The technical field relates to a nitride semiconductor device. Particularly, the technical field relates to a nitride semiconductor device on silicon substrate.
Light-emitting diodes (LEDs) are semiconductor devices made of a compound semiconductor material containing group elements, for example, GaN, GaP, GaAs, and the like. The lifespan of the LED is up to 100,000 hours, and has advantages of quick response speed (approximately 10−9 seconds), small volume, power-saving, low pollution, high reliability, and ease mass production. Thus, the LEDs have been intensively used in many fields, for example, illumination device, traffic lights, cellular phones, scanners, fax machines, etc.
In the prior art, sapphire (Al2O3) substrates are often used in GaN-based LEDs. However, thermal conductivity of sapphire substrates is not good enough. Accordingly, silicon substrates with better thermal conductivity are gradually used in fabrication of GaN-based LEDs. In addition to good thermal conductivity, the silicon substrates have many advantages, such as high electrical conduction, large wafer size and low cost.
During the fabrication of the conventional nitride semiconductor device 100 (e.g. GaN-based LEDs), the nucleation layer 120, the buffer layer 130, the first type nitride semiconductor layer 140, the light-emitting layer 150 and the second type nitride semiconductor layer 160 are grown at high temperature. After the nucleation layer 120, the buffer layer 130, the first type nitride semiconductor layer 140, the light-emitting layer 150 and the second type nitride semiconductor layer 160 are grown completely, a cooling process is then performed. During the manufacturing process, a stress resulted from thermal expansion coefficient (CTE) mismatch between the first type nitride semiconductor layer 140 (i.e. GaN-based III-V compound) and the silicon substrate 110 is generated, and the conventional nitride semiconductor device 100 suffers the stress. Due to the stress, the conventional nitride semiconductor device 100 bends severely and possibility of crack increases. Therefore, it is a great challenge in reducing the crack possibility caused by the excessive stress.
In this disclosure, the stress of the nitride semiconductor device can be slowed down so that the crack possibility of the nitride semiconductor device can be minimized.
One of exemplary embodiments provides a nitride semiconductor device. A nitride semiconductor device includes a silicon substrate, a nucleation layer, a buffer layer, a first type nitride semiconductor layer, a light-emitting layer and a second type nitride semiconductor layer is provided. The nucleation layer is disposed on the silicon substrate. The buffer layer is disposed on the nucleation layer. The first type nitride semiconductor layer is disposed on the buffer layer. The first type nitride semiconductor layer is doped with a first type dopant, at least one of the buffer layer and the first type nitride semiconductor layer comprises a codopant distributed therein, and an atomic radius of the codopant is larger than an atomic radius of the first type dopant. The light-emitting layer is disposed on the first type nitride semiconductor layer. The second type nitride semiconductor layer is disposed on the light-emitting layer, the second type nitride semiconductor layer comprising a second type dopant.
In order to make the disclosure comprehensible, several exemplary embodiments accompanied with figures are described in detail below to further describe the disclosure in details.
The accompanying drawings are included to provide further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments and, together with the description, serve to explain the principles of the disclosure.
Because the difference between the thermal expansion coefficient (CTE) mismatch between the first type nitride semiconductor layer 140 (i.e. GaN-based III-V compound) and the silicon substrate 110 in the conventional nitride semiconductor device 100 reaches 54%, the conventional nitride semiconductor device 100 suffers an excessive stress during the cooling process. The curvature of the conventional nitride semiconductor device 100 changes significantly. When the stress exceeds certain value, the conventional nitride semiconductor device 100 cracks. In order to minimize the crack possibility of the nitride semiconductor device mentioned above, a stress reducing stacked layer is proposed by the disclosure.
In this embodiment, the nucleation layer 220, the buffer layer 230, the first type nitride semiconductor stacked layer 240, the light-emitting layer 250 and the second type nitride semiconductor layer 260 are sequentially grown over the silicon substrate 210 by metal organic chemical vapor deposition (MOCVD) process. However, the fabrication process of the nucleation layer 220, the buffer layer 230, the first type nitride semiconductor stacked layer 240, the light-emitting layer 250 and the second type nitride semiconductor layer 260 is not limited to the above-mentioned MOCVD process, other suitable processes may be adapted in this disclosure. Besides, the nucleation layer 220 comprises an aluminium nitride (AlN) layer, for example.
