This invention relates to making of high strength thin cast strip, and the method for making such cast strip by a twin roll caster.
In a twin roll caster, molten metal is introduced between a pair of counter-rotated, internally cooled casting rolls so that metal shells solidify on the moving roll surfaces, and are brought together at the nip between them to produce a solidified strip product, delivered downwardly from the nip between the casting rolls. The term “nip” is used herein to refer to the general region at which the casting rolls are closest together. The molten metal is poured from a ladle through a metal delivery system comprised of a tundish and a core nozzle located above the nip to form a casting pool of molten metal, supported on the casting surfaces of the rolls above the nip and extending along the length of the nip. This casting pool is usually confined between refractory side plates or dams held in sliding engagement with the end surfaces of the rolls so as to dam the two ends of the casting pool against outflow.
In the past, high-strength low-carbon thin strip with yield strengths of 60 ksi (413 MPa) and higher, in strip thicknesses less than 3.0 mm, have been made by recovery annealing of cold rolled strip. Cold rolling was required to produce the desired thickness. The cold roll strip was then recovery annealed to improve the ductility without significantly reducing the strength. However, the final ductility of the resulting strip still was relatively low and the strip would not achieve total elongation levels over 6%, which is required for structural steels by building codes for structural components. Such recovery annealed cold rolled, low-carbon steel was generally suitable only for simple forming operations, e.g., roll forming and bending. To produce this steel strip with higher ductility was not technically feasible in these final strip thicknesses using the cold rolled and recovery annealed manufacturing route.
In the past, high strength, low carbon steel strip have also been made by microalloying with elements such as niobium, vanadium, titanium or molybdenum, and hot rolling to achieve the desired thickness and strength level. Such microalloying required expensive and high levels of niobium, vanadium, titanium or molybdenum and resulted in formation of a bainite-ferrite microstructure typically with 10 to 20% bainite. See U.S. Pat. No. 6,488,790. Alternately, the microstructure could be ferrite with 10-20% pearlite. Hot rolling the strip resulted in the partial precipitation of these alloying elements. As a result, relatively high alloying levels of the Nb, V, Ti or Mo elements were required to provide enough precipitation hardening of the predominately ferritic transformed microstructure to achieve the required strength levels. These high microalloying levels significantly raised the hot rolling loads needed and restricted the thickness range of the hot rolled strip that could be economically and practically produced. Such alloyed high strength strip could be directly used for galvanizing after pickling for the thicker end of the product range greater than 3 mm in thickness.
However, making of high strength, low carbon steel strip less than 3 mm in thickness with microalloying additions of Nb, V, Ti or Mo to the base steel chemistry was very difficult, particularly for wide strip due to the high rolling loads, and not always commercially feasible. For lower thicknesses of strip, cold rolling was required; however, the high strength of the hot rolled strip made such cold rolling difficult because of the high cold roll loadings required to reduce the thickness of the strip. These high alloying levels also considerably raised the recrystallization annealing temperature needed, requiring expensive to build and operate annealing lines capable of achieving the high annealing temperature needed for full recrystallization annealing of the cold rolled strip.
In short, the application of previously known microalloying practices with Ni, V, Ti or Mo elements to produce high strength thin strip could not be commercially produced economically because of the high alloying costs, difficulties with high rolling loads in hot rolling and cold rolling, and the high recrystallization annealing temperatures required.
Twin roll casting has enabled development of both plain C steel and Nb-microalloyed steel thin cast strip. An as-received 0.084 wt % Nb-microalloyed steel has been able to produced having a yield strength of 475 MPa with 14% total elongation. Previous studies have shown that with developed compositions, Nb atoms stay in the matrix as a solid solution with relatively fast cooling rate which can be achieved with twin roll casting. C and N contents in these steel compositions are quite low (0.031 and 0.007 wt % respectively) and the thickness of the as-hot-rolled steel sheets can be around 1.1 mm, so rapid diffusion of N into the steel composition is possible. We have found that the Nb-microalloyed steel properties can be further improved by nitriding.
Presently disclosed is a nitrided steel product comprised, by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, niobium between 0.01 and about 0.20%, and between 0.01 and 0.075% nitrogen. The steel product has a majority of the microstructure comprised of bainite and acicular ferrite, with more than 70% niobium in solid solution prior to nitriding. The yield strength is between 650 MPa and 800 MPa and the tensile strength is between 750 MPa and 900 MPa.
