NEW PYRAZINE COMPOUND

Abstract
The present invention relates to a compound as represented by general formula (1), and a preparation method therefor, and the use of the compound as represented by general formula (1) and an isomer, a crystal form, a pharmaceutically acceptable salt, a hydrate or a solvate thereof as an EGFR inhibitor in the preparation of a drug against EGFR-related diseases, such as tumors.
Description

The present application claims priority to Chinese Patent Application No. CN202010486394.1 filed on Jun. 1, 2020, Chinese Patent Application No. CN202010947590.4 filed on Sep. 10, 2020 and Chinese Patent Application No. CN202110587528.3 filed on May 27, 2021, which are incorporated herein by reference in their entirety.


TECHNICAL FIELD

The present invention relates to the field of pharmaceutical chemistry, and particularly to a pyrazine compound, a method for preparing the same and use of the compound as an EGFR inhibitor in preparing an antitumor medicament.


BACKGROUND

Lung cancer is one of common malignant tumors, with about 1.6 million new cases of lung cancer worldwide each year and about 1.4 million deaths each year. Among them, non-small cell lung cancer (NSCLC) accounts for about 80%-85% of the total number of lung cancers (Nature, 2018, 553:446-454).


EGFR family is a group of protein kinases, which are responsible for transducing mitogenic signals and play important roles in growth and development. Extensive analysis and study of in vitro tumor cells, animal models and human tumor samples indicate that the mutation of EGFR family members may cause the progression of tumors in human and is one of the important causes of the development and progression of many cancers. Targeting EGFR mutant proteins and inhibiting their activity are thus important means for treating related tumors.


Studies showed that EGFR gene mutations can be found in about 12% to 47% of non-small cell lung cancers. In non-small cell lung cancer, the two most common EGFR gene mutations are exon 19 deletion (del19) and L858R missense mutation in exon 21. These two mutations result in sustained activation of the EGFR proteins independent of ligands. Although NSCLC patients with Del19 or L858R mutations in EGFR proteins are more sensitive to the targeted therapy with EGFR protein kinase inhibitors (EGFR TKIs), such as erlotinib, gefitinib, afatinib or osimertinib, demonstrating a high (around 60%-85%) objective response rate (ORR) in clinical practice, this response usually does not last long enough and most patients using first- or second-generation EGFR TKIs would experience disease progression at about 11 months. Analysis of drug resistance showed that in about 50%-70% of drug-resistant patients, the molecular mechanism of drug resistance is the acquisition of a second mutation, T790M mutation (T790M+), in EGFR gene (Cancer discov. 2012, 2:872-5). This secondary mutation causes the loss of inhibitory activities of the first- and second-generation EGFR TKIs against mutant tumor cells.


Osimertinib, a third-generation covalent EGFR TKI, is developed to treat tumors with EGFR del19 and L858R mutations with or without T790M mutation. Although osimertinib has a high response rate despite the drug resistance induced by T790M mutation, drug resistance would eventually occur in about 70% of the patients and the disease will progress after about 10 months (Lung Cancer. 2017, 108:228-231). Studies on the molecular mechanism of drug resistance to third-generation EGFR TKIs showed that in about 20%-40% of patients who received osimertinib and had relapse, one of the major mechanisms of drug resistance is the acquisition of a third mutation, C797S mutation, in EGFR gene. Moreover, patients with EGFR del19/L858R T790M C797S mutant would no longer respond to first-, second-, or third-generation EGFR TKIs after the treatment with the third-generation EGFR TKI. In 2015, Thress et al. first reported an analysis of resistance to osimertinib based on 15 patients and found that about 40% of the drug resistance was caused by C797S mutation (Nature Medicine, 2015, 21:560-562). On the American Society of Clinical Oncology (ASCO) annual meeting in 2017, Piotrowska and Caicun Zhou each reported an analysis of drug resistance in 23 patients and 99 patients, respectively, and both analyses showed that about 22% of the drug resistance was caused by C797S mutation. Therefore, targeted inhibition of EGFR del19/L858R T790M C797S mutation can overcome the resistance to osimertinib. However, at present, there is no EGFR TKI on the market capable of inhibiting EGFR del19/L858R T790M C797S mutant, and it is thus urgent to study and discover a fourth-generation EGFR TKI to meet this clinical need.


EGFR del19/L858R T790M C797S mutant, a new EGFR mutant occurred after the treatment with third-generation EGFR TKIs, has not been adequately interpreted. At present, only a few fourth-generation EGFR TKIs have been reported to inhibit the EGFR del19/L858R T790M C797S mutant. For example, Boehringer Ingelheim reported a class of macrocyclic compounds BI-4020 with anti-EGFR del19/L858R T790M C797S mutant activity and anti-tumor activity in vivo (J. Med. Chem. 2019, 62:10272-10293). Patent No. WO2019/015655 reported a class of aryl-phosphorus-oxygen compounds with anti-EGFR del19/L858R T790M C797S mutant activity and anti-tumor activity in vivo. A general formula A and a representative compound B (Example 41) thereof are shown in the following structures (refer to the invention for the definitions of the symbols in the formula):




embedded image


At present, there is an urgent need to explore and discover compounds with good EGFR del19/L858R T790M C797S mutant activity.


SUMMARY

The present invention aims to provide a compound of general formula (1), or an isomer, a crystalline form, a pharmaceutically acceptable salt, a hydrate or a solvate thereof:




embedded image


wherein, in general formula (1):


Y is a 3-11 membered heterocycloalkyl, a C6-C14 aryl or a 5-10 membered heteroaryl, wherein the heterocycloalkyl, the aryl and the heteroaryl may be optionally substituted with one or more of the following groups: —H, a halogen, —R4, —OR4, —(CH2)nOR4, —(CH2)nNR4R5, —NR4R5, —CN, —C(O)NR4R5, —NR5C(O)R4, —NR5S(O)2R4, —S(O)pR4, —S(O)2NR4R5 and —O—CH2—O—;


L1 is —O— or —NH—;


X is a C6-C14 arylene or a 5-11 membered heteroarylene, wherein the arylene and the heteroarylene may be optionally substituted with one or more of the following groups: —H, a halogen, a C1-C6 alkyl, a C3-C6 cycloalkyl, a C1-C6 alkoxy and a C1-C6 haloalkoxy;


R1 is —H, halogen, —(CH2)nNR6R7, —NR6R7, —O(CH2)mNR6R7, —N(R5)(CH2)mNR6R7, a C1-C6 alkoxy, —CH2-3-15 membered heterocycloalkyl or a 3-15 membered heterocycloalkyl, wherein the alkoxy and the heterocycloalkyl may be optionally substituted with one or more of the following groups: —H, —R4, —(CH2)nR6R7, —NR6R7, —O(CH2)mNR6R7, —N(R5)(CH2)mNR6R7 and —R3;


L2 is —O—, —NH— or a chemical bond;


R2 is a C1-C6 alkyl, a C3-C14 cycloalkyl, a C6-C14 aryl, a 3-4 membered heterocycloalkyl,




embedded image


or a 6-11 membered heterocycloalkyl; wherein the alkyl, the cycloalkyl, the aryl, the heterocycloalkyl,




embedded image


may be optionally substituted with one or more of the following groups: —H, a halogen, —R4, —(CH2)nOR4—, —(CH2)nNR4R5—, —OR4, —NR4R5, —CN, —C(O)NR4R5, —NR5C(O)R4, —NR5S(O)2R4, —S(O)pR4 and —S(O)2NR4R5;


R3 is a 3-11 membered heterocycloalkyl, wherein the heterocycloalkyl may be optionally substituted with one or more of the following groups: —H, —CD3, —R4, —OR4 and —NR4R5;


R4 and R5 are each independently —H, a C1-C6 alkyl or a C3-C14 cycloalkyl;


R6 and R7 are each independently —H, a C1-C6 alkyl or a C3-C14 cycloalkyl, or R6 and R7 form a 3-11 membered heterocycloalkyl along with N atoms connected thereto, wherein the heterocycloalkyl may be optionally substituted with one or more of the following groups: —H, —CD3, a halogen, —R4 and —OR4;


R0 is a C1-C6 alkyl or a C3-C14 cycloalkyl; and


p is an integer of 0, 1 or 2, n is an integer of 0, 1, 2 or 3, and m is an integer of 1, 2 or 3.


In another preferred embodiment, in general formula (1), Y is a 5-6 membered heterocycloalkyl, phenyl or a 5-9 membered heteroaryl, wherein the heterocycloalkyl, the phenyl and the heteroaryl may be optionally substituted with one or more of the following groups: —H, —F, —Cl, —Br, —CN, —OH, —OCH3, —NH2, —N(CH3)2, —NHCOCH3, —NHSO2CH3, —CH3, —CONH2, —CH2OH and —O—CH2—O—.


In another preferred embodiment, in general formula (1), Y is:




embedded image


embedded image


embedded image


embedded image


embedded image


In another preferred embodiment, in general formula (1), X is phenylene or a 6-membered heteroarylene, wherein the phenylene and heteroarylene may be optionally substituted with one or more of the following groups: —H, —F, —CH3, —CH2CH3, —CH(CH3)2,




embedded image


—OCH3, —OCF2H and —OCF3.


In another preferred embodiment, in general formula (1), X is:




embedded image


embedded image


In another preferred embodiment, in general formula (1), R1 is: —H, —N(CH3)2, —CH2-6-11 membered heterocycloalkyl or a 6-11 membered heterocycloalkyl, wherein the heterocycloalkyl is




embedded image


and may be optionally substituted with one or more of the following groups:




embedded image


In another preferred embodiment, in general formula (1), R1 is:




embedded image


In another preferred embodiment, in general formula (1), when L2 is —NH—, R2 is:




embedded image


embedded image


In another preferred embodiment, in general formula (1), when L2 is —O—, R2 is:




embedded image


In another preferred embodiment, in general formula (1), when L2 is a chemical bond, R2 is:




embedded image


In various embodiments, representative compounds of the present invention have one of the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The present invention is further intended to provide a pharmaceutical composition comprising a pharmaceutically acceptable excipient or carrier, and the compound of general formula (1) or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof disclosed herein as an active ingredient.


The present invention is still further intended to provide use of the compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof, or the pharmaceutical composition disclosed herein in preparing a medicament for treating a disease related to an EGFR mutation.


The present invention is even further intended to provide a method for treating, regulating and/or preventing a disease related to an EGFR mutant protein, comprising administering to a subject a therapeutically effective amount of the compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof or the pharmaceutical composition. Through synthesis and careful studies on various novel compounds with EGFR inhibitory effects, the inventors surprisingly found that the compound of general formula (1) has strong inhibitory activity against EGFRdel19/T790M/C797S and EGFRL858R/T790M/C797S, and has high selectivity for wild-type EGFR WT when Y is a heterocycloalkyl, an aromatic heterocyclic ring or an aryl.


It should be understood that both the above general description and the following detailed description of the present invention are exemplary and explanatory, and are intended to provide further explanation of the present invention claimed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the results of the tumor growth inhibition in an in vivo pharmacodynamic study in mice according to Example 4 of the present invention;



FIG. 2 shows the results of the tumor growth inhibition in an in vivo pharmacodynamic study in mice according to Example 5 of the present invention.





SYNTHESIS OF THE COMPOUNDS

Methods for preparing the compounds of general formulas (1) of the present invention are hereafter described in detail, but these specific methods do not limit the present invention in any way.


The compounds of general formulas (1) described above may be synthesized using standard synthetic techniques or well-known techniques in combination with the methods described herein. In addition, solvents, temperatures and other reaction conditions mentioned herein may vary. Starting materials for the synthesis of the compounds may be obtained synthetically or commercially. The compounds described herein and other related compounds having different substituents may be synthesized using well-known techniques and starting materials, including the methods found in March, ADVANCED ORGANIC CHEMISTRY, 4th Ed., (Wiley 1992); Carey and Sundberg, ADVANCED ORGANIC CHEMISTRY, 4th Ed., Vols. A and B (Plenum 2000, 2001), and Green and Wuts, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, 3rd Ed., (Wiley 1999). General methods for preparing a compound can be changed by using appropriate reagents and conditions for introducing different groups into the formulas provided herein.


In one aspect, the compounds described herein are prepared according to methods well known in the art. However, the conditions involved in the methods, such as reactants, solvent, base, amount of the compound used, reaction temperature and time required for the reaction are not limited to the following explanation. The compounds of the present invention can also be conveniently prepared by optionally combining various synthetic methods described herein or known in the art, and such combinations can be easily determined by those skilled in the art to which the present invention pertains. In one aspect, the present invention also provides a method for preparing the compounds of general formulas (1), which are prepared using general reaction scheme 1 or general reaction scheme 2 below:




embedded image


Embodiments of a compound of general formula (1) may be prepared according to general reaction scheme 1, wherein R1, R2, X, Y, L1 and L2 are as defined above, H represents hydrogen and B represents boric acid, a borate or a trifluoroborate. As shown in general reaction scheme 1, compound 1-1 reacts with formamide to give compound 1-2, compound 1-2 reacts with R1—X-L1-H under a basic condition to give compound 1-3, compound 1-3 and Y-B are subjected to coupling reaction to give compound 1-4, and compound 1-4 reacts with R2-L2-H under a basic condition to give target compound 1-5.




embedded image


Embodiments of a compound of general formula (1) may be prepared according to general reaction scheme 2, wherein R1, R2, X, Y, L1 and L2 are as defined above, and H represents hydrogen. As shown in general reaction scheme 2, compound 2-1 reacts with formamide to give compound 2-2, compound 2-2 reacts with R1—X-L1-H under a basic condition to give compound 2-3, compound 2-3 reacts with R2-L2-H under a basic condition to give compound 2-4, and compound 2-4 reacts with Y—H under a basic condition to give target compound 2-5.


Further Forms of Compounds


“Pharmaceutically acceptable” herein refers to a substance, such as a carrier or diluent, which will not cause a compound to lose its biological activity or properties. It is relatively non-toxic; for example, when an individual is given a substance, it will not cause unwanted biological effects or interact with any component contained therein in a deleterious manner.


The term “pharmaceutically acceptable salt” refers to a form of a compound that does not cause significant irritation to the organism for drug administration or eliminate the biological activity and properties of the compound. In certain specific aspects, pharmaceutically acceptable salts are obtained by reacting the compounds of general formulas (1) with acids, e.g. inorganic acids such as hydrochloric acid, hydrobromic acid, hydrofluoric acid, sulfuric acid, phosphoric acid and nitric acid, organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, trifluoroacetic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, picric acid, methanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid, and acidic amino acids such as aspartic acid and glutamic acid.


It should be understood that references to pharmaceutically acceptable salts include solvent addition forms or crystal forms, especially solvates or polymorphs. A solvate contains either stoichiometric or non-stoichiometric amount of solvent and is selectively formed during crystallization with pharmaceutically acceptable solvents such as water and ethanol. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is ethanol. The solvates of the compounds of general formulas (1) are conveniently prepared or formed according to the methods described herein. For example, the hydrates of the compounds of general formulas (1) are conveniently prepared by recrystallization from a mixed solvent of water/organic solvent, wherein the organic solvent used includes, but is not limited to, tetrahydrofuran, acetone, ethanol or methanol. Furthermore, the compounds mentioned herein can exist in both non-solvated and solvated forms. In general, the solvated forms are considered equivalent to the non-solvated forms for purposes of the compounds and methods provided herein.


In other specific examples, the compounds of general formulas (1) are prepared into different forms, including but not limited to amorphous, pulverized and nanoparticle forms. In addition, the compound of general formula (1) includes crystalline forms, and may also be polymorphs. Polymorphs include different lattice arrangements of the same elements of a compound. Polymorphs usually have different X-ray diffraction patterns, infrared spectra, melting points, density, hardness, crystalline forms, optical and electrical properties, stability and solubility. Different factors such as recrystallization solvent, crystallization rate and storage temperature may lead to monocrystalline form being dominant.


In another aspect, the compound of general formula (1) may have a chiral center and/or axial chirality, and thus may be present in the form of a racemate, a racemic mixture, a single enantiomer, a diastereomeric compound, a single diastereomer and a cis-trans isomer. Each chiral center or axial chirality will independently produce two optical isomers, and all possible optical isomers, diastereomeric mixtures and pure or partially pure compounds are included within the scope of the present invention. The present invention is meant to include all such isomeric forms of these compounds.


The compound of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such the compound. For example, the compound may be labeled with radioactive isotopes, such as tritium (3H), iodine-125 (125I) and C-14 (14C). For another example, deuterium can be used to substitute a hydrogen atom to form a deuterated compound, the bond formed by deuterium and carbon is stronger than that formed by common hydrogen and carbon, and compared with an undeuterated medicament, the deuterated medicament generally has the advantages of reducing toxic and side effects, increasing medicament stability, enhancing curative effect, prolonging in vivo half-life period of the medicament and the like. All isotopic variations of the compound of the present invention, whether radioactive or not, are intended to be encompassed within the scope of the present invention.


Terminology


Unless otherwise stated, the terms used in the present application, including those in the specification and claims, are defined as follows. It must be noted that in the specification and the appended claims, the singular forms “a” and “an” include plural meanings unless clearly indicated otherwise. Unless otherwise stated, conventional methods for mass spectrometry, nuclear magnetic resonance spectroscopy, HPLC, protein chemistry, biochemistry, recombinant DNA technology and pharmacology are used. As used herein, “or” or “and” refers to “and/or” unless otherwise stated.


Unless otherwise specified, “alkyl” refers to a saturated aliphatic hydrocarbon group, including linear and branched groups containing 1 to 14 carbon atoms. Lower alkyls containing 1 to 4 carbon atoms, such as methyl, ethyl, propyl, 2-propyl, n-butyl, isobutyl or tert-butyl, are preferred. As used herein, “alkyl” includes unsubstituted and substituted alkyl, particularly alkyl substituted with one or more halogens. Preferred alkyl is selected from CH3, CH3CH2, CF3, CHF2, CF3CH2, CF3(CH3)CH, iPr, nPr, iBu, nBu and tBu.


Unless otherwise specified, “alkenyl” refers to an unsaturated aliphatic hydrocarbon group containing carbon-carbon double bonds, including linear or branched groups containing 1 to 14 carbon atoms. Lower alkenyls containing 1 to 4 carbon atoms, such as vinyl, 1-propenyl, 1-butenyl or 2-methylpropenyl, are preferred.


Unless otherwise specified, “alkynyl” refers to an unsaturated aliphatic hydrocarbon group containing carbon-carbon triple bonds, including linear and branched groups containing 1 to 14 carbon atoms. Lower alkynyls containing 1 to 4 carbon atoms, such as ethynyl, 1-propynyl or 1-butynyl, are preferred.


Unless otherwise specified, “cycloalkyl” refers to a 3- to 14-membered all-carbon monocyclic aliphatic hydrocarbon group, wherein one or more of the rings may contain one or more double bonds, but none of them has a fully conjugated π-electron system. For example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexane, and cyclohexadiene.


Unless otherwise specified, “alkoxy” refers to an alkyl group that bonds to the rest of the molecule through an ether oxygen atom. Representative alkoxy groups are those having 1-6 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy and tert-butoxy. As used herein, “alkoxy” includes unsubstituted and substituted alkoxy, particularly alkoxy substituted with one or more halogens. Preferred alkoxy is selected from OCH3, OCF3, CHF2O, CF3CH2O, i-PrO, n-PrO, i-BuO, n-BuO and t-BuO.


