This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application Nos. 2014-264738, filed on Dec. 26, 2014, and 2015-220751, filed on Nov. 10, 2015, in the Japanese Patent Office, the entire disclosure of each of which is hereby incorporated by reference herein.
Technical Field
Exemplary aspects of the present disclosure relate to a nip formation assembly, a fixing device, and an image forming apparatus, and more particularly, to a nip formation assembly for forming a fixing nip, a fixing device for fixing a toner image on a recording medium, and an image forming apparatus incorporating the fixing device.
Description of the Background
Related-art image forming apparatuses, such as copiers, facsimile machines, printers, or multifunction printers having two or more of copying, printing, scanning, facsimile, plotter, and other functions, typically form an image on a recording medium according to image data. Thus, for example, a charger uniformly charges a surface of a photoconductor; an optical writer emits a light beam onto the charged surface of the photoconductor to form an electrostatic latent image on the photoconductor according to the image data; a developing device supplies toner to the electrostatic latent image formed on the photoconductor to render the electrostatic latent image visible as a toner image; the toner image is directly transferred from the photoconductor onto a recording medium or is indirectly transferred from the photoconductor onto a recording medium via an intermediate transfer belt; finally, a fixing device applies heat and pressure to the recording medium bearing the toner image to fix the toner image on the recording medium, thus forming the image on the recording medium.
Such fixing device may include a fixing rotator, such as a fixing roller, a fixing belt, and a fixing film, heated by a heater and an opposed rotator, such as a pressure roller and a pressure belt, pressed against the fixing rotator to form a fixing nip therebetween through which a recording medium bearing a toner image is conveyed. As the recording medium bearing the toner image is conveyed through the fixing nip, the fixing rotator and the opposed rotator apply heat and pressure to the recording medium, melting and fixing the toner image on the recording medium.
This specification describes below an improved nip formation assembly. In one exemplary embodiment, the nip formation assembly is disposed opposite an opposed rotator via an endless belt. The nip formation assembly includes a nip formation pad to press against the opposed rotator via the endless belt to form a fixing nip between the endless belt and the opposed rotator, through which a recording medium bearing a toner image is conveyed. A fixing heater is disposed opposite at least a center span of the endless belt in an axial direction thereof where the recording medium is conveyed. The fixing heater heats the endless belt. A lateral end heater is mounted on the nip formation pad and disposed opposite a lateral end span of an inner circumferential surface of the endless belt in the axial direction thereof. The lateral end heater heats the endless belt.
This specification further describes an improved fixing device. In one exemplary embodiment, the fixing device includes an endless belt rotatable in a predetermined direction of rotation and an opposed rotator disposed opposite the endless belt. A nip formation pad presses against the opposed rotator via the endless belt to form a fixing nip between the endless belt and the opposed rotator, through which a recording medium bearing a toner image is conveyed. A fixing heater is disposed opposite at least a center span of the endless belt in an axial direction thereof where the recording medium is conveyed. The fixing heater heats the endless belt. A lateral end heater is mounted on the nip formation pad and disposed opposite a lateral end span of an inner circumferential surface of the endless belt in the axial direction thereof. The lateral end heater heats the endless belt.
This specification further describes an improved image forming apparatus. In one exemplary embodiment, the image forming apparatus includes an image bearer to bear a toner image and a fixing device disposed downstream from the image bearer in a recording medium conveyance direction to fix the toner image on a recording medium. The fixing device includes an endless belt rotatable in a predetermined direction of rotation and an opposed rotator disposed opposite the endless belt. A nip formation pad presses against the opposed rotator via the endless belt to form a fixing nip between the endless belt and the opposed rotator, through which the recording medium bearing the toner image is conveyed. A fixing heater is disposed opposite at least a center span of the endless belt in an axial direction thereof where the recording medium is conveyed. The fixing heater heats the endless belt. A lateral end heater is mounted on the nip formation pad and disposed opposite a lateral end span of an inner circumferential surface of the endless belt in the axial direction thereof. The lateral end heater heats the endless belt. An electric circuit selectively energizes the fixing heater and the lateral end heater.
A more complete appreciation of the disclosure and the many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing exemplary embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, in particular to
It is to be noted that, in the drawings for explaining exemplary embodiments of this disclosure, identical reference numerals are assigned, as long as discrimination is possible, to components such as members and component parts having an identical function or shape, thus omitting description thereof once it is provided.
A description is provided of a construction and an operation of the image forming apparatus 100.
The image forming apparatus 100 is a color printer employing a tandem system in which a plurality of image forming devices for forming toner images in a plurality of colors, respectively, is aligned in a rotation direction of an intermediate transfer belt.
The image forming apparatus 100 includes four photoconductive drums 20Y, 20C, 20M, and 20K serving as image bearers that bear yellow, cyan, magenta, and black toner images in separation colors, respectively, that is, yellow, cyan, magenta, and black.
