Nitrided or soft nitrided part with excellent wear resistance and pitting resistance, and nitriding and soft nitriding method

Abstract
A nitrided part and soft nitrided part with excellent wear resistance and pitting resistance and a nitriding method and soft nitriding method are provided, specifically, a nitrided part or soft nitrided part made by a steel material comprising, by mass %, C: 0.05 to 0.3%, Si: 0.05 to 1.5%, Mn: 0.2 to 1.5%, P: 0.025% or less, S: 0.003 to 0.05%, Cr: 0.5 to 2.0%, Al: 0.01 to 0.05%, and N: 0.003 to 0.025% and having a balance of Fe and impurities, wherein, the surface layer comprises a compound layer containing iron, nitrogen, and carbon and a nitrogen diffusion layer positioned below the compound layer, the compound layer comprises an ε single phase, the ε single phase has a thickness of 8 to 30 μm and a Vicker's hardness of 680 HV or more, and the ε single phase has a volume ratio of pores of less than 10%.
Description
TECHNICAL FIELD

The present invention relates to a part produced by gas nitriding or gas soft nitriding, in particular a part in which wear resistance and pitting resistance are demanded such as a CVT pulley or gear, and a method of gas nitriding and gas soft nitriding used in production of these parts.


BACKGROUND ART

Steel parts used in automobiles and various industrial machinery etc. are sometimes required to have fatigue strength at their surfaces. For example, in CVT pulleys for transmissions, wear resistance is demanded, while in gears, the fatigue characteristic of pitting resistance is demanded. For improvement of these characteristics, improvement of the surface hardness of the steel parts is considered effective. For steel materials, nitriding and soft nitriding are being increasingly applied. Nitriding and soft nitriding of steel materials are advantageous in that a high surface hardness is obtained and heat treatment strain is small.


Nitriding is a method of treatment that diffuses nitrogen into the surface of a steel material, while soft nitriding is treatment that diffuses nitrogen and carbon into the surface of the steel material. As the medium used for the nitriding and soft nitriding, there are gases, salt baths, plasma, etc. The transmission parts of automobiles are mainly treated by the excellent productivity gas nitriding and gas soft nitriding.


The hardened layer formed by the gas nitriding and gas soft nitriding is comprised of a nitrogen diffusion layer and a compound layer formed at the surface side from the nitrogen diffusion layer and of a thickness of several μm to several tens of μm. The nitrogen diffusion layer is a layer hardened by diffused nitrogen, solid-solution strengthening by carbon, and the particle dispersion strengthening mechanism of nitrides. It is known that improvement of the hardness and depth of the nitrogen diffusion layer gives rise to an improvement in the pitting resistance. In the past, therefore much research has been conducted into improvement of the hardness and depth of the diffusion layer. The compound layer is comprised of an ε phase mainly made of Fe2-3N and also containing carbon or a γ′ phase mainly made of Fe4N. Compared with a steel material, the hardness is extremely high. When the compound layer is formed, the wear resistance is improved.


As conventional findings relating to the compound layer and wear resistance, the following may be mentioned. PLT 1 proposes a gear part which has been nitrided or carbonitrided, has a content of nitrogen from at least the surface down to a depth of 150 μm of 0.2 to 0.8%, has a quenched hardened layer of a mixed structure of martensite and 10 to 40% of residual austenite, and has excellent pitting resistance and wear resistance. PLT 1 has a description relating to the nitrogen content at the steel surface, but has no description relating to the components, composition, and properties of a compound layer formed by nitriding.


Further, PLT 2 proposes a method of treatment using a mixed gas with a residual concentration of NH3 of 45 to 65 vol % for soft nitriding at a gas temperature of 530 to 565° C. for 2 hours to thereby form a compound layer of a thickness of 2 to 12 μm containing pores and improve the pitting resistance, wear resistance, etc. The compound layer described in PLT 2 is comprised of Fe3N (ε), Fe4N (γ′), etc.


CITATION LIST
Patent literature

PLT 1: Japanese Patent Publication No. 7-190173A


PLT 2: Japanese Patent Publication No. 11-72159A


SUMMARY OF INVENTION
Technical Problem

In the above-mentioned PLT 1, a part with excellent pitting resistance and wear resistance is proposed. However, surface hardening by quenching is utilized, so compared with a normal nitrided and soft nitrided part, the heat treatment strain is large and the cost of the later grinding process swells.


In PLT 2, the thickness of the compound layer was considered, but the pores were not optimized. For this reason, sometimes this cannot be applied to parts where high pitting strength is required.


The arts disclosed on the above-mentioned PLTs 1 and 2, as shown in the examples, are arts able to improve the wear resistance, pitting resistance, and other fatigue characteristics. However, the effects of the components, composition, and properties of the compound layer on the wear resistance and pitting resistance have not been studied.


The object of the present invention is to provide a part with excellent wear resistance and pitting resistance which enables demands for reducing the size and lightening the weight of parts and high load capacity to be met. Furthermore, as the means for the same, it also provides the methods of gas nitriding and gas soft nitriding optimally controlling the components and composition of the compound layer.


Solution to Problem

The components, composition, and thickness of the compound layer can be controlled by the treatment temperature and the nitriding potential (KN) defined by the following formula:

KN=(NH3 partial pressure)/[(H2 partial pressure)3/2]   (formula 1)

However, the art of controlling the NH3 and N2 atmosphere in a production scale nitriding furnace has only been established in recent years, so there are still few findings regarding the components, composition, and properties of compound layers of actually produced parts.