Alternatively or additionally, the niobium content may be less than 0.1% by weight. The nitrogen content may be between 0.035 and 0.065% by weight or alternatively may be between 0.045 and 0.065% by weight.
The nitrided steel product may have a yield strength on at least 40% greater than a similar steel composition without nitriding. Alternatively or additionally, the nitrided steel product may have a tensile strength of at least 30% greater than a similar steel composition without nitriding. The yield strength may be between 650 MPa and 750 MPa, and the tensile strength may be between 750 MPa and 850 MPa. The nitrided steel product may have a total elongation of less than 25%, and additionally, the total elongation may be at least 1%, or alternatively, at least 6% or at least 10%.
In addition, a nitrided thin cast steel strip of less than 3 millimeters in thickness comprises, by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, niobium between 0.01 and about 0.20%, and between 0.01 and 0.075% nitrogen. The nitrided thin cast steel strip has a majority of the microstructure comprised of bainite and acicular ferrite, with more than 70% niobium in solid solution prior to nitriding. The yield strength is between 650 MPa and 800 MPa and the tensile strength is between 750 MPa and 900 MPa.
Alternatively or additionally, the niobium content may be less than 0.1% by weight. The nitrogen content may be between 0.035 and 0.065% by weight or alternatively may be between 0.045 and 0.065% by weight.
The nitrided thin cast steel strip may have a yield strength on at least 40% greater than a similar steel composition without nitriding. Alternatively or additionally, the nitrided thin cast steel strip may have a tensile strength of at least 30% greater than a similar steel composition without nitriding. The yield strength may be between 650 MPa and 750 MPa, and the tensile strength may be between 750 MPa and 850 MPa.
The nitrided thin cast steel strip may have a total elongation of less than 25%, and additionally, the total elongation may be at least 1%, or alternatively, at least 6% or at least 10%. Further, the thin cast steel strip may have a thickness in the range from about 0.5 mm to about 2 mm.
The nitrided thin cast steel strip may in addition comprise fine oxide particles of silicon and iron distributed through the steel microstructure having an average particle size less than 50 nanometers.
Additionally, a nitrided hot rolled steel product of less than 3 millimeters thickness comprises, by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, niobium between 0.01% and 0.20%, and between 0.01 and 0.075% nitrogen, and having a majority of the microstructure comprised of bainite and acicular ferrite and having yield strength between 650 MPa and 800 MPa and tensile strength between 750 MPa and 900 MPa.
Alternatively or additionally, the niobium content may be less than 0.1% by weight. The nitrogen content may be between 0.035 and 0.065% by weight or alternatively may be between 0.045 and 0.065% by weight.
The nitrided hot rolled steel product may have a yield strength on at least 40% greater than a similar steel composition without nitriding. Alternatively or additionally, the nitrided hot rolled steel product may have a tensile strength of at least 30% greater than a similar steel composition without nitriding. The yield strength may be between 650 MPa and 750 MPa, and the tensile strength may be between 750 MPa and 850 MPa.
The nitrided hot rolled steel product may have a total elongation of less than 25%, and additionally, the total elongation may be at least 1%, or alternatively, at least 6% or at least 10%. Further, the nitrided hot rolled steel product may have a thickness in the range from about 0.5 mm to about 2 mm.
The nitrided hot rolled steel product may in addition comprise fine oxide particles of silicon and iron distributed through the steel microstructure having an average particle size less than 50 nanometers.
Additionally, a nitrided cold rolled steel product of less than 3 millimeters thickness comprises, by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, niobium between 0.01% and 0.20%, and between 0.01 and 0.075% nitrogen, and having a majority of the microstructure comprised of bainite and acicular ferrite and having yield strength between 650 MPa and 800 MPa and tensile strength between 750 MPa and 900 MPa.
Alternatively or additionally, the niobium content of the cold rolled steel product may be less than 0.1% by weight. The nitrogen content may be between 0.035 and 0.065% by weight or alternatively may be between 0.045 and 0.065% by weight.