The yellow, cyan, magenta, and black toner images formed on the photoconductive drums 20Y, 20C, 20M, and 20K as visible images, respectively, are primarily transferred successively onto an intermediate transfer belt 11 serving as an intermediate transferor disposed opposite the photoconductive drums 20Y, 20C, 20M, and 20K as the intermediate transfer belt 11 rotates in a rotation direction A1 such that the yellow, cyan, magenta, and black toner images are superimposed on a same position on the intermediate transfer belt 11 in a primary transfer process. Thereafter, the yellow, cyan, magenta, and black toner images superimposed on the intermediate transfer belt 11 are secondarily transferred onto a sheet S serving as a recording medium collectively in a secondary transfer process. Each of the photoconductive drums 20Y, 20C, 20M, and 20K is surrounded by image forming components that form the yellow, cyan, magenta, and black toner images on the photoconductive drums 20Y, 20C, 20M, and 20K as they rotate clockwise in
Taking the photoconductive drum 20K that forms the black toner image, the following describes a construction of components that form the black toner image. The photoconductive drum 20K is surrounded by a charger 30K, a developing device 40K, a primary transfer roller 12K, and a cleaner 50K in this order in the rotation direction D20 of the photoconductive drum 20K. The photoconductive drums 20Y, 20C, and 20M are also surrounded by chargers 30Y, 30C, and 30M, developing devices 40Y, 40C, and 40M, primary transfer rollers 12Y, 12C, and 12M, and cleaners 50Y, 50C, and 50M in this order in the rotation direction D20 of the photoconductive drums 20Y, 20C, and 20M, respectively. The charger 30K uniformly changes an outer circumferential surface of the photoconductive drum 20K. An optical writing device 8 optically writes an electrostatic latent image on the charged outer circumferential surface of the photoconductive drum 20K according to image data sent from an external device such as a client computer. The developing device 40K visualizes the electrostatic latent image as a black toner image.
As the intermediate transfer belt 11 rotates in the rotation direction A1, the yellow, cyan, magenta, and black toner images formed on the photoconductive drums 20Y, 20C, 20M, and 20K, respectively, are primarily transferred successively onto the intermediate transfer belt 11, thus being superimposed on the same position on the intermediate transfer belt 11 and formed into a color toner image. In the primary transfer process, the primary transfer rollers 12Y, 12C, 12M, and 12K disposed opposite the photoconductive drums 20Y, 20C, 20M, and 20K via the intermediate transfer belt 11, respectively, apply a primary transfer bias to the photoconductive drums 20Y, 20C, 20M, and 20K successively from the upstream photoconductive drum 20Y to the downstream photoconductive drum 20K in the rotation direction A1 of the intermediate transfer belt 11. The photoconductive drums 20Y, 20C, 20M, and 20K are aligned in this order in the rotation direction A1 of the intermediate transfer belt 11. The photoconductive drums 20Y, 20C, 20M, and 20K are located in four image forming stations that form the yellow, cyan, magenta, and black toner images, respectively.
The image forming apparatus 100 includes the four image forming stations that form the yellow, cyan, magenta, and black toner images, respectively, an intermediate transfer belt unit 10, a secondary transfer roller 5, an intermediate transfer belt cleaner 13, and the optical writing device 8. The intermediate transfer belt unit 10 is situated above and disposed opposite the photoconductive drums 20Y, 20C, 20M, and 20K. The intermediate transfer belt unit 10 incorporates the intermediate transfer belt 11 and the primary transfer rollers 12Y, 12C, 12M, and 12K. The secondary transfer roller 5 serves as a secondary transferor disposed opposite the intermediate transfer belt 11 and driven and rotated in accordance with rotation of the intermediate transfer belt 11. The intermediate transfer belt cleaner 13 is disposed opposite the intermediate transfer belt 11 to clean the intermediate transfer belt 11. The optical writing device 8 is situated below and disposed opposite the four image forming stations.
The optical writing device 8 includes a semiconductor laser serving as a light source, a coupling lens, an fθ lens, a troidal lens, a deflection mirror, and a rotatable polygon mirror serving as a deflector. The optical writing device 8 emits light beams Lb corresponding to the yellow, cyan, magenta, and black toner images to be formed on the photoconductive drums 20Y, 20C, 20M, and 20K thereto, forming electrostatic latent images on the photoconductive drums 20Y, 20C, 20M, and 20K, respectively.
The image forming apparatus 100 further includes a sheet feeder 61 and a registration roller pair 4. The sheet feeder 61, disposed in a lower portion of the image forming apparatus 100, incorporates a paper tray that loads a plurality of sheets S to be conveyed to a secondary transfer nip formed between the intermediate transfer belt 11 and the secondary transfer roller 5. The registration roller pair 4 serving as a conveyor conveys the sheet S conveyed from the sheet feeder 61 to the secondary transfer nip formed between the intermediate transfer belt 11 and the secondary transfer roller 5 at a predetermined time when the yellow, cyan, magenta, and black toner images superimposed on the intermediate transfer belt 11 reach the secondary transfer nip. The image forming apparatus 100 further includes a sensor for detecting that a leading edge of the sheet S reaches the registration roller pair 4.