Therefore, the inventors controlled the KN to change the compound layer in various ways and investigate the relationship of the compound layer and the wear resistance. As a result, they discovered that the improvement of the wear resistance is affected by the components, composition, thickness, and hardness of the compound layer and further is affected by the volume ratio of the cavities formed by the atomic state nitrogen diffusing into the steel during the nitriding becoming N2 molecules and being released from the steel (below, called “pores”).


Details of the obtained discoveries are summarized in the following (a) to (e):


(a) The compound layer formed by gas nitriding or gas soft nitriding is either of a γ′ single phase, ε single phase, and γ′+ε phase. The ε phase is higher in hardness than the γ′ phase, so to raise the wear resistance, it is effective to make the compound layer which is formed a single phase of the ε phase. The ε phase is formed in the higher KN region than the γ′ phase, so there is a need to set a lower limit of KN. Further, by raising the amount of carbon in the steel or performing soft nitriding, an ε single phase is easily obtained.


(b) The ε phase becomes harder the greater the carbon and nitrogen contents. For this reason, to raise the wear resistance of the ε phase, raising the amounts of carbon and nitrogen in the ε phase is effective. For this reason, it is necessary to raise the amount of carbon of the steel serving as the source of supply of the carbon and employ soft nitriding diffusing carbon so as to further perform nitriding/soft nitriding in the high KN region and raise the amount of nitrogen in the ε phase.


(c) If the thickness of the compound layer increases, pores are formed and the wear resistance and pitting strength fall. For this reason, it is necessary to suitably control the thickness of the compound layer. Specifically, the thickness of the compound layer becomes greater the higher the KN, so it is necessary to provide an upper limit of the KN.


(d) In actual gas nitriding, it is difficult to continue to hold the furnace gas atmosphere constant. For this reason, it is necessary to set a range of the KN value where a compound layer satisfying the above (a) to (c) is obtained. On the other hand, right after the start of treatment, the atmosphere becomes particularly unstable. It tends to take about 50 minutes until it stabilizes. For this reason, at minutes 0 to 50 after start of treatment, it is necessary to satisfy the above (a) to (c) and, considering the fact that the atmosphere is unstable, set the range of control of the KN value broader.


Furthermore, the following findings were obtained regarding the effect of the nitrogen diffusion layer on the pitting resistance and the wear resistance.


(e) If there are Mn, Cr, or other nitride forming elements in the steel, the nitrogen diffusion layer changes in hardness and diffusion layer depth. The pitting resistance is improved the higher the diffusion layer hardness and, further, the deeper the diffusion layer, so it becomes necessary to set the optimum ranges of the components of the steel material.


(f) The nitrogen diffusion layer is lower in wear resistance than the compound layer, so if the compound layer is worn away, wear proceeds faster.


Therefore, to improve the wear resistance and pitting resistance of a part utilizing gas nitriding and gas soft nitriding, it is necessary to control the KN and amount of C in the steel to control the amount of carbon and nitrogen in the compound layer and form a compound layer having few pores and having an ε single phase of a suitable thickness and hardness and adjust the steel components to increase the thickness of the nitrogen diffusion layer.


Note that, to evaluate the pores quantitatively, a SEM image of the compound layer was used, 50 μm line segments parallel to the surface were drawn every 2 μm from the surfacemost part to the bottommost part of the compound layer, the average value of the rates of the lengths of the pore parts in the line segments was calculated, and this was defined as the “pore volume ratio (%)”. Further, the evaluated value of the compound layer hardness was made the average value of 10 random points of the compound layer measured using a Microvicker's hardness meter at a load of 9.8×10−2N.


The present invention was completed based on the above discoveries and has as its gist the gas nitrided part and gas soft nitrided part shown in the following (1) to (4):


(1) A nitrided part or soft nitrided part made of a steel material comprising, by mass %,


C: 0.05 to 0.3%,


Si: 0.05 to 1.5%,


Mn: 0.2 to 1.5%,


P: 0.025% or less,


S: 0.003 to 0.05%,


Cr: 0.5 to 2.0%,


Al: 0.01to 0.05%, and


N: 0.003 to 0.025% and


having a balance of Fe and impurities,


wherein,


the surface layer comprises a compound layer containing iron, nitrogen, and carbon and a nitrogen diffusion layer positioned below the compound layer,


the compound layer comprises an ε single phase,


the ε single phase has a thickness of 8 to 30 μm and a Vicker's hardness of 680 HV or more, and


the ε single phase has a volume ratio of pores of less than 10%.


(2) The nitrided part or soft nitrided part according to (1), further containing, by mass %, one or both of Mo: 0.01to less than 0.50% and V: 0.01 to less than 0.50%.


(3) The nitrided part or soft nitrided part according to (1) or (2), further containing, by mass %, one or both of Cu: 0.01 to less than 0.50% and Ni: 0.01 to less than 0.50%.


(4) The nitrided part or soft nitrided part according to any one of (1) to (3) wherein the compound layer includes, by atm %, (C+N)=22% or more.


(5) A method of nitriding a part comprising a steel material having the components according to any one of (1) to (3), comprising heating the part in a gas atmosphere comprising NH3, H2, and N2 to 550 to 620° C. for 1.0 to 10 hours, wherein a nitriding potential KN obtained by the following (formula 1) is 0.3 to 2.0 in minute 0 to 50 in the nitriding time and is 0.70 to 1.50 from minute 50 on:

KN=(NH3 partial pressure)/[(H2 partial pressure)3/2]   (formula 1)


(6) A method of soft nitriding a part comprising a steel material having the components according to any one of (1) to (3), comprising heating the part in a gas atmosphere comprising NH3, H2, N2, and CO2 to 550 to 620° C. for 1.0 to 10 hours, wherein a nitriding potential KN obtained by the following (formula 1) is 0.3 to 2.0 in minute 0 to 50 in the soft nitriding time and is 0.70 to 1.50 from minute 50 on:

KN=(NH3 partial pressure)/[(H2 partial pressure)3/2]  (formula 1)


Advantageous Effects of Invention

The nitrided part and soft nitrided part of the present invention are excellent in wear resistance and pitting resistance, so can be utilized for the gears, CVT pulleys, transmission parts, etc. of automobiles and industrial machines.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a view showing the shape of a small roller used for a roller pitting test. Note that the units of the dimensions ϕ26, 28, and 130 in the figure are “mm”.