Unless otherwise specified, “aryl” refers to a monocyclic or polycyclic aromatic hydrocarbon group; for example, a monocyclic aryl ring may be fused with one or more carbocyclic aromatic groups. Examples of aryl include, but are not limited to, phenyl, naphthyl, and phenanthryl.


Unless otherwise specified, “arylene” refers to a divalent aryl defined as above. Examples of arylene include, but are not limited to, phenylene, naphthylene, and phenanthrylene.


Unless otherwise specified, “heteroaryl” refers to a monocyclic or polycyclic aromatic group containing one or more heteroatoms (O, S or N); for example, a monocyclic heteroaryl ring may be fused with one or more carbocyclic aromatic groups or other monocyclic heterocyclyl groups. Examples of heteroaryl include, but are not limited to, pyridinyl, pyridazinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, quinolinyl, isoquinolinyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, indolyl, benzimidazolyl, benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, benzopyridyl, and pyrrolopyrimidinyl.


Unless otherwise specified, “heteroarylene” refers to a divalent heteroaryl defined as above.


Unless otherwise specified, “heterocycloalkyl” refers to a saturated or partially unsaturated ring system group containing one or more heteroatoms (O, S or N), wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom is optionally quaternized as a ring atom.


Unless otherwise stated, the “heterocycloalkyl” ring system may be a monocyclic, bicyclic, spiro or polycyclic ring system. “Heterocycloalkyl” may link to the rest of the molecule through one or more ring carbons or heteroatoms. Examples of “heterocycloalkyl” include, but are not limited to, pyrrolidine, piperidine, N-methylpiperidine, tetrahydroimidazole, pyrazolidine, butyrolactam, valerolactam, imidazolidinone, hydantoin, dioxolane, phthalimide, pyrimidine-2,4(1H,3H)-dione, 1,4-dioxane, morpholine, thiomorpholine, thiomorpholine-S-oxide, thiomorpholine-S,S-oxide, piperazine, pyran, pyridone, 3-pyrroline, thiopyran, pyrone, tetrahydrofuran, tetrahydrothiophene, quinuclidine, 2-azaspiro[3.3]heptane, etc.


Unless otherwise specified, “halogen” (or halo) refers to fluorine, chlorine, bromine, or iodine. The term “halo” (or “halogenated”) before a group name indicates that the group is partially or fully halogenated, that is, substituted in any combination by F, Cl, Br or I, preferably by F or Cl. “Optional” or “optionally” means that the subsequently described event or circumstance may, but does not necessarily, occur, and the description includes instances where the event or circumstance occurs and instances where it does not.


The substituent “—O—CH2—O—” means that two oxygen atoms in the substituent are linked to two adjacent carbon atoms in the heterocycloalkyl, aryl or heteroaryl, for example:




embedded image


When the number of a linker group is 0, such as —(CH2)0—, it means that the linker group is a single bond.


When one of the variables is selected from a chemical bond, it means that the two groups linked by this variable are linked directly. For example, when L in X-L-Y represents a chemical bond, it means that the structure is actually X—Y.


Specific Pharmaceutical and Medical Terminology


The term “acceptable”, as used herein, means that a formula component or an active ingredient does not unduly adversely affect a general therapeutic target's health.


The terms “treatment,” “treatment course,” or “therapy”, as used herein, include alleviating, inhibiting, or ameliorating a symptom or condition of a disease; inhibiting the development of complications; ameliorating or preventing underlying metabolic syndrome; inhibiting the development of the disease or symptom, e.g., controlling the progression of the disease or condition; alleviating the disease or symptom; causing the disease or symptom to subside; alleviating a complication caused by the disease or symptom, or preventing or treating a sign caused by the disease or symptom. As used herein, a compound or pharmaceutical composition, when administered, can ameliorate a disease, symptom, or condition, particularly meaning ameliorating the severity, delaying the onset, slowing the progression, or reducing the duration of the disease. Fixed or temporary administration, or continuous or intermittent administration, may be attributed to or associated with the administration.


The “active ingredient” refers to compounds of general formulas (1) through (3), and pharmaceutically acceptable inorganic or organic salts of the compounds of general formulas (1) through (3). The compounds of the present invention may contain one or more asymmetric centers (axial chirality) and thus occur in the form of a racemate, racemic mixture, single enantiomer, diastereomeric compound and single diastereomer. Asymmetric centers that may be present depend on the nature of the various substituents on the molecule. Each of these asymmetric centers will independently produce two optical isomers, and all possible optical isomers, diastereomeric mixtures and pure or partially pure compounds are included within the scope of the present invention. The present invention is meant to include all such isomeric forms of these compounds.


The terms such as “compound”, “composition”, “agent” or “medicine or medicament” are used interchangeably herein and all refer to a compound or composition that, when administered to an individual (human or animal), is capable of inducing a desired pharmacological and/or physiological response by local and/or systemic action.


The term “administered, administering or administration” refers herein to the direct administration of the compound or composition, or the administration of a prodrug, derivative, analog or the like of the active compound.


Although the numerical ranges and parameters defining the broad scope of the present invention are approximations, the related numerical values set forth in the specific examples have been present herein as precisely as possible. Any numerical value, however, inherently contains a standard deviation necessarily resulting from certain methods of testing. Herein, “about” generally means that the actual value is within a particular value or range±10%, 5%, 1%, or 0.5%. Alternatively, the term “about” indicates that the actual value falls within the acceptable standard error of a mean, as considered by those skilled in the art. All ranges, quantities, values and percentages used herein (e.g., to describe an amount of a material, a length of time, a temperature, an operating condition, a quantitative ratio and the like) are to be understood as being modified by the word “about”, except in the experimental examples or where otherwise explicitly indicated. Accordingly, unless otherwise contrarily stated, the numerical parameters set forth in the specification and the appended claims are all approximations that may vary as desired. At the very least, these numerical parameters should be construed as the significant digits indicated or the numerical value obtained using conventional rounding rules.


Unless otherwise defined in the specification, the scientific and technical terms used herein have the same meaning as commonly understood by those skilled in the art. Furthermore, the singular nouns used in the specification encompass their plural forms, unless contradicted by context; the plural nouns used also encompass their singular forms.


Therapeutic Use


The present invention provides a method for treating a disease, including but not limited to a condition involving EGFR mutation (e.g., cancer), with the compound or pharmaceutical composition disclosed herein.


In some embodiments, a method for treating cancer is provided, comprising administering to an individual in need an effective amount of any aforementioned pharmaceutical composition comprising the compound of structural formula (1). In some embodiments, the cancer is mediated by EGFR mutation. In other embodiments, the cancer is lung cancer, pancreatic cancer, colon cancer, bladder cancer, brain cancer, breast cancer, urothelial carcinoma, prostate cancer, ovarian cancer, head and neck cancer, gastric cancer, mesothelioma, or all cancer metastases.


Route of Administration


The compound and the pharmaceutically acceptable salt thereof of the present invention can be prepared into various preparations which include the compound or the pharmaceutically acceptable salt thereof disclosed herein in a safe and effective amount range and a pharmaceutically acceptable excipient or carrier, wherein the “safe and effective amount” means that the amount of the compound is sufficient to significantly improve the condition without causing serious side effects. The safe and effective amount of the compound is determined according to the age, condition, course of treatment and other specific conditions of a treated subject.


The “pharmaceutically acceptable excipient or carrier” refers to one or more compatible solid or liquid fillers or gel substances which are suitable for human use and must be of sufficient purity and sufficiently low toxicity. “Compatible” means that the components of the composition are capable of intermixing with the compound of the present invention and with each other, without significantly diminishing the pharmaceutical efficacy of the compound. Examples of pharmaceutically acceptable excipients or carriers are cellulose and its derivatives (e.g., sodium carboxymethylcellulose, sodium ethylcellulose or cellulose acetate), gelatin, talc, solid lubricants (e.g., stearic acid or magnesium stearate), calcium sulfate, vegetable oil (e.g., soybean oil, sesame oil, peanut oil or olive oil), polyols (e.g., propylene glycol, glycerol, mannitol or sorbitol), emulsifiers (e.g., Tween®), wetting agents (e.g., sodium lauryl sulfate), colorants, flavoring agents, stabilizers, antioxidants, preservatives, pyrogen-free water, etc.


When the compound of the present invention is administered, it may be administered orally, rectally, parenterally (intravenously, intramuscularly or subcutaneously) or topically.


Solid dosage forms for oral administration include capsules, tablets, pills, pulvises and granules. In these solid dosage forms, the active compound is mixed with at least one conventional inert excipient (or carrier), such as sodium citrate or dicalcium phosphate, or with the following ingredients: (a) fillers or extenders, such as starch, lactose, sucrose, glucose, mannitol and silicic acid; (b) binders, such as hydroxymethyl cellulose, alginate, gelatin, polyvinylpyrrolidone, sucrose and acacia; (c) humectants, such as glycerol; (d) disintegrants, such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates and sodium carbonate; (e) solution retarders, such as paraffin; (f) absorption accelerators, such as quaternary ammonium compounds; (g) wetting agents, such as cetyl alcohol and glycerol monostearate; (h) adsorbents, such as kaolin; and (i) lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycol and sodium lauryl sulfate, or mixtures thereof. In the case of capsules, tablets and pills, the dosage forms may also include buffers.


Solid dosage forms such as tablets, dragees, capsules, pills and granules can be prepared using coatings and shells such as enteric coatings and other materials well known in the art. They may include opacifying agents, and the active compound or compound in such a composition may be released in a certain part of the digestive tract in a delayed manner. Examples of embedding components that can be used are polymeric substances and wax-based substances. If necessary, the active compound can also be in microcapsule form with one or more of the above-mentioned excipients.


Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compound, the liquid dosage form may include inert diluents commonly used in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1,3-butanediol, dimethylformamide, and oils, especially cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, or mixtures of these substances. Besides such inert diluents, the composition may also include adjuvants, such as wetting agents, emulsifiers, suspending agents, sweeteners, flavoring agents, and perfuming agents.


Suspensions, in addition to the active compound, may include suspending agents, such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methylate and agar, or mixtures of these substances.


Compositions for parenteral injection may include physiologically acceptable sterile aqueous or anhydrous solutions, dispersions, suspensions or emulsions, and sterile powders for redissolving into sterile injectable solutions or dispersions. Suitable aqueous and non-aqueous carriers, diluents, solvents or excipients include water, ethanol, polyols and suitable mixtures thereof.


Dosage forms for topical administration of the compound of the present invention include ointments, pulvises, patches, sprays and inhalants. The active ingredient is mixed under sterile conditions with a physiologically acceptable carrier and any preservatives, buffers or propellants that may be required if necessary.


The compound of the present invention may be administered alone or in combination with other pharmaceutically acceptable compounds.


When the pharmaceutical composition is used, a safe and effective amount of the compound of the present invention is administered to a mammal (such as a human) to be treated, wherein the administration dose is a pharmaceutically effective administration dose. For a human weighing 60 kg, the daily dose of administration is usually 1-2000 mg, preferably 50-1000 mg. In determining a specific dose, such factors as the route of administration, the health condition of the patient and the like will also be considered, which are well known to skilled physicians.


The above features mentioned in the present invention or those mentioned in the examples may be combined arbitrarily. All the features disclosed in this specification may be used with any composition form and the various features disclosed in this specification may be replaced with any alternative features that provide the same, equivalent or similar purpose. Thus, unless otherwise expressly stated, the features disclosed are merely general examples of equivalent or similar features.


DETAILED DESCRIPTION

Various specific aspects, features and advantages of the compounds, methods and pharmaceutical compositions described above are set forth in detail in the following description, which makes the present invention clear. It should be understood that the detailed description and examples below describe specific embodiments for reference only. After reading the description of the present invention, those skilled in the art can make various changes or modifications to the present invention, and such equivalents also fall within the scope of the present invention defined herein.


In all examples, 1H-NMR spectra were recorded with a Vian Mercury 400 nuclear magnetic resonance spectrometer, and chemical shifts are expressed in δ (ppm); silica gel for separation was 200-300 mesh silica gel if not specified, and the ratio of the eluents was volume ratio.


In the present invention, the following abbreviations are used: CDCl3 for deuterated chloroform; CD3OD for deuterated methanol; DMSO-d6 for deuterated dimethyl sulfoxide; EtOAc for ethyl acetate; Hexane for n-hexane; MeCN for acetonitrile; DCM for dichloromethane; DIPEA for diisopropylethylamine; NMP for 1-methylpyrrolidin-2-one; Dioxane for 1,4-dioxane; DMF for N,N-dimethylformamide; DMSO for dimethyl sulfoxide; h for hour; K3PO4 for potassium phosphate; min for minute; MS for mass spectroscopy; NaH for sodium hydride; NMR for nuclear magnetic resonance; Pd2(dba)3 for tris(dibenzylideneacetone)dipalladium; Pd(dppf)Cl2 for [1,1′-bis(diphenylphosphino)ferrocene]palladium dichloride; TFA (CF3COOH) for trifluoroacetic acid; TLC for thin layer chromatography; THF for tetrahydrofuran; Xantphos for 4,5 -bis(diphenylphosphane)-9,9-dimethylxanthene.


Synthesis Method A:


Synthesis of Compound 135 (5-((3-hydroxycyclopentyl)amino)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide) and Optical Isomers Thereof (Compounds 136, 137, 138 and 139) Using Synthesis Method A



embedded image


Step 1: Synthesis of Compound 3,5-dichloro-6-iodopyrazine-2-carboxamide (Compound int_2)

3,5-Dichloro-2-iodopyrazine (15 g, 54.57 mmol) and formamide (300 mL) were added into a 500-mL single-neck flask, and the mixture was stirred and heated to 90° C. Solid (NH4)2S2O8 (25 g, 109.1 mmol) was added in batches, and the mixture was stirred at 90° C. for 2 h. Solid K2S2O8 (30 g, 109.1 mmol) was supplemented in batches, and the mixture was stirred at 90° C. for 20 h. The reaction product was monitored by LC-MS, and there were starting materials left. The mixture was added with EtOAc (150 mL) and water (300 mL), stirred and separated. The aqueous phase was again extracted with EtOAc (150 mL). The organic phases were combined, washed with saturated sodium chloride solution (150 mL) and concentrated, and the residue was purified by column chromatography (EtOAc:Hexane=0:1 to 1:5 to 1:2) to give a product (1.82 g, 10.5% yield). The remaining starting materials were recovered (10.3 g, 68.7% yield).



1H NMR (400 MHz, CDCl3) δ: 7.28 (s, 1H), 5.78 (s, 1H); MS (ESI): 317 [M+H]+.


Step 2: Synthesis of Compound 5-chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (Compound int_3)

3,5-Dichloro-6-iodopyrazine-2-carboxamide (280 mg, 0.883 mmol), 4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)aniline (267 mg, 0.971 mmol), dioxane (20 mL) and DIPEA (228 mg, 1.766 mmol) were added into a 50-mL single-neck flask. The mixture was purged with argon, stirred and heated at reflux for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was concentrated, and the residue was purified by column chromatography to give a product (368 mg, 75% yield).



1H NMR (400 MHz, CDCl3) δ: 10.69 (s, 1H), 7.53 (d, J=3.8 Hz, 1H), 7.51-7.44 (m, 2H), 6.99-6.88 (m, 2H), 5.67 (d, J=3.9 Hz, 1H), 3.80-3.63 (m, 2H), 2.84-2.42 (m, 10H), 2.39 (ddt, J=11.4, 7.3, 3.7 Hz, 1H), 1.96 (dt, J=12.2, 3.0 Hz, 2H), 1.70 (qd, J=12.1, 4.0 Hz, 2H); MS (ESI): 556 [M+H]+.


Step 3: Synthesis of Compound 5-chloro-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (Compound int_4)

5-Chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (167 mg, 0.30 mmol), anhydrous potassium phosphate (160 mg, 0.75 mmol), phenylboronic acid (40.23 mg, 0.33 mmol), dioxane/H2O (10 mL/2 mL) and Pd(dppf)2Cl2 (22 mg) were added into a 50-mL single-neck flask. The mixture was purged with argon, rapidly heated to 105° C. and incubated for 30 min. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (115 mg, 75.6% yield).



1H NMR (400 MHz, CDCl3) δ: 10.74 (s, 1H), 7.70 (d, J=6.5 Hz, 3H), 7.56 (d, J=8.5 Hz, 2H), 7.44 (p, J=6.8 Hz, 3H), 6.94 (d, J=8.6 Hz, 2H), 5.67 (s, 1H), 3.70 (d, J=11.9 Hz, 2H), 2.83-2.55 (m, 7H), 2.47 (s, 3H), 2.40-2.32 (m, 1H), 2.28 (s, 3H), 1.93 (d, J=12.4 Hz, 2H), 1.67 (tt, J=12.5, 6.8 Hz, 2H); LC-MS: 506 [M+H]+.


Step 4: Synthesis of Compound 5-((3-hydroxycyclopentyl)amino)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (Compound 135)

5-Chloro-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine carboxamide (133.6 mg, 0.27 mmol), anhydrous potassium carbonate (186 mg, 1.35 mmol), anhydrous potassium fluoride (31 mg, 0.54 mmol), DMSO (5 mL) and a 4 Å molecular sieve (200 mg, powder) were added into a 50-mL single-neck flask. The mixture was purged with argon and stirred at room temperature for 15 min. Then 3-aminocyclopentanol hydrochloride (45 mg, 0.32 mmol) was added, and the mixture was purged with argon, heated to 120° C. and stirred for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (92 mg, 59.7% yield). MS (ESI): 571 [M+H]+.


By the chiral separation, four pure optically chiral isomers were obtained:




embedded image


5-(((1R,3S)-3-hydroxycyclopentyl)amino)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (Compound 136)


1H NMR (400 MHz, CDCl3) δ: 10.71 (s, 1H), 7.65-7.53 (m, 4H), 7.53-7.41 (m, 3H), 7.41-7.31 (m, 1H), 6.98-6.80 (m, 2H), 5.21 (d, J=6.5 Hz, 1H), 5.13 (s, 1H), 4.56 (h, J=7.1 Hz, 1H), 4.39 (tt, J=5.8, 2.9 Hz, 1H), 3.69 (d, J=12.0 Hz, 2H), 2.80-2.58 (m, 5H), 2.50 (s, 3H), 2.35 (d, J=9.8 Hz, 1H), 2.30 (s, 3H), 2.29-2.22 (m, 1H), 2.18 (dd, J=13.8, 7.2 Hz, 1H), 2.06-1.96 (m, 1H), 1.92 (d, J=12.4 Hz, 2H), 1.71-1.54 (m, 6H), 1.43 (ddd, J=13.0, 9.1, 6.6 Hz, 1H); MS (ESI): 571 [M+H]+.


5-(((1R,3R)-3-hydroxycyclopentyl)amino)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (Compound 137)


1H NMR (400 MHz, CDCl3) δ: 10.78 (s, 1H), 7.60 (dd, J=8.6, 6.7 Hz, 4H), 7.44 (t, J=7.5 Hz, 3H), 7.36 (t, J=7.3 Hz, 1H), 6.91 (d, J=8.9 Hz, 2H), 6.04 (d, J=7.4 Hz, 1H), 5.10 (s, 1H), 4.54 (d, J=7.8 Hz, 1H), 4.44 (s, 1H), 3.68 (d, J=11.9 Hz, 2H), 2.77-2.57 (m, 5H), 2.48 (s, 3H), 2.36 (s, 1H), 2.29 (s, 3H), 2.17-1.99 (m, 3H), 1.99-1.63 (m, 9H); MS (ESI): 571 [M+H]+.