The secondary transfer roller 5 secondarily transfers the color toner image formed on the intermediate transfer belt 11 onto the sheet S as the sheet S is conveyed through the secondary transfer nip. The sheet S bearing the color toner image is conveyed to a fixing device 150 where the color toner image is fixed on the sheet S under heat and pressure. An output roller pair 7 ejects the sheet S bearing the fixed color toner image onto an output tray disposed atop the image forming apparatus 100. In an upper portion of the image forming apparatus 100 and below the output tray are toner bottles 9Y, 9C, 9M, and 9K containing fresh yellow, cyan, magenta, and black toners, respectively.
The intermediate transfer belt unit 10 includes a driving roller 72 and a driven roller 73 over which the intermediate transfer belt 11 is looped, in addition to the intermediate transfer belt 11 and the primary transfer rollers 12Y, 12C, 12M, and 12K. Since the driven roller 73 also serves as a tension applicator that applies tension to the intermediate transfer belt 11, a biasing member (e.g., a spring) biases the driven roller 73 against the intermediate transfer belt 11. The intermediate transfer belt unit 10, the primary transfer rollers 12Y, 12C, 12M, and 12K, the secondary transfer roller 5, and the intermediate transfer belt cleaner 13 constitute a transfer device 71. The sheet feeder 61 includes a feed roller 3 that contacts an upper side of an uppermost sheet S of the plurality of sheets S loaded on the paper tray of the sheet feeder 61. As the feed roller 3 is driven and rotated counterclockwise in
The intermediate transfer belt cleaner 13 of the transfer device 71 includes a cleaning brush and a cleaning blade disposed opposite the intermediate transfer belt 11 to come into contact with the intermediate transfer belt 11. The cleaning brush and the cleaning blade scrape a foreign substance such as residual toner particles off the intermediate transfer belt 11, removing the foreign substance from the intermediate transfer belt 11 and thereby cleaning the intermediate transfer belt 11. The intermediate transfer belt cleaner 13 further includes a waste toner conveyer that conveys the residual toner particles removed from the intermediate transfer belt 11.
With reference to
A detailed description is now given of a construction of the nip formation assembly 18.
The nip formation assembly 18 includes a nip formation pad 22, a lateral end heater 24, and a stay 26. The nip formation pad 22, disposed inside the loop formed by the fixing belt 14, presses against the pressure roller 16 via the fixing belt 14 to form the fixing nip N between the fixing belt 14 and the pressure roller 16. The lateral end heater 24 serving as a lateral end heater or a lateral end heat source is mounted on each lateral end of the nip formation pad 22 in a longitudinal direction thereof parallel to an axial direction of the fixing belt 14. The stay 26 supports the nip formation pad 22 against pressure from the pressure roller 16.
An inner circumferential surface of the fixing belt 14 slides over the nip formation pad 22 via a low-friction sheet 6 serving as a slide sheet as shown in
The stay 26 has a box shape with an opening opposite the fixing nip N. Two halogen heaters 28a and 28b serving as a fixing heater or a fixing heat source are disposed inside the box of the stay 26. The halogen heaters 28a and 28b emit light that irradiates the inner circumferential surface of the fixing belt 14 directly through the opening of the stay 26, heating the fixing belt 14 with radiation heat.
A platy reflector 31 is mounted on an interior surface of the stay 26 to reflect light radiated from the halogen heaters 28a and 28b toward the fixing belt 14 so as to improve heating efficiency of the halogen heaters 28a and 28b to heat the fixing belt 14. The reflector 31 prevents light from the halogen heaters 28a and 28b from heating the stay 26, suppressing waste of energy. Alternatively, instead of the reflector 31, the interior surface of the stay 26 may be treated with insulation or mirror finish to reflect light radiated from the halogen heaters 28a and 28b toward the fixing belt 14.
A detailed description is now given of a construction of the pressure roller 16.
A spring or the like biases the pressure roller 16 against the fixing belt 14. As the elastic layer 16b of the pressure roller 16 is pressed and deformed, the pressure roller 16 produces the fixing nip N having a predetermined length Nw in a sheet conveyance direction DS as shown in
Alternatively, the pressure roller 16 may be a solid roller. However, a hollow roller has a decreased thermal capacity. Further, a heater or a heat source such as a halogen heater may be disposed inside the pressure roller 16. The elastic layer 16b may be made of solid rubber. Alternatively, if no heater is situated inside the pressure roller 16, the elastic layer 16b may be made of sponge rubber. The sponge rubber is more preferable than the solid rubber because the sponge rubber has an increased insulation that draws less heat from the fixing belt 14.
A detailed description is now given of a construction of the fixing belt 14.
As shown in
To address this circumstance, the elastic layer made of silicone rubber has a thickness not smaller than 100 micrometers. As the elastic layer deforms, the elastic layer absorbs slight surface asperities of the fixing belt 14, suppressing variation in gloss of the toner image on the sheet S. As the pressure roller 16 rotates in the rotation direction D16, the fixing belt 14 rotates in the rotation direction D14 in accordance with rotation of the pressure roller 16 by friction therebetween. At the fixing nip N, the fixing belt 14 rotates as it is sandwiched between the pressure roller 16 and the nip formation pad 22; at a circumferential span of the fixing belt 14 other than the fixing nip N, the fixing belt 14 rotates while the fixing belt 14 is supported at each lateral end in the axial direction thereof to retain a tubular shape. Thus, the fixing belt 14 is retained circular in cross-section stably.