In this embodiment, the buffer layer 230 comprises a graded AlGaN layer. In the graded AlGaN layer, a content of Al of the graded AlGaN layer gradually decreases from a first surface 232 of the buffer layer 230 to a second surface 234 of the buffer layer 230, wherein the first surface 232 is in contact with the nucleation layer 220, and the second surface 234 is in contact with the first type nitride semiconductor stacked layer 240. The variation rate of lattice constant divided by the thickness of the buffer layer 230 (the graded AlGaN layer) is from 5.08%/μm to 1.27%/μm.
For example, the first type nitride semiconductor stacked layer 240 is an n-type nitride semiconductor stacked layer, while the second type nitride semiconductor layer 260 is a p-type nitride semiconductor layer. An n-type dopant doped within the first nitride semiconductor layers 242 and the n-type dopant doped within the second nitride semiconductor layers 244 comprise at least one element of group IV A, respectively. In this embodiment, the n-type dopant doped within each first nitride semiconductor layers 242 and the n-type dopant doped within each second nitride semiconductor layers 244 are both silicon (Si), for example. However, the n-type dopant is not limited to silicon, other suitable elements may be used in this embodiment. A concentration of the n-type dopant doped within the first nitride semiconductor layers 242 is between about 1×1018/cm3 and about 5×1018/cm3, and a concentration of the n-type dopant doped within the second nitride semiconductor layers 244 is between about 1×1018/cm3 and about 5×1018/cm3. In this embodiment, the first type nitride semiconductor stacked layer 240 functions as an electron-provided layer and is in contact with the light-emitting layer 250. Besides, in this embodiment, the light-emitting layer 250 comprises multiple quantum wells, for example.
The first type nitride semiconductor stacked layer 240 comprises the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244. The first nitride semiconductor layers 242 comprise a plurality of n-GaN layers, a plurality of n-Alx1Gay1N layers or a plurality of n-Inx2Gay2N layers, and the second nitride semiconductor layers 244 comprise a plurality of n-GaN layers, a plurality of n-Alx3Gay3N layers or a plurality of n-Inx4Gay4N layers, wherein x1 and x3 may be between about 0.02 and about 0.10 respectively, y1 and y3 may be between about 0.90 and about 0.98 respectively, x2 and x4 may be between about 0.01 and about 0.1 respectively, and y2 and y4 may be between about 0.9 and about 0.99 respectively. The first nitride semiconductor layers 242 and the second nitride semiconductor layers 244 are different material so as to form the lattice mismatch pairs.
In this embodiment, the first nitride semiconductor layers 242 comprise a plurality of n-GaN layers, and the second nitride semiconductor layers 244 comprise a plurality of n-Alx1Gay1N layers, wherein x1 is 0.08 and, y1 is 0.92. However, the values of x1 and y1 are not limited to the above-mentioned values, other suitable values of x1 and y1 may be adapted in this disclosure.
Although an atom radius of aluminum (Al) is 125 pm which is smaller than that of gallium, the atom radius of aluminum is larger than that of silicon. Accordingly, aluminium dopant in the second nitride semiconductor layers 244 can slow down the increasing of the stress. Therefore, the crack possibility of the nitride semiconductor device 200 can be lowered.
In addition, a content of Al in the plurality of n-Alx1Gay1N layers is between about 2% and about 10%. When the content of Al in the plurality of n-Alx1Gay1N layers is between about 2% and about 10%, aluminium in the second nitride semiconductor layers 244 can effectively slow down the increasing of the stress as the first nitride semiconductor layers 242 is the n-GaN layers. When the content of Al in the plurality of n-Alx1Gay1N layers increases, the stress would be changed rapidly, and the crack possibility of the second nitride semiconductor layers 244 might be increased. Therefore, if the content of Al in the plurality of the second nitride semiconductor layers 244 (the n-AlGaN layers) is unduly high, the thickness of each of the second nitride semiconductor layers 244 becomes thin. The bonding energy of Al—N is higher than that of Ga—N so that it is difficult to dope the n-type dopant (silicon) in the Al—N structure to form n-AlGaN. In this embodiment, the content of Al in the plurality of n-Alx1Gay1N layers is about 8% which provides better effect to slow down the increasing of the stress.