The nitrided cold rolled steel product may have a yield strength on at least 40% greater than a similar steel composition without nitriding. Alternatively or additionally, the nitrided cold rolled steel product may have a tensile strength of at least 30% greater than a similar steel composition without nitriding. The yield strength may be between 650 MPa and 750 MPa, and the tensile strength may be between 750 MPa and 850 MPa.
The nitrided cold rolled steel product may have a total elongation of less than 25%, and additionally, the total elongation may be at least 1%, or alternatively, at least 6% or at least 10%. Further, the nitrided cold rolled steel product may have a thickness in the range from about 0.5 mm to about 2 mm.
The nitrided cold rolled steel product may in addition comprise fine oxide particles of silicon and iron distributed through the steel microstructure having an average particle size less than 50 nanometers.
Also disclosed is a nitrided age hardened steel product comprising, by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, between 0.01% and 0.20% niobuim and between 0.01 and 0.075% nitrogen, having a majority of the microstructure comprised of bainite and acicular ferrite and having yield strength between 650 MPa and 800 MPa and tensile strength between 750 MPa and 900 MPa.
Alternatively or additionally, the niobium content of the nitrided age hardened steel product may be less than 0.1% by weight. The nitrogen content may be between 0.035 and 0.065% by weight or alternatively may be between 0.045 and 0.065% by weight.
The nitrided age hardened steel product may have a yield strength on at least 40% greater than a similar steel composition without nitriding. Alternatively or additionally, the nitrided age hardened steel product may have a tensile strength of at least 30% greater than a similar steel composition without nitriding. The yield strength may be between 650 MPa and 750 MPa, and the tensile strength may be between 750 MPa and 850 MPa.
The nitrided age hardened steel product may have a total elongation of less than 25%, and additionally, the total elongation may be at least 1%, or alternatively, at least 6% or at least 10%. Further, the nitrided age hardened steel product may have a thickness in the range from about 0.5 mm to about 2 mm.
The nitrided age hardened steel product may in addition comprise fine oxide particles of silicon and iron distributed through the steel microstructure having an average particle size less than 50 nanometers.
In addition, a method is disclosed for preparing nitrided thin cast steel strip comprising the steps of:
assembling internally a cooled roll caster having laterally positioned casting rolls forming a nip between them, and forming a casting pool of molten steel supported on the casting rolls above the nip and confined adjacent the ends of the casting rolls by side dams,
counter rotating the casting rolls to solidify metal shells on the casting rolls as the casting rolls move through the casting pool,
forming from the metal shells downwardly through the nip between the casting rolls a steel strip, and
cooling the steel strip at a rate of at least 10° C. per second, coiling the cast strip and nitriding the steel strip to provide a composition comprising by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, between 0.01% and 0.20% niobium, and between 0.01 and 0.075% nitrogen, and having a majority of the microstructure comprised of bainite and acicular ferrite, having more than 70% niobium in solid solution prior to nitriding and having yield strength between 650 MPa and 800 MPa and tensile strength between 750 MPa and 900 MPa. The nitriding process may be selected from the group consisting of salt bath nitriding, gas nitriding, and plasma nitriding. Alternatively or additionally, other nitriding process known to one of ordinary skill in the art are also contemplated.
The steel strip as coiled may have fine oxide particles of silicon and iron distributed through the steel microstructure having an average precipitate size less than 50 nanometers.
The method of preparing nitrided thin cast steel strip may further comprise the steps of:
hot rolling the steel strip; and
coiling the hot rolled steel strip at a temperature between about 450 and 700° C.
Alternatively or additionally, the hot rolled steel strip may be coiled at a temperature less than 650° C.
Also disclosed is a method of preparing a nitrided thin cast steel strip comprising the steps of:
assembling internally a cooled roll caster having laterally positioned casting rolls forming a nip between them, and forming a casting pool of molten steel supported on the casting rolls above the nip and confined adjacent the ends of the casting rolls by side dams,
counter rotating the casting rolls to solidify metal shells on the casting rolls as the casting rolls move through the casting pool, and
forming steel strip from the metal shells cast downwardly through the nip between the casting rolls,
cooling the steel strip at a rate of at least 10° C. per second coiling the cast strip and nitriding the steel strip to provide a composition comprising by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, between 0.01% and 0.20% niobium, and between 0.01 and 0.075% nitrogen, and having a majority of the microstructure comprised of bainite and acicular ferrite, having more than 70% niobium in solid solution prior to nitriding and having yield strength between 650 MPa and 800 MPa and tensile strength between 750 MPa and 900 MPa, and
age hardening the steel strip before or after nitriding at a temperature between 625° C. and 800° C. The nitriding process may be selected from the group consisting of salt bath nitriding, gas nitriding, and plasma nitriding.
