1. Field of the Invention
The present invention relates to an Ni—Fe based forging superalloy which is excellent in high-temperature strength and high-temperature ductility and a method of manufacturing the same, and also to a steam turbine rotor formed of the Ni—Fe based superalloy forging material.
2. Description of the Related Art
In order to improve power generation efficiency of a steam turbine power plant, an elevating of the main steam temperature is effective. At present, steam turbine generator plants of the 600° C. class, in which main steam temperature exceeds 600° C., are commercially employed and for the aim of further improvements to the power generation efficiency, development of the steam turbines having a main steam temperature of the 650° C. class and a main steam temperature of the 700° C. class is proceeding.
Iron and steel materials formerly used as the rotor materials are not applicable to the steam turbine of the 700° C. class, in which the main steam temperature is 700° C. or more, since such iron and steel materials have a durable temperature of about 650° C. Accordingly, it is necessary to use an Ni based superalloy having a higher durable temperature than that of the iron and steel materials, as the rotor material. Such an Ni based superalloy has higher strength than that of iron and steel materials. However, the Ni based superalloy is expensive and also is hard to produce as large forged products.
Ni based superalloys relatively facilitating the manufacturing of large forged products include A286 type, IN706 type and IN718 type Ni—Fe based superalloys. These Ni—Fe based superalloys are employed in gas turbine disks, generator rotors, etc.
The A286 type alloy is advantageous in terms of cost, since it has much Fe. However, the A286 type alloy is not suitable for the material of the steam turbine rotor having a main steam temperature of 700° C. or more, since it has weak strength. Further, the IN706 type alloy has better strength. However, the IN706 type alloy is difficult to manufacture as forged products having a weight of more than 10 tons, since the IN706 type alloy has much more content of Nb being a segregation element. Furthermore, the IN718 type alloy has better high-temperature strength than that of the IN706 type alloy. However, the IN718 type alloy has much more content of segregation elements such as Nb and Mo, and thus causes segregation easier compared with the IN706 type alloy. Therefore, it is also difficult to manufacture a steam turbine rotor having a weight of more than 10 tons based on the IN718 type alloy. Also, as used herein, the “weight of the rotor” means the weight of a finished product of a single rotor.
JP-A-2005-2929 (Abstract) discloses that a steam turbine rotor is manufactured by using Ni—Fe based superalloy forging materials that are successfully obtained by decreasing the amount of Nb compared with IN706 type alloy or IN718 type alloy and further adding Al to it to stabilize a γ′ phase and to suppress the precipitation of harmful phases (i.e., η, δ, α phases) incurring embrittlement. Further, it discloses that a steam turbine rotor of a 10 ton class can be manufactured.
Furthermore, in Superalloy 718, 625, 706 And Various Derivatives TMS, 2005, p. 77 (non-patent document 1), mechanical properties of an Ni—Fe based superalloy which was subject to solution treatment and aging treatment are shown.
The invention aims at manufacturing an ultrahigh-pressure turbine rotor in steam turbine power plants of the 700° C. class having a main steam temperature of 700° C. or more, by improving an Ni—Fe based superalloy such as of the IN706 type and IN718 type.
The IN706 type or IN718 type Ni—Fe based superalloy, as described above, is employed as a gas turbine disk material. However, the IN706 type or IN718 type Ni—Fe based superalloy is difficult to produce as forged products of 10 tons or more, since solidification defects (i.e., freckle defect) are generated due to segregation of Nb.
Decreasing an amount of the segregation element Nb is effective in improving the productivity of a large steel ingot. However, precipitation in the IN706 type or IN718 type Ni—Fe based superalloy is strengthened by Ni3Nb (γ″ phase), and thus if the amount of Nb is decreased, strength would be largely diminished. While it proves that such alloys exhibit good mechanical properties at 500° C. to 650° C., such alloys are hardly used at about 700° C.
It can be seen that when the IN706 type or IN718 type Ni—Fe based superalloy is exposed at 700° C. for a long time, harmful phases (i.e., η, δ, α phases) are precipitated so that it is then embrittled.
Further, it can be seen that while the rotor material disclosed in JP-A-2005-2929 (Abstract) has high strength at 700° C., it is hardly applicable to a rotor including notches because of its low tensile ductility.
Therefore, it is an object of the present invention to provide an Ni—Fe based forging superalloy which is excellent in high-temperature strength and high-temperature ductility and which can be manufactured as a large forged product of 10 tons or more, a method of manufacturing the same, and a steam turbine rotor formed of an Ni—Fe based superalloy forging material.