FIG. 2 is a view showing the shape of a large roller used for a roller pitting test. Note that the units of the dimensions ϕ130 and R150 in the figure are “mm”.





DESCRIPTION OF EMBODIMENTS

Below, the requirements of the present invention will be explained in detail. Note that the “%” showing the contents of the components of the elements in the steel material used as the material and the concentration of elements at the surfaces of the parts means “mass %”.


(A) Regarding Chemical Composition of Steel Material Used as Material


C: 0.05 to 0.3%


C is an element required for securing the core strength of the part and the hardness of the compound layer. If the content of C is less than 0.05%, the result does not become the ε phase single phase harder than the γ′ phase and excellent in wear resistance. Further, if the content of C is over 0.3%, the steel rod or wire used as the material or the steel rod or wire after hot forging becomes too high in strength, so the machineability greatly fails. The preferable range of the content of C is 0.08 to 0.25%.


Si: 0.05 to 1.5%


Si raises the core hardness of a part by solid-solution strengthening. Further, the quenching softening resistance is raised and the pitting strength of the part surface becoming a high temperature under wear conditions is raised. To obtain these effects, 0.05% or more is included. On the other hand, if the content of Si is over 1.5%, the steel rod or wire used as the material or the steel rod or wire after hot forging becomes too high in strength, so the machineability greatly falls. The preferable range of the content of Si is 0.08 to 1.2%.


Mn: 0.2 to 1.5%


Mn raises the core hardness of the part by solid-solution strengthening. Furthermore, Mn forms fine nitrides (Mn3N2) at the time of nitriding and improves the wear resistance and pitting resistance by precipitation strengthening. To obtain these effects, the Mn has to be 0.2% or more. On the other hand, if the content of Mn is over 1.5%, not only does the effect of raising the pitting strength become saturated, but also the steel rod or wire used as the material or the steel rod or wire after hot forging becomes too high in hardness, so the machineability greatly falls. The preferable range of the Mn content is 0.4 to 1.2%.


P: 0.025% or less


The impurity P segregates at the grain boundaries and causes the parts to become brittle. For this reason, if the content of P exceeds 0.025%, sometimes the bending fatigue strength falls. The preferable upper limit of the P content for preventing a drop in the bending fatigue strength is 0.018%.


S: 0.003 to 0.05%


S bonds with Mn to form MnS and improve the machineability. However, if the content is less than 0.003%, the effect of improvement of the machineability is difficult to obtain. On the other hand, if the content of S increases, coarse MnS becomes easier to form. In particular, if the content is over 0.05%, the fall in surface fatigue strength becomes remarkable. The preferable range of the S content is 0.01 to 0.03%.


Cr: 0.5 to 2.0%


Cr forms fine nitrides (CrN) at the time of nitriding and improves the wear resistance and pitting resistance by precipitation strengthening. To obtain these effects, Cr has to be 0.5% or more. On the other hand, if the content of Cr exceeds 2.0%, not only does the effect of raising the pitting strength become saturated, but also the steel rod or wire used as the material or the steel rod or wire after hot forging becomes too high in hardness, so the machineability remarkably falls. The preferable range of the Cr content is 0.7 to 1.8%.


Al: 0.01 to 0.05%


Al is a deoxidizing element. For sufficient deoxidation, 0.01% or more is necessary. On the other hand, Al easily forms hard oxide-type inclusions. If the content of Al exceeds 0.05%, the drop in the bending fatigue strength becomes remarkable, so even other requirements are satisfied, the desired bending fatigue strength can no longer be obtained. The preferable range of the Al content is 0.02 to 0.04%.


N: 0.003 to 0.025%


N bonds with Al and V to form AlN and VN. AlN and VN have the effect of suppressing the formation of coarse particles due to the pinning action and reduces the variation in mechanical properties. If the content of N is less than 0.003%, the effect cannot be obtained. On the other hand, if the content of N is over 0.025%, coarse AlN more easily forms, so the above effect cannot be obtained. The preferable range of the N content is 0.005 to 0.020%.


The following are optional elements.


Mo: 0.01 to less than 0.50%


Mo forms fine nitrides (Mo2N) at the time of nitriding and soft nitriding and improves the wear resistance and pitting resistance by precipitation strengthening. Further, Mo has the action of age hardening at the time of nitriding to improve the core hardness of a part. To obtain these effects, the Mo content is preferably 0.01% or more. On the other hand, the content of Mo is 0.50% or more, the steel rod or wire used as the material or the steel rod or wire after hot forging becomes too high in hardness, so the machineability remarkably falls. Further, the alloy cost increases. The preferable upper limit of the Mo content for securing machineability is less than 0.40%.


V: 0.01 to less than 0.50%


V forms fine nitrides (VN) at the time of nitriding and soft nitriding and improves the wear resistance and pitting resistance by precipitation strengthening. Further, V has the action of age hardening at the time of nitriding to improve the core hardness of a part. To obtain these actions, the V content is preferably 0.01% or more. On the other hand, the content of V is 0.50% or more, the steel rod or wire used as the material or the steel rod or wire after hot forging becomes too high in hardness, so the machineability remarkably falls. Further, the alloy cost increases. The preferable range of the V content for securing machineability is less than 0.40%.


