using an Al Kα (1486.8 eV) X-ray source. Doping levels effectively range from three percent to 30 percent (3%-30%).
The novel solid-state neutron detectors based on these Gd-doped semiconductors have been prepared and tested as to their properties. In particular, Gd-doped HfO2 heterojunction devices [17-21] as well as narrow(er) band gap Gd-doped and Gd containing semiconductors and insulators have been fabricated and tested to establish a new class of solid-state neutron detectors.
Our measurements indicate that 3% Gd-doped HfO2 has n-type character due to overcompensation by oxygen vacancies [17,18], but at higher Gd doping levels the character switches to a p-type semiconductor[17,20]. NEXAFS and EXAFS data indicate that Gd substitutes at Hf sites in the HfO2 films, as expected [21]. The resulting Gd-doped HfO2 on silicon heterojunctions are demonstrated in the I-V curves shown in
Several p-n heterojunction diodes were fabricated with strongly textured monoclinic and fluorite Gd-doped HfO2 on Si(100) [17,18,21]. At 3% doping, excellent diode rectification is seen for the heterostructure with p-type Si (
Neutron capture is already detectable in heterojunctions formed by combining 3% Gd-dopedHfO2 and p-type Si. As seen in
The spectrum is in excellent agreement with the MCNP simulation which was performed for the 30 eV-14 MeV range. The simulated non-uniform pulse height spectrum agrees with the measured one, proving that the pulses come from neutron capture events (
Other tests have been conducted that also exclude gamma detection events. Note that the problems of gamma interference and low efficiency which are known for Gd conversion foils [28-30] were related to their large thickness, which is comparable to the gamma mean-free path, and metallicity, which, together with film thickness, severely limits the ability to collect the charge pulses. Importantly, for our preliminary devices no pulses were observed when the neutron flux was blocked using a Cd foil. This shows that the device is essentially blind to gamma-radiation from the PuBe source, and almost all detected pulses (
Although the pulse charge is 20-40 times smaller for Gd semiconductor solid state devices, compared to 10B based solid state devices, the signal-to-noise ratio is in fact better due to greatly reduced circuit noise. HfO2 are much smaller compared to boron-carbide devices. This is not surprising because HfO2 is a high-k material, which in particular is actively pursued as a thin gate dielectric in semiconductor technology [31].
The Gd neutron capture internal conversion events can also be identified in the unfiltered signal (see
The new class of wide-gap neutron-absorbing semiconducting materials, including Gd-doped HfO2, Gd-doped Li2B4O7 and Gd2O3 as well as Gd-doped GaN, will be included in three types of device structures: (1) a p-n heterostructure diode with a ˜30 μm Gd-loaded semiconductor grown on a conventional semiconductor (Si or B-doped Si) (
The choice of Li2B4O7 as the companion boron-rich semiconductor is driven by the need to make it compatible with rare-earth oxide chemistry, and the fact that oxide-to-oxide interfaces are much more likely to be chemically stable. Another advantage of Li2B4O7 is that it is suitable for solid-state neutron detection, as has been recently demonstrated [32,33], and recent preliminary efforts indicate we can dope this material both n-type and p-type while retaining good semiconductor properties. Boron nitride (BN) is used as the companion to Gd containing nitrides. Although BN was found to make poor neutron detector materials, new chemical vapor deposition techniques using borazine (B3N3)H6 have been very effective in growing a quality semiconductor [34-38]. We have also developed an atomic layer epitaxy growth method that has proved to be very effective on a wide variety of substrates bases on the reaction of anhydrous BCl3 and NH3. In both cases, nitride-to-nitride interfaces are much more chemically stable than an oxide to nitride interface.
While the present invention has been disclosed both generically, and with reference to specific alternatives, those alternatives are not intended to be limiting unless reflected in the claims set forth below. The invention is limited only by the provisions of the claims, and their equivalents, as would be recognized by one of skill in the art to which this application is directed.
This application claims benefit of priority to U.S. Provisional Patent Application Nos. 61/505,223 and 61/505,229, both filed Jul. 7, 2011. The disclosures of both these applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61505223 | Jul 2011 | US | |
61505229 | Jul 2011 | US |