5-(((1S,3S)-3-hydroxycyclopentyl)amino)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (Compound 138)


1H NMR (400 MHz, CDCl3) δ: 10.71 (s, 1H), 7.65-7.53 (m, 4H), 7.53-7.41 (m, 3H), 7.41-7.31 (m, 1H), 6.98-6.80 (m, 2H), 5.21 (d, J=6.5 Hz, 1H), 5.13 (s, 1H), 4.56 (h, J=7.1 Hz, 1H), 4.39 (tt, J=5.8, 2.9 Hz, 1H), 3.69 (d, J=12.0 Hz, 2H), 2.80-2.58 (m, 5H), 2.50 (s, 3H), 2.35 (d, J=9.8 Hz, 1H), 2.30 (s, 3H), 2.29-2.22 (m, 1H), 2.18 (dd, J=13.8, 7.2 Hz, 1H), 2.06-1.96 (m, 1H), 1.92 (d, J=12.4 Hz, 2H), 1.71-1.54 (m, 6H), 1.43 (ddd, J=13.0, 9.1, 6.6 Hz, 1H); MS (ESI): 571 [M+H]+.


5-(((1S,3R)-3-hydroxycyclopentyl)amino)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (Compound 139)


1H NMR (400 MHz, CDCl3) δ: 10.78 (s, 1H), 7.60 (dd, J=8.6, 6.7 Hz, 4H), 7.44 (t, J=7.5 Hz, 3H), 7.36 (t, J=7.3 Hz, 1H), 6.91 (d, J=8.9 Hz, 2H), 6.04 (d, J=7.4 Hz, 1H), 5.10 (s, 1H), 4.54 (d, J=7.8 Hz, 1H), 4.44 (s, 1H), 3.68 (d, J=11.9 Hz, 2H), 2.77-2.57 (m, 5H), 2.48 (s, 3H), 2.36 (s, 1H), 2.29 (s, 3H), 2.17-1.99 (m, 3H), 1.99-1.63 (m, 9H); MS (ESI): 571 [M+H]+.


Synthesis of Compound 39 (3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(pyridin-4-yl)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine-2-carboxamide) Using Synthesis Method A



embedded image


Step 1: Synthesis of Compound 3,5-dichloro-6-iodopyrazine-2-carboxamide (Compound int_2)

3,5-Dichloro-2-iodopyrazine (15 g, 54.57 mmol) and formamide (300 mL) were added into a 500-mL single-neck flask, and the mixture was stirred and heated to 90° C. Solid (NH4)2S2O8 (25 g, 109.1 mmol) was added in batches, and the mixture was stirred at 90° C. for 2 h. Solid K2S2O8 (30 g, 109.1 mmol) was supplemented in batches, and the mixture was stirred at 90° C. for 20 h. The reaction product was monitored by LC-MS, and there were starting materials left. The mixture was added with EtOAc (150 mL) and water (300 mL), stirred and separated. The aqueous phase was again extracted with EtOAc (150 mL). The organic phases were combined, washed with saturated sodium chloride solution (150 mL) and concentrated, and the residue was purified by column chromatography (EtOAc:Hexane=0:1 to 1:5 to 1:2) to give a product (1.82 g, 10.5% yield). The remaining starting materials were recovered (10.3 g, 68.7% yield).



1H NMR (400 MHz, CDCl3) δ: 7.28 (s, 1H), 5.78 (s, 1H); MS (ESI): 317 [M+H]+.


Step 2: Synthesis of Compound 5-chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (Compound int_3)

3,5-Dichloro-6-iodopyrazine-2-carboxamide (280 mg, 0.883 mmol), 4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)aniline (267 mg, 0.971 mmol), dioxane (20 mL) and DIPEA (228 mg, 1.766 mmol) were added into a 50-mL single-neck flask. The mixture was purged with argon, stirred and heated at reflux for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was concentrated, and the residue was purified by column chromatography to give a product (368 mg, 75% yield).



1H NMR (400 MHz, CDCl3) δ: 10.69 (s, 1H), 7.53 (d, J=3.8 Hz, 1H), 7.51-7.44 (m, 2H), 6.99-6.88 (m, 2H), 5.67 (d, J=3.9 Hz, 1H), 3.80-3.63 (m, 2H), 2.84-2.42 (m, 10H), 2.39 (ddt, J=11.4, 7.3, 3.7 Hz, 1H), 1.96 (dt, J=12.2, 3.0 Hz, 2H), 1.70 (qd, J=12.1, 4.0 Hz, 2H); MS (ESI): 556 [M+H]+.


Step 3: Synthesis of Compound 5-chloro-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(pyridin-4-yl)pyrazine-2-carboxamide (Compound int_6)

5-Chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (166.76 mg, 0.30 mmol), anhydrous potassium phosphate (160 mg, 0.75 mmol), (pyridin-4-yl)boronic acid (40.56 mg, 0.33 mmol), dioxane/H2O (10 mL/2 mL) and Pd(dppf)2Cl2 (22 mg) were added into a 50-mL single-neck flask. The mixture was purged with argon, rapidly heated to 105° C. and incubated for 60 min. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (126 mg, 82.8% yield).


MS (ESI): 507 [M+H]+.


Step 4: Synthesis of Compound 3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(pyridin-4-yl)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine-2-carboxamide (Compound 39)

5-Chloro-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(pyridin-4-yl)pyrazine-2-carboxamide (152.1 mg, 0.3 mmol), anhydrous potassium carbonate (186 mg, 1.35 mmol), anhydrous potassium fluoride (35 mg, 0.6 mmol), DMSO (5 mL) and a 4 Å molecular sieve (200 mg, powder) were added into a 50-mL single-neck flask. The mixture was purged with argon and stirred at room temperature for 15 min. Then 3-tetrahydro-2H-pyran-4-amine (33.4 mg, 0.33 mmol) was added, and the mixture was purged with argon, heated to 120° C. and stirred for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (130 mg, 75.8% yield).



1H NMR (400 MHz, CDCl3) δ 10.86 (s, 1H), 8.71 (d, J=5.1 Hz, 2H), 7.55 (t, J=6.8 Hz, 4H), 7.42 (s, 1H), 6.91 (d, J=8.8 Hz, 2H), 5.22 (s, 1H), 5.14 (d, J=7.0 Hz, 1H), 4.17 (m, 1H), 4.01 (d, J=11.7 Hz, 2H), 3.69 (d, J=9.2 Hz, 2H), 3.52 (t, J=11.6 Hz, 2H), 2.69 (m, 11H), 2.38 (s, 3H), 2.09-1.96 (m, 4H), 1.76-1.64 (m, 4H); MS (ESI): 572 [M+H]+.


Synthesis of Compound 55 (3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(1H-pyrazol-3-yl)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine-2-carboxamide) Using Synthesis Method A



embedded image


Step 1: Synthesis of Compound 3,5-dichloro-6-iodopyrazine-2-carboxamide (Compound int_2)

3,5-Dichloro-2-iodopyrazine (15 g, 54.57 mmol) and formamide (300 mL) were added into a 500-mL single-neck flask, and the mixture was stirred and heated to 90° C. Solid (NH4)2S2O8 (25 g, 109.1 mmol) was added in batches, and the mixture was stirred at 90° C. for 2 h. Solid K2S2O8 (30 g, 109.1 mmol) was supplemented in batches, and the mixture was stirred at 90° C. for 20 h. The reaction product was monitored by LC-MS, and there were starting materials left. The mixture was added with EtOAc (150 mL) and water (300 mL), stirred and separated. The aqueous phase was again extracted with EtOAc (150 mL). The organic phases were combined, washed with saturated sodium chloride solution (150 mL) and concentrated, and the residue was purified by column chromatography (EtOAc:Hexane=0:1 to 1:5 to 1:2) to give a product (1.82 g, 10.5% yield). The remaining starting materials were recovered (10.3 g, 68.7% yield).



1H NMR (400 MHz, CDCl3) δ: 7.28 (s, 1H), 5.78 (s, 1H); MS (ESI): 317 [M+H]+.


Step 2: Synthesis of Compound 5-chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (Compound int_3)

3,5-Dichloro-6-iodopyrazine-2-carboxamide (280 mg, 0.883 mmol), 4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)aniline (267 mg, 0.971 mmol), dioxane (20 mL) and DIPEA (228 mg, 1.766 mmol) were added into a 50-mL single-neck flask. The mixture was purged with argon, stirred and heated at reflux for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was concentrated, and the residue was purified by column chromatography to give a product (368 mg, 75% yield).



1H NMR (400 MHz, CDCl3) δ: 10.69 (s, 1H), 7.53 (d, J=3.8 Hz, 1H), 7.51-7.44 (m, 2H), 6.99-6.88 (m, 2H), 5.67 (d, J=3.9 Hz, 1H), 3.80-3.63 (m, 2H), 2.84-2.42 (m, 10H), 2.39 (ddt, J=11.4, 7.3, 3.7 Hz, 1H), 1.96 (dt, J=12.2, 3.0 Hz, 2H), 1.70 (qd, J=12.1, 4.0 Hz, 2H); MS (ESI): 556 [M+H]+.


Step 3: Synthesis of Compound 5-chloro-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(1H-pyrazol-3-yl)pyrazine-2-carboxamide (Compound int_7)

5-Chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (166.76 mg, 0.30 mmol), anhydrous potassium phosphate (160 mg, 0.75 mmol), (1H-pyrazol-3-yl)boronic acid (37 mg, 0.33 mmol), dioxane/H2O (10 mL/2 mL) and Pd(dppf)2Cl2 (22 mg) were added into a 50-mL single-neck flask. The mixture was purged with argon, rapidly heated to 105° C. and incubated for 60 min. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (119 mg, 80% yield).


MS (ESI): 496 [M+H]+.


Step 4: Synthesis of Compound 3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(1H-pyrazol-3-yl)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine carboxamide (Compound 55)

5-Chloro-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(1H-pyrazol-3-yl)pyrazine-2-carboxamide (148.8 mg, 0.3 mmol), anhydrous potassium carbonate (186 mg, 1.35 mmol), anhydrous potassium fluoride (35 mg, 0.6 mmol), DMSO (5 mL) and a 4 Å molecular sieve (200 mg, powder) were added into a 50-mL single-neck flask. The mixture was purged with argon and stirred at room temperature for 15 min. Then 3-tetrahydro-2H-pyran-4-amine (33.4 mg, 0.33 mmol) was added, and the mixture was purged with argon, heated to 120° C. and stirred for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (115 mg, 68.3% yield).


Compound 55 fumarate: 1H NMR (400 MHz, DMSO-d6) δ 13.05 (s, 1H), 11.21 (s, 1H), 8.90 (s, 1H), 8.00-7.92 (m, 1H), 7.81 (d, J=2.4 Hz, 1H), 7.55-7.47 (m, 2H), 7.31 (d, J=2.8 Hz, 1H), 7.21 (d, J=2.4 Hz, 1H), 6.89 (d, J=8.9 Hz, 2H), 6.54 (s, 4H), 4.11 (m, J=6.2 Hz, 1H), 3.89 (dt, J=11.5, 3.7 Hz, 2H), 3.62 (d, J=11.8 Hz, 2H), 3.49 (td, J=11.5, 2.4 Hz, 2H), 2.88-2.52 (m, 9H), 2.42 (s, 3H), 2.10-1.99 (m, 2H), 1.84 (d, J=11.1 Hz, 2H), 1.61-1.40 (m, 4H); MS (ESI): 561 [M+H]+.


Synthesis of Compound 511 (6-(1H-indol-4-yl)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine-2-carboxamide) Using Synthesis Method A



embedded image


Step 1: Synthesis of Compound 3,5-dichloro-6-iodopyrazine-2-carboxamide (Compound int_2):

3,5-Dichloro-2-iodopyrazine (15 g, 54.57 mmol) and formamide (300 mL) were added into a 500-mL single-neck flask, and the mixture was stirred and heated to 90° C. Solid (NH4)2S2O8 (25 g, 109.1 mmol) was added in batches, and the mixture was stirred at 90° C. for 2 h. Solid K2S2O8 (30 g, 109.1 mmol) was supplemented in batches, and the mixture was stirred at 90° C. for 20 h. The reaction product was monitored by LC-MS, and there were starting materials left. The mixture was added with EtOAc (150 mL) and water (300 mL), stirred and separated. The aqueous phase was again extracted with EtOAc (150 mL). The organic phases were combined, washed with saturated sodium chloride solution (150 mL) and concentrated, and the residue was purified by column chromatography (EtOAc:Hexane=0:1 to 1:5 to 1:2) to give a product (1.82 g, 10.5% yield). The remaining starting materials were recovered (10.3 g, 68.7% yield).



1H NMR (400 MHz, CDCl3) δ: 7.28 (s, 1H), 5.78 (s, 1H); MS (ESI): 317 [M+H]+.


Step 2: Synthesis of Compound 5-chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (Compound int_3)

3,5-Dichloro-6-iodopyrazine-2-carboxamide (280 mg, 0.883 mmol), 4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)aniline (267 mg, 0.971 mmol), dioxane (20 mL) and DIPEA (228 mg, 1.766 mmol) were added into a 50-mL single-neck flask. The mixture was purged with argon, stirred and heated at reflux for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was concentrated, and the residue was purified by column chromatography to give a product (368 mg, 75% yield).



1H NMR (400 MHz, CDCl3) δ: 10.69 (s, 1H), 7.53 (d, J=3.8 Hz, 1H), 7.51-7.44 (m, 2H), 6.99-6.88 (m, 2H), 5.67 (d, J=3.9 Hz, 1H), 3.80-3.63 (m, 2H), 2.84-2.42 (m, 10H), 2.39 (ddt, J=11.4, 7.3, 3.7 Hz, 1H), 1.96 (dt, J=12.2, 3.0 Hz, 2H), 1.70 (qd, J=12.1, 4.0 Hz, 2H); MS (ESI): 556 [M+H]+.


Step 3: Synthesis of Compound 5-chloro-6-(1H-indol-4-yl)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (Compound int_8)

5-Chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (166.76 mg, 0.30 mmol), anhydrous potassium phosphate (160 mg, 0.75 mmol), (1H-indol-4-yl)boronic acid (53.12 mg, 0.33 mmol), dioxane/H2O (10 mL/2 mL) and Pd(dppf)2Cl2 (22 mg) were added into a 50-mL single-neck flask. The mixture was purged with argon, rapidly heated to 105° C. and incubated for 60 min. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (131 mg, 80% yield).


MS (ESI): 545 [M+H]+.


Step 4: Synthesis of Compound 6-(1H-indol-4-yl)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine-2-carboxamide (Compound 511)

5-Chloro-6-(1H-indol-4-yl)-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (164 mg, 0.3 mmol), anhydrous potassium carbonate (186 mg, 1.35 mmol), anhydrous potassium fluoride (35 mg, 0.6 mmol), DMSO (5 mL) and a 4 Å molecular sieve (200 mg, powder) were added into a 50-mL single-neck flask. The mixture was purged with argon and stirred at room temperature for 15 min. Then 3-tetrahydro-2H-pyran-4-amine (33.4 mg, 0.33 mmol) was added, and the mixture was purged with argon, heated to 120° C. and stirred for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (127 mg, 69.4% yield).



1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 8.39 (s, 1H), 7.62 (d, J=8.9 Hz, 2H), 7.55-7.45 (m, 2H), 7.30 (td, J=6.3, 5.7, 4.0 Hz, 3H), 6.92 (d, J=8.9 Hz, 2H), 6.54 (d, J=2.8 Hz, 1H), 5.25 (d, J=7.2 Hz, 1H), 5.13 (s, 1H), 4.23-4.14 (m, 1H), 3.96 (d, J=11.7 Hz, 2H), 3.69 (d, J=11.9 Hz, 2H), 3.56-3.47 (m, 2H), 2.77-2.37 (m, 11H), 2.32 (s, 3H), 2.00 (dd, J=26.0, 11.4 Hz, 4H), 1.72 (dd, J=11.8, 3.8 Hz, 2H), 1.49-1.42 (m, 2H); MS (ESI): 610 [M+H]+.


Synthesis Method B:


Synthesis of Compound 19 (5-methoxy-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide) Using Synthesis Method B



embedded image


Step 1: Synthesis of Compound 3,5-dichloro-6-iodopyrazine-2-carboxamide (Compound int_2):

3,5-Dichloro-2-iodopyrazine (15 g, 54.57 mmol) and formamide (300 mL) were added into a 500-mL single-neck flask, and the mixture was stirred and heated to 90° C. Solid (NH4)2S2O8 (25 g, 109.1 mmol) was added in batches, and the mixture was stirred at 90° C. for 2 h. Solid K2S2O8 (30 g, 109.1 mmol) was supplemented in batches, and the mixture was stirred at 90° C. for 20 h. The reaction product was monitored by LC-MS, and there were starting materials left. The mixture was added with EtOAc (150 mL) and water (300 mL), stirred and separated. The aqueous phase was again extracted with EtOAc (150 mL). The organic phases were combined, washed with saturated sodium chloride solution (150 mL) and concentrated, and the residue was purified by column chromatography (EtOAc:Hexane=0:1 to 1:5 to 1:2) to give a product (1.82 g, 10.5% yield). The remaining starting materials were recovered (10.3 g, 68.7% yield).



1H NMR (400 MHz, CDCl3) δ: 7.28 (s, 1H), 5.78 (s, 1H); MS (ESI): 317 [M+H]+.


Step 2: Synthesis of Compound 5-chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (Compound int_3):

3,5-Dichloro-6-iodopyrazine-2-carboxamide (280 mg, 0.883 mmol), 4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)aniline (267 mg, 0.971 mmol), dioxane (20 mL) and DIPEA (228 mg, 1.766 mmol) were added into a 50-mL single-neck flask. The mixture was purged with argon, stirred and heated at reflux for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was concentrated, and the residue was purified by column chromatography to give a product (368 mg, 75% yield).



1H NMR (400 MHz, CDCl3) δ: 10.69 (s, 1H), 7.53 (d, J=3.8 Hz, 1H), 7.51-7.44 (m, 2H), 6.99-6.88 (m, 2H), 5.67 (d, J=3.9 Hz, 1H), 3.80-3.63 (m, 2H), 2.84-2.42 (m, 10H), 2.39 (ddt, J=11.4, 7.3, 3.7 Hz, 1H), 1.96 (dt, J=12.2, 3.0 Hz, 2H), 1.70 (qd, J=12.1, 4.0 Hz, 2H); MS (ESI): 556 [M+H]+.


Step 3: Synthesis of Compound 5-chloro-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (Compound int_4)

5-Chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (167 mg, 0.30 mmol), anhydrous potassium phosphate (160 mg, 0.75 mmol), phenylboronic acid (40.23 mg, 0.33 mmol), dioxane/H2O (10 mL/2 mL) and Pd(dppf)2Cl2 (22 mg) were added into a 50-mL single-neck flask. The mixture was purged with argon, rapidly heated to 105° C. and incubated for 30 min. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (115 mg, 75.6% yield).