The steel strip as coiled may have fine oxide particles of silicon and iron distributed through the steel microstructure having an average precipitate size less than 50 nanometers.
The age hardened steel strip may have niobium carbonitride particles with an average particle size of 10 nanometers or less. Alternatively or additionally, the age hardened steel strip may have substantially no niobium carbonitride particles greater than 50 nanometers.
The method of preparing nitrided thin cast steel strip may further comprise the steps of:
hot rolling the steel strip; and
coiling the hot rolled steel strip at a temperature less than 700° C.
Alternatively or additionally, the hot rolled steel strip may be coiled at a temperature less than 650° C.
Additionally, the step of age hardening occurs at a temperature between 650° C. and 750° C.
In order that the invention may be described in more detail, some illustrative examples will be given with reference to the accompanying drawings in which:
The following description of the embodiments is in the context of high strength thin cast strip with microalloy additions made by continuous casting steel strip using a twin roll caster. The embodiments described herein are not limited to the use of twin roll casters and extends to other types of continuous strip casters.
As shown in
The twin roll caster may be of the kind which is illustrated and described in some detail in U.S. Pat. Nos. 5,184,668 and 5,277,243 or U.S. Pat. No. 5,488,988. Reference may be made to those patents for appropriate construction details of a twin roll caster appropriate for use in an embodiment of the present invention.
A high strength thin cast strip product can be produced using the twin roll caster that overcomes the shortcomings of conventional light gauge steel products and produces a high strength, light gauge, low carbon, steel strip product. Low carbon steel here refers to steels having a carbon level below 0.1% by weight. The invention may utilize microalloying elements including niobium, vanadium, titanium or molybdenum or a combination thereof.
Microalloying elements in steel are commonly taken to refer to the elements titanium, niobium, and vanadium. These microalloying elements were usually added in the past in levels below 0.1%, but in some cases levels as high as 0.2%. These microalloying elements are capable of exerting strong effects on the steel microstructure and properties via a combination of hardenability, grain refining and precipitation strengthening effects (in the past as carbonitride formers). Molybdenum has not normally regarded as a microalloying element since on its own it is a relatively weak carbonitride former, but in the present circumstances carbonitdride formation is inhibited in the hot rolled strip with these microalloys as explained below.
The high strength thin cast strip product combines several attributes to achieve a high strength light gauge cast strip product by microalloying with these elements. Strip thicknesses may be less than 3 mm, less than 2.5 mm, or less than 2.0 mm, and may be in a range of 0.5 mm to 2.0 mm. The cast strip is produced by hot rolling without the need for cold rolling to further reduce the strip to the desired thickness. Thus, the high strength thin cast strip product overlaps both the light gauge hot rolled thickness ranges and the cold rolled thickness ranges desired. The strip may be cooled at a rate of 10° C. per second and above, and still form a microstructure that is a majority and typically predominantly bainite.
The benefits achieved through the preparation of such a high strength thin cast strip product are in contrast to the production of previous conventionally produced microalloyed steels which results in relatively high alloy costs, difficulties in hot and cold rolling, and difficulties in recrystallization annealing since conventional continuous galvanizing and annealing lines are not capable of providing the high annealing temperatures needed. Moreover, the relatively poor ductility exhibited with strip made by the cold rolled and recovery annealed manufacturing route is overcome.
The high strength thin cast steel strip product was produced comprising, by weight, less than 0.25% carbon, between 0.20 and 2.00% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, niobium between about 0.01%, and between about 0.01 and 0.075% nitrogen, and having a microstructure comprising a majority bainite and acicular ferrite, having more than 70% niobium in solid solution prior to nitriding. The steel product may further comprising fine oxide particles of silicon and iron distributed through the steel microstructure having an average precipitate size less than 50 nanometers. The steel product may be further comprised of a more uniform distribution of microalloys through the microstructure than previously produced with conventional slab cast product.
