1. Field of the Invention
The present invention relates to cerium (Ce) based phosphor materials for solid-state lighting applications.
2. Description of the Related Art
(Note: This application references a number of different publications as indicated throughout the specification by one or more reference numbers within brackets, e.g., [x]. A list of these different publications ordered according to these reference numbers can be found below in the section entitled “References.” Each of these publications is incorporated by reference herein.)
Light emitting diodes (LED) based on wide band gap semiconductor materials such as GaN/InGaN produce ultraviolet (UV) and/or blue light (300 nm-460 nm) with high efficiency and long lifetimes [1,14]. The emission from such LEDs can be converted into lower energy radiation using the luminescence properties of phosphor materials. Therefore, high intensity blue light (10) can be used to make white LED devices by combining either a blue LED (11) and a yellow phosphor (12), as shown in
The first commercially available white LED was based on an InGaN chip emitting blue photons at around 460 nm combined with a Y3Al5O12:Ce3+ (YAG) phosphor layer that converts blue into yellow photons [2,3]. Up to now, no competing yellow phosphor has been found to replace the YAG in the blue LED and yellow phosphor setup. However, new phosphors are necessary in order to improve efficiency as well as color rendering. The yellow phosphor should have a strong blue excitation band around 460 nm and emit yellow light around 560 nm. The second option to obtain white light requires very efficient blue, green and red phosphors that can be excited around 380 nm. The development of white solid state lighting based on UV LED requires so far new very efficient phosphor materials.
In most cases, Ce doped materials are characterized by UV emission [5]. However, high crystal field symmetries (Ce—YAG [2]) or a strongly covalent Ce environment (sulfides or oxy-nitrides [6]) can decrease the energy of the emission wavelength. Yttrium aluminium garnet (YAG) doped with Ce3+is the most important example, exhibiting a strong yellow emission (540 nm) upon blue excitation (460 nm). The cubic crystal field at the Ce site associated with a small tetragonal distortion is responsible for this unusual yellow emission [2]. As demonstrated previously by Van Krevel et al. [6], it is also possible to observe green-yellow Ce3+ emission in oxy-nitride compounds, replacing oxygen by more covalent anion such as nitrogen. Further increases of the covalent character has lead to new Eu2+ doped Sialon [7,8] or silicon (oxy)nitride [9-12] based materials that have been reported to show very efficient orange luminescence. Eu2+ doped M2Si5N8 (M=calcium, strontium, or barium) is one of the most interesting so far [10]. The longer emission wavelength observed for oxy-nitride and nitride compounds is associated with a broader excitation band that covers part of the UV and visible spectral range.
The present invention discloses three new Ce based phosphor materials based on nitride and oxy-nitride compounds have been found that emit, respectively, yellow and blue-green photons upon UV/blue excitation. The yellow emitting compounds belong to the Ca—Al—Si—N system with distinct structures. These bright yellow phosphors can be used for white light applications by combining either a blue LED and a yellow phosphor, a blue LED and green-orange phosphors, or an UV LED with three RGB phosphors. In this regard, the present invention encompasses a number of different embodiments, which are set forth below.
In one embodiment, the present invention is an apparatus for solid state lighting applications, comprising an LED and a luminescent Ce compound comprising a Ce3+ doped compound from the quartenary Ca—Al—Si—N system, wherein the luminescent Ce compound emits yellow light when excited by radiation from the LED. The luminescent Ce compound may have an excitation spectrum comprising wavelengths smaller than 430 nm. In this embodiment, the radiation may be UV or blue light radiation, e.g., the LED may be a blue LED and the luminescent Ce compound may emit the yellow light for use in white light applications with the blue LED.
In another embodiment, the present invention is a composition of matter, comprising a luminescent Ce compound that emits yellow light when excited by radiation, wherein the luminescent Ce compound is a Ce3+ doped compound from the quartenary Ca—Al—Si—N system. In this embodiment, the radiation may be UV or blue light radiation, e.g., the luminescent Ce compound may emit the yellow light for use in white light applications with a blue light emitting diode.