1H NMR (400 MHz, CDCl3) δ: 10.74 (s, 1H), 7.70 (d, J=6.5 Hz, 3H), 7.56 (d, J=8.5 Hz, 2H), 7.44 (p, J=6.8 Hz, 3H), 6.94 (d, J=8.6 Hz, 2H), 5.67 (s, 1H), 3.70 (d, J=11.9 Hz, 2H), 2.83-2.55 (m, 7H), 2.47 (s, 3H), 2.40-2.32 (m, 1H), 2.28 (s, 3H), 1.93 (d, J=12.4 Hz, 2H), 1.67 (tt, J=12.5, 6.8 Hz, 2H); LC-MS: 506 [M+H]+.


Step 4: Synthesis of Compound 5-methoxy-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (Compound 19)

5-Chloro-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenylpyrazine-2-carboxamide (50 mg, 0.10 mmol), DMF (5 mL) and a 4 Å molecular sieve (200 mg, powder) were added into a 50-mL single-neck flask. The mixture was purged with argon and stirred at room temperature for 15 min. Then sodium methoxide (16 mg, 0.3 mmol) was added, and the mixture was purged with argon, heated to 80° C. and stirred for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (21 mg, 42% yield).



1H NMR (400 MHz, CDCl3) δ: 10.81 (s, 1H), 7.99-7.87 (m, 2H), 7.65 (d, J=4.4 Hz, 1H), 7.61-7.55 (m, 2H), 7.41 (d, J=7.8 Hz, 2H), 6.94 (dd, J=9.0, 3.6 Hz, 2H), 5.42-5.33 (m, 1H), 4.05 (s, 3H), 3.70 (d, J=12.0 Hz, 2H), 2.78-2.41 (m, 11H), 2.41-2.32 (m, 1H), 2.30 (s, 3H), 1.94 (d, J=12.4 Hz, 2H), 1.69 (qd, J=11.8, 3.7 Hz, 2H); MS (ESI): 502 [M+H]+.


Synthesis Method C:


Synthesis of Compound 116 (3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-phenyl-5-((tetrahydro-2H-pyran-4-yl)oxo)pyrazine-2-formamide) Using Synthesis Method C



embedded image


Step 1: Synthesis of Compound 3,5-dichloro-6-iodopyrazine-2-carboxamide (Compound int_2)

3,5-Dichloro-2-iodopyrazine (15 g, 54.57 mmol) and formamide (300 mL) were added into a 500-mL single-neck flask, and the mixture was stirred and heated to 90° C. Solid (NH4)2S2O8 (25 g, 109.1 mmol) was added in batches, and the mixture was stirred at 90° C. for 2 h. Solid K2S2O8 (30 g, 109.1 mmol) was supplemented in batches, and the mixture was stirred at 90° C. for 20 h. The reaction product was monitored by LC-MS, and there were starting materials left. The mixture was added with EtOAc (150 mL) and water (300 mL), stirred and separated. The aqueous phase was again extracted with EtOAc (150 mL). The organic phases were combined, washed with saturated sodium chloride solution (150 mL) and concentrated, and the residue was purified by column chromatography (EtOAc:Hexane=0:1 to 1:5 to 1:2) to give a product (1.82 g, 10.5% yield). The remaining starting materials were recovered (10.3 g, 68.7% yield).



1H NMR (400 MHz, CDCl3) δ: 7.28 (s, 1H), 5.78 (s, 1H); MS (ESI): 317 [M+H]+.


Step 2: Synthesis of Compound 5-chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (Compound int_3)

3,5-Dichloro-6-iodopyrazine-2-carboxamide (280 mg, 0.883 mmol), 4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)aniline (267 mg, 0.971 mmol), dioxane (20 mL) and DIPEA (228 mg, 1.766 mmol) were added into a 50-mL single-neck flask. The mixture was purged with argon, stirred and heated at reflux for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was concentrated, and the residue was purified by column chromatography to give a product (368 mg, 75% yield).



1H NMR (400 MHz, CDCl3) δ: 10.69 (s, 1H), 7.53 (d, J=3.8 Hz, 1H), 7.51-7.44 (m, 2H), 6.99-6.88 (m, 2H), 5.67 (d, J=3.9 Hz, 1H), 3.80-3.63 (m, 2H), 2.84-2.42 (m, 10H), 2.39 (ddt, J=11.4, 7.3, 3.7 Hz, 1H), 1.96 (dt, J=12.2, 3.0 Hz, 2H), 1.70 (qd, J=12.1, 4.0 Hz, 2H); MS (ESI): 556 [M+H]+.


Step 3: Synthesis of Compound 6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine-2-carboxamide (Compound int_5)

5-Chloro-6-iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrazine-2-carboxamide (150 mg, 0.27 mmol), anhydrous potassium carbonate (186 mg, 1.35 mmol), anhydrous potassium fluoride (31 mg, 0.54 mmol), DMSO (5 mL) and a 4 Å molecular sieve (200 mg, powder) were added into a 50-mL single-neck flask. The mixture was purged with argon and stirred at room temperature for 15 min. Then 3-tetrahydro-2H-pyran-4-amine (32 mg, 0.32 mmol) was added, and the mixture was purged with argon, and heated to 120° C. and stirred for 2 h. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (110 mg, 65.7% yield).



1H NMR (400 MHz, CDCl3) δ: 10.64 (s, 1H), 7.62-7.39 (m, 2H), 7.21 (s, 1H), 6.96-6.76 (m, 2H), 5.41-5.12 (m, 2H), 4.03 (dq, J=11.4, 3.7 Hz, 3H), 3.67 (d, J=12.0 Hz, 2H), 3.51 (td, J=11.6, 2.2 Hz, 2H), 2.84-2.50 (m, 10H), 2.44 (d, J=11.4 Hz, 1H), 2.37 (s, 3H), 2.11-1.89 (m, 4H), 1.78-1.51 (m, 4H); MS (ESI): 621 [M+H]+.


Step 4: Synthesis of Compound 3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-6-(piperidin-1-yl)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine-2-carboxamide (compound 116)

6-Iodo-3-((4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-5-((tetrahydro-2H-pyran-4-yl)amino)pyrazine-2-carboxamide (57 mg, 0.10 mmol), piperidine (34 mg, 0.40 mmol), anhydrous cesium fluoride (45 mg, 0.30 mmol) and NMP (5 mL) were added into a 10-mL microwave reactor. The mixture was heated to 180° C. and stirred for 8 h. After the completion of the reaction as indicated by LC-MS, the mixture was cooled and purified by column chromatography to give a product (32 mg, 57.4% yield).



1H NMR (400 MHz, CDCl3) δ: 10.57 (s, 1H), 7.55-7.48 (m, 2H), 6.90-6.82 (m, 2H), 5.51 (d, J=7.3 Hz, 1H), 5.06 (s, 1H), 4.13-4.04 (m, 1H), 4.02-3.96 (m, 2H), 3.64 (d, J=11.7 Hz, 2H), 3.55 (td, J=11.5, 2.3 Hz, 2H), 2.87 (t, J=5.3 Hz, 4H), 2.71-2.58 (m, 5H), 2.48 (s, 3H), 2.36 (t, J=11.4 Hz, 1H), 2.29 (s, 3H), 2.06 (d, J=13.1 Hz, 2H), 1.93 (d, J=12.3 Hz, 2H), 1.73-1.52 (m, 12H); MS (ESI): 578 [M+H]+.


EXAMPLES 1
Synthesis of Compounds 1-645

The target compounds 1-18, compounds 20-115, compounds 117-135 and compounds 140-645 in Table 2 were obtained by using the synthesis method A, the synthesis method B or the synthesis method C with different starting materials.


The LC-MS analysis process is as follows:


Instrument: Agilent 6125B


Chromatographic column: Core-shell 2.7 μm 4.3×50 mm


Column temperature: 30° C.


Wavelength: 254 nm/214 nm


Mobile phase A: H2O (0.1% formic acid)


Mobile phase B: acetonitrile (0.1% formic acid)


Gradient:













TABLE 1






Time
Flow rate
Mobile phase
Mobile phase



(min)
(mL/min)
B %
A %




















0
2
5
95



0.1
2
5
95



2.2
2
95
5



2.7
2
95
5



2.71
2
5
95



3.2
2
5
95




















TABLE 2











Retention






time in



Structure of
Synthesis
MS
LC-MS


Compound
compound
method
(M + H)+
(min)