According to an aspect of the invention, there is provided an Ni—Fe based forging superalloy which is excellent in high-temperature strength and high-temperature ductility, the superalloy including 30 to 40 wt % of Fe, 14 to 16 wt % of Cr, 1.2 to 1.7 wt % of Ti, 1.1 to 1.5 wt % of Al, 1.9 to 2.7 wt % of Nb, 0.05 wt % or less of C, and the remainder of Ni and inevitable impurities, wherein a γ′ phase (Ni3Al) having an initial mean particle size of 50 to 100 nm is precipitated.
According to an aspect of the invention, there is provided a steam turbine rotor formed of an Ni—Fe based superalloy forging material including 30 to 40 wt % of Fe, 14 to 16 wt % of Cr, 1.2 to 1.7 wt % of Ti, 1.1 to 1.5 wt % of Al, 1.9 to 2.7 wt % of Nb, 0.05 wt % or less of C, and the remainder of Ni and inevitable impurities, wherein a γ′ phase (Ni3Al) having an initial mean particle size of 50 to 100 nm is precipitated.
According to an aspect of the invention, there is provided a method of manufacturing an Ni—Fe based forging superalloy which is excellent in high-temperature strength and high-temperature ductility, including: solution-treating an Ni—Fe based superalloy forging material including 30 to 40 wt % of Fe, 14 to 16 wt % of Cr, 1.2 to 1.7 wt % of Ti, 1.1 to 1.5 wt % of Al, 1.9 to 2.7 wt % of Nb, 0.05 wt % or less of C and the remainder of Ni and inevitable impurities; aging twice the resultant forging material at a temperature range of 825 to 855° C. and a temperature range of 710 to 740° C., respectively; and precipitating a γ′ phase (Ni3Al) having an initial mean particle size of 50 to 100 nm.
According to the invention, an Ni—Fe based forging superalloy having high strength and high ductility at about 700° C. and which can be manufactured as a large forged product 10 tons or greater in weight may be obtained. Such an Ni—Fe based forging superalloy allows application to steam turbine power plants of the 650° C. class or the 700° C. class in which the main steam temperature is 650° C. or more, and to integrally manufacturing large-sized steam turbine rotors of more than 10 tons as forging products.
The invention was accomplished by performing the decreasing of the amount of Nb and the addition of Al on the basis of the IN706 type or IN718 type alloy to enhance precipitation by a γ′ phase, and forming an initial mean particle size of a γ′ phase in the range of 50 to 100 nm to greatly improve high temperature ductility while keeping high temperature strength.
The Ni—Fe based forging superalloy in which an initial mean particle size of a γ′ phase is in the range of 50 to 100 nm, can be manufactured, by way of example, by performing a solution-treatment, performing a first aging treatment in the range of 825 to 855° C., and then performing a second aging treatment in the range of 710 to 740° C. The temperature of the solution treatment is preferably in the range of 965 to 995° C. which is the standard temperature for such a type of an Ni based superalloy.
An initial mean particle size of a γ′ phase can be controlled to 50 nm or more by performing the first aging treatment at a temperature of 825° C. or more for about 10 hours or less. If temperature of the first aging treatment exceeds 855° C., an initial mean particle size of the γ′ phase may exceed 100 nm, thereby decreasing high temperature ductility. The second aging treatment is performed in order to increase the precipitated amount of the γ′ phase, and the precipitated amount of the γ′ phase can be increased by maintaining the forging materials at a lower temperature than that of the first aging treatment for a long time without coarsening the γ′ phase. As used herein, the term “initial mean particle size” denotes a mean particle size after the completion of a heat treatment.
The reasons why the component range of an Ni—Fe based superalloy is defined will be described herein below.
If Fe is much added, the material cost is reduced since Fe is cheap. However, if Fe is excessively added into an alloy including Nb, a Laves phase is precipitated, thereby degrading the material property. Further, Fe has a tendency to promote floated segregation. Accordingly, if the additive amount of Fe is too much, floated segregation is likely to happen, and if the additive amount of Fe is too small, sedimented segregation is likely to happen. For the above-mentioned reasons, the additive amount of Fe is preferably in the range of 30 to 40 wt %.
Cr is beneficial in terms of corrosion resistance and oxidation resistance. However, if Cr is excessively added, an α phase or a δ phase which is a bad phase is precipitated. Hence, the additive amount of Cr is preferably in the range of 14 to 16 wt %.
