New Class of Bright, Sharp, Tunable Near-Infrared Fluorophores for Flow Cytometry

Information

  • Research Project
  • 9234452
  • ApplicationId
    9234452
  • Core Project Number
    R42AI112302
  • Full Project Number
    5R42AI112302-03
  • Serial Number
    112302
  • FOA Number
    PA-15-270
  • Sub Project Id
  • Project Start Date
    6/15/2014 - 10 years ago
  • Project End Date
    2/28/2018 - 6 years ago
  • Program Officer Name
    MINNICOZZI, MICHAEL
  • Budget Start Date
    3/1/2017 - 7 years ago
  • Budget End Date
    2/28/2018 - 6 years ago
  • Fiscal Year
    2017
  • Support Year
    03
  • Suffix
  • Award Notice Date
    2/24/2017 - 7 years ago
Organizations

New Class of Bright, Sharp, Tunable Near-Infrared Fluorophores for Flow Cytometry

? DESCRIPTION (provided by applicant): Polychromatic flow cytometry (FC) is one of the most powerful analytical techniques routinely used by both basic research and clinical diagnostics laboratories for the immunological categorization of cells. Dyes used for FC typically exhibit broad fluorescent emission bands with full-width-at-half-maximum (fwhm) values of 50-80 nm. This limits the maximum number of dyes, and thus the number of cell biomarkers, that can be resolved in a given experiment. Compensating for spectral overlap between dyes is currently viewed as a necessary part of experimental design, requiring extensive pre-assay experimentation and mathematical compensation, thereby introducing experimental error and reducing sensitivity. Bacteriochlorins are a unique class of fluorescent dyes that offer a solution for accurate multiplexing with minimal compensation due to their very narrow emission bands (fwhm of 25-35 nm), typically less than half the spectral width of existing dyes. Through chemical modification, they can be tuned to emission wavelengths from the far red through the near-infrared (NIR) spectrum (700-900 nm). In addition, bacteriochlorins share a common excitation band, making possible the development of a full spectrum of NIR dyes excited by a single UV light source. To render bacteriochlorin dyes commercially viable, Phase II efforts will be focused on: 1) improving and expanding the bacteriochlorin dye portfolio and synthesis methods; 2) validating dye performance in FC panels with NIRvana Sciences' collaborators: a leading flow cytometry company and the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases, and 3) developing procedures, methods, and protocols for commercial scale manufacturing. This Phase II STTR proposal is intended to continue the refinement and transfer of bacteriochlorin technology from North Carolina State University to NIRvana Sciences for commercial development, resulting in a bacteriochlorin dye portfolio with high impact potential for polychromatic FC. This enhanced multiplex capability will advance not only basic immunology research, but it will also accelerate novel vaccine and adjuvant discovery for HIV, malaria, tuberculosis, and emerging infectious disease threats. Greater multiplexing also is critical for analyzing reduced volume samples, for single cell studies, and for high throughput, high-resolution analyses.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R42
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    756785
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:756785\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    NIRVANA SCIENCES, INC.
  • Organization Department
  • Organization DUNS
    078769570
  • Organization City
    RESEARCH TRIANGLE PARK
  • Organization State
    NC
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    277090003
  • Organization District
    UNITED STATES