 1


embedded image


A
571
1.409





 2


embedded image


B
571
1.278





 3


embedded image


B
556
1.597





 4


embedded image


B
585
1.198





 5


embedded image


A
563
1.507





 6


embedded image


B
564
1.649





 7


embedded image


A
584
1.186





 8


embedded image


A
585
1.434





 9


embedded image


A
555
1.464





 10


embedded image


A
515
1.463





 11


embedded image


A
529
1.489





 12


embedded image


B
572
1.461





 13


embedded image


A
501
1.350





 14


embedded image


B
530
1.521





 15


embedded image


A
555
1.560





 16


embedded image


B
558
1.430





 17


embedded image


A
541
1.542





 18


embedded image


B
558
1.450





 20


embedded image


B
571
1.310





 21


embedded image


A
559
1.350





 22


embedded image


A
573
1.337





 23


embedded image


A
585
1.356





 24


embedded image


A
585
1.338





 25


embedded image


B
570
1.551





 26


embedded image


A
531






 27


embedded image


A
607
1.325





 28


embedded image


A
558
1.147





 29


embedded image


A
557
1.289





 30


embedded image


A
541
1.491





 31


embedded image


A
557
1.325





 32


embedded image


A
557
1.310





 33


embedded image


A
557
1.389





 34


embedded image


A
571
1.358





 35


embedded image


A
585
1.425





 36


embedded image


A
531
1.332





 37


embedded image


A
572
1.122





 38


embedded image


A
571
1.475





 39


embedded image


A
572
1.104





 40


embedded image


A
575
1.244





 41


embedded image


A
586






 42


embedded image


A
601
1.457





 43


embedded image


A
587
1.378





 44


embedded image


A
649
1.396





 45


embedded image


A
601
1.479





 46


embedded image


A
649
1.402





 47


embedded image


A
596
1.401





 48


embedded image


A
619
1.342





 49


embedded image


A
575
1.294





 50


embedded image


A
575
1.268





 51


embedded image


A
601
1.407





 52


embedded image


A
596






 53


embedded image


A
596
1.368





 54


embedded image


A
593
1.272





 55


embedded image


A
561
1.254





 56


embedded image


A
586
1.094





 57


embedded image


A
561
1.199





 58


embedded image


A
602






 59


embedded image


A
516
1.523





 60


embedded image


A
589






 61


embedded image


A
605






 62


embedded image


A
589
1.400





 63


embedded image


A
605
1.423





 64


embedded image


A
589
1.438





 65


embedded image


A
605
1.532





 66


embedded image


A
557






 67


embedded image


A
602






 68


embedded image


A
562
1.047





 69


embedded image


A
561
1.331





 70


embedded image


A
557
1.350





 71


embedded image


A
601
1.260





 72


embedded image


A
573
1.236





 73


embedded image


A
602
1.137





 74


embedded image


A
586






 75


embedded image


A
626






 76


embedded image


A
626






 77


embedded image


A
626






 78


embedded image


A
614






 79


embedded image


A
614






 80


embedded image


A
614






 81


embedded image


A
614






 82


embedded image


A
621
1.370





 83


embedded image


A
602
1.058





 84


embedded image


A
601
1.241





 85


embedded image


A
614
1.235





 86


embedded image


A
614
1.268





 87


embedded image


A
614
1.292





 88


embedded image


A
578
1.272





 89


embedded image


A
615
1.396





 90


embedded image


A
664
1.312





 91


embedded image


A
561
1.332





 92


embedded image


A
586
1.204





 93


embedded image


A
577
1.350





 94


embedded image


A
577
1.399





 95


embedded image


A
586
1.220





 96


embedded image


A
587
1.225





 97


embedded image


A
574
1.313





 98


embedded image


A
586
1.295





 99


embedded image


A
587
1.336





100


embedded image


A
628
1.314





101


embedded image


A
621
1.446





102


embedded image


A
590
1.058





103


embedded image


A
590
1.270





104


embedded image


A
615
1.398





105


embedded image


A
621
1.393





106


embedded image


A
602
1.194





107


embedded image


A
664
1.296





108


embedded image


A
586
1.109





109


embedded image


A
576
1.084





110


embedded image


A
575
1.159





111


embedded image


A
575
1.308





112


embedded image


A
601
1.363





113


embedded image


A
601
1.456





114


embedded image


A
586
1.226





115


embedded image


A
599
1.491





117


embedded image


A
572
1.107





118


embedded image


A
489
1.201





119


embedded image


A
391
1.499





120


embedded image


A
503
1.156





121


embedded image


A
488
1.219





122


embedded image


A
590
1.222





123


embedded image


A
490
1.114





124


embedded image


A
434
1.232





125


embedded image


A
571
1.387





126


embedded image


A
591
1.344





127


embedded image


A
543
0.982





128


embedded image


A
557
1.192





129


embedded image


A
529






130


embedded image


A
529






131


embedded image


B
601
1.138





132


embedded image


B
601
1.140





133


embedded image


A
571
1.371





134


embedded image


A
571






135


embedded image


A
571
1.397





140


embedded image


A
585
1.443





141


embedded image


A
585
1.401





142


embedded image


A
585
1.443





143


embedded image


A
585
1.436





144


embedded image


A
585
1.389





145


embedded image


A
589






146


embedded image


A
612






147


embedded image


A
504






148


embedded image


A
503
1.204





149


embedded image


A
626






150


embedded image


A
626






151


embedded image


A
503






152


embedded image


A
504






153


embedded image


A
603






154


embedded image


A
600






155


embedded image


A
626






156


embedded image


A
518






157


embedded image


A
517






158


embedded image


A
640






159


embedded image


A
640






160


embedded image


A
603






161


embedded image


A
600
1.181





162


embedded image


A
626






163


embedded image


A
518






164


embedded image


A
517






165


embedded image


A
640






166


embedded image


A
640






167


embedded image


A
617






168


embedded image


A
614






169


embedded image


A
640






170


embedded image


A
532






171


embedded image


A
531






172


embedded image


A
654






173


embedded image


A
654






174


embedded image


A
478
1.436





175


embedded image


A
479






176


embedded image


A
578






177


embedded image


A
575
1.439





178


embedded image


A
601






179


embedded image


A
493






180


embedded image


A
492






181


embedded image


A
615






182


embedded image


A
615






183


embedded image


A
592






184


embedded image


A
589
1.398





185


embedded image


A
615






186


embedded image


A
507






187


embedded image


A
506






188


embedded image


A
629






189


embedded image


A
629






190


embedded image


A
492






191


embedded image


A
493






192


embedded image


A
592






193


embedded image


A
589






194


embedded image


A
615






195


embedded image


A
507






196


embedded image


A
506






197


embedded image


A
629






198


embedded image


A
629






199


embedded image


A
606






200


embedded image


A
603






201


embedded image


A
629






202


embedded image


A
521






203


embedded image


A
520






204


embedded image


A
643






205


embedded image


A
643






206


embedded image


A
575






207


embedded image


A
598






208


embedded image


A
490






209


embedded image


A
489






210


embedded image


A
612






211


embedded image


A
612






212


embedded image


A
589






213


embedded image


A
586
1.580





214


embedded image


A
612






215


embedded image


A
504






216


embedded image


A
503






217


embedded image


A
626






218


embedded image


A
626






219


embedded image


A
603






220


embedded image


A
600






221


embedded image










222


embedded image


A
518






223


embedded image


A
517






224


embedded image


A
640






225


embedded image


A
640






226


embedded image


A
605






227


embedded image


A
602






228


embedded image


A
628






229


embedded image


A
520






230


embedded image


A
519






231


embedded image


A
642






232


embedded image


A
642






233


embedded image


A
619






234


embedded image


A
616






235


embedded image


A
642






236


embedded image


A
534






237


embedded image


A
533






238


embedded image


A
656






239


embedded image


A
656






240


embedded image


A
633






241


embedded image


A
630






242


embedded image


A
656






243


embedded image


A
548






244


embedded image


A
547






245


embedded image


A
670






246


embedded image


A
670






247


embedded image


A
598






248


embedded image


A
624






249


embedded image


A
612






250


embedded image


A
626






251


embedded image


A
516






252


embedded image


A
515






253


embedded image


A
638






254


embedded image


A
638






255


embedded image


A
598






256


embedded image


A
624






257


embedded image


A
612






258


embedded image


A
626






259


embedded image


A
516






260


embedded image


A
515






261


embedded image


A
638






262


embedded image


A
638






263


embedded image


A
598






264


embedded image


A
624






265


embedded image


A
612






266


embedded image


A
626






267


embedded image


A
516






268


embedded image


A
515






269


embedded image


A
638






270


embedded image


A
638






271


embedded image


A
612






272


embedded image


A
638






273


embedded image


A
626






274


embedded image


A
640






275


embedded image


A
530






276


embedded image


A
529






277


embedded image


A
652






278


embedded image


A
652






279


embedded image


A
612






280


embedded image


A
638






281


embedded image


A
626






282


embedded image


A
640






283


embedded image


A
530






284


embedded image


A
529






285


embedded image


A
652






286


embedded image


A
652






287


embedded image


A
628






288


embedded image


A
654






289


embedded image


A
642






290


embedded image


A
656






291


embedded image


A
546






292


embedded image


A
545






293


embedded image


A
668






294


embedded image


A
668






295


embedded image


A
628






296


embedded image


A
654






297


embedded image


A
642






298


embedded image


A
656






299


embedded image


A
546






300


embedded image


A
545






301


embedded image


A
668






302


embedded image


A
668






303


embedded image


A
628






304


embedded image


A
654






305


embedded image


A
642






306


embedded image


A
656






307


embedded image


A
546






308


embedded image


A
545






309


embedded image


A
668






310


embedded image


A
668






311


embedded image


A
642






312


embedded image


A
668






313


embedded image


A
656






314


embedded image


A
670






315


embedded image


A
560






316


embedded image


A
559






317


embedded image


A
682






318


embedded image


A
682






319


embedded image


A
642






320


embedded image


A
668






321


embedded image


A
656






322


embedded image


A
670






323


embedded image


A
560






324


embedded image


A
559






325


embedded image


A
682






326


embedded image


A
682






327


embedded image


A
601






328


embedded image


A
615






329


embedded image


A
505






330


embedded image


A
504






331


embedded image


A
601






332


embedded image


A
615






333


embedded image


A
505






334


embedded image


A
504






335


embedded image


A
601






336


embedded image


A
615






337


embedded image


A
505






338


embedded image


A
504






339


embedded image


A
615






340


embedded image


A
629






341


embedded image


A
519






342


embedded image


A
518






343


embedded image


A
615






344


embedded image


A
629






345


embedded image


A
519






346


embedded image


A
518






347


embedded image


A
615






348


embedded image


A
629






349


embedded image


A
519






350


embedded image


A
518






351


embedded image


A
615






352


embedded image


A
629






353


embedded image


A
519






354


embedded image


A
518






355


embedded image


A
615






356


embedded image


A
629






357


embedded image


A
519






358


embedded image


A
518






359


embedded image


A
629






360


embedded image


A
643






361


embedded image


A
533






362


embedded image


A
532






363


embedded image


A
629






364


embedded image


A
643






365


embedded image


A
533






366


embedded image


A
532






367


embedded image


A
612






368


embedded image


A
626






369


embedded image


A
516






370


embedded image


A
515






371


embedded image


A
612






372


embedded image


A
626






373


embedded image


A
516






374


embedded image


A
515






375


embedded image


A
612






376


embedded image


A
626






377


embedded image


A
516






378


embedded image


A
515






379


embedded image


A
626






380


embedded image


A
640






381


embedded image


A
530






382


embedded image


A
529






383


embedded image


A
626






384


embedded image


A
640






385


embedded image


A
530






386


embedded image


A
529






387


embedded image


A
626






388


embedded image


A
640






389


embedded image


A
530






390


embedded image


A
529






391


embedded image


A
626






392


embedded image


A
640






393


embedded image


A
530






394


embedded image


A
529






395


embedded image


A
626






396


embedded image


A
640






397


embedded image


A
530






398


embedded image


A
529






399


embedded image


A
640






400


embedded image


A
654






401


embedded image


A
544






402


embedded image


A
543






403


embedded image


A
640






404


embedded image


A
654






405


embedded image


A
544






406


embedded image


A
543






407


embedded image


A
573






408


embedded image


A
573






409


embedded image


A
586






410


embedded image


A
602
1.534





411


embedded image


A
606






412


embedded image


A
590






413


embedded image


A
586






414


embedded image


A
586






415


embedded image


A
606






416


embedded image


A
590






417


embedded image


A
591
1.347





418


embedded image


A
627






419


embedded image


A
645
1.608





420


embedded image


A
603
1.516





421


embedded image


A
601
1.491





422


embedded image


A
605






423


embedded image


A
641






424


embedded image


A
659






425


embedded image


A
617






426


embedded image


A
615






427


embedded image


A
617






428


embedded image


A
653






429


embedded image


A
671






430


embedded image


A
629






431


embedded image


A
627






432


embedded image


A
631






433


embedded image


A
667






434


embedded image


A
685






435


embedded image


A
643






436


embedded image


A
641






437


embedded image


A
617






438


embedded image


A
653






439


embedded image


A
671






440


embedded image


A
629






441


embedded image


A
627






442


embedded image


A
631






443


embedded image


A
667






444


embedded image


A
685






445


embedded image


A
643






446


embedded image


A
641






447


embedded image


A
594






448


embedded image


A
608






449


embedded image


A
592






450


embedded image


A
592






451


embedded image


A
606






452


embedded image


A
606






453


embedded image


A
608






454


embedded image


A
608






455


embedded image


A
606






456


embedded image


A
606






457


embedded image


A
620






458


embedded image


A
620






459


embedded image


A
622






460


embedded image


A
622






461


embedded image


A
592






462


embedded image


A
592






463


embedded image


A
606






464


embedded image


A
606






465


embedded image


A
608






466


embedded image


A
608






467


embedded image


A
606






468


embedded image


A
606






469


embedded image


A
620






470


embedded image


A
620






471


embedded image


A
622






472


embedded image


A
622






473


embedded image


A
576






474


embedded image


A
576






475


embedded image


A
590






476


embedded image


A
590






477


embedded image


A
592






478


embedded image


A
592






479


embedded image


A
590






480


embedded image


A
590






481


embedded image


A
604






482


embedded image


A
604






483


embedded image


A
606






484


embedded image


A
606






485


embedded image


A
576






486


embedded image


A
576






487


embedded image


A
590






488


embedded image


A
590






489


embedded image


A
592






490


embedded image


A
592






491


embedded image


A
590






492


embedded image


A
590






493


embedded image


A
604






494


embedded image


A
604






495


embedded image


A
606






496


embedded image


A
606






497


embedded image


A
575






498


embedded image


A
589






499


embedded image


A
589






500


embedded image


A
603






501


embedded image


A
591






502


embedded image


A
605






503


embedded image


A
601
1.384





504


embedded image


A
603
1.320





505


embedded image


A
615






506


embedded image


A
617






507


embedded image


A
639






508


embedded image


A
657






509


embedded image


A
653






510


embedded image


A
671






511


embedded image


A
610
1.357





512


embedded image


A
611
1.235





513


embedded image


A
624
1.459





514


embedded image


A
625
1.337





515


embedded image


A
638
1.465





516


embedded image


A
639
1.325





517


embedded image


A
640






518


embedded image


A
641






519


embedded image


A
628
1.505





520


embedded image


A
629






521


embedded image


A
568
1.439





522


embedded image


A
566
1.473





523


embedded image


A
580






524


embedded image


A
594






525


embedded image


A
596
1.288





526


embedded image


A
624
1.356





527


embedded image


A
622
1.437





528


embedded image


A
598
1.372





529


embedded image


A
610
1.469





530


embedded image


A
586






531


embedded image


A
584






532


embedded image


A
598






533


embedded image


A
612






534


embedded image


A
614






535


embedded image


A
642






536


embedded image


A
640






537


embedded image


A
616






538


embedded image


A
611
1.168





539


embedded image


A
611






540


embedded image


A
611
1.232





541


embedded image


A
612






542


embedded image


A
612






543


embedded image


A
612






544


embedded image


A
629






545


embedded image


A
629






546


embedded image


A
629






547


embedded image


A
630






548


embedded image


A
630






549


embedded image


A
630






550


embedded image


A
569






551


embedded image


A
569






552


embedded image


A
569






553


embedded image


A
570






554


embedded image


A
570






555


embedded image


A
570






556


embedded image


A
567






557


embedded image


A
567






558


embedded image


A
567






559


embedded image


A
568






560


embedded image


A
568






561


embedded image


A
568






562


embedded image


A
625






563


embedded image


A
625






564


embedded image


A
625






565


embedded image


A
626






566


embedded image


A
626






567


embedded image


A
626






568


embedded image


A
597






569


embedded image


A
597






570


embedded image


A
597






571


embedded image


A
598






572


embedded image


A
598






573


embedded image


A
598






574


embedded image


A
623






575


embedded image


A
623






576


embedded image


A
623






577


embedded image


A
624






578


embedded image


A
624






579


embedded image


A
624






580


embedded image


A
628






581


embedded image


A
628






582


embedded image


A
628






583


embedded image


A
628






584


embedded image


A
628






585


embedded image


A
640






586


embedded image


A
640






587


embedded image


A
640






588


embedded image


A
640






589


embedded image


A
640






590


embedded image


A
612






591


embedded image


A
570






592


embedded image


A
568






593


embedded image


A
624






594


embedded image


A
582
1.325





595


embedded image


A
600






596


embedded image


A
583






597


embedded image


A
583






598


embedded image


A
583






599


embedded image


A
583






600


embedded image


A
584






601


embedded image


A
584






602


embedded image


A
584






603


embedded image


A
600






604


embedded image


A
600






605


embedded image


A
600






606


embedded image


A
600






607


embedded image


A
600






608


embedded image


A
584






609


embedded image


A
569






610


embedded image


A
567






611


embedded image


A
530
1.105





612


embedded image


A
587
1.181





613


embedded image


A
587
1.347





614


embedded image


A
547
1.294





615


embedded image


A
547
1.292





616


embedded image


A
519
1.340





617


embedded image


A
561
1.337





618


embedded image


A
561
1.297





619


embedded image


A
579






620


embedded image


A
565






621


embedded image


A
565






622


embedded image


A
537






623


embedded image


A
579






624


embedded image


A
579






625


embedded image


A
517






626


embedded image


A
535






627


embedded image


A
573
1.455





628


embedded image


A
591






629


embedded image


A
623






630


embedded image


A
641






631


embedded image


A
528






632


embedded image


A
546






633


embedded image


A
584






634


embedded image


A
602






635


embedded image


A
548






636


embedded image


A
544






637


embedded image


A
562






638


embedded image


A
542






639


embedded image


A
560






640


embedded image


A
556






641


embedded image


A
574






642


embedded image


A
558






643


embedded image


A
576






644


embedded image


A
558






645


embedded image


A
576

















TABLE 3







NMR data of some of the compounds in Table 2








Compound
NMR











1

1H NMR (400 MHz, DMSO-d6) δ 11.06 (s, 1H), 7.73-7.67 (m, 2H), 7.60 (s, 1H),




7.51-7.46 (m, 2H), 7.46-7.40 (m, 2H), 7.37-7.31 (m, 1H), 7.27 (d, J = 2.9 Hz, 1H), 6.92-6.85 (m, 2H), 6.62



(d, J = 7.4 Hz, 1H), 4.11-4.01 (m, 1H), 3.90-3.82 (m, 2H), 3.61 (d, J = 11.9 Hz, 2H), 3.43-3.34 (m, 2H),



2.62-2.55 (m, 2H), 2.48 (m, 4H), 2.38-2.19 (m, 5H), 2.12 (s, 3H), 1.82 (t, J = 11.7 Hz, 4H), 1.61-1.44 (m,



4H).


6

1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 8.10 (d, J = 7.6 Hz, 2H), 7.70




(s, 1H), 7.48 (t, J = 7.6 Hz, 3H), 7.42-7.32 (m, 2H), 7.22 (d, J = 7.9 Hz, 2H), 7.11 (d, J = 8.8 Hz,



2H), 6.83 (d, J = 8.0 Hz, 1H), 6.60 (d, J = 8.7 Hz, 2H), 5.41 (s, 1H), 3.58 (d, J = 12.0 Hz, 2H), 2.77-



2.36 (m, 11H), 2.33 (s, 3H), 1.94 (m, 2H), 1.69 (m, 2H).


8

1H NMR (400 MHz, CDCl3) δ 10.59 (s, 1H), 7.60-7.55 (m, 2H), 7.49 (t, J =




7.5 Hz, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 5.19 (d,



J = 6.7 Hz, 1H), 5.15 (s, 1H), 4.26-4.18 (m, 1H), 3.71 (d, J = 12.0 Hz, 2H), 3.15 (s, 1H), 2.78-2.59 (m,



6H), 2.52 (s, 3H), 2.40 (s, 2H), 2.32 (s, 3H), 2.24-2.13 (m, 1H), 1.93 (d, J = 12.4 Hz, 2H), 1.82-1.65 (m,



7H), 1.08 (s, 3H).


10

1H NMR (400 MHz, CDCl3) δ 10.66 (s, 1H), 7.64-7.56 (m, 4H), 7.50 (s, 1H),




7.43-7.38 (m, 2H), 7.34-7.28 (m, 1H), 6.96-6.91 (m, 2H), 5.19 (s, 1H), 3.69 (d, J = 11.9 Hz, 2H), 2.88 (s,



6H), 2.74-2.36 (m, 11H), 2.32 (s, 3H), 1.95 (d, J = 12.4 Hz, 2H), 1.74 (m, 2H).


11

1H NMR (400 MHz, CDCl3) δ 10.82 (s, 1H), 7.65-7.55 (m, 4H), 7.51-7.36 (m,




4H), 6.96-6.89 (m, 2H), 5.13 (d, J = 7.1 Hz, 2H), 4.26 (dt, J = 13.2, 6.6 Hz, 1H), 3.69 (d, J = 11.9



Hz, 2H), 2.75-2.33 (m, 11H), 2.31 (s, 3H), 1.95 (d, J = 11.8 Hz, 2H), 1.74 (m, 2H).


16

1H NMR (400 MHz, CDCl3) δ 10.79 (s, 1H), 7.60-7.53 (m, 4H), 7.51-7.44 (m,




3H), 7.43-7.37 (m, 1H), 6.95-6.90 (m, 2H), 5.37 (d, J = 6.4 Hz, 1H), 5.19 (s, 1H), 4.63 (d, J = 9.9 Hz,



1H), 3.97-3.87 (m, 2H), 3.81 (td, J = 8.5, 5.8 Hz, 1H), 3.75-3.66 (m, 3H), 2.76-2.32 (m, 11H), 2.30 (s,



3H), 1.95 (d, J = 12.3 Hz, 2H), 1.83 m, 1H), 1.71 (m, 3H).


24

1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 7.60 (dd, J = 8.8, 6.7 Hz, 4H),




7.48 (t, J = 7.6 Hz, 3H), 7.40 (t, J = 7.3 Hz, 1H), 6.90 (d, J = 8.9 Hz, 2H), 5.30 (d, J = 7.1 Hz,



1H), 5.14 (s, 1H), 4.00 (d, J = 17.1 Hz, 2H), 3.67 (d, J = 12.0 Hz, 2H), 2.69 (t, J = 11.5 Hz, 6H),



2.53 (s, 4H), 2.44-2.36 (m, 1H), 2.32 (s, 3H), 1.95 (d, J = 12.4 Hz, 2H), 1.84 (d, J = 10.1 Hz, 2H),



1.77-1.68 (m, 8H).


28

1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 7.64-7.57 (m, 4H), 7.47 (t, J =




7.5 Hz, 3H), 7.41-7.35 (m, 1H), 6.98-6.89 (m, 2H), 6.02 (t, J = 4.6 Hz, 1H), 5.15 (s, 1H), 3.68 (d, J =



11.9 Hz, 2H), 3.53 (q, J = 5.8 Hz, 2H), 2.75-2.60 (m, 6H), 2.51 (t, J = 6.1 Hz, 6H), 2.42-2.33 (m, 1H),



2.31 (s, 3H), 2.21 (s, 6H), 1.94 (d, J = 11.8 Hz, 2H), 1.67 (d, J = 9.1 Hz, 2H).


30

1H NMR (400 MHz, CDCl3) δ 10.80 (s, 1H), 7.65-7.57 (m, 4H), 7.52-7.44 (m,




3H), 7.43-7.38 (m, 1H), 6.97-6.91 (m, 2H), 5.42 (d, J = 6.8 Hz, 1H), 5.14 (s, 1H), 4.49 (p, J = 7.6 Hz,



1H), 3.70 (d, J = 11.8 Hz, 2H), 2.77-2.63 (m, 6H), 2.52 (s, 4H), 2.47-2.36 (m, 3H), 2.32 (s, 3H), 1.96 (d,



J = 12.5 Hz, 2H), 1.90-1.74 (m, 6H).


32

1H NMR (400 MHz, CDCl3) δ 10.70 (s, 1H), 7.62-7.54 (m, 4H), 7.49 (dd, J =




8.4, 6.8 Hz, 3H), 7.41 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.9 Hz, 2H), 5.38 (d, J = 5.1 Hz, 1H), 5.17



(s, 1H), 4.50 (q, J = 6.2, 5.2 Hz, 2H), 3.72 (d, J = 12.4 Hz, 2H), 2.72 (dd, J = 24.4, 12.2 Hz, 6H),



2.57 (d, J = 33.4 Hz, 4H), 2.45-2.33 (m, 4H), 2.32 (s, 3H), 2.25 (dt, J = 13.3, 6.6 Hz, 3H), 1.94 (d,



J = 12.2 Hz, 2H).


37

1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 8.85 (d, J = 2.2 Hz, 1H), 8.62




(dd, J = 4.9, 1.7 Hz, 1H), 7.89 (dt, J = 8.0, 2.0 Hz, 1H), 7.54 (d, J = 8.9 Hz, 2H), 7.40 (dd, J =



7.9, 4.7 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 5.23 (s, 1H), 5.00 (d, J = 7.1 Hz, 1H), 4.14 (q, J = 8.1,



6.2 Hz, 1H), 4.03-3.92 (m, 2H), 3.67 (d, J = 11.8 Hz, 2H), 3.50 (td, J = 11.6, 2.1 Hz, 2H), 2.78-2.42 (m,



10H), 2.41-2.33 (m, 1H), 2.30 (s, 3H), 2.03 (d, J = 12.7 Hz, 2H), 1.94 (d, J = 12.4 Hz, 2H), 1.70 (tt,



J = 13.2, 6.6 Hz, 2H), 1.49 (qd, J = 12.1, 4.3 Hz, 2H).


39

1H NMR (400 MHz, CDCl3) δ 10.86 (s, 1H), 8.71 (d, J = 5.1 Hz, 2H), 7.55




(t, J = 6.8 Hz, 4H), 7.42 (s, 1H), 6.91 (d, J = 8.8 Hz, 2H), 5.22 (s, 1H), 5.14 (d, J = 7.0 Hz, 1H),



4.17 (m, 1H), 4.01 (d, J = 11.7 Hz, 2H), 3.69 (d, J = 9.2 Hz, 2H), 3.52 (t, J = 11.6 Hz, 2H), 2.69 (m,



11H), 2.38 (s, 3H), 2.09-1.96 (m, 4H), 1.76 - 1.64 (m, 4H).


40

1H NMR (400 MHz, CDCl3) δ 10.74 (s, 1H), 7.75 (s, 1H), 7.65 (s, 1H), 7.55




(d, J = 8.8 Hz, 2H), 7.42 (s, 1H), 6.90 (d, J = 8.9 Hz, 2H), 5.17 (s, 1H), 5.11 (d, J = 7.0 Hz, 1H),



4.19-4.08 (m, 1H), 3.99 (m, 5H), 3.67 (d, J = 11.9 Hz, 2H), 3.54 (dd, J = 12.4, 10.3 Hz, 2H), 2.78-2.35



(m, 11H), 2.33 (s, 3H), 2.06 (t, J = 11.3 Hz, 2H), 1.96 (d, J = 12.3 Hz, 2H), 1.72 (m, 2H), 1.53 (m, 2H).


43

1H NMR (400 MHz, CDCl3) δ 10.75 (s, 1H), 7.55 (d, J = 8.7 Hz, 2H), 7.47




(s, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.14-7.10 (m, 1H), 7.05 (s, 1H), 6.88 (t, J = 9.0 Hz, 3H), 5.27 (d, J =



7.1 Hz, 1H), 5.18 (s, 1H), 4.13 (dd, J = 10.2, 3.8 Hz, 1H), 3.98 (d, J = 11.8 Hz, 2H), 3.67 (d, J = 11.9



Hz, 2H), 3.51 (t, J = 11.4 Hz, 2H), 2.73-2.35 (m, 11H), 2.31 (s, 3H), 2.04 (d, J = 8.3 Hz, 2H), 1.95 (d,



J = 12.4 Hz, 2H), 1.72 (m, 2H), 1.52-1.48 (m, 2H).


44

1H NMR (400 MHz, CDCl3) δ 10.85 (s, 1H), 8.21 (d, J = 2.1 Hz, 1H), 7.96 (d,




J = 7.8 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.56 (d, J = 8.8 Hz, 2H), 7.40



(s, 1H), 6.91 (d, J = 8.8 Hz, 2H), 5.22 (s, 1H), 5.03 (d, J = 6.9 Hz, 1H), 4.19-4.12 (m, 1H), 3.99 (d, J =



11.7 Hz, 2H), 3.69 (d, J = 11.8 Hz, 2H), 3.52 (t, J = 11.4 Hz, 2H), 3.11 (s, 3H), 2.76-2.38 (m, 11H), 2.35



(s, 3H), 2.01 (m, 4H), 1.74 (m, 2H), 1.50 (m, 2H).


49

1H NMR (400 MHz, CDCl3) δ 10.82 (s, 1H), 8.76 (d, J = 7.1 Hz, 1H), 7.65-7.57




(m, 2H), 7.54-7.44 (m, 1H), 7.37 (d, J = 2.3 Hz, 1H), 6.94-6.86 (m, 2H), 6.81 (d, J = 2.3 Hz, 1H), 5.24 (s,



1H), 4.27 (ddt, J = 14.3, 10.1, 5.2 Hz, 1H), 4.04 (dt, J = 11.9, 4.0 Hz, 2H), 3.94 (s, 3H), 3.71-3.56 (m, 4H),



2.76-2.34 (m, 11H), 2.32 (s, 3H), 2.14 (dd, J = 13.1, 3.2 Hz, 2H), 1.95 (m, 2H), 1.71 (m, 4H).


