Nickel-based alloy for additive manufacturing and method

Information

  • Patent Grant
  • 11753701
  • Patent Number
    11,753,701
  • Date Filed
    Friday, December 6, 2019
    4 years ago
  • Date Issued
    Tuesday, September 12, 2023
    9 months ago
  • Inventors
  • Original Assignees
    • Siemens Energy Global GmbH & Co. KG
  • Examiners
    • Hevey; John A
    Agents
    • WOLTER VAN DYKE DAVIS, PLLC
Abstract
An alloy is provided by the targeted selection of some elements of silicone, manganese, sulfur, chromium, titanium, aluminum, zirconium, tantalum, iron, copper, niobium, yttrium and yttrium oxide, which can be readily processed and also provides good mechanical characteristic values for the produced component.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is the US National Stage of International Application No. PCT/EP2019/083955 filed 6 Dec. 2019, and claims the benefit thereof. The International Application claims the benefit of German Application No. DE 10 2018 251 722.3 filed 27 Dec. 2018. All of the applications are incorporated by reference herein in their entirety.


FIELD OF INVENTION

The invention relates to a nickel-base alloy that can be used in additive manufacturing by means of selective energy irradiation, such as laser radiation, electron beams, or else powder application welding.


BACKGROUND OF INVENTION

Additive manufacturing, for example selective laser melting (SLM), but not limited to that method, is based on the slice-by-slice, selective melting of powder layers as starting material for production of a geometric object.


In the SLM of high-temperature-resistant alloys, microcracks occur during the process, and macrocracks during heat treatment.


Nickel-base materials can be built up in a crack-free and productive manner in a layer thickness up to 40 μm, but do not have adequate mechanical properties for some applications, such as creep resistance in particular. Moreover, oxidation resistance is often limited.


For exploration and industrialization of further additively manufactured hot gas components, however, an alloy with a suitable combination of mechanical properties and productivity is needed.


The problem has been solved to date by the use of other alloys, although this results in a restriction with regard to build quality and productivity (layer thickness 20 μm). More particularly, microcrack formation (in the SLM process) and macrocrack formation during heat treatment occur in the corresponding alloys, and so use of the SLM method with these alternative alloys limits utilization as manufacturing process for new parts, and the opportunities associated with the SLM method cannot be exploited.


SUMMARY OF INVENTION

The object of the invention is therefore to solve the abovementioned problem.


The object is achieved by an alloy as claimed in claim 1 and a method as claimed in claim 2.


The dependent claims list further advantageous measures that can be combined with one another as desired in order to achieve further advantages.







DETAILED DESCRIPTION OF INVENTION

The concept is that of a nickel-base superalloy, at least comprising (in % by weight), especially consisting of:


carbon (C) 0.13%-0.17%


chromium (Cr) 21%-22%


cobalt (Co) 18%-20%


tungsten (W) 1.8%-2.2%


titanium (Ti) 3.0%-3.4%


aluminum (Al) 2.1%-3.0%


boron (B) 0.008%-0.012%


zirconium (Zr) 0.0025%-0.01%


tantalum (Ta) 1.6%-2.5%


niobium (Nb) 1.2%-1.6%


optionally:


yttrium (Y) 0.0025%-0.0075%


yttrium oxide (Y2O3) 0.25%-1.25%


optionally and especially not more than:


vanadium (V) 0.01%


hafnium (Hf) 0.01%


silver (Ag) 0.005%


lead (Pb) 0.0003%


selenium (Se) 0.0003%


oxygen (O) 0.005%


gallium (Ga) 0.001%


bismuth (Bi) 0.0001%


nitrogen (N) 0.005%


magnesium (Mg) 0.007%


tellurium (Te) 0.00005%


thallium (Tl) 0.0005%


calcium (Ca) 0.0001%


potassium (K) 0.0001%


silicon (Si) 0.02%


manganese (Mn) 0.01%


iron (Fe) 0.02%


copper (Cu) 0.01%


phosphorus (P) 0.005%


sulfur (S) 0.001%


molybdenum (Mo) 0.1%


other impurities 0.1%


nickel (Ni) balance.


The reduced proportion of silicon (Si) and manganese (Mn) distinctly improves cracking behavior.


The low content of sulfur (S) increases the oxidation and corrosion resistance.


The chromium content (Cr) compensates for the proportion of the sigma phase with a higher γ′ content.


The titanium content (Ti) is likewise selected in order to compensate for a γ′ content with a higher proportion of tantalum (Ta) and aluminum (Al).


The content of aluminum (Al) improves creep properties and oxidation resistance.


The contents of zirconium (Zr), iron (Fe), copper (Cu) distinctly reduce propensity to cracking.


The addition of tantalum (Ta) distinctly improves creep properties, and the niobium content (Nb) increases strength.


The addition of yttrium oxide (Y2O3) improves oxidation resistance.


The adjustments detailed assure processibility for a productive SLM process with improved mechanical properties and increased oxidation resistance.


No cracking is expected in heat treatment on account of aging phenomena, which has been confirmed experimentally and by simulation, and this reduces reworking expenditure, such as surface treatment.


The method used is preferably selective powder melting or selective powder sintering or application welding, powder application welding, or else selective laser sintering or selective laser melting.


The chromium content (Cr) is preferably 21.0% to 21.5%, especially 21.0% to 21.3%, very particularly 21.0% by weight.


The cobalt content (Co) is preferably 19% by weight.