As shown in
According to this exemplary embodiment, as shown in
A detailed description is now given of a configuration of the stay 26.
The stay 26 supports the nip formation pad 22 against pressure from the pressure roller 16 to prevent bending of the nip formation pad 22 and produce the even length Nw of the fixing nip N in the sheet conveyance direction DS throughout the entire width of the fixing belt 14 in the axial direction thereof. According to this exemplary embodiment, the pressure roller 16 is pressed against the fixing belt 14 to form the fixing nip N. Alternatively, the nip formation assembly 18 may be pressed against the pressure roller 16 to from the fixing nip N. The stay 26 has a mechanical strength great enough to support the nip formation pad 22 to prevent bending of the nip formation pad 22. The stay 26 is made of metal such as stainless steel and iron or metallic oxide such as ceramic. The fixing belt 14 and the components disposed inside the loop formed by the fixing belt 14, that is, the halogen heaters 28a and 28b, the nip formation pad 22, the lateral end heater 24, the stay 26, and the reflector 31, may constitute a belt unit 14U separably coupled with the pressure roller 16.
The flange 36 includes a slit 36a disposed opposite the fixing nip N to place the nip formation assembly 18 at a predetermined position. The stay 26 depicted in
As shown in
A description is provided of a configuration of a first comparative fixing device incorporating a center heater equivalent to the halogen heater 28a and a lateral end heater equivalent to the halogen heater 28b depicted in
As a small sheet S is conveyed through the fixing nip N, the center heater having a center dense light distribution is powered on. As a large sheet S is conveyed through the fixing nip N, the lateral end heater having a lateral end dense light distribution is powered on together with the center heater. The center heater and the lateral end heater are powered on and off properly to heat sheets S of various sizes.
Taking the sizes of the sheets S and the frequency with which the sheets S are conveyed, sheets S up to the A3 size sheet are used frequently. The A3 size sheet is conveyed through the fixing nip N in portrait orientation. An A4 size sheet and a letter (LT) size sheet that are used with an increased frequency are generally conveyed in landscape orientation to enhance productivity. To address this circumstance, the center heater and the lateral end heater produce a heating span of about 300 mm in the axial direction of the fixing belt 14 that is great enough to heat 99 percent or more of the sizes of sheets S. On the other hand, the center heater and the lateral end heater are requested to heat large sheets S greater than the A3 size sheet in the axial direction of the fixing belt 14 such as an A3 extension size sheet and a 13-inch sheet although the large sheets S are used infrequently.
If a plurality of halogen heaters is used as the center heater and the lateral end heater, respectively, the plurality of halogen heaters used to heat the small sheet S is situated inside the loop formed by the fixing belt 14 or a fixing roller having a diameter of about 30 mm. Accordingly, the number of the halogen heaters is limited. To address this circumstance, the lateral end heater having the lateral end dense light distribution may be elongated to span a width of the large sheet S greater than a width of the A3 size sheet in the axial direction of the fixing belt 14.
As described above, the center heater and the lateral end heater heat the heating span of about 300 mm of the fixing belt 14 in the axial direction thereof frequently. However, if the elongated lateral end heater is employed, the elongated lateral end heater may heat an elongated heating span of about 330 mm of the fixing belt 14 in the axial direction thereof, wasting energy used to heat a differential between the heating span of about 300 mm and the elongated heating span of about 330 mm.
When the A3 size sheet in portrait orientation or the A4 size sheet in landscape orientation is conveyed through the fixing nip N, each lateral end of the elongated heating span of the fixing belt 14 in the axial direction thereof that corresponds to the differential between the heating span of about 300 mm and the elongated heating span of about 330 mm may overheat. In order to cool the overheated lateral end of the fixing belt 14, productivity defined by a conveyance speed of the sheets S may be degraded or a fan may be installed. If a reflection plate is interposed between the lateral end heater and the fixing belt 14, each lateral end of the lateral end heater in the axial direction of the fixing belt 14 may overheat.
To address this circumstance, a second comparative fixing device is proposed. The second comparative fixing device includes a thin, flexible endless belt to be heated quickly to a fixing temperature at which a toner image is fixed on a sheet S and a nip formation unit located inside a loop formed by the endless belt. The nip formation unit presses against a pressure roller via the endless belt to form a fixing nip between the endless belt and the pressure roller. A plurality of halogen heaters having different light distributions, respectively, is situated inside the loop formed by the endless belt. A plurality of lateral end heaters is disposed opposite both lateral end spans of the endless belt in an axial direction thereof, respectively, and upstream from the fixing nip in a rotation direction of the endless belt so as to heat an increased heating span of the endless belt corresponding to the width of the large sheet S in the axial direction of the endless belt. The lateral end heaters contact an inner circumferential surface or an outer circumferential surface of the endless belt. The lateral end heaters heat the increased heating span of the endless belt corresponding to the width of the large sheet S in the axial direction of the endless belt with a simple construction not incorporating an extra halogen heater directed to the large sheet S.