The luminescent Ce compound may be based on a nitride or oxy-nitride compound and be described by the formula: MxSiyAlzNw-δOδ:Ce3+, wherein x≈z≈y≈z≈1, w=3, M is calcium (Ca), strontium (Sr), magnesium (Mg), or lanthanide (Ln) elements, and 0≦δ<3 and wherein alkaline earths may be substituted for M. Ce ions may be substituted for Ca with a concentration ranging from 0.01 to 20%. Yttrium (Y) or lanthanide (Ln) elements may be substituted for M with simultaneous replacement of silicon (Si) by aluminium (Al) or gallium (Ga) for charge compensation. Silicon (Si) may be partially substituted by germanium (Ge).
The luminescent Ce compound may have an orthorhombic unit cell having parameters a=5.6477(13) Å, b=9.5201(26) Å and c=4.9967(13) Å, wherein the values in parentheses represent uncertainty in the measurements. The luminescent Ce compound may have a broad excitation band from 375 to 475 nm with a maximum at around 420 nm, and upon excitation at 420 nm, have an emission band centered at around 540 nm with a full width at half maximum of about 100 nm from 500 to 600 nm.
The luminescent Ce compound may have an orthorhombic cell with parameters a=9.92 Å, b=9.11 Å and c=7.33 Å. The composition of matter of claim 5, wherein the luminescent Ce compound has an emission maximum in the range 520-620 nm. The luminescent Ce compound may have an excitation maximum in the range 420-500 nm.
In another embodiment, the present invention is a method for creating a luminescent Ce compound, comprising the steps of (a) mixing stoichiometric amounts of (1) Ca3N2 or Ca metal, (2) AlN, (3) Si3N4 or Si2N2NH, or Si(NH)2, and (4) Ce to create a mixture, wherein the Ce is in the form of a metal, nitride, or oxide, (b) weighing and grinding the mixture in conditions of [O2]<1 parts per million (ppm) and [H2O ]<1 ppm in order to prevent oxidation or hydrolysis, and (c) heating the mixture to a temperature between 1450° C. and 1600° C. under flowing hydrogen and nitrogen (H2/N2) with a ratio of 5:95 at 0.2 to 0.5 liters per minute. The method may further comprise mixing the stoichiometric amounts of (1) Ca3N2 or Ca metal, (2) AlN, (3) Si3N4, Si2N2NH or Si(NH)2, with a Ca:Al: Si ratio of 1:1:1, and adding less than 2% strontium.
In another embodiment, the present invention is an apparatus for solid state lighting applications, comprising an LED and a luminescent Ce compound that emits blue-green light when excited by radiation from the LED. In this embodiment, the radiation may be UV or blue light radiation, e.g., the LED may be a UV LED and the luminescent Ce compound may emit the blue-green light for use in white light applications with the UV LED in combination with RGB phosphors.
In another embodiment, the present invention is a composition of matter, comprising a luminescent Ce compound that emits blue-green light when excited by radiation. In this embodiment, the radiation may be UV or blue light radiation, e.g., the luminescent Ce compound may be used for white light applications in combination with one or more UV LEDs with RGB phosphors.
The luminescent Ce compound may be based on nitride or oxy-nitride compounds and be described by the formula M2SiO4-δNδ wherein M is strontium (Sr) and 0≦δ<4. Alkaline earths may be substituted for M and Si may be partially substituted by Ge.
The blue to green luminescent Ce compound may have an orthorhombic structure with a space group Pnmb with refined cell parameters of about a=5.6671(3) Å, b=7.0737(4) Å and c=9.7359(5) Å. The blue to green luminescent Ce compound may have an excitation peak with a width of about 80 nm, which leads to efficient excitation from 330 up to 400 nm, and may have an emission peak with a width of about 80 nm. The luminescent Ce compound may have an emission peak that is varied from 450 to 500 nm depending on synthesis conditions, a percentage of cerium or substitution of Sr by larger cations such as Ba.
The blue to green luminescent Ce compound may be prepared by (a) preparing a reactive mix of cerium doped SrO and SiO2 nanopowders by dissolution of stoichiometric amounts of Sr(NO3)2 and Ce(NO3)3 in water with Si(OC2H5)4, wherein a coprecipitation of Sr and Ce oxalate at 60° C. is performed in a slightly basic environment in order to gel Si(OC2H5)4 and a resulting dried powder is calcined at 750° C. for 2 hours, and (b) mixing the SrO thoroughly with Si3N4 to create a powder mixture and firing the powder mixture twice in a tube furnace at a temperature of 1350° C. under flowing N2 at 1 to 4 liters per minute.