Cu: 0.01 to 0.50%


Cu acts as a solid-solution strengthening element to improve the core hardness of a part and the hardness of the nitrogen diffusion layer. To obtain the action of solid-solution strengthening of Cu, a content of 0.01% or more is preferable. On the other hand, if the content of Cu is over 0.50%, the steel rod or wire used as the material or the steel rod or wire after hot forging becomes too high in hardness, so the machineability remarkably falls. Further, the hot ductility falls, so causes the formation of surface defects at the time of hot rolling and the time of hot forging. The preferable range of the Cu content for maintaining the hot ductility is less than 0.40%.


Ni: 0.01 to 0.50%


Ni improves the core hardness and surface layer hardness of a part by solid-solution strengthening. To obtain the action of solid-solution strengthening by Ni, a content of 0.01% or more is preferable. On the other hand, if the content of Ni exceeds 0.50%, the steel rod or wire used as the material or the steel rod or wire after hot forging becomes too high in hardness, so the machineability remarkably falls. Further, the alloy cost increases. To obtain sufficient machineability, the preferable range of the Ni content is less than 0.40%.


(B) Gas Nitriding and Gas Soft Nitriding Temperature


When making the temperature of the gas nitriding (nitriding temperature) less than 550° C., the speed of nitrogen diffusion in the steel becomes smaller, so a sufficient thickness of the hardened layer (nitrogen diffusion layer or compound layer) cannot be obtained. Further, if performing gas nitriding at a temperature of over 620° C., the material transforms to an austenite phase (γ phase) with a smaller speed of diffusion of nitrogen than a ferrite phase (α phase), so it becomes difficult to obtain the thickness of the nitrogen diffusion layer. For this reason, in the present invention, the treatment temperature of the gas nitriding is made 550 to 620° C.


(C) Gas Nitriding and Gas Soft Nitriding Time


The time from the start to the end of the nitriding (nitriding time) has an effect on the thickness of the compound layer and depth of the nitrogen diffusion layer. If the treatment time is shorter than 1.0 hour, the diffusion layer becomes smaller in depth and the pitting resistance falls. If over 10 hours, not only does the pore ratio increase and the wear resistance fall, but also an increase in the manufacturing cost is incurred. For this reason, the treatment time is made 1.0 to 10 hours.


(D) KN Control During Gas Nitriding and Gas Soft Nitriding


In the present invention, gas nitriding uses an atmosphere comprised of NH3, H2, and N2, while gas soft nitriding uses an atmosphere comprised of NH3, H2, N2, and CO2. The nitriding potential KN controls the flow rate of NH3 and flow rate of N2 to adjust this. To form a compound layer comprised of only the ε phase, the range of KN during the treatment is adjusted to become 0.3 to 2.0 at minute 0 to 50 in the treatment time and to become 0.70 to 1.50 from minute 50 on. If KN is smaller than 0.3 at minute 0 to 50 in the treatment time or if it is smaller than 0.70 after minute 50, the thickness of the compound layer becomes less than 8 μm or the concentration of (C+N) in the compound layer becomes less than 22 atm %, and the γ′ phase is mixed in. As a result, the wear resistance falls. On the other hand, if KN exceeds the prescribed upper limit value of 1.50, the thickness of the ε phase becomes larger than 30 μm. Further, the porosity sometimes becomes 10% or more.


To control the KN for nitriding, for example, there is the method of seasoning the part, before nitriding, by holding the inside of the furnace in a high NH3 atmosphere, then adjusting the flows of NH3, H2, and N2 to give the target KN, while for gas soft nitriding, further adjusting the flow of CO2, then introducing the part into a furnace. However, the method of control of KN of the present invention is not limited to this.


Note that, the atmosphere for performing gas nitriding and gas soft nitriding sometimes includes oxygen or other unavoidable impurities. In gas nitriding, the total of NH3, H2, and N2, while in gas soft nitriding, the total of NH3, H2, N2, and CO2 is preferably made 99.5% (vol %) or more.


(E) Identification of Compound Layer


The compound layer of the gas nitrided part and gas soft nitrided part according to the present invention is an ε single phase. To discriminate among the phases, for example, EBSD (Electron BackScatter Diffraction) attached to an SEM (scan type electron microscope) can be used. In the present invention, the crystal orientation is measured by EBSD. The case where the region where the confidence index (CI value) of Fe2-3N in the compound layer is less than 0.05 is less than 10% is deemed as the ε single phase.


(F) Hardness of Compound Layer


The gas nitrided part and gas soft nitrided part according to the present invention have average hardnesses of the compound layers of 680 HV or more.


It is known that the wear resistance greatly depends on the hardness of the part from the surface down to several tens of μm. The inventors measured the Vicker's hardness of the compound layer based on “Vicker's Hardness Test—Test Method” described in JIS Z 2244 (2003).


The inventors compared and studied the results of a wear test using a roller pitting test machine. As a result, it became clear that to make the depth of wear after a repeated 2×106 cycles at a surface pressure of 1600 MPa 15 μm or less, the compound layer has to be 680 HV or more in hardness,


(G) Volume Ratio of Pores in Compound Layer


The gas nitrided part and gas soft nitrided part according to the present invention have volume ratios of pores in the compound layers of less than 10%. Test pieces formed with various compound layers were evaluated for wear resistance characteristics by a roller pitting test. As a result, with a volume ratio of pores of 10% or more, the amount of wear exceeded the target value of 15 μm.