53

1H NMR (400 MHz, CDCl3) δ 10.87 (s, 1H), 7.79-7.69 (m, 4H), 7.59-7.53 (m, 2H),




7.40 (s, 1H), 6.90 (d, J = 8.8 Hz, 2H), 5.23 (s, 1H), 5.08-5.01 (m, 1H), 4.23-4.09 (m, 1H), 4.00 (d, J = 11.6



Hz, 2H), 3.69 (d, J = 12.1 Hz, 2H), 3.58-3.46 (m, 3H), 2.95 (s, 8H), 2.72 (t, J = 12.0 Hz, 3H), 2.56 (s, 3H),



2.05 (d, J = 14.1 Hz, 4H), 1.52 (td, J = 11.5, 7.3 Hz, 4H).


55 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 13.05 (s, 1H), 11.21 (s, 1H), 8.90 (s, 1H), 8.00-




7.92 (m, 1H), 7.81 (d, J = 2.4 Hz, 1H), 7.55-7.47 (m, 2H), 7.31 (d, J = 2.8 Hz, 1H), 7.21 (d, J = 2.4 Hz,



1H), 6.89 (d, J = 8.9 Hz, 2H), 6.54 (s, 4H), 4.11 (m, J = 6.2 Hz, 1H), 3.89 (dt, J = 11.5, 3.7 Hz, 2H), 3.62



(d, J = 11.8 Hz, 2H), 3.49 (td, J = 11.5, 2.4 Hz, 2H), 2.88-2.52 (m, 9H), 2.42 (s, 3H), 2.10-1.99 (m, 2H),



1.84 (d, J = 11.1 Hz, 2H), 1.61-1.40 (m, 4H).


59

1H NMR (400 MHz, CDCl3) δ 10.79 (s, 1H), 7.61-7.55 (m, 4H), 7.49 (t, J = 7.6




Hz, 3H), 7.41 (t, J = 7.3 Hz, 1H), 6.91 (d, J = 8.9 Hz, 2H), 5.22-5.12 (m, 2H), 4.19-4.11 (m, 1H), 3.99 (d, J =



11.8 Hz, 2H), 3.68 (d, J = 11.9 Hz, 2H), 3.58-3.47 (m, 2H), 2.71 (t, J = 12.0 Hz, 2H), 2.39 (s, 7H), 2.08-1.97



(m, 4H), 1.76-1.70 (m, 2H), 1.51 (m, 2H).


64

1H NMR (400 MHz, CDCl3) δ 10.77 (s, 1H), 7.55 (dd, J = 8.7, 5.4 Hz, 4H), 7.42




(s, 1H), 7.18 (t, J = 8.6 Hz, 2H), 6.94-6.87 (m, 2H), 5.16 (s, 1H), 5.04 (d, J = 7.1 Hz, 1H), 4.21-4.09 (m, 1H),



3.99 (d, J = 11.5 Hz, 2H), 3.68 (d, J = 12.0 Hz, 2H), 3.57-3.48 (m, 2H), 2.77-2.63 (m, 6H), 2.52 (s, 4H), 2.38



(d, J = 11.7 Hz, 1H), 2.32 (s, 3H), 2.05 (d, J = 12.5 Hz, 3H), 1.96 (d, J = 12.4 Hz, 2H), 1.78-1.70 (m, 2H),



1.52-1.44 (m, 2H).


65

1H NMR (400 MHz, CDCl3) δ 10.78 (s, 1H), 7.59-7.50 (m, 4H), 7.48-7.43 (m, 2H),




7.42 (s, 1H), 6.90 (d, J = 8.9 Hz, 2H), 5.19 (s, 1H), 5.05 (d, J = 7.1 Hz, 1H), 4.19-4.07 (m, 1H), 4.04-3.95



(m, 2H), 3.68 (d, J = 11.8 Hz, 2H), 3.52 (td, J = 11.6, 2.2 Hz, 2H), 2.76-2.59 (m, 6H), 2.50 (s, 4H), 2.38 (t,



J = 11.5 Hz, 1H), 2.30 (s, 3H), 2.08-2.01 (m, 2H), 1.96 (d, J = 12.4 Hz, 2H), 1.77-1.69 (m, 2H), 1.56-1.45



(m, 2H).


67

1H NMR (400 MHz, CDCl3) δ 10.82 (s, 1H), 8.42 (s, 1H), 8.39 (d, J = 4.8 Hz, 1H),




7.61-7.53 (m, 2H), 7.38 (d, J = 4.8 Hz, 2H), 6.94-6.87 (m, 2H), 5.20 (s, 1H), 4.92 (d, J = 7.3 Hz, 1H), 4.23-



4.12 (m, 1H), 4.04-3.97 (m, 2H), 3.96 (s, 3H), 3.69 (d, J = 11.9 Hz, 2H), 3.53 (td, J = 11.6, 2.2 Hz, 2H), 2.75-



2.36 (m, 11H), 2.32 (s, 3H), 2.04 (d, J = 12.8 Hz, 2H), 1.96 (d, J = 12.5 Hz, 2H), 1.72-1.67 (m, 2H), 1.49 (qd,



J = 11.7,4.3 Hz, 2H).


69 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 11.51 (s, 1H), 7.96 (s, 1H), 7.78 (d, J = 1.8 Hz,




1H), 7.73 (d, J = 8.8 Hz, 2H), 7.48 (s, 3H), 7.26 (d, J = 3.5 Hz, 1H), 7.00 (d, J = 7.2 Hz, 1H), 6.66 (dd, J =



3.5, 1.8 Hz, 1H), 4.17-4.09 (m, 1H), 3.98-3.89 (m, 2H), 3.74 -3.70 (m, 2H) 3.57-3.43 (m, 11H), 3.28 (m, 2H), 2.83



(s, 3H), 2.27 (d, J = 36.8 Hz, 4H), 1.98 (d, J = 12.6 Hz, 2H), 1.67 (qd, J = 12.2, 4.5 Hz, 2H).


87

1H NMR (400 MHz, CDCl3) δ 10.72 (s, 1H), 7.60-7.54 (m, 2H), 7.49 (s, 1H), 7.45




(d, J = 8.5 Hz, 2H), 6.92-6.86 (m, 2H), 6.80 (d, J = 8.5 Hz, 2H), 5.26 (d, J = 7.2 Hz, 1H), 5.19 (s, 1H),



4.20-4.08 (m, 1H), 3.98 (dt, J = 11.7, 3.6 Hz, 2H), 3.67 (d, J = 11.9 Hz, 2H), 3.53 (td, J = 11.5, 2.2 Hz, 2H),



3.02 (s, 6H), 2.79-2.61 (m, 6H), 2.51 (s, 4H), 2.39 (td, J = 11.6, 11.2, 5.6 Hz, 1H), 2.31 (s, 3H), 2.05 (d,



J = 13.0 Hz, 2H), 1.95 (d, J = 12.6 Hz, 2H), 1.71 (qd, J = 12.0, 3.7 Hz, 2H), 1.57-1.43 (m, 2H).


91

1H NMR (400 MHz, CDCl3) δ 10.76 (s, 1H), 7.74 (t, J = 1.2 Hz, 1H), 7.58-7.52




(m, 3H), 7.44 (s, 1H), 6.93-6.87 (m, 2H), 6.74 (dd, J = 1.8, 0.9 Hz, 1H), 5.20 (s, 1H), 5.12 (d, J = 7.0 Hz,



1H), 4.18-4.10 (m, 1H), 4.05-3.97 (m, 2H), 3.68 (d, J = 12.0 Hz, 2H), 3.54 (td, J = 11.5, 2.1 Hz, 2H), 2.78-



2.37 (m, 11H), 2.34 (s, 3H), 2.08 (d, J = 12.9 Hz, 2H), 1.96 (d, J = 12.4 Hz, 2H), 1.70 (m, 2H), 1.57-1.51



(m, 2H).


93

1H NMR (400 MHz, CDCl3) δ 10.79 (s, 1H), 7.59-7.53 (m, 2H), 7.51 (dd, J = 2.9,




1.3 Hz, 1H), 7.48-7.42 (m, 2H), 7.38 (dd, J = 5.0, 1.4 Hz, 1H), 6.92-6.87 (m, 2H), 5.30 (d, J = 7.1 Hz, 1H),



5.20 (s, 1H), 4.15 (ddd, J = 10.9, 8.8, 5.1 Hz, 1H), 4.00 (dt, J = 11.7, 3.5 Hz, 2H), 3.68 (d, J = 12.1 Hz,



2H), 3.54 (td, J = 11.6, 2.2 Hz, 2H), 2.86-2.46 (m, 11H), 2.42 (s, 3H), 2.07 (d, J = 12.9 Hz, 2H), 1.98 (d,



J = 11.7 Hz, 2H), 1.78-1.67 (m, 2H), 1.60-1.49 (m, 2H).


94

1H NMR (400 MHz, CDCl3) δ 10.79 (s, 1H), 7.58-7.53 (m, 2H), 7.44 (s, 1H), 7.37




(dd, J = 5.1, 1.1 Hz, 1H), 7.27 (dd, J = 3.5, 1.0 Hz, 1H), 7.12 (dd, J = 5.1, 3.6 Hz, 1H), 6.93-6.87 (m, 2H),



5.51 (d, J = 7.0 Hz, 1H), 5.24 (s, 1H), 4.22-4.14 (m, 1H), 4.06-3.98 (m, 2H), 3.68 (d, J = 11.9 Hz, 2H), 3.55



(td, J = 11.5, 2.2 Hz, 2H), 2.78-2.36 (m, 11H), 2.34 (s, 3H), 2.09 (d, J = 12.8 Hz, 2H), 1.96 (d, J = 12.4



Hz, 2H), 1.72 (m, 2H), 1.61-1.54 (m, 2H).


101

1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.63 (d,




J = 8.1 Hz, 2H), 7.59-7.53 (m, 2H), 7.43 (s, 1H), 6.94-6.88 (m, 2H), 6.71 (t, J = 56.4 Hz, 1H), 5.22 (s, 1H),



5.10(d, J = 7.1 Hz, 1H), 4.15 (dd, J = 11.0, 4.0 Hz, 1H), 3.99 (dt, J = 12.4, 3.7 Hz, 2H), 3.69 (d, J =



11.9 Hz, 2H), 3.52 (td, J = 11.6, 2.1 Hz, 2H), 2.92-2.57 (m, 11H), 2.45 (d, J = 12.1 Hz, 1H), 2.40 (s, 3H),



2.08-2.00 (m, 4H), 1.73 (dd, J = 12.1, 3.9 Hz, 2H), 1.55-1.46 (m, 2H).


108

1H NMR (400 MHz, CDCl3) δ 10.85 (s, 1H), 8.59 (d, J = 5.1 Hz, 1H), 7.58-7.51




(m, 2H), 7.43 (s, 1H), 7.38 (s, 1H), 7.32 (dd, J = 5.2, 1.7 Hz, 1H), 6.94-6.88 (m, 2H), 5.25 (s, 1H), 5.13 (d,



J = 7.0 Hz, 1H), 4.21-4.10 (m, 1H), 4.01 (dd, J = 11.8, 4.2 Hz, 2H), 3.69 (d, J = 11.9 Hz, 2H), 3.52 (td,



J = 11.6, 2.1 Hz, 2H), 2.75-2.64 (m, 6H), 2.63 (s, 3H), 2.51 (s, 4H), 2.39 (t, J = 11.4 Hz, 1H), 2.31 (s, 3H),



2.10-2.02 (m, 2H), 1.96 (d, J = 12.1 Hz, 2H), 1.75-1.65 (m, 2H), 1.52 (tt, J = 11.5, 5.7 Hz, 2H).


112

1H NMR (400 MHz, CDCl3) δ 10.90 (s, 1H), 7.61-7.56 (m, 2H), 7.53-7.45 (m, 4H),




7.45-7.40 (m, 1H), 6.96 (d, J = 2.3 Hz, 1H), 6.86 (d, J = 8.6 Hz, 1H), 5.22 (d, J = 7.3 Hz, 1H), 5.18 (s,



1H), 4.19 (dd, J = 10.9, 4.0 Hz, 1H), 3.96 (d, J = 11.7 Hz, 2H), 3.89 (s, 3H), 3.51 (t, J = 11.4 Hz, 4H),



2.94-2.49 (m, 11H), 2.43 (s, 3H), 2.08-1.95 (m, 4H), 1.84 (m, 2H), 1.53-1.47 (m, 2H).


113

1H NMR (400 MHz, DMSO-d6) δ 11.18 (s, 1H), 8.25 (d, J = 8.9 Hz, 1H), 7.75-7.68




(m, 2H), 7.55 (s, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.38-7.32 (m, 1H), 7.14 (s, 1H), 6.64-6.56 (m, 2H), 6.47 (dd,



J = 8.9, 2.5 Hz, 1H), 4.14-3.99 (m, 2H), 3.93-3.79 (m, 5H), 3.65 (d, J = 12.1 Hz, 2H), 3.44-3.35 (m, 4H), 2.60



(t, J = 11.6 Hz, 2H), 2.27 (q, J = 11.0, 10.3 Hz, 5H), 2.12 (s, 3H), 1.84 (t, J = 12.8 Hz, 4H), 1.56 (dtd,



J = 36.4, 12.0, 4.1 Hz, 5H).


114

1H NMR (400 MHz, CDCl3) δ 10.94 (s, 1H), 8.73-8.70 (m, 2H), 7.54 (d, J = 5.3




Hz, 2H), 7.51-7.41 (m, 3H), 6.96 (d, J = 8.5 Hz, 1H), 5.23 (s, 1H), 5.14 (d, J = 7.1 Hz, 1H), 4.20 (s, 1H),



4.00 (d, J = 11.6 Hz, 2H), 3.53 (t, J = 11.5 Hz, 2H), 3.16 (d, J = 11.7 Hz, 2H), 2.85-2.57 (m, 11H), 2.39



(s, 3H), 2.31 (s, 3H), 2.07 (d, J = 13.1 Hz, 2H), 1.98 (d, J = 14.9 Hz, 2H), 1.73 (m, 2H), 1.46 (m, 2H).


118 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 11.54 (s, 1H), 8.76 (d, J = 6.8 Hz, 2H), 8.45 (d,




J = 6.2 Hz, 2H), 8.13 (s, 1H), 7.60 (t, J = 9.0 Hz, 4H), 7.02 (d, J = 9.0 Hz, 2H),4.10 (m, 1H) 3.92 (d,



J = 11.3 Hz, 2H), 3.79 (d, J = 13.0 Hz, 2H), 3.15 (d, J = 11.2 Hz, 3H), 3.01 (t, J = 12.4 Hz, 3H), 2.82



(d, J = 4.3 Hz, 3H), 1.92 (d, J = 12.6 Hz, 2H), 1.64-1.56 (m, 2H).


124

1H NMR (400 MHz, CDCl3) δ 10.76 (s, 1H), 8.71 (s, 2H), 7.59-7.48 (m, 4H), 7.42




(s, 1H), 6.77-6.69 (m, 2H), 5.28 (s, 1H), 5.13 (d, J = 7.0 Hz, 1H), 4.20-4.11 (m, 1H), 4.00 (dt, J = 11.7, 3.8



Hz, 2H), 3.52 (td, J = 11.6, 2.1 Hz, 2H), 2.95 (s, 6H), 2.10-2.01 (m, 2H), 1.52 (qd, J = 11.4, 4.4 Hz, 2H).


125

1H NMR (400 MHz, CDCl3) δ 10.83 (s, 1H), 7.65-7.57 (m, 4H), 7.50 (t, J = 7.6




Hz, 3H), 7.41 (t, J = 7.2 Hz, 1H), 6.96-6.89 (m, 2H), 5.41 (d, J = 5.3 Hz, 1H), 5.17 (s, 1H), 4.52-4.45 (m,



1H), 4.05 (p, J = 6.1 Hz, 1H), 3.69 (d, J = 11.8 Hz, 2H), 3.26 (s, 3H), 2.96-2.61 (m, 12H), 2.46 (d, J = 9.2



Hz, 4H), 2.18 (dt, J = 12.5, 6.0 Hz, 2H), 2.01 (d, J = 16.2 Hz, 4H).


126 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 11.24 (s, 1H), 7.76 (d, J = 7.1 Hz, 3H), 7.54




(dd, J = 16.3, 6.7 Hz, 3H), 7.50-7.37 (m, 4H), 7.26 (s, 2H), 4.64-4.56 (m, 1H), 4.38 (qd, J = 13.3, 7.3 Hz,



4H), 3.81-3.44 (m, 10H), 2.99 (s, 2H), 2.83 (s, 3H), 2.22 (s, 2H), 1.99 (t, J = 7.6 Hz, 3H).


131

1H NMR (400 MHz, CDCl3) δ 10.74 (s, 1H), 7.96-7.91 (m, 2H), 7.64 (s, 1H), 7.49




(d, J = 8.9 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 9.0 Hz, 2H), 5.47



(t, J = 6.9 Hz, 1H), 5.37 (s, 1H), 3.71 (d, J = 12.1 Hz, 2H), 3.62 (t, J = 5.4 Hz, 2H), 3.10 (dd, J = 11.0,



6.1 Hz, 1H), 2.87-2.78 (m, 2H), 2.76-2.65 (m, 10H), 2.58 (s, 4H), 2.47-2.30 (m, 6H), 2.06 (d, J = 14.1 Hz, 2H),



1.96 (d, J = 12.7 Hz, 2H), 1.42-1.33 (m, 2H).


132 Hydrochloride

1H NMR (400 MHz, CDCl3) δ 10.74 (s, 1H), 7.96-7.91 (m, 2H), 7.64 (s, 1H), 7.49




(d, J = 8.9 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 9.0 Hz, 2H), 5.47



(t, J = 6.9 Hz, 1H), 5.37 (s, 1H), 3.71 (d, J = 12.1 Hz, 2H), 3.62 (t, J = 5.4 Hz, 2H), 3.10 (dd, J =



11.0, 6.1 Hz, 1H), 2.87-2.78 (m, 2H), 2.76-2.65 (m, 10H), 2.58 (s, 4H), 2.47-2.30 (m, 6H), 2.06 (d, J = 14.1 Hz,



2H), 1.96 (d, J = 12.7 Hz, 2H), 1.42-1.33 (m, 2H).


133 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.26 (s, 1H), 11.11 (s, 1H), 7.58-7.52 (m, 2H),




7.45 (dt, J = 7.6, 1.2 Hz, 1H), 7.39 (t, J = 2.8 Hz, 2H), 7.25 (d, J = 3.2 Hz, 1H), 7.23-7.16 (m, 2H),



6.93-6.87 (m, 2H), 6.54 (s, 2H), 6.39 (ddd, J = 3.0, 2.0, 1.0 Hz, 1H), 6.20 (d, J = 6.4 Hz, 1H), 4.07-3.99 (m,



3H), 3.62 (d, J = 12.0 Hz, 3H), 2.65-2.49 (m, 8H), 2.33 (t, J = 11.3 Hz, 1H), 2.25 (s, 3H), 2.07 (dd, J =



12.2, 5.6 Hz, 1H), 1.84 (d, J = 12.9 Hz, 3H), 1.74-1.67 (m, 1H), 1.58-1.42 (m, 5H).