Moreover, a lattice constant of the n-GaN layers is between about 3.188 Å and about 3.189 Å, and a lattice constant of the n-AlGaN layer is between about 3.175 Å and about 3.18 Å. A difference between the lattice constant of the plurality of first nitride semiconductor layers 242 and the lattice constant of the plurality of second nitride semiconductor layers 244 is between about 0.28% and about 0.44%. The difference between the lattice constant of the plurality of first nitride semiconductor layers 242 and the lattice constant of the plurality of second nitride semiconductor layers 244 slow down the increasing of the stress and effectively minimize the crack possibility of the nitride semiconductor device 200. The different lattice between the lattice mismatch pair (the consecutive layer) will cause the stress in the opposite direction to mitigate the stress in each other.
In order to observe the difference of the surface conditions between the conventional nitride semiconductor device and the nitride semiconductor device having the lattice mismatch pairs and the difference between the nitride semiconductor devices having different amounts of the lattice mismatch pairs.
In this embodiment, The first type nitride semiconductor stacked layer 240 comprises the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244, wherein the material of the second nitride semiconductor layers 244 comprise n-AlGaN. The difference between the lattice constant of the plurality of first nitride semiconductor layers 242 and the lattice constant of the plurality of second nitride semiconductor layers 244 slow down the increasing of the stress. Therefore, the crack possibility of the nitride semiconductor device 200 can be minimized and the thickness of the first type nitride semiconductor stacked layer 240 can be increased. In another embodiment, the buffer layer 230 also can be replaced by another lattice mismatch pairs structure so as to slow down the increasing of the stress.
Besides, a thickness of each of the first nitride semiconductor layers 242 is between about 20 nm and about 30 nm, and a thickness of each of the second nitride semiconductor layers 244 is between about 20 nm and about 30 nm. In this embodiment, the thicknesses of each of the first nitride semiconductor layers 242 and each of the second nitride semiconductor layers 244 are both 25 nm, respectively, for example. However, the thicknesses of each of the first nitride semiconductor layers 242 and each of the second nitride semiconductor layers 244 are not limited to the above-mentioned values, other suitable values may be adapted in this disclosure. When the content of Al in the plurality of n-Alx1Gay1N layers is 8%, each of the second nitride semiconductor layers 244 is about 25 nm, and the concentrations of the n-type dopants in each of the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244 are about 2×1018/cm3.
Moreover, at least 5 pairs of the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244 are stacked. In this embodiment, 10 pairs of the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244 are stacked, for example. However, number of the pairs of the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244 are not limited to the above-mentioned value, other suitable value may be adapted in this disclosure.
In addition, a total thickness of the plurality of first nitride semiconductor layers 242 is between about 200 nm and about 2000 nm, and a total thickness of the plurality of second nitride semiconductor layers 244 is between about 200 nm and about 2000 nm. In this embodiment, the total thickness of the first nitride semiconductor layers 242 is about 250 nm, and the total thickness of the second nitride semiconductor layers 244 is about 250 nm. The thickness of the first type nitride semiconductor stacked layer 240 is between about 0.2 μm and about 4 μm. In this embodiment, the thickness of the first type nitride semiconductor stacked layer 240 is about 0.5 μm, for example. However, the thickness of the first type nitride semiconductor stacked layer 240 is not limited to the above-mentioned value, other suitable value may be adapted in this disclosure.
In this embodiment, because of the following conditions, the increasing of the stress generated by the n-type dopant can be effectively slowed down. First, the difference between the lattice constants of the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244 is between 0.28%˜0.44%. Second, the total thicknesses of the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244 are between about 200 nm and about 2000 nm. Third, the number of the lattice mismatch pairs is at lest 5. Because each of the lattice mismatch pairs comprises the first nitride semiconductor layers 242 and the second nitride semiconductor layers 244, the difference between the lattice constant of the plurality of first nitride semiconductor layers 242 and the lattice constant of the plurality of second nitride semiconductor layers 244 slow down the increasing of the stress generated by the n-type dopant. Even during the cooling process, the crack possibility in the nitride semiconductor device 200 can be minimized, and internal quantum efficiency (IQE) of the nitride semiconductor device 200 can be further improved.
The nitride semiconductor device 200 can apply for a LED device.