These embodiments are described in more detail below.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
FIGS. 1(a) and 1(b) are schematic representations of a white LED setup based on a blue LED (˜460 nm) with a yellow phosphor, as shown in FIG.(a), or with a mix of green and orange phosphors, as shown in FIG.(b).
In the following description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
Technical Disclosure
The subject of the present invention is the discovery of three new phosphor materials for application in white solid-state lighting based upon blue (InGaN) or UV (GaN, ZnO) LEDs. Hence, the invention covers the synthesis of yellow and blue to green emitting materials and their application as a phosphor alone or in combination with other phosphors for white LED realization. Two compositions of matter comprising Ce3+ doped compounds from the quaternary Ca—Al—Si—N system are reported to emit yellow photons under UV or blue excitation, and cerium doped Sr2SiO4-δNδ is reported to emit blue to green light.
The composition of matter comprising the yellow phosphor belongs to the quaternary system comprising calcium-aluminium-silicon-nitrogen (Ca—Al—Si—N) and can be described by the formula MxSiyAlNw-δOδCe3+ with x≈y≈z≈1, w=3 and 0≦δ<3. If δ is 0, the compound is an example of a nitride compound; if 6 is non zero, the compound is an example of an oxy-nitride. M is calcium (Ca), but chemical substitution on the M site is possible with different alkaline earths. Ce ions are substituted on the Ca site with a concentration ranging from 0.01 to 20%. Yttrium (Y) or lanthanide (Ln) elements may also be substituted on the M site with simultaneous replacement of silicon (Si) by aluminium (Al) or gallium (Ga) atoms for charge compensation. Silicon (Si) atoms may also be partially substituted using germanium (Ge).
Block 30 represents the step of mixing stoichiometric amounts of (1) Ca3N2 or Ca metal, (2) AlN, (3) Si3N4, Si2N2NH or Si(NH)2, with (4) the Ce source in the form of either a metal, nitride (if available), or oxide, to create a mixture.
Block 31 represents the step of weighing and grinding of the mixture, carried out in a glove box in conditions of [O2]<1 ppm and [H2O]<1 ppm in order to prevent degradation such as oxidation or hydrolysis.
Block 32 represents the step of loading the mixture into, for example, a boron nitride (BN) crucible, for heating in a tube furnace temperature between 1450 ° C. and 1600° C. under flowing hydrogen (H2) and nitrogen (N2) with a ratio of 5:95 (0.2 to 0.5 liters per minute). The body color of this material is bright yellow.
X-ray powder diffraction (see Table 1) shows that this first phase comprising CaAlSiN3:Ce3+ prepared using
The compound CaAlSiN3 has already been shown to be a very efficient orange/red phosphor if Ca2+ ions are substituted by Eu2+[13]. Due to the presence of additional phases, the structure of CaAlSiN3 has not yet been determined and the symmetry is thought to be orthorhombic with cell parameters of about a=5.63 Å, b=9.58 Å and c=4.986 Å [12].
The luminescent properties of the first yellow phosphor are particularly interesting for white light applications.
Hence,
Block 50 represents the step of mixing stoichiometric amounts of (1) Ca3N2 or Ca metal, (2) AlN, and (3) Si3N4, Si2N2NH or Si(NH)2, with a Ca:Al:Si ratio of 1:1:1, together with (4) a Ce source in the form of either a metal, nitride (if available) or oxide, to create a mixture. A small amount of Sr (less than 2%) is added.
Block 51 represents the step of weighing and grinding of the mixture, carried out in a glove box in conditions of [O2]<1 ppm and [H2O]<1 ppm in order to prevent degradation such as oxidation or hydrolysis.
Block 52 represents the step of loading the mixture into, for example, a BN crucible for heating in a tube furnace temperature between 1450° C. and 1600° C. under flowing H2/N2 with a ratio of 5:95 at 0.2 to 0.5 liters per minute. The body color of this material is bright yellow.
Even though the stoichiometry is close to that of the composition of matter comprising the first yellow phosphor (CaAlSiN3:Ce3+), the structure is rather different (see Tables 1 and 2 below). Strontium impurities and/or variations of heating conditions may explain the changes of structure.
The tail of the emission peak, shown in
The composition of the blue-green light emitting phosphor may be M2SiO4-δNδ, where M is mainly strontium (Sr), but chemical substitution on the M site is possible with different alkaline earths, magnesium (Mg), Ca, barium (Ba) or even zinc (Zn), and with 0≦δ<4. Silicon atoms may also be partially substituted using Ge. If δ is 0, the compound is an example of a nitride compound; if 6 is non zero, the compound is an example of an oxy-nitride.