The content of titanium (Ti) is preferably 3.0% by weight to 3.2% by weight, especially 3.0% by weight to 3.1% by weight, very particularly 3.0% by weight.


The content of aluminum (Al) is preferably 2.2% by weight to 2.4% by weight, especially 2.3% by weight to 2.4% by weight, very particularly 2.4% by weight.


The content of tantalum (Ta) is preferably 1.7% by weight to 1.9% by weight, especially 1.8% by weight to 1.9% by weight, very particularly 1.9% by weight.


The content of niobium (Nb) is preferably 1.4% by weight to 1.6% by weight, especially 1.5% by weight to 1.6% by weight, very particularly 1.6% by weight.


The carbon content (C) is preferably 0.15% by weight.


The tungsten content (W) is preferably 2.0% by weight.


The content of aluminum (Al) is preferably 2.4% by weight to 3.0% by weight, especially 2.6% by weight to 3.0% by weight, very particularly 3.0% by weight.


Advantages are also achieved with a preferable content of tantalum (Ta) of 1.9% by weight to 2.5% by weight, especially 2.2% by weight to 2.5% by weight, very particularly 2.5% by weight.

Claims
  • 1. A nickel-base superalloy consisting of (in % by weight): carbon (C) 0.13%-0.17%chromium (Cr) 21%-22%cobalt (Co) 18%-20%tungsten (W) 1.8%-2.2%titanium (Ti) 3.0%-3.4%aluminum (Al) 2.1%-3.0%boron (B) 0.008%-0.012%zirconium (Zr) 0.0025%-0.01%tantalum (Ta) 1.6%-2.5%niobium (Nb) 1.2%-1.6%yttrium (Y) 0.0025%-0.0075%optionally:yttrium oxide (Y2O3) 0.25%-1.25%optionally and especially not more than:vanadium (V) 0.01%hafnium (Hf) 0.01%silver (Ag) 0.005%lead (Pb) 0.0003%selenium (Se) 0.0003%oxygen (O) 0.005%gallium (Ga) 0.001%bismuth (Bi) 0.0001%nitrogen (N) 0.005%magnesium (Mg) 0.007%tellurium (Te) 0.00005%thallium (Tl) 0.0005%calcium (Ca) 0.0001%potassium (K) 0.0001%silicon (Si) 0.02%manganese (Mn) 0.01%iron (Fe) 0.02%copper (Cu) 0.01%phosphorus (P) 0.005%sulfur (S) 0.001%molybdenum (Mo) 0.1%other impurities 0.1%nickel (Ni) balance.
  • 2. A method of producing a component from an alloy as claimed in claim 1, the method comprising producing the component from the alloy via an additive manufacturing method selected from the group consisting of selective powder melting, selective powder sintering, application welding, and powder application welding.
  • 3. The method as claimed in claim 2, wherein the additive manufacturing method is selected from the group consisting of selective powder melting and selective powder sintering.
  • 4. The alloy as claimed in claim 1, in which the chromium content (Cr) is 21.0% to 21.5%.
  • 5. The alloy as claimed in claim 1, in which the cobalt content (Co) is 19% by weight.
  • 6. The alloy as claimed in claim 1, in which the content of titanium (Ti) is 3.0% by weight to 3.2% by weight.
  • 7. The alloy as claimed in claim 1, in which the content of aluminum (Al) is 2.2% by weight to 2.4% by weight.
  • 8. The alloy as claimed in claim 1, in which the content of tantalum (Ta) is 1.7% by weight to 1.9% by weight.
  • 9. The alloy as claimed in claim 1, in which the content of niobium (Nb) is 1.4% by weight to 1.6% by weight.
  • 10. The alloy as claimed in claim 1, in which the carbon content (C) is 0.15% by weight.
  • 11. The alloy as claimed in claim 1, in which the tungsten content (W) is 2.0% by weight.
  • 12. The alloy as claimed in claim 1, in which the content of aluminum (Al) is 2.4% by weight to 3.0% by weight.
  • 13. The alloy as claimed in claim 1, in which the content of tantalum (Ta) is 1.9% by weight to 2.5% by weight.
Priority Claims (1)
Number Date Country Kind
10 2018 251 722.3 Dec 2018 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/083955 12/6/2019 WO
Publishing Document Publishing Date Country Kind
WO2020/135995 7/2/2020 WO A
US Referenced Citations (8)
Number Name Date Kind
3749612 Benjamin et al. Jul 1973 A
3785876 Bailey Jan 1974 A
3890816 Allen et al. Jun 1975 A
4039330 Shaw Aug 1977 A
4439248 Herchenroeder et al. Mar 1984 A
20080101981 Arrell et al. May 2008 A1
20190048451 Ota Feb 2019 A1
20190234313 Kray Aug 2019 A1
Foreign Referenced Citations (10)
Number Date Country
2133186 Feb 1972 DE
2216626 May 1973 DE
2348248 Apr 1974 DE
69908134 Jan 2004 DE
3205442 Aug 2017 EP
3257956 Dec 2017 EP
2017082324 May 2017 JP
2018003157 Jan 2018 JP
2018168400 Nov 2018 JP
2018155446 Aug 2018 WO
Non-Patent Literature Citations (1)
Entry
PCT International Search Report and Written Opinion of International Searching Authority dated Feb. 13, 2020 corresponding to PCT International Application No. PCT/EP2019/083955 filed Dec. 6, 2019.
Related Publications (1)
Number Date Country
20220064762 A1 Mar 2022 US