Since the lateral end heaters are disposed opposite both lateral end spans of the endless belt in the axial direction thereof and upstream from the fixing nip in the rotation direction of the endless belt to heat both lateral end spans of the endless belt in the axial direction of the endless belt, respectively, both lateral end spans of the endless belt may flap while the endless belt rotates and therefore may not contact the lateral end heaters precisely. To address this circumstance, the lateral end heaters may press against both lateral end spans of the endless belt with predetermined pressure. However, since the endless belt is exerted with pressure also at the fixing nip, rotation of the endless belt may degrade. Additionally, the lateral end heaters may melt residual toner failed to be fixed on the sheet S and therefore remaining on the endless belt again on both lateral end spans of the endless belt disposed opposite the lateral end heaters, respectively. Accordingly, the melted toner may adhere to the endless belt.
A width of the A3 size sheet in portrait orientation and a width of the A4 size sheet in landscape orientation are smaller than a width of the A3 extension size sheet in portrait orientation (e.g., 329 mm) and a width of the 13-inch sheet in portrait orientation (e.g., 330 mm) by a differential in a range of from 32 mm to 33 mm, respectively. Accordingly, if the fixing device 150 is configured to heat each lateral end span of the fixing belt 14 in the axial direction thereof, that is, if the fixing device 150 is configured to heat a half of the differential in range of from 32 mm to 33 mm, that is, a span in a range of from 16.0 mm to 16.5 mm, the maximum width of sheets S available in the fixing device 150 increases from the width W1 of the A3 size sheet to the width W2 of the A3 extension size sheet or the like as shown in
As the large sheet S (e.g., the A3 extension size sheet and the 13-inch sheet) is conveyed through the fixing nip N, the halogen heaters 28a and 28b and the lateral end heaters 24a and 24b are energized. Conversely, as the small sheet S (e.g., a sheet not greater than the A3 size sheet) is conveyed through the fixing nip N, the halogen heaters 28a and 28b are energized or the halogen heater 28a is energized. Hence, the lateral end heaters 24a and 24b are not energized.
If the halogen heater 28b is configured to have an increased heating span to heat the large sheet S such as the A3 extension size sheet, the halogen heater 28b may heat each lateral end span of the fixing belt 14 unnecessarily while the large sheet S is not conveyed through the fixing nip N, wasting energy. To address this circumstance, the fixing device 150 according to this exemplary embodiment incorporates a simple mechanism in addition to the halogen heaters 28a and 28b, that is, the lateral end heaters 24a and 24b being disposed opposite both lateral end spans G in the axial direction of the fixing belt 14 or in proximity to both lateral ends of the fixing belt 14 in the axial direction thereof, respectively.
A description is provided of a construction of the lateral end heaters 24a and 24b.
As described above, the resistive heat generator 52 is mounted on a first face of the lateral end heater 24a so that the first face of the lateral end heater 24a that mounts the resistive heat generator 52 generates heat mainly while a second face of the lateral end heater 24a that does not mount the resistive heat generator 52 barely receives heat from the first face. According to this exemplary embodiment, the first face of the lateral end heater 24a that mounts the resistive heat generator 52 contacts the recess 22a depicted in
The fixing belt side face 24c of the respective lateral end heaters 24a and 24b that contacts the inner circumferential surface of the fixing belt 14 is leveled with the nip formation face 22c of the nip formation pad 22 in the pressurization direction F to define an identical plane. Accordingly, the pressure roller 16 is pressed against the lateral end heaters 24a and 24b via the fixing belt 14 sufficiently. Consequently, the fixing belt 14 rotates in a state in which the fixing belt 14 adheres to the lateral end heaters 24a and 24b, improving conduction of heat from the lateral end heaters 24a and 24b to the fixing belt 14 and thereby retaining improved heating efficiency of the lateral end heaters 24a and 24b.
Since the lateral end heaters 24a and 24b are situated within the fixing nip N in the axial direction of the fixing belt 14 to heat the fixing belt 14, the lateral end heaters 24a and 24b do not heat a portion of the fixing belt 14 that is outboard from the fixing nip N in the axial direction of the fixing belt 14, preventing residual toner failed to be fixed on the sheet S and therefore remaining on the fixing belt 14 from being melted again and adhered to the fixing belt 14.
The pressure roller 16 also serves as a biasing member that presses the fixing belt 14 against the lateral end heaters 24a and 24b to adhere the fixing belt 14 to the lateral end heaters 24a and 24b so as to enhance conduction of heat from the lateral end heaters 24a and 24b to the fixing belt 14. Accordingly, a mechanism that presses the lateral end heaters 24a and 24b against the fixing belt 14 is not needed, simplifying the fixing device 150. In other words, pressure used to form the fixing nip N is also used to adhere the fixing belt 14 to the lateral end heaters 24a and 24b, improving conduction of heat from the lateral end heaters 24a and 24b to the fixing belt 14 without degrading rotation of the fixing belt 14.