(H) Ratios of Components in Compound Layer


The gas nitrided part and gas soft nitrided part according to the present invention have (C+N) concentrations in the compound layer of 22 atm % or more. Test pieces formed with various compound layers were evaluated for wear resistance characteristics by a roller pitting test. As a result, with a concentration of (C+N) of less than 22 atm %, the amount of wear failed satisfy the target value of 15 μm or less.


EXAMPLE 1

Steels “a” to “z” having the chemical components shown in Table 1 were melted in a 50 kg vacuum melting furnace, then were cast to form ingots. Note that, in Table 1, “a” to “q” are steels having the chemical components prescribed in the present invention. On the other hand, the steels “s” to “z” are steels of comparative examples with at least one or more elements outside the chemical components prescribed in the present invention.











TABLE 1








Chemical components (mass %)*1





















Steel
C
Si
Mn
P
S
Cr
Al
N
Mo
V
Cu
Ni
Remarks





a
0.20
0.80
0.58
0.015
0.020
0.84
0.028
0.008




Inv.


b
0.11
0.70
0.52
0.018
0.018
1.00
0.046
0.023




ex.


c
0.08
0.70
0.51
0.023
0.040
1.46
0.023
0.004







d
0.06
0.67
0.45
0.012
0.019
1.54
0.028
0.005







e
0.09
0.96
1.33
0.017
0.019
0.71
0.033
0.006







f
0.15
1.15
0.44
0.017
0.029
1.94
0.027
0.018







g
0.16
0.20
1.54
0.014
0.014
0.90
0.052
0.007
0.20






h
0.11
1.31
0.49
0.008
0.013
1.24
0.012
0.003
0.32






i
0.24
1.02
0.70
0.018
0.014
0.81
0.030
0.009


0.23




j
0.22
0.52
0.64
0.017
0.018
1.01
0.022
0.010



0.24



k
0.25
0.80
0.45
0.016
0.023
1.22
0.009
0.011

0.21





l
0.27
0.42
0.64
0.014
0.020
0.61
0.018
0.015
0.25

0.11




m
0.18
0.25
1.50
0.013
0.016
0.77
0.023
0.018


0.07
0.05



n
0.29
0.09
0.75
0.011
0.011
0.77
0.029
0.019

0.13

0.15



o
0.13
0.06
1.18
0.009
0.010
0.57
0.039
0.020
0.08
0.14





p
0.18
0.08
0.55
0.008
0.016
0.89
0.048
0.024

0.15
0.10
0.07



q
0.12
0.10
1.18
0.024
0.002
0.76
0.039
0.011
0.09
0.13
0.12
0.20



r
0.16

0.02

0.45
0.016
0.016
0.71
0.030
0.012




Comp.


s
0.12
1.10

0.17

0.009
0.031
0.88
0.021
0.014




ex.


t
0.20
0.90
0.55

0.060

0.018
0.83
0.027
0.016







u
0.21
0.83
0.85
0.012
0.021

0.40

0.029
0.009







v

0.01

0.74
0.70
0.009
0.009
0.79
0.033
0.011







w
0.13
0.41
0.42
0.016

0.092

0.90
0.037
0.014







x
0.09
0.99

0.18

0.006
0.033

0.45

0.028
0.017
0.20






y
0.08
0.53
1.05
0.007
0.015
1.78

0.060

0.009







z

0.01

0.40

1.80

0.010
0.014
0.93
0.027
0.018






*1Balance of chemical components is Fe and impurities.



*2. Empty fields show no alloy elements intentionally added.


*3. Underlines indicate outside scope of present invention.






Each ingot was hot forged to a diameter 35 mm rod. Next, each rod was annealed, then machined to fabricate a plate-shaped test piece for evaluation of the type, thickness, hardness, and volume ratios of pores of the compound layer. The plate-shaped test piece was made a vertical 20 mm, horizontal 20 mm, and depth 2 mm one. Further, a small roller for roller pitting test use was fabricated for evaluating the wear depth and pitting strength. The small roller had a diameter of 26 mm and a length of 130 mm.


Next, gases of NH3, H2, N2 (and, in case of gas soft nitriding, CO2) were introduced into the gas nitriding furnace. The part was gas nitrided and gas soft nitrided under the conditions shown in Table 2, then was oil cooled using 80° C. oil. In the gas nitriding and gas soft nitriding, the H2 partial pressure in the atmosphere was measured using a heat conducting type H2 sensor directly attached to the gas nitriding furnace. The difference in heat conductivity between the standard gas and measured gas was measured converted to the gas concentration. The H2 partial pressure was measured continuously during the gas nitriding. Further, the NH3 partial pressure was measured with a manual glass tube type NH3 analysis meter attached to the outside of the furnace. At the same time as measuring the partial pressure of the residual NH3 every 10 minutes, the nitriding potential KN was calculated and the flow rate of NH3 and flow rate of N2 were adjusted to make it converge to the target value. The nitriding potential KN was calculated every 10 minutes of measurement of the NH3 partial pressure and the flow rate of NH3 and flow rate of N2 were adjusted to make it converge to the target value.