After hot rolling, the hot rolled low carbon steel strip may be coiled at a temperature in the range from about 500-700° C. The thin cast steel strip may also be further processed by precipitation hardening the low carbon steel strip to increase the tensile strength at a temperature of at least 550° C. The precipitation hardening may occur at a temperature between 550° C. and 800° C. or more particularly between 675° C. and 750° C. Conventional furnaces of continuous galvanizing or annealing lines are thus capable of providing the precipitation hardening temperatures needed to harden the microalloyed cast strip product.
For example, a steel composition was prepared by making a steel composition of a 0.026% niobium, 0.04% by weight carbon, 0.85% by weight manganese, 0.25% by weight silicon that has been cast by a thin cast strip process. The strip was cast at 1.7 mm thick and inline hot rolled to a range of strip thickness from 1.5 mm to 1.1 mm using a twin roll caster as illustrated in
After coiling, the strip may be subjected to a nitriding process. Alternatively parts may be formed from the strip by stamping or other processes and then nitrided. In one example, nitriding was performed on a 0.084 wt % Nb-microalloyed steel compositions (Nb-steel) made by twin roll casting with the processing parameters and chemical composition (wt. %) which are listed in Table 1. Steel coupons were heated in a KNO3 salt bath at 525° C., followed by water quenching. Such a temperature for the salt bath is typical of nitriding salt baths, which generally employ molten salt or salts between about 500° C. and 600° C. LECO combustion analysis was undertaken to determine the N concentration in all samples. For comparison, Nb-free steel compositions made by twin roll casting were also nitrided, and a nitrogen-free heat treatment (achieved by wrapping steel coupons in Al foil) was also carried out on the Nb-steel. Potassium nitrate (KNO3) starts to decompose at about 500° C. into K2O, O2 and N2, where the N2 is available to diffuse into steel. Higher temperature nitriding at 650° C. is believed to encourage Fe nitride precipitation mainly at grain boundaries and partly within grains.
Alternatively, other nitriding processes known to one of ordinary skill in the steelmaking arts may also be employed within the scope of the disclosure. For example, the strip may be gas nitrided in a furnace at temperatures between about 500° C. and 575° C., where the furnace atmosphere is rich in nitrogen. Typically, such an atmosphere may include ammonia. During the gas nitriding process, the ammonia gas contacts the heated workpiece and dissociates into nitrogen and hydrogen, with the nitrogen diffusing through the surface of the workpiece and into the body of the workpiece. The rate of introduction of nitrogen to the surface of the workpiece is determined by the nitriding potential, which is determined by the concentration of ammonia at the work surface and the rate of ammonia dissociation. As such, computer systems may be used to control the concentration of ammonia in the furnace in order to effect consistent nitriding treatment.
In another alternative, the strip may be treated by plasma nitriding, which is also known as ion nitriding, plasma ion nitriding, and glow-discharge nitriding. In the plasma nitriding process, the workpiece to be treated is placed in a controlled atmosphere, which typically is nitrogen gas, but additionally may include argon and/or hydrogen. Electrical fields are then used to ionize the nitrogen gas, forming a plasma. The plasma impinges on the surface of the workpiece, effectively nitriding the workpiece. The efficiency of the plasma nitriding process is not temperature dependent, and accordingly, plasma nitriding may be conducted over a broader range of temperatures than either salt bath or gas nitriding, from about 250° C. to temperatures in excess of 600° C.
The nitrogen pick-up measured after nitriding is shown in Table 2. Nitrogen in the samples nitrided for 4 and 6 hours are 7.4 and 9.3 times higher than the as-received sample. Also shown in Table 2 are tensile data from the nitrided steels. There is a small drop of total elongation from 14% to 12% after 4 hours. The fracture type still remains ductile. The YS and UTS of the 4 hour nitrided Nb-steel are 52% and 43% higher than those of the as-received steel. Further nitriding (6 hours) causes a dramatic drop in ductility that leads to brittle fracture. The yield strength (YS), ultimate tensile strength (UTS) and total elongation (TE) for each specimen were obtained using standard tensile testing.