148 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 11.63 (s, 1H), 10.88 (s, 1H), 8.81-8.75 (m, 2H),




8.53-8.46 (m, 2H), 8.16 (s, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.58 (d, J = 2.5 Hz, 1H), 7.49 (dd, J = 8.5, 2.6



Hz, 1H), 7.05 (d, J = 8.7 Hz, 1H), 4.17 (dd, J = 11.2, 6.7 Hz, 1H), 3.95-3.88 (m, 2H), 3.43 (td, J = 12.2,



11.7, 8.1 Hz, 4H), 3.13 (tt, J = 24.3, 11.8 Hz, 6H), 2.81 (d, J = 4.5 Hz, 3H), 2.30 (s, 3H), 1.92 (d, J =



12.7 Hz, 2H), 1.62 (qd, J = 11.7, 4.3 Hz, 2H).


174 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 11.31 (s, 1H), 10.63 (s, 1H), 8.93 (d, J = 6.6




Hz, 1H), 7.83 (d, J = 2.4 Hz, 1H), 7.64-7.56 (m, 2H), 7.23 (d, J = 2.4 Hz, 1H), 7.03-6.94 (m, 2H), 4.14 (s,



1H), 3.92 (dt, J = 11.7, 3.7 Hz, 2H), 3.75 (m, 2H), 3.55-3.45 (m, 4H), 3.20-3.08 (m, 2H), 3.08-2.98 (m, 2H),



2.81 (d, J = 4.3 Hz, 3H), 2.10-2.01 (m, 2H), 1.60-1.48 (m, 2H).


177 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 13.04 (s, 1H), 11.32 (s, 1H), 8.97 (s, 1H), 7.97




(s, 1H), 7.82 (d, J = 2.5 Hz, 1H), 7.52 (d, J = 2.6 Hz, 1H), 7.38 (dd, J = 8.6, 2.6 Hz, 1H), 7.33 (d, J =



2.8 Hz, 1H), 7.22 (d, J = 2.2 Hz, 1H), 6.95 (d, J = 8.7 Hz, 1H), 6.53 (s, 2H), 4.16 (q, J = 4.5 Hz, 1H),



3.94-3.87 (m, 2H), 3.48-3.46 (m, 4H), 3.02 (d, J = 11.2 Hz, 2H), 2.63-2.48 (m, 8H), 2.32 (d, J = 11.4 Hz,



1H), 2.25 (s, 3H), 2.23 (s, 3H), 2.05 (d, J = 12.7 Hz, 2H), 1.83 (d, J = 12.0 Hz, 2H), 1.54 (q, J = 11.3



Hz, 4H).


213 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 11.62 (s, 1H), 10.59 (s, 1H), 8.72 (d, J = 8.3




Hz, 1H), 8.62-8.54 (m, 1H), 8.14 (d, J = 12.3 Hz, 1H), 7.95-7.86 (m, 1H), 7.60 (d, J = 2.5 Hz, 1H), 7.54 (d,



J = 8.9 Hz, 2H), 7.35 (dd, J = 7.3, 5.2 Hz, 1H), 7.17 (s, 1H), 4.20 (m, 1H), 3.92 (dt, J = 11.6, 4.0 Hz,



4H), 3.81-3.67 (m, 4H), 3.60-3.47 (m, 6H), 3.31 (m, 2H), 2.90 (m, 1H) 2.84 (s, 3H), 2.36 (s, 3H), 2.25 (d, J =



11.2 Hz, 2H), 2.05 (d, J = 12.0 Hz, 4H), 1.62 (ddd, J = 13.9, 10.1, 5.1 Hz, 2H).


417 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 13.06 (s, 1H), 11.33 (s, 1H), 9.03 (s, 1H), 7.98




(s, 1H), 7.82 (d, J = 2.5 Hz, 1H), 7.34 (d, J = 9.1 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.23 (s, 1H), 7.12



(s, 1H), 6.83 (d, J = 8.6 Hz, 1H), 6.57 (s, 2H), 4.19 (m, 1H), 3.91-3.83 (m, 2H),3.80 (s, 3H), 3.48-3.36 (m,



6H), 2.66 (d, J = 115.6 Hz, 8H), 2.46 (s, 3H), 2.02 (d, J = 12.7 Hz, 2H), 1.85 (d, J = 11.6 Hz, 2H), 1.63-



1.43 (m, 4H).


419 Trifluoroacetate

1H NMR (400 MHz, DMSO-d6) δ 13.09 (s, 1H), 11.56 (s, 1H), 9.10 (s, 1H), 8.05




(s, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.59 (dd, J = 8.9, 2.5 Hz, 1H), 7.41 (s, 1H), 7.28 (d, J = 2.4 Hz, 1H),



7.23 (dd, J = 8.9, 1.4 Hz, 1H), 7.13 (d, J = 2.5 Hz, 1H), 4.21 (d, J = 7.9 Hz, 1H), 3.88 (m, 2H), 3.56-



3.42 (m, 6H), 3.36-3.28 (m, 1H), 3.05 (m, 2H), 2.80 (s, 3H), 2.72 (t, J = 11.7 Hz, 2H), 2.06 (m, 4H), 1.75-1.45



(m, 6H), 1.23 (m, 2H).


421

1H NMR (400 MHz, CDCl3) δ 10.84 (s, 1H), 10.31 (s, 1H), 8.74 (d, J = 7.3




Hz, 1H), 7.65 (dd, J = 8.6, 2.5 Hz, 1H), 7.60 (d, J = 2.5 Hz, 1H), 7.50 (s, 1H), 6.93 (d, J = 8.7 Hz, 1H),



6.90 (d, J = 2.5 Hz, 1H), 6.83 (d, J = 2.5 Hz, 1H), 520 (s, 1H), 4.30 (ddt, J = 14.1, 9.8, 5.2 Hz, 1H),



4.00 (dt, J = 11.8, 3.9 Hz, 2H), 3.76-3.69 (m, 1H), 3.60 (ddd, J = 12.0, 10.4, 2.5 Hz, 2H), 3.33 (d, J =



11.5 Hz, 2H), 2.77-2.40 (m, 9H), 2.34 (dt, J = 10.7, 3.2 Hz, 1H), 2.29 (s, 3H), 2.10 (d, J = 13.0 Hz, 2H),



1.94 (d, J = 12.1 Hz, 2H), 1.86-1.81 (m, 1H), 1.77-1.65 (m, 4H), 1.00-0.94 (m, 2H), 0.73-0.68 (m, 2H).


503 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 13.04 (s, 1H), 11.33 (s, 1H), 9.04 (s, 1H), 7.98




(s, 1H), 7.80 (d, J = 2.4 Hz, 1H), 7.62 (d, J = 2.6 Hz, 1H), 7.33 (dd, J = 8.6, 2.7 Hz, 1H), 7.31 (s, 1H),



7.18 (d, J = 2.4 Hz, 1H), 7.02 (d, J = 8.7 Hz, 1H), 6.48 (s, 2H), 4.65 (s, 2H), 4.51 (s, 2H), 4.27 (m, 1H),



2.95 (d, J = 11.1 Hz, 2H), 2.74 (ddd, J = 10.2, 7.5, 2.9 Hz, 2H), 2.61 (dt, J = 21.1, 9.7 Hz, 11H), 2.33



(d, J = 2.6 Hz, 3H), 2.15 (td, J = 8.7, 3.0 Hz, 2H), 1.84 (d, J = 11.6 Hz, 2H), 1.54 (td, J = 12.7, 11.9,



8.9 Hz, 2H), 1.18 (t, J = 7.5 Hz, 3H).


504 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 13.03 (s, 1H), 11.39 (s, 1H), 9.08 (s, 1H), 7.99




(s, 1H), 7.83 (d, J = 2.4 Hz, 1H), 7.34 (d, J = 2.3 Hz, 2H), 7.22 (s, 1H), 7.13 (dd, J = 8.5, 2.3 Hz, 1H),



6.85 (d, J = 8.6 Hz, 1H), 6.55 (s, 2H), 4.65 (s, 2H), 4.52 (s, 2H), 4.38 (q, J = 7.5 Hz, 1H), 3.81 (s, 3H),



3.34 (m, 2H), 2.79-2.72 (m, 2H), 2.56 (d, J = 20.6 Hz, 8H), 2.33 (m, 1H), 2.24 (s, 3H), 2.15 (dd, J = 14.5,



6.2 Hz, 2H), 1.82 (m, 2H), 1.55 (m, 2H).


511

1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 8.39 (s, 1H), 7.62 (d, J = 8.9 Hz,




2H), 7.55-7.45 (m, 2H), 7.30 (td, J = 6.3, 5.7, 4.0 Hz, 3H), 6.92 (d, J = 8.9 Hz, 2H), 6.54 (d, J = 2.8 Hz,



1H), 5.25 (d, J = 7.2 Hz, 1H), 5.13 (s, 1H), 4.23-4.14 (m, 1H), 3.96 (d, J = 11.7 Hz, 2H), 3.69 (d, J = 11.9



Hz, 2H), 3.56-3.47 (m, 2H), 2.77-2.37 (m, 11H), 2.32 (s, 3H), 2.00 (dd, J = 26.0, 11.4 Hz, 4H), 1.72 (dd, J =



11.8, 3.8 Hz, 2H), 1.49-1.42 (m, 2H).


512
1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 11.10 (s, 1H), 8.25 (d, J = 4.9 Hz, 1H), 7.57-7.40



(m, 4H), 7.39-7.24 (m, 2H), 6.90 (d, J = 9.1 Hz, 2H), 6.49 (d, J = 7.3 Hz, 1H), 6.40 (dd, J = 3.5, 1.9 Hz,



1H), 4.16-4.02 (m, 1H), 3.84 (d, J = 10.8 Hz, 2H), 3.62 (d, J = 11.8 Hz, 2H), 3.37 (dd, J = 12.7, 10.7 Hz,



2H), 2.58 (t, J = 11.8 Hz, 2H), 2.38-2.16 (m, 4H), 2.10 (s, 3H), 1.82 (t, J = 12.6 Hz, 4H), 1.47 (qd, J = 11.9,



4.1 Hz, 4H).


513 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 11.28 (s, 1H), 11.24 (s, 1H), 7.58 (d, J = 2.5 Hz,




1H), 7.50-7.44 (m, 2H), 7.41 (t, J = 2.8 Hz, 1H), 7.25-7.17 (m, 3H), 7.04 (s, 1H), 6.37-6.34 (m, 1H), 6.06 (d,



J = 7.4 Hz, 1H), 4.14-4.08 (m, 1H), 3.85 (d, J = 11.3 Hz, 2H), 3.70 (m, 4H), 3.37 (m, 6H), 3.19 (s, 2H), 2.84



(s, 3H), 2.71 (m, 3H), 2.30 (s, 3H), 2.18 (m, 2H), 1.88 (d, J = 12.8 Hz, 4H), 1.47 (d, J = 13.7 Hz, 2H).


515 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 11.28 (s, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.50 (d,




J = 2.6 Hz, 1H), 7.49-7.44 (m, 1H), 7.41 (t, J = 2.8 Hz, 1H), 7.25-7.17 (m, 2H), 7.11 (s, 1H), 6.38-6.33 (m,



1H), 6.07 (d, J = 7.5 Hz, 1H), 4.17 (s, 1H), 3.89-3.64 (m, 7H), 3.42-3.29 (m, 5H), 3.11 (s, 2H), 2.84 (s, 3H), 2.71



(m, 5H), 2.18 (m, 2H), 1.87 (m, 4H), 1.54-1.42 (m, 2H), 1.27-1.20 (m,3H).


519 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.31 (s, 1H), 11.26 (s, 1H), 7.92 (d, J = 15.6 Hz,




1H), 7.45 (d, J = 7.1 Hz, 2H), 7.38 (d, J = 2.9 Hz, 1H), 7.34 (s, 1H), 7.24-7.15 (m, 2H), 7.06 (d, J = 9.7



Hz, 1H), 6.97 (t, J = 9.3 Hz, 1H), 6.53 (s, 2H), 6.33 (s, 1H), 6.13 (d, J = 7.4 Hz, 1H), 4.11-4.08 (m, 1H), 3.84



(d, J = 11.6 Hz, 2H), 3.38 (t, J = 11.5 Hz, 2H), 3.30 (d, J = 11.3 Hz, 2H), 2.60 (t, J = 10.7 Hz, 10H),



2.37 (d, J = 11.2 Hz, 1H), 2.30 (s, 3H), 1.85 (t, J = 12.8 Hz, 4H), 1.58-1.40 (m, 4H).


521 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.26 (s, 1H), 11.11 (s, 1H), 7.53 (d, J = 8.6 Hz,




2H), 7.43 (dd, J = 6.1, 3.0 Hz, 1H), 7.38 (d, J = 2.9 Hz, 2H), 7.24 (s, 1H), 7.17 (d, J = 6.1 Hz, 2H), 6.89



(d, J = 8.6 Hz, 2H), 6.52 (s, 2H), 6.32 (d, J = 2.8 Hz, 1H), 5.79 (d, J = 7.6 Hz, 1H), 4.20 (q, J = 6.7 Hz,



1H), 3.61 (d, J = 11.9 Hz, 2H), 2.63-2.46 (m, 10H), 2.35-2.28 (m, 1H), 2.24 (s, 3H), 1.82 (d, J = 12.2 Hz, 2H),



1.49 (p, J = 10.5, 9.9 Hz, 2H), 1.13 (d, J = 6.4 Hz, 6H).


522 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.21 (s, 1H), 11.13 (s, 1H), 7.73 (d, J = 8.6 Hz,




2H), 7.41 (dt, J = 6.3, 3.3 Hz, 2H), 7.36 (d, J = 3.0 Hz, 1H), 7.27 (s, 1H), 7.15 (d, J = 3.6 Hz, 2H), 6.89



(d, J = 8.6 Hz, 2H), 6.52 (s, 2H), 6.42 (d, J = 2.6 Hz, 1H), 6.27 (d, J = 3.1 Hz, 1H), 3.61 (d, J = 12.1 Hz,



2H), 2.74 (dq, J = 6.8, 3.5 Hz, 1H), 2.65-2.47 (m, 10H), 2.36-2.28 (m, 1H), 2.24 (s, 3H), 1.82 (d, J = 12.1 Hz,



2H), 1.55-1.41 (m, 2H), 0.79-0.70 (m, 2H), 0.51 (p, J = 4.6 Hz, 2H).


525 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.24 (s, 1H), 11.05 (s, 1H), 7.55 (d, J = 8.6 Hz,




2H), 7.46-7.36 (m, 3H), 7.24-7.14 (m, 3H), 6.90 (d, J = 8.7 Hz, 2H), 6.49 (s, 3H), 6.30 (d, J = 2.6 Hz, 1H),



6.26 (d, J = 5.6 Hz, 1H), 4.35 (q, J = 6.3 Hz, 1H), 4.21 (p, J = 6.0 Hz, 1H), 3.64 (d, J = 9.2 Hz, 2H),



2.73-2.53 (m, 10H), 2.44-2.36 (m, 1H), 2.33 (s, 3H), 2.23-2.11 (m, 4H), 1.84 (d, J = 12.0 Hz, 2H), 1.51 (dt,



J = 12.0, 6.6 Hz, 2H).


526 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.24 (s, 1H), 11.05 (s, 1H), 7.54 (d, J = 8.6 Hz,




2H), 7.45-7.41 (m, 1H), 7.38 (dt, J = 5.8, 2.9 Hz, 2H), 7.21 (d, J = 3.1 Hz, 1H), 7.16 (d, J = 4.5 Hz, 2H),



6.88 (d, J = 8.7 Hz, 2H), 6.49 (s, 2H), 6.29 (d, J = 3.1 Hz, 1H), 5.76 (d, J = 7.3 Hz, 1H), 5.69 (s, 1H),



3.86-3.74 (m, 2H), 3.63-3.56 (m, 2H), 2.56 (q, J = 18.3, 15.2 Hz, 10H), 2.34 (t, J = 11.3 Hz, 1H), 2.26 (s,



3H), 1.91 (d, J = 10.8 Hz, 2H), 1.81 (t, J = 14.7 Hz, 4H), 1.50 (qd, J = 12.4, 3.9 Hz, 2H), 1.21 (q, J =



13.1, 12.5 Hz, 4H).


527 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.21 (d, J = 2.4 Hz, 1H), 10.99 (s, 1H), 7.53-




7.48 (m, 2H), 7.42 (dd, J = 6.1, 3.0 Hz, 1H), 7.36 (t, J = 2.8 Hz, 2H), 7.23 (d, J = 3.3 Hz, 1H), 7.15 (q,



J = 3.7, 3.2 Hz, 2H), 6.93-6.87 (m, 2H), 6.53 (s, 3H), 6.38 (d, J = 6.4 Hz, 1H), 6.28 (t, J = 2.5 Hz, 1H),



4.59 (s, 2H), 4.39 (s, 2H), 4.18 (h, J = 7.8 Hz, 1H), 2.68-2.49 (m, 12H), 2.38 (dd, J = 12.9, 9.1 Hz, 1H),



2.32 (s, 3H), 2.12-2.03 (m, 2H), 1.83 (d, J = 12.1 Hz, 2H), 1.74-1.68 (m, 1H), 1.50 (qd, J = 12.1, 3.8 Hz,



2H), 1.31 (s, 1H)


528 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.27 (s, 1H), 11.09 (s, 1H), 7.55-7.49 (m, 2H),




7.44 (dd, J = 6.7, 2.4 Hz, 1H), 7.38 (q, J = 2.9, 2.3 Hz, 2H), 7.24 (d, J = 3.1 Hz, 1H), 7.21-7.15 (m,



2H), 6.89 (d, J = 8.5 Hz, 2H), 6.50 (s, 1H), 6.35 (t, J = 2.5 Hz, 1H), 5.99 (t, J = 5.6 Hz, 1H), 3.61



(d, J = 11.9 Hz, 2H), 3.35 (d, J = 5.6 Hz, 2H), 2.62-2.43 (m, 10H), 2.29 (t, J = 11.2 Hz, 1H), 2.21 (d,



J = 2.4 Hz, 3H), 1.81 (d, J = 12.2 Hz, 2H), 1.54-1.42 (m, 2H), 1.06 (d, J = 1.4 Hz, 6H).


538 Trifluoroacetate

1H NMR (400 MHz, DMSO-d6) δ 13.03 (d, J = 2.8 Hz, 1H), 11.33 (s, 1H), 9.19




(s, 1H), 8.52 (s, 1H), 8.30 (t, J = 2.9 Hz, 1H), 7.64 (d, J = 8.5 Hz, 3H), 7.41 (s, 1H), 7.11 (d, J = 8.5



Hz, 2H), 6.85 (d, J = 7.2 Hz, 1H), 6.80 (dt, J = 2.6, 1.5 Hz, 1H), 4.12 (dt, J = 11.1, 5.5 Hz, 1H), 3.91-



3.83 (m, 2H), 3.77 (d, J = 12.2 Hz, 2H), 3.64-3.00 (m, 11H), 2.82 (m+s, 5H), 2.09 (d, J = 12.0 Hz, 2H),



1.92-1.83 (m, 2H), 1.74 (q, J = 11.4, 10.5 Hz, 2H), 1.44 (qd, J = 12.5, 4.3 Hz, 2H).