In this embodiments, the buffer layer 430 comprises a graded AlGaN layer, a content of Al of the graded AlGaN layer gradually decreases from a first surface 432 of the buffer layer 430 to a second surface 434 of the buffer layer 430, the first surface 432 is in contact with the nucleation layer 420, and the second surface 434 is in contact with the first type nitride semiconductor layer 440. The variation rate of lattice constant divided by the thickness of the buffer layer 430 (the graded AlGaN layer) is from 5.08%/μm to 1.27 μm.
The first type dopant 482 is selected from elements of group IV A, the second type dopant 486 is selected from elements of group II A, and the codopant 484 is selected from elements which have larger atom radius than the first type dopant 482, such as elements of group II A or IIIA. In this embodiment, the first type dopant 482 is silicon (Si), and the codopant 484 and the second type dopant 486 are magnesium (Mg) or indium (In), for example. However, the first type dopant, the codopant 484 and the second type dopant 486 are not limited to the above elements, other suitable elements may be used in this embodiment.
In
An atom percentage of the codopant 484 may be smaller than 1%. A concentration of the first type dopant 482 may be between about 5×1017/cm3 and about 5×1018/cm3, and a concentration of the codopant 484 may be between about 5×1018/cm3 and about 5×1019/cm3. Because the concentration of the codopant 484 in the first type nitride semiconductor layer 440 is light, the concentration of the electron in the first type nitride semiconductor layer 440 would not be influenced by the codopant 484. On the contrary, the concentration of the electron even can become twice because the stress can be slowed down.
A main difference between the nitride semiconductor device 400 of
In the embodiment, the buffer layer 530 comprises a graded AlGaN layer having the first type dopant 582 and the codopant 584 distributed therein, and the first type nitride semiconductor layer 540 comprises an n-GaN layer having the first type dopant 582 and the codopant 584 distributed therein. In this embodiment, a content of Al of the graded AlGaN layer in the buffer layer 530 is gradually varied as that in the buffer layer 430. The variation rate of lattice constant divided by the thickness of the buffer layer 530 (the graded AlGaN layer) is from 5.08%/μm to 1.27%/μm. The increasing of the stress generated by the first type dopant 582 can be slowed down by the codopant 584 distributed in the buffer layer 530 and the first type nitride semiconductor layer 540. Therefore, the crack possibility of the nitride semiconductor device 500 can be minimized, and a thickness of the first type nitride semiconductor layer 540 can be increased.
In the embodiment, the buffer layer 630 comprises a graded AlGaN layer having the first type dopant 682 and the codopant 684 distributed therein. In this embodiment, a content of Al of the graded AlGaN layer in the buffer layer 630 is gradually varied as that in the buffer layer 430. The variation rate of lattice constant divided by the thickness of the buffer layer 630 (the graded AlGaN layer) is from 5.08%/μm to 1.27%/μm. The first type dopant 682 is selected from elements of group IV A, and the codopant 684 is selected from elements which have larger atom radius, such as elements of group II A. In this embodiment, the first type dopant 682 is silicon, the codopant 684 is magnesium, for example. However, the first type dopant 682 and the codopant 684 are not limited to the above elements, other suitable elements may be used in this embodiment. Besides, the first nitride semiconductor layers 642 comprise the plurality of n-GaN layers, and the second nitride semiconductor layers 644 comprise the plurality of n-AlGaN layers. The increasing of the stress generated by the first type dopant 682 can be slowed down by the codopant 684 in the buffer layer 630, and if the aluminium to be a dopant in the second nitride semiconductor layers 644 simultaneously, the possibility of the crack formed of the nitride semiconductor device 600 is mitigated further, and a thickness of the first type nitride semiconductor layer 640 can be increased.
Certainly, in another embodiments, the nitride semiconductor devices can use the nitride semiconductor device 500 in
In this embodiment, the first buffer layer 730 comprises a graded AlGaN layer, a content of Al of the graded AlGaN layer decreases from a first surface 732 of the first buffer layer 730 to a second surface 734 of the first buffer layer 730, the first surface 732 is in contact with the nucleation layer 720, and the second surface 734 is away from the nucleation layer 720.