Referring now to
Turning now to
Atom probe tomography (APT) work was performed with a Local Electrode Atom Probe (LEAP) at ˜25 K with a pulse fraction of 25%, a flight path of 90 mm and a pulse repetition rate of 200 kHz. APT data were reconstructed using the method described in B. Gault, M. P. Moody, F. de Geuser, G. Tsafnat, A. La Fontaine, L. T. Stephenson, D. Haley, S. P. Ringer, Journal of Applied Physics 105 (2009). All APT specimens were prepared from the center of the steel sheets in the thickness direction. Similar to the results found by TEM analysis, atom probe tomography also showed a dispersion of fine precipitates in the specimens nitrided for 4 hours and 6 hours, as shown in
While the invention has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as illustrative and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described, and that all changes and modifications that come within the spirit of the invention described by the following claims are desired to be protected. Additional features of the invention will become apparent to those skilled in the art upon consideration of the description. Modifications may be made without departing from the spirit and scope of the invention.
This patent application is a divisional of U.S. patent application Ser. No. 13/030,170, filed on Feb. 18, 2011, which claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/306,471, filed on Feb. 20, 2010, and is a continuation-in-part of U.S. patent application Ser. No. 12/709,133, filed Feb. 19, 2010, now U.S. Pat. No. 10,071,416, which claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/154,231, filed Feb. 20, 2009, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4067754 | Elias et al. | Jan 1978 | A |
4073643 | Kumai et al. | Feb 1978 | A |
4082576 | Lake et al. | Apr 1978 | A |
4152140 | Hori et al. | May 1979 | A |
4468249 | Lehman | Aug 1984 | A |
4534805 | Jesseman | Aug 1985 | A |
4745786 | Wakako et al. | May 1988 | A |
4746361 | Pielet et al. | May 1988 | A |
4832757 | Cox et al. | May 1989 | A |
4851052 | Nishioka et al. | Jul 1989 | A |
5184668 | Fukase et al. | Feb 1993 | A |
5277243 | Fukase et al. | Jan 1994 | A |
5488988 | Fukase et al. | Feb 1996 | A |
5667605 | Bellus et al. | Sep 1997 | A |
5720336 | Strezov | Feb 1998 | A |
5934359 | Strezov | Aug 1999 | A |
5985051 | Yamamoto et al. | Nov 1999 | A |
6059014 | Strezov | May 2000 | A |
6073679 | Strezov | Jun 2000 | A |
6083455 | Kurita et al. | Jul 2000 | A |
6110296 | Zaranek | Aug 2000 | A |
6129791 | Nakajima et al. | Oct 2000 | A |
6358338 | Guelton et al. | Mar 2002 | B1 |
6364967 | Yamamoto et al. | Apr 2002 | B1 |
6488790 | Hartmann et al. | Dec 2002 | B1 |
6491089 | Poirier et al. | Dec 2002 | B1 |
6502626 | Mascanzoni et al. | Jan 2003 | B1 |
6547849 | Gross et al. | Apr 2003 | B2 |
6558486 | Strezov et al. | May 2003 | B1 |
6588494 | Mazurier et al. | Jul 2003 | B1 |
6663725 | Inoue et al. | Dec 2003 | B2 |
6818073 | Strezov et al. | Nov 2004 | B2 |
6855218 | Kawalla et al. | Feb 2005 | B1 |
6939415 | Iseda et al. | Sep 2005 | B2 |
6942013 | Strezov et al. | Sep 2005 | B2 |
7252722 | Nakajima et al. | Aug 2007 | B2 |
20030111206 | Blejde et al. | Jun 2003 | A1 |
20030185700 | Ishii et al. | Oct 2003 | A1 |
20040177944 | Blejde et al. | Sep 2004 | A1 |
20040177945 | Blejde et al. | Sep 2004 | A1 |