540

1H NMR (400 MHz, CDCl3) δ 10.75 (s, 1H), 8.45 (s, 1H), 7.55-7.49 (m, 3H), 7.49-




7.45 (m, 1H), 7.32-7.28 (m, 3H), 6.97-6.92 (m, 2H), 6.54 (ddd, J = 3.1, 2.0, 0.9 Hz, 1H), 5.67 (d, J = 5.8



Hz, 1H), 5.17 (s, 1H), 5.09 (q, J = 6.6 Hz, 1H), 4.91 (t, J = 6.9 Hz, 2H), 4.44 (t, J = 6.4 Hz, 2H), 3.70



(d, J = 11.8 Hz, 2H), 2.75-2.41 (m, 10H), 2.37 (ddt, J = 11.3, 7.7, 3.8 Hz, 1H), 2.28 (s, 3H), 1.95 (d,



J = 13.0 Hz, 2H), 1.71 (td, J = 12.0, 3.8 Hz, 2H).


611

1H NMR (400 MHz, CDCl3) δ 10.90 (s, 1H), 8.74-8.68 (m, 2H), 7.63-7.56 (m, 2H),




7.56-7.51 (m, 2H), 7.41 (s, 1H), 6.93 (d, J =8.9 Hz, 2H), 5.20 (s, 1H), 5.09 (d, J = 7.4 Hz, 1H), 4.29 (h,



J = 6.6 Hz, 1H), 3.70 (d, J = 12.0 Hz, 2H), 2.77-2.62 (m, 6H), 2.53 (s, 4H), 2.38 (d, J = 12.3 Hz, 1H),



2.32 (s, 3H), 1.96 (d, J = 12.5 Hz, 2H), 1.77-1.71 (m, 2H), 1.25 (d, J = 1.8 Hz, 6H).


612 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 11.09 (s, 1H), 7.91 (d, J = 5.3 Hz, 1H), 7.57




(s, 1H), 7.47 (d, J = 8.5 Hz, 2H), 7.34 (s, 1H), 6.89 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 5.1 Hz, 1H), 6.76



(s, 1H), 6.67 (d, J = 7.2 Hz, 1H), 6.54 (s, 4H), 6.03 (s, 2H), 4.03 (s, 1H), 3.88 (s, 2H), 3.63 (d, J =



11.7 Hz, 2H), 3.36 (d, J = 11.4 Hz, 2H), 2.60 (d, J = 14.1 Hz, 10H), 2.40 (d, J = 11.5 Hz, 1H), 2.32 (s,



3H), 1.83 (d, J = 12.1 Hz, 4H), 1.54 (ddd, J = 31.1, 12.9, 7.9 Hz, 4H).


615 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 12.14 (s, 1H), 11.70 (s, 1H), 9.15 (s, 1H), 8.06




(s, 1H), 7.94-7.81 (m, 3H), 7.67 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 30.4 Hz, 1H), 7.27 (d, J = 2.4 Hz, 1H),



4.42 (q, J = 6.6 Hz, 2H), 3.75 (s, 8H), 3.55 (d, J = 2.3 Hz, 6H), 2.84 (s, 3H), 2.45-2.34 (m, 4H), 2.28



(ddd, J = 12.6, 6.8, 3.8 Hz, 2H).


616 Hydrochloride

1H NMR (400 MHz, DMSO-d6) δ 12.38 (s, 1H), 11.68 (s, 1H), 8.93 (d, J = 7.2




Hz, 1H), 8.04 (s, 1H), 7.82 (q, J = 3.2 Hz, 3H), 7.67 (s, 2H), 7.40 (d, J = 11.6 Hz, 1H), 7.25 (d, J =2.4



Hz, 1H), 4.24 (q, J = 6.5 Hz, 1H), 3.75-3.59 (m, 12H), 2.82 (s, 3H), 2.37 (s, 4H), 1.32 (d, J = 6.4 Hz, 6H).


627 Fumarate

1H NMR (400 MHz, DMSO-d6) δ 13.02 (s, 1H), 11.20 (s, 1H), 8.96 (s, 1H), 7.95




(s, 1H), 7.82 (d, J = 2.4 Hz, 1H), 7.57-7.50 (m, 2H), 7.31 (s, 1H), 7.20 (d, J = 2.4 Hz, 1H), 6.95-6.88 (m,



2H), 6.55 (s, 2H), 4.68 (s, 2H), 4.52 (s, 2H), 4.27-4.23 (m, 1H), 3.65 (d, J = 11.8 Hz, 2H), 2.75 (ddd, J =



10.1, 7.4, 2.8 Hz, 2H), 2.68-2.51 (m, 10H), 2.40-2.33 (m, 1H), 2.29 (s, 3H), 2.20-2.09 (m, 2H), 1.85 (d, J =



12.2 Hz, 2H), 1.58-1.45 (m, 2H).









Example 2
Inhibitory Activity Assay of the Compounds Disclosed Herein Against EGFR (del19/T790M/C797S), EGFR (L858R/T790M/C797S) or EGFR (WT) Enzymes

The inhibitory effects of the compounds against EGFR (del19/T790M/C797S), EGFR (L858R/T790M/C797S) or EGFR (WT) enzyme activity was determined by using HTRF. The procedures are as follows:


The WT or mutant EGFR proteins were incubated with a serially diluted compounds at 28° C. for 10 min followed by addition of biotin-labeled general tyrosine kinase (TK) substrate and ATP. The mixture was incubated at room temperature for 40 min for reaction. After the termination of the reaction, an Eu3+-Cryptate-labeled antibody against TK and streptavidin-XL665 were added and the mixture was incubated at room temperature for 60 min. The luminescences at 615 nm and 665 nm were detected and the ratio of 665/615 was calculated to quantify the level of TK substrate phosphorylation. Inhibition % and IC50 of the compounds were calculated relative to the control group. The results are shown in Table 4 below.









TABLE 4







Inhibitory activity of the compounds disclosed


herein against EGFR (del19/T790M/C797S),


EGFR (L858R/T790M/C797S) or EGFR (WT)











EGFR (del19/

EGFR (L858R/



T790M/C797S)
EGFR (WT)
T790M/C797S)



inhibition (%)
IC50
inhibition (%)


Compound
(0.3 nM compound)
(nM)
(0.3 nM compound)













1
+
>300
+


2
+
>100
N.D


4
+
>100
+


5
+
>100
+


6
+
N.D
N.D


7
+
N.D
N.D


8
+
N.D
N.D


9
+
N.D
N.D


10
++
>300
N.D


11
++
>300
N.D


12
+
N.D
N.D


13
+
>300
N.D


14
+
>300
N.D


15
+
N.D
N.D


16
+
N.D
N.D


17
+
N.D
N.D


18
+
N.D
N.D


19
+
N.D
N.D


21
++
>300
N.D


22
+
N.D
N.D


23
++
N.D
+


24
++
N.D
N.D


25
+
N.D
N.D


27
+
N.D
N.D


28
+
N.D
N.D


29
++
N.D
N.D


30
++
N.D
N.D


31
+++
N.D
N.D


32
+++
N.D
N.D


33
+++
N.D
N.D


35
++
N.D
+


36
+
N.D
N.D


37
+
N.D
N.D


38
++
N.D
++


39
+++
>300
+++


40
+
N.D
N.D


42
+
N.D
N.D


43
+
N.D
N.D


44
+
N.D
N.D


45
+
N.D
N.D


46
+
N.D
N.D


47
+
N.D
N.D


49
+
N.D
N.D


50
+
N.D
N.D


51
+
N.D
N.D


52
+++
>300
N.D


53
+
N.D
N.D


54
+
N.D
N.D


55
+++
>300
+


56
+
N.D
N.D


57
++
>300
++


59
+
>300
N.D


60
++
N.D
+


61
++
N.D
N.D


62
+
N.D
N.D


63
+
N.D
N.D


64
+
N.D
N.D


65
++
N.D
N.D


66
+
N.D
N.D


67
+
N.D
N.D


68
+
N.D
N.D


69
+
N.D
+


70
+
N.D
N.D


71
+
N.D
N.D


72
+
N.D
N.D


82
+
N.D
N.D


83
++
N.D
++


88

N.D
N.D


90
+
N.D
N.D


91
++
N.D
N.D


92
++
N.D
N.D


93
++
N.D
N.D


94
++
N.D
+


95
++
N.D
N.D


96
++
N.D
N.D


98
+
N.D
N.D


99
+
N.D
N.D


100
+
N.D
N.D


101
+
N.D
N.D


102
+
N.D
N.D


103
++
N.D
N.D


105
+
N.D
N.D


106
+
N.D
N.D


107
+
N.D
N.D


108
+++
N.D
N.D


109
+
N.D
N.D


110
+
N.D
N.D


111
+
N.D
N.D


112
+
N.D
N.D


113
+
N.D
N.D


114
++
N.D
+++


116
+
N.D
N.D


117
+
N.D
N.D


118
++
N.D
N.D


119
+
N.D
N.D


120
+
N.D
N.D


121
+++
N.D
+++


122
+++
N.D
N.D


123
++
N.D
N.D


124
+
N.D
N.D


125
++
N.D
++


126
+
N.D
+


133
++
N.D
N.D


134
++
N.D
N.D


136
++
N.D
N.D


137
++
N.D
++


138
++
N.D
N.D


139
++
N.D
N.D


146
++
N.D
N.D


154
++
N.D
N.D


177
++
N.D
N.D


206
++
N.D
N.D


207
++
N.D
N.D


255
++
N.D
N.D


263
++
N.D
N.D


264
++
N.D
N.D


271
++
N.D
N.D


379
++
N.D
N.D


383
++
N.D
N.D


503
+++
10.16
+


511
+++
2.82
+++


512
+++
N.D
N.D


519
+++
N.D
+++


520
+++
N.D
N.D


521
+++
0.27
+++


522
+++
0.22
+++


523
+++
N.D
+++


524
+++
N.D
+++


525
+++
N.D
N.D


526
+++
0.33
+++


527
+++
1.7
+++


528
+++
N.D
N.D


529
+++
N.D
N.D


530
+++
N.D
N.D


531
+++
N.D
N.D


532
+++
N.D
+++


533
+++
N.D
N.D


534
+++
N.D
N.D


535
+++
N.D
+++


536
+++
N.D
+++


537
+++
N.D
N.D


594
+++
N.D
+++


595
+++
N.D
N.D


596
+++
N.D
N.D


609
+++
N.D
N.D


610
+++
N.D
N.D


611
+++
N.D
N.D


614
+++
N.D
N.D


615
+++
N.D
N.D


616
+++
N.D
N.D


617
++
N.D
N.D


618
++
N.D
N.D


619
++
N.D
N.D


620
++
N.D
N.D


621
+++
N.D
N.D


622
+++
N.D
N.D


623
+++
N.D
N.D


624
++
N.D
N.D


625
+++
N.D
N.D


626
+++
N.D
N.D


627
++
N.D
N.D


628
++
N.D
N.D


629
+++
N.D
N.D


630
+++
N.D
N.D


631
+++
N.D
N.D


632
+++
N.D
N.D


633
+++
N.D
N.D


634
+++
N.D
N.D


635
+++
N.D
N.D


638
+++
N.D
N.D


639
+++
N.D
N.D


640
+++
N.D
N.D


641
+++
N.D
N.D


642
+++
N.D
N.D


643
+++
N.D
N.D


644
+++
N.D
N.D


645
+++
N.D
N.D


Gilteritinib
+
N.D
+





+ indicates an inhibition less than or equal to 20%


++ indicates an inhibition from 20% to 50%


+++ indicates an inhibition greater than 50%.


N.D represents not detected






As can be seen from the data in Table 4, the compounds disclosed herein have better inhibitory activities against EGFR (del19/T790M/C797S) and EGFR (L858R/T790M/C797S) enzyme activities, and have better selectivity for EGFR (WT).


Example 3
Antiproliferative Activity of the Compounds Disclosed Herein Against Ba/F3 (EGFRdel19/T790M/C797S) Triple-Mutant Cells and A431 (EGFR WT) Cells





    • 3000 Ba/F3 cells carrying EGFR (del19/T790M/C797S) or 2000 A431 cells were seeded in a 384-well plate. After one day, serially diluted compounds were added (up to 500 nM for Ba/F3 cells and up to 10 μM for A431 cells). Three days after the addition of the compounds, Cell Titer Glow was added to evaluate cell growth and the percentage cell growth inhibition by the compounds and the IC50 values were calculated. The results are shown in Table 5 below.












TABLE 5







Antiproliferative activity of the compounds disclosed


herein against Ba/F3 (EGFRdel19/T790M/C797S) triple-


mutant cells and A431 wild-type (EGFR WT) cells










Antiproliferative activity
Antiproliferative activity



BaF3(EGFRdel19/T790M/C797S)
A431 wild-type (WT)


Compound
IC50 (nM)
IC50 (M)












1
236
2.5


4
295
1.7


11
107
0.54


13
197
1.3


14
113
0.95


21
48
0.52


23
36
0.95


31
65
0.54


32
26
0.19


33
63
0.22


35
54
0.48


37
48
>2


38
48
1.8


39
29
0.34


54
>100
3.5


55
16
0.07


57
79
0.32


59
72
1.4


74
>100
2.1


83
233
0.75


85
357
1.5


86
21
1.7


88
52
0.28


96
>100
1.6


108
23
0.19


110
>100
0.46


111
105
0.12


114
27
0.97


115
214
2.0


118
82
4.1


119
>100
>10


120
119
0.68


121
70
0.59


122
40
0.38


123
140
>10


124
>100
>10


125
99
0.65


126
248
2.6


131
>100
>10


135
40
0.34


141
27
0.23


148
68
1.7


161
54
1.2


174
51
1.0


177
19
0.69


184
18
0.98


213
226
>10


417
57
0.19


420
32
3.7


421
36
0.53


503
61
0.66


504
98
0.33


511
9
0.06


512
6
0.02


513
57
0.56


514
48
0.25


515
42
0.52


516
42
0.35


521
4
0.05


522
2
0.03


525
25
0.06


526
5
0.1


527
4
0.1


528
13
0.07


529
18
0.05


538
35
0.29


540
48
1.2


594
13
0.07


611
21
0.36


616
32
0.36


Gilteritinib
>500









As can be seen from the data in Table 5, the antiproliferative activities of most compounds disclosed herein against Ba/F3 (EGFRdel19/T790M/C797S) triple-mutant cells were less than 100 nM, while the antiproliferative activity of gilteritinib against Ba/F3 (EGFRdel19/T790M/C797S) triple-mutant cells was greater than 500 nM, indicating that when Y is an aryl, a heteroaryl or a heterocycloalkyl, the compounds have strong antiproliferative activity against Ba/F3 (EGFRdel19/T790M/C797S) triple-mutant cells.


Example 4
In Vivo Pharmacodynamic Study—Mouse H1975 Subcutaneous Xenograft Tumor Model

BALB/c nude mice were grafted subcutaneously on the left dorsum with 5×106 H1975 cells carrying EGFR T790M mutation. After the tumor grew to 100-150 mm3, the mice were randomly divided into the following groups for intragastric administration once daily: group 1: vehicle control; group 2: compound 511 (60 mg/kg); and group 3: compound 511 (80 mg/kg). The tumor volume was measured twice weekly and at the end of treatment. Tumor growth inhibition of the compound was calculated according to the following equation: tumor growth inhibition (TGI)=1−(tumor volume on day 28 in treatment group−tumor volume on day 1 in treatment group)/(tumor volume on day 28 in vehicle control group−tumor volume on day 1 in treatment group). The results are shown in FIG. 1 and Table 6.









TABLE 6







Growth inhibition of H1975 subcutaneous xenograft tumor in mice











Compound
Dose
TGI







Control
Not applicable
Not applicable



Compound 511
60 mg/kg
99%



Compound 511
80 mg/kg
104% 










As can be seen in FIG. 1 and Table 6, compound 511 was able to inhibit tumor growth at doses of 60 mg/kg and 80 mg/kg in the H1975 mouse subcutaneous xenograft tumor model carrying the EGFR T790M mutation.


Example 5
In Vivo Pharmacodynamic Study—Mouse PC9(EGFR Del19/T790M/C797S) Subcutaneous Xenograft Tumor Model

BALB/c nude mice were grafted subcutaneously on the left dorsum with 5×106 PC9 cells with EGFR Del19/T790M/C797S overexpression. After the tumor grew to 100-150 mm3, the mice were randomly divided into the following groups for intragastric administration once daily: group 1: vehicle control; group 2: compound 511 (60 mg/kg); and group 3: compound 511 (80 mg/kg). The tumor volume was measured twice weekly and at the end of treatment. Tumor growth inhibition of the compound was calculated according to the following equation: tumor growth inhibition (TGI)=1−(tumor volume on day 28 in treatment group−tumor volume on day 1 in treatment group)/(tumor volume on day 28 in vehicle control group−tumor volume on day 1 in treatment group). The results are shown in FIG. 2.









TABLE 7







Growth inhibition of PC9(EGFR De119/T790M/C797S)


subcutaneous xenograft tumor in mice











Compound
Dose
TGI







Control
Not applicable
Not applicable



Compound 511
60 mg/kg
87.41%



Compound 511
80 mg/kg
93.17%










As can be seen in FIG. 2 and Table 7, compound 511 was able to inhibit tumor growth at doses of 60 mg/kg and 80 mg/kg in the PC9 mouse subcutaneous xenograft tumor model with EGFR Del19/T790M/C797S overexpression.

Claims
  • 1. A compound having a structure of general formula (1), or an isomer, a crystalline form, a pharmaceutically acceptable salt, a hydrate or a solvate thereof:
  • 2. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1, wherein, in general formula (1), Y is a 5-6 membered heterocycloalkyl, phenyl or a 5-9 membered heteroaryl, wherein the heterocycloalkyl, the phenyl and the heteroaryl may be optionally substituted with one or more of the following groups: —H, —F, —Cl, —Br, —CN, —OH, —OCH3, —NH2, —N(CH3)2, —NHCOCH3, —NHSO2CH3, —CH3, —CONH2, —CH2OH and —O—CH2—O—.
  • 3. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 2, wherein, in general formula (1), Y is:
  • 4. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1, wherein, in general formula (1), X is phenylene or a 6-membered heteroarylene, wherein the phenylene and the heteroarylene may be optionally substituted with one or more of the following groups: —H, —F, —CH3, —CH2CH3, —CH(CH3)2,
  • 5. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 4, wherein, in general formula (1), X is:
  • 6. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1, wherein, in general formula (1), R1 is: —H, —N(CH3)2, —CH2-6-11 membered heterocycloalkyl or a 6-11 membered heterocycloalkyl, wherein the heterocycloalkyl is
  • 7. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 6, wherein, in general formula (1), R1 is:
  • 8. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1, wherein, in general formula (1), when L2 is —NH—, R2 is:
  • 9. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1, wherein, in general formula (1), when L2 is —O—, R2 is:
  • 10. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1, wherein, in general formula (1), when L2 is a chemical bond, R2 is:
  • 11. The compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claims 1, wherein the compound has one of the following structures:
  • 12. A pharmaceutical composition, comprising a pharmaceutically acceptable excipient or carrier, and the compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1 as an active ingredient.
  • 13. Use of the compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1, in preparing a medicament for treating a disease related to an EGFR mutation.
  • 14. A method for treating, regulating and/or preventing a disease related to an EGFR mutant protein, comprising administering to a subject a therapeutically effective amount of the compound, or the isomer, the crystalline form, the pharmaceutically acceptable salt, the hydrate or the solvate thereof according to claim 1.
Priority Claims (3)
Number Date Country Kind
202010486394.1 Jun 2020 CN national
202010947590.4 Sep 2020 CN national
202110587528.3 May 2021 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2021/097583 6/1/2021 WO