Block 80 represents the step of preparing a reactive mix of cerium doped SrO and SiO2 nanopowders by dissolution of stoichiometric amounts of Sr(NO3)2 and Ce(NO3)3 in water with Si(OC2H5)4, wherein a co-precipitation of Sr and Ce oxalate at 60° C. is performed in a slightly basic environment in order to gel Si(OC2H5)4, and a resulting dried powder is calcined at 750° C. for 2 hours.
Block 81 represents the step of mixing the (Sr,Ce)—Si—O thoroughly with Si3N4 to create a mixture, and placing the mixture into, for example, an Al2O3 boat, wherein a resulting powder is fired twice in a tube furnace at 1350° C. under flowing nitrogen (N2) at 1 to 4 liters per minute. The body color of this material is light green.
All samples have been characterized using X-ray diffraction and UV/visible emission excitation spectroscopy.
The optical properties of Sr2SiO4 as a host material have already been reported for Eu2+ emission [2].
When the LED (1100) is a blue LED, the luminescent Ce compound emits the yellow light (1103) for use in white light applications with the blue LED (and optionally other phosphors (1106)), because the blue light (1104) in combination with the yellow light (1103) and light (1105) from other phosphors (1106) if present, appears as white light (1107).
When the LED (1100) is a blue LED, the luminescent Ce compound emits yellow light (1103) for use in white light applications with the blue LED and other phosphors (1106), because the blue light (1104) in combination with the green/orange light (1105) from other phosphors (1106) appears as white light (1107).
When the LED (1100) is an UV LED, the luminescent Ce compound (1101) emits the yellow light (1103) for use in white light applications with the UV LED and RGB phosphors (1106), because the red, green and blue light (1103) from the RGB (1106) and the yellow light from the Ce compound appears as white light (1107).
When the LED (1100) is an UV LED, the luminescent Ce compound (1101) emits the blue to green light (1103) for use in white light applications with the UV LED and RGB phosphors (1106), because the red, green and blue light (1105) from the RGB (1106) and the blue-green light (1103) from the luminescent Ce compound appears as white light (1107).
The luminescent Ce compound (1101) may be based on nitride or oxy-nitride compounds. The LED may be formed on a substrate (1108).
The following references are incorporated by reference herein:
Conclusion
This concludes the description of the preferred embodiment of the present invention. The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching without fundamentally deviating from the essence of the present invention. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
This application claims the benefit under 35 U.S.C. Section 119(e) of the following co-pending and commonly-assigned U.S. patent applications: U.S. Provisional Application Ser. No. 60/722,682, filed on Sep. 30, 2005, by Ronan P. Le Toquin and Anthony K. Cheetham, entitled “NITRIDE AND OXY-NITRIDE CERIUM BASED PHOSPHOR MATERIALS FOR SOLID-STATE LIGHTING APPLICATIONS,” attorneys' docket number 30794.145-US-P1 (2005-618-1); and U.S. Provisional Patent Application Ser. No. 60/722,900, filed on Sep. 30, 2005, by Anthony K. Cheetham and Ronan P. Le Toquin, entitled “CERIUM BASED PHOSPHOR MATERIALS FOR SOLID-STATE LIGHTING APPLICATIONS,” attorneys' docket number 30794.138-US-P1 (2005-618-1). which applications are incorporated by reference herein. This application is related to the following co-pending and commonly-assigned applications: U.S. Utility application Ser. No. ______, filed on same date herewith, by Anthony K. Cheetham and Ronan P. Le Toquin, entitled “CERIUM BASED PHOSPHOR MATERIALS FOR SOLID-STATE LIGHTING APPLICATIONS,” attorneys' docket number 30794.138-US-U1 (2005-618-2), which application claims priority to U.S. Provisional Patent Application Ser. No. 60/722,900, filed on Sep. 30, 2005, by Anthony K. Cheetham and Ronan P. Le Toquin, entitled “CERIUM BASED PHOSPHOR MATERIALS FOR SOLID-STATE LIGHTING APPLICATIONS,” attorneys' docket number 30794.138-US-P1 (2005-618-1). which applications are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60722682 | Sep 2005 | US | |
60722900 | Sep 2005 | US |