Ti is an element stabilizing the γ′ phase, and also contributing greatly to strength improvement. However, if Ti is excessively added, high temperature strength is greatly increased, thereby deteriorating hot workability. Furthermore, if Ti is added in excess, as an element which promotes floated macro segregation, floated segregation is promoted, and if the additive amount of Ti is too small, precipitated macro segregation is promoted. Moreover, if Ti is excessively added, the η phase which is the bad phase is precipiated. For these reasons, the additive amount of Ti is preferably in the range of 1.2 to 1.7 wt %.
Al is an element stabilizing the γ′ phase and also contributing greatly to strength improvement. However, if Al is excessively added, high temperature strength is greatly increased, thereby deteriorating hot workability and also relatively destabilizing the η phase which is a bad phase. Further, if the additive amount of Al is too small, the η phase is precipated. For these reasons, the additive amount of Al is preferably in the range of 1.1 to 1.5 wt %.
Nb is an element stabilizing the γ′ phase, and also contributing greatly to strength improvement. However, if Nb is excessively added, high temperature strength is greatly increased, thereby deteriorating hot workability and also promoting the precipitation of a harmful phase, such as a δ phase, an η phase, a Laves phase, etc., including a large amount of Nb. Furthermore, as an element which promotes floated macro segregation, if Nb is added in excess, sedimented macro segregation occurs, and if the additive amount of Nb is too small, macro segregation occurs. For these reasons, the additive amount of Nb is preferably in the range of 1.9 to 2.7 wt %.
C is bonded with Nb and Ti to form MC type carbide. MC carbide has an effect that makes the grain minute, since it suppresses the movement of the grain boundary by pinning effects. However, if the additive amount of C is too large, MC carbide is coarsely precipitated. As a result, the origin of breakdown is created and thus fatigue strength is decreased. Thus, the additive amount of C is preferably 0.05 wt % or less.
The Ni—Fe based superalloy of the invention includes the above-mentioned alloy components and the remainder is Ni. In addition to these components, elements incorporated during the course of manufacturing an ingot may be included as impurities. As used herein, such an impurity refers to as an inevitable impurity, since the incorporation of a little amount of impurity is unavoidable.
By employing the above-mentioned chemical components, the rotor material whose large steel ingot productivity, high temperature microstructual stabilities and high temperature strength are excellent can be provided. The component range in the invention is within the component range of an alloy described in JP-A-2005-2929 (Abstract). However, JP-A-2005-2929 (Abstract) does not disclose about heat treatment conditions and an initial mean particle size of a γ′ phase. On the other hand, non-patent document 1 discloses 0.2% yield strength at 700° C. and an initial mean particle size of a γ′ phase, with respect to a test material in which the alloy (FENIX-700), which is within the component range of an alloy described in the JP-A-2005-2929 (Abstract), was subject to solution treatment, and subsequently was subject to aging treatments at 732° C. and 621° C. According to the above document 1, the 0.2% yield strength is about 700 MPa and an initial mean particle size of the γ′ phase is in the range of about 20 to about 30 nm. The aging treatments at 732° C. and 621° C. are standard conditions of the similar alloy IN706. A characteristic described in the non-patent document 1 is a similar property as a tensile strength characteristic described in the JP-A-2005-2929 (Abstract).
From this point of view, the component system of document 1 is not suitable for a rotor material, since high temperature strength is high but high temperature ductility is remarkably low, in the case that aging treatments are performed at 732° C. and 621° C.
A method of improving greatly high temperature ductility without sacrificing a necessary strength characteristic of the steam turbine rotors in these component systems will be described hereinafter.
Generally, strength and ductility are in a trade-off relation, and therefore it is difficult to improve ductility while keeping strength. The alloy having a component range according to the invention is an alloy in which the precipitation is enhanced by the γ′ phase, and if the amount of Al, Nb, Ti, etc. is reduced and then the precipitated amount of the γ′ phase is lowered, ductility is improved. However, high temperature strength is greatly decreased. In particular, since creep strength is greatly influenced by the precipitated amount of the γ′ phase, the creep strength is greatly decreased in this method. In the steam turbine rotor, the required yield strength is low as compared with a gas turbine. Thus, as materials of the steam turbine rotor, the decrease of creep strength is fatal for materials of this component system, the materials being improved materials of the gas turbine disk material.
The strength of a γ′ phase enhanced alloy is effected by an initial mean particle size of the γ′ phase, in addition to the volume fraction of the γ′ phase. If the volume fraction is constant, the strength is higher as an initial mean particle size is smaller. The present inventors found that high temperature ductility was greatly improved by changing heat treatment conditions within the component range of the invention to increase an initial mean particle size of the γ′ phase. In addition, it was confirmed that a short-term creep strength is lowered as an initial mean particle size of the γ′ phase is coarsened, but a long-term creep strength required for a steam turbine rotor is hardly effected by an initial mean particle size of the γ′ phase. In addition, in this case, the decrease of the 0.2% yield strength was acceptable for the steam turbine rotor material.