20080219879 | Williams et al. | Sep 2008 | A1 |
20090277546 | Hammer et al. | Nov 2009 | A1 |
20100043513 | Hammer et al. | Feb 2010 | A1 |
20100065161 | Hammer et al. | Mar 2010 | A1 |
20100065162 | Hammer et al. | Mar 2010 | A1 |
20100096047 | Hammer et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
313402 | Jan 2006 | AT |
744196 | Feb 2002 | AU |
2005200300 | Aug 2005 | AU |
2001291499 | Feb 2007 | AU |
875003 | Jul 1979 | BE |
9810193 | Aug 2000 | BR |
0114338 | Feb 2012 | BR |
2284124 | Sep 1998 | CA |
2294333 | Dec 1998 | CA |
2420492 | Apr 2002 | CA |
1260740 | Jul 2000 | CN |
1458870 | Nov 2003 | CN |
293823 | Aug 2004 | CZ |
265641 | Mar 1989 | DE |
69832886 | Jan 2006 | DE |
0040553 | Nov 1981 | EP |
0732163 | Sep 1996 | EP |
0800881 | Oct 1997 | EP |
1143022 | Oct 2001 | EP |
1493832 | Jan 2005 | EP |
1007248 | Dec 2005 | EP |
1399598 | Feb 2011 | EP |
S57130750 | Aug 1982 | JP |
S57134249 | Aug 1982 | JP |
S5831026 | Feb 1983 | JP |
S58113318 | Jul 1983 | JP |
58193319 | Nov 1983 | JP |
S62050054 | Mar 1987 | JP |
S64017824 | Jan 1989 | JP |
H02160145 | Jun 1990 | JP |
H02179343 | Jul 1990 | JP |
H02179843 | Jul 1990 | JP |
H02205618 | Aug 1990 | JP |
H03249126 | Nov 1991 | JP |
H03249128 | Nov 1991 | JP |
H03291139 | Dec 1991 | JP |
H05017821 | Jan 1993 | JP |
H05289549 | Nov 1993 | JP |
H08053714 | Feb 1996 | JP |
H08188847 | Jul 1996 | JP |
H08281382 | Oct 1996 | JP |
H08294751 | Nov 1996 | JP |
H10219392 | Aug 1998 | JP |
H11061253 | Mar 1999 | JP |
H11158538 | Jun 1999 | JP |
H11350064 | Dec 1999 | JP |
2000178634 | Jun 2000 | JP |
2001502974 | Mar 2001 | JP |
2001123245 | May 2001 | JP |
2001152255 | Jun 2001 | JP |
2001342543 | Dec 2001 | JP |
2001355039 | Dec 2001 | JP |
2003138340 | May 2003 | JP |
2003147477 | May 2003 | JP |
2004018971 | Jan 2004 | JP |
2004508942 | Mar 2004 | JP |
2004211157 | Jul 2004 | JP |
20010013946 | Feb 2001 | KR |
20010075195 | Aug 2001 | KR |
20020040210 | May 2002 | KR |
20020048034 | Jun 2002 | KR |
20020048199 | Jun 2002 | KR |
20030064760 | Aug 2003 | KR |
PA03001971 | Sep 2004 | MX |
186657 | Feb 2004 | PL |
2212976 | Sep 2003 | RU |
181499 | Mar 2001 | SK |
199903146 | Jul 2000 | TR |
61113 | Aug 2000 | UA |
9412300 | Jun 1994 | WO |
9513155 | May 1995 | WO |
9513889 | May 1995 | WO |
9828450 | Jul 1998 | WO |
9855251 | Dec 1998 | WO |
9857767 | Dec 1998 | WO |
0007753 | Feb 2000 | WO |
0120051 | Mar 2001 | WO |
0226422 | Apr 2002 | WO |
2004005572 | Jan 2004 | WO |
2008054166 | May 2008 | WO |
2010094077 | Aug 2010 | WO |
Entry |
---|
Knerr, et al. “Gas Nitriding.” ASM Handbook, vol. 4: Heat Treating. pp. 387-409. 1991. (Year: 1991). |
Lake et al., Partially Annealed High Strength Cold Rolled Steels, Biblioteheek T.U.E. ADM., Nov. 7, 2005, pp. 1-12, Society of Automotive Engineers, Inc. |
Y.Z. Shen, K.H. Oh, D.N. Lee; Nitrogen strengthening of interstitial-free steel by nitriding in potassium nitrate salt bath; Materials Science and Engineering A 434 (2006); pp. 314-318. |
Gault et al, “Advances in the calibration of atom probe tomographic reconstruction”, J. Appl. Phys. 105, 034913 (2009). |
PCT/AU2011/00171 International Search Report, dated May 23, 2011, 3 pages. |