TABLE 2








Nitriding/soft nitriding












Amount of





addition
Nitriding potential Kn
Type of














Test

Temp.
Time
of CO2
0 to 50 min
50 min up
compound
















no.
Steel
(° C.)
(h)
(%)
Lower limit
Upper limit
Lower limit
Upper limit
layer





1
a
590
5

0.60
1.80
0.80
1.35
ε


2
a
590
5

0.65
1.80
0.85
1.45
ε


3
a
590
5

0.80
1.95
1.00
1.50
ε


4
a
590
5

0.70
1.75
0.90
1.25
ε


5
a
590
5
3
0.90
1.70
1.10
1.45
ε


6
a
590
5
3
0.90
1.80
1.10
1.40
ε


7
a
590
5
3
0.85
1.70
1.05
1.45
ε


8
a
590
5

0.75
1.60
0.95
1.45
ε


9
a
590
5

0.65
1.65
0.85
1.40
ε


10
b
590
5

0.60
1.70
0.80
1.35
ε


11
c
590
3

0.65
1.75
0.85
1.35
ε


12
d
590
5
3
0.70
1.75
0.90
1.40
ε


13
e
590
5
3
0.80
1.90
1.00
1.35
ε


14
f
590
3

0.60
1.65
0.80
1.25
ε


15
g
590
5

0.65
1.75
0.85
1.30
ε


16
h
590
3

0.65
1.80
0.85
1.30
ε


17
i
590
5

0.60
1.50
0.80
1.25
ε


18
j
590
5
3
0.90
1.70
1.10
1.30
ε


19
k
590
5

0.75
1.55
0.95
1.25
ε


20
l
590
5

0.75
1.85
0.95
1.35
ε


21
m
590
5

0.60
1.70
0.80
1.20
ε


22
n
590
5
3
0.95
1.70
1.15
1.45
ε


23
o
590
5

0.75
1.80
0.95
1.40
ε


24
p
590
5

0.60
1.65
0.80
1.25
ε


25
q
590
5

0.80
1.80
1.00
1.35
ε


26
a
590
3


0.20

1.80
0.80
1.00
γ′ + ε


27
a
590
5

0.15
1.00

0.35

0.80
γ′ + ε


28
a
590
5
3
0.80

3.00

1.00
1.45
ε


29
a
590
5
3
0.30
2.00
0.70

1.60

ε


30
a
590
3

0.65
1.50

0.10

0.90
γ′ + ε


31
a
590
3
3
0.35
0.90

0.20


0.65

ε


32
r
590
5

0.65
1.70
0.85
1.40
ε


33
s
590
3

0.60
1.80
0.80
1.35
ε


34
t
590
5

0.40
1.85
0.80
1.50
ε


35
u
590
3

0.60
1.65
0.80
1.35
ε


36
v
590
5

0.70
1.55
0.65
1.00
γ′ + ε


37
w
590
3

0.60
1.85
0.80
1.35
ε


38
x
590
3

0.30
1.95
0.70
1.45
ε


39
y
590
5

0.60
1.80
0.80
1.35
ε


40
z
590
3

0.60
1.45
0.70
1.10
γ′ + ε




















Thickness of
Hardness of
Concentration
Ratio of







compound
compound
of compound
porous
Wear
Pitting




Test
layer
layer
layer (C + N)
layer
depth
strength




no.
(μm)
(HV)
(atm %)
(%)
(μm)
MPa
Remarks






 1
13
780
25
8
13
1950
Inv.



 2
20
770
26
7
12
1900
ex.



 3
22
790
25
7
12
1850




 4
15
800
25
6
11
1800




 5
27
710
27
9
14
2000




 6
28
690
27
9
15
1950




 7
23
820
27
5
 9
1850




 8
22
730
25
6
11
1850




 9
12
750
24
7
13
2100




10
13
760
23
9
14
2050




11
10
700
22
8
14
2000




12
25
780
26
6
12
1900




13
24
740
26
6
10
1950




14
11
720
23
7
11
2050




15
16
810
24
5
 9
1850




16
11
830
23
4
 8
1800




17
15
710
26
6
13
1950




18
25
760
28
8
14
2050




19
22
800
26
7
10
2000




20
19
840
25
5
 9
1850




21
18
710
24
7
12
1950




22
29
690
29
9
14
1900




23
22
680
26
9
15
2100




24
13
810
23
4
 9
1850




25
18
730
23
5
10
1900




26
18

630


20

7

25

2100
Comp.



27
10

650


19

9

31

2200
ex.



28
28

530

24

20


29


1700





29

33


650

26

19


18


1700





30
12

620


19

4

35

2300




31
 9

660


18

7

16

1750




32
20
790
23
5
13

1700





33
 9
730
24
6

16


1600





34
20
690
24
6

11


1650





35
18
750
23
7

16


1650





36
18

630

24
7

18

1950




37
15
710
25
8
12

1700





38
20
700
24
8

23


1650





39
18
710
24
8
13

1750





40
10

640


21

6

21

1800





*Underlines indicate outside range of present invention.






Test Nos. 1 to 25 are examples of the nitriding and soft nitriding of the present invention. After the nitriding and soft nitriding, the C-cross-section of each plate shaped test piece (drawing direction) was polished to a mirror finish, etched by a 3% Nital solution for 20 to 30 seconds, then measured for thickness of the compound layer and the volume ratio of the pores by SEM.


The compound layer was photographed at 2000×. From five fields of the photograph of the structure (field area: 2.4×102 μm2), the thicknesses of five points of the compound layer were measured at 10 μm intervals. The average value of the total 25 points was obtained as the compound thickness. Furthermore, 50 μm line segments parallel to the surface were drawn every 2 μm from the surfacemost part to the bottommost part of the compound layer, the ratios of length including the pores in the line segments were calculated using the following formula (2), and the average value of the five fields was used as the volume ratio of the pores.

