This application is the US National Stage of International Application No. PCT/EP2019/083955 filed 6 Dec. 2019, and claims the benefit thereof. The International Application claims the benefit of German Application No. DE 10 2018 251 722.3 filed 27 Dec. 2018. All of the applications are incorporated by reference herein in their entirety.
The invention relates to a nickel-base alloy that can be used in additive manufacturing by means of selective energy irradiation, such as laser radiation, electron beams, or else powder application welding.
Additive manufacturing, for example selective laser melting (SLM), but not limited to that method, is based on the slice-by-slice, selective melting of powder layers as starting material for production of a geometric object.
In the SLM of high-temperature-resistant alloys, microcracks occur during the process, and macrocracks during heat treatment.
Nickel-base materials can be built up in a crack-free and productive manner in a layer thickness up to 40 μm, but do not have adequate mechanical properties for some applications, such as creep resistance in particular. Moreover, oxidation resistance is often limited.
For exploration and industrialization of further additively manufactured hot gas components, however, an alloy with a suitable combination of mechanical properties and productivity is needed.
The problem has been solved to date by the use of other alloys, although this results in a restriction with regard to build quality and productivity (layer thickness 20 μm). More particularly, microcrack formation (in the SLM process) and macrocrack formation during heat treatment occur in the corresponding alloys, and so use of the SLM method with these alternative alloys limits utilization as manufacturing process for new parts, and the opportunities associated with the SLM method cannot be exploited.
The object of the invention is therefore to solve the abovementioned problem.
The object is achieved by an alloy as claimed in claim 1 and a method as claimed in claim 2.
The dependent claims list further advantageous measures that can be combined with one another as desired in order to achieve further advantages.
The concept is that of a nickel-base superalloy, at least comprising (in % by weight), especially consisting of:
carbon (C) 0.13%-0.17%
chromium (Cr) 21%-22%
cobalt (Co) 18%-20%
tungsten (W) 1.8%-2.2%
titanium (Ti) 3.0%-3.4%
aluminum (Al) 2.1%-3.0%
boron (B) 0.008%-0.012%
zirconium (Zr) 0.0025%-0.01%
tantalum (Ta) 1.6%-2.5%
niobium (Nb) 1.2%-1.6%
optionally:
yttrium (Y) 0.0025%-0.0075%
yttrium oxide (Y2O3) 0.25%-1.25%
optionally and especially not more than:
vanadium (V) 0.01%
hafnium (Hf) 0.01%
silver (Ag) 0.005%
lead (Pb) 0.0003%
selenium (Se) 0.0003%
oxygen (O) 0.005%
gallium (Ga) 0.001%
bismuth (Bi) 0.0001%
nitrogen (N) 0.005%
magnesium (Mg) 0.007%
tellurium (Te) 0.00005%
thallium (Tl) 0.0005%
calcium (Ca) 0.0001%
potassium (K) 0.0001%
silicon (Si) 0.02%
manganese (Mn) 0.01%
iron (Fe) 0.02%
copper (Cu) 0.01%
phosphorus (P) 0.005%
sulfur (S) 0.001%
molybdenum (Mo) 0.1%
other impurities 0.1%
nickel (Ni) balance.
The reduced proportion of silicon (Si) and manganese (Mn) distinctly improves cracking behavior.
The low content of sulfur (S) increases the oxidation and corrosion resistance.
The chromium content (Cr) compensates for the proportion of the sigma phase with a higher γ′ content.
The titanium content (Ti) is likewise selected in order to compensate for a γ′ content with a higher proportion of tantalum (Ta) and aluminum (Al).
The content of aluminum (Al) improves creep properties and oxidation resistance.
The contents of zirconium (Zr), iron (Fe), copper (Cu) distinctly reduce propensity to cracking.
The addition of tantalum (Ta) distinctly improves creep properties, and the niobium content (Nb) increases strength.
The addition of yttrium oxide (Y2O3) improves oxidation resistance.
The adjustments detailed assure processibility for a productive SLM process with improved mechanical properties and increased oxidation resistance.
No cracking is expected in heat treatment on account of aging phenomena, which has been confirmed experimentally and by simulation, and this reduces reworking expenditure, such as surface treatment.
The method used is preferably selective powder melting or selective powder sintering or application welding, powder application welding, or else selective laser sintering or selective laser melting.
The chromium content (Cr) is preferably 21.0% to 21.5%, especially 21.0% to 21.3%, very particularly 21.0% by weight.
The cobalt content (Co) is preferably 19% by weight.
The content of titanium (Ti) is preferably 3.0% by weight to 3.2% by weight, especially 3.0% by weight to 3.1% by weight, very particularly 3.0% by weight.
The content of aluminum (Al) is preferably 2.2% by weight to 2.4% by weight, especially 2.3% by weight to 2.4% by weight, very particularly 2.4% by weight.
The content of tantalum (Ta) is preferably 1.7% by weight to 1.9% by weight, especially 1.8% by weight to 1.9% by weight, very particularly 1.9% by weight.
The content of niobium (Nb) is preferably 1.4% by weight to 1.6% by weight, especially 1.5% by weight to 1.6% by weight, very particularly 1.6% by weight.
The carbon content (C) is preferably 0.15% by weight.
The tungsten content (W) is preferably 2.0% by weight.
The content of aluminum (Al) is preferably 2.4% by weight to 3.0% by weight, especially 2.6% by weight to 3.0% by weight, very particularly 3.0% by weight.
Advantages are also achieved with a preferable content of tantalum (Ta) of 1.9% by weight to 2.5% by weight, especially 2.2% by weight to 2.5% by weight, very particularly 2.5% by weight.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 251 722.3 | Dec 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/083955 | 12/6/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/135995 | 7/2/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3749612 | Benjamin et al. | Jul 1973 | A |
3785876 | Bailey | Jan 1974 | A |
3890816 | Allen et al. | Jun 1975 | A |
4039330 | Shaw | Aug 1977 | A |
4439248 | Herchenroeder et al. | Mar 1984 | A |
20080101981 | Arrell et al. | May 2008 | A1 |
20190048451 | Ota | Feb 2019 | A1 |
20190234313 | Kray | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2133186 | Feb 1972 | DE |
2216626 | May 1973 | DE |
2348248 | Apr 1974 | DE |
69908134 | Jan 2004 | DE |
3205442 | Aug 2017 | EP |
3257956 | Dec 2017 | EP |
2017082324 | May 2017 | JP |
2018003157 | Jan 2018 | JP |
2018168400 | Nov 2018 | JP |
2018155446 | Aug 2018 | WO |
Entry |
---|
PCT International Search Report and Written Opinion of International Searching Authority dated Feb. 13, 2020 corresponding to PCT International Application No. PCT/EP2019/083955 filed Dec. 6, 2019. |
Number | Date | Country | |
---|---|---|---|
20220064762 A1 | Mar 2022 | US |