Kelvin Y. Xie, Sachin L. Shrestha, Peter J. Felfer, Julie M. Cairney, Chris R. Killmore, Kristin R. Carpenter, Harold R. Kaul, Simon P. Ringer; High Strength and Retained Ductility Achieved in a Nitrided Strip Case NB-Microalloyed Steel; Metallurgical and Materials Transactions; Feb. 2013; pp. 848-855; vol. 44A. |
AU2010904022 International-Type Search Report, dated Oct. 8, 2010, 3 pages. |
Klaus Hulka, Niobium Products Company GmbH, Dusseldorf, Germany, The Role of Niobium in Low Carbon Bainitic HSLA Steel, Oct. 2005. |
Recent Development in Project M the Joint Development of Low Carbon Steel Strip Casting by BHP and IHI, presented at the METEC Congress 99, Dusseldorf Germany (Jun. 13-15, 1999), p. 176-181. |
Schwinn, V.; Fluess, P.; Ormston, D. Low Carbon Bainitic TMCP Plate tor Structural and Line-Pipe Application. In Recent Advances of Niobium Containing Materials in Europe; Hulka, K., Klinkenburg, C., Mohrbacher, H., Eds.; Verlag Stahleisen GmbH: Dusseldorf, Germany, 2005; pp. 45-57. |
Schneider et al., Titanium-Bearing High Strength Cold Rolled Steels, Proceedings of the 22nd Mechanical Working & Steel Processing Conference XVIII, Oct. 29-30, 1980, pp. 398-429, Toronto, Ontario. |
Bordignon et al., High Strenth Low-Allow Steels for Automotive Applications, Niobium Technical Report, NbTR-06/84, Dec. 1984 ISSN-0101-5963. |
Constitution and properties of Steels, Materials Science and Technology, 1992, pp. 49, 272, 273, 337, 350, 351, vol. 7, VCH Verlagsgesellschaft mbH, Federal Republic of Germany. |
Krauss et al., “Ferritic Microstructures in Continuously Cooled Low- and Ultralow- carbon steels”, ISIJ International (The Iron and Steel Institute of Japan), vol. 35, No. 8 (1995), pp. 937-945. |
Penning et al., The development of recovery annealed steels, International Journal of Materials and Product Technology, 1995, vol. 10, Nr. 3-6, pp. 325-337, Inderscience Engerprises Ltd. |
Maugis et al., European Commission, Technocal Steel Research, Physical metallurgy of rolling and finishing, Development of methods for the characterization and modeling of precipitation in steels, Jul. 1, 1999 to Jun. 30, 2002, Contract No. 7210-PR/160, Final Report, pp. 20, 21, 23, 25, 42, 45, 46, 48, 51, 84, 139, 140, 187, 188, 190, 191, 205, 206, 209, 212, European Communities, 2004, Luxembourg. |
Ludlow et al., European Commission, Technical Steel Research, Casting, reheating and direct rolling, Precipitation of nitrides and carbides during solidification and cooling, Contract No. 7210-PR/213, Jul. 1, 2000 to Jun. 30, 2004, Final Report, pp. 43, 135-137, 140, 141, 144, 145, 147-149, 152, 154, 155, 197, 245, 247, 277, 289, European Communities, 2006, Luxembourg. |
Bhadeshia, H.K.D.H., ‘Bainite in Steels’ 2nd edition, Chapter 13: Modern Baintic Steels, pp. 343-396, published by the Institute of Materials, Minerals and Mining, Mar. 2001. |
Z. Rogalski, Z. Katas; Mechanical Properties and Corrosion Resistance of Nitrided or Oxinitrided, and Powder Painted Regular and Interstitial Free (IF) Drawing Steel Sheet; Mat.-wiss. u. Werkstofftech. 2004, 35, No. 6; pp. 394-400. |
Number | Date | Country | |
---|---|---|---|
20190100827 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
61306471 | Feb 2010 | US | |
61154231 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13030170 | Feb 2011 | US |
Child | 16202473 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12709133 | Feb 2010 | US |
Child | 13030170 | US |