Volume ratio of pores (%)=Length including pores (μm)/50 (μm)×100  formula (2)


Further, a cross-section polisher was used to polish the C-cross-section and an SEM (scan type electron microscope) was used to photograph the structure. The EBSD attached to the SEM was used to judge the phases formed in the compound layer. The compound layer was photographed at 2000×. Using five fields in the photograph of structure (field area: 2.4×102 μm2), 50 μm line segments parallel to the surface were drawn every 2 μm from the surface most part to the bottommost part of the compound layer, and the ratios of the length in the line segments where the CI value of Fe2-3N was 0.05 or less were calculated using the following formula (3). The case where the average value of five fields was less than 10% was judged to be the ε single phase.

Length where CI value of Fe2-3N is 0.05 or less (μm)/50 (μm)×100  formula (3)


Next, the Vicker's hardness was measured by the following method based on the “Vicker's Hardness Test—Test Method” in JIS Z 2244 (2003). That is, the average value of 10 points of Vicker's hardness at positions near the center of the compound layer in the thickness direction was defined as the hardness of the compound layer. The hardness of the compound layer was measured with a test load of 9.8×10−2N. The Vicker's hardness (HV) was measured at 10 points of each field and the average of the total 50 points was obtained.


Next, a small roller for roller pitting test use was finally worked at the grip part for the purpose of relieving the heat treatment strain, then was used as a roller pitting test piece. The shape after the final processing is shown in FIG. 1. The roller pitting test was performed under the conditions shown in Table 3 by a combination of the above small roller for roller pitting test use and a large roller for roller pitting test use of the shape shown in FIG. 2. Note that, the units of the dimensions in FIGS. 1 and 2 are “mm”. The large roller for roller pitting test use was prepared using steel satisfying the standard of SCM420 of JIS and the general production process, that is, “normalizing→formation of test piece→eutectoid carburization by a gas carburizing furnace→low temperature tempering→polishing”. The Vicker's hardness Hv at a position of 0.05 mm from the surface, that is, a position of 0.05 mm depth, was 740 to 760, while the depth with a Vicker's hardness Hv of 550 or more was a range of 0.8 to 1.0 mm.


Table 3 shows the test conditions when evaluating the wear depth. The test was stopped after a repeated 2×106 cycles. A roughness meter was used to run the wear part of the small roller along the main shaft direction then measure the maximum wear depth. The number N was made 5 to calculate the average value of the wear depth. The parts of the present invention were formed targeting a wear depth of 15 μm or less.












TABLE 3









Test machine
Roller pitting test machine



Test piece size
Small roller: diameter 26 mm




Large roller: diameter 130 mm




Contact part 150 mmR



Surface pressure
1600 MPa



Number of tests
5



Slip ratio
0%



Small roller speed
1500 rpm



Circumferential speed
Small roller: 1.36/sec




Large roller: 1.36/sec



Lubrication oil
Type: automatic transmission oil




Oil temperature: 90° C.










Further, Table 4 shows the test conditions for evaluation of the pitting strength. The test cutoff was made 107 showing the fatigue limit of general steel. The maximum surface pressure when the number of tests reached 107 without pitting occurring in the small roller test piece was defined as the fatigue limit of the small roller test piece. Pitting was detected by a vibration meter attached to the test machine. After vibration occurred, the rotations of both the small roller test piece and large roller test piece were made to stop. The occurrence of pitting and speed were confirmed. In the parts of the present invention, a maximum surface pressure at the fatigue limit of 1800 MPa or more was targeted.












TABLE 4









Test machine
Roller pitting test machine



Test piece size
Small roller: diameter 26 mm




Large roller: diameter 130 mm




Contact part: 150 mmR



Surface pressure
1800 MPa



Number of tests
5



Slip ratio
−40%



Small roller speed
1500 rpm



Circumferential speed
Small roller: 1.36/sec




Large roller: 2.18/sec



Lubrication oil
Type: automatic transmission oil




Oil temperature: 90° C.










The results are shown in Table 2. From Table 2, in Test Nos. 1 to 25 satisfying all of the conditions prescribed in the present invention, it is clear that the amount of wear and the pitting strength both reach the targets and good wear resistance and pitting resistance were obtained. Further, in the tests using steel containing at least one of Mo, V, Cu, and Ni as well, both the amounts of wear and pitting strengths reached the targets and it is clear that both excellent wear resistance and pitting resistance were obtained. On the other hand, Test Nos. 26 to 40 outside the conditions prescribed in the present invention are comparative examples. It is clear that either or both of the wear resistance and pitting resistance do not reach the target. Test Nos. 26, 27, 30, 36, and 40 are examples where ε single phases are not formed, but this is because the amount of C in the steel was not satisfied or the KN value was low or both were not satisfied. Test Nos. 28 and 29 are examples where the upper limit of the KN value during treatment became too high, so the ε phase became too large in thickness or cavity volume ratio. Test No. 31 is an example of a ε single phase material satisfying the above thickness and cavity volume ratio, but where the KN value during the treatment was too low, so the amount of (C+N) in the ε phase was low and the hardness was insufficient. Test Nos. 32 to 39 are examples where the chemical components of the steel are not optimized.


INDUSTRIAL APPLICABILITY

The gas nitrided part and gas soft nitrided part of the present invention are excellent in wear resistance and pitting resistance, so can be utilized for the transmission parts of automobiles or industrial machines etc.