In view of the above knowledge, the inventors found that a method of improving high temperature ductility without lowering the creep strength within the component range of the invention can be obtained by coarsening the γ′ phase by using a heat treatment to have 50 to 100 nm in mean particle size. Additionally, in the component systems according to the invention, when an initial mean particle size of the γ′ phase is in the range of 50 to 100 nm, a 0.2% yield strength of 450 to 600 MPa at 700° C. and a reduction of area of 25% or more was obtained. Accordingly, it is presumed that high temperature ductility is increased by such characteristic values.
Table 1 shows chemical compositions (weight %) of the test materials used in the Examples. For the test materials listed in table 1, the tests of (a) to (f) shown in
A macro segregation test, same as in non-patent document 1, was performed by using a horizontally directional solidification furnace. According to the disclosure of non-patent document 1, in order to manufacturing an ingot of more than 850 mm φ by an electroslag remelting process (ESR process) without segregation, it is necessary not to produce segregation even though a value of εR1.1 is lowered to 1.2 or less. Hence, in this test, it was determined whether or not segregation occurs by performing a texture observation in the peripheral area in which εR1.1 was 1.2. Here, ε represents a cooling rate (° C./min.), and R represents a solidification rate (mm/min.).
In
Next, samples for texture evaluation and strength evaluation were manufactured with respect to the test materials except alloys B, F and G. In particular, 10 kg of an ingot was manufactured in a vacuum melting furnace, and then the ingot was subject to forging in the range of 1000 to 1200° C. to obtain about 30 nm of a square rod and then any one of heat treatments A to C shown in
For alloys A, C, D, H and I, an initial mean particle size of the γ′ phase in a state when the heat treatment shown in
When an initial mean particle size of the γ′ phase is lower than 50 nm, since the 0.2% yield strength shows 600 MPa or more, the alloys have high strength, but have remarkably low reduction of area. On the contrary, the inventive materials having an initial mean particle size of γ′ phase in the range of 50 to 100 nm, have a conspicuously improved reduction of area and have a strength required for the steam turbine rotor materials, even though they have 0.2% yield strength decreased.
A steam turbine power plant in which the main steam temperature exceeds 600° C. generally includes an ultrahigh-pressure turbine, a high-pressure turbine, and a middle- and a low-pressure turbine. In steam turbine power plants in which the main steam temperature is of the 700° C. class, the steam temperature at the entrance of the ultrahigh-pressure turbine is preferably 700° C. or more, and the pressure is preferably in the range of 25 to 35 MPa. Generally, the weight of the ultrahigh-pressure turbine is in the range of 8 to 20 tons. The Ni—Fe based superalloy according to the invention is available for an ultrahigh-pressure turbine rotor of these steam turbine power plants. Of course, the Ni—Fe based superalloy according to the invention is available for a turbine rotor of a steam turbine having a main steam temperature of 650° C.
The material according to the invention is equally applicable to any rotors of a high-pressure turbine, or a middle- or a low-pressure turbine. Rotors of these types having a weight of more than 40 tons are generally used. Accordingly, in such a case, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2006-229324 | Aug 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2327839 | Zschokke | Aug 1943 | A |
3705827 | Muzyka et al. | Dec 1972 | A |
3785809 | Cox | Jan 1974 | A |
7168916 | Scarlin | Jan 2007 | B2 |
20030034098 | Henry et al. | Feb 2003 | A1 |
20040253102 | Imano et al. | Dec 2004 | A1 |
20060088411 | Imano et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
1486578 | Dec 2004 | EP |
1650319 | Apr 2006 | EP |
60-033329 | Feb 1985 | JP |
60-063338 | Apr 1985 | JP |
10-226837 | Aug 1998 | JP |
2005-002929 | Jan 2005 | JP |
2006-118016 | May 2006 | JP |
2006-124776 | May 2006 | JP |
Entry |
---|
ASM International, Materials Park, Ohio, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys: “Metallography, Microstructures, and Phase Diagrams of Nickel and Nickel Alloys”, Dec. 2000, vol. 2, pp. 302-304. |
Imano, Shinya et al, “Modification of Alloy 706 for High Temperature Steam Turbine Rotor Application”, Superalloy 718, 625, 706 and Various Derivatives TMS, 2005, pp. 77-86. |
European Search Report, EP 07015815, Nov. 22, 2007, 5 pp. |
Number | Date | Country | |
---|---|---|---|
20080213099 A1 | Sep 2008 | US |