As shown in
Since the lateral end heaters 24a and 24b are mounted and fixedly secured on the nip formation pad 22 as a separate component, the fixing belt side face 24c of the respective lateral end heaters 24a and 24b that contacts the inner circumferential surface of the fixing belt 14 may deviate from the nip formation face 22c of the nip formation pad 22 in height during assembly of the fixing device 150. To address this circumstance, the elastic members 38 support the lateral end heaters 24a and 24b to absorb a manufacturing error, thus leveling the fixing belt side face 24c of the respective lateral end heaters 24a and 24b with the nip formation face 22c of the nip formation pad 22 when the fixing nip N is formed.
According to this exemplary embodiment, the lateral end heaters 24a and 24b are mounted on or coupled with the nip formation pad 22 to constitute the nip formation assembly 18. Alternatively, the lateral end heaters 24a and 24b may not be mounted on or coupled with the nip formation pad 22 as shown in
According to the exemplary embodiments described above, as shown in
The lateral end heaters 24a and 24b may have a positive temperature coefficient (PTC) property. If the lateral end heaters 24a and 24b have the PTC property, a resistance value increases at a preset temperature or higher and therefore the lateral end heaters 24a and 24b do not generate heat at the preset temperature or higher. Hence, the lateral end heaters 24a and 24b do not burn or damage the fixing belt 14, achieving the safe fixing device 150.
Additionally, the lateral end heaters 24a and 24b situated inside the loop formed by the fixing belt 14 emit light that irradiates the inner circumferential surface of the fixing belt 14 to heat both lateral end spans of the fixing belt 14 in the axial direction thereof without degrading rotation of the fixing belt 14.
Further, if the fixing belt side face 24c of the respective lateral end heaters 24a and 24b that contacts the inner circumferential surface of the fixing belt 14 is made of a smooth material different from a material of a body of the respective lateral end heaters 24a and 24b, the smooth material suppresses the sliding friction of the fixing belt 14 as the fixing belt 14 slides over the lateral end heaters 24a and 24b, retaining stable rotation of the fixing belt 14.
According to the exemplary embodiments described above, as shown in
The lateral end heaters 24a and 24b are disposed opposite the fixing nip N where the fixing belt 14 is exerted with pressure from the pressure roller 16. Accordingly, the fixing belt 14 is exerted with pressure at a single place, that is, the fixing nip N. Consequently, the nip formation assembly 18 reduces degradation in rotation of the fixing belt 14. As a result, the fixing device 150 incorporating the nip formation assembly 18 improves fixing performance and the image forming apparatus 100 incorporating the fixing device 150 performs improved image formation constantly.
With reference to
The components of the fixing device 150 according to the second exemplary embodiment that are identical to those of the fixing device 150 according to the first exemplary embodiment are assigned with the identical reference numerals and a description of the construction and the configuration mentioned above is omitted.
As shown in
In order to heat the entire sheet S including each lateral end in a width direction thereof parallel to the axial direction of the fixing belt 14 sufficiently, a width of a light emitter of the halogen heater 28b where the light distribution is dense is requested to be greater than a width of the sheet S in the width direction thereof. However, the light emitter having the increased width in the width direction of the sheet S causes overheating or temperature increase of a non-conveyance span of the fixing belt 14 in the axial direction thereof where small sheets S are not conveyed after the small sheets S are conveyed over the fixing belt 14 continuously. To address this circumstance, a light shield may shield the non-conveyance span of the fixing belt 14 from redundant light emitted from the light emitter having the increased width. However, while the small sheets S are conveyed over the fixing belt 14 continuously, the light shield may overheat. Further, as the halogen heater 28b heats the non-conveyance span of the fixing belt 14, the halogen heater 28b consumes energy unnecessarily, wasting energy.
To address this circumstance, the lateral end heaters 24a and 24b of the fixing device 150 according to the second exemplary embodiment are located relative to the halogen heater 28b as shown in
In other words, the lateral end heaters 24a and 24b supplement decrease in heat output of a part of the halogen heater 28b that suffers from a decreased heat output. Accordingly, as shown in hatched parts H in
The lateral end heaters 24a and 24b are directed to supplement decrease in heat output of the part of the halogen heater 28b that is disposed at each lateral end span of the halogen heater 28b in the longitudinal direction thereof and suffers from the decreased heat output. Hence, each of the lateral end heaters 24a and 24b is a downsized heater having a width of about 20 mm in the axial direction of the fixing belt 14.
The fixing device 150 according to the second exemplary embodiment incorporates a simple mechanism in addition to the halogen heaters 28a and 28b, that is, the lateral end heaters 24a and 24b being disposed opposite both lateral end spans (e.g., the lateral end span G depicted in
The halogen heaters 28a and 28b and the lateral end heaters 24a and 24b are energized during an initial time of a print job of conveying sheets S continuously for fixing immediately after warming up the fixing device 150, for example, the initial time when the fixing belt 14 and the pressure roller 16 have not been heated sufficiently.