The dopant 782 is selected from elements which have larger atom radius. In this embodiment, the dopant 782 is indium (In), but it also can be magnesium (Mg) or other element selected from elements whose atom radius is larger than gallium. The material of the light-emitting layer 760 comprises indium, for example the light-emitting layer 760 comprises InGaN. Therefore, the dopant 782 and at least one element of the light-emitting layer 760 are the same. In this embodiment, an atom percentage of the dopant 782 in the first buffer layer 730 is less than 1%.
In addition, The first type nitride semiconductor layer 750 comprises a first type dopant 784, and the second type nitride semiconductor layer 770 comprises a second type dopant 786. The first type dopant 784 is selected from elements of group IV A, and the second type dopant 768 is selected from elements of group II A. The first type dopant 784 may be silicon, and the second type dopant 768 may be magnesium, for example.
The atomic radius of the dopant 782 may be between about 150 pm and about 160 pm. The atomic radius of the dopant 782 (the atomic radius of indium is 156 pm) is larger than the atomic radius of gallium (130 pm). In this embodiment, the nitride semiconductor device 700 further comprises a second buffer layer 740 disposed between the first buffer layer 730 and the first type nitride semiconductor layer 750. Lattice dimensions of the nucleation layer 720 and the second buffer layer 740 are respectively about 3.112 Å and 3.189 Å, and a lattice dimension of the first buffer layer 730 is larger than 3.189 Å. The lattice constants of (0001) AlN and (0001) GaN in a-axis are 3.11 Å and 3.189 Å, respectively. The variation rate of lattice constant in percentage (%) is equal to
The variation rate of lattice constant divided by the thickness of the first buffer layer 730 (the graded AlGaN layer) is from 5.08%/μm to 1.27%/μm. The structure having the variation rate in the lattice constant may reduce stress built in epitaxy layers and improve the crystal quality. The increasing of the stress can be slowed down by the first buffer layer 730 having the dopant 782 distributed therein. Therefore, the crack possibility of the nitride semiconductor device 700 can be minimized effectively, and the thickness of the second buffer layer 740 may be increased. In this embodiment, the second buffer layer 740 comprises an un-doped GaN layer, and a thickness of the second buffer layer 740 is not more than 1 μm.
In another embodiment, the dopant 782 is not only doped in the first buffer layer 730 but also doped in the second buffer layer 740, the first type nitride semiconductor layer 750 or both the second buffer layer 740 and the first type nitride semiconductor layer 750, so that the increasing of the stress can be slowed down and the crack possibility of the nitride semiconductor device 700 can be minimized.
A main differences between the nitride semiconductor device 200 of
The nitride semiconductor device may apply for a LED device or a power device.
In this embodiment, the first buffer layer 830 comprises a graded AlGaN layer, a content of Al of the graded AlGaN layer gradually decreases from a first surface 832 of the first buffer layer 830 to a second surface 834 of the first buffer layer 830, the first surface 832 is in contact with the nucleation layer 820, and the second surface 834 is in contact with the second buffer layer 840. The variation rate of lattice constant divided by the thickness of the first buffer layer 830 (the graded AlGaN layer) is from 5.08%/μm to 1.27%/μm. Besides, the first buffer layer 830 comprises a dopant 882 and gallium, an atomic radius of the dopant 882 is larger than an atomic radius of gallium. The second buffer layer 840 comprises an un-doped GaN layer. The nitride semiconductor device 800 may be a substrate preparing for the formation of the power device, for example: HEMT or MOS transistor or MOSFET. However, the application of the nitride semiconductor device 900 are not limited to HEMT or MOS transistor or MOSFET, other suitable applications of compound semiconductor transistors may be used in this embodiment.
Because the first buffer layer 830 having the dopant 882 distributed therein, the increasing of the stress generated from the difference thermal expansion coefficient of the silicon substrate 810 and the first buffer layer 830 (the nitride compounds) can be slowed down by the dopant 882. Therefore, the crack possibility of the power device can be prevented.
According to the aforementioned embodiments, the increasing of the stress can be slowed down by the first type nitride semiconductor stacked layer, the codopant distributed within at least the buffer layer or the first type nitride semiconductor layer, and the dopant distributed within the first buffer layer. Therefore, the crack possibility of the nitride semiconductor device can be minimized and the thickness of the nitride semiconductor device can be increased.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.