Claims
  • 1. A nitrided part or soft nitrided part made of a steel material comprising, by mass %, C: 0.05 to 0.3%,Si: 0.05 to 1.5%,Mn: 0.2 to 1.5%,P: 0.025% or less,S: 0.003 to 0.05%,Cr: 0.5 to 2.0%,Al: 0.01 to 0.05%, andN: 0.003 to 0.025% and having a balance of Fe and impurities,wherein,the surface layer comprises a compound layer containing iron, nitrogen, and carbon and a nitrogen diffusion layer positioned below the compound layer,said compound layer consists of an ε single phase,said ε single phase has a thickness of 8 to 30 μm and a Vicker's hardness of 680HV or more, andsaid ε single phase has a volume ratio of pores of less than 10%.
  • 2. The nitrided part or soft nitrided part according to claim 1, wherein said compound layer includes, by atm %, (C+N)=22% or more.
  • 3. A method of nitriding a part comprising a steel material having the components according to claim 1, comprising heating the part in a gas atmosphere comprising NH3, H2, and N2 to 550 to 620° C. for 1.0 to 10 hours, wherein a nitriding potential KN obtained by the following (formula 1) is 0.3 to 2.0 in minute 0 to 50 in said nitriding time and is 0.70 to 1.50 from minute 50 on: KN=(NH3 partial pressure)/[(H2 partial pressure)3/2]   (formula 1).
  • 4. A method of soft nitriding a part comprising a steel material having the components according to claim 1, comprising heating the part in a gas atmosphere comprising NH3, H2, N2, and CO2 to 550 to 620° C. for 1.0 to 10 hours, wherein a nitriding potential KN obtained by the following (formula 1) is 0.3 to 2.0 in minute 0 to 50 in said soft nitriding time and is 0.70 to 1.50 from minute 50 on: KN =(NH3 partial pressure)/[(H2 partial pressure)3/2]   (formula 1).
  • 5. The nitrided part or soft nitrided part according to claim 1, further containing, by mass %, one or both of Mo: 0.01 to less than 0.50% and V: 0.01 to less than 0.50%.
  • 6. The nitrided part or soft nitrided part according to claim 5, further containing, by mass %, one or both of Cu: 0.01 to less than 0.50% and Ni: 0.01 to less than 0.50%.
  • 7. The nitrided part or soft nitrided part according to claim 5, wherein said compound layer includes, by atm %, (C+N)=22% or more.
  • 8. A method of nitriding a part comprising a steel material having the components according to claim 5, comprising heating the part in a gas atmosphere comprising NH3, H2, and N2 to 550 to 620° C. for 1.0 to 10 hours, wherein a nitriding potential KN obtained by the following (formula 1) is 0.3 to 2.0 in minute 0 to 50 in said nitriding time and is 0.70 to 1.50 from minute 50 on: KN =(NH3 partial pressure)/[(H2 partial pressure)3/2]   (formula 1).
  • 9. A method of soft nitriding a part comprising a steel material having the components according to claim 5, comprising heating the part in a gas atmosphere comprising NH3, H2, N2, and CO2 to 550 to 620° C. for 1.0 to 10 hours, wherein a nitriding potential KN obtained by the following (formula 1) is 0.3 to 2.0 in minute 0 to 50 in said soft nitriding time and is 0.70 to 1.50 from minute 50 on: KN =(NH3 partial pressure)/[(H2 partial pressure)3/2]   (formula 1).
  • 10. The nitrided part or soft nitrided part according to claim 1, further containing, by mass %, one or both of Cu: 0.01 to less than 0.50% and Ni: 0.01 to less than 0.50%.
  • 11. The nitrided part or soft nitrided part according to claim 10, wherein said compound layer includes, by atm %, (C+N)=22% or more.
  • 12. A method of nitriding a part comprising a steel material having the components according to claim 10, comprising heating the part in a gas atmosphere comprising NH3, H2, and N2 to 550 to 620° C. for 1.0 to 10 hours, wherein a nitriding potential Kn obtained by the following (formula 1) is 0.3 to 2.0 in minute 0 to 50 in said nitriding time and is 0.70 to 1.50 from minute 50 on: KN =(NH3 partial pressure)/[(H2 partial pressure)3/2]   (formula 1).
  • 13. A method of soft nitriding a part comprising a steel material having the components according to claim 10, comprising heating the part in a gas atmosphere comprising NH3, H2, N2, and CO2 to 550 to 620° C. for 1.0 to 10 hours, wherein a nitriding potential KN obtained by the following (formula 1) is 0.3 to 2.0 in minute 0 to 50 in said soft nitriding time and is 0.70 to 1.50 from minute 50 on: KN =(NH3 partial pressure)/[(H2 partial pressure)3/2]   (formula 1).
Priority Claims (1)
Number Date Country Kind
2015-062803 Mar 2015 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2016/059489 3/24/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2016/153009 9/29/2016 WO A
US Referenced Citations (5)
Number Name Date Kind
6093263 Kobayashi et al. Jul 2000 A
20080000553 Sano Jan 2008 A1
20140060983 Sugai et al. Mar 2014 A1
20140251507 Mizuno et al. Sep 2014 A1
20150053311 Shimizu et al. Feb 2015 A1
Foreign Referenced Citations (11)
Number Date Country
7-179985 Jul 1995 JP
7-190173 Jul 1995 JP
8-165556 Jun 1996 JP
8-165557 Jun 1996 JP
11-72159 Mar 1999 JP
2002-69609 Mar 2002 JP
2013-221203 Oct 2013 JP
2014-118583 Jun 2014 JP
5669979 Feb 2015 JP
10-2011-0095955 Aug 2011 KR
WO 2016024923 Feb 2016 WO
Non-Patent Literature Citations (2)
Entry
Korean Office Action, dated Oct. 1, 2018, for corresponding Korean Application No. 10-2017-7026218, along with an English translation.
International Search Report (form PCT/ISA/210), dated May 10, 2016, for International Application No. PCT/JP2016/059489, with English translation.
Related Publications (1)
Number Date Country
20180100226 A1 Apr 2018 US