Conversely, when the fixing belt 14 and the pressure roller 16 have been heated sufficiently and temperature decrease at each lateral end of the fixing belt 14 in the axial direction thereof has been improved, the halogen heaters 28a and 28b are energized or the halogen heater 28a is energized. Hence, the lateral end heaters 24a and 24b are not energized.
Under such heating control, the fixing device 150 reduces overheating or temperature increase in the non-conveyance span on the fixing belt 14 where the sheet S is not conveyed. Additionally, the fixing belt 14 is not heated unnecessarily, improving heating efficiency and saving energy.
According to the exemplary embodiments described above, the single lateral end heater 24a is disposed opposite one lateral end span of the fixing belt 14 in the axial direction thereof; the single lateral end heater 24b is disposed opposite another lateral end span of the fixing belt 14 in the axial direction thereof. Alternatively, a plurality of lateral end heaters 24a may be disposed opposite one lateral end span of the fixing belt 14 in the axial direction thereof and a plurality of lateral end heaters 24b may be disposed opposite another lateral end span of the fixing belt 14 in the axial direction thereof according to various sizes of sheets S, for example. The lateral end heaters 24a and 24b may be disposed outboard from the halogen heater 28b in the longitudinal direction thereof. Accordingly, the lateral end heaters 24a and 24b correspond to an increased number of sizes of sheets S and heat the fixing belt 14 precisely.
The lateral end heaters 24a and 24b having the PTC property may take an extended period of time to achieve a predetermined target temperature compared to the halogen heaters 28a and 28b. For example, if the lateral end heaters 24a and 24b and the halogen heaters 28a and 28b are energized simultaneously, the center span of the fixing belt 14 in the axial direction thereof is heated quickly, wasting energy. Further, as the sheets S conveyed over the fixing belt 14 draw heat from the fixing belt 14, the lateral end heaters 24a and 24b, due to their PTC property, take the extended period of time to retrieve the predetermined target temperature compared to the halogen heaters 28a and 28b.
To address this circumstance, the fixing device 150 decreases productivity to correspond to a heating cycle of the lateral end heaters 24a and 24b, thus controlling heating of the fixing belt 14 to reduce variation in temperature of the fixing belt 14 in the axial direction thereof, that is, between the center span and each lateral end span of the fixing belt 14 in the axial direction thereof.
For example, while the lateral end heaters 24a and 24b that heat both lateral end spans of the fixing belt 14 in the axial direction thereof or the vicinity of both lateral ends of the fixing belt 14, respectively, where the A3 extension size sheet is conveyed are energized, actuation of the halogen heaters 28a and 28b that heat an inboard span inboard from both lateral end spans of the fixing belt 14 in the axial direction thereof where sheets smaller than the A3 extension size sheet are conveyed is controlled in accordance with temperature increase of both lateral end spans of the fixing belt 14 in the axial direction thereof.
As shown in
Accordingly, the fixing device 150 prevents waste of energy caused by the halogen heaters 28a and 28b that heat the inboard span of the fixing belt 14 in the axial direction thereof where the sheets smaller than the large sheet S are conveyed quickly and unnecessarily while the lateral end heaters 24a and 24b generate a decreased amount of heat.
A conveyance speed at which the A3 extension size sheet heated by the lateral end heaters 24a and 24b is conveyed is smaller than a conveyance speed at which the sheets other than the A3 extension size sheet are conveyed. Thus, the fixing device 150 decreases productivity when the infrequently used, large sheet S (e.g., the A3 extension size sheet) is conveyed, simplifying the lateral end heaters 24a and 24b that heat both lateral end spans of the fixing belt 14 in the axial direction thereof, respectively, and reducing manufacturing costs. Consequently, the fixing belt 14 is heated effectively.
According to the exemplary embodiments described above, the fixing device 150 includes the two halogen heaters 28a and 28b serving as fixing heaters, respectively. Alternatively, the fixing device 150 may include three or more halogen heaters to correspond to various sizes of small sheets S.
A description is provided of a construction of a nip formation assembly 63 (e.g., a nip formation unit) as a variation of the nip formation assembly 18 depicted in
The nip formation assembly 63 achieves advantages similar to those of the nip formation assembly 18 described above. Alternatively, instead of the reflector 65, an exterior surface of the stand 64b may be treated with insulation or mirror finish to reflect light radiated from the halogen heaters 28a and 28b toward the fixing belt 14. In this case, the halogen heaters 28a and 28b heat the fixing belt 14 with a slightly decreased heating efficiency compared to a heating efficiency with which the halogen heaters 28a and 28b heat the fixing belt 14 together with the reflector 65.
A detailed description is now given of a construction of the fixing belt 14 made of metal.
The fixing belt 14 shown in
A description is provided of an electric connection between the halogen heaters 28a and 28b and the lateral end heaters 24a and 24b.
If one of the lateral end heaters 24a and 24b suffers from failure, the power supply 44 interrupts power supply to the lateral end heaters 24a and 24b simultaneously, achieving safety of the fixing device 150. The power supply 44 powers on and off the halogen heater 28a through a switch SW1, the halogen heater 28b through a switch SW2, and the lateral end heaters 24a and 24b through a switch SW3.
The halogen heaters 28a and 28b disposed opposite the fixing nip N via the stay 26 to heat a non-nip side portion of the fixing belt 14 that is opposite the fixing nip N are energized separately from the lateral end heaters 24a and 24b disposed opposite the fixing nip N to heat a nip side portion of the fixing belt 14 that constitutes the fixing nip N. Accordingly, the electric circuit 91 controls the lateral end heaters 24a and 24b to heat both lateral end spans of the fixing belt 14 in the axial direction thereof precisely. Additionally, the electric circuit 91 prevents overheating or temperature increase of the non-conveyance span of the fixing belt 14 in the axial direction thereof where the sheet S is not conveyed.
The lateral end heaters 24a and 24b are energized as the large sheet S greater than the A3 size sheet is conveyed through the fixing nip N. The halogen heater 28b directed to heat each lateral end span of the fixing belt 14 in the axial direction thereof is energized simultaneously.
When the switch SW3 is turned off, the lateral end heaters 24a and 24b are connected to a negative electrode. Hence, no electric current flows in the lateral end heaters 24a and 24b. Conversely, when the switch SW3 is turned on, the lateral end heaters 24a and 24b are connected to a positive electrode. Accordingly, an electric current from the power supply 44 flows in each of the lateral end heaters 24a and 24b, causing the lateral end heaters 24a and 24b to generate heat.
Accordingly, if one of the lateral end heaters 24a and 24b suffers from short circuit, a fuse prevents the lateral end heaters 24a and 24b from being out of control by overflow of the electric current, improving safety.
The present disclosure is not limited to the details of the exemplary embodiments described above and various modifications and improvements are possible. The advantages achieved by the fixing devices 150 and 150S are not limited to those described above.
A description is provided of advantages of the nip formation assemblies 18 and 63.
As shown in
Accordingly, the lateral end heater heats the fixing belt 14 effectively while retaining stable rotation of the fixing belt 14. Consequently, the lateral end heater prevents residual toner failed to be fixed on the sheet S and therefore remaining on the fixing belt 14 from being melted again and adhered to the fixing belt 14.
Since the lateral end heater is disposed opposite the fixing nip N where the fixing belt 14 is exerted with pressure, the fixing belt 14 is exerted with pressure at the single place, that is, the fixing nip N. Thus, the nip formation assembly reduces degradation in rotation of the fixing belt 14.
As shown in
According to the exemplary embodiments described above, the fixing belt 14 serves as an endless belt. Alternatively, a fixing film, a fixing sleeve, or the like may be used as an endless belt. Further, the pressure roller 16 serves as an opposed rotator. Alternatively, a pressure belt or the like may be used as an opposed rotator.
The present disclosure has been described above with reference to specific exemplary embodiments. Note that the present disclosure is not limited to the details of the embodiments described above, but various modifications and enhancements are possible without departing from the spirit and scope of the disclosure. It is therefore to be understood that the present disclosure may be practiced otherwise than as specifically described herein. For example, elements and/or features of different illustrative exemplary embodiments may be combined with each other and/or substituted for each other within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2014-264738 | Dec 2014 | JP | national |
2015-220751 | Nov 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8630572 | Fujimoto | Jan 2014 | B2 |
20110129268 | Ishii | Jun 2011 | A1 |
20110200368 | Yamaguchi et al. | Aug 2011 | A1 |
20110206427 | Iwaya | Aug 2011 | A1 |
20110222929 | Fujimoto et al. | Sep 2011 | A1 |
20120201582 | Shimura et al. | Aug 2012 | A1 |
20130164059 | Takagi et al. | Jun 2013 | A1 |
20130170879 | Yoshinaga et al. | Jul 2013 | A1 |
20130183070 | Kawata et al. | Jul 2013 | A1 |
20130183071 | Iwaya et al. | Jul 2013 | A1 |
20130299480 | Kakubari | Nov 2013 | A1 |
20140314459 | Samei | Oct 2014 | A1 |
20150063884 | Iwaya et al. | Mar 2015 | A1 |
20150125193 | Ishii | May 2015 | A1 |
20150261157 | Yamano | Sep 2015 | A1 |
20150331376 | Shimmura | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2000-340337 | Dec 2000 | JP |
2002-311735 | Oct 2002 | JP |
2002-323820 | Nov 2002 | JP |
2007-240606 | Sep 2007 | JP |
2009-092887 | Apr 2009 | JP |
2009-271434 | Nov 2009 | JP |
2011-164462 | Aug 2011 | JP |
2011151003 | Aug 2011 | JP |
2013242468 | Dec 2013 | JP |
2014-115509 | Jun 2014 | JP |
2014-178370 | Sep 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20160187823 A1 | Jun 2016 | US |